
i

Department of Building Technology & Structural Engineering

Aalborg University

Title: The Virtual wave flume – With the SPH method

Theme: Study of the SPH method and using a 2-D model of a wave flume

Project period: 9
th

 -10
th

 semester, February 1 2007– February 1, 2008

Author:

Mads-Peter Hansen

Supervisor: Lars Andersen

Pages in the main report: 97

Pages in the appendix: 74

Number of issues: 5

Synopsis

The Smoothed Particle hydrodynamics (SPH)

method have been used for modelling CFD prob-

lems the last 15 years. The SPH method is, unlike

more traditional methods like FEM, not bound by

a mesh making it possible to easily handle prob-

lems with large deformation or distortion of a free

surface. The SPH method is tested for use in

building a virtual wave flume corresponding to

the ones available at AAU. Sampled time series

of wave properties and wave impact from the

wave flume are compared with the new virtual

flume generated using the open source program

SPHysics.

In order to understand the different concepts and

parameters in SPH, a number of one dimensional

cases are tested and presented as simple examples

of how SPH works. Furthermore is the basis of

particle approximation with SPH derived and

used to approximate Navier-Stokes Equations.

ii

Preface

This report contains two parts. The first is a review of the theory behind

Smoothed Particle Hydrodynamics (SPH) collected from a number of sources.

The theory is introduced with a number of simple examples chosen to present the

rudimentary of the method. When it is possible the numerical SPH solution is

compared to an analytical solution or alternate numerical methods. Following the

examples the theory and concepts of the method are explained. In the second part

SPH is used to model a wave flume and the computational model is compared

with experimental results.

The report is followed by an appendix in which the experiment and the program

used for the numerical model are described in greater detail. References to the ap-

pendix are made where additional information is needed. Furthermore is an Ap-

pendix CD attached containing the report as a pdf file, the files to compute the ex-

amples and numerical models used the in report and a copy of experimental re-

sults. References to the Appendix CD are made when additional information is

needed.

In this report the figures and tables are numbered consequently in each chapter

and accompanied by an explaining text and reference. As an example the third

figure in chapter one is named Figure 1.3. To present the code build with base in

the SPH theory, boxes are used. The boxes are numbered like figures and tables.

Equations used in the project are also numbered consequently in each chapter and

named the same way. The first equation in the second chapter is named (2.1).

The source of reference is divided into three types, namely technical literature,

scientific articles and web sites, which are placed in a bibliography at the end of

the report. If the source of reference is placed before a full stop it refers to the

prior sentence. If it is placed after a full stop it refers to the prior section. Refer-

ences are made in the following way:

Books

 Reference: [Author’s name et. al.; Year of publication]

 Bibliography: Full name, Year of publication, Title, Publisher, ISBN

Articles

 Reference: [Author’s name et. al.; Year of publication]

 Bibliography: Full name, Title, Journal name, Volume, Page

Preface

iii

Websites

 Reference: [Site name; Year of downloading]

 Bibliography: Site name, Date of retrieval, Full site address

In this project MatLab R2007a has been used to make examples, data processing

and figure generating while Fortran 77 and 95 has been used to build the numeri-

cal model of the wave flume based on the open source code SPHysics 1.0. There-

fore a basic knowledge of programming is expected of the reader. The two pro-

grams Microsoft Excel 2003 and WaveLab v2.961 have been used for data sam-

pling and the post processing.

The attached Appendix CD contains the following:

 The report and appendices as PDF files

 Full library of MatLab programs presented in the boxes and the figures of

the report

 Microsoft Excel spreadsheets used for calculations and post processing of

experimental samples

 WaveLab projects used when sampling and post processing data

 Rewritten Fortran 95 version of the original code for SPHysics 1.0

 Sampled time series from Experiments

iv

Referat – Den virtuelle bølgerende

(This section is an abstract of the report in Danish)

Når marine konstruktioner som moler, vindmøller og bølgeenergianlæg skal pro-

jekteres er det ofte nødvendigt at gennemføre en række bekostelige modelforsøg i

laboratoriet. Projektet bygger på et ønske om at kunne benytte numeriske model-

ler til for eksempel at gennemføre dele af et parameter studie og holde det op

imod nogle få referenceforsøg. Til det formål undersøges en numerisk metode

Smoothed Particle Hydrodynamics (SPH), som første gang nævnes af [Lucy;

1977] men som efter en indledende præsentation af [Monaghan; 1992] har under-

gået en omfattende udvikling inden for modellering af CFD problemer. Ydermere

har udviklingen af hurtigere processorer gjort det realistisk at regne på bølge be-

vægelsen i en hel bølge rende.

Fordelen ved SPH er at metoden ikke er bundet op på et gitter og derfor kan me-

toden håndtere de store deformationer og den frie overflade i en bølgebevægelse.

Problemet diskretiseres i stedet i en række partikler der hver især repræsenterer

massen mi og vandvolumenet Vi. SPH metoden approksimerer nu en funktion

u(x) ved hjælp af en interpolationsfunktion W(xi-xj,h) og interpolation mellem

partiklerne i og j. Hvor interpolationslængden h som oftest er en konstant for alle

partikler der afgør bredden af W(x,h) dvs. hvor stort et interpolations område par-

tiklen nummer i har. Der findes en række mulige interpolations funktioner når flu-

ider skal modelleres men den måske mest kendte er normalfordelingen, der gene-

relt fungerer godt. Princippet i SPH er skitseret herunder sammen med et par af

de grundlæggende formler for approksimation af u(x) og den første afledte, be-

mærk at i og j ikke er tensor notation men i stedet repræsenterer to forskellige par-

tikler:

wij

i

j

xi

xj

2h

Interpolations for Wij

! " ! "
1

N

j

i ij

j j

m
u u W

#$

$ % j
x x

! " ! "
1

J
j

i ij

j j

m
u u W

#$

& ' $ ('&% j
x x

v

I rapportens første del opstilles en række simple eksempler løst numerisk vha.

SPH og den bagvedliggende teori udledes. Formålet er at identificere betydningen

af h og W(xi-xj,h) samt at sammenligne med de mere kendte numeriske metoder

Finite Element og Finite Difference. Med den første del som grundlag er det nu

muligt at gå videre til rapportens anden del hvor en virtuel bølgerende modelleres.

I rapportens anden del opstilles en todimensional virtuel bølgerende svarende til

den der forefindes i bølgelaboratoriet på Aalborg Universitet. Bølgerenden model-

leres ved hjælp af en omskrevet version af programmet SPHysics hvis kildekode i

sommeren 2007 blev tilgængelig fra [SPHysics; 2007]. Programmet modellerer

bølgerne ved at diskretisere Navier-Stokes ligninger vha. SPH og løse det opstil-

lede ligningssystem eksplicit. Ydermere indeholder SPHysics en række forskelli-

ge SPH værktøjer som er blevet udviklet gennem de seneste 15 år og her samlet i

et program sammen med det nødvendige script til at generere geometri og en bøl-

gebevægelse.

Den virtuelle bølgerende opstillet i SPHysics er valideret ved at sammenligne den

numeriske model med en række forsøg beskrevet i rapportens appendiks. Formålet

med valideringen var at fastslå om SPH var i stand til at modellere bølgebilledet i

den virtuelle rende, samt modellere bølgeopslaget op under en platform vist her-

under med et billede fra forsøgene sammen med den numeriske modellering

16 16.5 17
0.4

0.6

0.8

1

z
 [

m
]

x [m]

Det konkluderes at det ikke er muligt at modellere stabilt med en diskretisering

der er høj nok til at lave en præcis sammenligning af forsøg og model i sammen-

støds øjeblikket vist herover. I stedet viser en sammenligning af bølgehøjder målt

i den virtuelle og virkelige bølgerende en god overensstemmelse hvilket indikerer

at bølgebevægelsen og geometriens indflydelse på denne modelleres korrekt. Der

er derfor meget at tage fat på i fremtidige projekter.

SWL

vi

Table of Contents

CHAPTER 1 1

INTRODUCTION 1

1.1 Computational Methods 2

1.2 SPH - History and sources 4

1.3 SPH in this report 5

CHAPTER 2 7

SPH METHOD - EXAMPLES 7

2.1 1-D Example - The vibrating string 7

2.2 1-D Example - Moving particles 13

2.3 1-D Example - Collision with boundary 18

2.4 Sub conclusion 22

CHAPTER 3 23

SPH METHOD – THEORY 23

3.1 SPH interpolation 23

3.2 Integral representation 24

3.3 Kernel functions 25

3.3.1 Major kernel properties 27

3.3.2 List of Kernel functions 28

3.3.3 Comparison of Kernel functions 29

3.4 Smoothing length 31

3.5 SPH Boundaries 33

3.6 Particle approximation 35

3.7 Sub conclusion 40

CHAPTER 4 41

STUDY OF THE SPH METHOD 1-D 41

4.1 FDM method 42

4.2 FEM method 42

4.3 Comparison with SPH 43

4.4 Variable tension and density 45

4.5 Sub conclusion 46

CHAPTER 5 47

VIRTUAL WAVE FLUME 47

5.1 SPHysics 48

Table of Contents

vii

5.2 Theory - SPH with CFD 50

5.2.1 Particle inconsistency 50

5.2.2 Smoothing length 51

5.2.3 Kernel functions 52

5.2.4 Navier-Stokes Equations 52

5.2.5 Correction and filters 60

5.2.6 Viscosity (Artificial & SPS Turbulence) 62

5.2.7 Equation of state 64

5.2.8 Time stepping (Verlet Algorithm and t) 65

5.2.9 Particle movement (XSPH correction) 67

5.2.10 Particle interaction (Linked-list) 67

5.2.11 Boundaries 68

5.3 Virtual wave flume – The model 71

5.4 Test of SPHysics F95 74

5.4.1 Collapsing column 74

5.4.2 SPHysics – Crash of computation 75

5.5 Sub Conclusion 77

CHAPTER 6 79

VIRTUAL VERSUS REAL WAVE FLUME 79

6.1 The Experiment 80

6.2 Comparison of generated Waves 82

6.3 Comparison of wave impact 85

6.4 Sub conclusion 88

CHAPTER 7 89

CONCLUSION 89

7.1 Further work on the Virtual Wave Flume 90

7.2 Other possible SPH problems 91

CHAPTER 8 93

LIST OF REFERENCES 93

viii

1

Chapter 1

Introduction

When designing breakwaters, offshore wind turbines, wave energy plants or other

structures subject to the ocean waves like depicted on Figure 1.1 it is often neces-

sary to make experimental studies in a wave flume. Experimental studies are ex-

pensive especially when an extended parameter study is performed where a num-

ber of alternate setups are needed in order to determine the optimum design.

Figure 1.1. An ocean wave breaking against a rubble breakwater and a pile outside Helsignør

harbour in Denmark during a storm in 2007.

The alternative to extended experimental studies is a computational model of the

problem that may be compared to a few tests in order to validate the results. The

problem is that many Computational Fluid Dynamics (CFD) methods have trouble

with handling models where a free surface is present. To properly model the free

surface the method must be able to apply boundary conditions to the free surface,

describe the shape and location of the free surface and evolve these with time.

1.1. Computational Methods

2

1.1 Computational Methods

The computational/numerical approach is one way to solve fluid problems. In

general the pros of using a numerical method are their versatility and the possibil-

ity to make any number of different variations of the same problem. But there are

a number of different numerical methods available each with their own cons and

pros, and while the computational power grows each year more advanced prob-

lems becomes manageable. Two well known numerical methods are the Finite

Element Method (FEM) and the Finite Difference Method (FDM). Both methods

use a grid when solving the governing equations and traditionally FEM uses a La-

grangian grid and FD a Eulerian grid both depicted on Figure 1.2.

Figure 1.2. On this figure the difference between a Eulerian and a Lagrangian grid is depicted,

illustration from [Vesely; 2001].

The Lagrangian approach has a grid attached to the material underneath where

each grid node follows the path of the material initially beneath it i.e. the method

describes the material. The pros being that with grid nodes along boundaries and

interfaces the conditions of free surfaces and moving boundaries are automatically

imposed. With irregular grids it is possible to handle irregular geometries. The

cons of the Lagrangian when solving CFD problems is its inability to handle large

deformations and surfaces that break apart. This leads to a heavily distorted mesh

and lack in accuracy.

The Eulerian approach uses a grid fixed in space while the fluids flow across the

mesh i.e. the method is a spatial description. Because of the fixed grid the Eule-

rian method has no problem handling large deformations like it is often the case

with fluid problems as the mass momentum and energy is tracked at nodes in the

grid or cell boundaries. The cons of the Eulerian method are that it has difficulty

handling irregular geometries, moving boundaries or free surfaces because of the

fixed grid and its inability to track the time history of points in the fluid.

It is possible to use both methods when solving fluid problems but the cons makes

it hard to compute problems with breaking waves and interaction with structures

two traits necessary in this project. There have been developments in both meth-

Chapter 1 Introduction

3

ods in order to make up for these shortcomings. It is possible to interpolate a

mathematical description of a free surface into a Eulerian approach and to remesh

the Lagrangian grid when deformations grow. Both these improvements demand

an extra computational effort and introduce errors.

In order to compute a virtual wave flume with breaking waves it is necessary to

use a method that is able to handle large deformations and problems with a free

surface and irregular geometries. In this project the chosen approach is to use a

particle method. Particle methods are a way to get around the problems that

meshes gives traditional and well known methods like the FDM and FEM. In par-

ticle methods particle representing is a part of the problem domain and attributes

like mass, position, momentum and energy is collected at each particle for the

small part of the total domain they represent. The free surface shape and location

is described by the location of the particles. If only the fluid is represented by par-

ticles the problem domain is simply divided into areas with and without particles,

Figure 1.3.

One example of a particle method is the particle in cell method (PIC) where a

Eulerian grid is still used to interpolate between the particles. The smoothed parti-

cle hydrodynamics method (SPH) is a truly mesh free method with a Lagrangian

approach where kernel functions replace the mesh as the mean to interpolate be-

tween the particles, Figure 1.3.

Figure 1.3. The depicted figures are an example of two particle methods in a free surface situation

and the methods they use to interpolate between the particle grid or kernel function; PIC (left) and

SPH (right).

The PIC and SPH are not the only available particle methods as a wide range of

development has been done in recent years but they are among the oldest and

most widely examined. It is decided to use the SPH method in order to model

waves in a virtual wave flume. The method was chosen because of its lack of grid

and because the initial study of the literature showed that the method had already

been applied on a lot of similar problems.

Particle and its
kernel function

Particles covered
by kernel function

Free surface

1.2. SPH - History and sources

4

1.2 SPH - History and sources

The SPH method is first mentioned in the late seventies by [Lucy; 1977] and has

been the target of a great deal of study these past three decades. The SPH method

is originally developed for astrophysics where a limited number of particles (plan-

ets, stars, galaxies etc.) are needed. It was further developed for the astrophysics

during the eighties, and results were published in articles like [Monaghan; 1989]

and [Monaghan; 1992].

The first published implementation of the SPH method on a free surface flow is

[Monaghan; 1994] where it was demonstrated that the method was capable of

modelling a number of free surface problems like a 2-D wave flue depicted in

Figure 1.4.

0 1 2 3 4
0

0.1

0.2

0.3

0.4

Figure 1.4. Plot of a classic SPH example with breaking waves. The example has been computed

using the 2-D version of SPHysics v1.0.

Since the introduction to free surface flows in 1994 extensive work has been con-

ducted to mature the SPH method. The modelling of waves in general have been

studied in [Dalrymple et al; 2006] and [Cleary et al; 1999], indicating that the

method would be useful for a wide range of wave problems. Adding to this work

is wave overtopping studied in [Shao et al; 2006] and a 3-D study of impact with

stationary structures, published in [Gómez-Gesteira et al; 2007]. The interaction

between fluid and structure is a common denominator for many fluid dynamics

problems. In the classic SPH formulation only the pressure on the surface of im-

mobile structures are known, but [Antoci et al; 2007] and [De Vuyst et al; 2005]

demonstrated that it is possible to use SPH together with objects deformed by a

fast flowing current and coupling the method with another numerical solver,

namely the finite element method (FEM). Finally [Colagrossi et al; 2003] has util-

ized the method to study air entrapment due to violent fluid-structure interaction

by a discretization of both water and air while taking advantage of the SPH ability

Chapter 1 Introduction

5

to handle large deformation and a mix of two elements. If a general introduction

to the subject and how to implement it with fluid dynamics is needed, it is avail-

able in [Liu; 2003] and [Monaghan; 2005]. An introduction to more specialized

subjects like boundary treatment and turbulence is available in [Crespo et al;

2007] and [Issa et al; 2007].

Presently there exists no finished commercial solution using SPH although several

are on the way. One developer is [nextlimit.com; 2007]. This is also a good place

to witness the full potential of the mesh free method through a number of avail-

able animations. A free general SPH code build for fluid dynamics is available

together with [Liu; 2003], and recently (July 2007) a free complete SPH program

for wave flumes (SPHysics v1.0) has been released. SPHysics is intended to han-

dle a wave flume in 2-D and 3-D and is built in the Fortran 77 language. It is pos-

sible to compute a number of basic wave flume situations where two are depicted

on Figure 1.4. The program is available on the internet together with a manual ex-

plaining parameters and theory behind SPHysics [SPHysics; 2007].

If more knowledge about the SPH method is needed a good place to start is the

SPHerics group who among other things hosts a list of SPH literature and articles

along with a list of ongoing SPH software projects. [SPHerics; 2007]

1.3 SPH in this report

Smoothed particle hydrodynamics are demonstrated in the first part of this report

with the aim to understand the method and as pre study for using it to simulate a

free surface flow in a wave flume. The solved differential equations are chosen

because they are well known and analytical solutions are possible for a wide range

of situations. At the end of each example a simple piece of code is available to

demonstrate the basic build of a SPH program used on different problems. The

code is written in MatLab but may easily be translated to other programming lan-

guages. Following the examples the theory behind SPH is explained and the

method is compared with the FDM and FEM used on the presented examples.

In the end the method is prepared for CFD and for use with Navier-Stokes equa-

tions and the SPH program SPHysics is presented. The aim of the second part is to

compare computational results generated by a custom designed version of SPHys-

ics with experimental results from the wave laboratory validating a virtual wave

flume. The different theories used together with the SPHysics version of SPH are

presented together with the experimental results in order to determine if the

method is able to model the chosen fluid problem.

6

7

Chapter 2

SPH Method - Examples

The purpose of the following chapter is to describe how the Smoothed Particle

Hydrodynamics (SPH) formulation may be used on a PDE boundary value prob-

lem. The first few sections are a quick review of how three different 1-D problems

are solved with the method.

2.1 1-D Example - The vibrating string

The chosen PDE is the wave equation given in Equation(2.1), used to solve the

problem of a vibrating string. Initial values and the associated analytical solution

are given in Equation (2.2) and (2.3) respectively.

2 2

2

2 2

u u
c

x t

))
$

))
 (2.1)

 ! " ! " ! " ! " ! "
0

0, , 0 ,0 sin , 0
tt

u t u L t u x x u x t*
$

)
)

$ $ + $ $ (2.2)

 ! " ! " ! ", sin cosu x t x c t* *$ (2.3)

where

 c
2
 is the wave speed given as (FE/!) [m/s]

 u = u(x,t) is the displacement [m]

 FE is the tension in the string [N]

 ! is the unit mass of the string [kg/m]

 L is an integer and the length of the problem domain, Figure 2.2 [m]

 t is the time [s]

2.1. 1-D Example - The vibrating string

8

The vibrating string problem is solved numerically by a number of steps using a

SPH formulation with the following constants: FE = 1, ! = 1 and L = 2. With the

given constants is the initial value at t = 0 given in Figure 2.1 together with a plot

of the J = 25 particles in which the problem is discretized. The mass of a single

particle mi is given as J/L.

0 0.5 1 1.5 2

! 1

! 0.5

0

0.5

1

 x! axis [m]

 u
(x

,t
)[

m
]

Length L = 2

Speed c = 1

No. of particles J = 25

Initial value u(x,0)

Particles

Figure 2.1. Plot of the initial values of the analytical solution given in Equation (2.3) at t=0 and

the constants used throughout this example when describing the geometry of the problem.

The vibrating string problem is solved using the SPH procedure. Each step is

given as an item on the following pages and key SPH concepts are explained:

 The problem is discretized with N particles. Each particle represents a length

dx = mi = J/L and an initial value of ui
0
, see Figure 2.2.

Figure 2.2. The initial values of the vibrating string given in Equation (2.2) depicted as a graph

based on Equation (2.3) and discretized into N particles in the problem domain.

2 3 J
dx

u(x,t)

x

1 i

B.C. B.C.Problem domain

i

Support domain
of W = h

W(r)

r

Chapter 2 SPH Method - Examples

9

The basic unit of the SPH method is the particle. At each particle the momentary

knowledge about the field variables like displacement or density is stored. There

is no grid connecting the particles. To replace the grid is the kernel function of a

single particle W(r) introduced on Figure 2.2. The value of a single field function

at particle i is found by interpolating between all the particles in the support do-

main. The kernel constant depends on the choice of kernel, and the smoothing

length h depends on the discretization of the problem. The SPH method is in (2.4)

used to approximate the derivative of the field function u(x,t) in J particles.

1

n n nJ
ni i i

j j i ij

j

u u u
dx u W

x x x

! ! !
 " #

! ! !$ (2.4)

Where

 ()i is the particle where the field function is approximated

 ()j is a particle in the problem domain

 ()
n
 is the time step number

 i is the gradient taken with respect to particle i

 Wij is the kernel function with the coordinate input rij = !x = xi-xj

% Particle approximation (2.4) and the derivative of Kernel functions iWij

are used to determine the second-order spatial derivative (2.5). The dis-

crete form of Equation (2.1) is finally given as (2.6).

2

2
1

nn J
ji

j i ij

j

uu
dx W

x x

& '!!
 "()()! !* +
$ (2.5)

2 1

2

2
1 1

n J J
ni

j j j i ij i ij

j j

u
c dx dx u W W

t

,

& '!
 -" "()

! * +
$ $ (2.6)

where

i j ij

i ij

ij ij

x x W
W

r r

. !
"

!
 (2.7)

,

n

i

nix x t t

u u

x x

! !

! !
 (2.8)

It is (2.6) that is solved numerically in MatLab. The code is available in Box 2.1.

A plot of the discretized problem into 25 particles and associated kernel functions

2.1. 1-D Example - The vibrating string

10

is depicted on Figure 2.3 where the smoothing length is chosen to be h = dx =

0.09. The Gaussian kernel function (2.9) and its spatial derivative (2.10) used to

solve this problem has in practice a kernel constant = 4 resulting in a support

domain with the width of 0.38 m.

 / 0
/ 02

exp
r h

W r
h 1

.
 (2.9)

 / 0
/ 02

3 2
1.1284 exp

x

rr
W r

h h
!
!

.
 . (2.10)

0 0.5 1 1.5 2

 1

 0.5

0

0.5

1

 x axis [m]

 u
(x

,t
)
[m

]

Smoothing length h = 0.1

No. of particles J = 25

Discretized u(x,0)

Kernel func. W(x,h)

Figure 2.3. A plot of the discretized problem at t=0 and the associated kernel functions showing

the spread of the support domain. The kernel function of particle five is marked. The derivative of

the kernel functions are used to approximate a numerical solution of (2.1)-(2.3).

% The ODE is solved using an explicit integration algorithm like the Euler

method with two steps (2.11) and (2.12). [Cullen et al, 2001]

1 2 1

2

n n n

i i idu du u
dt

dt dt t

, ,!
 , -

!
 (2.11)

1

1
n

n n i
i i

u
u u dt

t

,
, !
 , -

!
 (2.12)

% The whole procedure is repeated through the desired number of time steps,

for instance one period T. The result is a numerical solution of the wave

Chapter 2 SPH Method - Examples

11

equation shown in Figure 2.4 for four different time steps and a total time

of T=2 sec. The finished MatLab code is given in Box 2.1.

Because the x-displacement is infinitesimal it is only necessary to define 2(Wij)

once and store the resulting matrix dKernelvalue when writing the numerical solu-

tion of Box 2.1 . The boundaries of the problem are handled with the introduction

of bo = 2 virtual ghost particles on each side of the problem domain. The ghost

particles are introduced to solve the problem of truncated support domains close

to the boundaries and they have displacements equal to their opposite number on

the other side of the boundary. This is discussed in details in section 3.5.

0 1 2

 1

 0.5

0

0.5

1

x−axis

u
(x

,t
)

Time = 0 sec

0 1 2

 1

 0.5

0

0.5

1

x−axis

u
(x

,t
)

Time = 0.5 sec

SPH solution

Analytical sol.

0 1 2

 1

 0.5

0

0.5

1

x−axis

u
(x

,t
)

Time = 1 sec

0 1 2

 1

 0.5

0

0.5

1

x−axis

u
(x

,t
)

Time = 1.5 sec

Figure 2.4. Numerical solution of the wave equation with the SPH method plotted at four different

time steps together with the corresponding analytical solution Equation (2.3).

The method described above is limited to problems in which the distance between

the particles dx is a constant. This is the case with a one dimensional problem like

for instance the vibrating string or heat conduction problems. In case of particles

moving between each other, i.e. changing their x-coordinate, the following item is

added:

% Particle approximation is performed once every time step i.e. the use of the

particles depend on the present distribution. When this is not the case it is

only necessary to use the kernel functions once as it is done in the code,

Box 2.1.

2.1. 1-D Example - The vibrating string

12

Box 2.1. SPH Code 1-D Vibrating String

%Definition of constants

N=25; %Number of particles (boundary particles excluded)
L=2; %Length of string
c=1; %Wave speed c^2 = F/rho
dx=L/N; %Distance bewteen particles
bo=2; %Number of boundary particles on each side of problem domain
n=2*bo+N; %Total number of particles
h=1.1*dx; %Smoothing length for all particles
dt=0.001 %Size of timestep
Totalsteps=2000;

%Definition of coordinates, Particle volume, initial values u(x)
%and d/dx*u(x)=v

Xcord_point = [-bo*dx+dx/2:dx:L+bo*dx-dx/2]';
ParticleVol(1:n,1) = dx;
u_ini(1:n,1) = sin(pi*Xcord_point(1:n,1));
v_ini = zeros(n,1);

%Defining a matrix with values of d/dx*W used to find the derivate in each
%timestep

for i=1:n
for j=1:n

 Xdif = Xcord_point(j,1)-Xcord_point(i,1);
 dKernelvalue(i,j) = -1.1284*Xdif/h^3*exp(-Xdif^2/h^2); %(2.10)

end
end

%Loop to solve Equation (2.1)

for step=1:Totalsteps
 dFunction = zeros(n,1);
 ddFunction = zeros(n,1);

%First round of SPH diff. 1st derivate (2.4)
for j=1:n

 dFunction(j,1) = sum(dKernelvalue(:,j).*ParticleVol.*u_ini);
end

 %Second round of SPH diff. 2nd derivate (2.5)
for k=1:n

 ddFunction(k,1) = sum(dKernelvalue(:,k).*ParticleVol.*dFunction);
end

 %Updating the bo boundary particles
 uBC =-1*[flipud(v_old(bo+1:2*bo,1)); flipud(v_old(n-2*bo+1:n:bo),1))];
 vBC =-1*[flipud(u_old(bo+1:2*bo,1)); flipud(u_old(n-2*bo+1:n:bo),1))];
 v_old =[uBC(1,:); v_old(bo+1:n-(bo),1); uBC(2,:)];
 u_old =[vBC(1,:); u_old(bo+1:n-(bo),1); vBC(2,:)];

 %Numerical integration – Simple Euler & Update of
 %initial values (2.11)
 v_new = v_ini+ddFunction.*(dt*c^2);
 u_ini = u_ini+v_new.*dt;
 v_ini = v_new;
end

Chapter 2 SPH Method - Examples

13

2.2 1-D Example - Moving particles

This example is included to demonstrate the use of SPH together with moving

particles, i.e. the particle approximation needs to be done once at every time step

as the inter-dependence of the particles changes. The chosen example is two trains

of moving particles colliding, Figure 2.5. Each particle represents a piece of the

string with the length dx and mass m.

Figure 2.5. This plot shows the initial distribution of the J colliding particles and the initial direc-

tions of speed vinit and acceleration ainit. All particles in a train moves with the same velocity and

acceleration.

As a result the governing PDE is the dimensional wave equation given by (2.1)

and the Gaussian kernel (2.9) is used for the particle approximation. One problem

when using Equation (2.4) is that the spatial derivative of a constant is not neces-

sarily equal to zero. This is an issue in the problem depicted above because the

initial values of speed and acceleration are constants throughout their respective

trains. This will result in an error in the particle approximation before the two

trains collides. The problem is solved using an identifier (2.13) and rewriting the

particle approximation of (2.4) to (2.14). The proof is available in Appendix A.

 ! ! ! !1
u x u x u x" "

"
$% & ' % & (&%) * (2.13)

The new discrete form of (2.1) is now given as (2.15).

 !
1

1n J
n ni

j j i i ij

ji i

u
m u u W

x m '

$+
' (&%, -+) *

. (2.14)

 !
2 1 2

2 2
1 1

n J J
n ni

j j j i i ij i ij

j ji

u k
m m u u W W

t m

/

' '

$# $+
' (&% &%, -, -+ , -) *) *

. . (2.15)

x

0

0

init

init

v

a

0

0

1

'

0

0

init

init

v

a

0

0

2

'

2.2. 1-D Example - Moving particles

14

Another big difference from Section 2.1 is the update of particle position (x-

coordinate) at every time step (2.16).

 1 0 1n n

i i ix x u/ /' / (2.16)

Solving the problem in MatLab with eight particles (four in each train) and using

the rewritten equations generates a series of situations depicted in Figure 2.6. Note

how the kinetic energy is constant in Figure 2.7 this is due to the new discrete

formulation (2.15). The particles have a h=1.1dx, a tension F=50 N, T=1 sec. and

the Gaussian kernel function (2.9). There are no boundaries in this example.

� 0.2 0 0.2
0

10

20
Particles

& Kernels

Time T=0.3sec.

� 0.2 0 0.2
� 0.1

0

0.1

Speed

� 0.2 0 0.2
� 2

0
2

Acc.

x� axis

� 0.2 0 0.2
0

10

20
Particles

& Kernels

Time T=0.6sec.

� 0.2 0 0.2
� 0.1

0

0.1

Speed

� 0.2 0 0.2
� 2

0
2

Acc.

x� axis

� 0.2 0 0.2
0

10

20
Particles

& Kernels

Time T=0.68 sec.

� 0.2 0 0.2
� 0.1

0

0.1

Speed

� 0.2 0 0.2
� 2

0
2

Acc.

x� axis

� 0.2 0 0.2
0

10

20
Particles

& Kernels

Time T=0.75 sec.

� 0.2 0 0.2
� 0.1

0

0.1

Speed

� 0.2 0 0.2
� 2

0
2

Acc.

x� axis

Chapter 2 SPH Method - Examples

15

� 0.2 0 0.2
0

10

20
Particles

& Kernels

Time T=0.95 sec.

� 0.2 0 0.2
� 0.1

0

0.1

Speed

� 0.2 0 0.2
� 2

0
2

Acc.

x� axis

Figure 2.6. This plot shows the simple example of two trains colliding together with the particle

support domain and the momentary distribution of acceleration and speed at five different time

steps. The problem is started with vinit = ± 0.1, ainit = 0 and a time step dt = 0.001.

To prove that the plotted solution is feasible the potential and kinetic energy of the

system are calculated. The kinetic energy Ekin and potential energy Epot are com-

puted as a total for the whole system of particles using Equations (2.17) and (2.18)

.

 !2

1

1

2

J
n n

kin i i

i

E m v
'

' . (2.17)

 ! !1 1

1 1

J J
n n n n n n n

pot pot i i pot i i i

i i

E E F s E m a v dt((

' '

' / ' /. . (2.18)

where

 F is the force conducting work on the particle [N]

 s is the total displacement of the particle in a single time step [m]

A plot of the energy belonging to the problem from Figure 2.6 is depicted in

Figure 2.7.

Left group – Support domain

Right group – Support domain

Particles

2.2. 1-D Example - Moving particles

16

0 0.5 1
� 1

0

1

x 10
� 3

Time [sec]

 E
 [

J
]

Timestep dt =0.01

0 0.5 1
� 1

0

1

x 10
� 3

Time [sec]

Timestep dt =0.001

 E
kin

E
pot

 E
total

Figure 2.7. Plot of the total potential and kinetic energy with two different time steps and the Euler

method. Both are made with basis in the problem depicted in Figure 2.6.

The energy depicted in Figure 2.6 shows that the problem with four moving parti-

cles is solved correctly using the discrete formulation of (2.15) and that the quality

of the solution depends on the size of the time step dt which is clear from the dif-

ference between Figure 2.7 left and right. During the collision the particles are

slowing down and kinetic energy is converted to potential energy and back again

on a one to one basis if the time is discretized with a dt = 10
-3

. The total of kinetic

and potential energy Etotal throughout the solution is equal to the initial amount of

energy which together with the behaviour of the particles in Figure 2.6 makes it

reasonable to believe that the problem is solved correctly. The code used to solve

the problem is depicted in Box 2.2.

Chapter 2 SPH Method - Examples

17

Box 2.2. SPH Code 1-D Colliding particles (Wave equation)

%Definition of constants

J = 4; %Number of particles in each side
w = 0.5; %Width of problem
b = 0.2; %Distance between the two trains of particles
dx = (w-b)/(2*J); %Distance between particles
h = 1.1*dx; %Smoothing length
dt = 0.001; %Time step
F = 50; %Tension in problem trains
Totalsteps = 1500; %Total number of time steps

%Definition of coordinates, Particle mass, Particle density, Particle %volume,
Elasticity vector and speed vector

Xcoor_pil = [-w/2:dx:-w/2+J*dx]; Xcoor_pir = [b/2:dx:w/2];

for i=1:1:length(Xcoor_pil)-1
 Xcoor_pal(i,1)=abs(Xcoor_pil(1,i+1)-Xcoor_pil(1,i))/2+Xcoor_pil(1,i);
 Xcoor_par(i,1)=abs(Xcoor_pir(1,i+1)-Xcoor_pir(1,i))/2+Xcoor_pir(1,i);
 particlemass_l(i,1)=abs(Xcoor_pil(1,i+1)-Xcoor_pil(1,i));
 particlemass_r(i,1)=abs(Xcoor_pir(1,i+1)-Xcoor_pir(1,i));
end

Xcoor_particle=[Xcoor_pal; Xcoor_par]; %Particle coordinates
particlemass =[particlemass_l; particlemass_r]; %Particle mass
particledensity(1:2*J,1)=1; %Particle density
particlevolume=particlemass./particledensity; %Particle volume
E(1:2*J,1)=F; %Particle elasticity
C=E/particledensity; %Particle Wavespeed

%Iinitial Displacement (Uini) and speed (Vini)
Uini(1:J,1)=0; Uini(J+1:2*J,1)=0; Vini(1:J,1)=0.1; Vini(J+1:2*J,1)=-0.1;

%Loop to solve the equation
Xcoor_particle0 = Xcoor_particle;

for step = 1:Totalsteps
 %Defining a matrix with values of d/dr*W used to find the derivate

for i=1:length(Xcoor_particle)
for j=1:length(Xcoor_particle)

 Xdif = Xcoor_particle(j,1)-Xcoor_particle(i,1);
 dKernelvalue(i,j) = -1.1284*Xdif/h^3*exp(-Xdif^2/h^2);

end
end

 dFunction = zeros(2*J,1); ddFunction = zeros(2*J,1);

 %First round of SPH diff. 1st derivative (2.14)
for j=1:length(Xcoor_particle)

 dFunction(j,1)=1/particledensity(j,1)*sum(dKernelvalue(:,j).*...
 (particlemass.*(Uini-Uini(j,1))));

end

 %Second round of SPH diff. 2nd derivative (2.15)
for j=1:length(Xcoor_particle)

 ddFunction(j,1)=1/particledensity(j,1)*sum(dKernelvalue(:,j).*...
 (particlemass.*(dFunction-dFunction(j,1))))*C(j,1);

end

 %Numericalintegration – Simple Euler & Update of coordinates (2.16)
 Vini = Vini+ddFunction.*dt;
 Uini = Uini+Vini.*dt;
 Xcoor_particle = Xcoor_particle0+Uini;
end

2.3. 1-D Example - Collision with boundary

18

2.3 1-D Example - Collision with boundary

This example is included to demonstrate the use of SPH together with moving

particles like in Section 2.2. Furthermore is two boundaries implemented at each

end of the problem domain. The modeling of these boundaries is the main subject

of the next few pages. The chosen problem is in 1-D and consists of one train with

particles and two walls, Figure 2.8.

Figure 2.8. This plot shows the simple 1-D example with one train off J particles and two solid

boundaries at each end of the problem domain. All particles in a train are moving with the same

initial v and a.

Equation (2.1) is again used as governing PDE and particle approximation is done

with the discrete form of (2.1) given in Section 2.2 as (2.15). The position of the

particles are updated once each time step (2.16).

The modelling of boundaries was briefly described in Section 2.1. The theory be-

hind ghost particles outside the problem domain is described in Equation (2.19)-

(2.21) for a one dimensional problem with stationary boundaries.

 2iG B i' (x x x (2.19)

 iG iu u' ((2.20)

 iG iv v' ((2.21)

where

 ()B is the coordinates of the boundary

 ()G is the ghost particles outside the problem domain

The removal of one particle train and the ghost particles is implemented in the

code of Box 2.2. The new script given in Box 2.3 is used on a problem where

h=1.1dx, a tension F=50 N, T=1.5 sec and the Gaussian kernel function (2.9). Five

different resulting time steps are depicted on Figure 2.9.

x
0

0

1

'

0

0

init

init

v

a

Chapter 2 SPH Method - Examples

19

� 0.1 0 0.1
0

10
20Particles

& Kernels

Time T = 0.1 sec

� 0.1 0 0.1
� 0.1

0
0.1

Speed

� 0.1 0 0.1
� 5

0
5

x 10
� 4

Acc.

x� axis

� 0.1 0 0.1
0

10

20
Particles

& Kernels

Time T = 0.3 sec

� 0.1 0 0.1
� 0.1

0

0.1

Speed

� 0.1 0 0.1
� 2

0

2

Acc.

x� axis

� 0.1 0 0.1
0

10
20Particles

& Kernels

Time T = 0.6 sec

� 0.1 0 0.1
� 0.1

0
0.1

Speed

� 0.1 0 0.1

� 1
0
1

x 10
� 3

Acc.

x� axis

� 0.1 0 0.1
0

10

20
Particles

& Kernels

Time T = 0.9 sec

� 0.1 0 0.1
� 0.1

0

0.1

Speed

� 0.1 0 0.1

� 1
0
1

Acc.

x� axis

� 0.1 0 0.1
0

10
20Particles

& Kernels

Time T = 1.2 sec

� 0.1 0 0.1
� 0.1

0
0.1

Speed

� 0.1 0 0.1
� 4
� 2

0
2
4

x 10
� 3

Acc.

x� axis

Figure 2.9. This plot shows the simple example of one train colliding with the boundaries at five

different time steps. The problem is started with vinit = 0.1, ainit = 0 and a time step dt = 0.001.

Support domain

Boundaries

Particles

Ghost Particles

2.3. 1-D Example - Collision with boundary

20

The energy of this situation is computed as described in Section 2.2 and the result

is depicted in Figure 2.10.

0 0.5 1 1.5
� 5

0

5

10
x 10

� 4

Time [sec]

 E
 [
J
]

Timestep dt =0.001

 E
kin

E
pot

E
total

Figure 2.10. The computed kinetic and potential energy of the particle train colliding with the two

boundaries of the problem domain.

The results depicted on Figure 2.9 and Figure 2.10 shows that the energy of the

system is preserved. The particle train is reaccelerated when approaching the

boundaries and subsequently repelled. The error in the SPH solution grows at

every collision and one way to minimize it is to take smaller time steps or choose

another numerical integration method. Solving the problem with a different kernel

function leads to a slightly different solution this subject is addressed in Section

3.3.

The script used in this solution is given in Box 2.3. In the script a fixed number of

ghost particles are applied at each boundary but this would not be feasible in a

problem with several thousand particles. In this case only the particles closer than

 h/2 to the boundary would need a ghost i.e. the support domain is truncated by

the boundary. It is also possible to solve the boundary problem with a fixed num-

ber of repellent particles who will repel any particles getting close this is not fea-

sible for this simple example, but is widely used when solving problems with a

complicated geometry. The different kinds of boundary particles are given a short

introduction in Section 3.5.

Chapter 2 SPH Method - Examples

21

Box 2.3. SPH Code 1-D Particle collision with boundary (Wave equation)

J = 4; %[m] number of particles in train
boundary = [-0.1 0.1]; %[m] width of problem domain
wt = 0.10; %[m] width of particle train
dx = (wt)/(J); %[m] distance between particles
V_ini = 0.1; %[m/sec] Initial speed of all particles
F = 50; %[N] Tension in problem trains
rho = 1; %[kg/m] Unit mass of all particles
h = 1.1*dx; %[m] Smoothing length
dt = 0.001; %[sec] Time step
Totalsteps = 1500; %Total number of time steps

%Definition of coordinates, Particle mass, Particle density, Particle
%%volume, Elasticity vector and speed vector
Xcoor_t = [-wt/2:dx:wt/2]; %Train pieces
for i=1:1:length(Xcoor_t)-1 %Particle coordinates
 Xcoor_pa(i,1) = abs(Xcoor_t(1,i+1)-Xcoor_t(1,i))/2+Xcoor_t(1,i);
end
particlemass(1:3*J,:) = dx; %Particlemass
particledensity(1:3*J,1) = rho; %Particle unit mass
particlevolume = particlemass./particledensity; %Particlevolume
F(1:3*J,1) = F; %Elasticity of train

%Initial Displacement (Uini), acceleration (aini) and speed (Vini)
Uini(1:J,1) = 0; aini = Uini; Vini(1:J,1) = V_ini;

%Loop to solve the equation
Xcoor_particle0 = Xcoor_pa;
for step = 1:Totalsteps
 %Generating/Udating ghost particles (position, displacement, speed)
 Xcoor_all = [2*boundary(1,1)-flipud(Xcoor_pa(:,1));
 Xcoor_pa(:,1);
 2*boundary(1,2)-flipud(Xcoor_pa(:,1))];
 Uini_all = [-flipud(Uini); Uini; -flipud(Uini)];
 Vini_all = [-flipud(Vini); Vini; -flipud(Vini)];

 %Defining a matrix with values of d/dr*W used to find the derivate
for i=1:length(Xcoor_all)

for j=1:length(Xcoor_all)
 Xdif = Xcoor_all(j,1)-Xcoor_all(i,1);
 dKernelvalue(i,j) = -1.1284*Xdif/h^3*exp(-Xdif^2/h^2);

end
end

 dFunction = zeros(3*J,1); ddFunction = zeros(3*J,1);
 %First round of SPH diff. 1st derivative

for j=1:length(Xcoor_all)
 dFunction(j,1) = 1/particledensity(j,1)*sum(dKernelvalue(:,j).*...
 (particlemass.*(Uini_all-Uini_all(j,1))));

end
 cnum = F./particledensity;

%Second round of SPH diff. 2nd derivative
for j=1:length(Xcoor_all)

 ddFunction(j,1) = 1/particledensity(j,1)*sum(dKernelvalue(:,j).*...
 (particlemass.*(dFunction-dFunction(j,1))))*(cnum(j,1));

end

%Numericalintegration – Simple Euler & Update of coordinates
 Vini_all = Vini_all+ddFunction.*dt;
 Uini_all = Uini_all+Vini_all.*dt;
 Vini = Vini_all(J+1:length(Vini_all)-J,1);
 Uini = Uini_all(J+1:length(Uini_all)-J,1);

 Xcoor_pa = Xcoor_particle0+Uini;
end

2.4. Sub conclusion

22

2.4 Sub conclusion

The purpose of this Chapter has not been to give a finished SPH program ready to

implement directly on a fluid. It has instead demonstrated the how the method are

used when solving simple PDE boundary value problems. It has been shown that

the method with the chosen discretization and choice of time step is able solve the

problems.

The chosen examples was solved using the simplest parts of the SPH method and

greater accuracy could be archived with a higher order time stepping like a 4
th

 or-

der Runge-Kutta or another choice in kernel function. A wide variety of different

kernel functions are available and a selection of these is presented in Section 3.3.

Another logical step to improve the presented solutions would be a more ad-

vanced way to search for particles in a given support domain. The problem is lim-

ited with stationary particles but if the two collision examples were expanded to

more than 1-D would the number of particles grow with a power of two. A num-

ber of possibilities are available and a method is introduced when it becomes nec-

essary later in this report.

The examples shown in this chapter are used as a reference to explain the finer

points of the method in the next few chapters.

23

Chapter 3

SPH Method – Theory

The examples presented in Chapter 2 were all made with the SPH method and the

a few key elements of the theory was explained along the way. These four exam-

ples are now used as a basis for deriving the theory behind the SPH method and

significance of the base concepts of the method as they are described in [Liu,

2003] and [Monaghan, 2005]. This chapter is a basis for the methods used to solve

more advanced PDE with moving particles in 2-D.

3.1 SPH interpolation

On Figure 3.1, a problem domain discretized into J particles is depicted. Within

the problem domain is the kernel function of a single particle depicted together

with the support domain and its surface S. The figure is used as a base when

explaining the theory of the SPH method and three basic concepts of the method.

 Kernel functions W and W are applied to interpolate between the parti-

cles like it is depicted on Figure 2.3 and Figure 3.1. The particles within

the support domain of W are utilized in the particle approximation.

 The smoothing length h defines together with a kernel constant the sup-

port domain of the kernel function like as depicted in Figure 3.1.

 The Particle approximation is the discretization of a problem domain like

(2.1) into J particles and the subsequent numerical approximation with the

help of kernel functions. Like all numerical solutions, SPH is dependent

on the discretization. Furthermore also on the choice of kernel functions

and smoothing length h has an influence on the accuracy.

3.2. Integral representation

24

Figure 3.1. The principle of the SPH method, the value of the field function is determined with the

use of an integral representation, a kernel function W and the remaining points in the support do-

main ! with the surface S.

In order to explain the theory of particle approximation and kernel functions, it is

necessary to start with an integral representation of the field function and its de-

rivative within the support domain.

3.2 Integral representation

First step is the integral interpolant of the form (3.1) for the quantity u(x,t).

[Liu,2003]

 ! " ! " ! " ! "'u u u W ,h d
#

$ % &x x x x - x' x' (3.1)

where

 W(x-x’,h) is a smoothing / kernel function

 h is the smoothing length defining the support domain of W(x-x’,h)

 x and x’ are three dimensional position vectors, Figure 3.1

 dx’ is an infinitesimal volume

Equation (3.1) is also known as a kernel approximation and this is marked in SPH

by using an angle bracket 'u(x,t)(. The method is derived from the exact solution

where u(x) is continuous within ! and W(x-x’,h) is equal to the Dirac delta func-

tion "(x-x’).

w !
S

x

x’

 h

Support domain of W

w

Chapter 3 SPH Method – Theory

25

When representing the first derivative of u(x,t), the differential operation on the

function is moved and performed on the kernel function instead used in (2.4). This

is possible by replacing u(x) in (3.1) with ·u(x) giving rise to Equation (3.2). It

follows by the use of the divergence product rule for a vector field followed by the

divergence theorem.

! " ! "! " ! "

! " ! " ! "! " ! " ! "

! " ! " ! " ! " ! "
S

u u W ,h d

u u W ,h d u W ,h d

u u W ,h dS u W ,h d

#

#

#

)* %) *

) * %) *)

)* % * *)

&

& &

& &

x x' x - x' x'

x x' x - x' x' - x' x - x' x'

x x' x - x' n - x' x - x' x'

 (3.2)

where

 n is the normal vector

The surface integral is removed because the kernel function is defined to have

compact support from (3.7) i.e. the surface integral of the kernel function is equal

to zero leaving the following representation of the spatial derivative.

 ! " ! " ! "u u W ,h d
#

)* % *)&x - x' x - x' x' (3.3)

This is not the case when the kernel function is truncated by the boundary of the

problem domain as it is the case in Figure 2.3. How this problem is solved and

how boundary conditions are applied is discussed in Section 3.5.

3.3 Kernel functions

New kernel functions have been derived continuously during the last 30 years and

the purpose of this chapter is to give a short review of the functions here divided

into three different categories represented by examples in Figure 3.2 and given as

equations in Table 3.1.

3.3. Kernel functions

26

� 5 0 5
0

0.2

0.4

W
(x

,h
)

Gaussian

� 5 0 5
� 0.5

0

0.5

d
/d

x
 W

(x
,h

)

� 5 0 5
0

0.2

0.4

Polynomial

� 5 0 5
� 0.5

0

0.5

X� axis

� 5 0 5
0

0.2

0.4

Johnson

� 5 0 5
� 0.5

0

0.5

Figure 3.2. This is a plot of the three different types of kernel functions and their first derivative.

The kernel functions are all plotted in 1-D around x=0 and smoothing length of h=1.5.

The three depicted Kernel functions share a number of traits. They are all made

with a kernel factor = 4, and they are all nonnegative a typical choice for many

smoothing functions [Monaghan, 2005] and [Liu, 2003]. One important difference

between the Gaussian Kernel and the rest are its lack of compact support i.e. that

the function value is zero outside the defined support domain.

 The Gaussian Kernel has a form common for a variety of smoothing func-

tions and is made with the help of the well known exponential function e
x
.

The lack of a support domain implies that all particles in the problem do-

main are used in the approximation.

 The Polynomial kernel functions are on Figure 3.2 represented by the Cubic

Spline, a kernel function build with two polynomials each representing a

part of the function. There is a wide range of polynomials available in the

literature, ranging from the second to the fifth order.

 The Johnson Kernel is a second order polynomial and represents the kernel

functions which do not share the bell shaped form of the two first kernel

types in Figure 3.2. It was designed to be superior to the Cubic spline in

that it always increases as two particles moves closer and decrease when

they move apart.

Chapter 3 SPH Method – Theory

27

3.3.1 Major kernel properties

The Gaussian kernel function given in 1-D by Equation (3.4) and plotted above is

used widely throughout examples in this text because of it is well known and easy

to use in a simple code. The Gaussian kernel (3.4) is now also used as a base to

discuss the conditions, a kernel function should observe in order to be useful in

SPH interpolation.

 ! "
! "
! "

2 2exp
,

x h
W x h

h +

,
% (3.4)

The Gaussian kernel (3.4) is given for a one dimensional problem. On Figure 3.3

is the kernel functions used to depict the three basic kernel conditions given by

(3.5)-(3.7).

� 4 � 2 0 2 4 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Distance x� axis

G
a

u
s
s
ia

n
 W

(x
,h

)
[�

]

Smoothing length h=0.5

Smoothing length h=1.0

Smoothing length h=1.5

Figure 3.3. Plot of the Gaussian kernel with three different values of h showing the three basic

kernel conditions given by Equation (3.5)-(3.6) in one dimension.

 ! ", 1W h d
#

%& x - x' x' (3.5)

 ! " ! "
0

lim ,
h

W h -
.

%x - x' x - x' (3.6)

 ! ", 0W h h/% 0x - x' x - x' (3.7)

3.3. Kernel functions

28

where

 is a kernel scaling factor depending on the choice of W often equal to four.

The conditions secure that the function is interpolated correctly and that the parti-

cle approximation approaches the function value. This is closely linked to the in-

tegral interpolant of (3.1) as a kernel functions with these conditions h=0 and

would be equal to Diracs delta function making the solution exact. The last condi-

tion (3.7) transforms the approximation from a global to a local operation. This

condition is the big disadvantage of the Gaussian kernel as it does not have a

closely defined support domain.

3.3.2 List of Kernel functions

All the three types off kernel functions depicted in Figure 3.2 observe like the

Gaussian kernel the conditions of Equation (3.5) - (3.7). They are presented in the

following Figure 3.4 and Table 3.1 with the constant #d given in Table 3.2 and R

equal to (3.8).

 R
h

,
%

x x'
 (3.8)

� 3 � 2 � 1 0 1 2 3
� 0.5

0

0.5

 R

 W
(R

,h
)
&

d

/d
R

 W
(R

,h
)

Gaussian

Cubic Spline

New Quartic

Johnson

Quintic

Figure 3.4. On this plot of a wide range of Kernel functions and their derivatives (dashed) with a

smoothing length h=1.5 and plotted with reference to R. This makes it possible to depict the differ-

ence in scaling factor between the different functions.

Chapter 3 SPH Method – Theory

29

Table 3.1. List of kernel functions discussed in this chapter available for 1, 2 and 3-D [Liu, 2003]

Kernel name Equation Eq. no

Gaussian ! " ! "2, expdW R h R1% , (3.9)

Cubic spline

! "

! "
! "

2 32 1
3 2

21
6

0 1

, 2 1 2

0 2

d

d

R R R

W R h R R

R

1

1

2 , 3 4 4
5
5

% , 4 46
5

758

(3.10)

New quartic ! " ! "2 3 49 19 52
3 8 24 32, 0 2dW R h R R R R1% , 3 , 4 4 (3.11)

Quintic

! "

! " ! " ! "! "
! " ! "! "

! "

5 5 5

5 5

5

3 6 2 15 1 0 1

, 3 6 2 1 2

3 2 3

d

d

d

R R R R

W R h R R R

R R

1

1

1

2 , , , 3 , 4 4
5
5

% , , , 4 76
5

, 4 458

(3.12)

Johnson ! " ! "23 3 3
16 4 4, 0 2dW R h R R R1% , 3 4 4 (3.13)

Table 3.2. List of the constant #d used together with kernel functions in Table 3.1 [Liu, 2003]

Kernel name Eq. no. 1-D (d) 2-D (d) 3-D (d)

Gaussian (3.9) - 1/(h$0.5) 1/($h2) 1/($3/2h3)

Cubic spline (3.10) 4 1/h 15/($h2) 3/(2$h3)

New Quartic (3.11) 4 1/h 15/(7$h2) 315/(208$h3)

Quintic (3.12) 6 1/(120h) 7/(478$h2) 3/(359$h3)

Johnson (3.13) 4 1/h 2/($h2) 5/(4$h2)

The Cubic Spline (3.10) is one of the most commonly used kernel functions,

while the New Quartic (3.11) made to mimic the formers good qualities. The

shape of the two functions is similar as it is depicted on Figure 3.4 the difference

being that the New Quartic kernel has only one piece which makes a difference

for the second derivate of the kernel function [Liu, 2003].

3.3.3 Comparison of Kernel functions

In order to display the difference between the five presented kernel functions the

vibrating string example from Section 2.1 is used. A single particle is plotted

through an entire period solved numerically with different kernels and compared

to the analytical solution, Figure 3.5.

3.3. Kernel functions

30

0 0.5 1 1.5 2
� 1.5

� 1

� 0.5

0

0.5

1

Time [s]

 u
(x

,t
)

Analytical

Gaussian

Cubic Spline

New Quartic

Johnson

Quintic

Figure 3.5. Numerical solution of the wave equation with the settings from Section 2.1 used to plot

a single particle through a whole period T=2 sec. with five different kernel functions and constant

smoothing length.

The plot in Figure 3.5 shows how that it is possible to solve the vibrating string

problem with different kernel functions i.e. the plot of a point through a whole

period T shows that the SPH solutions roughly follows the analytical solution.

The Johnson and New Quartic kernels are evidently not suited to solve the system

with the chosen parameters. Closer study of the New Quartic kernel reveals that

W(R,h) < 0 when R!2 making it critical how the parameters are chosen because it

will influence a particle approximation where particles are placed in this area. As

it is evident from Table 3.3 is the New Quartic giving good results with the opti-

mum value of h.

Because the shape of the kernel function is dependent on h, is not possible to

compare all five kernels with the same input of h and do a precise comparison. As

an alternative the optimum value of h has been determined for each kernel func-

tion. The period elongation evident in Figure 3.5 is used to estimate the precision

of the five different kernel functions in the 1-D case. The period of the SPH solu-

tion is determined using a zero down crossing analyses and given in Table 3.3.

Chapter 3 SPH Method – Theory

31

Table 3.3. Measured periods T found with the help of a ZeroDown crossing analysis with five dif-

ferent kernel functions and their optimum values of h compared to the analytical period of Tana=2

sec. Computation was running for 11 seconds.

Wave no. Analytical Gaussian Cubic Spline New Quartic Johnson Quintic

h - h = 1.00 h = 1.10 h = 1.00 h = 1.25 h = 0.90

1 2.000 2.036 2.003 2.022 2.132 2.027

2 2.000 2.036 2.003 2.021 2.133 2.026

3 2.000 2.037 2.002 2.021 2.613 2.027

4 2.000 2.036 2.003 2.021 - 2.027

5 2.000 2.036 2.003 2.021 - 2.027

The periods in Table 3.3 show that although the kernel functions appear similar on

Figure 3.5 it is necessary to determine the best kernel function for a given prob-

lem. The period elongation may be brought further down to a few parts of a thou-

sand with a better discretization of time and space. As evident from Table 3.3, the

Cubic Spline is superior when solving this example in 1-D. This is also concluded

by [Monaghan, 2005] with respect to 1-D problems in general.

3.4 Smoothing length

The kernel function and smoothing length h are together comparable to the shape

functions in the well known FE method. The smoothing length determines the size

of the support domain i.e. the number of particles used to approximate the value

of u(x), Figure 3.1. The size of h directly influences the accuracy of a solution. A

small value of h will mean that the number of particles in the support domain is

too small to make an accurate SPH approximation while a large h may result in

local properties being smoothed out. The size of h is also crucial when choosing

the right time step dt for the time integration how to choose the right combination

of h and dt is further explained in Section 5.2.8.

In the 1-D situation with stationary particles like the vibrating string example a

smoothing length equal to 1.1·dx provides the most accurate result. This is de-

picted on Figure 3.6 based on the example from Section 2.1. This complies with

[Liu, 2003] where the optimum number of neighboring particles is given as five in

one dimension if h=1.2 and =2.

3.4. Smoothing length

32

0 0.5 1 1.5 2
 1.5

 1

 0.5

0

0.5

1

Time [s]

 u
(x

,t
)

Analytical

SPH h=0.75⋅dx

SPH h=1.1⋅dx

SPH h=1.5⋅dx

SPH h=3⋅dx

Figure 3.6. Numerical solution of the wave equation with the settings from Section 2.1 used to plot

a single particle through a whole period T=2 sec. with four different values of h.

The situation depicted on Figure 3.6 made with stationary particles evenly distrib-

uted in the problem area and one smoothing length. If the distribution is retained

and two different sizes of h are used the result becomes as depicted in Figure 3.7.

Now the quality of the solution is depended on how far the support domain of par-

ticles with h2 extends into other parts of the problem domain.

0 0.5 1 1.5 2

 1

0

1

 l [m]

 u
(x

,t
)

SPH particles h
1

SPH particles h
2

Analytical

0 0.5 1 1.5 2

 1

0

1

Time [s]

 u
(x

,t
)

Analytical

SPH h
2
=3⋅dx

SPH h
2
=4⋅dx

Figure 3.7. The Numerical solution of the wave equation with two different smoothing lengths h1

and h2,. h1 is equal to 1.1dx and h2 is variable.

Chapter 3 SPH Method – Theory

33

3.5 SPH Boundaries

Boundaries are a problem when using SPH if the support domain of the kernel

function extends beyond the boundaries of the problem. Only particles inside the

boundary contributes to the summation and as the kernel function is truncated and

there is no compact support (3.7). As a consequence the particle approximation

derived in (3.2) is no longer exact this is depicted Figure 3.8 and summarized in

(3.14).

 !
 ! !

, 0

0
S

W h h

u W ,h dS

"# $

% & #'

x - x' x - x'

x' x - x' n
 (3.14)

0 0.5 1 1.5 2

 1

 0.5

0

0.5

1

 x axis [m]

 u
(x

,t
)
[m

]

Problem domainB.C. B.C.

Particles u(x,0)

Kernel func. W(x,h)

Figure 3.8. The support domain of the kernel functions (red) are truncated by the boundaries lead-

ing to a wrong integral representation of the function u(x,t). The solution is to add more virtual

particles beyond the boundary.

A simple example of the consequences, if nothing is done at the boundaries, is

shown on Figure 3.11 where particle approximation is used to compute the den-

sity distribution. The approximated density is wrong close to the boundaries.

Furthermore most the boundaries be able repel particles when they get close to a

boundary to keep them inside the problem domain. An example of this ability is

given in Section 2.3 where to boundaries are modelled to contain a particle train.

Two different approaches are predominating when solving the boundary problem:

3.5. SPH Boundaries

34

(Ghost Particles: Each particle close to a boundary has a ghost particle on the

other side of the boundary with opposite values of the field variables dis-

placement and speed. This method is used in the examples of Chapter 2

because of its simplicity but is not feasible with complicated geometries

[Colagrassi et al, 2003].

(Repellent Particles: Are placed as boundaries of the problem domain. The

particles in the problem domain are repelled as they approach the bounda-

ries. This method is flexible and use full for complicated geometries. It is

described in detail by [Monaghan, 2005].

The math behind ghost particles was introduced for the 1-D problem in Section

2.3. The ghost particles are implemented in the solution of the vibrating string

problem as it is depicted on Figure 3.9.

0 0.5 1 1.5 2

 1

 0.5

0

0.5

1

 x axis [m]

 u
(x

,t
)
[m

]

B.C.B.C.

Ghost Particles u(x,0)

Particles u(x,0)

Kernel func. W(x,h)

Figure 3.9. Figure showing the discretization of the problem in 25 particles and the addition of 2

ghost particles beyond each boundary (mirror). The ghost particles are in this problem equal to

the negative value of their opposite number because of the boundary condition u(0, t)=u(L,t)=0.

As shown on Figure 3.9 is the value of the ghost particles based on their opposite

number on the other side of the boundary with a truncated support domain. Be-

cause of boundary conditions (2.2) the sign of the particle is changed this is im-

plemented in the MatLab code, Box 2.1. The necessary number of ghost particles

depends on the smoothing length h, i.e. the extent of the kernel function. With the

a the choice of h and W(r,h) depicted on Figure 3.9 two ghost particles are neces-

sary. [Liu, 2003]

Chapter 3 SPH Method – Theory

35

3.6 Particle approximation

Particle approximation is the numerical method used to approximate the value of

u(x,t) at a specific particle i, like it is done with the vibrating string in Equation

(2.6). The integral approximation of (3.1) is basically approximated by the sum-

mation over a number of particles, where the infinitesimal volume dx’ is rewritten

as a finite volume of the particle j !Vj in (3.15).

j

j j j j

j

m
m V V)

)
* + % + * (3.15)

where

 mj is the mass of particle j

 "j is the density of particle j

Figure 3.10. Replot of Figure 3.1 showing the SPH notation used in this report when the field

functions is approximated at discretized particles.

Using (3.15) together with an integral interpolant, it is easily seen that the partial

approximation of a value in a given point i is given as (3.16) with the notation

shown on Figure 3.10.

 ! ! !

 ! !
1

N
j

ij

j j

u u W h d

m
u u W

)

,

*

*

*

'

-i j

'x x' x - x', x

x x

 (3.16)

wij

i

j

xi

xj

i rij
j

 h

wij

Support domain of Wij

3.6. Particle approximation

36

where

 J is the number of particles within the support domain of the particle i

 Wij is the kernel function W(xi-xj,h)

Substituting the function u(x) with the density function ! leads to a SPH approxi-

mation of the density given as (3.17) and used to calculate and plot the unit mass

of the vibrating string, Figure 3.11.

J

i j ij

j i

m W)
*

* - (3.17)

0 0.5 1 1.5 2
 1

0

1

2

3

4

5

6

 l [m]

U
n
it
 m

a
s
s
 &
 M

a
s
s
 &

u

(x
,0

)

 N =25

 dx =0.08 m

 m
i
 =0.4 kg

Vibrating string u(x,0)

Unit mass ρ [kg/m]

Mass m [kg]

Figure 3.11. The plot is an example of particle approximation using the particle mass mi of the

vibrating string to interpolate the unit mass function ". Gaussian kernel and h=dx.

The Figure 3.11 shows the plotted particle approximation of the unit mass of the

vibrating string. The density is inaccurate near the boundaries because the kernel

functions are truncated by the boundary as mentioned in Section 3.2. This has

taken into account when solving the vibrating string problem by using mirror par-

ticles at the boundary as it is described in Section 3.5.

The spatial derivative of the field function at particle i is in a similar fashion de-

rived with particle approximation Equation (3.3) and (3.15).

 ! !
1

J
j

ij

j j

m
u u W

)*

.& * / &.-x x
i j

 (3.18)

 where

 Wij is the gradient taken with respect to the particle j

Chapter 3 SPH Method – Theory

37

It is possible to rewrite (3.18) and make it possible to take the spatial derivative of

W with respect to only one variable r. Where the variable r is a spherical coordi-

nate starting at the particle i as it is depicted on Figure 3.12.

 (3.19)

Figure 3.12. The spherical coordinate r and its derivative depicted in 1-D and the rewriting be-

tween the x and r coordinate.

In a spherical coordinate system a length and a direction are needed, the direction

is in this case supplied by a direction vector defined as (3.20).

i j

d

ijr

/
*

x x
r (3.20)

where

 ! ! !2 2 2

ij i j i j i jr x x y y z z" # $ # $ # (3.21)

The rewritten particle approximation for the spatial derivative is given as (3.22).

Notice that the negative sign in (3.18) is removed because the derivative now is

taken with respect to particle i.

 ! !
1

J
j

i ij

j j

m
u u W

%"

&' " '&(i j
x x (3.22)

i j

W(x,h)

x

i r

W(r,h)

i

Spatial
derivative

W r W

x x r

)))
"

)))

3.6. Particle approximation

38

where

i j ij

i ij

ij ij

W
W

r r

)
& "

)

x x
 (3.23)

With (3.22) is possible to approximate the first derivative of u(x) the second de-

rivative necessary to solve the vibrating string problem is found by simply using

(3.22) twice leading to equation used for particle approximation with the particle

string problem.

 ! !2

1

J
j

i ij

j j

m
u u W

%"

& ' " & ' '&(i ix x (3.24)

It is possible to rewrite the spatial derivative using an identifier as it has been

shown in the example with colliding particles Section 2.2. These alternate ways to

determine the derivative of the field function are useful in a number of situations.

The first alternative (3.25) is used to take the derivative of a field function with a

constant value to ensure that the derivative is equal to zero [Monaghan, 2005].

 ! ! ! !
1

1 J

j i ij

ji

u m u u W
% "

* +
& ' " # '&, -

. /
(i j ix x x (3.25)

The second alternative has not been used in this report but it is needed when solv-

ing the Naviar-Stokes equations with SPH in order to conserve the linear and an-

gular momentum [Vesely, 2001] and introduces symmetry in the approximation

who will limit the error when particles are not evenly distributed.

 !
 ! !

2
1

J

i j i ij

j j i

u u
u m W%

% %"

* +0 1
, -& ' " $ '&2 3

2 3, -4 5. /
(j i

i

x x
x (3.26)

The used identifiers and how to rewrite (3.22) is presented in Appendix A. The

full toolbox of SPH equations has now been presented and assembled in Box 3.1.

Chapter 3 SPH Method – Theory

39

Box 3.1 The SPH basic toolbox

In this box are all the necessary SPH equations for particle approximation and

useful rewritten equations presented. The theory behind the equations is ex-

plained in Section 3.2 and 3.6 and kernel functions are available in Table 3.1.

Particle approximation of a field function:

 ! !
1

N
j

ij

j j

m
u u W

%"

" (i j
x x (3.16)

 !,ij i jW W h" #x x

Particle approximation of the first derivative:

 ! !
1

J
j

i ij

j j

m
u u W

%"

&' " '&(i j
x x (3.22)

i j ij

i ij

ij ij

W
W

r r

)
& "

)

x x
 (3.23)

Particle approximation of the first derivative - Rewritten Appendix A:

 ! ! ! !
1

1 J

j i ij

ji

u m u u W
% "

* +
& ' " # '&, -

. /
(i j ix x x

 !
 ! !

2
1

J

i j i ij

j j i

u u
u m W%

% %"

* +0 1
, -& ' " $ '&2 3

2 3, -4 5. /
(j i

i

x x
x

Density approximation:

J

i j ij

j i

m W%
"

" ((3.17)

Example of kernel function (Gaussian) and its derivative 1-D:

 !
 !

 !
 !2 2

3 2
exp 1.1284 exp

x

r h rr
W r W r

h hh 6
)
)

#
" " #

3.7. Sub conclusion

40

3.7 Sub conclusion

The SPH toolbox presented in Box 3.1 is the basics tools necessary to use the SPH

method to make numerical solutions.

The kernel function and the smoothing length are two the two basis parameters in

SPHysics and it were evident how the changing of one would change the quality

of the solution. The kernel functions presented here have all been used in SPH al-

though the Cubic Spline and the Gaussian are by far the most common. It has not

been discussed in this chapter that it is possible to allow the smoothing length to

vary with time for instance dependent on the density distribution. Sources like

[Liu, 2003] describe this possibility in order to enhance the solution when work-

ing with moving particles in two and three dimensions. The area is not a part of

this project and the smoothing length will remain a constant as is the norm the

remaining SPH literature used in this report.

Boundary conditions are an area where a number of possibilities are presented in

the SPH literature. The two approaches presented in this chapter the basic ways to

approach the problem and the mirrors used in the examples of Chapter 2 one are

maybe the most simple and stable example. Nevertheless are repellent particles

the more common approach when particles are moving as it is easier to handle

stationary boundary particles.

The next step is to broaden the theory for use with a specific numerical problem

namely the computation of a virtual wave flume. To this end is the SPH solution

of Navier-Stokes equations derived in Section 5.2. Together with the derived par-

ticle approximation of Navier-Stokes equation are a number of different filters and

methods presented who have been developed to improve the solution of CFD

problems.

41

Chapter 4

Study of the SPH method 1-D

The SPH method has in many ways taken the best from the traditional grid based

method like the Finite Difference method (FDM) and the Finite Element method

(FEM). Where FDM is an example of a direct discretization of the strong form

approach to describe the physical governing equations and FEM represents the

weak form approach. The SPH method is characterized as a mesh free weak form

particle method but is unlike FDM and FEM using a kernel functions instead of

stiffness and mass matrices to interpolate between the particles.

0 0.5 1 1.5 2
 1

 0.5

0

0.5

1

 x axis [m]

 u
(x

,t
)
[m

]

Inital value u(x,0)

FD & FE points

SPH particles

Figure 4.1. Plot of the initial values of the 1-D vibrating string problem discretized with one SPH

particle in each FD / FE element.

In this Chapter is the three methods are compared using the vibrating string prob-

lem from Section 2.1, cf. Figure 4.1. The scope is to discuss the difference be-

tween the ways the three methods handle problem variables like stiffness and the

distribution of mass problems where the simple analytical solution does not work.

The Euler method is again used for explicit time integration. The governing equa-

4.1. FDM method

42

tion for the vibrating 1-D string is given in equation (4.1) where c
2
 is the wave

speed, FE the tension in the string (Elasticity) and is the unit mass (density).

2 2 2

2

2 2 2

Eu F u u
c

t x x%
)))

" "
)))

 (4.1)

4.1 FDM method

The FDM method is based on the strong form equations i.e. a direct discretization

of the governing equations using equation (4.2) where the mass is lumped at J-1

discrete notes.

 !

2
1, , 1,

22

2i j i j i ju u uu

x x

$ ## $)
"

) 7
 (4.2)

The result is stiffness matrix KFD and a mass matrix MFD (M=!x/ ·I) where I is

an identity matrix. The system is solved by the use of the finite element formula-

tion of dynamics system:

 ! ! ! !t t t t$ $ "M C K u u u f (4.3)

 ! !t t$ "M K 0 u u (4.4)

Where the damping matrix C and external force f are zero in this problem, equa-

tion (4.4).

4.2 FEM method

The FEM method is based on a weak form approach i.e. the strong forms (govern-

ing equations) are multiplied with a virtual field (shape functions). The weak form

will approach the strong form as the number of elements goes against infinity. A

linear shape function (4.5) is used to calculate the element displacement and dis-

tribute the mass of the element, where xe,start is the first point of the element..

 ! ,1 e e
e e e start

e e

x x
x x x x

L L

* +0 1
8 " # " #, -2 3

4 5. /
 (4.5)

The element matrix (4.6) is used to build the stiffness matrix KFE and mass ele-

ment matrix (4.7) is used to build the mass matrix MFE.

Chapter 4 Study of the SPH method 1-D

43

1 1

1 1
E

e

F
K

x

% #* +
" , -#7 . /

 (4.6)

2 1

1 26
e

x
M

% * +7
" , -

. /
 (4.7)

The system is again solved based on the short form of the finite element solution

(4.4) and the Euler integration algorithm, cf. Figure 4.2.

0 2 4
 1

 0.5

0

0.5

1
Timeseries of Toppoint x = 0.5 m

Time [s]

U
to
p
 [
m
]

T
FD

 = 2.005 sec

T
(FEM+FD)/2

 = 2 sec

T
Ana

 = 2 sec

T
FEM

 = 1.994 sec

FD
FEM+FD)/2
Analytical
FEM

Figure 4.2. A comparison of the two methods FD and FEM with identical stiffness and two differ-

ent levels of FEM mass distribution compared to an analytical solution at the point u(0.5,t).The

period elongation computed with zero-down crossing is depicted in the lower right corner.

The optimum distribution of the mass is the mean of the MFD and MFEM. This evi-

dent from Figure 4.2 where the three different possibilities are depicted showing

that the FEM solution defined as (FEM+FD/2) and the analytical solution share

the same period i.e. no period elongation. This FEM solution is used in Section

4.4 when comparing with the SPH solution and changing the wave speed in part

of the string.

4.3 Comparison with SPH

The three methods are compared with a plot of a single point in the solution

through a single period, Figure 4.4. The problem is solved using the standard val-

ues from Section 2.1 with L = 2, T = 2 and c = 1 while the SPH method is used

with h = 1.1dx and the Cubic Spline kernel function. The discretization is 25 SPH

4.3. Comparison with SPH

44

particles and 26 FD/FE points and dt = 0.001. The result after 10 seconds is de-

picted on Figure 4.3.

0 1 2

 1

 0.5

0

0.5

1

Time =10 sec

X axis [m]

U
(x
)
[m

]

FD Euler
FEM Euler
Analytical
SPH

Figure 4.3. A comparison of the three methods SPH, FD and FEM with identical stiffness and

mass distribution compared to an analytical solution after 10 seconds.

It is evident from the comparison of the three methods that there is a period elon-

gation i.e. they are all a bit faster/slower than the analytical solution. This is de-

picted on Figure 4.4 by following the time history of a single point in the solution

u(0.5,t).

0 5 10
 1.5

 1

 0.5

0

0.5

1

1.5

Time [s]

U
to
p
 [
m
]

T
FD

 = 2.005 sec

T
FEM

 = 1.994 sec

T
Ana

 = 2 sec

T
SPH

 = 2.023 sec

FD Euler
FEM Euler
Analytical
SPH

Figure 4.4. A comparison of the three methods SPH, FD and FEM with identical stiffness and

mass distribution compared to an analytical solution at the point u(0.5,t).The period elongation

computed with zero-down crossing is depicted in the lower right corner.

It is evident from Figure 4.4 that the three methods compute a solution which is in

close to the analytical solution. The presented figures also show that although

Chapter 4 Study of the SPH method 1-D

45

FEM and SPH are both weak formulations with mass interpolated over several

particles they do necessarily agree about the solutions of the problem.

4.4 Variable tension and density

Having compared the three methods in the linear case with the same density and

tension throughout the string it was shown that the FEM solution with M(FEM+FD)/2

was equal to the analytical solution, cf. Figure 4.2. In the following this solution is

used as a comparison to the SPH method.

A simple change in the problem presented problem would be to change the ten-

sion or unit mass in part of the string while keeping the original period of the mo-

tion. The following configuration would for instance keep the period stable as the

wave speed is not changed:

 E0 = 1 0 = 1 c0 = E0 / 0 = 1

 E1 = 4 1 = 4 c0 = E0 / 0 = 1

 E2 = 1/4 2 = 1/4 c0 = E0 / 0 = 1

The string is divided in two peaces, one and two each with a length of one. The

result would be that the period is maintained but the two parts of the string will

have very different elevation compared to the original reference situation (with E0

and 0), cf. Figure 4.5.

0 1 2 3
 2

 1

0

1

2
Timeseries of Toppoint x = 0.5 m

Time [s]

U
to
p
 [
m
]

0 2 4
 2

 1

0

1

2
Timeseries of Toppoint x = 1.5 m

Time [s]

T
FEM

 = 2.000 se

T
Ref

 = 2 sec

T
SPH

 = 1.433 se

FEM Euler
Reference
SPH

Figure 4.5. The history in the two initial top points u(0.5,t) and u(1.5,t) it is evident how the two

pieces of the string have huge difference in stiffness and mass. The SPH on the other hand is not

able to model this kind of problem.

4.5. Sub conclusion

46

It is evident that the SPH solution is unable to model the depicted situation in the

same way as optimum FEM solution. This is properly due to the mesh free nature

of the method and the looser connection the kernels represent, all the information

about the first derivative is collected from the neighbours as W(0,h) = 0, cf

Figure 3.2. An increase in the number of particles does not cause any difference

in this case.

4.5 Sub conclusion

The SPH method has a number of problems when it comes to modelling a connec-

tion when the two peaces of string have a great difference in material parameters.

Although this is a weakness when working with the impulse in a continuing peace

of string the same abilities makes it possible for SPH to model the large deforma-

tions in fluids. It was demonstrated that it with the FEM method is possible to

write a numerical solution equal to the analytical with the right distribution of

mass and stiffness.

47

Chapter 5

Virtual Wave Flume

This marks the beginning of the second part of the report. In the first part the basic

SPH theory was presented and used to solve simple PDE problems. The next step

is to implement it in 2D in order to model a virtual wave flume. The wave flume

has already been used as a model in several SPH experiments, cf. [Monaghan &

Kos; 1999] and [Gotoh et al; 2004]. Their experiments show that it is indeed pos-

sible to generate a 2-D wave situation using SPH and their different approaches to

the problem also show some of the options available with the SPH method. The

combination of methods presented in this chapter is another possibility and known

alternatives are given when the methods are presented.

The virtual wave model must be able to generate breaking waves and model

nonlinear impact situations. It is in this kind of problems the SPH method because

of its particle nature might be an asset. The governing equations of this kind of

fluid problems are the Navier-Stokes equations together with a turbulence model

to describe the viscosity.

After the governing equations have been chosen it is necessary to choose the other

capabilities of the flume. A virtual wave capable of modelling the flume in the

laboratory needs a number of abilities: (1) It must be possible to build a number of

different geometries and possibly obstacles in the flume. (2) It must be possible to

fill the flume with water to fit arbitrary geometry and solve the governing equa-

tions of this fluid. (3) The solution must be able to handle a free surface. (4) It

must be able to generate waves either by introducing a paddle or possibly an ini-

tial displacement of water. (5) The chosen boundaries must be able to handle an

arbitrary geometry and allow for a moving paddle. Furthermore it would be an

asset if it was possible to measure pressure on the boundary. The capabilities of a

virtual flume are depicted in Figure 5.1.

