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Abstract 
 

This  project  focuses  on  the  energy  performance  of  a Double  Skin  Façade  operating 
accordingly  to  the  concept  of  preheating  fresh  air  incoming  into  the  building  in 
cooperation with a mechanical  ventilation  system. The  first part of  this  report deals 
with three sets of results from measurements performed  in a full scale model during: 
November  2006,  the  turn  of April  and May  2008  and May  2008.  In  the  last  case  a 
shading device was added  in the Double Skin Façade air cavity. The experimental set‐
up  has  been  validated  through  tracer  gas  experiments  determining  the  airflow. 
Different weather conditions have been analyzed, with special focus on solar radiation 
and the effect of solar shading. This provided  important  insight on how such building 
constructions can have a beneficial or negative  influence on a building’s power  load. 
Conclusions have been drawn considering application of solar shading  in Double Skin 
Façades and their operation strategies. 

Later on  the gathered data  formed  the basis  for conducting  three sets of  theoretical 
energy calculations, according to a simple method developed by the Bestfaçade Project 
Group, as well as three dynamic computer simulations in BSim. The aim of these tools 
is  to  provide  a  preliminary  assessment  of  the  impact  of  a Double  Skin  Façade  on  a 
building’s  energy  consumption, which might  be  used  in  the  conceptual  phase  of  a 
project. The obtained  results have been compared with  the measurements and both 
theoretical methods have been evaluated. Unfortunately,  in most  cases  results  from 
the  theoretical  tools gave values very different  from reality. Finally, conclusions have 
been drawn    including suggestions  for  improvement of Double Skin Façade and solar 
shading modelling methods. 
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Abstract in Polish 
 

Streszczenie 
Niniejszy projekt zajmuje się Podwójną Fasadą Budynku działającą w trybie wstępnego 
podgrzewu  świeżego  powietrza  podawanego  do  pomieszczenia  we  współpracy  z 
systemem  wentylacji  mechanicznej  i  jej  wpływu  na  energochłonność  budynku. 
Pierwsza  część  pracy  dotyczy  trzech  zestawów  danych  zgromadzonych  podczas 
pomiarów  w  pełnowymiarowym  modelu  podwójnej  fasady  w  listopadzie  2006,  na 
przełomie  kwietnia  i maja 2008 oraz w maju 2008. W ostatnim przypadku w  środku 
Podwójnej  Fasady  został  zamontowane  rolety.  Stanowisko  pomiarowe  zostało 
sprawdzone  pod  względem  rzeczywistego  przepływu  powietrza  poprzez  badania  za 
pomocą gazu  znacznikowego. Różne warunki pogodowe  zostały  zbadane,  szczególnie 
pod względem  natężenia  promieniowania  słonecznego  oraz wpływu  zacienienia.  To 
pozwoliło  lepiej  zrozumieć w  jaki  sposób  konstrukcja  Podwójnej  Fasady może mieć 
pozytywny  lub  negatywny  wpływ  na  zapotrzebowanie  energetyczne  budynku. 
Wyciągnięto wnioski dotyczące zastosowania rolet w Podwójnych Fasadach Budynków 
oraz strategii ich użytkowania.  

W  dalszej  części  pracy,  zgromadzone  dane  posłużyły  do  przeprowadzenia  trzech 
zestawów  teoretycznych  obliczeń  zużycia  energii, w  oparciu  o  uproszczoną metodę 
opracowaną  przez  Bestfaçade  Project  Group,  oraz  trzech  dynamicznych  symulacji 
komputerowych w programie BSim. Narzędzia te mają na celu wstępną ocenę wpływu 
Podwójnej  Fasady  na  energochłonność  Budynku,  którą  można  się  posłużyć  w 
początkowych  fazach  projektu.  Uzyskane  wyniki  porównano  z  pomiarami  i  obie 
teoretyczne  metody  zostały  poddane  ocenie.  Niestety  w  większości  przypadków 
rezultaty  uzyskane  za  pomocą  w/w  narzędzi  znacznie  różniły  się  od  rzeczywistości. 
Wyciągnięto  wnioski,  w  których  zawarto  min.  sugestie  poprawek  do  metod 
modelowania Podwójnych Fasad Budynków i ich zacienienia. 
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can result in significant energy savings. This is especially important when considering 
the new EU regulations about the energy frame for office buildings. 

1.1. Operation concepts 
Nowadays, DSF with openable windows are gaining popularity not only because they 
allow occupants to adjust the environment to their individual needs but also may prove 
to be useful when applying natural ventilation. This leads to the concept of Active 
façade, with openings at the bottom and top of both the exterior and interior glass layer. 
Many types of active façades can be distinguished, some of which have been shown in  
Figure 1.2 [3]. All of them fulfil different functions. 
 

IE IE IE IE IE

1) 2) 3) 4) 5)

 
Figure 1.2 Types of Double skin façades. E - exterior environment, I - interior. 1) not ventilated air 
gap; 2) outdoor air curtain; 3) indoor air curtain; 4) air exhaust; 5) air supply. 
 

1) Not ventilating the air gap was the first concept of DSF, and it may be used as 
an additional insulation layer. 

 
2) An outdoor air curtain is primarily used for cooling the façade during the cooling 

season by means of natural driving forces (thermal buoyancy and wind 
generated pressure). The airflow inside the DSF construction can be reinforced 
by the stack effect increased by accumulating the energy of solar radiation 
inside the air gap, similarly to a green house. 

 
3) The indoor air curtain also depends on the stack effect and is most often applied 

for preheating the indoor air during the heating season. This solution may 
operate through recirculating the air directly in the room or being incorporated in 
the building’s HVAC system. Neither of the air curtains deals with exchanging 
air between the exterior and interior environments. 

 
4) Air exhaust through an active façade is another solution using thermal buoyancy 

increased by solar radiation. It is especially useful in naturally ventilated 
buildings during the cooling season, when the difference between indoor and 
outdoor air density is close to 0 or even negative. 

 
5) Finally, one of the most popular solutions applied during the heating season is 

air supply through an active façade. The natural forces of wind and thermal 
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buoyancy allow increasing the airflow and at the same time preheating the fresh 
air. Sometimes the air is supplied directly into the room, but more often it is 
taken into the HVAC system. 

 
A construction fulfilling several of the above functions through opening the windows 
adequately to the season and indoor conditions is called a Multifunctional façade. This 
project deals with the case of air supply through an active façade with and without 
shading. 

1.2. Objectives 
All of the above concepts of applying a multifunctional façade can lead to significant 
energy savings, which are especially important in the context of energy consumption in 
buildings. However, a badly operating or designed DSF may give the opposite result of 
overheating in the cooling season and huge heat losses in the heating season. There 
have also been reports of moisture condensation inside the air cavity. DSFs covering a 
larger area of the building’s façade without any internal division into sections may also 
cause acoustic flanking problems, because it is very easy for sound to travel inside the 
air gap. Also special fire security hazards must be considered. [2] How to define a well 
designed double skin façade? 
 
Unfortunately, double skins are still a new concept. There are not many buildings in 
Europe with such building constructions, which may serve as examples or study cases. 
Also the building simulation software is not always capable of calculating the energy 
performance of DSF correctly. Problems mainly occur when taking into consideration 
solar irradiation. Therefore, it is necessary to validate any theoretical calculations by 
comparing them with an existing model, where all necessary values are known. 
 
This report focuses on the concept of air supply through an active façade cooperating 
with a mechanical ventilation system. It is important to remember that it is a theoretical 
case study. The aim of it is to assess the importance of different parameters and their 
influence on the performance of the DSF, and to optimize the indoor climate. Therefore, 
in reality the active façade should be operated with different strategies, regarding the 
operation concepts as well as the shading device, depending on the season of the year, 
outdoor conditions and desired indoor environment parameters. The indoor climate, 
thermal conditions and energy consumption of this case have been investigated in a real 
size model, for two measurement series without and one series with shading devices 
inside the DSF. The results of laboratory measurements have later been compared with 
results of BSim simulations and a simple calculation method, proposed by the 
Bestfaçade Project Group [4]. Finally, conclusions have been drawn considering the 
performance of the double skin façade as well as validation of simulation software and 
the calculation method. 
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2.4. Ground reflection 
To achieve uniform and relatively known reflected solar radiation from the ground, which 
is an important parameter in the experiments, a large carpet was fixed on the ground in 
front of southern façade of ‘the Cube’ – wall with DSF ( Figure 2.10).  

 
Figure 2.10 Illustration of the ground carpet in the front of ‘the Cube’. 

2.5. Shading 
Shading is a crucial part of the DSF construction, for it may prevent the building from 
overheating, increase the amount of solar radiation accumulated in the air gap and 
prevent daylight from blinding the occupants. However, it should be noted that the 
shading device used, must still allow a certain amount of daylight to enter the building. 
Otherwise, the primary function of DSF, which is decreasing the amount of artificial 
lighting, will not be fulfilled. In order for solar radiation to reach the external layer of DSF, 
shading devices are usually mounted inside the air gap. This solution solves problems 
of shading high-rise buildings at high wind speeds. The exact position and character of 
the material used for shading (its absorption and reflection coefficients) are the most 
important features. [7] The most popularly applied shading devices have a low g-value, 
which results in reducing solar gains. However, if the DSF is primarily used for 
preheating of fresh air, it is more important that the shading material has a high 
absorption. This would allow to retain more heat in the DSF cavity and transfer it to the 
air. 

 
Figure 2.11 Samples of proposed shading materials. From left: Nature Provence, Nature Silver, 
Nature Ivory. 
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It has been decided that the shading material used during the second model of 
measurements DSF_SH should be a universal one, which may be applied in a real 
office building to various operation concepts of an active façade. Firstly, the type of the 
shading device was picked. Out of various possibilities, such as roman, venetian or 
panel blinds, the roller blinds have been chosen. This solution ensures that the surface 
of the DSF will be evenly shaded, without gaps and cracks. The next step was deciding 
on the physical properties of the material, such as solar reflectance or transmittance. 
The final choice was made between three materials, which properties have been 
specified in the producer’s catalogue [8], see Table 2.2. 
 

Material name Catalogue no Solar performance [%] SC OF T * R A 
Nature Silver 9448 30 37 33 0,55 1% 
Nature Ivory 9449 35 50 15 0,48 1% 

Nature Provence 9452 13 16 71 0,64 1% 
* The symbols are according to Faber as follows: T – transmittance, R – solar reflectance, A – 
solar absorptance, SC – shading coefficient, OF – openness factor. 
Table 2.2 Physical properties of shading materials. 
 
All the above materials are of the same thickness 0,25 mm. ‘Nature Provence’ seemed 
to have the best properties, as it had a low solar reflectance and a high absorption – 
especially important for preheating the fresh air inside the DSF. However, materials of 
this colour are not typically applied in offices. Therefore, ‘Nature Silver’ has been 
chosen, as it is believed to be a compromise between a real life situation, useful 
physical properties and a good shading performance. All of the above mentioned 
shading materials have been shown in Figure 2.11. The construction of the shading 
device inside the cavity and its application in the DSF_SH measurements can be seen 
in Figure 2.12. 
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Figure 2.12 Shading of DSF. 
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3.  Determining the 
airflow 

This report deals with the operation concept of preheating incoming air in the double 
skin façade. In reality, such a solution is often part of the building’s mechanical 
ventilation system and so the fresh air is drawn from DSF by a fan. In order to 
investigate and simulate this case, it was necessary to make sure that the natural 
driving forces of thermal buoyancy and wind generated pressure would not have a 
decisive influence on the airflow through the air cavity. 
 
For this reason a mechanical air exhaust installation has been assembled and placed in 
the experiment room, a detail description of which can be found in the Appendix. The 
most important elements of it are a fan collaborating with a frequency inverter and a set 
of dampers. The setup has been adjusted to provide the airflow of 136,5 m3/h, which 
corresponds to about one exchange of the experiment room’s volume per hour, and a 
high pressure loss of approximately 600 Pa. This was hoped to reduce the effect of wind 
and solar radiation on the incoming airflow, so that they could be neglected in further 
experiments. To measure the volume flow in the installation an orifice connected to a 
differential manometer was used. 
 
For measuring the airflow in the ventilated gap itself, a tracer gas method was applied. 
The experiment has been conducted accordingly to the description in the technical 
report [5], where any further details may be found. The gas used in the experiment had 
to have physical properties similar to air, in order to mix and flow in the same way. 
Therefore, carbon dioxide was chosen. Approximately 3,1 l/min of the gas were supplied 
from a bottle, containing CO2 at the pressure of 50 bars, to the bottom of the air cavity in 
the DSF. The concentration of CO2 in the outside air was measured by URAS and the 
level at the top of the DSF by BINOS. The measured data was logged every 10 seconds 
and formed the basis for calculating the airflow through the cavity of the double skin 
façade, see Equation 3.1 [9]. 
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Equation 3.1 Airflow through the air cavity in DSF, where Vtracer gas is the flow of CO2 from the 
bottle in l/min, BINOS and URAS are the measured concentration levels of CO2 in ppm. 
 
A scheme of the experimental setup can be seen in Figure 3.1. All the equipment used 
has been calibrated, which is documented in the Appendix. 

 
Figure 3.1 Experimental setup for determining the airflow through the double skin façade. 

3.1. Tracer gas supply at 0,55 m 
At first, a set of perforated tubes supplying carbon dioxide was placed in the air cavity at 
the height of 0,55 m, just above the DSF’s lower openable windows. However, the 
results of the experiment were not satisfactory. The data gathered through about 48 
hours resulted in an average airflow of 408 m3/h, with peaks above 1000 m3/h, 
according to the tracer gas measurements. At the same time, the orifice indicated a 
rather stable flow of about 136,5 m3/h. The data is shown in Figure 3.2. These 
unexpected results were thought to be caused by the ‘wash out’ effect. It is possible that 
strong wind entered through the lower windows of the DSF, whirled inside the air gap 
and drew some CO2 outside while leaving at the bottom of the cavity. This situation 
could significantly affect the tracer gas experiment results, without influencing the actual 
airflow through the double skin façade. It should be noted that at the time when the 
measurements began, on March 4th in the afternoon, the wind was very strong with 
velocities well above 18 km/h. Similar conditions repeated themselves during the next 
days, on March 5th and 6th wind speed exceeded 20 km/h and strong gust of wind have 
been noted. The dominant wind direction during the measurements was North, which 
corresponds to the wind blowing from the DSF, as shown in Figure 3.3. Due to those 
weather conditions, the air in the ventilated gap was not evenly mixed throughout the 
double skin façade, not all supplied tracer gas reached the measurement point and the 
readings were not accurate. It should be noted that the readings from the first 5 minutes 
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experiment room’s volume per hour, and shows the vulnerability of the tracer gas 
method. Another solution could be modifying the experimental setup and moving the 
CO2 supply into the experiment room. The measuring point would also have to be 
relocated to the beginning of the mechanical exhaust installation. This would protect the 
perforated tubes releasing the tracer gas from the wind and would provide data on the 
amount of fresh air entering the room through the DSF. However, the measurements 
would not be sufficiently sensitive to instantaneous changes in the airflow, due to the air 
exchange rate of 1 h-1. Therefore, it has been decided that the indications of the orifice 
are correct and should be relied on in any further experiments in ‘the cube’. The most 
important conclusion it that the exhaust installation is sufficiently independent of the 
natural driving forces. 
 
The described experiments also provided important insight into air mixing in the 
ventilated air gap when applying a mechanical exhaust system. At the bottom, where 
fresh air enters the DSF, the airflow is very turbulent and some of the outdoor air is 
exhausted without flowing through the entire cavity. However, higher in the double skin 
façade the fresh air gradually becomes evenly mixed and has an upward direction. 
Further details about the airflow inside the cavity could be revealed by smoke 
visualizations. 
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4.  Measurements 

In this project the measurements are divided into two types: without and with a shading 
devices in the cavity of the double skin facade. In the first type, named in this project 
DSF_1, there are two periods of measurements: 
 
- DSF_1_1 form 09.11.2006 till 30.11.2006.  

This data was collected by Olena Kalyanova, but has been not published in any 
others papers. The main purpose of using them in this project is to apply the 
measurements results for more detailed empirical validation of ‘Simple Calculation 
Method’ and building simulation software BSim. 
 

- DSF_1_2 from 26.04.2008 till 12.05.2008 
 

In the second model, named DSF_SH, is only one measurement period from 
14.05.2008 till 27.05.2008. 
 

Model DSF_1_1 DSF_1_2 DSF_SH 

Measurement period 09.11 - 
30.11.2006 

26.04 - 
12.05.2008 

14.05 - 
27.05.2008 

Shading device - - + 

M
ea

su
re

d 
pa

ra
m

et
er

s Air temperature in DSF 
cavity 

tc 
out + + + 

tc in - + + 
Glass surfaces temperature + + + 

Shading surface temperature - - + 
Average outdoor air temperature 

[˚C] 7,5 13,4 12,2 
Average global solar irradiation 

[W/m2] 102,6 311,9 343,1 
Table 4.1 Different models specification. 
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The surface temperatures in the experiment room are measured in the middle of every 
wall, ceiling and floor. The sensors are glued to the surfaces with the paste of high heat 
transmitting property. 
 
For measurements of the air temperature in the DSF cavity the thermocouples are 
protected from the influence of direct solar radiation by a silver coated and ventilated 
tube, the air flow through the tube is ensured by a mini-fan [5]. In both models DSF_1 
and DFS_SH the air temperature is measured in 20 points. 12 thermocouples are 
located closer to the external glass surface of the DSF. In Figure 4.2 the position of 
those thermocouples is shown. 

 
Figure 4.2 Position of the thermocouples closer to the external glass surface of the DSF (left), 
view from outside. Photo of the measurement set-up (right). 
 
The rest of the thermocouples – 8 are located closer to the internal glass surface of the 
DSF. Those thermocouples are mainly used in the second model DSF_SH to measure 
the air temperature behind shading devices for more detailed investigation of the DSF 
performance with shading. In Figure 4.3 the position of those thermocouples is shown. 
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Figure 4.3 Position of the thermocouples closer to the internal glass surface of the DSF (left), 
view from outside. Photo of the measurement set-up (right). 
 
In model DSF_SH beside more points measuring the air temperature in the cavity, there 
are 8 thermocouples measuring the temperature of shading devices. The thermocouples 
are sewed to the shading and the sensors are glued with the special conductive paste. 
Their position is shown in Figure 4.4. 

         
Figure 4.4 Position of the thermocouples in the shading (left), view from outside. Photo of the 
measurement set-up (right). 
 
For measurements of a glazing surface temperature the thermocouple is placed in the 
centre of the glazing pane of each large window in each section (BOL, BIL, BOH and 
BIH windows). At the inner skin the temperature is measured at both internal and 
external surface, at the outer window only at the internal surface. The sensors are 
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which measures in a range from 0 to 1kg/s and can have a total error of ±0.2% of the 
range. The heating unit is electrical and the electrical power used by the unit is added to 
the electrical power used by fan. The temperature difference and the water mass flow in 
the cooling unit as well as the electrical power used by heating unit and fan are 
registered at a frequency 0.1Hz. 

4.2. Results 
The aim of the measurements was to assess the energy performance of the double skin 
façade and gather information about the parameters influencing it. The main focus, 
apart from the heating and cooling energy consumption of ‘the cube’, were the air and 
surface temperatures measured in the DSF as well as the solar irradiation at the 
location of the test facility. The results shown below have been compared with the 
simple calculation method and BSim simulation results in later chapters. All of the 
figures as well as hourly averages of measured values can be found in the relevant 
Excel file on the attached CD. 
 
When analyzing temperature gradients, whether in the DSF cavity or on a horizontal 
plane across the DSF, dimensionless temperatures were considered. Dimensionless 
temperature is defined as shown in Equation 4.1. 
 

 

Equation 4.1 Dimensionless temperature, where: tx is the temperature measured in point x, te – 
external air temperature, ti – temperature in the experiment room. 
 
Such values give a better understanding of the relative conditions at the time of 
measurements and the heating or cooling potential of the considered mode. 0 
corresponds to temperatures equal to the outdoor temperature and 1 to the internal 
temperature. Values below 1 show the heating potential of the DSF and above 1 the 
created cooling load in the experiment room. 

4.2.1. DSF_1_1 
This chapter presents the analysis of measurement results performed in ‘the cube’ by 
Olena Kalyanova from November 9th till 30th 2006. Firstly, the temperature gradient 
inside the experiment room was analyzed in order to validate the experimental set-up. 
Two hours were chosen: 23:00 am on November 13th representing the minimum global 
solar irradiation of 0 W/m2 and 12:00 on November 11th corresponding to the maximum 
solar irradiation of 240,34 W/m2. 
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Figure 4.10 Comparison of hourly averages of power load, global solar irradiation and outdoor 
temperature, measured on November 11th 2006. 
 
The average global solar irradiation from the entire measurement period is 33,4 W/m2, 
when taking into consideration only values above 0. This was the basis for defining 
three ranges of solar irradiation: 0 to ≤ 15 W/m2 representing low values, 15 to ≤ 50 
W/m2 for average values and above 50 W/m2 for high solar irradiation. For each of these 
ranges average temperatures at different heights of the DSF were calculated and 
formed the dimensionless temperature gradients shown in Figure 4.11. It should be 
noted that there was an attempt of creating temperature gradients for a bigger number 
of smaller solar irradiation ranges. However, this approach gave unsatisfactory results, 
because the ranges were too small to correctly take into consideration the delayed 
effect of solar irradiation on the air temperature due to heat accumulation.  
 
The unusually high temperature noted at the height of 0,1 m is thought to be a result of 
error, see Figure 4.11. This thermocouple was placed very close to the concrete floor of 
the DSF cavity, which accumulated solar energy in the form of heat. The inlet to the 
silver tube, in which the tc was placed, was just a few mm above the floor. This probably 
caused the tc to measure the temperature of air heat up by convection from the floor. 
Therefore, this point has not been considered in further temperature gradients. A 
corrected temperature gradient in the DSF cavity has also been shown in Figure 4.11 
(right). 

 
 

Figure 4.11 Vertical temperature gradient inside the DSF, based on hourly averages of values 
measured for DSF_1_1 (left). Vertical temperature gradient inside the DSF excluding the 
measurement point at 0,1 m, based on hourly averages of values measured for DSF_1_1 (right). 
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Figure 4.15 Comparison of hourly averages of the power load, global solar radiation and external 
air temperature during 3rd May 2008, for DSF_1_2 measurements (left).Comparison of hourly 
averages of the power load, global solar radiation and external air temperature during 11th May 
2008, for DSF_1_2 measurements (right). 
 
The influence of solar irradiation is also visible when analyzing the temperature gradient 
inside the DSF. The average global solar irradiation during the measurement period was 
312 W/m2, when considering only values above 0. As in the case of DSF_1_1, three 
ranges of solar irradiation were defined: 0 to ≤ 200 W/m2 representing values below 
average, 200 to ≤ 400 W/m2 for average values and above 400 W/m2 for high solar 
irradiation. The results of dimensionless mean temperature values measured at different 
heights by both thermocouples placed closer to the internal skin and those near the 
external window as well as the mean volume average temperature are shown in Figure 
4.16. High solar irradiation may warm up the fresh air even by 14,2 ˚C, which in this 
case is no longer beneficial for the energy consumption of the cube. In fact only 
temperature gradients from the first and second range give values which help decrease 
the power load by preheating the fresh air and give a heating potential of 92% and 
115%, respectively. For high values of global solar irradiation (in this case above 400 
W/m2) it is necessary to reduce the cooling load, for example by mounting a shading 
device in the cavity. 

 

 
Figure 4.16 Vertical temperature gradient inside the DSF, based on hourly averages of values 
measured for DSF_1_2. 
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It is interesting to see that in the case of low and average solar irradiation, the outlet 
temperature (shown as the highest point on the graphs in Figure 4.16) is higher than the 
one in the DSF. However, for periods of high solar irradiation it is the opposite situation. 
This indicates that in the first two cases the air inside the experiment room had to be 
heated to reach the desired temperature. However, when the solar irradiation is too 
high, the effect of preheating the incoming air has a negative effect on the cube’s power 
load, because the indoor air has to be significantly cooled. 
 
It should be noted that the measurement point for the outlet air temperature was placed 
in the upper opening of the internal DSF window, on the border between the experiment 
room and the double skin façade. This means that the indoor air temperature had a 
significant influence on the measurements, due to the angle at which the ventilated 
silver tube protecting the thermocouple was placed. This error of the experimental set-
up did not occur earlier in the DSF_1_1 model, but repeated itself in the DSF_SH 
measurements. Therefore, when comparing the temperature gradient in the DSF 
obtained from the DSF_1_2 and DSF_SH measurements with the simple calculation 
method or BSim simulation results in later chapters, the outlet point at 5,5 m should not 
be taken into consideration. The final point of the temperature gradient in those cases, 
treated as the outlet, is the temperature measured at the height of 5,4 m, where the 
influence of the temperature inside the experiment room is much smaller, see Figure 
4.16. 
 
The correlation between the global solar radiation and the power load at that time has 
been shown in Figure 4.17. The trend line is tilted at almost the same angle as for model 
DSF_1_1, but cooling loads appear at lower values of solar irradiation – above 180 
W/m2. This is probably due to higher outdoor temperatures at the time of 
measurements. The data displayed on the graph gives more reliable results than in the 
case of DSF_1_1, because this time cooling loads took place nearly as often as heating 
ones. 
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supplied at the floor level has lower temperature in order to maintain a stable 
temperature in the room. The temperature of the air supplied into the room from the 
DSF cavity influences the readings from the measurement point at 5,5m. It is so called 
‘Coanda’ effect, when the stream of fluid ‘sticks’ to the nearest surface. In this case the 
fresh air flows along the ceiling and increases the temperatures.  This could cause a 
potential drawback to occupants’ comfort, when applying DSFs to a real office building. 
In general in DSF_SH, as in DSF_1_1 and DSF_1_2, it is assumed that there is no 
temperature gradient in the experiment room. 

 
Figure 4.20 Hourly averages of measured energy consumption, based on results from DSF_SH. 

Figure 4.20 shows the measured energy consumption. In DSF_SH there was no 
significant domination of either heating or cooling load during the measurement period. 
The energy need for heating during the entire period summed up to 149,25kW, which 
corresponds to 60% of total energy consumption both for cooling and heating. The 
cooling loads appeared of course on sunny days with high solar radiation giving the 
average of 0,76 kW and total energy usage of 96,43 kW.  When considering the 
absolute values, the total energy needed for both heating and cooling during the whole 
experiment period was the lowest of all models 245, 68 kWh (17,55 kW/day). 
 
More detailed investigation of energy consumption in DSF_SH model has confirmed the 
theory mentioned in chapter 4.2.2, that it depends more on solar radiation than on the 
outdoor temperature. The shading device used in DSF_SH has reduced the values of 
hourly peaks and the period of the cooling loads, thereby total usage of the energy.   
 
The solar shading device has also an influence on the temperature gradient in the 
double skin façade. The average global solar irradiation from the entire measurement 
period is 343,1 W/m2, when taking into consideration only values above 0. As in 
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DSF_1_1 and DSF_1_2, three ranges of solar irradiation were defined: 0 to ≤ 200 W/m2 
representing values below average, 200 to ≤ 450 W/m2 for average values and above 
450 W/m2 for high solar irradiation. The position of the shading device in the DSF cavity 
divides the air-gap into two ‘zones’: in front of ( closer to the external skin) and behind 
the shading. Therefore, in DSF_SH model two dimensionless temperature gradients are 
made for each position of thermocouples, see Figure 4.21. 
 

 
 

Figure 4.21 Vertical temperature gradient inside the DSF in front of the shading device (left), 
behind the shading device( right), based on hourly averages of values measured for DSF_SH.  

 
 

Figure 4.22 Vertical temperature gradient inside the DSF in front of and behind the shading 
device, based on hourly averages of values measured for DSF_SH.  
 
In the first range, when solar radiation is below 200 W/m2, the shape of the vertical 
gradient is almost the same in front and behind the shading and differs from the others 
ranges of solar radiation. In this case influence of the shading device on the temperature 
gradient behind it is unnoticeable. For both thermocouples stes the air in the cavity is 
heat up by 8,5oC, which results in savings in the energy need for heating the air in the 
experiment room. The heating potential of the DSF with solar radiation lower than 200 
W/m2 is around 60%.  
 
From Figure 4.22 it is clear, that with solar radiation between 200 and 450 W/m2 the 
shading device fulfils its role and protect test room from too high solar radiation and 
excessive heat gains. The best example is the measurement point at the height of 3,5m, 
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Figure 4.26 Comparison of measured heating load, cooling load, total power load, average global 
solar radiation and average outdoor temperature, obtained from measurements for different 
models. 

 
 

Figure 4.27 Comparison of average dimensionless temperature gradient in the DSF at times of 
heating load for DSF_1_2 and DSF_SH measurements. 
The difference in the heating potential of the outlet points (10 %) is higher than in the 
volume averages (3,3 %). This indicates that the overall heating demand is lower in 
DSF_SH mode, mainly because less energy is needed for heating the incoming air. The 
temperature profile in the cavity with shading is more tilted. This shows an additional 
effect of the shading device. It not only protects the experiment room, but also absorbs 
part of the solar radiation entering the DSF and reflects part of it back to the external 
skin, both of which create additional heat gains in the incoming air.  
 
In general out of all weather parameters, the most influential one seems to be solar 
radiation. It is responsible for cooling loads, which occurred even at times of low outdoor 
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temperatures, as was the case for DSF_1_1, see Figure 4.26. This shows the 
importance of solar shading. When comparing results from DSF_1_2 and DSF_SH, 
obtained at times of similar outdoor conditions, it is clear that solar shading of double 
skin façades can significantly decrease the energy consumption of a building. The 
difference in the cooling load in both models is 145,51 kW (60,14% of the energy need 
for cooling in DSF_1_2). Whereas, the average global solar radiation was higher by 31,2 
W/m2 in the case of DSF_SH. Of course, the protection from excessive solar heat gains 
provided by the shading device is more important during the summer time. Additional 
energy gains can be beneficial during the heating season, but still need to be controlled. 
It is thought, that if solar shading were applied in the DSF_1_1 model during times of 
high solar radiation, the cooling load could have been significantly reduced and perhaps 
even eliminated. This is especially important because in the late fall and winter the sun’s 
altitude is lower and the angle of direct solar radiation on a Southern façade is closer to 
a perpendicular one. Thus, the amount of solar radiation hitting a vertical plane is quite 
high.  
 
In order to optimize the energy performance of double skin façades it is necessary to 
define an all-year operation strategy involving both concepts of air-supply through the 
DSF as well as application of shading devices. For example, preheating fresh air in a 
DSF should be used during the heating season together with a shading device lowered 
at noon time. However, during the cooling season shading is needed almost through the 
entire day and the DSF should operate accordingly to the outdoor air curtain principle, 
see chapter 1.1. As mentioned before, this project deals only with a theoretical 
investigation of a double skin façade preheating the incoming air. Detailed 
measurements during a whole year or in different climate conditions are suggested for 
further research, as their comparison with this investigation would provide important 
insight into the energy performance of double skin façades. 
 
Perhaps, the benefits of a double skin façade could also be increased if the building had 
a heavier construction or contained thermal mass. This would allow the solar gains to be 
accumulated and increase the time constant of the building. 
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5.  Simple calculation 
method 

Currently the assessment of the thermal behaviour and the energy efficiency of double 
skin façade can be calculated with complex simulation tools, which required extensive 
information, data and are often very time consuming. Those are the main reasons why it 
is impossible to obtained reliable predictions of energy consumption and indoor climate 
in early designing phases and reduce the uncertainties for designers and investors. 
Therefore the Bestfaçade Project Group in a work package 4 developed the simple 
calculation method, which aims on the one hand to be easily integrated in the 
calculation methods of the EPBD (Energy Performance Building Directive) and on the 
other hand to offer sufficient accuracy for the early planning stage of the thermal 
behaviour and the energy performance of the buildings with double skin façade [4].  
 
The main aim is to validate the simple calculation method through comparison with 
measurement results. 

5.1. Theoretical background 
The theoretical background for simple method calculation is based on ‘Bestfaçade 
Project Group in a work package 4’ [4], where more detailed information can be found.  
 
The whole calculation algorithm used as a simple method in this project and all 
equations with symbols description can be found in the Appendix.  
 
In the Bestfaçade method the holistic calculation of the energy demand for heating and 
cooling for building with double skin façade uses the monthly based balancing method 
according to EN/ISO 13790. The energy demand for lighting uses the method described 
in EN-15193-1. In this project lighting energy is not investigated. The calculation of the 
net heating and cooling demand is described by an energy balance of a conditioned 
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zone, using the elements transmission and ventilation losses and solar and internal 
gains. 
    

• The energy need for heating is calculated according to Equation 5.1. 
 

gnHgnHlsHndH QQQ ,,,, ⋅−= η  
Equation 5.1 Energy need for heating. 

• The energy need for cooling is calculated according to Equation 5.2. 
 

lsClsCgnCndC QQQ ,,,, ⋅−= η  
Equation 5.2 Energy need for cooling. 

• The total heat transfer for a building zone for calculation period is calculated 
according to Equation 5.3. 

 

vetrls QQQ +=  
Equation 5.3  Total heat transfer. 

• The total heat gains for a building zone for calculation period are calculated 
according to Equation 5.4. 

 
solgn QQQ += int  

Equation 5.4 Total heat gains.  

In this project the internal heat gains Qint are equal zero.  
 
The influence of the double skin façade on the energy consumption is calculated 
according to the DIN V 18599, in which the DSF constructions are a subsystem of 
unheated glazed annexes.  

 
Figure 5.1 Diagram representing the thermal quantities to be taken into consideration for glazed 
annexes [4] 
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The glazing of an annex must be taken into consideration when calculating the heating - 
QH,gn and cooling -  QC,gn gains due to solar radiation. The direct solar heat gains via 
transparent building components are thus calculated using Equation 5.5. 
 

tIFgAFQ SueeueFiueffiuiuFtrs ⋅⋅⋅⋅⋅⋅= ,,,,, τ  
Equation 5.5 Direct solar heat gains due to transparent components.  

Direct solar heat gains due to opaque components of the dividing wall should be 
ignored. These are evaluated indirectly by including them in the temperature increase 
within the glazed annex. The mean temperature in the glazed annex is calculated as 
described in EN ISO 13789 using Equation 5.6. The temperature in a the cavity of DSF 
is taken into consideration when calculating the heating - QH,ls and cooling -  QC,ls losses 
due to transmission and ventilation. It takes into consideration the buffer effect between 
the room and the external environment. 
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Equation 5.6 Temperature in the unheated building zone – DSF. 

The outlet temperature in the outlet of DSF can be approximated as the double of the 
temperature difference between mean in the cavity and inlet, see Equation 5.7. This 
equation is also used to calculate the vertical temperature gradient in the DSF cavity.  
 

)(2 inuout ϑϑϑ −⋅=  
Equation 5.7 Outlet temperature from unheated building zone - DSF cavity. 

When calculating the heat flow - Φu, see Equation 5.8, which is needed in order to 
determine the temperature, the sum of total solar radiation entering through the external 
glazing of the annex – ΦS,u must be taken into account, as well as any internal heat 
sources – ΦI,u. The radiant heat QS,tr which is transferred directly via transparent building 
components into the building zone being evaluated must be subtracted from this. 
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uSu t
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,
,
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∑

−∑=  

Equation 5.8 Heat gains affecting the unheated annex – DSF.  

The shading and solar protection devices of the transparent components of the dividing 
wall must be accounted for when calculating the direct heat gains QS,tr in the building 
zones. The solar protection devices must be taken into consideration when calculating 
the total energy transmittance gtot of the internal glazing. It has to be also taken into 
consideration as a internal heat sources - ΦI,u, when calculating the heat gains affecting 
the unheated annex - Φu. 
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5.2. Results 
In all cases, the data for the calculations has been acquired from measurements in the 
full-scale model, with mechanically driven fresh air supplying through the DSF. The 
temperature inside the experiment room and the volume airflow through the DSF have 
been assumed to be stable, which corresponds to the results of measurements. The 
details of ‘the cube’s’ construction served as basis for calculating the building’s time 
constant, U-values and g-value as well as the transmission and ventilation heat transfer 
coefficients. These values can be found in the spread sheet “constants” in all simple 
calculation method Excel files on the attached CD. 
 
The outdoor temperature, ground temperature under the foundations, temperature in the 
equipment room and engine room as well as the total solar irradiation on the surface of 
the external DSF skin had been changing in time. The hourly average values of these 
parameters are in the spread sheet “variables” in all simple calculation method Excel 
files on the attached CD. 
 
Four measured values have been considered for comparison with the calculation 
results:  

• The temperature in the DSF cavity - calculated for the middle of the air-gap and 
in some cases  measured in section 2 at the height of 2,5 m and in others 
measured volume average temperature in section  2 

• The outlet temperature - the air entering the experiment room from the DSF, 
measured at the top openings. 

• The energy consumption for heating – measured by a wattmeter connected to 
the heating device inside the air-conditioning unit in the experiment room. 

• The energy consumption for cooling – measured as the water flow and 
temperature difference of the cooling water supplied to the air-conditioning unit. 

 
These values can be found in the spread sheet “reference results” in all simple 
calculation method Excel files on the attached CD. 
 
Although the Bestfaçade Project Group recommends the simple calculation method for 
assessing a monthly or even seasonal performance of a double skin façade, the 
calculations for this project have been performed on hourly basis. It has been decided 
that a detailed approach could provide more insight in the accuracy of the calculation 
method. It should be noted that during a period of even one day there may occur 
heating as well as cooling loads in a building. A daily or monthly average would not 
show such fluctuations and might be a too farfetched simplification. This has been 
confirmed by the comparison of results calculated for variable values for 1-hour 
averages, 24-hour and the entire measurement period, for each of the three models. In 
addition to this, BSim simulations are also conducted for hourly intervals, and thus 
comparison between the different ways of assessing the DSF performance is easier. 

5.2.1. DSF_1_1 
The first set of calculations was based on measurements in the full scale model 
DSF_1_1 conducted by Olena Kalyanova in November 2006 for a period of 22 days 
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[11]. At that time the airflow rate was set to 143,11 m3/h and there was no shading 
device in the DSF. 
Figure 5.2 compares the results of the simple method calculations of the power load 
based on hourly, 24-hour and 22-day averages of the variable data, such as the outdoor 
air temperature. The average power load for the entire measurement period is 0,54 kW. 
It should be noted that average calculations for a longer period correspond better to the 
purpose of the simple calculations method, as it is meant for assessing the energy 
performance of double skin façades during an entire season. However, this average 
results in a total energy use during the measurement period of 285,36 kWh, which is 
lower than the sum of the measured angry consumption by 349,87 kWh. Also 
calculations based on 24-averages significantly differ from the measured values, 
especially when considering the heating demand. The sum of the calculated energy use 
for heating is 322,56 kWh, whereas the heating load based on hourly averages of 
measurements resulted in 595,55 kWh. This is a very disappointing result and therefore 
the rest of this chapter deals with values based on hourly averages. A comparison of all  
calculated and measured values has been shown in Table 5.1, Table 5.2 and Table 5.3. 
 

 
Figure 5.2 Comparison of hourly averages of measure power load,  simple method calculation 
results for hourly averages, 24-hour averages and the average for the entire period, based on 
DSF_1_1 measurements. 
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 Toal energy 
consumption* [kWh] 

DSF_1_1 measurements 635,23 

Simple calculation method 349,87 

Difference 285,36 

Precentage -45 % 
* This is the sum of the absolute values both for heating and cooling energy consumption. 
Table 5.1 Comparison of the sum for the whole measurement period of the measured energy 
consumption based on hourly averages and the calculated energy consumption based on the 
average for the entire period, for DSF_1_1 measurements. 
 

 Energy need for 
heating [kW] 

Energy need for 
cooling [kW] 

Toal energy 
consumption* [kWh] 

DSF_1_1 
measurements 595,55 39,68 635,23 

Simple calculation 
method 322,56 35,52 358,08 

Difference 272,99 4,16 277,15 

Precentage -46 % -10,5 % -43,6 % 

* This is the sum of the absolute values both for heating and cooling energy consumption. 
Table 5.2 Comparison of the sum for the whole measurement period of the measured energy 
consumption based on hourly averages and the calculated energy consumption based on 24-hour 
averages, for DSF_1_1 measurements. 
 

 Energy need for 
heating [kW] 

Energy need for 
cooling [kW] 

Toal energy 
consumption* [kWh] 

DSF_1_1 
measuremnets 595,55 39,68 635,23 

Simple calculation 
method 428,00 146,94 574,94 

Difference 167,55 107,26 60,29 

Precentage -28,1% +270,3% -9,5% 

* This is the sum of the absolute values both for heating and cooling energy consumption. 
Table 5.3 Comparison of the sum for the whole measurement period of the measured energy 
consumption based on hourly averages and the calculated energy consumption based on hourly 
averages, for DSF_1_1 measurements. 
 
Figure 5.3 compares the hourly averages of the calculated and measured energy 
consumption, which formed the basis for Table 5.3. It should be noted that negative 
values represent the cooling load, but for the comparison of energy consumption 
absolute values are considered. It is clear that the calculated values of the heating load 
are lower than the measured ones, the average difference between the hourly results is 
0,35 kW. It is an unsatisfying result, because the simple calculation method was 
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cooling is higher than the measured one. It should be noted that the measured 
temperature values for the outlet were not available from the beginning of the 
measurement period. 

 

Figure 5.5 Measured and calculated hourly averages of air temperature in the middle of the DSF 
and in the outlet, based on DSF_1_1 measurements . 

 
In general, the differences between the simple calculation method and the measurement 
results seem to be due to a wrongly assumed temperature gradient in the DSF cavity. In 
the calculations it is considered to be linear, whereas in reality it is not. Figure 5.6 
compares the temperature gradient plots obtained from the measurements with the 
ones based on the calculated values of the temperature in the outlet and middle of the 
DSF. Hourly averages for cases have been taken into consideration – 8:00 on 
November 23rd and 12:00 on November 26th 2006. The first case corresponds to low 
temperatures in the outlet as well as the middle of the DSF and a peak in the energy 
need for heating. During this time the average solar irradiation on the external skin of 
the DSF was 10,82 W/m2. The second case represents the opposite situation – a major 
rise of temperature values as well as the energy need for cooling and an average solar 
irradiation of 617,67 W/m2. Clearly, the calculated temperature gradient is closer to the 
measured one in the first case, which would explain why the calculated heating loads 
are on average closer to reality than the cooling loads. The volume average temperature 
in the air cavity measured in the first case is 6,3 ˚C, whereas the calculated value in the 
middle of the DSF is 8,1 ˚C. In the second case the difference between the two values is 
much bigger – measured volume average temperature is 17,6 ˚C and the calculated 
value is 34,9 ˚C. Clearly the difference increases with the amount of solar radiation 
hitting the DSF surface. 
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Figure 5.6 Measured and calculated temperature gradients inside the DSF cavity, based on 
measurements from 23.11.2006 at 8:00 and 26.11.2006 at 12:00. 
 
It should be noted that the simple calculation method takes into consideration only the 
total area of the DSF’s skins, in order to calculate the heat transfer through them. Other 
construction parameters, like the height or depth of the air-gap or the airflow path are 
neglected. These are key factors in determining how long does the air stay in the DSF 
cavity and therefore, how much solar energy it can accumulate. This also explains why 
the error of simple method calculations is bigger for periods of high solar irradiation. All 
of these parameters create doubts about the reliability of the simple calculation method. 

5.2.2. Measured temperature in the simple calculation method 
Another analysis has been done in order to further investigate the influence of the 
assumed temperature gradient in the DSF cavity on the calculation results. A set of two 
additional simple method calculations has been done for the data gather during the 
DSF_1_1 measurements. In the first one, the measured volume average temperature 
instead of the calculated air temperature in the middle of the DSF cavity was taken into 
further calculations of the power load. In the second one, apart from the temperature in 
the air gap, the calculated outlet temperature was replaced with the measured values. 
As mentioned in chapter 5.2.1, the values of the outlet air temperature were only 
gathered later in the measurement period. Therefore, for comparing the results of this 
last set of simple method calculations, only measured values from the relevant period 
have been used. Very small gaps in the measured values appear in both calculation 
sets during periods of low solar radiation. These have been filled by the calculated 
values, because as shown before, when the influence of solar irradiation is not 
significant, the temperatures calculated by the simple method are quite accurate. The 
results of hourly values of the power load have been shown in Figure 5.7. 
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Figure 5.7 Comparison of hourly values of power load based on results from measurements, 
simple method calculations, calculations with the measured volume average temperature and 
calculations with the measured volume average and outlet air temperature, based on data gather 
for DSF_1_1. 
 
It seems that the simple calculation using the measured volume average temperature in 
the DSF gives results closest to the measurements. However, it is surprising to see that 
the set of calculations using both the volume average temperature and the measured 
outlet air temperature has worst results than the first calculation. 
 
Detailed values have been shown in Table 5.5. The overall error for the total energy 
consumption of the calculations done using the measured temperature in the DSF cavity 
is almost 3 % lower than in the case of only the simple calculation method. This is due 
to a smaller error in the calculated heating demand and even more importantly the 
cooling demand. The reason for the error was the particularly big difference between the 
measured and calculated temperature inside the cavity during cooling peaks, see Figure 
5.5. Therefore, accurate temperature values in the DSF influence the calculated amount 
of energy gains / losses due to heat transfer through the internal skin and give more 
realistic results. 
 
On the other hand, the simple method calculations performed using both the measured 
temperature in the DSF cavity and outlet give very unsatisfying results. The error for the 
results of the total energy consumption is higher than for only the simple calculation 
method by 15,3 %. The main source of error in this case is the energy need for cooling, 
which has been overestimated by 137,1 %. Still, in this case the difference between the 
measured and calculated cooling load is smaller than in the other cases. The reason for 
the error before was the fact that, when heating loads occurred the originally calculated 
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outlet air temperature was lower than the measure one, but in the case of cooling peaks 
the correlation between the two values was the opposite, see Figure 5.5. This increased 
the error both in the case of heating and cooling loads. 
 

 DSF_1_1 
measurements

 Only 
simple  

calculation
method 

Simple calculation 
method with 

measured volume 
average temp. 

Simple calculation 
method with measured 
volume average and 

outlet air temp. 
Energy need 

for heating [kW] 
595,55 

(431,07)** 428,00 494,44 294,5 

Difference from 
measurements - 167,55 101,11 136,57 

Percentage - -28,1 % -17 % -31,7 % 
Energy need 

for cooling [kW] 
39,68 

(18,37)** 146,94 98,19 43,55 

Difference from 
measurements - 107,26 58,51 25,18 

Percentage - +270,3 % +147,5 % +137,1 % 
Total energy  
consumption* 

[kWh] 

635,23 
(449,44)** 574,94 592,63 338,05 

Difference from 
measurements - 60,29 42,6 111,39 

Percentage - -9,5 % -6,7 % -24,8 % 
* This is the sum of the absolute values both for heating and cooling energy consumption. 
** Values only for the relevant measurement period, when all the necessary data was collected. 
Used for comparison with the results of simple calculation method with measured volume average 
and outlet air temperatures. 
Table 5.5 Comparison of energy consumption results for measured values and three different sets 
of calculations, based on data gathered for DSF_1_1. 
 
It seems that optimal calculation results could be achieved if using the measured 
volume average temperature in the DSF for calculating the energy demand for heating. 
On the other hand, when calculating the cooling load, the measured temperature inside 
the cavity as well as in the outlet, should be inputted. This indicates that the wrongly 
assumed temperature gradient in the double skin façade is a major but the only 
drawback of the simple calculation method. Another source of error may be that the 
simple calculation method does not consider the heat transfer due to convection from 
construction surfaces to the air. 

5.2.3. DSF_1_2 
The next simple method analysis was based on measurements in the full-scale model 
DSF_1_2 conducted for 17 days on the turn of April and May 2008. The same as in the 
DSF_1_1 the air flow was set to around 136,5 m3/h and there was no shading device in 
the DSF.  
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In DSF_1_2, the same as in DSF_1_1, there has been made a comparison of the 
energy results obtained from simple calculation method based on hourly, 24-hour and 
17-day averages of the variables data, see Figure 5.8.  

 
Figure 5.8 Comparison between measurements and simple method calculation results for hourly 
averages, 24-hour averages and the average for the entire period, based on DSF_1_2 
measurements. 
 
In DSF_1_2 case, where cooling loads are slightly dominating over the heating loads 
and form 58% of total usage, the simple calculation method gives the best results of 
total energy consumption for the 24-hour averages. Then the sum of total energy 
consumption is higher than measurements by 10,7%.  However, when comparing 
separately the energy need for heating and cooling the 24-hour averages differ 
significantly from the measurements, see Table 5.7. As the differences in heating and 
cooling loads are very similar, but with opposite sign, in the final result of the total 
energy consumption they compensate for each other and give satisfying result.  The 
smallest difference between measurements and simple calculation method appears 
when comparing measurements and average for the whole period -6,3%, see Table 5.6. 
However, this result is unsatisfying, because in early design stage the calculations 
should give higher values than reality in order to be on ‘safety side’. The hourly 
averages results for total energy consumption are from one point of view satisfying, 
because simple calculation method gives higher values than the measurement +79,6%. 
From the other point, this difference is too big for preliminary energy investigation. 
Hourly calculations results most accurately follow the tendency of the measurements, 
see Figure 5.8. As mentioned in chapter 5.2 the hourly averages are the best to 
investigate the detailed energy performance of DSF and to compare with measurements 
and outputs from BSim simulations. Therefore the rest of this chapter deals with values 
based on hourly averages. 
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 Toal energy 
consumption* [kWh] 

DSF_1_2 measurements  414,09 

Simple calculation method 388,11 

Difference 25,98 

Percentage  -6,3% 
* This is the sum of the absolute values both for heating and cooling energy consumption 
Table 5.6 Comparison of the sum for the whole measurement period of the measured energy 
consumption based on hourly averages and the calculated energy consumption based on the 
average for the entire period, for DSF_1_2 measurements. 
 

 Energy need 
for heating [kW]

Energy need for 
cooling [kW] 

Toal energy 
consumption* [kWh] 

DSF_1_2 
measurements  172,15 241,94 414,09 

Simple calculation 
method 29,24 429,14 458,38 

Difference 142,91 187,20 44,29 

Percentage  -83,0% +77,4% +10,7% 

* This is the sum of the absolute values both for heating and cooling energy consumption 
Table 5.7 Comparison of the sum for the whole measurement period of the measured energy 
consumption based on hourly averages and the calculated energy consumption based on 24-hour 
averages, for DSF_1_2 measurements. 
 

 Energy need for 
heating [kW] 

Energy need for 
cooling [kW] 

Toal energy 
consumption* [kWh] 

DSF_1_2 
measurements 172,15 241,94 414,09 

Simple calculation 
method 178,49 565,15 743,64 

Difference 6,34 323,21 329,65 

Percentage  +3,7% +133,5% +79,6% 

* This is the sum of the absolute values both for heating and cooling energy consumption 
Table 5.8 Comparison of the sum for the whole measurement period of the measured energy 
consumption based on hourly averages and the calculated energy consumption based on hourly 
averages, for DSF_1_2 measurements. 
 
The main aim of the simple method calculations is to assess the energy consumption 
Figure 5.9 shows the hourly average values of the measured and calculated energy 
consumption for the whole measuring period. As mentioned in chapter 5.2.1 the 
negative values represent the cooling load, but for comparison the absolute values are 
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Figure 5.11 Measured and calculated air temperature in the middle of the DSF and in the outlet, 
based on hourly values for DSF_1_2. 
 
The result regarding the air temperature in the middle of DSF cavity is similar to the one 
obtained in DSF_1_1 for the daytime. The simple calculation method gives higher 
values then the measurements. In the nights, when mostly heating is needed, the 
calculated air temperatures are lower than measured ones. This could be the reason 
why the calculated energy need for heating is bigger than in reality. 
 
As mentioned in chapter 4.2.2 the outlet temperature is the air temperature measured at 
height 5,4m, because the readings for the outlet point at 5,5m are not reliable.  
 
The comparison of the outlet temperature gives surprising results. During the night-time 
and the days when the heating loads are predominating over the cooling loads (29th of 
April and 1st of May) the measured outlet temperature is mostly higher than the 
calculated one. Whereas in sunny days with clear sky, from 2nd till 12th May, when the 
cooling loads occurred more often during the daytime, the measured values are 
significantly lower from the calculated outlet temperatures. The maximum difference is 
36,2oC. So big difference in the calculated and measured outlet temperature is the 
explanation, why the calculated energy need for cooling is higher than the measured 
one.  
 
In general in the DSF_1_2, like in the DSF_1_1, the difference between simple 
calculation method and measurements is the result of assuming the vertical temperature 
gradient in DSF cavity to be linear. Figure 5.12 shows the calculated and the measured 
mean air temperature in the middle of the DSF for both thermocouples stets together 
and separately. From Figure 5.12 indicates that in the simple calculation method also 
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the horizontal temperature gradient is not used and the depth of the DSF is not 
considered in the calculations. This is another proof that in simple calculation method no 
DSF dimensions is taken into account.  
 

 
Figure 5.12 Measured and calculated air temperature in the middle of the DSF, based on 
measurements from April – May 2008. The legend description: measur. mean – measurement 
mean value: out – thermocouples near to the external window, in – thermocouples closer to the 
interior skin, out+in – mean value from both reading 

5.2.4. DSF_SH 
The last set of simple method calculations was based on measurements in the full-scale 
model from May 14th till 27th 2008. At this time the shading device was mounted inside 
the double skin façade air gap and the operation concept was the same as in the case 
of previous models. In order to implement the effect of shading, certain changes had to 
be done to the equations used in the simple calculation method. The shading coefficient 
of SC = 0,55 had to be considered when determining the direct solar heat gains via 
transparent building components, see Equation 5.9. 
 

SCtIFgAFQ SueeueFiueffiuiuFtrs ⋅⋅⋅⋅⋅⋅⋅= ,,,,, τ  
Equation 5.9 Direct solar heat gains due to transparent components with shading. 

Another change was done when calculating the heat gains effecting the double skin 
façade cavity. In this case, the solar heat gains reflected by the shading devices and 
then stopped by the external skin had to be added, see Equation 5.10. 
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Equation 5.10 Heat gains effecting the unheated annex – DSF with shading.  

Again, calculation results for hourly, 24-hour and all-period average values of variable 
parameters have been compared, see Figure 5.13. Values below 0 represent the 
cooling load. It seems that neither the average for the entire period nor the 24-hour 
average values correspond to the measurement results. On the other hand, the hourly 
calculation results give quite accurate values of the heating demand but overestimate 
the cooling load. Details of this comparison can be found in Table 5.10, Table 5.11 and 
Table 5.12. 

 
Figure 5.13 Comparison of hourly averages of measure power load, simple method calculation 
results for hourly averages, 24-hour averages and the average for the entire period, based on 
DSF_SH measurements. 
 

 Toal energy 
consumption* [kWh] 

DSF_SH 
measurements 245,68 

Simple calculation method 200,44 

Difference 45,12 

Precentage -18,4 % 
* This is the sum of the absolute values both for heating and cooling energy consumption. 
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Table 5.10 Comparison of the sum for the whole measurement period of the measured energy 
consumption based on hourly averages and the calculated energy consumption based on the 
average for the entire period, for DSF_SH measurements. 
 

 Energy need for 
heating [kW] 

Energy need for 
cooling [kW] 

Toal energy 
consumption* [kWh] 

DSF_SH 
measurements 149,25 96,43 245,68 

Simple calculation 
method 0 326,0 326,0 

Difference 149,25 229,57 80,32 

Precentage -100 % +238,1 % +32,7 % 

* This is the sum of the absolute values both for heating and cooling energy consumption. 
Table 5.11 Comparison of the sum for the whole measurement period of the measured energy 
consumption based on hourly averages and the calculated energy consumption based on 24-hour 
averages, for DSF_SH measurements. 
 

 Energy need for 
heating [kW] 

Energy need for 
cooling [kW] 

Toal energy 
consumption* [kWh] 

DSF_SH 
measuremnets 149,25 96,43 245,68 

Simple calculation 
method 143,07 454,47 597,53 

Difference 6,18 358,04 351,85 

Precentage -4,1 % +371,3 % +143,2 % 

* This is the sum of the absolute values both for heating and cooling energy consumption. 
Table 5.12 Comparison of the sum for the whole measurement period of the measured energy 
consumption based on hourly averages and the calculated energy consumption based on hourly 
averages, for DSF_SH measurements. 
 
It seems that the calculation error for the total energy consumption is smallest in the 
case of the average power load for the entire considered period. However, this 
simplification makes it impossible to distinguish between heating and cooling loads. 
These values are essential not only for the analysis performed in this project but also 
when applying the calculation method for a preliminary assessment of a double skin 
façade construction and design of a heating / cooling system cooperating with it. 
 
The results are similar in the case of calculations based on 24-hour average values of 
the variable parameters. The error of the total energy consumption is 32,7 %, but the 
cooling load is overestimated by 238,1 % and the heating demand is completely 
neglected. The difference between the sum of the measured and calculated energy 
consumption is thought to be relatively small, because the errors for the cooling and 
heating load compensate each other. This situation was also described in chapter 5.2.3. 
 



 

The only calc
on hourly ave
following inve
cooling load i
5.14, showing
5.13, compar

Figure 5.14 M
measurements
 

 
Energy nee
heating [kW
Energy nee
cooling [kW

Table 5.13 Diff
and cooling loa
 
As mentioned
Therefore, in 
correlation be
investigated, 
measurement
lines in both f
irradiation abo
values of sola
the shading d
cooling load is

culations that re
erage input va
estigation. The 
s unacceptably
g the measured
ing the average

Measured and ca
s. 

Maxim
ed for 
W] 
ed for 

W] 
ferences betwee
ad, based on Fig

d before, solar
order to find th

etween the pow
see Figure 5

t results in Fig
figures – the m
ove 319 W/m2,
ar irradiation ab
device is unde
s overestimate

esult in both a 
alues. Therefor

error for the h
y overestimated
d and calculate
e differences in

alculated hourly a

mum difference

0,25 

3,17 

n the measured 
ure 5.14. 

r radiation has
he reason for t
wer load and 
5.15. A simila
ure 4.23. There

measurements i
, but the calcul
bove 151 W/m
erestimated in 
ed. 

heating and c
re these values
heating deman
d by 371,3 %. 
ed hourly value
n the heating a

average values 

e Minimum di

0

0

and the calculat

 a big influenc
the error of the
global solar irr

ar graph has 
e is a significa
ndicate that co
lation results g

m2. This means 
the simple ca

Simple ca

cooling load are
s have been c
nd is only 4,1 
This can also b

es of the powe
nd cooling dem

of power load, b

ifference Ave

ted hourly values

ce on the ener
e simple calcula
radiation at tha
been made f
nt difference b

ooling loads are
ive cooling dem
that the protec

lculation meth

lculation meth

e the ones bas
considered in t
%. However, t
be seen in Figu
r load, and Ta

mand. 

based on DSF_

erage difference

0,16 

0,84 

s of the heating 

rgy consumptio
ation method, t
at time has be
for the DSF_S

between the tre
e caused by so
mands already
ction provided 
od, and thus t

hod 

65 

sed 
the 
the 
ure 
ble 

 
_SH 

e

on. 
the 
een 
SH 
end 
olar 
y at 

by 
the 



Modelling an

 

66 

Figure 5.15 H
that time, base
 
The errors o
temperatures
of 2,5m and
measured an
case the rea
the outlet tem
 
At times of l
the temperat
air temperat
gain / losses
mean tempe
consumption
 
On the other
much higher
temperature,
value is 55 
gradient insi
temperatures
have been in
see Equation
unusually hig

nd Design of Do

Hourly values of 
ed on DSF_SH m

of the simple c
s in the DSF. F
d the calculate
nd calculated o
dings from the

mperature. 

ower temperat
tures inside th
ures are highe
s due to heat t
erature in the 
n than the heati

r hand, at times
r than the mea
, for which the
˚C. The reas

de the DSF, w
s inside the DS
ncreased to ta
n 5.10. It seem
gh errors in the

ouble Skin Faça

f calculated powe
measurements.

calculation met
Figure 5.16 com
ed temperature
outlet air temp
 measurement

tures in the DS
e cavity are al
er than the ca
transfer throug

air gap, has
ng demand du

s of high tempe
asured values.
e biggest diffe
son for this is 
which has bee

SF are also high
ke into conside
ms that peaks 
e energy consu

ades  

er load dependin

thod may also
mpares the mea
e in the middl
perature. As ex
t point at the he

SF, which corr
lmost identical
lculated ones. 

gh the internal 
s a bigger im
e to ventilation

eratures in the
. This is espec
rence between
probably the 

en described in
her because th
eration the refl
of calculated 

mption for cool

ng on the globa

o be explained 
asured tempera
le of the cavit
xplained in cha
eight of 5,4 m 

respond to the
. However, the
This indicates

skin, which is 
pact on the c

n. 

 DSF, the calc
cially the case
n the measure
wrongly assu

n chapter 5.2.
he solar gains e
lection from th
air temperatur

ling. 

al solar irradiatio

by analyzing 
ature at the he
ty as well as 
apter 4.2.1, in 
are considered

 heating dema
e measured ou
s, that the ene
influenced by 

calculated ene

culation results 
e for the outlet
ed and calcula
umed temperat
1. The calcula

effecting the ca
e shading dev
res correspond

 
n at 

the 
ight 
the 
this 

d as 

and, 
utlet 
ergy 
the 

ergy 

are 
t air 
ated 
ture 
ated 
avity 
vice, 
d to 



Simple calculation method 

 

67 

 
Figure 5.16 Measured and calculated air temperature in the middle of the DSF and in the outlet, 
based on hourly values for DSF_SH. 
 
The simple calculation method gives unsatisfactory results mainly because of the 
difference in temperature values inside the DSF. However, another source of error 
seems to be the proportion between the parts of the power load covering the energy 
losses / gains due to heat transfer, ventilation and solar heat gains. 

5.3. Summation 
In general, the simple calculation method overestimates the cooling load, in each of the 
investigated models, see Figure 5.17. Unlike the measurement results, the simple 
calculation method indicates that the DSF_1_2 gave the highest energy consumption. 
Both of the mentioned errors are thought to be a result of overrating the influence of 
solar radiation on the performance of the double skin façade. In the simple calculation 
method the energy losses / gains are considered to be due to direct solar gains, heat 
transmission through construction elements and energy need for ventilation. The two 
latter are mainly influenced by air temperatures in the DSF – the temperature in the 
middle of the cavity is responsible for heat transfer through the internal skin, whereas 
the outlet temperature is taken into consideration in the energy consumption due to 
ventilation. However, this investigation showed that the temperature profile inside the 
DSF is assumed to be a linear function with a wrong slope coefficient. This gives too big 
temperature values in the DSF, especially at times of high solar radiation. The reason 
for this error is the fact that the simple calculation method does not take into 
consideration the dimensions of the double skin façade. Therefore, the length and path 
of the airflow as well as the time period during which the fresh air stays in the DSF are 
unknown. This makes it impossible to correctly calculate the amount of solar radiation 
absorbed by the air. The investigation described in chapter 5.2.2 confirms that the lack 
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of DSF geometry is an important, but not the only, drawback of the simple calculation 
method. Another source of error may be neglecting heat transfer due to convection. 
 

 
Figure 5.17 Comparison of calculated heating load, cooling load, total power load, average global 
solar radiation and average outdoor temperature, obtained from measurements for different 
models. 
 
Errors are also noticeable when comparing different simple calculation results, without 
considering the measured data as a reference point. For example, the difference in the 
energy need for cooling between DSF_SH and DSF_1_2 is 110,68 kW, which 
constitutes 19,58% of the calculated DSF_1_2 cooling load.  In reality this difference is 
145,51 kW (60,14% of the measured DSF_1_2 cooling demand).  This indicates that the 
simple calculation method gives unrealistic analysis of the sensitivity of different 
parameters. The reason for this could be that the theoretical value of the shading 
coefficient might differ from the actual performance of the shading device in the full-
scale model. 
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6.  BSim simulations 

BSim is a user-friendly, flexible computer program for calculating and analyzing indoor 
climate conditions, power demand and energy consumption in buildings. By developing 
a detailed mathematical model for the building, it is possible to simulate even highly 
complex buildings with advanced heating and ventilation systems and operating 
strategies that vary over the course of the day and year. The software calculates power 
outputs and energy flows within the building and between the building and its 
surroundings. For all the spaces or zones being simulated, the software will therefore 
calculate heat loss through transmission, infiltration and ventilation, heat input in the 
form of solar heat, heat and moisture given off by people and equipment, electricity 
consumption for lighting, and power demand and energy consumption for every 
component of the heating, cooling and ventilation systems. Indoor climate is calculated 
using hourly values for indoor air temperatures, surface temperatures, relative 
atmospheric humidity and air exchange for each zone [12]. 
 
As mentioned in chapter 1.2 the results from the measurements are compared with 
results obtained from the building simulation software BSim. The main purpose of this 
comparison is to test BSim’s ability to model double skin façade as air supply for 
mechanical ventilation system. 
 
For every measurement model: DSF_1_1, DSF_1_2 and DSF_SH separate simulation 
have been made. The simulations and their results can be found as – Excel files on the 
attached CD. 

6.1. Structure of ‘the cube’ model in BSim 
The model of ‘the cube’ in BSim is build with all the thermal and structural properties of 
the full-scale model. Structural properties are U-values, thermal resistance and 
thickness of the walls as well as the U-values of the windows. Thermal properties are 
the temperatures in each room – zone. 
 
The full-scale model consists of the experiment room, the double skin façade and the 
two rooms (instrument and engine), which are only used as a technical backup. In the 
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BSim simulation only the experiment room (in BSim named ‘test room’) and the DSF 
(both marked red in the Figure 6.1) are modelled, the two other rooms are used to 
include into calculation different heat transmission through the North wall of the 
experiment room [6].  
 

 
Figure 6.1 BSim model 

In the BSim experiment room is a single zone, which represents the indoor environment 
behind the DSF. To investigate the DSF performance in BSim, it is necessary to define it 
as a single zone [6]. The instrument room and the engine room (in BSim named ‘cold 
room’) are two separate zones. The geometry and zone division of the BSim model is 
shown in the Figure 6.1. 
 
In order to simulate in BSim the performance of double skin façade with the shading 
device in the model DSF_SH, a shading system was added to the internal DSF window, 
with the shading coefficient of 0,55, as defined in chapter 2.5.   

6.2. Inputs for the simulations 
In the simulation the indoor as well as outdoor environment has to be defined as close 
to reality as possible. The Excel file with weather data is based on the measurements 
results and meteorological data from the Danish Meteorological Institute. For every 
measurement model: DSF_1_1, DSF_1_2 and DFS_SH the Excel file is created 
separately. The indoor conditions are different for each zone and they are defined by 
special systems. In the working schedule for all systems every day is equal. There is 
also no difference between times of the day. In all simulations the maximum thickness of 
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sub-division of material layers is 0,005m in order to obtain more accurate simulation 
result. 
 
Instrument and cold room    
In those two zones cooling and heating system are defined in order to keep a constant 
air temperature. The air temperature is the average value for the whole period of the 
measurements. The energy consumption of those systems is no taken into 
consideration when calculating the total energy consumption of ‘the cube’.  
 
Test room 
In this zone the heating and cooling systems fulfil the function of the air conditioning 
system described in chapter 2.1. The mechanical ventilation system defined in the zone 
is responsible for the constant air flow from the DSF into the test room.  The air flow is 
set up to 136,5 m3/h, which corresponds to about 1 h-1 air change rate of the volume of 
the test room. The ventilation system is equipped only with an input and output fan, 
there is no heating or cooling unit. The input fan provides the air from the DSF to the 
test room. The output fan is just defined for the simulation needs, because BSim 
required both fans in the mechanical ventilation. The pressure losses are the same at 
the inlet and exhaust part of the system and their value is 1200 Pa.  
 
Double Skin Façade – DSF 
System in this zone consists only of the mechanical ventilation, whose main function is 
to keep the constant air flow, around 136,5 m3/s, from the outside to the DSF. The 
system is equipped with the input fan, which provides the air from outside to the DSF, 
and output fan, which has the same function as in the test room. 

6.3. Kappa model 
In BSim the energy and comfort conditions in mechanically ventilated zones are 
calculated with the assumption, that the air in the zone is completely mixed, κ=1. In 
zones ventilated according to the displacement principle, this assumption should not be 
used, as this form of ventilation in particular will generate gradients (in a vertical 
direction). In this cases kappa should be below 1 and the value depends on the zone 
geometry and internal heat sources [12]. 
 
In this report in BSim model of ‘the cube’ the double skin façade should be modelled as 
a zone with displacement ventilation to simulate best the full-scale model. On the other 
hand, when kappa coefficient is defined for the zone it remains constant for the whole 
simulation time, days and nights. In the real model the air temperature gradient is 
different for days and nights, it is even changing during the day. To investigate the 
influence of the κ≠1 on the DSF performance, two simulations in BSim were made. One 
with κ=1 and second with κ=0,35 (the value suggested by the BSim help file). 
 
The results show, that κ=0,35 creates the vertical gradient in the DSF cavity, but it is 
only accurate for the lower part of the DSF cavity. For temperatures at the top of the air-
gap the difference between the measured and simulated values is significant, see 
Figure 6.2.  
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Figure 6.2 Difference between measured and simulated with κ = 0,35 air temperature in DSF 
cavity at height 5,5m, based on hourly average values.   

Comparison between measurements and two BSim models of the mean outlet 
temperature form DSF to the test room for whole period shows that kappa value has 
very small influence on this parameter, see Table 6.1. 
 

 Measurements κ=1 κ=0,35
Outlet 

temperature [C] 14,5 11,04 10,87 

Table 6.1 Mean outlet temperatures for measurements, κ=1, κ=0,35 

Similar result as for the outlet temperature appears for the total energy consumption, but 
in this case the model with κ=0,35 gives result closer to the measurements, see Table 
6.2. 

 Measurements κ=1 κ=0,35 
Total energy 

consumption [kWh] 635,23 589,25 594,21

Table 6.2 Total energy consumption for measurements, κ=1, κ=0,35. 

In general the comparison of those two BSim simulations with different κ shows, that the 
vertical gradient in double skin facade cavity has mostly influence on the heat losses 
due to heat transfer between DSF and test room. It has almost no effect on the outlet 
temperature from DSF, because in BSim in mechanically ventilated it is impossible to 
define the geometry of inlet and outlet points.  
 



BSim simulations 

 

73 

After analyzing all the results, it was decided, that in this report in BSim simulations 
‘kappa model’ will not be used– κ=1. Firstly, because in previous researches on double 
skin façade – ‘the cube’ in BSim models was defined with κ=1 and to be able to 
compare previous simulation results with present ones the same simulation settings 
have to be used. Secondly, the main aim of this report is to investigate the energy 
performance of double skin façade and the difference in total energy consumption 
between BSim simulations is only 4,96 kW. 

6.4. Simulations results 
As mentioned in chapter 5.2 BSim calculations are conducted for hourly values and 
comparison between the simulations results and measurements is very easy. Four 
measured values, the same as used in the simple calculation method (see chapter 5.2), 
have been considered for comparison with the calculation results: the energy 
consumption for cooling and heating, the outlet air temperature from DSF and the air 
temperature in DSF cavity. The only difference is that, the temperature in the DSF cavity 
is the volume average calculated from all the measuring points on different heights in 
section 2. The mean air temperature for whole air-gap is calculated, because as 
mentioned in chapter 6.3 in BSim model’s with κ=1 the air in the mechanically ventilated 
zones is fully mixed and only mean air temperature is calculated.  

6.4.1. DSF_1_1 
The first simulation was based on measurements in the full scale model DSF_1_1 
conducted by Olena Kalyanova from 09.11.2006 till 30.11.2006 [11]. In this simulation 
there was no shading device in the DSF. The first compared value is the energy 
consumption. In Figure 6.3  the measured and simulated energy need are presented.  
As mentioned in chapter 5.2.1, the negative values represent the cooling load, but for 
comparison the absolute values are used.  
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Figure 6.5 Comparison of hourly average measured outlet temperature, mean volume average 
temperature and simulated mean - outlet air temperature in DSF, based on data gathered for 
DSF_1_1. 
 
The second reason for the differences in results may be explained by comparing the 
mean and outlet air temperature in DSF measured and simulated in Bsim, see Figure 
6.5. In general the mean air temperatures in DSF simulated in BSim are very close to 
the volume average measured values. The mean values for the whole period are: BSim 
- 10,99 oC, measurements – 9,40 oC . It’s important to remember, that BSim assumes 
complete air mixing in the mechanically ventilated zone and the temperatures are the 
same in every point of the zone. In realty in the DSF cavity the temperature increases 
with height and the mean air temperature is the mean value calculated from the 
readings on different heights. If a higher temperature inside the DSF is taken into 
consideration in BSim simulation, the heat losses due to heat transmission through the 
internal skin would be much smaller. This could be one of the reasons why the 
calculated energy need for heating is smaller than in reality.  The peaks in the simulated 
temperature are firstly strongly connected with the solar radiation. Secondly in BSim 
outdoor conditions such as wind speed and direction have no influence on DSF 
performance, because in zones with mechanical ventilation those parameters are no 
taken into account. In reality they influence the bottom parts of the DSF, as proven by 
the tracer gas experiments. 
 
In the case of the outlet temperatures, BSim gives much lower results than 
measurements, the average different is 3,89oC. Peaks correspond to the time when 
cooling loads occurred and the simulated values were higher than the measure ones. 
This would explain why the calculated energy consumption for cooling is higher than the 
measured one. BSim shows the same tendency as the simple calculation method for 
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accumulated in the air is imprecise. This would indicate, that although the simulation 
results for the energy need for cooling are quite accurate, their cause is different than in 
reality. It seems that in BSim the main reason for this were the high temperatures of the 
incoming air. Whereas for the measurements the main cause of cooling loads was 
different, possibly excessive solar heat gains entering the experiment room. This is also 
confirmed by the volume average temperatures in the DSF corresponding to the heating 
demand, which are almost identical with BSim results. Still, the error of simulated energy 
need for heating is very significant. Unfortunately, it is impossible to compare the 
measured and simulated amount of solar radiation entering the cavity and the 
experiment room because the pyranometers in the cube were shaded and did not give 
an accurate reading. 
 

 
Figure 6.10 Comparison of hourly average simulated temperature in the DSF, measured volume 
average temperature in the DSF and outlet air temperature, based on data gathered for DSF_1_2. 
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Figure 6.11 Hourly averages of measured power load, volume average air temperature in the 
DSF cavity and global solar irradiation on 26.04.2008 (left). Hourly values of simulated power 
load, air temperature in the DSF cavity and global solar irradiation, on 26.04.2008, based on data 
gathered for DSF_1_2 (right). 
 
The biggest differences in measured and simulated DSF temperatures occurred on April 
26th at 11:00 am – 11,60 ˚C in terms of the outlet air temperature and 14,54 ˚ for volume 
average temperature. The measured and simulated situation on that day has been 
compared in more detail in Figure 6.11. It seems that both the values of measured and 
simulated power load are comparable. However, in the case of the BSim simulation, the 
cooling load is mainly due to the high air temperature in the cavity, which is later taken 
into the experiment room. Another difference between reality and BSim, is that in the 
case of mechanical ventilation the simulation programme does not take into 
consideration wind, which might influence the airflow and temperature in the bottom 
parts of the cavity. 
 
Clearly there is a significant error in BSim results. The reason for this is probably the 
fact that in BSim, when applying mechanical ventilation, it is impossible to define the 
DSF inlet / outlet geometry as well as an accurate temperature gradient in the zone. It 
could also be the case that differences occur in the simulated heating load due to 
convection and the programme has problems when dealing with solar radiation. 

6.4.2. DSF_SH 
In BSim the model of DSF_SH is similar to the two earlier models DSF_1_1 and 
DSF_1_2. In this case the shading device was assigned to the internal window as 
protection of the experiment room – zone and weather conditions were changed. Out of 
all three BSim models the DSF_SH was most inconsistent with reality in terms of ‘the 
cube’s’ constructions. The difference is that in reality the roller blades are physically  
placed in the DSF cavity and in BSim only one shading property is defined in the model 
– the shading coefficient. The rest like transmittance, absorbance and reflection are 
undefined.   
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Secondly, because of the temperature difference in DSF cavity between BSim and 
measurements, see Figure 6.14. 

 
Figure 6.14 Comparison of hourly average measured outlet temperature, mean volume average 
temperature and simulated mean - outlet air temperature in DSF, based on data gathered for 
DSF_SH. 
 
During night-time the simulated mean temperature in DSF cavity is almost the same as 
the mean from the volume average temperatures in front of and behind the shading 
device in reality. However, in the daytime, with solar radiation, the BSim results are 
higher than the measured ones. It results in slightly higher peaks in simulated cooling 
loads than in the measurements. This temperature difference is also caused indirectly 
by the different position of the shading device in the simulation and in the reality. 
 
The difference in the outlet temperature between BSim and reality is best noticeable 
during night-time, when measured outlet temperatures are higher than the simulated 
ones, the average difference for night-time is around 6,5oC. It is surprising, because at 
that time also the measured heating loads are higher than the BSim results while the 
mean temperatures are similar. It can be concluded that both in measurements and 
BSim simulation the heat losses/ gains due to transmission are similar, but the energy 
needed for preheat the ventilation air for the double skin façade is underestimated in 
BSim results.  

6.5. Summation 
When comparing all BSim simulation results a general tendency can be noticed, that the 
programme always underestimates the heating load and, when there is no shading 
device defined, it overrates the cooling demand. The biggest errors in the energy need 
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for heating occurred with high global solar radiation – in the case of DSF_1_2 the 
mistake was -45,4 % and -40,5 % for DSF_SH. When comparing the simulation results 
among themselves, the difference in the cooling load between DSF_1_2 and DSF_SH is 
123,09 kW, which makes up 54,01 % of the simulated DSF_1_2 cooling demand. 
Therefore, BSim gives values closer to reality and a better assessment of the sensitivity 
of different parameters than the simple calculation method. The reason for such 
underestimation of the effect of the solar shading might be the placement of the shading 
device in BSim. The programme defines it only as protection of the test room, whereas 
in reality the roller blinds were also shading the internal skin and part of the DSF cavity. 
 

 
Figure 6.15 Comparison of simulated heating load, cooling load, total power load, average global 
solar radiation and average outdoor temperature, obtained from measurements for different 
models. 
 
Another major drawback of BSim is that, when applying a mechanical ventilation system 
to a zone, it is impossible to define the geometry of the inlet and outlet and the air is 
considered to be fully mixed, which excludes a temperature gradient. Therefore, the 
difference between the temperature in the DSF zone indicated by BSim and both the 
measured outlet air and volume average temperature are quite big. Even when applying 
the Kappa model, the simulation results do not correspond well to the measurements.  
 
The BSim model could be improved by dividing the DSF into three or more adjacent 
zones. This would allow the air to be taken from the bottom of the cavity upward and be 
realised into the experiment room at the top. Such a solution would compensate the lack 
of temperature gradients in the individual zones.    
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7.  Final conclusion 

The results presented above strongly emphasize of the impact of solar radiation on the 
performance of double skin façades and the need for solar shading. Protection against 
excessive heat gains is necessary even during the heating season. This has been 
proved by the results of DSF_1_1 measurements conducted at the end of November. 
Double skin façades are thought to have great potential in reducing the energy 
consumption of a building. It should be noted that this project focussed on a theoretical 
case study concerned with only one operation strategy. When used in a proper way, 
DSFs can significantly preheat the fresh air when needed and provide natural lighting. 
This last aspect is particularly important, when considering that an average European 
office, school or industrial building dedicates 40 % of its overall energy consumption to 
electric lighting. Artificial lighting in those building types is usually used during the 
working hours, when daylight is available [13]. However, this issue has not been 
investigated in this project, although both the simple calculation method and BSim are 
capable of taking it into consideration. Therefore, it is a suggestion for further 
investigation. 
 
These arguments make double skin façades a very important type of building 
construction. Therefore, the ability of proper assessment of their energy performance at 
an early design stage is crucial to a project. This is why, the results obtained both from 
the simple calculation method and BSim simulations are disappointing., as they are not 
on the ‘safe side’. However, it should be noted that BSim is thought to be a much more 
advanced tool than the calculation method, because it is possible to perform in it a more 
detailed and dynamic analysis. Still the simple calculation method seems to follow the 
tendency of the measured values nearly as well as BSim. This was especially the case 
in the DSF_1_1 mode. It seems that at times of high solar radiation (DSF_1_2 and 
DSF_SH) the results obtained from both tools significantly vary from measurements and 
overestimate the cooling demand. The cooling load is strongly connected to solar heat 
gains and therefore, shading has an important role in calculating it. It should be noted, 
that the shading coefficient given by the producer of the roller blades used has been 
defined for a shading device mounted inside a room, behind the window. Its actual value 
may be influenced by the placement of the shading device and the ventilation mode 
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used. This has been proven by comparing the theoretical shading coefficient with the 
measurement results, see chapter 4.2.4. Therefore the theoretical shading coefficient of 
0,55, which was the input both in the simple calculation method and BSim, may not be 
accurate. Another dynamic parameter is the g-value of the DSF skins, which is the 
resultant coefficient of transmittance, convection and heat transfer. Therefore, it is 
influenced among other factors by the temperature and angle of solar radiation. This is 
taken into consideration in BSim, where it is possible to define a curve corresponding to 
the g-value. However, the calculation method is too simple to include variations of this 
parameter, which could be an additional source of error. Finally, BSim has a more 
realistic approach, because in a dynamic simulation the time line is taken into 
consideration and the simulated conditions from the previous time step influence the 
present ones. In the simple calculation method, on the other hand, there is no 
correlation between the results obtained for the present moment and its predecessor. 
BSim seems to have potential to give better results. However, both tools call for 
significant improvements when calculating the performance of double skin façades. One 
of these might be specifying the geometry of the DSF and the outlet / inlet points, in 
order to consider in more detail the airflow path. 
 
The data gathered in this project deals with only three short periods of the year. It is 
recommended to perform measurements as well as calculations and simulations for a 
longer period of an entire year. This would be an opportunity for the investigation of 
different operation concepts of the DSF and the shading device, which could result in 
long-term strategy. The obtained results would provide a better overview of the impact 
of a double skin façade construction on the energy consumption of a building. 
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1.1. BINOS calibration 
The main result from the calibration is the equation, achieved from the graph Figure 1.2. 
It will be used to transform readings of CO2 concentration in the room in V from the data 
logger to the real value in ppm.  
 

 
Figure 1.2  Result of BINOS calibration. 

1.2. URAS calibration 
The main result from the calibration is the equation, achieved from the graph Figure 1. It 
will be used to transform readings of outdoors CO2 concentration in V from the data 
logger to the real value in ppm.  
 

 
 

Figure 1 Result of URAS calibration. 
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2.  Calibration of 
thermocouples 

For measurements of the air temperature under direct solar irradiation the 
thermocouples type K (Chromel/Alumel) with silver coating need to be used [1]. All of 
them have been connected to the HELIOS 272 data logger. During the measurements 
conducted by Olena Kalyanova in 2006, 77 thermocouples have been used and 
calibrated. For the new measurement setup from April 2008, 30 of the old tc have been 
replaced with new ones measuring the temperature inside the DSF. According to 
unpublished researched conducted by Nicolai Artmann, PhD student at Aalborg 
University, it is not the thermocouple itself but its place in the data logger, which 
influences the tc calibration. Therefore, there was no need for calibrating the 30 new 
thermocouples, because the equations created for their old equivalents can be used. 
This has been validated by calibrating three of the new tcs and comparing the 
calibration graphs with the old ones. 
 
The previous and the new thermocouples were calibrated in four points: 0, 15, 25 and 
35oC. The results were collected by the Helios 272 data logger a frequency of 60 Hz. 
For each calibration point measurements were collected for 6 minutes and then the 
average was taken into consideration. An example of comparison of old and new 
calibration result is shown in Figure 2.1. It is clear that there is no significant difference 
between them and so the old calibration can be used. 
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3.  Mechanical air 
exhaust installation 

The purpose of the air exhaust installation is to take the same volume of air out of the 
experiment room, regardless of the outdoor conditions, by means of a mechanically 
powered fan. It is build out of Spiro ducts of various diameters and a short segment of a 
flexible duct.  All the equipment necessary for setting and measuring the volume airflow 
has been connected as shown in Figure 3.1. The two dampers have been set to ensure 
the pressure loss of 600 Pa. The setup has been validated in laboratory condition prior 
to mounting the installation in the ‘cube’. For this purpose, in addition to measuring the 
pressure loss over the orifice, which indicates the volume airflow; the dynamic pressure 
difference between the inlet and outlet of the fan has been measured. This value gives 
the total pressure loss in the installation. 
 

 
Figure 3.1 Scheme of the mechanical exhaust installation 
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4.  Equations used in 
simple method 

calculation  

For simple method calculation the following equations ware used. 
 

1. Energy need for heating – EN ISO 13790 [2] 
gnHgnHlsHndH QQQ ,,,, ⋅−= η  

where 
QH,nd - is the building energy need for heating [kWh] 
QH,ls  - is the total heat transfer for the heating mode [kWh] 

        QH,gn - are the total heat gains for the heating mode [kWh] 
ηH,gn - is the dimensionless gain utilisation factor for heating. 
 

2. Energy need for cooling – EN ISO 13790 [2] 

lsClsCgnCndC QQQ ,,,, ⋅−= η  
where 

QC,nd - is the building energy need for cooling [kWh] 
QC,ls  - is the total heat losses for the cooling mode [kWh] 

        QC,gn - are the total heat gains for the cooling mode [kWh] 
ηC,gn - is the dimensionless gain utilisation factor for cooling. 
 

3. Total heat transfer – EN ISO 13790 [2] 
vetrls QQQ +=  

where 
Qls - is the total heat transfer [kWh] 
Qtr - is the total heat transfer by transmission [kWh] 
Qve  ‐ is the total heat transfer by ventilation [kWh] 

 
4. Total heat gains – EN ISO 13790 [2] 

solgn QQQ += int  
where 

Qgn - are the total heat gains [kWh] 
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Qint - is the sum of the internal heat gains over a given period [kWh] 
Qsol - is the sum of the solar heat gains over a given period [kWh] 
 

5. Solar radiation entering the DSF – DIN V 18599 [3] 
SueeffueueFuS IgAF ⋅⋅⋅= ,,,φ  

 
where 

FF,ue  - is the correction factor to account for the proportion of the 
frames of the external glazing  
Aue  - is the area of each external surface of the annex with a 
specific orientation [m] 
geff,ue  - is the effective total energy transmittance of the transparent 
section of the external glazing, taking the following factors into 
consideration: 
— shading, 
— the effective total energy transmittance of the external glazing taking into 
account solar protection devices and their activation, 
— deviation of the radiation incidence from the perpendicular, 
— dirt on the glazing (pollution); 
IS  - is the global solar radiation intensity for the orientation of the 
respective dividing surface [W/m2] 

 
6. Direct solar heat gains due to transparent components – DIN V 18599 [3] 

tIFgAFQ SueeueFiueffiuiuFtrs ⋅⋅⋅⋅⋅⋅= ,,,,, τ
 

 
where 

FF,iu  - is the correction factor accounting for the proportion of the 
frames of the internal glazing  
Aiu - is the area of the component of the surface separating the 
evaluated building zone from the unheated glazed annex - DSF [m] 
geff,iu  - is the effective energy transmittance of the transparent section 
of the component, taking the following into consideration: 
— the total energy transmittance gtot of the internal glazing including solar 
protection devices, 
— the activation of solar protection devices, 
— shading by surroundings and parts of the building, 
— deviation of the radiation incidence from the perpendicular, 
— dirt on the glazing (pollution); 
FF,ue  - is the correction factor accounting for the proportion of the 
frames of the external glazing  
τeu,e  - is the transmittance of the external glazing  
IS  - is the global solar radiation intensity for the orientation of the 
respective dividing surface [W/m2] 
 

For the case with the shading device DSF_SH in the equation for the direct solar heat 
gains shading coefficient – SC is considered: 

SCtIFgAFQ SueeueFiueffiuiuFtrs ⋅⋅⋅⋅⋅⋅⋅= ,,,,, τ  
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7. Heat gains affecting the DSF – DIN V 18599 [3] 

uI
trS

uSu t
Q

,
,

, φφφ ∑+
∑

−∑=
 

 
where 

ΣΦS,u  - is the sum total of solar incident radiation in the unheated 
glazed annex – DSF or for all transparent external components of the 
respective part of the building [kWh] 
ΣQS,tr  - is the sum total of solar radiation passing through the glazed 
annex – DSF into the adjacent building zone, calculated for all 
transparent components of the surface separating the building zone 
under evaluation and the unheated glazed annex or conservatory [kWh] 

ΣΦIu  - is the sum of the heat flows due to internal heat sources in the glazed 
annex – DSF [kWh] 
 

For the case with the shading device DSF_SH in the equation for the heat gains 
affecting the DSF solar gains reflected by the shading device and stopped by the 
external skin is considered: 

)1( ,,,
,

, ueeffuSuI
trS

uSu gR
t

Q
−⋅⋅∑+∑+

∑
−∑= φφφφ  

 
8. The mean temperature in the unheated building zone – DSF - EN ISO 

13789 [4] 
 
 

ueVueTiuViuT

ueVueTeiuViuTiu
u HHHH

HHHH

,,,,

,,,, )()(
+++

++++
=

ϑϑφ
ϑ  

where 
Φu  - is the heat flow (from heat sources) into the unheated building 
zone (e. g. due to solar heating or internal heat sources) [kWh] 
vi  - is the internal temperature [K] 
HT,iu -  is the heat transfer coefficient of transmission of the 
components between the zone being evaluated and the adjacent 
unheated building zone [W/K] 
HT,ue  - is the heat transfer coefficient of transmission of the building 
components between the unheated building zone and the exterior [W/K] 
HV,iu  - is the heat transfer coefficient of ventilation between the 
building zone being evaluated and the adjacent unheated building zone 
(normally, HV,iu = 0 can be assumed) [W/K] 
HV,ue  - is the heat transfer coefficient of ventilation between the 
adjacent unheated building zone and the outside atmosphere [W/K] 
 

9. The outlet temperature in the unheated building zone – DSF 
 

)(2 inuout ϑϑϑ −⋅=  
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where 
νu  - is the mean temperature in the unheated building zone-DSF [K] 
νin -  is the inlet temperature to the unheated building zone-DSF [K]  

 
10. Gain utilization factor for heating – pr EN ISO 13790-2005 [5] 

 

1, 1
1

+−
−

=
H

H

a
H

a
H

gnH γ
γ

η      if 1≠Hγ  

 

           
1, +

=
H

H
gnH a

a
η          if 1=Hγ  

 

with: 
lsH

gnH
H Q

Q

,

,=γ  

 
where 

  ηH,gn - is the dimensionless gain utilisation factor for heating 
  γH - is the dimensionless gain/loss ratio for the heating mode 

QH,ls  - is the total heat transfer for the heating mode [kWh] 
        QH,gn - are the total heat gains for the heating mode [kWh] 

aH - is the dimensionless numerical parameter depending on the 
time constant τH 

 

H

H
HH aa

,0
,0 τ

τ
+=  

where 
a0,H - is the dimensionless reference numerical parameter in this 

project equal 1,0. 
  τH - is the time constant of a building or building zone [h] 
  τ0,H -  is the reference time constant in this project equal 15h 
 

11. Gain utilization factor for cooling – pr EN ISO 13790-2005 [5] 
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with: 
lsC

gnC
C Q

Q

,

,=λ  

 
where 

  ηC,ls - is the dimensionless gain utilisation factor for cooling 
  λC - is the dimensionless gain/loss ratio for the cooling mode 

QC,ls  - is the total heat losses for the cooling mode [kWh] 
        QH,gn - are the total heat gains for the cooling mode [kWh] 

aC - is the dimensionless numerical parameter depending on the 
time constant τC 

 

C

C
CC aa

,0
,0 τ

τ
+=  

where 
a0,C - is the dimensionless reference numerical parameter in this   

project equal 1,0. 
  τ C - is the time constant of a building or building zone [h] 
  τ0,C -  is the reference time constant in this project equal 15h 
 

12. Time constant for a building or building zone - pr EN ISO 13790-2005 [5] 
 

L

m

H
C 6,3/

=τ  

where 
  τ  - is the time constant of a building or building zone [h] 
  Cm - is the internal heat capacity of a building [kJ/K] 
  HL - is the heat losses coefficient of a building [W/K] 
 

jijijijijm AdcC ρ∑∑=  
where 

  Cm - is the internal heat capacity of a building [kJ/K] 
  ρij - is the density of the material of a layer i in element j [kg/m3] 

  cij - is the specific heat capacity of the material of a layer i in                      
element j [kJ/kgK] 
dij - is the thickness of a layer i in element j [m] for the utilisation 
factor calculation d = 0,10m 

 
13.  Ventilation heat transfer coefficient - pr EN ISO 13789-2005 [6] 

.
VcH aaV ⋅⋅= ρ  

where 
V  - is the airflow rate through the heated or cooled space 
ρaca  - is the heat capacity of air per volume. 

If the air flow rate V is in [m³ /s], ρaca = 1200 [J/(m³ ·K)]. If V is given in [m³/h], ρaca = 0,33 
[Wh/(m³ ·K)]. 
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14. Transmission heat transfer coefficient - pr EN ISO 13789-2005 [6] 

iiiD UAH ⋅∑=  
 

where 
Ai  - is the area of element i of the building envelope [m²] 
Ui  - is the thermal transmittance of element i of the building envelope  

 [W/(m²·K)] 
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