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Appendix A

Rewriting of the spatial derivative

The particle approximation of the spatial derivative V*u(x) may be rewritten us-
ing two identifiers derived with the divergence theorem. In this report the rewrit-
ten equations are used when taking the derivative of a scalar field with constant
value over space and when deriving the Navier-Stokes equations. This is neces-
sary to ensure that the derived field value is zero or to introduce a level of symme-
try into the approximation. The alternate spatial derivatives given here are pre-
sented in [Liu; 2003] and [Monaghan; 2005] but not derived. The notation in this
appendix is similar to the one used with the SPH method in the main report.

<“(xf)>=iﬁu(xj)W,~j (A1)

=y
(Vou(x))= ;pj( x;)- VW, (A2)

When rewriting the spatial derivative, the following two approximations of den-
sity are essential.

Z’”/ f (A.3)

Zm/ W, (A.4)

The identifiers (A.6) and (A.8) are derived using the “product rule” of the diver-
gence theorem. The first identifier (A.6) is easily found using this rule:

V~(,0u(x)):(Vp)~u(x)+p(V~u(x)) (A.S5)




Vou(x) =%[v-( pu(x))~(Vp)-u(x)] (A.6)

The second identifier (A.8) is found using, the same rule with a different input:

v(@}=%[v.u(x)]{(_l)#vp}u(x) (A7)
v-u(x)=p{v.[“(:)}(”ﬁf)]-vp} (A.8)

The identifiers are now used to rewrite (A.2). Starting with the identifier (A.6)
Equations (A.4) and (A.1) are inserted and the result is rewritten into (A.11).

V-u(x,.):i V-{pjiﬁu(xj)VVljj—u(xl.)-ZJ:mjVinJ (A.9)
pi_ =1 P =1
V-u(x,.)=i imju(x/)-Vinj—Zj:mju(xl.)ViWy} (A.10)
Pil = . J=l
1 J
Vou(x)=— . )=u(x) |- VW, Al
u(x,) » [;mj[u(xj) u(xl):| ; U} ( )

The identifier (A.8) is used to derive the second alternative to (A.2) following the
same procedure resulting in (A.12).

Pi

V-u(xi)pi['zj;m{@—@}-viwjl (A.12)
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Appendix B

SPHysics F77 to F95

SPHysics was developed to simulate a wave flue and other similar problems. The
original code is written in F77 and in the following chapter it will be explained
how the code was updated to F95. The function and cause of the implemented
changes are explained in detail together with a full index of the subroutines and
modules. In general the original subroutine names have been kept and no changes
have been made to the generated output files. The main objective with the rewrit-
ing was to get a full understanding of the workings of an advanced SPH code and
to take full advantage of some of the advanced Fortran features available in F95. It
is important to note that the following is not an attempt to rewrite the user guide
of SPHysics 1.0 [Gesteira et al, 2007] and any questions to the original code must
be sought there using this paper as a supplement.

SPHysics is written in Fortran 77 and there are three newer major releases of For-
tran in 1990, 1995 and 2003. After initially reading the code it was decided to re-
write into Fortran 95 to take advantage of some of the new features. From now on
the original SPHysics 1.0 is referred to as SPHysics F77 while the rewritten pro-
gram is SPHysics F95 and any Fortran names are marked as modules or subrou-
tines. During the rewriting it would also be time to get a better understanding of
Fortran, the advanced SPH options available and how they were implemented.
The main goal is to make a rewritten version of the 2-D part of the code as it is the
one needed in the project. With the new features from F95 it is possible to make a
leaner code that is more easily read for the beginner. The program Compaq Visual
Fortran is used to compile the code as a free license is available for students at
Aalborg University.

SPHysics consists of six programs and the code is able to handle problems in 2D
and 3D. There are three programs/file groups available for each dimension organ-
ized as follows:




B.1. Modules

SPHysicsgen is run initially and generates the geometry and input for the
main program in the form of seven output files. SPHysicsgen is written in
F77.

SPHysics is the main program that computes the CFD problem using the
SPH method and the files generated by SPHysicsgen. SPHysics is written in
F77.

The post processing is written in MatLab and uses the files generated by
SPHysics to make a plot of the solution. Some of the MatLab routines pre-
pare data for visualization in ParaView, an open source viewer. This pro-
gram is not part of the report but more information is available at [Para-
View; 2008]. All post processing of SPHysics F95 is done using MatLab the
files are available on the CD-ROM.

To get the most of this chapter a basic understanding of Fortran is needed or a
look-up source like [Chapman; 2004] must be available.

B.1 Modules

Modules became available with F95 and they are used in the rewritten code for
two purposes. One is to organize the subroutines in fewer files (CONTAIN) and
the other is to share variables between the subroutines (SAVE). How to use the
two commands is depicted in Figure B.1. More information about Fortran mod-
ules and how to use them is available in [Chapman; 2004].

_____________________________________________________________

MODULE modulenamel i i MODULE modulename2 i
IMPLICIT NONE i i IMPLICIT NONE i

i i USE modulenamel i
SAVE | CONTAINS
real :abc i i ¢ =sqri(a*a+b*b) i
a=3.0
b=4.0 | i |
END MODULE modulenamel i i END MODULE modulename?2 i

Figure B.1.Two different properties of the modules are used in the rewritten code. The SAVE com-
mand is used to share variables between subroutines (to the left) and the CONTAIN command is

used to organize subroutines and perform the computations.
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The module PARAMETERS is made to share variables between the subroutines
and modules thus replacing the redundant COMMON command used in the F77
version. The pros of this new method is that there is no risk of mixing two differ-
ent variables as the variable name, type and precision is defined once and saved in
the memory. It is also possible to use arrays without a fixed size with the
ALLOCATE command thus saving space in the memory.

Modules are used extensively when rewriting between F77 and F95 as it makes it
possible to keep the original structure of the program intact.

B.2 SPHysicsgen F77 to F95

The purpose of SPHysicsgen is to generate the geometry and initial conditions
solved with SPHysics. The program has a variety of options and it is not the pur-
pose of this appendix to run through them all but on a general level the following
is possible:

e Geometry - Two different geometries of the problem domain is available; a
beach and a box. Externally defined geometries are not supported.

e Moving objects - There are four types of moving objects. Two wave mak-
ers (Piston and Piston-Paddle), a gate and an initial wave defined some-
where in the problem domain.

e Time stepping — There are two different time stepping algorithms (predic-
tor corrector and verlet) and it is possible to change the duration of the run
and the size of the time steps.

e SPH - The SPH options are closely attached to the theory and are generally
about the choice of A, viscosity conditions, boundary options and type of
kernel functions.

e Water — Two ways are used to fill the water areas with particles. Both are
depicted in Figure B.2.
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Figure B.2. The two possible ways to arrange the particles initial position in 2D is depicted above.
In 3D the fifth particle of BCC is placed in the centre of the eight corner particles.

To getter a better picture of the possibilities study the flowcharts of Section B.6
and be aware that not all the options function as intended and much depends on
how they are combined. A new user of SPHysicsgen F77 would be well advised
to start with one of the five test cases given by [Gesteira et al; 2007].

B.2.1 Notes on SPHysicsgen F77 and F95

The main parts of SPHysicsgen are written in F77 and collected into one file with
all the cons and pros of that approach. To help with future work on the F77 or F95
code a number of items are listed that turned up during the rewriting. Notes on
how this is different in the rewritten F95 version are written as italics.

e Units used are (m, kg, s, etc.)

e No variables types are defined in SPHysics. They all depend on the first let-
ter e.g. all variables that start with [, J, K, L, M, N are integers. In the F95
version IMPLICIT NONE is used and all variables are defined as integer,
real, array etc.

e Variables are shared among the different subroutines with the COMMON
statement available in the file common.2D. This has been changed in the
F95 version as the variables and their type are now defined in a module us-
ing the SAVE statement and implemented with the USE statement. Demon-
strated in Section B. 1.

e Variables are normally defined with single precision throughout the code.
Nothing has been done to change this in the F95 version as it is possible to
make a FORTRAN compiler define all variables with double precision if
necessary.
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e All the subroutines are collected in one file. There is nothing wrong with
this approach but it makes the file rather long and difficult to examine. In
the F95 version the files have been separated into different modules by type.

e The input is not done at once but spread out between the different subrou-
tines as READ(*,*) followed by WRITE(*,*) variable statements. This
makes the input procedure cumbersome and easy to mess up. In order to get
a picture of all the possibilities the variables in the used subroutines have
been collected in an input file. Yet, as not all subroutines are supported
some may still be used the old way.

The SPHysicsgen F77 is build to display the test cases available in the user’s man-
ual. It was necessary to make quite a few adoptions to the code in order to build a
model capable of generating the wanted geometry. The individual subroutines and
modules described on the next few pages are all working independently but had to
be put together in new ways. The necessary custom made subroutines are col-
lected in the module Waveflume_AAU. If further work is done with the code it
might be advisable to spend time rebuilding the geometry generation into a more
versatile tool. The following problems were experienced with the generated ge-
ometries.

e Particles were overlapping or large gaps appeared when the Fill_part sub-
routine was used several times to fill a problem area.

e The two subroutines Obstacle and Normals_Cals 2D do not work to-
gether. The limits of the generated arrays of boundary particles are broken.

e When choosing the dynamic boundary (/BC = 2) it is necessary to choose
the BCC particle distribution depicted in Figure B.2. The code might run
smoothly but post processing will show that the particles fall through the
bottom.

e The generated boundaries must face the right way. This is the real difference
between the three boundary subroutines (left, right and bottom). If for in-
stance Boundaries_bottom is used as the lid of a box it must be rotated
180° for the normals to point in the right direction.
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B.2.2 Subroutines in SPHysicsgen F77 and F95

The following is a list of the subroutines in the program and their functions.

Table B.1. This is a table of the different files and the subroutines they contain in the 2-D version

of SPHysicsgen. In the 3-D version 2D is exchanged with 3D in the filename. [Gesteira et al;

2007]
Subroutine Subroutine properties

CALL name

Box Creates box filled with particles (only two pieces of bottom)
Beach Creates beach filled with particles

Boundaries_left
Boundaries_right
Boundaries_bottom
Wall

Obstacle

Wavemaker

Gate
External_geometry
Fluid_particles
Drop

Set

Fill_part
Wave
Pos_veloc
Pressure
P_boundaries

Correct_P_boundaries

Normals_calc_2D
Normals_filewrite
Tocompile_ifort
Tocompile_gfortran
Tocompile_cvf

Left boundaries of beach/box

Right boundaries of beach/box

Bottom boundaries of beach/box

Creates wall (only in box)

Creates obstacle (does not work with dynamic boundaries,
IBC=1)

Creates one/several paddles

Creates a gate

Imports geometry (not working)

Initial distribution of fluid

Creates area of particles (each particle position is inserted
manually)

Generates a limited area of particles

Fills cubic area with particles

Generates an initial wave moving in the x direction

Calculates initial particle position and speed

Calculates initial particle pressure

Assigns density to boundary particles

Corrects pressure at boundaries

Calculates normals to boundary particles

Writes normails to file

Prepares SPHysics for compilation using IFORT (Linux)
Prepares SPHysics for compilation using gFortran (HP)
Prepares SPHysics for compilation using Compagq Visual For-
tran (MS Windows)
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B.2.3 Modules in SPHysicsgen F95

Table B.2. List of modules and the subroutines they contain. The function of the different subrou-

tines has not been changed.

Module name

Subroutine file name *.f

Description

BoundaryParticles

Calculations

Checking
Compile

FluidParticles

Geometry

Input

MovingObj

Normals

Obstacles

Parameters

Waveflume_AAU

Boundaries_left
Boundaries_right
Boundaries_bottom
Pos_veloc
Pressure
P_boundaries
Correct_p_boundaries
Position_check
Tocompile_gfortran
Tocompile_ifort
Tocompile_cvf
Fluid_particles
Fill_part

Set

Drop

Wave

Box

Beach
External_geometry
Inputdata

Gate

Wavemaker
Raichlenwedge_particles
Normals_Calc_2D
Normals_FileWrite_2D
Wall

Obstacle

Boundaries_bottom_flume
Boundaries_right_flume
Fill_part_flume

Cutaway

Creates boundary particles

Initial computations for gen-
erated particles

Checks particle position
Compiler option for MS
Windows, Linux and HP

Creates area with fluid par-
ticles

Initiates geometry

Module created to control
the input more easily
Moving objects

Calculates and exports nor-
mals to output file

Creates wall/obstacle in
flume

Parameters used in SPHys-
icsgen

Customized subroutines to
build the flume from the
AAU wave laboratory
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B.3 SPHysics F77 to F95

The Fortran language has undergone a great deal of development between the two
versions F77 and F95. Newer versions of Fortran are able to use most of the old or
redundant commands although there are parts of the code that has to be changed.
In the previous sections a number of shortcomings in F77 were listed together
with the changes implemented to remedy these problems. The same work has
been done to the code of SPHysics.

B.3.1 Notes on SPHysics F77

The main parts of SPHysics are written in F77 with all the cons and pros of that
approach. To help with future work on the F77 or F95 code a number of items are
listed that turned up during the rewriting. Notes on how this is different in the re-
written F95 version are written as ifalics.

e Units used are (m, kg, s, etc.)

e Smoothing length /# has a constant value throughout the program. This is
necessary when using the linked list algorithm [Liu; 2003]

e This code is not similar to the one presented by [Liu; 2003]. This code is
chosen rather than [Liu; 2003] because it is constructed to be used on wave
flumes.

e Be aware that a number of methods have calculations spread across several
different subroutines. Constants are calculated in getdata_2D and used
again in for instance kernels and viscosity.

e The variable coef in the INDAT file is not used to calculate the smoothing

length it is instead a variable for the equation of state recommended to have
the value [16; 40]

e The 2-D version is a downgraded version of the 3-D code. For some subrou-
tines a better explanation is available in the 3-D version and some variables
have not been removed although they are now obsolete. An effort has been
made to track all these redundant variables but some may still be left in the
F95 version.

e No variables types are defined in SPHysics. They are all depending on what
type they have at the first input. In the F95 version IMPLICIT NONE is used
and all variables are defined as integer, real, array etc.

10
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e Variables are shared among the different subroutines with the COMMON
statement available in the file common.2D. This has been changed in the
F95 version as the variables and their type are now defined in a module us-
ing the SAVE statement and implemented with the USE statement.

e Variables are normally defined with single precision throughout the code.
Nothing has been done to change this in the F95 version as it is possible to
make a FORTRAN compiler define all variables with double precision if
necessary.

e In the original code the same subroutine name is used multiple times shown
on the flowchart Section B.6 as (n) where n are the number of options.
There are for instance four different kernel subroutines that are all called
kernel. Remember to remove the superfluous files before commencing a
build. In F95 the subroutines has been separated using the IF statement.

B.3.2 Notes on SPHysics F95

The main parts of SPHysics are rewritten in F95 with all the cons and pros of that
approach. All the notes given in Section 0 are still valid with the noted changes.
To help with future work on the new F95 code a number of items are listed that
were implemented in the rewritten version. The changes in the used modules and
subroutines are explained in this section. Notes on the changes from the original
version are written as italics.

e The file extension of F95 files written in the Fortran free format is *.f90 as
the F77 files are written in fixed format *.f their content has been copied to
new files.

o It is easy to restart the computing of a problem by replacing the IPART file
with the PART file generated as output. Descriptions of different files are
available in [Gesteira et al, 2007].

e All variables used by more than one subroutine are defined in the module
Parameters together with a short explanation of their role in the program.
They are grouped together depending on when they are read from the input
files or which part of the code they belong to.

e Variable type has been defined with IMPLICIT NONE and arrays are de-
fined as allocatable. Most arrays are allocated in getdata 2D and deallocated
at program termination in the main SPHysics95 file. This has been done to
allow a better control of the array size i.e. how much memory used. In the

11
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original code the size was fixed at 3,200,000 particles in COMMON.2D,
even if a lower number was used.

e Using allocatable arrays together with the link list is special as the number
of cells may change when particles moves around. Therefore it is necessary
to reallocate the size of the link list arrays during the time stepping.

B.3.3 Subroutines

There are twenty-two subroutines in the original SPHysics program which are
listed and described in Table B.3. A flowchart of the relations between the differ-
ent subroutines is given in Section B.6. The number and use of the subroutines is
not changed in the rewritten F95 version of SPHysics, yet the way the subroutines
share the variables with Common.2D is changed. Note that several subroutines
share the same CALL name although they are different files.

Table B.3. This is a table of the different files and the subroutines they contain in the 2-D version

of >PH —fnthe3-Dyersion2D-is-exchangedwith 3D-inthefitename—{Gesteira-et-al—200
Subroutine Subroutine Subroutine properties
—CALL name ————FILE name(s) *f

Sphysics Sphysics Main program

Common.2D Common.2D Not a subroutine. Used to share

data between the subroutines with
the COMMON and INCLUDE com-

mands

Getdata Getdata_2D Reading data from input files gen-
erated by SPHysicsgen

Energy Energy_2D Creates output file with calculated
energy

Ini_divide Inidivide Initializes the link list

Divide Divide_2D Creates the link list

Keep_list Keep_list Keeps the list of fixed boundary
particles, only called once

Check_limits Check_limits_2D Detects particles outside the com-
putational domain and relocates
them

Poute Poute_2D Records information about the par-
ticles in output files

Shepard Shepard_2D Uses a Shepard filter on the results

Step Step_predictor_corrector 2D Manages the marching procedure

Step_verlet 2D

12
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Correct

Recover _list

Variable_time_step

Ac

Self

Celij

Kernel

Viscosity

Monaghanbc

Movingobjects

Updatenormals

Movingpaddle

Correct_2D
Correct_sps_2D
Recover_list

Variable_time_step_2D

Ac

Self_BC_dalrymple_2D
Self BC_monaghan_2D
Celij_BC_dalrymple_2D
Celij_BC_monaghan_2D
Kernel_gaussian_2D
Kernel_quadratic_2D
Kernel_cubic_2D
Kernel_wendland5_ 2D
Viscosity_artificial_2D
Viscosity laminar_2D

Viscosity_laminar+SPS_2D

Monghanbc_2D

Movingobjects 2D
Updatenormals_2D

Movingpaddle 2D

Accounts for body forces, XSPH
correction and SPS terms
Recovers the list of fixed boundary
particles

Recalculates the time step consid-

ering maximum inter particle
forces, speed of sound and the
viscosity

Controls the boundary particle

movement and calls SELF / CELIJ
Controls the interaction between
particles inside the same cell
Controls the interaction between
particles inside adjacent cells
Calculates the particle — particle
interaction according to the chosen
kernel

Calculates the viscosity terms de-
pending on the chosen type

Accounts for Monaghans repulsive
force between fluid and boundary
particles

Controls the moving objects
Calculates
boundary particles

Accounts for the paddle movement

the normals to the

When building the SPHysics executable file in the F77 version it is necessary to
remove superfluous files from the Fortran workspace. For instance there are four
different kernel subroutines all initiated with the same CALL therefore three off
the files are removed. Furthermore two subroutine combinations are crucial for
the computations depending on the choice of boundary conditions. The two dif-
ferent combinations of files are given in Table B.4 and all the files in a combina-
tion are necessary to make it run correctly. Note that it is not possible to model
moving objects like a wave flume with dynamic boundary conditions in the cur-
rent version of the code.

13
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Table B.4. This table lists two different file combinations depending on the choice of boundaries.

Subroutine combination 1 Subroutine combination 2
Monaghan boundary condi- Dynamic boundary condi-
tions tions

MonaghanBC Self_BC_Dalrymple_2D

Self BC_Monaghan_2D Celij_BC_Dalrymple 2D

Celij_BC_Monaghan_2D -
UpdateNormals_2D -
MovingObjects -
Movingpaddle -

The number and function of the subroutines has not been changed in SPHysics
F95 and a description is found in Table B.3. The subroutines are now organized
into several modules and it is no longer necessary to remove files from the Fortran
workspace. Where it is feasible input and output variables have been designated to
make the program structure more transparent. The reason this is not done with all
subroutines is the large amount of variables being shared throughout the main
loop. Furthermore are modules available to share these variables between subrou-
tines.

B.3.4 Modules

Modules became available with F95 and they are used in the rewritten code. A list
of the modules and the subroutines they contain are available in Table B.S5.

Table B.5. List of modules and the subroutines they contain. The function of the different subrou-

tines has not been changed although some subroutines has been combined into one using the IF

Statement
Module name Subroutine file name *.f Description
Parameters - Used to define and share variables
between the modules. It also contains
short descriptions of each variable
Getdata_2D Getdata_2D Data is read from input files
Linklist Ini_divide All the subroutines used to generate
Divide_2D the link list
Keep_list
Recover_ list
Check_limits_2D
Output Energy 2D All output subroutines

Poute 2D

14
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Kernels

Calculations

CalcViscosity

Marching

MovingObj

Particleinteraction

Kernel_gaussian_2d
Kernel_quadratic_2d
Kernel_cubic_2d
Kernel_wendland5_2d
Variable_time_step_2D
UpdateNormals_2D
Correct_2D

Shepard_2D
MonaghanBC_2D
Viscosity_artificial_2d
Viscosity_laminar_2d
Viscosity laminar+sps_2d
Step_predictor_corrector_2D
Step_verlet 2D

Ac 2D

Movingobjects 2D
Movingpaddle 2D
Self_bc_dalrymple_2d
Self_bc_monaghan_2d
Celij_bc_dalrymple_2d
Celij_bc_monaghan_2d

All particle — particle interaction is cal-
culated in this module. Collected in
one IF block the variable is i_kernel.

Mix of different calculations necessary
to compute the problem

Viscosity calculation collected in one IF
block. The controlling variable is
i_viscos.

Time stepping and control of particle
movement. Choice of time-stepping is
collected in one IF block. The control-
ling variable is [_algorithm.

Moving objects

The mutual relations between particles
are calculated using the link list. Col-
lected in two IF blocks. The controlling
variable is IBC.

15
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B.4 AAU Wave flume SPH model

It was necessary to make a custom set of files able to generate the wave flume
used in the experiments. This collection of subroutines combined in the SPHys-
icsgen module Waveflume_AAU are capable of modelling the flume with a pad-
dle and fill it with particles. The output is fully compatible with SPHysics F95 but
will not work on the older F77 version. Apart from building the geometry of the
flume it was necessary to alter the new subroutine movingpaddle to enable it to
read the sampled paddle movements and use them as base for the computation in
SPHysics.

Wave flume geometry

The geometry is build using the four subroutines listed as part of the Wave-
flume_AAU module in Table B.2. The size and shape of the flume is described in
Section C.4 and in Figure C.8. The boundaries of the SPHysics model is build in
nine pieces as it is specified in Figure B.3 and filled with water (particles) Figure
B.4.

Problem domain

Padd| Platform (vixp)
addle
. N VIX6,

: Wall

E e beta_deg4
T ————

: X ......................
S I A

vIx5, beta_deg3
vix1 vIx2, beta_deg1 vIx3 | vix4, beta_deg2

Figure B.3. Division of the wave flume into eight boundary pieces (vix1-6, vixp, wall) and one
paddle. The annotation is corresponding to the one used in Waveflume_AAU.

The flume is filled with water using the fill_part_flume subroutine. The flume
displayed in Figure B.4 is plotted with a spacing dx,dz = 0.01 and means a total of
75,6609 particles if they are placed in a SC grid.
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0 5 10 15 16 16.5 17
x [m] x [m]

Figure B.4. Example of the generated wave flume to the left and to the right a close up on the end
of the flume with the wall and platform.

It has been a priority to limit the number of particles. In order to do this water
without any impact on the result has been excluded from the model. The height of
the paddle is chosen so that the generated waves will not spill behind the paddle.
Particles leaving the flume by spilling across the wall are excluded from the com-
putation.

Paddle movement

The paddle is controlled by input sampled in the experiments presented in
Appendix C the sample resembles a sinus wave as depicted in Figure B.5. The
sampled signal is read in two different ways depending on whether or not variable
time steps have been enabled.

e Variable time step off means that the position xp of the paddle through the
whole sample may be calculated at once.

e Variable time step on means that xp is calculated in each time step by iterat-
ing from the measured result i.e. if the time is 5.0015 seconds the mean of
the two positions at 5.0010 and 5.0020 is used. (sampled with 1000 Hz)

The subroutine controlling the paddle also needs the speed up of each paddle par-
ticle. As this was not measured the speed is calculated using a central difference
scheme (B.1) when loading the position file in getdata_2D. An example of a sig-
nal and its derivate is depicted in Figure B.S5.
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YR [l )
S(x) = i (B.1)

where

dt is the timestep [s]

0.4

Movement Ax [m] / Speed [m/s]

0.2 . '~ | — Paddle movement Ax |]
et + Paddle speed
-0.4 : : : ' :
1 2 3 4 5 6
Time [s]

Figure B.5. An example of how a sample of the paddle movement and its time derivative (particle

speed) might look. This is a generated example sampled with 20 Hz.

B.5 Conclusion and further work

The translation of SPHysics from F77 to F95 in this project has been performed in
order to understand the rudimentary structure of an advanced SPH program and to
prepare it for computing a virtual wave flume. It was demonstrated by the results
in the main report that the F95 is stable and able to handle the specified problems.
One drawback by using modules is the risk of collecting to many/long subroutines
in the same module which makes it difficult to work with. With the experience in
using Fortran gained during the past six months it would be possible to make it all
more streamlined. A great deal of time was spend tracking the different variables
and their importance. This work has not been concluded as only the variables
shared between several subroutines are defined. But with the new structure of the
code further work will be easier.

If more time was available it would be necessary to rid the code of some of the
problems mentioned in this chapter and build a more flexible geometry generation
system. Furthermore this project has only worked with a 2-D version of SPHysics.
A rebuilding of the 3-D version would be easy to perform based on the collected
experience and reusing the shared subroutines. Running 3-D computations would
demand greater amounts of computational power and a parallelization might
speed things up, as described by [Liu; 2003].
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B.6 Flowchart SPHysics F77 and F95

The following pages contain flowcharts of the original SPHysics 1.0 code and the
rewritten F95 version. The flowcharts are based on the SPHysics user guide
[Gesteira et. al; 2007] and investigations of the code. The following flowcharts are
included:

e Flowchart page I — The original SPHysics 1.0 code structure written in F77
together with the created output (files) and important lists (arrays).

e Flowchart page II — An updated version of SPHysics 1.0 written in F95
with redundant and obsolete commands removed. The whole code is now
organized into modules described in Section B.3.4.

¢ Flowchart page III — The original SPHysicsgen 1.0 code structure written
in F77 together with the created output (files). When the geometry is a box.

e Flowchart page IV — The original SPHysicsgen 1.0 code structure written
in F77 together with the created output (files). When the geometry is a
beach.

The signatures used on the flowcharts are explained in Figure B.6. Note that the
necessary input files generated by SPHysicsgen are not presented here.

SUBROUTINE NAME (n)
n is the number of different sub-

routines. There is for instance
one subroutine for each kernel
function

|| The main program is marked

|| OUTPUT FILE NAME with grey

___________________________________

Figure B.6.The signatures used in the flowcharts to describe SPHysics code structure and how it

has been rewritten in F95.
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Appendix C

Wave flume experiments

The wave flume experiments were conducted in the period from October 30 to
November 9 2007. The experiments were conducted at Aalborg University in the
wave laboratory room no. L-133. The experiments and the used equipment are
described in detail on the following pages.

The real life inspiration is the access platforms placed on offshore wind turbines
to allow workers access to the machinery, cf. Figure C.1. The platforms are sub-
ject to impact from waves breaking against the substructure.

Figure C.1. To the left is an offshore wind turbine from Farml (2007) and to the right a close-up
of the landing stage and the platform running around the exterior of the turbine substructure from
Oceanatlas (2007).

The purpose of the experiments was to get a source of reference when using the
program SPHysics F95 to compute a virtual wave flume. Therefore it is the inten-
tion of the experiments to generate a similar situation in a wave flume with waves
breaking against a vertical structure and hitting a platform. The work to build a
virtual SPH model of the flume and comparison with the experiment will expose
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C.1. Experiment expectations

the current limits of the SPH method and clarify how well the method is able to
model two-dimensional (2-D) situations with distortion of the free surface, impact
against structures and turbulence.

C.1 Experiment expectations

The experiment is a pure test study and the size of the structure is chosen to fit the
available wave flume and generate a situation where waves are breaking against a
horizontal platform as depicted in Figure C.2. The setup is compared to a SPH
model in scale 1:1 and only regular waves are generated at the paddle. To keep
track of the wave it is necessary to measure the wave height in the flume with
wave gauges. In order to measure the impact the wall must be equipped with pres-
sure transducers. The problem is simplified into a 2-D model because only a 2-D
version of SPHysics F95 is currently available and in two dimensions it is possi-
ble to work with a greater numerical discretization than currently possible in 3D.

Incoming wave Platform
- expected path

—>

(b)

ﬂ Wall

Foot
RS T ST

Figure C.2. In this figure, the situation desired in the experiment and the SPH model is depicted.
The waves are chosen so they rise just before the wall (a) as they suddenly enter shallow water

and hit the platform (b) from beneath. The pressure transducers are placed to measure this.

The wave impact on the platform will be instantaneous and might involve air be-
ing trapped between the structure and the water. Due to the declining water depth
and the reflection of waves, the waves just before the platform rise and run up the
wall. To track the whole movement it is desirable to place pressure transducers on
the wall and platform.

The combination of wave properties necessary for a wave to travel through the
wave flume and hit the platform is found with a test series with the chosen struc-
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Appendix C Wave flume experiments

ture size and a water depth. The parameters are furthermore chosen to produce
waves that do not break before they reach the structure in order to ease the com-
parison between experiment and model. As the experiment is started from a still
water situation, the first waves dissipates and it is necessary to allow the wave
generator time to gain up and generate a series of linear waves to get the required
size of each wave.

The waves are generated at a paddle approximately 17 m from the structure and
the greater part of the wave energy will be reflected when it reaches the wall. This
is due to the vertical wall and the choice to make it a 2-D experiment and the same
behaviour is expected of the SPH model. Because of the reflection, the wave
gauges are placed in groups of three in order to enable them to distinguish incom-
ing and reflected waves. In spite of this precaution it is not prudent to run the ex-
periment longer than the time it takes the first waves to travel the flume thrice (i.e.
between 30-60 seconds). Beyond this point the new waves together with the first
and second group of waves will interact and create an unpredictable wave pattern.

C.2 Experiment types

The following cases are run as experiments for the chosen wave properties pre-
sented in Section C.5:

e Experiment no. 1: An experimental study of the variance and correlation of
the sampled data

e Experiment no. 2: Train of regular waves rising and hitting the wall and
platform with difference in water wave height A and period 7.

e Experiment no. 3: Series of regular waves rising and breaking just before
the platform (1-2 metres)

C.3 Experiment vs. SPH method

The following is a discussion of the differences between the experimental and the
numerical model that may influence the final results.

The greatest difference is brought by the shear time it takes to perform experimen-
tal studies in the laboratory. The time consuming is partly due to the time it takes
between each experiment before the flume is ready again and all prior generated
waves have dissipated away. With the numerical model it is possible to build and
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run a large number of tests hindered only by imagination and the computers avail-
able when the numerical model is built.

Geometry and discretization

It is possible to make a numerical model that has the same geometry and paddle as
the experiment although the areas behind the wall and behind the paddle are re-
moved as it makes no sense to model water that has no impact on the experiment.
The amount of water spilling across the wall is small and does not change the wa-
ter level in the flume. Furthermore as a time series of the paddle movement is
sampled in the experiment it is possible to duplicate it exactly when computing
the numerical solution.

Due to the shear size of the flume there is a limit on how many particles may be
used and this will influence the impact readings. The generated waves in the
flume are linear and non breaking until just before the structure and it is expected
that even a relatively rough discretization will be able to model this situation.
When the waves break and hit the structure, a huge number of particles are re-
quired to model the waves in every detail. This is not possible due to limits in
computational power and one of the questions is how good an estimation of the
real thing the rough SPH model is.

In the experiment it is only possible to measure the pressure in a limited number
of points and a high sampling frequency is necessary to sample the impact. Fur-
thermore, any measurements with the pressure gauges depend on their size as it
must be an average of the pressure on the piece of structure they are covering. The
SPH model has similar limitations, however with respect to the chosen time step
and discretization.

Impact and water/air interaction

The most obvious difference between the numerical model and the experiment is
the lack of air in the computational model. It would be possible to use the SPH
method to model both air and water as the only difference between the materials
are the mass and the speed of sound. This it not supported by the present edition
of SPHysics but experiments have been conducted by [Colagrossi & Landrini,
2003] These experiments show that when modelling impact problems with
air/water interaction a maximum pressure is expected as the trapped air tries to
escape.
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C.4 The experiment

The experiment was conducted at Aalborg University using the equipment avail-
able in the wave laboratories at the Department of Civil Engineering. The follow-
ing is a description of the setup and the different types of equipment used during
the generation and sampling of results.

C.4.1 Setup and equipment

In the experiment the problem is simplified into a 2-D situation depicted in Figure
C.3. The size of the structure determines the choice of water depth and wave prop-
erties. A high wall will need deep water to generate the situation from Figure C.2
and increase the number of particles in the numerical model. On the other hand a
low structure and low water depth will make it difficult not to generate waves that
break long before they reach the structure. To address this problem it is chosen to
place the platform 0.45 m above the bottom and place a shallow foot of pebbles
that will help the waves to rise. Depending on the progress of the tests it will be
possible to remove the pebbles and/or change the water depth to generate the re-
quested situation and try alternatives. The wall and platform themselves are hard
to alter as they must be immobile and are securely fastened with bolts to the wall
and bottom of the flume.

Pebbles @20

SWL )

250

Figure C.3. A conceptual sketch of the experimental setup as placed in the wave flume. The struc-
ture consists of three pieces: a toe of pebbles to control wave breaking, a wall to break against
and a platform above the SWL.
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The model was built in the laboratory based on Figure C.3 and the following
specifications.

e As SPHysics is unable to work with deformable solids the wall and the plat-
form must be made of a material stiff enough to resist the wave forces.

e The wall and the platform must be safely secured in the channel.

e The pressure transducers are securely attached and present a smooth surface
on the wall and platform for the waves to interact with.

e The toe of pebbles must be stable i.e. it is not moved in any significant way
by the waves of a single sample.

The finished model with pressure transducers attached is shown in Figure C.5.
The model was build of waterproof plywood boards (20 mm) secured with fittings
to the walls and the bottom of the wave flume. The toe of pebbles was initially
built with a length L of 0.30 m and a mean stone size of approximately @20 mm.

Figure C.4. Picture showing the wall placed in the wave flume and the two rows of strain gauges

AA (left) and BB (right). To the right is a close up of three pressure transducers showing how they
fit neatly into the wall surface.

Figure C.5. To the left a picture of the cross section before water and pebbles are added. To the
right a picture of the experimental setup as it was placed in the wave flume with water and the toe

of pebbles in place.
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C.4.2 Wave flume and Paddle

The wave flume in room L-133 is 23 m long and depicted in Figure C.6. The
flume generates waves with a piston paddle and is constantly rebuilt for new ex-
periments. The geometry when running this chain of experiments is given in
Figure C.8 and as an AutoCAD drawing on the CD-ROM.

Figure C.6. Pictures of the wave flume in room L-333 used for the experiments.

The wave flume operates with a piston paddle that generates waves by moving a
piston in a horizontal movement pushing the water in front of it, cf. Figure C.7.
The movement of the paddle is measured to be used in the computational models
of the flume. The generated waves are measured at three locations in the flume
shown in Figure C.8 in order to determine the size of the generated waves when
they hit the wall.

Paddle

J

SRS

Il
2

FEES R

Figure C.7. The piston paddle generates waves by horizontal movement of the paddie.
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Figure C.8. A sketch of the wave flume with its dimensions and the locations of the wall and the
three groups of wave gauges. The original is available as an AutoCAD drawing on the CD-ROM.
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C.4.3 Pressure transducers

Pressure transducers are used to measure the wave impact at different points of the
structure. Two different sizes are available in the laboratory @19 and @8 they are
both shown in Figure C.9 and henceforward referred to as Transducer @19 and
Transducer O8.

(i

0 20 30 40 50
STANDARD|  AT20 0/ (B8°F) L

Figure C.9. The two different types of transducers used in the experiments. To the left is Trans-
ducer 018 and to the right is Transducer O7.

Table C.1. Technical specifications of the two different transducers

Size Manufacturer Model
08 Kulite Semiconductor Products HKM-134-375M- 1 Bar VG
a19 Unknown Unknown

Transducer @19 measures pressure relatively to the atmospheric pressure while
Transducer ¥8 measures against a reference in a chamber inside the pressure
transducer. Because of the difference in size and measuring method it is decided
to use two rows of strain gauges placed at similar points on the structure. The
transducers are placed in the middle of the wave flume well away from any dis-
turbances at the walls, cf. Figure C.10.

The number of pressure transducers is concentrated above SWL and close to the
platform. This pattern is chosen to get a detailed measurement of the wave when it
pushes up the wall and hits the platform. The number of the transducers and their
corresponding channels is given in Table C.2.
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figure shows the location of the pressure transducers on the wall and the plat-

Figure C.10. This
form. Transducer @19 is placed in a row at AA and Transducer @8 is placed in a row at BB.
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Table C.2. Transducer numbering and the corresponding channels they have when collecting the
data. The transducer level is measured from the bottom and the transducers on the platform are

placed from the wall and outwards i.e. Transducer 009 and 475 are closest to the wall.

Level Row AA - Transducer 319 Row BB - Transducer 08

[mm] Channel No. Transducer No. Channel No. Transducer No.
140 11 002 19 463

285 12 003 20 465

335 13 006 21 470

385 14 007 22 471

435 15 008 23 473

450 16 009 24 475

450 17 011 25 477

450 18 012 26 479

C.4.4Wave gauges

Waves are measured at three separate locations specified in Figure C.8. The wave
gauges at one location and the distance between them is depicted in Figure C.11.
The wave gauges measures the change in currents between two rods and are thus
dependent on the temperature and purity of the water. Furthermore, the submer-
gence of the rods has an impact on the quality of the measurement. The wave
gauges are therefore calibrated before every third sample.

01m 0.2m

Paddle Wall

+—>

Figure C.11. A group of wave gauges is shown to the left and the distance between them is de-
picted to the right. Using the gauges together in a group makes it possible to separate generated

and reflected waves in the post processing.
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Table C.3. Gauge channels used when collecting wave data in the flume. They are placed in the

middle of the flume and the position is measured from the upper end of the flume and down to-

wards the paddle.
Group No. 1 Group No. 2 Group No. 3
Channel No. Position Channel No.  Position Channel No.  Position
[-] [m] [-] [m] [-] [m]

A 01 15.73 04 11.73 07 4.14

B 02 15.63 05 11.63 08 4.04

C 03 15.43 06 11.43 09 3.84

C.4.5 Sampling equipment

There are a total of 26 channels involved in the experiments, are all listed in Table
C.2 and Table C.3 except channel 10 which is connected to the paddle. All data
sampling is conducted with WaveLab. The pressure transducers are connected to
an amplifier and a data acquisition unit while the wave gauges are connected to a
wave recorder, low-pass filter and a data acquisition unit. The following is a list of
the equipment, what it was used for and the chosen sampling settings.

Wavelab 2.961 (Software)

WaveLab is a Windows® program for data acquisition and analysis in wave labo-
ratories developed at Aalborg University. The program is used to sample all chan-
nels with a frequency of 1000 Hz and a range of £10 V.

The sample frequency was chosen this high to measure the impact forces on the
wall. A lower frequency would be enough for measuring the wave gauges (20 Hz
recommended for wave measuring) but it is only possible to choose one frequency
if simultaneous sampling is wanted on all channels. Post processing of the sam-
ples on page 52 showed that although the sample rate was adequate for the major-
ity of wave gauges there was a problem with the peak measurement of gauge 009,
008, 473 and 475. It is advised that higher sampling frequencies is used in future
experiments.

The range of 10 V is the maximum possible and the amplification was chosen to
use this range as effective as possible. The decisive factor considering the amplifi-
cation for the pressure transducers was the high impact forces on the platform al-
though they only happened a few times during each measurement. [Wavelab2;
2007]
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