
Control of AAU-BOT1

08gr1032b

Printed June 12, 2008

Department of Control Engineering

Fredrik Bajers Vej 7C

Telefon 96 35 87 00

Fax 98 15 17 39

http://www.control.aau.dk

Title:
Instrumentation, Modeling and Control
of AAU-BOT1

Project period:
September 2007 - June 2008

Project group:
08gr1032b

Members:
Per Kingo Jensen
Mathias Garbus
Jan Vestergaard Knudsen

Supervisors:
Jakob Stoustrup
Jan Helbo
Mads Sølver Svendsen

Copies: 7

Pages in master thesis: 161

Appendices: 13

Printed: June 12, 2008

Synopsis:

The aim of this master’s thesis is to equip the
humanoid robot AAU-BOT1 with sensors,
model and control it such that it can obtain
static gait. AAU-BOT1 has human propor-
tions and features 17 actuated degrees of free-
dom.
To enable AAU-BOT1 to obtain static gait,
an instrumentation strategy has been pro-
posed and implemented. Furthermore a soft-
ware platform is developed to complete the in-
strumentation.
Models of the DC-motors, kinematics, inverse
kinematics and the dynamics of AAU-BOT1
have been made. By utilizing the inverse kine-
matic model, static gait trajectories are devel-
oped.
The remaining models are utilized to create
two different control strategies. The first con-
trol strategy is based on a Linear Quadratic
Gaussian controller(LQG), which controls the
posture of the robot based on the dynamic
model. The second control strategy is based
on classical PID controllers, and utilizes the
build in features of the digital DC motor am-
plifiers. Both control strategies contains a bal-
ance controller, that is used to maintain sta-
bility during walk.
It is furthermore decided to develop a virtual
representation of the AAU-BOT1 for test
purposes. The LQG controller strategy with
the proposed trajectories was tested on the
virtual AAU-BOT1 but the controller could
not stabilize the robot sufficiently. The second
control strategy was successful and the virtual
robot is able to walk with the proposed tra-
jectories and maintain stability at the same
time. The second control strategy was only
partially implemented on the physical AAU-
BOT1 and showed promising results of ob-
taining static walk.

4

Instrumentation, Modeling and Control of AAU-BOT1

5

Preface

This thesis has been composed during two semesters from the first of September 2007
to the 12th of June 2008 at the Department of Electronic Systems at the Section for
Automation and Control, under the Master program Intelligent Autonomous Systems.

In order to obtain inspiration for this thesis, the group was on at study trip to Mas-
sachusetts Institute of Technology (MIT) in Boston, Northeastern University in Boston
and visited Boston Dynamics, who also develop autonomous robots.

For all the simulation and verification and developing of AAU-BOT1 MatlabTM has
been widely used. The MatlabTMversion used is 7.3 R2006b with a Simulink version
6.5 R2006b. During the this thesis a program called Webots is used to simulate AAU-
BOT1. The program version is Webots Pro 5.9.0.

For citations an adapted Harvard method is used, these citations are made in square
brackets and contain the author of the literature, DOI-reference and the year of publi-
cation. An example of this can be seen here [Craig, 2005]. Furthermore web-pages and
conversations with professors will also be referred to.

In the start of each chapter, a short description of the chapter is given. The description
is formated with italic. E.g. ’In this preface...’. At the end of each chapter a summary
is given.

The thesis also has a nomenclature and an index. A list of acronyms can be found
in Appendix L on page 229. On the last page, a CD-ROM is enclosed, which contains
literature, model files, figures and drawings used for the thesis. A complete description
of the contents on the CD-ROM can be found in Appendix M on page 231.

Per Kingo Jensen

Mathias Ramskov Garbus

Jan Vestergaard Knudsen

Group 08gr1032b

Contents

Nomenclature 9

1 Introduction 13

1.1 Background information . 13

1.2 Existing Biped Robots . 13

1.3 Walking Robots at Aalborg University . 15

1.4 Objectives . 17

1.5 Thesis Outline . 18

2 Humanoid Robotics Definitions 23

2.1 Coordinate system . 23

2.2 Definitions used in this report . 23

3 Instrumentation and Network Design 31

3.1 AAU-BOT1 Description . 31

3.2 Network Design . 33

3.3 Actuators . 35

3.4 EPOS Amplifiers . 37

3.5 Absolute Joint Angle Measurements . 37

3.6 Force Torque Sensor . 38

3.7 On-board Computer . 43

3.8 Inertia Measurement Unit . 45

3.9 Summary of Instrumentation and Network Design 46

4 Software Architecture 49

4.1 General Software Description . 49

4.2 Simulink S-function Interface . 50

4.3 Shared Memory Server . 54

4.4 Sensor Servers . 54

4.5 Actuator Server . 57

4.6 EPOS/CAN Driver . 57

4.7 FTS driver . 60

4.8 Visulisation . 65

4.9 Summary of Software . 68

6

CONTENTS 7

5 Modeling 69

5.1 Introduction to Modeling . 69

5.2 Elements in the Model . 69

5.3 DC Motor Model . 71

5.4 Kinematic Model . 77

5.5 Dynamic Model . 83

5.6 Support Phase Estimator . 89

5.7 Inverse Kinematics . 91

5.8 Summary of Modeling . 96

6 Trajectory generation 97

6.1 Trajectory Generation Requirements . 97

6.2 Different Trajectory Generation Approaches 99

6.3 Establishing Trajectories for AAU-BOT1 102

6.4 Simulation and Results of Trajectory Generation 112

6.5 Summary of Trajectory Generation . 116

7 Control 119

7.1 Controller Structure . 119

7.2 Control Strategy A . 121

7.3 Control Strategy B . 128

7.4 Observers . 139

7.5 Supervisor . 140

7.6 Summary of Control . 141

8 System Test 143

8.1 Introduction to Complete Test . 143

8.2 Virtual Robot in Webots . 143

8.3 Actual AAU-BOT1 . 145

8.4 Summary of System Test . 147

9 Epilogue 149

9.1 Discussion . 149

9.2 Conclusion . 154

9.3 Future Work . 155

Bibliography 157

A Verification of Models 163

A.1 DC Motor Model . 163

A.2 Verification of Kinematic Model . 166

A.3 Verification of Inverse Kinematic Model 169

B Verification and Implementation of Controllers 175

B.1 Verification of Control Strategy A . 175

B.2 Verification of Control Strategy B . 180

C Mechanical Data 183

Group 08gr1032b

8 CONTENTS

D Foot Model 188
D.1 Foot Design Overview . 188
D.2 Forces and Torques on the Foot . 189
D.3 Constraints . 191

E Motivating Example 193
E.1 Kinematic Model . 193
E.2 Dynamics in SSP . 196
E.3 Dynamics of Strider in DSP . 200

F Dynamic Gait Trajectories 203
F.1 Foot Trajectory for Dynamic Gait . 203
F.2 Torso Trajectory for Dynamic Gait . 205

G Alternative FTS DAQ 209
G.1 Analog FTS DAQ . 209
G.2 Alternative Digital FTS DAQ . 213

H Calibration and Test of the FTS’s and Amplifiers 215
H.1 Calibration Test Method . 215
H.2 Results of Calibration . 217
H.3 Future Work . 220

I Throughput Test 221
I.1 Method . 221
I.2 Result . 221
I.3 Discussion . 221
I.4 Summary . 222

J CAN Frame Overview 223

K Node Overview 227

L List of Acronyms 229

M Contents of the enclosed CD 231

Index 233

Instrumentation, Modeling and Control of AAU-BOT1

Nomenclature

θ̈M Angular acceleration of the DC motor shaft
[
rad
s2

]

, page 71

∆L Penetration depth of the spring in the heel [m], page 190

∆Lmax Maximum penetration depth of the spring in the heel[m], page 190

L Lagrangian matrix, page 197

JF (~θ) The Jacobian matrix of the system, with regards to ~θ, page 194

Jn The inertia tensor of link n, page 30

µ Viscous friction coefficient
[
Nm s
rad

]

, page 72

ωx,n The angular velocity around the x axis of link n
[
rad
s

]

, page 30

ωy,n The angular velocity around the y axis of link n
[
rad
s

]

, page 30

ωz,n The angular velocity around the z axis of link n
[
rad
s

]

, page 30

τc Coloumb friction torque [N m], page 72

τF Friction torque [Nm], page 71

τL Load torque [Nm], page 71

τM Motor torque [Nm], page 71

τs Stiction torque [N m], page 72

θM Angle of the shaft [rad], page 71

θn Angle of link n [rad], page 71

~PCoM Position vector of the CoM, page 29

~Pn Position vector of the center of mass of link n, page 29

~F External force vector, page 197

~ωn The angular velocity vector of link n, page 30

~an Distance vector from joint n − 1 to joint n, page 194

9

10 CONTENTS

~bn Distance vector from joint n − 1 to CoM of link n, page 194

~g Gravitational acceleration constant vector, page 30

~M The total moment vector, page 30

~PGCoM The position vector of the GCoM, page 29

~PZMP Position of ZMP, page 89

~PL Position of the left foot, page 89

~PR Position of the right foot, page 89

~q State vector, page 197

m
n R The rotation matrix from frame m to frame n., page 194

cn The cosine to angle n [], page 194

cr The rotational dampening coefficients [Nm s
rad

], page 190

ct The translational dampening coefficients [N s
m], page 190

di,stabMarg Stability margin, positive if the ZMP is within the support area, page 104

Ekin Kinetic energy [J], page 197

Epot Potential energy [J], page 197

G Gear ratio [], page 71

hamax Maximum ankle height during Tstep, page 109

htmax Maximum height of the torso., page 110

htmin Minimum height of the torso. , page 110

iM Motor current [A], page 71

J Total inertia of both the motor and the load [kg cm2], page 71

Jx,n The inertia of link n around the x axis[kg cm2], page 30

Jy,n The inertia of link n around the y axis[kg cm2], page 30

Jz,n The inertia of link n around the z axis[kg cm2], page 30

Kemf Motor back emf voltage constant
[

Vs
rad

]

, which has the same value as KT , page 71

kr The rotational spring coefficients [Nm
rad

], page 190

KT Motor torque constant
[
Nm
A

]

, which has the same value as Kemf, page 71

kt The translational spring coefficients [Nm], page 190

LM Terminal inductance [H], page 71

Instrumentation, Modeling and Control of AAU-BOT1

CONTENTS 11

lan Height of the ankle from the ground., page 109

lat Horizontal distance between the ankle and toe., page 109

mn Mass of link n [kg], page 29

Mx Moment around the x-axis [Nm], page 29

My Moment around the y-axis [Nm], page 29

Mz Moment around the z-axis [Nm], page 29

mTot The AAU-BOT1’s total weight [kg], page 190

NJoints Number of joints[], page 86

NLinks Number of links[], page 30

RM Terminal resistance [Ω], page 71

sn The sine to angle n [], page 194

stabIndex Array of stability indexes for all simulations., page 105

stabIndexmax Maximal number of stable ZMP’s is all simulations., page 105

Tmax Time it takes to raise the ankle to max height hamax., page 107

Tsim Simulation time., page 106

TSSP Time AAU-BOT1 is in SSP during Tstep., page 107

Tstep Time it takes to move right foot in front of the left., page 107

u Input voltage [V], page 71

xZMP The x-coordinate of the ZMP vector (~PZMP) [m], page 30

xa(t) Horizontal movement of the ankle during Tstep., page 109

xn x-coordinate of the center of mass of link n[m], page 30

xt(t) Movement of the torso in the x-direction during Tstep., page 110

xtmax Length in the x-axis from the torso to the right foot., page 110

yZMP The y-coordinate of the ZMP vector (~PZMP) [m], page 30

yn y-coordinate of the center of mass of link n[m], page 30

yt(t) Movement of the torso in the y-direction during Tstep., page 111

ymid Distance from center of the pelvis to one hip., page 111

ytmin Length in the y-axis from the torso to the right foot., page 111

za(t) Vertical movement of the ankle during Tstep., page 109

zn z-coordinate of the center of mass of link n[m], page 30

zt(t) Vertical movement of the torso during Tstep., page 110

Group 08gr1032b

12 CONTENTS

Instrumentation, Modeling and Control of AAU-BOT1

Chapter 1

Introduction

In this chapter, the background for the project is given. This includes a summary of
some existing biped robots in the world Hereafter the robots at Aalborg University will be
elaborated on. Finally the objectives and a problem formulation of the master’s thesis is
stated and an overview of the project is given.

1.1 Background information

Biped robots have been widely studied by science departments at Universities and the
industry for many years. The purpose is to continuously improve the intelligence of the
robots and making them faster, more stable and stronger. This is done so the robots
can perform heavy or dangerous work previously imposed on humans. Other sections of
the industry such as the medical industry also use robots. This section do a great deal
of work on artificial limbs for war veterans with missing limbs. The limping robots are
examined in order to fully understand which muscles are affected and how, to improve
the manufacturing of artificial limbs. These robots could also be used for rehabilitation
and thereby help people with gait disorder with the daily training.

1.2 Existing Biped Robots

In this section three advanced biped robots are presented. The three robots are AISMO,
WABIAN-2R and Johnnie, see Figure 1.1 on the following page. Since Honda is keeping
AISMO confidential and covering it in plastic shields, then the specifications is unavail-
able. Therefore only WABIAN-2R and Johnnie is described in the following. Both robots
are using servo motors for actuation of manipulators, and have force-torque sensors in
the ankles. The features together with the performance and certain soft- and hardware
aspects will be discussed. The scope of this section is to study the specifications of exist-
ing robots, to achieve inspiration for a platform design for a walking robot. The following
are based on [Ogura et al., 2006] and [Löffler et al., 2004a].

WABIAN-2R

Waseda University, started researching biped robots in 1966, and presented their first
humanoid robot in 1973. Since then, a number of biped robots have been developed,
latest the WABIAN-2R in 2006, see Figure 1.1(b) on the next page. This biped robot

13

14 Introduction

(a) ASIMO (b) WABIAN-2R (c) Foot mecha-
nism (WABIAN-
2R)

(d) Johnnie

Figure 1.1: Existing walking robots.

has 41 Degrees of Freedom (DoF) and with this relatively large number of DoF’s the
WABIAN-2R support a relatively smooth human-like walk. In Figure 1.2 shows a sketch
of the system structure of WABIAN-2R.

WABIAN-2R is controlled by a computer mounted in its torso. The on-board com-
puter consists of a PCI CPU board, this is connected to I/O-boards through the PCI bus.
This I/O-board has 16ch D/A, 16ch Counters and 16ch PIO, and six axis force/torque
sensor receiver board. The operating system used with the on-board computer is QNX,
which is a real time system. Every actuator is equipped with an incremental encoder
attached to the motor shaft. To detect the initial posture a photo sensor is attached
to each joint shaft. Each ankle is equipped with a six axis force-torque sensor which is
used for measuring floor reaction force. Furthermore WABIAN-2R is equipped with a
toe feature as seen in Figure 1.1(c), this feature can be helpful when human-like walk is
the objective.

Figure 1.2: System structure of WABIAN-2R [Ogura et al., 2006].

Instrumentation, Modeling and Control of AAU-BOT1

Walking Robots at Aalborg University 15

Johnnie

Technical University of Munich initiated research in bipedal walking with the robot
Johnnie, as seen in Figure 1.1(d) on the facing page. Johnnie was built for the German
Research Foundation in the Priority Program Autonomous Walking. This started in 1998,
with the intention to create a human-like stable gait for a humanoid robot. Johnnie can
pass obstacles in its path, this is achieved by a visual guiding system, based on a stereo
camera system. Johnnie is an european built biped robot, whereas WABIAN-2R is made
in Japan. Johnnie features 17 degrees of freedom, which are mainly located in the lower
body region. The control computer used for Johnnie is a 2.8 GHz computer which runs
under RTAI-Linux. The computed data are sent to 17 decentralized micro controller
which drives the power amplifiers and reads sensor data. All this is achieved with an
overall sampling time of 4 ms (250 Hz). Figure 1.3 is a sketch of the control structure
on Johnnie.

Figure 1.3: The control structure of Johnnie [Löffler et al., 2004a].

Johnnie and WABIAN-2R are two sophisticated robots that both have similarities
like the six axis force torque sensor. Where WABIAN-2R differs from Johnnie is the toe
feature and on-board computer and seems more likely to success in obtaining the most
human-like gait.

1.3 Walking Robots at Aalborg University

The biped robot research at Aalborg University was initiated three years ago. This was
done to clarify the opportunity to design a biped robot with human proportions. This
began with the research of two smaller robots and should form basis for the development
of a human sized robot. In the following a summation of the different robots at AAU is
elaborated.

The First Small Biped Robot (The Sergeant)

The biped robotics research at AAU started with the purchase of the small biped
robot [Christensen et al., 2006], currently called the Sergeant. The Sergeant is a com-
mercially made robot, which is capable of stable static gait, by means of fuzzy logic.

Group 08gr1032b

16 Introduction

The design of the Sergeant is unfortunately too slow to enable human-like gait. In Fig-
ure 1.4(a) picture of the Sergeant.

The Second Biped Robot (Roberto)

Roberto was designed and constructed during a master’s thesis started in September 2006
and ended June 2007. The work is described in the master’s thesis [Christensen et al.,
2007] which was conducted at the section of Automation and Control at Aalborg Univer-
sity. The design philosophy was to create a humanoid robot, scaled down to a height of
58 cm, and with 21 actuated degrees of freedom. The group were unfortunately unable to
make Roberto walk with a human-like walk due to system limitations. These limitations
are conceived to be interface to the servo-motors and a slow on-board computer. See
Figure 1.4(b) for a picture of Roberto.

(a) The Sergeant
(30cm, 21 DoF)

(b) Roberto (58 cm, 21
DoF)

(c) AAU-BOT1 (180cm,
19 DoF where 2 of the DoF
are spring actuated)

Figure 1.4: The biped robots at Aalborg University [Helbo, 2008]. Not to scale.

The Third Biped Robot (AAU-BOT1)

The newest biped robot at Aalborg University is AAU-BOT1 which is in human size.
This robot is proposed to help closing the gap between the fields of Health technology
and Robotics. It was funded by the Dannin foundation in 2006, where a AAU-BOT1
research project was initiated. The research project is scheduled to finish in 2010. During
this time a mechanical design is developed and the AAU-BOT1 has to manufactured.
This is done by a group at the Department of Mechanical Engineering at Aalborg Uni-
versity in the time period September 2006 to June 2007. This process is described
in [Pedersen et al., 2007]. In the time period from September 2007 to June 2010. The
remaining time is used for instrumentation of the robot, development of a proper control

Instrumentation, Modeling and Control of AAU-BOT1

Objectives 17

solution. Finally the AAU-BOT1 has to obtain human-like gait. See Figure 1.4(c)
on the facing page to see a Solidworks drawing of AAU-BOT1. AAU-BOT1 is
designed to be in human-like proportions (180 cm tall).

The 30. of November AAU-BOT1 is handed over to the Section of Automation
and Control and the instrumentation and initial implementation of motion trajectories,
are parts of the challenges that will be elaborated on in this thesis. It is important the
strategies developed in this master’s thesis can be used to achieving the main goal of
obtaining human-like gait.

Furthermore AAU-BOT1 at Aalborg University forms the basis for further research
and development of other and even more sophisticated and improved walking robots.
Since the development of AAU-BOT1 is done in individual stages in different institutes
of Aalborg University. This thesis will depend on the quality of the work done at the
Institute of Mechanical Engineering. This also applies the other way around when the
Institute of Mechanical Engineering will be making the next version of AAU-BOT1
(AAU-BOT2).

1.4 Objectives

Former reports dealing with humanoid robots have been conducted at the Section of
Automation and Control at Aalborg University. In one case only has it been possible
to achieve static gait but not human-like walk. As far as the project group is aware of,
no robot have ever obtained complete human-like gait. The main objective of the 2010
research project is to obtain human-like gait. This master’s thesis will help this main, by
taking the first step of instrumentation and modeling and control of the AAU-BOT1.
Thus, the objectives of this project are:

• Completion of hardware platform.

• Modeling of AAU-BOT1.

• Design a controller that enables static gait on AAU-BOT1.

• Design a controller that enables dynamic gait on AAU-BOT1.

Problem Formulation

With the background information given in the previous sections, the problem investigated
is:

Is it possible to obtain static gait with AAU-BOT1?

This will be achieved in stages. The first stage is to develop the model in Simulink
such that controllers can be designed, implemented and simulated with static gait. The
second stage is instrumenting the AAU-BOT1 with the necessary hardware, such that
the controllers can be tested on the real system. The third stage is to implement static-
like gait in simulation and on the real system.

Group 08gr1032b

18 Introduction

Delimitation

The delimitations of the master’s thesis are described in this section. The delimitations
are described below:

• The final product has to include batteries before a completely autonomous system
can be obtained. It is decided to use a power supply instead of batteries. This is
done since the project already is very hardware heavy compared to the scope of
the 9th and 10th semester.

• As it is chosen to investigate if static walk are obtainable, the toe off and heel strike
motions are not implemented on AAU-BOT1. The toe off feature are however
included in the development such that it can be utilized in the future.

• In order to design a total instrumentation strategy, an Inertial Measurement Unit
(IMU) is implemented in the design phase. However the IMU is included in this
master’s thesis, but it is not utilized, as the work load has been extensive and the
IMU is therefore a subject for future groups working with AAU-BOT1.

1.5 Thesis Outline

This thesis is a documentation of the instrumentation, the modeling and the control of the
humanoid robot AAU-BOT1. This includes the development of the necessary hardware
and software needed to enable the system to perform human-like gait. In Figure 1.5 on
the next page an illustration shows the different parts of the project. The work flow are
not indicated on the figures as an iterative development approach is used.

In Figure 1.5 the different element of the project is shown, these are explained in the
following:

• Analysis of gait and its phases:
This part clarifies the different phases the system can obtain during walk. Further-
more it describes walking cycles for human walk.

• Analysis of conceptual robotics theory:
This part gives the conceptual knowledge of the terms and notations used in the
thesis.

• Kinematic models:
These models describes the position, orientation, velocity and acceleration of the
links and joints of AAU-BOT1.

• Dynamical models:
This part describes the dynamics of AAU-BOT1 in the different phases.

• Phase Estimator:
This estimator supervises the system at all times and determines which phase AAU-
BOT1 is in during walking. This is needed since the dynamical model and the
kinematic model change depending on which foot AAU-BOT1 is standing on.

• Inverse kinematic model:
This model translates the position of an end manipulator to angles of all the joints.
This enables the controller to control the posture of AAU-BOT1.

Instrumentation, Modeling and Control of AAU-BOT1

Thesis Outline 19

Project Formulation

Analysis of Gait
Analysis of conceptual

robotics theory

Motor modelsKinematic models

Dynamical models

Inverse kinematic model

Trajectory plannerController architecture

Supervisor

Robot controller

Analysis of gait and its
phases

Phase estimator

Analysis

Modeling

Controller

Foot model

Figure 1.5: Illustration showing the connection between the different parts of the project

• Motor model:
Every actuated joint is powered by one or two motors. Motor dynamics and gear
relations is elaborated on in this part.

• Foot model: This part describes the foot model, including the unactuated toe
feature and heel contact feature.

• Trajectory planner:
This planner describes how all the body parts moves in order to take a step and

Group 08gr1032b

20 Introduction

stay balanced at the same time.

• Controller architecture:
This section will analyze different control approaches and will give a proposal to a
control strategy.

• Robot controller:
The controller are proposed such that the robot can be stabilized and make it
capable of tracking the developed trajectories.

Some of the main parts of the thesis is mentioned, but there is still parts of it that
have not been elaborated on and this is the platform design. AAU-BOT1 is from the
beginning designed and manufactured, but the control structure and instrumentation are
still missing. The only electrical parts implemented are the DC motors for movement of
limbs and a number of strain gauges to detect the influence the robot has on each foot.
In Figure 1.6 the needed elements for a platform design is shown. The arrows show how
the different topics are related.

Project Formulation

Software

Model verification

Visualization

Platform design

System test

Hardware/
Instrumentation

Figure 1.6: Illustration showing the elements needed for the platform design.

These topics are listed below:

• Instrumentation:
This describes the implementation of all the proposed electrical equipment. This
is needed to enable control of AAU-BOT1.

• Software:
The structure of the software system and how the software has been implemented.

• Visualization:
In order to see the attitude of AAU-BOT1 while testing controllers and models
a robot simulation tool called Webots is used.

Instrumentation, Modeling and Control of AAU-BOT1

Thesis Outline 21

• Model verification:
Each model has to be verified in order to see whether it corresponds to the actual
system. A verification is done at the end of each model part.

• System Test:
The completed system is tested to examine how well the system performs.

The outline of the master thesis has now been elaborated on. Now the definitions
and terms used in the report is explained.

Group 08gr1032b

22 Introduction

Instrumentation, Modeling and Control of AAU-BOT1

Chapter 2

Definitions and notation in

humanoid robotics

This chapter deals with the coordinate system and the different notations and definitions
used in this report. I.e. step, walk, gait, human gait, support phases, support area, center
of mass, ground projection of center of mass and zero moment point are defined here.

2.1 Description of utilized coordinate system

In this report, a right-handed XYZ cartesian coordinate system is used, (see Figure 2.1).
Origo is chosen to be at the center of the toe of the front foot that touches the ground, see
Figure 2.2. The origo position is chosen such that the coordinate system is as stationary
as possible, and enable the same algorithm to control both sides of the walking cycle, as
the balance controller is always to move the balance point towards the front foot.

2.2 Definitions used in this report

The notation and definitions in this project are based on the article [Vukobratović et al.,
2007], the primary ones are listed here, note that italic text is direct citations from the
article:

• Walk is understood as the ’movement by putting forward each foot in turn, not
having both feet off the ground at once’. Therefore walk is defined as displacement of
both legs, but under no circumstances may the feet get separated from the ground
at the same time.

• Gait is the way one may walk. Every single individual has it own certain charac-
teristics when walking and this certain characteristics is called gait.

• Step happens when the rear foot is moved in front of the foremost foot and thereby
becoming the front foot. If this motion is repeated a locomotion of the robot will
occur. A step consist of at least two phases: ’a single-support phase, when only one
foot is in contact with the ground (during this time period the supporting leg from
the front position with respect to the trunk comes to the rear position, while the
swing leg from the rear position comes to the front position), a and double-support
phase in which both feet are simultaneously on the ground.’

23

24 Humanoid Robotics Definitions

(a) Overview of used planes.[Vaughan et al., 1992]

X

Z

Y

X

Z

Y

frame[E]

frame[0]

(b) Position of the Earth
frame and the 0 frame.
The 0 frame is placed in
the center of the toe on the
foremost foot that touches
the ground.

Figure 2.1: Overview of used planes and coordinate system.

• Human gait Traditionally the human gait cycle has been divided into eight events
or periods, five during stance phase and three during swing phase. The names of
these events are self-descriptive and are based on the movement of the foot, as seen
in Figure 2.3 on page 26.

In the traditional nomenclature, the stance phase events are as follows, as described
in [Vaughan et al., 1992].

1. Heel strike initiates the gait cycle and represents the point at which the body’s
centre of gravity is at its lowest position.

2. Foot-flat is the time when the plantar surface of the foot touches the ground.

3. Midstance occurs when the swinging (contralateral) foot passes the stance foot
and the body’s center of gravity is at its highest position.

4. Heel-off occurs as the heel loses contact with the ground and push-off is initi-
ated via the triceps surae muscles, which plantar flex the ankle.

5. Toe-off terminates the stance phase as the foot leaves the ground.

The swing phase events are as follows:

6. Acceleration begins as soon as the foot leaves the ground and the subject
activates the hip flexor muscles to accelerate the leg forward.

7. Midswing occurs when the foot passes directly beneath the body, coincidental
with midstance for the other foot.

8. Deceleration describes the action of the muscles as they slow the leg and
stabilize the foot in preparation for the next heel strike.

Instrumentation, Modeling and Control of AAU-BOT1

Definitions used in this report 25

(a) Double Support Phase (DSP-R). (b) Double Support Phase Right Toe-off
(DSP-R-T).

(c) Single Support Phase (SSP-L). (d) Double Support Phase Left Heel-
strike (DSP-L-H).

(e) Double Support Phase Left Toe and
Heel-strike (DSP-L-TH).

(f) Single Support Phase Right Toe
(SSP-R-T).

Figure 2.2: Overview of placement of origo in different support phases. Origo is marked
with a blue x, support area is marked in purple, the left foot is marked in red and the
right foot is green.

Group 08gr1032b

26 Humanoid Robotics Definitions

Figure 2.3: Human gait cycle [Vaughan et al., 1992].

• Support phases is a way to subdivide a step. The rear foot or the foot on the
ground will be indicated with a index, i.e. the phase where AAU-BOT1 stands
on both full feet surfaces with the left foot being the rear foot is named DSP-L. As
all the phases can be either a left or a right phase, the L og R is replaced with a X
in the description. The support phases can be seen in Figure 2.4 to 2.7.

– Single Support Phase (SSP) occurs when AAU-BOT1 only has one foot
on the ground. SSP has two different manifestations:

∗ Basic Single Support Phase (SSP-X), where AAU-BOT1 is stand-
ing on one foot’s full surface, see Figure 2.4(a) and 2.6(a). During walking,
humans are 80% of the time in SSP-X.

∗ Single Support Phase Left/Right Toe (SSP-X-T), where AAU-
BOT1 is standing on a toe, see Figure 2.4(b) and 2.6(b).

– Double Support Phase (DSP), where AAU-BOT1 has both feet on the
ground. There are a number of special cases of DSP:

∗ Basic Double Support Phase Left/Right (DSP-X), where both feet
are flat on the ground, see Figure 2.5(a) and 2.7(a).

∗ Double Support Phase Left/Right - Heel-strike (DSP-X-H), where
the rear foot is flat on the ground, and the front foot’s heel strikes the
walking surface, see Figure 2.5(b) and 2.7(b).

∗ Double Support Phase Left/Right Toe and Heel (DSP-X-TH),
where the rear foot is standing on the toe, and the front foot’s heel strikes
the walking surface, see Figure 2.5(c) and 2.7(c).

∗ Double Support Phase Left/Right Toe (DSP-X-T), where the rear
foot is standing on the toe and the front foot is flat on the ground, see
Figure 2.5(d) and 2.7(d).

Instrumentation, Modeling and Control of AAU-BOT1

Definitions used in this report 27

Support Area

(a) Single Support Phase Right (SSP-
R).

Support Area

(b) Single Support Phase Right Toe
(SSP-R-T).

Figure 2.4: Saggital view of the different single support phases.

Support Area

(a) Double Support Phase (DSP-R).

Support Area

(b) Double Support Phase Right Heel-
strike (DSP-R-H).

Support Area

(c) Double Support Phase Right Toe
and Heel-strike (DSP-R-TH).

Support Area

(d) Double Support Phase Right Toe
(DSP-R-T).

Figure 2.5: Saggital view of the different double support phases.

Group 08gr1032b

28 Humanoid Robotics Definitions

• Support Area (SA) is the convex hull of all contact points between AAU-
BOT1 and the ground. If both feet are off the ground no support area exists. In
regular gait a support area always exist: ’In the single-support phase the support
area coincides with the area of the foot in contact with the ground, whereas in the
double-support phase, the support area is a convex area determined by the area of
the feet and the ground and common tangents, so that the encompassed area is
maximized’ This means that if the robot has squared feet the support area in the
double-support phase make up a polygon. The support area during the support
phases are illustrated in Figure 2.6 and 2.7, marked in purple.

Support Area

Foot Surface

(a) Single Support Phase Right (SSP-
R).

Support Area

Toe Surface

(b) Single Support Phase Right Toe
(SSP-R-T).

Figure 2.6: Overview of support area in the different single support phases.

Support Area

Foot Surface

Foot Surface

(a) Double Support Phase Right (DSP-
R).

Support Area

Foot Surface

Heel of left foot

(b) Double Support Phase Right Heel-
strike (DSP-R-H).

Support Area
Toe Surface

Heel of left foot

(c) Double Support Phase Right Toe
and Heel-strike (DSP-R-TH).

Support Area

Foot Surface

Toe Surface

(d) Double Support Phase Right Toe
(DSP-R-T).

Figure 2.7: Overview of support area in the different double support phases. AAU-
BOT1 is facing right.

• Center of Mass (CoM) is the global position of the center of mass of the body,

Instrumentation, Modeling and Control of AAU-BOT1

Definitions used in this report 29

relative to the global origo. CoM is calculated by

~PCoM =

∑NLinks

n=1
~Pn · mn

∑NLinks

n=1 mn

(2.1)

where:
~PCoM is the position vector of the CoM
~Pn is the position vector of the center of mass of link n
mn is the mass of link n [kg]
NLinks is the number of links []

• Ground projection of Center of Mass (GCoM) is the position of the CoM,
projected to the ground level.

• Zero Moment Point (ZMP) is defined in [Vukobratović et al., 1969], and it is
the dynamic equivalent of the GCoM. ZMP is the point on the ground, where the
moments around any axis passing through this point and being tangential to the
ground, is zero. Mathematically this is expressed as:

∑

Mx = 0 (2.2)
∑

My = 0 (2.3)

where:
Mx is the moment around the x-axis [Nm]
My is the moment around the y-axis [Nm]

Equation (2.2) and (2.3) can be expanded to the following:

N∑

n=1

(mn(~Pn − ~PZMP) × (~̈Pn + ~g) + Jn~̇ωn + ~ωn × Jn~ωn) = ~M (2.4)

~M × ~g = 0 (2.5)

where:
~M is the total moment vector

~g is the gravitational acceleration constant vector
~ωn is the angular velocity vector of link n
Jn is the inertia tensor of link n
~PZMP is the position vector of the ZMP

From [Vukobratović et al., 1969], it is given that Equation (2.4) and (2.5) can be
combined into one equation:

N∑

n=1

(mn(~Pn − ~PZMP) × ~̈Pn + Jn~̇ω + ~ωn × Jn~ωn

− mn(~Pn − ~PZMP) × ~g) =
[

0 0 ∗
]T

(2.6)

The asterisk (∗) denotes a vector element without significance for the equation. By
assuming the ground is transverse, Equation (2.6) can be expressed as [Huang et al.,

Group 08gr1032b

30 Humanoid Robotics Definitions

2001]:

xZMP =

∑NLinks

n=1 (mn(z̈n + gz)xn − mnẍnzn − Jy,nω̇y,n)
∑NLinks

n=1 mn(z̈n + gz)
(2.7)

yZMP =

∑NLinks

n=1 (mn(z̈n + gz)yn − mnÿnzn − Jx,nω̇x,n)
∑NLinks

n=1 mn(z̈n + gz)
(2.8)

where:
xZMP is the x coordinate of the ZMP vector (~PZMP)

yZMP is the y coordinate of the ZMP vector (~PZMP)

• The Fictitious Zero Moment Point (FZMP) appears when the ZMP leaves
the SA, making AAU-BOT1 initiate a tilt, reducing the SA to a line or dot, as
the SA then only consists of the edge of the foot. In some

• Center of Pressure (CoP) is the point on the ground where the resulting normal
force FN is working. This is per definition within the support polygon. CoP can
be calculated using feedback from force-torque sensors in the feet. When the ZMP
is within the support area, the CoP and ZMP coincides.

• Balanced gait is distinguished into different types:

– Statically balanced gait: By using small accelerations (~̈P = ω̇ = 0), GCoM
and ZMP are equivalent, reducing Equation (2.7) and (2.8) to Equation (2.1).

– Dynamically balanced gait: By increasing the accelerations, the GCOM
and ZMP become seperate values, and the balance becomes harder to calculate
and achieve.

Now that the coordinate system, the definitions and notation of humanoid robotics has
been defined, the next subject will be the instrumentation of AAU-BOT1.

Instrumentation, Modeling and Control of AAU-BOT1

Chapter 3

Instrumentation and Network

Design

This chapter contains an analysis of the instrumentation and the network design for AAU-

BOT1. First a description of AAU-BOT1 in its current state is given this is done as
the instrumentation and the network design depends on the existing mechanical setup.
After this possible network designs are analyzed, i.e. determine whether the strategy is
developed as a central or decentralize solution, or to determine whether the signals are
transferred via a digital or analog bus. Next is the instrumentation strategy analyzed, i.e.
to determine the instruments that e.g. can measure strains, accelerations. Last in the
chapter is a summary describing the main points achieved during this chapter.

3.1 AAU-BOT1 Description

This section describes AAU-BOT1 as it was when it was handed over to the Section
of Automation and Control the 30. of November 2007. The mechanical platform has
been developed by a former mechanics group [Pedersen et al., 2007] in the time period
September 2006 to June 2007. During the spring of 2007 the manufacturing of the AAU-
BOT1 was initiated at the Department of Mechanical Systems at Aalborg University
and was handed over after completion. The AAU-BOT1 was received in two parts an
upper torso and a lower body. After assembling these AAU-BOT1 was as shown in
Figure 3.1.

The robot consists of an aluminum skeleton with: two basic arms, an upper torso,
two legs, feet and two toes. In the following a list of received elements is shown:

• AAU-BOT1:
The received robot features 19 degrees of freedom, where two of those are the toes.
The two toes are each passive actuated by one spring. Most of the actuated DoF
are located in the lower body. This robot also has a three DoF waist joint that can
move the upper torso.

• DC motors:
The 17 joints are actuated by 23 DC motors, where 6 of the joints are actuated
by two DC motors. The joints with two DC motors are the ones that are heavily
loaded. These are the ankle pitch, knee pitch and hip roll.

31

32 Instrumentation and Network Design

Figure 3.1: Photo of AAU-BOT1.

• Analog amplifiers:
As there are 23 DC motors, 23 analog amplifiers powered the DC motors. These
are place on the AAU-BOT1

• Gears and belts:
The DC motors are connected to the joints via belts and Harmonic drive gears.

• Force Torque Sensor:
Two force torque sensors have been developed. Each sensor consists of 6 strain
gauge bridges, every bridge measures strain. This enables the FTS to measure the
force and torques in three axes.

Without going into details it can generally be stated that following are needed to utilize
the received hardware and features of the AAU-BOT1.

• Computer:
One or more computers are needed as AAU-BOT1 is proposed as an autonomous
system and the computer equipment has to be located on the robot. It is taking
care of all the data acquisition and has to control AAU-BOT1.

• Data acquisition for analog amplifiers:
A data acquisition system is needed to give the DC motor amplifiers a reference
input.

• Data acquisition for FTS:
The signals from the FTS’s have to be amplified in order to utilize the small signals
measured on the strain gauge bridges. The measured signals have to be sampled
such that forces and moments can be calculated.

Instrumentation, Modeling and Control of AAU-BOT1

Network Design 33

• Inertial Measurement Unit:
The IMU is used to measure x, y, z rotations this is used to give the global orien-
tation of the robot.

The individual parts are elaborated on later in this chapter.
Before continuing with the network design the update frequency has to be deter-

mined. This can be done by observing the mechanical design and analyze the dynamics
of the system. The mechanical design of AAU-BOT1 is inspired by the design of John-
nie [Pedersen et al., 2007]. The Johnnie project [Löffler et al., 2004a] is used for further
inspiration. The update frequency used for the control loop on Johnnie is 250 Hz. With
this update frequency it has achieved to control it in such extent that it is possible to
walk. The update frequency has to be much faster than the dynamics of the robot in
order to prevent it from falling. The update frequency used on Johnnie is utilizable for
AAU-BOT1 and 250 Hz is used for the further development. If a higher update fre-
quency appears to be obtainable, this will be revealed in later tests of AAU-BOT1.

With this basic information a proper implementation and network design can be
derived.

3.2 Network Design

This section consists of different solutions to the network design for AAU-BOT1. Three
solutions have been considered, a central network design, a hybrid network design and
distributed network design. The choice of a network design also depends on the choice
of motor amplifier, and FTS amplifier and other equipment.

3.2.1 The Central Network Design

Using a central network design means all input/out, digital or analog, will be con-
nected to one central unit that also consist of a computer to process all data and con-
trol AAU-BOT1. One well known and widely used acquisition system is one from
dSpace [Stoustrup, 2007]. The company manufactures many different versions, but com-
mon for them all is that they consist of several I/O cards which can be connected to one
or more processor boards. Using this technology require that analogue controlled motor
amplifiers are used. Furthermore dSpace is compatible with Simulink. One disliked fea-
ture concerned with the dSpace system is that all signals to the transducers are analogue
and thereby sensitive to noise. Furthermore the weight is high and the system is to large
to place on AAU-BOT1.

3.2.2 The Hybrid Network Design

The hybrid network proposed consists of 3 embedded decentralized computers connected
to one central computer via Ethernet or USB. The embedded computer can be the TS7800
embedded computer from the company Embedded Arm. This computer consist of a 500
MHz ARM9 processor and supports a Linux operating system. Each of these computers
handles a decentralize control loop and collect measured data and forward this to the
central computer. This frees up resources on the central computer when the decentralize
computer handle some of the burden. Unfortunately this solution cannot be used directly
to control and receive measurement data from the motor amplifier, because it only has
one 10 bit A/D converter. Since one A/D converter is not enough to handle all the

Group 08gr1032b

34 Instrumentation and Network Design

transducers, extra I/O cards are needed. In this solution the decentralized computers
are place closer to the transducers, but the signals to the transducers are still transmitted
as analog signals which make the system sensitive to noise.

3.2.3 The Distributed Network Design

A distributed network design is proposed such that all transducers as motor amplifiers
and FTS amplifiers on AAU-BOT1 are sampled decentralized. To enable this all the
transducers can be grouped and connected to a common digital bus. One solution to
this problem can be to use the EPOS motor amplifiers from Maxon Motors that features
Controller Area Network (CAN). CAN is a well known network used for many automation
and control applications. The CAN have a baud rate of up to 1 Mbit/s and is noise
resistant. All CAN units can be connected to a central on-board computer. Thereby
it is possible to control and get measured data from the motor amplifiers via CAN.
Furthermore it is possible to measure relative joint angles via encoders mounted on the
DC motors.

3.2.4 Evaluation of Network Design

Three network designs have been proposed. The selection of a proper network design has
great influence of the hardware setup of the system, so this is carefully considered. The
first described solution was the dSpace acquisition system. This solution is discarded
since AAU-BOT1 is proposed as an autonomous robot and the dSpace system cannot
be placed on AAU-BOT1 as it is to heavy. The two last solutions are similar as they
both are proposed as decentralized systems. The hybrid network design with the three
embedded computers cannot be used out of the box as additional I/O cards have to be
purchased and interface electronics has to be developed, which is why this solution is not
used.

The last proposed solution was the distributed network design. This utilizes the
EPOS amplifier with CAN interface. These seem to be the obvious choice as these can
be connected directly to the DC motors and be interfaced via CAN. The solution with
the EPOS amplifiers with CAN interface from Maxon is chosen.

This selection of CAN amplifiers gives some consequences, as the CAN network only
supports a baud rate of 1 Mbit/s. This gives a limitation to the bandwidth and thereby
to the number of units that can be connected to the CAN network. In order to determine
the number of units that can be connected, information about the CAN protocol and
communication with the EPOS amplifiers is needed, which is retrieved from the firmware
reference manual [Maxon Motors, 2007a]. Here the number of packages needed to operate
the amplifiers is obtained. The most feasible way of sampling the data from the amplifiers
is given below:

1. Transmit a Sync. to the amplifiers, where after the amplifiers will transmit their
sampled data back via Transmit Process Data Objects (TxPDO).

2. Transmit control references to the EPOS amplifiers such that the DC motors can
be controlled.

3. Activate the control references on the EPOS’s

According to [Dalsgaard, 2007] the CAN communication consists of 20% bitstuffing, this
is included in the later calculations.

Instrumentation, Modeling and Control of AAU-BOT1

Actuators 35

With the overall sampling time of 4 ms (250 Hz), the number of CAN networks has to
be chosen. By distributing the EPOS amplifiers on five CAN networks yields the sample
time of the EPOS amplifiers, as seen in Equation (3.1).

Description No. of packages Time [ms]
Sync 1 = 0.1
TxPDO 5 = 1.0
RxPDO 1 = 0.2
Activate 1 = 0.2
Total = 1.5

(3.1)

where:
Sync is a synchronization messages.
TxPDO is a transmit PDO from the EPOS, with feedback information.
RxPDO is a receive PDO from the on-board computer, with control references.
Activate is a messages that activate the new reference.

1.5 ms is the time it takes to retrieve the sampled data, transmit control references
and activate the control references on the EPOS amplifiers. This leaves the rest of the
system with 2.5 ms to handle e.g. a central control loop.

The developed Force Torque Sensors (FTS) have to be sampled and data has to be
transmitted to the on-board computer. It means that the measurement system must be
faster than 4 ms.

A detailed description of the hardware design and the choice of hardware are described
in the following subsections.

It is chosen to convert all the busses to one common bus for easier implementation.
Here the Universal Serial Bus (USB) is used as it is very versatile. The USB-2 standard
features 480 Mbit/s throughput, this is considered sufficient for this project.

Figure 3.2 on the following page is a sketch of the entire the entire network with the
different hardware elements.

3.3 Actuators

The system contains 23 DC motors distributed on the 17 actuated joints. The reason
why there is more motors than joints is because 6 of the heavily loaded joints are powered
by two DC motors sharing the burden. On the DC motor an encoder is mounted and
thereby the relative position of the DC motor is given. Note that the absolute position
of the DC motor is not supported and can only be obtained through an initialization
process with a calibration potentiometer or switch. In Figure 3.2 on the next page the
DC motors and encoders can be seen. The number of motors and encoders are listed
below:

• 23 DC motors - 12 working synchronously in pairs of 2

• 23 two channel encoders not absolute, each encoder gives 2048 pulses at each turn.

Group 08gr1032b

36 Instrumentation and Network Design

IMU

FTS
6 x strain gauge amplifier

Digital
CAN bus 1

Analog

DC
motor

Torso
3 x EPOS´s

Motor amplifier
−−−−−−−−−−−−−−−

1 x Waist roll
1 x Waist pitch
1 x Waist yaw

Potentio−
meter

Motor out

Encoder

A/D

Filter

Digital

Analog

DC
motor

Left knee and left ankel
5 x − EPOS´s

Motor amplifier
−−−−−−−−−−−−−−−−−

2 x Knee pitch
2 x Ankel pitch
1 x Ankel roll

Potentio−
meter

Motor out

Encoder

A/D

Filter

Digital

Analog

DC
motor

Left hip and left arm
5 x EPOS´s

Motor amplifier
−−−−−−−−−−−−−−−−
2 x Hip roll
1x Hip pitch
1 x Hip yaw

1 x Arm
Potentio−

meter

Motor out

Encoder

A/D

Filter

Right hip and right arm

USB
converter

On−board
computer

 USB
USB

USB

USB

C
A

N
 −

 B
U

S
C

A
N

 −
 B

U
S

C
A

N
 −

 B
U

S

CAN bus 2

CAN bus 3

U
S

B
 −

 H
U

B

CAN/USB

Converter

CAN/USB

Converter

CAN/USB

Converter

CAN bus 4

CAN bus 5

CAN/USB

Converter

CAN/USB

Converter

USB

USB

USB

USB

USB

Right knee and right ankel

USB
converter

Figure 3.2: Instrumentation and network strategy

Instrumentation, Modeling and Control of AAU-BOT1

EPOS Amplifiers 37

3.4 Amplifiers for DC motors

To control the 23 DC motors, an amplifier for each has been implemented. In the
report from the mechanics group [Pedersen et al., 2007] it can be read that analogue
controlled motor amplifiers was purchased. After the analysis in Section 3.2 on page 33,
a distributed network solution was chosen and as a result of that, new amplifiers were
necessary. The new amplifiers are evaluated better, they feature amongst others a built
in a PID controller, A/D converter, digital I/O. Furthermore the entire motor setup
will be very insensitive to noise since all measured data can be read and the motor
can be controlled digitally via a CAN bus. The CAN bus is connected to the laptop
via a CAN to USB converter from the company Peak Systems. The amplifiers uses the
CANopen software protocol, which enables broadcasting of data to two or more amplifies
and thereby enable synchronous control of joints with two motors. The amplifiers are of
the type EPOS 70/10 from Maxon Motor. This means that the servo amplifiers can be
powered by a voltage from 11 V to 70 V at 10 A which makes them very versatile and
can be used with a wide range of power supplies.

All the relevant features, inputs and outputs are listed below:

• Features

– Power supply voltage 11-70V

– Speed control using encoder signals

– Position control using encoder signals

– Current control

• Interface

– CANopen

– RS232

• Input

– Encoder signals from DC motor

– 8 digital inputs

– 2 analog inputs - 10 bit

• Outputs

– DC motor connection

– 4 Digital outputs

– 5V voltage supply max 100mA

3.5 Absolute Joint Angle Measurements

Potentiometers is used to measure the absolute angles of the different joints. Unfortu-
nately using potentiometers often results in very noisy measurements, due to electromag-
netic noise from the surroundings. To improve the joint angle measurements, the digital
encoder at the motor will be used to give an accurate relative joint angle. The motor am-
plifier has a 10 bit A/D converter which makes it possible to measure the absolute joint

Group 08gr1032b

38 Instrumentation and Network Design

angles for calibration via potentiometers. Via Equation (3.2) the minimum resolution
is given to 0.01◦ since the maximum required angle according to [Pedersen et al., 2007,
49] is 95◦ + 5◦ in safety margin in case of a miscalculations. The minimum resolution
at the encoder is 0.0016◦ given by Equation (3.3), since the minimum gear ratio is 111
[Pedersen et al., 2007, 69]. This means that it is possible to get an absolute joint angle
during the initialization via the potentiometer and get a high resolution, but not absolute
during operation of AAU-BOT1 via the digital encoder.

RESpot =
max joint angle + safety margin

A/D resolution
=

95 + 5

210
= 0.01◦ (3.2)

RESenc =
360◦

pulses each turn · min gear ratio
=

360

2048 · 111
= 0.0016◦ (3.3)

The final result of the joint angle precision and resolution will be evaluated during
test and implementation of the instrumentation and network design of AAU-BOT1.

3.6 Force Torque Sensor

Two six axis Force Torque Sensor (FTS) have been developed to measure the forces and
torques that acts on the feet of AAU-BOT1. Therefore one FTS is situated in each
ankle. With a FTS it is possible to determine the CoP from the sensor outputs. This
section describes the design of the FTS, how to measure the strain gauge signals and
how to interface the on-board computer. Furthermore it describes the calibration of the
FTS and evaluates the performed calibration process. A comprehensive description of
the calibration can be found in Chapter H on page 215. In [Pedersen et al., 2007] the
development FTS is described. This involves design of the FTS, milling of the metal and
mounting the stain gauges.

3.6.1 Mechanical Design

The FTS consist of three I-beams that are attached to a support core in one end and a
support ring in the other end, see Figure 3.3 on the facing page for a sketch of the FTS.
The FTS is mounted between the foot and the ankle. The maximum loads/overloads
that the FTS is designed for are listed in Table 3.1 [Pedersen et al., 2007, 155]. During
test of AAU-BOT1 it must be validated that these loads/overloads are not violated.

Table 3.1: Force/torque maximum load [Pedersen et al., 2007, 155].
Force/Moments Max values
Fx ±1000 N
Fy ±1000 N
Fz ±2000 N
Mx (roll) ±200 Nm
My (pitch) ±230 Nm
Mz (yaw) ±30 Nm

Instrumentation, Modeling and Control of AAU-BOT1

Force Torque Sensor 39

Figure 3.3: Left: FTS core, including its local coordinate system. Right: The beam part
of the core is marked by a hatched circle

Figure 3.4: Location of the SGs on the core of the FTS.

3.6.2 Strain Gauges in the FTS

Each of the 3 I beams has 8 strain gauges mounted, which are able to measure the shears
and the bendings. The 8 strain gauges are mounted in two full bridges. By connecting
the strain gauges in a full bridge, undesirable things such as temperature sensitivities
can be avoided and a differential signal is produced, which have a good common mode
rejection. Figure 3.4 illustrates where the shear and the bending strain gauges are placed
on the FTS.

All strain gauges used are from the manufacturer, Tokyo Sokki Kenkyuio Co. Ltd.,
their specifications are listed in Table 3.2

Table 3.2: Specification of the strain gauges from, Tokyo Sokki Kenkyuio Co. Ltd..
Type of SG Resistance [Ω] (mes. val) Folio [mm] Gauge factor

Shear QFCT-2 350 (355) 7.6 / 5.3 2.09 ± 1%
Bending FLA-3-11 120 (122) 8.8 / 1.7 2.10 ± 1%

3.6.3 Strain Gauge Measurements

Since the mechanical part of the FTS has been developed by [Pedersen et al., 2007] the
main focus is to enable signal acquisition of the strain gauges. To be able to measure the

Group 08gr1032b

40 Instrumentation and Network Design

signals, the following criteria has been set up:

• The signal must be measured linear according to [Voyles et al., 1997].

• Since the applied load is measured via a full bridge, the measurement must be
measured as a differential signal.

• The measurement circuit must suppress the noise from surroundings.

• The circuit must be able to measure changes in µV area.

• To reduce the number of different supply voltages, it is chosen that the strain gauge
circuit should be supplied with a single supply.

Examined or developed Data aqusitions (DAQ) systems:

FTS DAQ Print Circuit Board (PCB) A FTS amplifier board was developed
from scratch during the first two months of the project period. The amplifier circuit was
designed with dual instrumentation amplifiers, which have high common mode rejection
and is very linear. The PCB was fully developed and electronic components were also
mounted on the PCB, but after a design meeting with [Bisgaard, 2007a], it was decided
to buy an amplifier with digital interface and the solution was therefore not used. In
Appendix G on page 209 the developed PCB is documented.

Mantacourt solution The Mantacourt solution was the obvious choice to measure the
strain gauges with, since it has CANopen interface and the dimension of each amplifier is
very small. Furthermore the product specification specifies that it is able to sample with
250 samples/sec. Furthermore Mantacourt also gives source code to interface the digital
amplifier. A more detailed description of this solution can be found in Appendix G on
page 209.

Lorenz Messtechnik GmbH This product is a 2 channel strain gauge amplifier from
Lorenz Messtechnik GmbH. This device have a sample frequency up to 3000 sample/sec
and has a 16 bit A/D amplifier built in. Furthermore it is possible to measure 120 Ω
and 350 Ω strain gauge bridges. The product has RS485 interface. The product includes
limited source code for a driver to interface it.

Choice of FTS DAQ system After analyzing the different solutions on the market,
the product from Lorenz Messtechnik GmbH was chosen since the solution with Mantra-
court unit could not guarantee the specified sample rate specified in their datasheet.
This was first discovered after several conversation with the company and the product
can therefore not fulfill the requirement for AAU-BOT1. A sketch of the final solution
can be seen on Figure 3.5 on the facing page. Some of the product features for the digital
amplifier from Lorenz MESSTECHNIK are listed here:

• 2 channel - strain gauge measurement of 0.35...3 mV/V.

• Control activation by software.

• Fast measuring rate, up to 3000 samples/s each channel.

• 10...30 V DC excitation.

Instrumentation, Modeling and Control of AAU-BOT1

Force Torque Sensor 41

2 Channel Strain
gauge amplifier

2 Channel Strain
gauge amplifier

2 Channel Strain
gauge amplifier

2 Channel Strain
gauge amplifier

2 Channel Strain
gauge amplifier

2 Channel Strain
gauge amplifier

RS485
Half duplex

TX/RX

USB <−>
RS485

TX/RX

USB <−>
RS485

TX/RX

USB <−>
RS485

TX/RX

USB <−>
RS485

TX/RX

USB <−>
RS485

TX/RX

USB <−>
RS485

USB
connection

Right foot Left foot

USB−HUB

LAPTOP

Figure 3.5: Sketch of the selected DAQ system for the FTS

• RS485 (half duplex)

• 16 bit A/D conversion.

• Streaming mode or polling mode.

• 230.4 k or 115.2 k baud.

• Screw connectors.

• C source code for connecting the digital amplifier

• 4-wire strain gauge bridge.

• Maximum strain gauge load: 120 Ω to 5000 Ω.

3.6.4 Calibration of a Six-axis FTS

The basic idea of the FTS is to measure signals from the strain gauges and estimate
the forces and torques that causes them. The problem can be written as: The sensor
converts the applied load vector ~m, into a measurement vector ~V , where the measurement
vector is the strain gauges. The relationship between the measurement vector and the
load vector can be expressed via a calibration matrix C. Equation (3.4) describes the

relationship between the measurement vector ~V and the load vector ~m. The relationship
is true if and only if the strain gauge measurements are linear. However this is not the
case, since the amplifier and strain gauges have different gains and offsets. To overcome
this, another method is used, which is the least square method. This method is described
by [Voyles et al., 1997] and [Flay and Vuletich, 1995], furthermore [Pedersen et al., 2007]
also used this method with success.

Group 08gr1032b

42 Instrumentation and Network Design

C~V = ~m (3.4)

C = Ci,j , i = 1, .., 6 j = 1, .., 6 (3.5)

V = [vb1 vs1 vb2 vs2 vb3 vs3]
T (3.6)

m = [Fx Fy Fz Mx My Mz]
T (3.7)

where:
Fx is the measured force in x-direction.
Fy is the measured force in y-direction.
Fz is the measured force in z-direction.
Mx is the measured torque in x-direction.
My is the measured torque in y-direction.
Mz is the measured torque in z-direction.
Vb1 is the measured bending strain in bridge 1.
Vs1 is the measured shear strain in bridge 1.
Vb2 is the measured bending strain in bridge 2.
Vs2 is the measured shear strain in bridge 2.
Vb3 is the measured bending strain in bridge 3.
Vs3 is the measured shear strain in bridge 3.

The least square calibration matrix is found via Equation (3.8).

C = FV T (V V T)−1 (3.8)

Using the least square method require multiple measurements of different loads, this is
described in Appendix H on page 215 where also the results are discussed.

3.6.5 Result of the Calibration of the FTS Amplifiers

The calibration result can be found in Table 3.3 on the facing page. The calibration is
performed by using 4 different test loads and hereafter calculating the RMS error of the
results. The force Fz has a large error. This error is caused by a poorly constructed
calibration test rig. Calibration with the inadequate test rig results in an offset error on
Fz . If an offset error of 50 N is added to Fz the RMS error is reduced to 2.103%. This
gives a maximum RMS error of 2.403 %, however a new calibration test rig has to be
designed, before a final result can be accomplished. Graphs and details of the calibration
results are described in Appendix H.2 on page 217. In Equation (3.9) the final calibration
matrix can be viewed.

Fx

Fy

Fz

Mx

My

Mz

=

−0.007 −0.0263 −0.0086 0.0176 0.0035 −0.0193
0.2093 −0.1552 0.2375 −0.1925 −0.0229 −0.0107
0.017 0.0073 0.0197 −0.0227 −0.0036 0.0116

−0.0029 −0.0096 −0.0082 −0.0037 0.0222 −0.0098
0.0002 0.0009 0.0007 0.0005 −0.0021 0.0009

Vb1

Vs1

Vb2

Vs2

Vb3

Vs3

(3.9)

Instrumentation, Modeling and Control of AAU-BOT1

On-board Computer 43

Table 3.3: Calibration results of the right FTS
Force/Torque RMS error
Fx ± 2.373 %N
Fy ± 2.096 %N
Fz ± 16.693 %N
Mx (roll) ± 2.349 % Nm
My (pitch) ± 2.228 % Nm
Mz (yaw) ± 2.403 % Nm

Table 3.3 only contains results from calibration of the right FTS, which is because
one of the amplifiers in the left FTS, started to malfunction after a short circuit in one
of the EPOS’s. Furthermore tests with the power supply for the FTS amplifier revealed
that these are very sensitive to noise and it is not advisable to connect the FTS amplifiers
and EPOS login to the same power supply. Even though the FTS amplifiers are sensitive
to noise, they have proven to be very stable. It has been possible to develop drivers
for them, which enables strain gauge measurements and thereby making it possible to
calculate the forces and moments. In Section 4.7 on page 60 the software interface for
the FTS is described. The final result of the implementation of the FTS amplifiers can
be seen at Figure 3.6 on the following page. It is a custom made aluminum box to the
right in the picture that contains 3 FTS amplifiers for one leg.

3.7 On-board Computer

The on-board computer retrieves and transmit data from and to the transducers on the
CAN networks, the RS485 and RS323. These busses are all interfaced via USB converters.
The sample rate is earlier chosen to 250 Hz (4 ms). I order to respect this sample time
the on-board computer has to be able to execute the central control loop, sample data
and set the control input to actuators within the given time. In Section 3.2.4 on page 34
the CAN network is calculated to use 1.5 ms for each time step. The other peripheral
units connected to RS485 and RS232 are assumes to be sampled via other threads at
the same time as the 5 CAN threads sampling the 5 CAN networks. It must be taken
into consideration that it takes time to switch between the different networks and 0.5 ms
is assumed to be used for this operation. This leaves 2.0 ms for the rest of the system
including the control loop. The computer has to meet the following requirements:

• Sampling time faster than 2.0 ms

• Serial and/or USB interface

• Network 100Mbit/s

• Low power consumption

• Low weight

A Lenovo x61S has been chosen, since it is one of the lightest (1.3 kg) laptops and it
has a Core 2 duo mobile processor with low power consumption. To reduce the laptops
weight further and to make sure that the hard disk is not damaged during movement
of AAU-BOT1, the original hard disk has been replaced with a solid state disk. It
also has a 100 Mbit/s network and USB interface. The sample time is not verified since

Group 08gr1032b

44 Instrumentation and Network Design

Figure 3.6: Picture of the final amplifier solution for one of the FTS.

Instrumentation, Modeling and Control of AAU-BOT1

Inertia Measurement Unit 45

this depend on the operating system of the Laptop and how many interrupts the USB
port can handle. The on-board computer is tested as a part of the throughput test in
Appendix I.

3.8 Inertia Measurement Unit

One reason why a human is able to balance is because it has the ability to feel the
gravity, rotation and motion. This motion sense is located in the inner ear. If AAU-
BOT1 should be capable of human like walk then it needs a sensor that gives the position
in 3D. With a Inertia Measurement Unit (IMU) it is possible to find the 3D-orientation.
The following criteria have to be met:

• Since the weight of the robot is important, then the IMU’s weight has to be low.

• It should be possible to read out the angles of the 3D-orientation.

• Minimum update rate: 250 Hz

• Digital output interface, i.e. RS-232, I2C.

• The IMU must be temperature compensated, to avoid drift and nonlinearities.

After reviewing a number of units, the MTi IMU from Xsens has been chosen. How-
ever it was not possible to find an IMU with a high enough update rate, low weight
and high precision, so the used IMU only supports sample rate of 200 Hz. In or-
der to solve this problem a Kalman filter can be used to estimate the missing sam-
ples [Grewal and Andrews, 2001].

The IMU features the following:

• Accurate full 360 degrees 3D orientation output (Attitude and Heading).

• Highly dynamic response combined with long-term stability (no drift).

• 3D acceleration, 3D rate of turn and 3D earth-magnetic field data.

• High update rate 200 samples second.

• The weight is 50 g.

• The measured data is Kalman filtered inside the IMU.

• Temperature, 3D misalignment and sensor cross-sensitivity compensated.

• Angular resolution: 0.05 ◦.

• Sensor range accelerations: +/- 5 g FS.

• Sensor range gyros: +/- 300 ◦/sec.

• USB interface with driver software included.

The IMU is not a active part of this project but is included in the design phase such
that it can be implemented for later use.

Group 08gr1032b

46 Instrumentation and Network Design

3.9 Summary of Instrumentation and Network Design

During this chapter all instrumentation and network has been designed. After a careful
analysis a solution was found. In order to save time, all instruments for this design were
commercially bought items.

[Pedersen et al., 2007] had bought analog interfaced DC amplifiers, these turned out
to be insufficient, since it was not possible to find acquisition hardware, that was light
enough and had a high enough update frequency. Another solution is used, and all DC-
motor amplifiers were changed to a version that have CAN bus interface (referred to as
EPOS). These have a great advantages of having a built in controller, which support con-
trol of the position, current, and velocity. Furthermore it is possible to obtain information
about the used current, absolute position (via potentiometers that are attached to the
EPOS’s), relative position and velocity, which all can be used for control of AAU-BOT1.

The FTS needed amplifiers to amplify the small strain gauge signals. It ended up with
3 different solution: Custom made amplifiers, a solution from Mantacourt and a solution
from Lorenz Messtechnik GmbH. The amplifiers from Lorenz Messtechnik GmbH had
excellent specification, and a custom made aluminum box was made for each shin, such
that it is possible to amplify all signals from the 6 strain gauge bridges. The FTS’s and
the amplifiers has been calibrated, such that a RMS error of 2.4% were achieved in the
right FTS. However this result could only be accomplished by removing an offset error of
50 N. The offset error was cause by a bad calibration test rig, which needs to be redesign
in order to reduce the offset error. However this has not been done, due to the time limi-
tation. It was unfortunately also discovered that the amplifiers has an unprotected supply
voltages, since a short circuit in an EPOS amplifier resulted in a defect FTS amplifier in
the left shin. With a defect FTS amplifier, it has not been possible to obtain a calibra-
tion of the left FTS and thereby it is not possible to determine the CoP on AAU-BOT1.

Furthermore an IMU was bought. It is a IMU with a solid state gyro and is low weight.
It has been tested via enclosed software, but is has not been implemented on AAU-
BOT1, since focus has been elsewhere.

The chosen on-board computer is one of the smallest laptops and it has high perfor-
mance, i.e. a Pentium 2.0 GHz core 2 Duo processor and 2 GB Ram, and has a weight
of 1.3 kg. The hard drive has been change with a solid state disk, such that it do not
break down when AAU-BOT1 is moving. The solid state disk, are slow compared to
a regular laptop harddrive. However this does not affect the running program as this is
executed in memory.

3 different types of network have been used on AAU-BOT1: One RS232 bus for the
IMU, six RS485 busses for the FTS amplifier and five CAN buses for the EPOS’s. The
CAN buses and the RS485 buses are known for a high throughput, high noise suppres-
sion and well known techniques, these are all features that have been focused on in the
instumentation.

The Safety of the equipment has not been a part of this thesis, however there have
been installed safety mechanisms such that it can be operated safely both in relation to
itself and the operator.

With the developed implementation strategy and network design, AAU-BOT1 still

Instrumentation, Modeling and Control of AAU-BOT1

Summary of Instrumentation and Network Design 47

needs proper software to enable communication with the transducers. This is elaborated
on in the following chapter.

Group 08gr1032b

48 Instrumentation and Network Design

Instrumentation, Modeling and Control of AAU-BOT1

Chapter 4

Software Architecture

This chapter contains the derivation of the Software Architecture, This includes devel-
opment of driver software for the Force Torque amplifiers and the EPOS amplifiers, and
real time execution of Simulink. To enable communication between the driver software
and Simulink, a shared memory server and a number of sensor servers are developed
and described. In order to test the developed controllers and models, a simulation tool
called Webots has been used. The tool and the communication with Simulink is also de-
scribed in the last part of this chapter. The software is documented using Doxygen1, this
documentation can be found on the enclosed CD.

4.1 General Software Description

One of the challenge when designing a software architecture for a system like AAU-
BOT1 is that the Software Architecture is very depended on the hardware. It must also
be able to run in real time while it communicates by external peripherals. In order to
obtain a useful solution, the Software Architecture is based on advice from [Bisgaard,
2007a]. A similar software architecture has been successfully implemented in the Ph.D.
project [Bisgaard, 2007b]. However the instrumentation and network design are far more
complex on AAU-BOT1, than on the used helicopter in [Bisgaard, 2007b], i.e. the
software should be able to read data from 30 sensors and write data to 23 actuators as
described in Chapter 3 on page 31. The Software Architecture is divided in two main
groups, one part that is on-board AAU-BOT1 and another part that is implemented on
an external computer. The external computer is used to run a simulation program called
Webots. The simulation program is implemented with a physics engine which makes it
possible to create a virtual AAU-BOT1, which enables test of the developed controllers
and models, this simulation program will be elaborated on later in this chapter.

The AAU-BOT1 software is implemented on a Linux platform. The on-board com-
puter uses the operating system Xubuntu [Xubuntu, 2008] which has been modified to
run in soft real time. This gives the advantage of having a flexible system that runs out of
the box.The soft real time part is an environment that enables real time execution of S-
function/Simulink as described in Section 4.2 on the next page. During the software chap-
ter, soft real time will be referred to as real time as it is done in [Dozio and Mantegazza,
2003].

1A documentation system for C++, C, Java and IDL. It generates Latex, HTML, RTF, Postscript
and UNIX main page outputs from a set of documented source files [van Heesch, 2008].

49

50 Software Architecture

All parts of the software communicates via a shared memory server, which contains
data that have to be transmitted to all the actuators from the S-function or data that
are received from the sensors. The shared memory server will be described in 4.3 on
page 54. In order to interface the Shared Memory Server, two sensor servers and one
actuator server is developed. These separates the sensors and actuators drivers from the
shared memory, which make it easy to add or remove extra sensors or actuators without
interfering with other sensors or actuators, as they are multi threaded.

The Actuator Server is connected to the EPOS driver. This makes it possible to
forward data to the EPOS’s via 5 CAN busses as described in Section 3.2.4 on page 34.
The two sensor servers are connected to sensors at CAN buses and RS485 buses. In order
to obtain data from the sensor, custom made drivers are developed. These drivers are
described in Section 4.6 on page 57 and 4.7 on page 60 respectively. Figure 4.1 shows the
designed software architecture. The driver servers that use CAN busses is marked with
blue color and the sensors that uses RS485 busses is marked with purple. The IMU is not
used in this project, but it is still implemented in software to ease future implementation
of it.

Software Architecture

TCP/IP

Webots

External computer

AAU−BOT1

Actuator Server

EPOS FTS

Shared Memory Server

Real Time Target
S−functions

Sensor Server 1 Sensor Server 2 IMU

EPOS

Figure 4.1: Sketch of the Software Architecture.

4.2 Simulink S-function Interface

The purpose of the Simulink S-function interface is to transmit the control signals to the
actuator server and get the measurement signals from the sensor server. This is done by
using two Simulink S-functions to interface with the sensor server, and adding a mask so
that the settings can be set in the Simulink GUI. The inputs for AAU-BOT1 can be
three different types (current, angle and velocity), and each of these must be sendable

Instrumentation, Modeling and Control of AAU-BOT1

Simulink S-function Interface 51

through the interface. Additionally, the EPOS amplifiers can measure different types of
data (current, relative angle, absolute angle and velocity), which must be deactivateable
to decrease the load on the CAN bus and the on-board computer.

4.2.1 General Description of the Simulink Interface

The general idea of the Simulink interface is to make AAU-BOT1 act as a sink/source
combination.

The EPOS amplifiers has three types of inputs: current commands (ui), velocity
commands (uω) and position commands (uθ). To reduce the risk of false use, there are
three inputs to the actuator sink, and the active input is marked with black text (see
Figure 4.2). The input type and configuration parameters for the EPOS amplifiers can
be chosen in the mask parameter dialog box.

The sensor read interface has seven different types of outputs that each can be turned
on and off. This enables the system to in- or decrease the sample rate. The desired
outputs can be chosen in the mask parameter dialog box and the active output ports are
marked in black text (see Figure 4.3 on the next page).

Actuators

I 23x1

Pos 23x1

Vel 23x1

Figure 4.2: Simulink Sink block. As only one type of input can be transmitted at a time,
the other two inputs are nonfunctioning.

4.2.2 General Software Description of the Simulink Interface

The Simulink S-functions consists of the parts seen in Figure 4.4, which are utilized in
the following way:

• mdlInitializeSizes():
Initializes the number and width of the inputs and outputs of the model, and the
number of parameters sent to the S-function.

• mdlInitializeSampleTimes():
Sets the sampletime of the S-function.

Group 08gr1032b

52 Software Architecture

Theta_rel

Theta_abs

Sensors

IMU 6x1

FTS_L 6x1

FTS_R 6x1

EPOS_I 23x1

EPOS_Theta_rel 23x1

EPOS_Theta_abs 23x1

EPOS_Omega 23x1

Omega

IMU

I

FTS_R

FTS_L

Figure 4.3: Simulink Source block. The outputs from the can be turned off individually,
to optimize sampling frequency.

• mdlStart():
Connects to the shared memory, and sets the read flags in the shared memory that
determines whether ~i, ~θabs, ~θrel and ~ω to the value given in the mask.

• mdlOutputs():

– The inputs from Simulink is sent to the acuator server via the shared memory.

– The measured values of the shared memory are output to Simulink.

• mdlTerminate():
The connection to the shared memory is severed. A close CAN bus command is
sent to the actuator server.

As the model run in real time, the controller and the S-function interfaces are compiled
with Linux Soft Real-Time Target v2.3, written by Dan Bhanderi. This Real-Time Target
uses POSIX real-time clocks to generate periodic signals, to wake the model process
every step time. In addition, the process is changed to highest priority in the Linux
kernel scheduler, thus increasing the degree of real-time. The main advantage of using a

Instrumentation, Modeling and Control of AAU-BOT1

Simulink S-function Interface 53

real-time target is that it enables the usage of high level programming in Simulink and
has a high degree of real time.

The disadvantage is that it requires more processing power than required with a hard
coded solution.

Start

mdlInitializeSizes()

mdlInitializeSampleTimes()

mdlStart()

mdlOutputs()

Stop

Initialization

mdlTerminate()

Simulate

Figure 4.4: Flowchart of a S-function.

4.2.3 Test of the Simulink Interface

The Simulink read interface is tested by putting data in the shared memory, and exam-
ining whether the scopes display the data. The write interface is tested by adding inputs

Group 08gr1032b

54 Software Architecture

to the sink. Both tests are completed succesfully.

4.3 Shared Memory Server

The shared memory server initializes and clears the shared memory. The Sensor Servers
are able to get a pointer to two types of memory depending on the system runs in hard real
time or in soft real time [Dozio and Mantegazza, 2003]. In case the system runs in hard
real time the shared memory server allocate a chunk of memory to be shared as inter-intra
kernel module and Linux process, which enables symmetric hard real time services, i.e.
hard real time for all Linux schedulable objects, like processes/threads/kthreads and also
for Real Time Application Interface (RTAI) own kernel tasks [Dozio and Mantegazza,
2003]. When the system runs in soft real time the XSI2 shared memory will be allocated.
This enables different programs to read/write to the same memory, but not in real time.
As AAU-BOT1 is based on a soft target, soft real time us utilized and XSI memory is
used. The disadvantage of using shared memory is that it is possible to change data in
shared memory while reading the data. This could result in faulty sensor data if e.g.
MSB is updated, but the LSB of the data has not while the S-function reads data. To
check whether data have changed during reading, a special locked flag indicates if data
is being altered in the memory. In case the flag is set, data must not be read from the
shared memory otherwise corrupted might be read.

Using shared memory makes it possible to access the memory from several threads
simultaneously. The shared memory can also accessed from an external computer via
TCP/IP connection and thereby get an exact copy of the shared memory which is very
useful during test of the controllers and sensors.

4.4 Sensor Servers

The sensor servers section describes how the computer handles inputs from the different
sensors on AAU-BOT1 and forwarding these to the shared memory. This section gives
the reader an overview of how the sensor servers are designed, works and tested. The
two sensor servers are designed as identical as possible and therefore only software for
one sensor server is described. Due to the fact that the IMU is not necessary for static
gait, the sensor server for it has not been created in this project.

4.4.1 General Description of the Sensor Servers

The sensor server consists of sensor server 1 and sensor server 2 as shown in Figure 4.5.
Since there are 12 USB units, i.e. 5 CAN busses, 6 RS485 busses and 1 RS232 bus, the
sensors have been distributed on two sensor servers. This gives the opportunity to use
2 software threads to get data, and thereby minimize the round trip time. This will be
described in 4.4.2. The sensor servers are the link between each sensor driver and the
shared memory. In Linux all communication to and from external hardware are done via
files, i.e. USB0 can be found in file /dev/ttyUSB0. The path of the file is entered when
starting the sensor server. The path of each sensor file is used to get a file descriptor
which is used to send and receive data. The received data will be saved in the shared
memory.

2XSI System Interfaces: The system shall support all the functions and headers defined in IEEE Std
1003.1-2001 as part of the XSI extension.

Instrumentation, Modeling and Control of AAU-BOT1

Sensor Servers 55

Shared Memory
Server

Sensor Server 1 Sensor Server 2

6 x FTS
Amplifier

5 x CAN
Buses

Sensor Servers

Figure 4.5: Sketch of the information flow in the Sensor Servers.

4.4.2 General Software Description of the Sensor Servers

The two sensor servers are designed as 2 threads which enables the computer to run
them individually. The paths to the device files are input arguments to the sensor server
program. In the initialization phase it connects to the shared memory and the device
file is given as input. At this point the server goes into operational mode and enters a
while(true) loop. The data from the device file is retrieved in different ways:

Sensor Server 1

Sensor server 1 serves the CAN/EPOS driver, and uses the CAN_READ() command to get
data from the CAN busses. CAN_READ() waits for a message to arrive, and returns the
message when it comes. See Figure 4.6 for a flowchart of sensor server 1.

Sensor Server 2

Sensor Server 2 serves the FTS amplifiers over the RS485 bus. To ensure that the
computer gets new data from each sensor, a counter counts the while loops. The counter
is reset every time data is received from the sensors. If no data is received before the
counter reaches a threshold, a message is printed to the command prompt, this indicates
if all sensors are operational.

The next task is to check whether there are any changes in any of the device files in
the last 5 seconds. If this is not the case in returns an error and terminates the sensor
server. If there are new data within the last 5 sec. a sensor handler function is called
with the file descriptor and a pointer to the shares memory. Only sensor handles with
changes on its respective device file will be called. After this point the sensor server will
restart the while(true) loop. Figure 4.7 shows a flowchart of how Sensor Server 2 works.

Group 08gr1032b

56 Software Architecture

Start

Initialize CAN and connect
to Shared Memory

Message
arrived?

Decode message and save
contents in Shared Memory

Stop

Figure 4.6: Flowchart of Sensor Server 1.

No data from the
sensors

Print error
messages

New data in Sensor
Server 2 in 5 sec

Print error and
stop sensor

server 2

Start

Changes in the
device file

Call
sensor
handler

Stop

false true

true

true

false

Initialized

Figure 4.7: Flowchart of Sensor Server 2.

Instrumentation, Modeling and Control of AAU-BOT1

Actuator Server 57

4.4.3 Test of the Sensor Servers

Both sensor servers has be tested by enabling the sensors and verifying that the data
changes in the output of the Simulink S-functions described in Section 4.2. Via the
USB/RS485 converter it is possible to see whether data is received or not since it enables
a red LED when it read or write data. Furthermore it has been tested that the program
can not start if the paths for the device file are not correct. It has also been tested that
is possible to start the sensor in different USB plug-in as long as the path for the device
file is corrected entered during startup of the sensor server. The result of the tests are
that the sensor servers works as designed.

4.5 Actuator Server

The purpose of the actuator server is to transmit the commands in the command queue
via the CAN networks to the EPOS amplifiers. This section gives an overview of how
the actuator server is designed, and how it works.

4.5.1 General Description of the Actuator Server

To remove the sleep cycles necessary when communicating to the PEAK CAN driver, the
command transmission is separated from the Simulink S-function. As the soft real time
target requires that the memory is allocated in the initialization phase, a ring buffer is
used to contain the commands.

4.5.2 General Software Description of the Actuator Server

The actuator server has 3 phases:

1. Initialize: The actuator server connects to the 5 CAN busses.

2. Running: If there is a new message in the ring buffer (i.e. the head pointer and
the tail pointer are not equal), a switch command determines to where the message
in the queue is to be sent, and sends it to the appropriate CAN using the PEAK
driver. If there is not a new message in the queue, the actuator server sleeps for 50
µs, and looks if there are any new messages in the queue again.

3. Exit: The actuator server disconnects from the 5 CAN busses.

4.5.3 Test of the Actuator Server

The actuator server is tested by connecting to the EPOS amplifiers via RS232 and check-
ing whether the commands in the queue is received by the EPOS amplifiers. This test is
described in Appendix I.1, and concludes that the actuator server works as planned.

4.6 EPOS/CAN Driver

To enable the actuator server and sensor server 1 to communicate with the amplifiers,
the EPOS/CAN driver is used. This section will describe how the EPOS/CAN network
is setup, how it works and how to handle the protocol that is used to communicate with
the EPOS amplifiers. Furthermore the section will describe how to initialize and run the
driver. In the end of this section a description of how the driver is tested can be found.

Group 08gr1032b

58 Software Architecture

4.6.1 General Description of the EPOS/CAN Driver

The primary idea of the EPOS/CAN driver is to enable communication with the CAN
network and maximize the throughput as much as possible. The CAN units uses several
types of data objects, and can be situated in different modes, this is elaborated on in the
following:

• Service Data Object (SDO):
SDO packages requests or sets a specific measurement/setting. As the SDO is not
predefined, the setting or measurement in the frame is specified in the frame. This
yields a high degree of overhead(see Figure 4.8 for a comparison of overhead).

• Process Data Object(PDO):
Is a predefined data object and can contain measurements and settings. There
are two kinds of PDO’s: transmit and receive PDO’s (TxPDO and RxPDO). The
former is for data transmitted from the device and the latter is for data transmitted
to the device, ie. with RxPDO the driver can send data to the device and with
TxPDO the driver can read data from the device. The PDO’s has a smaller overhead
and can contain more user data than SDO packages, as the PDO’s are predefined.

• sync:
The sync makes all the nodes sample their measurements and transmit them using
the predefined PDOs. (see Figure 4.9 for a timeline of a sync message command).

• Pre-operational mode:
When the EPOS CAN unit is switched on it automatically enters pre-operational
mode with is a state where the equipment can be configured via the SDO packages.
In pre-operationel mode the actuators are offline.

• Operational mode:
After the configuration of the EPOS amplifier is done, the unit can be set into
operational mode. Here both PDO and SDO packages can be transmitted. The
actuators are now online and can be used.

To increase the throughput of the CAN network and reduce the time between a command
is sent from Simulink to it is received by the EPOS amplifiers, the following strategies
are used:

• By using PDO frames for the communication with the amplifiers during the oper-
ational mode, the following is achieved:

– Reduction of overhead, as the content of the PDOs are defined in the pre-
operational mode, and several amplifiers can react to the same PDO. The
designed PDO frames can be seen in Appendix J.

– Synchronous sampling, due to the sync command.

– Synchronous control signals, as it is possible to activate the control input with
one activate command.

• Multiple amplifiers are set to react to the same PDOs, this reduces the amount of
PDOs sent per sample especially in the case of the double actuated joints.

Instrumentation, Modeling and Control of AAU-BOT1

EPOS/CAN Driver 59

Adr Len Info1 [4B] Info2 [4B]
200 + id 8 uω1 uω2

201 8 0x64 0x00 0x00 0x00 0x00 0x00 0x00 0x00
(a) RxPDO frame.

Adr Len Command type parameter
600 + id 8 Velocity command uω1

601 8 0x23 0xff 0x60 0x00 0x64 0x00 0x00 0x00
(b) RxSDO frame.

Adr Len Measurement type parameter
580 + id 8 Velocity ω1

(c) TxSDO frame.

Adr Len Measurement1 Measurement2
180 + id 8 ω1 θ1

(d) TxPDO frame.

Figure 4.8: Comparison between PDO and SDO frames. Both Rx frames transmit
a velocity command (100) to EPOS 1, however the RxPDO can transmit a velocity
command to EPOS 2 at the same time. In addition, any EPOS can be set to listen to
any PDO, which will be utilized at the dual axis motors. The TxPDO frames can contain
both the velocity and position in one frame, whereas the TxSDO has to use two frames
for the same amount of information.

4.6.2 Software Description of the EPOS and CAN Driver

To communicate with the EPOS via CAN, an open source library called CanFesti-
val [LOLITech, 2007] was considered. However, due to the lack of EPOS driver to
CanFestival another solution to the problem is pursuited. This is the ASL-HWlib from
the Autonomous Systems Lab in Zürich [ASLSOFT], here a partial EPOS driver is de-
veloped. The ASL-HWlib does not fulfill the demands of this project, and it has been
rewritten to support PDO packages and specific EPOS SDO commands. Furthermore it
is enabled to read and transmit data to the shared memory. The CAN driver used to
communicate over CAN is provided by PEAK systems which are the manufacture of the
USB/CAN converters.

The EPOS driver and the CAN driver is described in the following:

• EPOS driver:
Contains the basic commands for communicating with the EPOS amplifiers, by
translating commands into CAN frames. See Figure 4.8 for an example of the
individual frames.

• CAN driver:
The CAN driver must transmit the commands to and from the CAN bus to the
EPOS driver.

Both the actuator server and the sensor server connects to the CAN busses using
the LINUX_CAN_Open() command. The CAN driver and EPOS driver is compiled and
included in the actuator server and sensor server 1, which utilize the commands when
needed.

Group 08gr1032b

60 Software Architecture

On-Board computer

EPOS 2

EPOS 3

EPOS 5

EPOS N

CAN Bus Traffic

time [s]τ1τs

Figure 4.9: Timeline of execution of a sync command. The On-board computer transmit
a sync command, which makes the EPOS’ transmit their PDOs in turn. τ1 is the sync
time, τs is the sample time thus all the EPOS’ sample at the same time.

4.6.3 Test of the CAN/EPOS Driver

The CAN/EPOS driver is tested by transmitting commands to and from a number of
EPOS amplifiers. These tests are completed successfully, and will be elaborated on in
the DC motor model verification in Appendix A.1.

4.7 FTS driver

The FTS driver enables measurements of forces and torques via the strain gauge bridges
in the ankles, 6 digital amplifiers have been bought from Lorenz Messtechnik GmbH. This
section will describe how the FTS amplifier is setup, how it works and how to handle
the protocol that is used to communicate with the amplifiers. Furthermore the section
will also describe how to initialize and run the driver. Finally the section will contain a
description of how the driver is tested. The details of the FTS amplifier can be found
in [Lorenz Messtechnik, 2001].

4.7.1 General Description of the Interface to FTS Amplifier

Each amplifier is able to measure 2 strain gauge full bridges at the same time. It means
that the FTS driver has to handle 6 amplifiers. The driver is designed in such a way
that the amplifier can be initialized and operate in streaming mode via 2 function calls.
This makes it very easy to use the driver via Sensor Server 2. To communicate with
the amplifiers 6 USB/RS485 converters are used. The converters are from the company
4N-GALAXY. These converters use the standard Linux serial driver, ftdi_sio, so it is
possible to access the RS485 bus as an asynchronous serial bus.

One of the important issues when designing a driver for the FTS amplifier is to
have a high sample rate and at the same time minimize the number of interrupts in the
computer. The amplifier features 3 different protocols. The first protocol is the normal
Lorenz mode protocol which enables the user to setup and calibrate the amplifier. The
normal Lorenz mode protocol calculates a check sum of the payload that is showed in
Figure 4.10. The check sum is a sum of all bytes in the payload and to be extra safe the

Instrumentation, Modeling and Control of AAU-BOT1

FTS driver 61

protocol also specifies a weighted check which is a sum of sums of the data. The normal
Lorenz protocol also specifies that 0x02 is the start byte of all messages, this means that
all 0x02 in the payload, checksum and in the weighted checksum is doubled, i.e. if e.g.
the command byte is 0x02, an extra 0x02 is inserted in the messages. The checksum
should be calculated before the 0x02’s are doubled.

6 4 1 34 6 8 9 1122 56 1 255 123

S
ta

rt
 b

yt
e

=
 0

x0
2

C
om

m
an

d
by

te

R
X

 a
dd

re
ss

T
X

 a
dd

re
ss

N
um

be
r

of
 p

ar
am

et
er

Data

C
he

ck
su

m

W
ei

gh
te

d
C

he
ck

su
m

Payload

Figure 4.10: Sketch of the normal Lorenz mode protocol.

The two other protocols are a speed optimized polling protocol and a Speed Optimized
Streaming Mode protocol(SOSM). Both protocols are designed to have low overhead.
Since it is important to reduce the number of interrupts and minimize workload on
the computer, the SOSM protocol is used. The SOSM protocol enables high sample
rate of up to 2,500 samples/sec. The message in the SOSM protocol consist of only 5
bytes, 2 bytes for channel A and 2 bytes for channel B at the amplifier. The last byte
is a synchronization byte which is a number between 0 and 255. The sync number is
increased by 1 each time a messages is sent, when the number reaches 255 it becomes 0
the next time. As in the normal Lorenz mode protocol, the SOSM protocol also double
’0x02’ in the message from the amplifier. Figure 4.11 illustrate how the raw input data
looks like and how the modified input buffer where the extra 0x02’s are removed.

Even though the SOSM protocol has many advantages, there are also three main
disadvantages. The first is that data is received asynchronously, i.e. there is not always
a whole message in the input buffer and it is also possible to have several messages in
the input buffer. This makes it hard to identify what the data exactly is. It is therefore
necessary to shift the entire buffer when the last message has been found, so the latest
whole message is in the beginning of the buffer.

The second disadvantage is that no checksum is calculated which makes it difficult
to detect corrupted data. The risk for corrupted data is minimal because the amplifier
and USB/RS485 converter both are shielded, the RS485 bus is very good at suppressing
common mode noise and the amplifier is designed to use a relative slow baud rate at
115,200.

The third disadvantages by using the amplifier in SOSM, is that jitter can occur when

Group 08gr1032b

62 Software Architecture

234 2 132 234 1 34 6 8

132 234 1 34 6 8 9 20 234 2 2

0 9 2

4

4

S
yn

c
no

. 0

S
yn

c
no

. 1

S
yn

c
no

. 2

M
S

B
 c

ha
nn

el
 A

LS
B

 c
ha

nn
el

 A

M
S

B
 c

ha
nn

el
 B

LS
B

 c
ha

nn
el

 B

Raw
inputbuffer

Modified
inputbuffer

S
yn

c
no

. 0

S
yn

c
no

. 1

S
yn

c
no

. 2

Figure 4.11: Sketch of the speed optimized Lorenz mode protocol.

the data is received from the 6 amplifier. Since it is not possible to hardware trigger the
sampling on the amplifier the jitter will always be there. In order to reduce the jitter
the sample rate is set to 1,250 samples/sec. This reduces the worse case jitter time to
maximum 800 µs (1/1,250). Figure 4.12 illustrate how the timestamps of the received
messages jitter between each amplifier.

Time [us]

1,6,5,2,3 4 1,6,3,2,4,5 5,6 1,2,3,4

Control loop
1’st time

Control loop
2’nd time

Jitter JitterJitter

1,6,3,2,4,5

Amplifier 1 to 6
send a message

Jitter

0 80 160

1,6,3,2,4,5

Jitter

240 320

Figure 4.12: Sketch of how the timestamps of the received messages jitter and how the
FTS is oversampled.

Since USB adresses are dynamical assigned, the FTS amplifier is set up with a uniqe
SW ID such that it can be identified when connected to the USB port through the
USB/RS485 converter. This means that the USB/RS485 converter can be connected to
an arbitrary USB port. The hardware ID (HW ID) is unique for each sensor and it can
be read via the Lorenz program. The software ID (SW ID) is a number that the amplifier
is given via the Lorenz program. The shear and bending bridges must be connected as
in Table 4.7.1. The shear bridge must always be mounted at channel A (CHA) and the
bending bridge must always be mounted at channel B (CHB).

Instrumentation, Modeling and Control of AAU-BOT1

FTS driver 63

Table 4.1: Hardware and software ID’ for each shear and bending bridge on the FTS
amplifier.

Ankle HW ID SW ID Shear no. Bending no.
Left 14729 1 CHA 1 CHB 1
Left 14730 7† CHA 2 CHB 2
Left 14692 3 CHA 3 CHB 3
Right 14690 4 CHA 1 CHB 1
Right 14691 5 CHA 2 CHB 2
Right 14693 6 CHA 3 CHB 3

†: The SW ID 7 is used instead of 2 since it otherwise will cause problems during
initialization because 2 is doubled.

4.7.2 Software Description of the FTS driver

Start the FTS driver

The function startFtsAmpl() is used to start the FTS driver from sensor server 2. In
order to start the FTS driver each USB port must be initialized to communicate as a
serial port. The used USB port settings, for the USB/RS845 converter, can be viewed
in the following:

Data bit = 8
Stop bit(s) = 1
Baud rate = 115,200
Flow control = None
Parity check = None

When the function startFtsAmpl() is called, it gets a file path to a USB-port which
can be associate to a file descriptor(fd). When the USB-port is initialized the FTS
amplifier is setup. To be sure that the FTS amplifier is ready to be initialized and
to identify the FTS amplifier’s SW ID, the FTS amplifier is restarted via a software
command. When the FTS amplifier restarts it sends a ’Hello world’ message with SW
ID and the amplifier can be identified. After resetting the FTS amplifier it is setup to
Speed Optimized Streaming Mode (SOSM). The settings for the FTS amplifier in SOSM
can be viewed in the following:

Sample rate = 1,250 Samples/sec.
Number of packages = Infinity.
Channel(s) to read from = Channel A and Channel B.

The FTS amplifier should respond with acknowledge when it enters the SOSM else
the startFtsAmpl() function returns a -1 which causes sensor server 2 to terminate.

Normal operation of the FTS driver

Sensor Server 2 uses the function FtsAmplHandler() after initialization. The function
has 2 states, a state where it is out of sync and a state where it is in sync. First time the

Group 08gr1032b

64 Software Architecture

function is running the FTS driver will not be synchronized, i.e. a known sync number is
not in the beginning of the input buffer. In order to get synchronized the function looks
through the input buffer to see whether 3 succeeding sync numbers have been received.
I.e. at least 11 bytes must be received before it is possible to determine whether the
driver is in sync or not. When the driver is in sync it will be possible to receive data.
In case several messages are in the input buffer, only the newest whole message will be
used. If the received sync number is equal to the expected sync number the messages
is correct and it will be saved in the shared memory. In case anything goes wrong and
the input buffer starts to grow, the buffer will be flushed and the function is not in sync.
The entire driver is designed universal so it is possible to use the same driver for all the
FTS amplifiers.

4.7.3 Test of the FTS driver

In order to verify the FTS driver it has been tested that data is send to Simulink from
the amplifier. Furthermore the data in the input buffer has been analyzed when the
FtsAmplHandler() is in sync and when it is not. In case the function is not in sync, an
error messages will be printed in the command prompt.

Is has not been possible to test the throughput since one of the FTS amplifier in
the left ankle is defect, i.e. it only changes its values with approximately ±40 with a
sample rate approximately on 0.2 Hz, where the other changes their values with severally
thousands with a sample rate of 1250 Hz. Figure 4.13 is a graph of the sampled strain
gauge signals in the 6 channels in the right FTS. Note that the sampled values are
between ± 32768. The graph prove that the driver is able to configure the FTS amplifier
such that data can be received.

0 20 40 60 80 100
−1500

−1000

−500

0

500

1000

1500

2000

2500

Time [s]

S
am

pl
ed

 s
tr

ai
n

ga
ug

e
si

gn
al

s

V

b1

V
s1

V
b2

V
s2

V
b3

V
s3

Figure 4.13: Sampled strain gauge signals in the right FTS

The throughput of the FTS is not verified, but to test the throughput it can be done
by applying fast sine waves to the 12 channels, such that changes of the sampled strain
gauge signals are ensured. Here after it is checked whether the values are changed for

Instrumentation, Modeling and Control of AAU-BOT1

Visulisation 65

each time step. If that is the case the throughput is ensured for that particular sampling
rate.

4.8 Visulisation

When the model and controllers are developed they have to be tested in order to examine
their performance. Mostly xy-graphs showing the joint angles of the AAU-BOT1 is
insufficient to determined whether the behavior is acceptable. Therefore the geometry
orientation and position of the AAU-BOT1 has to visualized. To accommodate this
feature two methods are developed and is described in the following.

4.8.1 Matlab
TM Plot Function

The first solution to the visualization problem was to use MatlabTM and use the plot
function. The plotted data is generated by using the kinematic model developed in
Section 5.4. This plot gives a nice overview of the AAU-BOT1 and can be seen i
Figure 4.14 where it is in an upright position. The black circles are the CoM for the
individual links and the red circles are the position of the joints.

−1

−0.5

0

0.5

1

−0.5

0

0.5

0

0.5

1

1.5

Black is CoM of Links p and Red is pos of joints pj

−1 −0.5 0 0.5 1
0

0.5

1

1.5
Saggital plan Y

−0.5 0 0.5
0

0.5

1

1.5
Frontal Plan X

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
horisontal Plan Z

Figure 4.14: Matlab plot of the kinematics.

Group 08gr1032b

66 Software Architecture

The Matlab plot works very well when inspecting the kinematics of the AAU-BOT1,
but when the dynamical and real world aspect is introduced it gives problems. This is
because it is very time consuming to e.g. program the dynamics that will enable the
robot to slide over the floor or tilt over the edge of a foot. Different physics engines has
already been developed by others e.g. for 3D games one of these engines will now be
described.

4.8.2 Webots

Webots is a three dimensional robot simulator. It features its own physics engine, and
it is possible to build a robot with different shapes, add motors and do all the control in
Webots. The Webots program was initially developed as a research project, but is now
a commercial product that can be bought.Figure 4.15 shows a screen shot of the Webots
robot simulator with the custom build virtual AAU-BOT1.

Figure 4.15: Screenshot from Webots of the virtual AAU-BOT1.

Interface

As Webots has its own robot simulator tool, the intention is to program the controllers
for the robot in C code and thereby have it all as one embedded unit. Since the preferred
controller development tool is MatlabTM and Simulink, it is chosen to develop an
interface between Webots and Simulink. The interface has to enable communication
with Simulink and Webots to be synchronized. Furthermore it has to support two way
communication.

Two method are considered when developing the interface. The first method is to
program the interface as a C-code interface with shared memory. The second method
considered is using a TCP/IP connection. Both interfaces are applicable, but the last
solution is chosen since it features more opportunities which are elaborated on in the
following. Webots is computational heavy and it is practically impossible to run both
the Webots robot simulator program together with the main control loop in Simulink on
one computer, unless the computer features a multi kernel CPU. A TCP/IP connection

Instrumentation, Modeling and Control of AAU-BOT1

Visulisation 67

enables communication via network and this has a big advantage as the Webots robot
simulator can be located on a different system and be interfaced by the computer running
the main control loop.

The interface between Webots and Simulink is developed as a master slave setup,
where Webots act as the server and is waiting for connections. Simulink is the client and
connects to Webots when the simulation is initiated. During each simulation step all the
necessary data as joint angles and control input are transmitted. Each simulation step
is ended by a message from Simulink to Webots, that initiates the next simulation step.
This ensures that the robots simulator and the control loop are always synchronized.

The first part of the interface is the TCP/IP connection in Simulink. To enable
Simulink to connect to a TCP/IP an S-fuction developed by [Rydesäter, 2003] is used.
This is a TCP/IP Toolbox for MatlabTM and can be downloaded from MathWorks’
homepage, but is also available on the enclosed CD-ROM together with the supervisor
thread, the controller thread and the virtual AAU-BOT1 in Webots.

In Figure 4.16 the TCP/IP connection between Webots can be seen. Furthermore
the internal communication in Webots are displayed.

Central
control loop

Physics
engine (ODE)

Supervisor

Real Time Target
S−function

C−interface

Webots

C−interface

Controller

TCP/IP
interface

Figure 4.16: Interface between Webots and Simulink.

It is chosen to program a Supervisor and a Controller in the Webots environment
theses are both programmed in C and are constructed as two separate threads. This is
done since the controller thread only runs each simulation time step, but the supervisor
thread runs as many times as needed to handle all the TCP/IP communication between
Webots and Simulink. Furthermore the supervisor fetches all the necessary sensor data
from the controller thread and forwards it to Simulink. It also handles the actuator data
received from Simulink, this is transfered to the controller thread at each simulation step.

The controller thread updates the physics simulator with new actuator input and
retrieves the sensor data from the physics environment. Furthermore the controller thread
calculates the ZMP position which is displayed in the simulation environment such that
stability can be viewed during simulation.

The programmed functions for Simulink are shown in Table 4.2, and can be found on
the enclosed CD-ROM.

With these functions programmed a complete interface to the Webots simulation
tool has been developed. Furthermore the configuration of the virtual AAU-BOT1
in Webots has been carried out, a supervisor and a controller have been programmed
such that the developed Simulink functions are supported. It all runs synchronized and
Webots restarts the virtual environment each time Simulink is invoked for simulation.

Group 08gr1032b

68 Software Architecture

Table 4.2: Simulink commands for Webots
Simulink function: Explanation:
get_theta_pos() Gets the angular position of joints
get_theta_vel() Gets the angular velocity of joints
get_theta_acc() Gets the angular acceleration of joints
get_Pj_pos() Gets the position of links
get_Pj_vel() Gets the velocity of links
get_Pj_acc() Gets the acceleration of links
get_P_pos() Gets the CoM position of links
get_P_vel() Gets the CoM velocity of links
get_P_acc() Gets the CoM acceleration of links
get_zmp() Gets the position of ZMP
get_torq() Gets the torque used by motors in Webots
set_theta_pos() Set the angular position of joints
set_theta_vel() Set the max allowable angular velocity of joints
set_theta_acc() Set the max allowable angular acceleration of joints
set_torq() Set the torque on the joints
revert_webots() Reverting Webots for a new simulation
step_forward() Stepping Webots one time step forward

4.9 Summary of Software

In this chapter, the designed software architecture for AAU-BOT1 is documented. The
first part of the software use a module based approach, where each program connects
to a shared memory server. Two S-functions transmit and receive data from the shared
memory to Simulink. An actuator server and two sensor servers interfaces with the
hardware. This allows the Simulink model to run in real time, with the servers taking
care of the communication with the hardware.

Additionally, a simulation program called Webots has been implemented, that enables
testing of control algorithms in a risk-free environment.

A throughput test has been conducted. This showed that there was a loss in packages
of 13.6% when using 250 Hz as sample frequency. Lowering the sample rate to 200 Hz
lowered the packet loss to 1.9 % which is considered acceptable. If a packet is missing
the previous packet will be used. Furthermore it should be noted that the packages loss
is distributed over the whole timeframe of the test. This is appreciated as it does not
influence the system as much as if the system lost all 13.6% packages in a row.

This software architecture is utilized in the control of AAU-BOT1.

Instrumentation, Modeling and Control of AAU-BOT1

Chapter 5

Modeling

This chapter deals with the model derivation for AAU-BOT1. The purpose with the
model is to give the necessary insight of the system to design, test and simulate controllers
for AAU-BOT1. The models developed are: a DC motor model which are used for
parameter estimation, a kinematic model is derived such that it is possible to determine
the position, velocity, acceleration of the links and the CoM of links on the AAU-BOT1,
given by the joint angles. A support phase estimator is proposed such that it can be
determined in which of the phases described in Section 2 on page 23,AAU-BOT1 is in.
A foot model is also proposed such that forces and moments can be determined and used in
the dynamical model. The dynamical model are derived in order include the dynamics of
the AAU-BOT1. Finally an inverse kinematic model is derived to enable the derivation
of walking trajectories.

5.1 Introduction to Modeling

When modeling a biped robot many factors come into play. The two most crucial sub-
models are the kinematic model and the dynamical model which constitutes the main
part of the complete model. The kinematic model gives the positions, velocities and
accelerations of the CoM for all the links according to changes of the joint angles. The
dynamical model can be used to calculate the angular acceleration, velocity and position
of the joints based on a input torque. This is based on the known forces, as gravity and
coriolis force acting on the robot, but it does not include external unexpected forces.

Since the dynmic model is linear, only the viscous friction is included. In the DC
motor model the stiction, the viscous and the coulomb friction is included.

5.2 Elements in the Model

The modeling are divided into several parts. The complete model of the AAU-BOT1
can be seen in Figure 5.1.

It consist of sub models where the input and output can be seen for each model. The
division of the models ensure that these can be developed and tested individually.

DC Motor model The DC Motor model is proposed such that it is possible to perform
parameter estimation of AAU-BOT1. This is needed as the friction otherwise

69

70 Modeling

Complete model

Inverse
kinematic model

− Foot model
− DC−motor model

Dynamic model

Phase
estimator

Kinematic

~τ

~P , ~̇P, ~̈P ~θ, ~̇θ, ~̈θ

Q

~Pref , ~Oref ~θref

Figure 5.1: Block diagram of the complete model showing all the sub models with input
and output.

would be unknown. The obtained parameters are used in the derivation of the
Dynamical model.

Kinematic model The kinematic model is developed to obtain the position of link and
the CoM of the links. This is based on the joint angles since the dynamical model

Dynamical model The dynamical model can be used to calculate the angular acceler-
ation, velocity and position of the joints based on a input torque.

Phase Estimator The phase estimator is proposed as it is important for the kinematic
model and Dynamical model to know in which phase it is in. Also a weight distri-
bution between the feet is calculated as the Dynamical model uses this in the Dual
support phases

Foot model The foot model calculates the forces and the torques that the ground exerts
on the foot. The foot model is used in the dynamical model.

Inverse Kinematics The inverse kinematics is not an active part of the complete model
seen in Figure 5.1, but is necessary in order to calculate trajectories for the joints.

In the following sections the models, except the foot model, will be derived starting with
the DC Motor model. Since it is small part of the foot model that is used, it will be
derived in Appendix D on page 188.

Instrumentation, Modeling and Control of AAU-BOT1

DC Motor Model 71

5.3 DC Motor Model

This section documents the model of the Servo Amplifiers and DC motors. The DC
motor model is derived from physical and electrical considerations, and will be utilized
in the dynamic model.

5.3.1 General Model

A DC motor can be modeled the electrical model of a DC motor and the physical model
of a DC motor, see Figure 5.2(a) and 5.2(b) [Andersen and Pedersen, 2007, p. 8-10]. By
using the Kirchoffs Current law, the motor current (iM) can be calculated using (5.1).
The angular velocity can be calculated using (5.2) and the torque on the motor can be
found via Equation (5.3).

iM =
u − Kemf θ̇M

RM + LMs
(5.1)

θ̈M =
τM − τF − τL

J
(5.2)

τM = KT · iM (5.3)

where:
u is the input voltage [V]
RM is the terminal resistance [Ω]
LM is the terminal inductance [H]
iM is the motor current [A]
J is the total inertia of both the motor and the load [kg cm2]

KT is the motor torque constant
[
Nm
A

]

, which has the same value as Kemf

Kemf is the motor back emf voltage constant
[

Vs
rad

]

, which has the same value as KT

τM is the motor torque [Nm]
τF is the friction torque [Nm]
τL is the load torque [Nm]

θ̈M is the angular acceleration of the DC motor shaft
[
rad
s2

]

θM is the angle of the shaft [rad]
θ is the angle of the link [rad]
G is the gear ratio []

Equation (5.1), (5.2) and (5.3) can be combined into the block diagram seen in Figure 5.3.

u

RM LM

Kemf θ̇M

iM

(a) Electrical diagram of a DC motor.

τM

τF

τL

θ̇M

(b) Model of the shaft.

Figure 5.2: DC motor model.

Group 08gr1032b

72 Modeling

LM has a relatively small value compared to RM , i.e. the data sheets for the motors sets
it to 0.513 mH, 0.870 mH and 0.329 mH for the 60 W, 90 W and 150 W motor, respec-
tively [Maxon Motors, 2007d,e,c]. The value of LM is set to 0 to prevent overmodelling
as it has a negligible influence on the DC motor model at the frequencies used in this
project. τL is the influence the physical system has on the motor, this will be found in
the dynamic model. τF is elaborated on in the next section.

5.3.2 Friction of the DC Motor Model

The friction torque can be divided into three different states:

τF =

θ̇M · µ + sign(θ̇M)τc, if θ̇M 6= 0

τM − τL if (θ̇M = 0) ∧ (|τM − τL| ≤ (τc + τs))

sign(τM − τL)(τc + τs) if (θ̇M = 0) ∧ (|τM − τL| > (τc + τs))

(5.4)

where:

µ is the viscous friction coefficient
[
Nm s
rad

]

τc is the Coloumb friction torque [N m]
τs is the Stiction torque [N m]

1
s

1
s

1
J

1
GKT

iM τ θ̇Mθ̈M
1

RM+sLM

−τF − τL

θM θ∑ ∑

−Kemf

u

Figure 5.3: Block diagram of full model of DC motor.

5.3.3 Feedback Control of the Amplifiers

Due to the fact that the EPOS amplifiers allow several methods of control, some or most
of the DC motor model can be simplified. As the amplifiers allow direct control of the
current, the model can be reduced to Figure 5.4.

5.3.4 Gearing and Motor Constants

Since the gearing between the motor and the joints are taken into consideration in the
motor model, the output from the motor models will be the angles of the joints and not
the angle of the motor. The motor constants for the different motors can be seen in
Table 5.1

Instrumentation, Modeling and Control of AAU-BOT1

DC Motor Model 73

1
s

1
s

1
J

1
GKT

iM τ θ̇Mθ̈M

−τF − τL

θM θ∑

Figure 5.4: Block diagram of full model of DC motor and amplifier, with the EPOS
amplifier in current mode.

Table 5.1: Motor specifications.

Motor size [W] KT [mNm
A] Jm [gcm2] Rm [Ω] Nom. speed [rpm]

60 53.8 34.5 2.52 7750
90 62.2 67.4 3.09 6490
150 60.3 138 1.16 7000

5.3.5 Double Actuated Joints

Six of the joints are actuated by two identical DC motors working together by pulling
one belt which is connected to a gear-joint. In Figure 5.5 the setup of the hip roll joint
actuation can be seen. To the left in the picture the Solidworksdrawing of the hip dual
motor system and to the right is the forces and moments on this setup.

F

F

F = 0

F = 0

1
2F

1
2F

τL

τm

τm

Figure 5.5: Force distribution in the double actuated joint system. τm are the torques
from the motors and τL is the load torque or output torque in the joint

The other joints actuated by this dual motor system have a setup which is similar

Group 08gr1032b

74 Modeling

to the one shown in Figure 5.5. In Table 5.2 it can be seen which joints are actuated
by the double actuated joint system and which are not. To get an overview of the joint
numbers Figure 5.9 on page 79 can be used. The reason why this double actuated joint
system is chosen is simply to reduce weight. The weight of two smaller motors working
in parallel is smaller than one large motor doing the same amount of work.

Table 5.2: Motor setup and joint speed.

Joint # Motor [W] Dual actuated Gear ratio Max link vel.[rads]
joint

2 60 no 200 4.05
3 150 yes 320 2.29
4 150 yes 133 5.51
5 150 yes 288 2.55
6 150 no 257 2.85
7 90 no 250 2.72
8 90 no 250 2.72
9 150 no 257 2.85
10 150 yes 288 2.55
11 150 yes 133 5.51
12 150 yes 320 2.29
13 60 no 200 4.05
15 60 no 300 2.71
16 90 no 300 2.27
17 150 no 300 2.44
18 60 no 111 7.31
19 60 no 111 7.31

In order to model this double actuated joint, the force is considered as shown in
Figure 5.5 on the previous page and some certain assumptions has to be made. In order
to divide the total force by two, and thereby split the work evenly between the motors,
the belt has to be nonelastic and no flexion must occur during operation. It is possible
to tension the belts as wished and the belts are made for high precision servomotor
drives [Pedersen et al., 2007]. This assumes that τL to the motors in the double actuated
joints can be described as in Equation 5.5.

τLdual
=

τL

2
(5.5)

This has to be included in the DC motor model for AAU-BOT1. The six joints that
are actuated by two motors have the model as seen in Figure 5.6.

The double actuated joint model seen in Figure 5.6 on the facing page is similar to
the regular model seen in Figure 5.4 on the previous page. The difference is that the
system now has two inputs iM1 and iM2 and two output torques from the motors, τ1 and
τ2. The intention with the system is that τ1 and τ2 are equal when in operation.

5.3.6 Actuation Limits

Since this is a model of a physical system with physical limitations, these considera-
tions has to be included in the model. There are two different limitations added to the

Instrumentation, Modeling and Control of AAU-BOT1

DC Motor Model 75

1
s

1
s

1
J

1
G

KT

KT

iM2

iM1

τ2

τ1

θ̇Mθ̈M

−τF − τL

θM θ∑

Figure 5.6: Block diagram of DC motor model and amplifier in the double actuated joints
system.

motor model. The first limitations is based upon the datasheets for the maxon DC mo-
tors [Maxon Motors, 2007c], [Maxon Motors, 2007d] and [Maxon Motors, 2007e]. These
limitations concern the maximum allowable velocities of the motors. These are converted
to maximum angular velocities of the links and can be seen in Table 5.2

The other limitations are the maximum actuation of the joints. The physical con-
straints were initially defined by [Pedersen et al., 2007] and further limitations for the
toes are added here as they where missing. The limits can be seen in Table 5.3. To get
an overview of the joint numbers Figure 5.9 on page 79 can be used. With models and
all the parameters and limitation in place the verification can be carried out.

5.3.7 Verification of DC Motor Model

The DC motor model is verified and parameter estimated using SENSTOOLS [Knudsen,
2004] on the left arm, see Appendix A.1. The parameters that have been estimated are
the viscous friction, coulomb friction, inertia of the arm and τL. The stiction has not
been possible to estimate, but this should not affect the final result, due to that stiction
only affects the result in the start of the test.

The result from the test was that the final model has a mean squared error on 12.1%.
According to [Knudsen, 2004], a mean squared error of only 5-8% should be obtainable.
Due to the fact that the parameters are highly interconnected, the found parameters are
perceived as correct and will be used in the model. For the same reasons the DC Motor
Model is considered verified as being correct. See Figure 5.7 for a comparison of model
output and system output.

Group 08gr1032b

76 Modeling

Table 5.3: Maximum joint actuations.
Joint # Max pos. rotation Max neg. rotation

[degree] [degree]
1 0◦ -90◦

2 15◦ -10◦

3 19◦ -19◦

4 1◦ -95◦

5 11◦ -17◦

6 11◦ -81◦

7 27◦ -19◦

8 27◦ -19◦

9 81◦ -11◦

10 11◦ -17◦

11 95◦ -1◦

12 19◦ -19◦

13 15◦ -10◦

14 0◦ -90◦

15 28◦ -19◦

16 11◦ -13◦

17 56◦ -1◦

18 6◦ -33◦

19 6◦ -33◦

0 2 4 6 8 10 12 14 16 18 20
−10

−5

0

5

Time [s]

A
ng

le
 [r

ad
]

θ

19
 Meas

θ
19

 Model

0 2 4 6 8 10 12 14 16 18 20

−500

0

500

1000

Time [s]

A
ng

ul
ar

 v
el

oc
ity

 [r
ad

/s
]

ω

19
 Meas

ω
19

 Model

Figure 5.7: Output of parameter estimation test. The model has a mean squared error
of 12.1%.

Instrumentation, Modeling and Control of AAU-BOT1

Kinematic Model 77

5.4 Kinematic Model

The kinematic concerns the relations between different joints on the robot and the posi-
tion of the individual links. This is done by transforming from joint space to cartesian
space. With this transformation the position of the links’ CoM is calculated from the
given rotation of the joints. Since the joints of the AAU-BOT1 are not actuated di-
rectly with a DC-motor but through a certain gearing, a transformation from actuator
space to joint space is necessary. This has been elaborated on in the DC-motor model in
section 5.3. In Section 2.2 the different phases of the system is found. Even though the
system can be in 14 different phases, only two phases are needed to describe the kine-
matic of the system and those are: Single Support Phase Left (SSP-L), Single Support
Phase Right (SSP-R), this means that the robot is standing on one or the other foot.
One must understand that the kinematic chains deduced for the two phases SSP-L and
SSP-R can be used to describe the kinematic in all the other phases as well. This is
because the kinematic always start from one toe and out to all limbs. In Dual Support
Phase (DSP), the kinematic chain is described in SSP-L. The input to the kinematic

model is the angular position of the joints θ together with the phase of the system ~Q.
The output is the globalized coordinates ~P which consist of a matrix [~x ~y ~z]T . The
transformation can be seen in figure 5.8. It is important to have a consistent notation,
and representation of the mechanical system, the following will deal with representation
of the mechanical system.

Kinematic
model

~θ
~̇θ
~̈θ
~Q

~P
~̇P
~̈P

Figure 5.8: Kinematic model with joint angles as input and generalized coordinates as
output.

5.4.1 Representation of the AAU-BOT1

The AAU-BOT1 is a mechanical system with many joints and links. All the links are
connected via the joints in a unique way such that it represents a humanoid robot. Since
the AAU-BOT1 is developed and manufactured at the section for mechanical systems,
the complete mechanical layout is available in Solidworks made by [Pedersen et al.,
2007]. Solidworks features a method to extract link vectors, CoM vectors, masses and
moments of inertia for the desired links. In the Solidworks representation there exist
a total of 32 body parts. This is because all the motors, joints and links are counted
as body parts. The aim is to reduce the number of body parts by collaborating motor
frames with the respective link and thereby reduce calculations.

Since the AAU-BOT1 has been designed in Solidworks all the distances from CoM
and to the joints can be extracted from this model. This data is already extracted by
the former group working on the AAU-BOT1. The original data from [Pedersen et al.,
2007] can be seen in Appendix C.2. By using this data and adding the right CoM vectors
together the vectors from link to link can be calculated. The calculated data for the
link-vectors are displayed in Table 5.4 together with the already existing CoM vector.

Group 08gr1032b

78 Modeling

Table 5.4: Link- and CoM vectors extracted from Solidworks.
Link vectors [m] CoM vectors [m]

~a1= [0 0 0]T ~b1= [0 0 0]T

~a2= [-0.113 0 0.122]T ~b2= [-0.132 -0.010 0.076]T

~a3= [0 0 0]T ~b3= [0 0 0]T

~a4= [0 0 0.370]T ~b4= [0.004 0.030 0.118]T

~a5= [0 0 0.311]T ~b5= [-0.002 -0.041 0.165]T

~a6= [0 0 0]T ~b6= [0 0 0]T

~a7= [-0.003 0 0.064]T ~b7= [-0.041 -0.024 0.036]T

~a8= [0 0.280 0]T ~b8= [-0.022 0.140 0.016]T

~a9= [0.003 0 -0.064]T ~b9= [-0.038 0.024 -0.028]T

~a10=[0 0 0]T ~b10=[0 0 0]T

~a11=[0 0 -0.311]T ~b11=[-0.002 0.041 -0.146]T

~a12=[0 0 -0.370]T ~b12=[0.004 -0.030 -0.252]T

~a13=[0 0 0]T ~b13=[0 0 0]T

~a14=[0.113 0 -0.122]T ~b14=[-0.019 0.010 -0.046]T

~a15=[0 0 0]T ~b15=[0 0 0]T

~a16=[0 0 0.120]T ~b16=[-0.004 -0.038 0.080]T

~a17=[0 0 0]T ~b17=[0 0 0]T

~ara=[0.006 -0.280 0.425]T ~bt=[-0.019 0 0.341]T

~ala=[0.006 0.280 0.425]T ~bra=[0.004 -0.048 -0.347]T

~bla=[0.004 0.048 -0.347]T

The joints that have zero distance to each other are called multiturnable joints and
can be modeled as two separate joints [Craig, 2005]. Therefore the link vector between
two single joints considered a multiturnable joint are zero and so are the CoM vectors.
This is illustrated in Figure 5.9-(a) where Ji are the joint numbers and ai are the link
vectors. The multiturnable joints are shown as two single joints together. These joints
have the numbers: (J2-J3), (J5-J6), (J9-J10), (J12-J13), (J16-J17). All other joints are
located by the link vectors defining the links between them. The link vectors have their
origin at the previous joint, thereby link vector ai originates from Ji−1.

In figure 5.9-(b) the CoM of all the link bodies are illustrated. These have their origin
in the previous joint just as the link vectors. The CoM vectors are used later when the
inverse kinematics is described in Section 5.7 on page 91.

In Figure 5.10-(a) all the roll rotations around thex-axis is shown together with the
zero angle and in which direction the rotation is positive. In Figure 5.10-(b) it is for all
the rotations around the y-axis and in Figure 5.10-(c) it is the yaw rotations around the
z-axis.

To find the position of all the links and their CoM, rotations have to be applied for
every joint. This is done in the following.

5.4.2 Transformations

To be able to find which rotations that have to be applied through the model it is
necessary to give every joint their own coordinate system. In [Christensen et al., 2006],
the Denavit hardenberg method described in [Craig, 2005] is used, this is an old well-
known method that is good for organizing all the rotations. The method is not always
fully applicable without differing from the standard procedure described in [Craig, 2005].

Instrumentation, Modeling and Control of AAU-BOT1

Kinematic Model 79

J2J3

J4

J6

J5

J7

J15

J16

J17
J8

J9

J10

J12

J11

J13

J14

J1

J18

J19

~a2

~a4

~a5

~a8

~a11

~a12

~a14

~a16

~ara ~ala

(a) Defining the joints J and link vectors a.

X

Z

Y
~b1

~b2

~b3

~b4

~b5

~b6

~b7 ~b8

~b9

~b10
~b11

~b12

~b13

~b14

~b15

~b16

~b17

~bt

~bra

~bla

(b) Showing the CoM vectors for the links.

Figure 5.9: Joints, link vectors, CoM vectors.

Therefore it is chosen to use the same method as in [Christensen et al., 2007]. Here a
coordinate system is placed in every single link with the origin in the previous joint. The
origin of frame[i] is in that way placed in joint Ji, and is attached with the next link ai+1

and previous link ai.

The frames are aligned with the global reference frame, when all the joints are in
their zero state meaning the angles are zero (J(Θi) = 0). This means that when all the
angles of the joints are zero no rotations are needed to describe the system. This gives
the advantage that when a rotation between two link-frames is carried out, it is described
by the actual angle of the joint.

In order to keep track of the global position a ground frame is added to the model as
it is seen on Figure 5.11. The position of the ground frame is fixed to the initial frame[0]
such that the initial frame always contain the global position.

All the frames have the same direction when the angles are zero, but the joints are not
always revolute in the same direction. This means rotations has to be made according
to which direction the joint can be actuated. In Table 5.5 the different rotations for the

Group 08gr1032b

80 Modeling

θ2

θ5

θ10

θ13

θ16

yx

z

(a) Angles in frontal plane.

θ1

θ3

θ4

θ6

θ9

θ11

θ12

θ14

θ17

θ18
θ19

x y

z

(b) Angles in saggital plane.

θ7

θ8

θ15

x

y z

(c) Angles in transverse plane.

Figure 5.10: Angle of rotation in three three planes.

link-frames can be seen.

Where the rotations around x-, y-, z-axis is given as in equation (5.6), (5.7), (5.8)
from [Craig, 2005, p. 49].

i−1
i Rx(θi) =

1 0 0
0 cos (θi) −sin (θi)
0 sin (θi) cos (θi)

 (5.6)

i−1
i Ry(θi) =

cos(θi) 0 sin(θi)
0 1 0

−sin(θi) 0 cos(θi)

 (5.7)

Instrumentation, Modeling and Control of AAU-BOT1

Kinematic Model 81

X

Z

Y

X

Z

Y

frame[G]

frame[0]

Figure 5.11: The earth frame[E] and the first frame[0] is the global coordinate system

Group 08gr1032b

82 Modeling

Table 5.5: Rotations for the link-frames.
Rotation matrix: Link-framesi:
i−1
i Rx(θi) 2,5,10,13,16

i−1
i Ry(θi) 1,3,4,6,9,11,12,14,17,18,19

i−1
i Rz(θi) 7,8,15

i−1
i Rz(θi) =

cos(θi) −sin(θi) 0
sin(θi) cos(θi) 0

0 0 1

 (5.8)

The robot is an open loop serial chain system that originates from the supporting
foot as it is done in [Wu, 2003]. This means that the first rotation is in the supporting
foot and the end rotations is in the non supporting foot, left arm and right arm. This
gives three different open kinematic chains. The rotation matrices have to be multiplied
together according to which of the three chains that are calculated. As elaborated on
before the kinematics only needs to be defined in two different phases: SSP-L and SSP-R.
Table 5.6 show the kinematic chains for SSP-R.

Table 5.6: Kinematic chains for SSP-R.
Kinematic chain for link no. i
1,2,3,4,5,6,7,8,9,10,11,12,13,14 i ≤ 14
1,2,3,4,5,6,7,15,16,17,18 15 ≤ i ≤ 18
1,2,3,4,5,6,7,15,16,17,19 i = 19

When the system is in SSP-L the kinematic chains are as in Table 5.7.

Table 5.7: Kinematic chains for SSP-L.
Kinematic chain for link no. i

14,13,12,11,10,9,8,7,6,5,4,3,2,1 i ≤ 14
14,13,12,11,10,9,8,15,16,17,18 15 ≤ i ≤ 18
14,13,12,11,10,9,8,15,16,17,19 i = 19

5.4.3 The Global Position

Every single link in the global position has to be determined. It is chosen to describe
the global position as the position for the CoM of the links. The vectors containing the
CoM position for all the links is denoted ~P .

~P =

xi

yi

zi

 where i = 1, 2, ..., 20 (5.9)

The global position of the CoM of the links can now be found, starting with the
supporting foot and forward to the link needed just as described in [Craig, 2005, p. 28].
The position of CoM for each linki is found like:

Instrumentation, Modeling and Control of AAU-BOT1

Dynamic Model 83

~Pj0

~Pj1 ~Pj2

~P1

~P2

~a1

~a2

~b1

~b2

Figure 5.12: Example of rotation as used with the robot.

~Pi = ~Pji−1
+0

i−1
~R~bi (5.10)

where ~Pji−1
is:

~Pji−1
= ~Pji−2

+0
i−2

~R~ai−1 (5.11)

where ~Pji−1
is the global position of the joint i − 1 and ~bi−1 is the local position of the

CoM for link i − 1.
From equation 5.10 and 5.11 the global coordinates can be found, just as it is shown in

the motivating example on figure 5.12. Furthermore a detailed derivation of a motivating
example with a simple robot with 3 DOF can be seen in appendix E.

Since the kinematic model also returns the global velocity vector and the global
accelerations vector these need to be calculated and this is done in the following, desciped
in [Craig, 2005, page 135]:

~̇P =
∂ ~P

∂t
, ~̈P =

∂ ~̇P

∂t
(5.12)

Now the kinematic model is derived, the global positions and their derivative can be
found. Due to their size, these are found on the CD.

5.4.4 Verification of Kinematic Model

The Kinematic model is verified in Appendix A.2, using Webots. The largest error in
the measurements where 0.004 m, which is regarded as an error in Webots. The output
of Webots is compared to the Kinematic Model in Figure 5.13.

5.5 Dynamic Model

The purpose of the dynamic model is to determine the angle acceleration ~̈θ, in the

individual joints. By integrating ~̈θ it is possible to find ~̇θ and ~θ. ~̈θ are used to obtain
knowledge about the movement of AAU-BOT1, i.e. it can be used to determine the
ZMP and the energy consumption. The dynamic model of AAU-BOT1 is constructed
as a hybrid model of the different support phases, as the basis for the model is different

Group 08gr1032b

84 Modeling

(a) Webot’s representation of AAU-BOT1
in SSP-R.

−0.100.10.2

−0.1 0 0.1 0.2 0.3 0.4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

 Length [m]

AAU−BOT1 from Matlab

Width [m]

H
ig

ht
 [m

]

(b) Matlab plot of AAU-BOT1 in SSP-R. The red dots represent
the position of joints and the black dots are the CoM.

Figure 5.13: Visual result by applying the test angles for SSP-R.

Instrumentation, Modeling and Control of AAU-BOT1

Dynamic Model 85

in each of the phases. The dynamic model for AAU-BOT1 in SSP is derived first, and
is used as the basis for the model of AAU-BOT1 in DSP. In Figure 5.14 the input and
output relation for the dynamic model is shown. Due to the size of the dynamic model,
the model will only be treated symbolic, which is why a motivating example has been
derived in Appendix E on page 193.

Dynamic Model

~θ

~P

~̇P

~̈P

~τ

~̇θ

~̈θ

Q

Figure 5.14: Block diagram of the Dynamic model.

5.5.1 Dynamic Model of AAU-BOT1 in SSP

The dynamics of AAU-BOT1 in SSP are derived by using the Lagrange-d’Alembert
equation[Craig, 2005, p. 183]:

d

dt

(
∂L

∂q̇i

)

−
∂L

∂qi
= Fi (5.13)

where:
L is the Lagrangian for AAU-BOT1 in SSP
qi is system state i
Fi is external force i for AAU-BOT1 in SSP

The state vector ~q consists of the position vector ~P and the angles θ are as:

~q =

~P
θ1

...
θ19

=

x1

y1

z1

...
x20

y20

z20

θ1

...
θ19

(5.14)

The Lagrangian (L) is defined as:

L = Ekin − Epot (5.15)

where:
Ekin is the kinetic energy of the system
Epot is the potential energy of the system

Group 08gr1032b

86 Modeling

The kinetic energy is calculated using [Craig, 2005, Eq. (6.69) and (6.70), p. 182] to:

Ekin =
1

2

(
NLinks∑

i=1

miṖ
2
i + ~ωT

i J i~ωi

)

=
1

2

(
NLinks∑

i=1

mi(ẋ
2
i + ẏ2

i + ż2
i) + ~ωT

i J i~ωi

)

(5.16)

where:
NLinks is the number of links
~ωi is the angular velocity vector of link i
J i is the inertia tensor of link i, around the CoM of the link
~Pi is the position vector of the center of mass of the ith body
mi is the mass of the ith body

The toe spring is modeled as potential energy. The springs in the feet are described
in Appendix D on page 188 where the foot model is derived. The total potential energy
is calculated as:

Epot =

NLinks∑

i=1

migzi + kt(θ1 + θ14) (5.17)

where:
g is the gravitational acceleration constant.

Inserting Equation (5.16) and (5.17) into Equation (5.15) yields:

L =
1

2

(
NLinks∑

i=1

mi(ẋ
2
i + ẏ2

i + ż2
i − 2gzi) + ~ωT

i J i~ωi

)

(5.18)

The angular velocities (~ωi) can be found using [Craig, 2005, Eq. (5.43), p. 146]:

~ωi = ~ωi−1 +i
0 Rθ̇iζ (5.19)

where:
~ζ is a vector that denotes the axis which θ̇i rotates about

As AAU-BOT1 has several kinematic chains, that varies with the walking phase, the
velocity vector of the previous link is found using table 5.6 and 5.7 on page 82. The
external forces given in Equation (5.13) are calculated in steps, firstly, the Lagrangian is

Instrumentation, Modeling and Control of AAU-BOT1

Dynamic Model 87

differentiated with regards to the states:

∂L

∂~q
=

0
0

m1g
0
0

m2g
...
0
0

m20g
0
...
0

(5.20)

The second part of Equation (5.13) is derived and differentiated with respect to time:

d

dt

∂L

∂~̇q
=

d
dt

∂L
∂q̇1

...
d
dt

∂L
∂q̇79

 (5.21)

The result from this is omitted due to size. To map Equation (5.21) to the actuators,
the Jacobian is used[Craig, 2005, p. 186]:

JF (~θ) =
∂~q

∂~θ
(5.22)

JF (~θ) =

∂q1

∂θ1
. . . ∂q1

∂θ19

...
. . .

...
∂q79

∂θ1

. . . ∂q79

∂θ19

 (5.23)

The kinematic model for the positions are inserted and the equation is differentiated
partially. The mapping is then done by:

~τ = JT

F (~θ)F

= JT

F (~θ)

(
d

dt

(
∂L

∂~̇q

)

−
∂L

∂~q

)

(5.24)

where:
~τ is the torque excerted on the links by the DC Motors and the springs in the toes.

5.5.2 State Space Formulation

If the equation of motion is brought into a state space formulation state space control
theories can be applied. The equation of motion from Equation (5.22) can also be
represented in another form. This form of the dynamic equation can be seen in equation
(5.25) as described in [Craig, 2005, p. 185].

~τ = M(~θ)~̈θ + V (~θ, ~̇θ) + G(~θ) (5.25)

Group 08gr1032b

88 Modeling

where:
~τ is the torque excerted by the DC motors
~θ is the angle of the joints

M(~θ) is the mass/inertia matrix

V (~θ, ~̇θ) contains the centrifugal and coriolis terms

G(~θ) is the gravity terms
~τ consists of the torque added by the DC motors and the torque excerted by the friction
of the system. The friction is modeled using Equation (5.26).

~τF (~̇θ) = diag(~µ)~̇θ (5.26)

where:
~µ is the viscous coefficient constant.

Inserting ~τ = ~τM − ~τF into Equation (5.25) yields:

~τM − ~τF (~̇θ) = M(~θ)~̈θ + V (~θ, ~̇θ) + G(~θ) (5.27)

Isolating ~̈θ yields in Equation (5.28), where ~τF is found via the DC motor model in
Section 5.3.2 on page 72.

~̈θ = M−1(~θ)
(

~τM − ~τF − V (~θ, ~̇θ) − G(~θ) − F (~̇θ)
)

(5.28)

The expression in Equation (5.28) is inserted into a embedded MatlabTM function in
Simulink (see Figure 5.15, and is linearized numerically, using the MatlabTM function
linmod.

Out1
1

Scope2Scope1Scope

Integrator1

1
s

Integrator

1
s

Embedded
MATLAB Function

Tau

theta_

theta_dot_

theta_dotdotAAUBOT1L

In1

1

Figure 5.15: Nonlinear model in simulink.

The linearized system has the following general form:
[

~̇θ

~̈θ

]

=

[
0

19×19 I19×19

A2,1 A2,2

][~θ

~̇θ

]

+
[

B
] [

~τM

]
(5.29)

~y =
[

I19×19
0

19×19
]

[
~θ

~̇θ

]

+
[

0
19×19

] [
~τM

]
(5.30)

where A2,2 is negative definite and B is positive definite, which is as expected.

Instrumentation, Modeling and Control of AAU-BOT1

Support Phase Estimator 89

5.5.3 Dynamic Model of AAU-BOT1 in DSP

The dynamics of AAU-BOT1 in DSP are computed as a combination of SSP-L and
SSP-R, by using Equation (5.31):

~τDSP = ρ~τL + (1 − ρ)~τR (5.31)

where:
~τDSP is the torque of the individual links of AAU-BOT1 in DSP
~τL is the torque of the individual links of AAU-BOT1 in SSP-L
~τR is the torque of the individual links of AAU-BOT1 in SSP-R
ρ is the weighting between the SSP-L and SSP-R

ρ is calculated by calculating the distance from the origo of each foot to the ZMP (ZMP
is calculated using Equation (2.7) and (2.8) on page 30):

ρ1 =

∥
∥
∥~PR − ~PZMP

∥
∥
∥

∥
∥
∥ ~PL − ~PZMP

∥
∥
∥+

∥
∥
∥~PR − ~PZMP

∥
∥
∥

(5.32)

ρ =

1 ρ1 ≥ 1
ρ1 0 < ρ1 < 1
0 ρ1 ≤ 0

(5.33)

where:
~PZMP is the position of the ZMP
~PL is the position of the left foot
~PR is the position of the right foot

5.5.4 Summary of Dynamic Model

A dynamic model of AAU-BOT1 was derived using Lagrangian mechanics, Jacobian
transformations, the kinematic model and the DC motor model. The result is a hybrid
state space model with 38 states, 17 inputs and 19 outputs. This model will be used as
basis for the designed controllers. The dynamic model has not been possible to verify
since there are parameters at the physical AAU-BOT1 that yet are unknown, and the
safety system has not been built in such extent that it is justified to verify the dynamic
model on it. Furthermore the representation of AAU-BOT1 in Webots does not work
as expected, which is why the dynamic model neither is verified in Webots.

5.6 Support Phase Estimator

In Chapter 2 the different phases of the system is specified. It is important for the system
to know which leg is the supporting one. Furthermore it makes a difference whether the
system is standing on the toe or not or the system is in a heal impact phase. Especially
for the kinematic model it is important to know which leg is the supporting one, so the
correct kinematic chains can be chosen.

5.6.1 Hybrid Systems

The hybrid system section is based on [Bak and Izadi-Zamanabadi, 2004, p. 11]. A
hybrid system can be formulated as a hybrid automaton H:

H = (~Q, ~X, Init, f, Dom, E, G, R) (5.34)

Group 08gr1032b

90 Modeling

~Q contains the discrete events which is defined as the different phases of the sys-
tem. Even though all possible phases have been listed only q1, q2,q3, q4, q5 and q6 are
implemented in this thesis.

~Q =

q1
∆
= SSP-L : Single Support Phase left

q2
∆
= SSP-R : Single Support Phase right

q3
∆
= SSP-L-T : Single Support Phase left toe only

q4
∆
= SSP-R-T : Single Support Phase right toe only

q5
∆
= DSP-L : Double Support Phase left

q6
∆
= DSP-R : Double Support Phase right

q7
∆
= DSP-L-T : Double Support Phase left toe

q8
∆
= DSP-R-T : Double Support Phase right toe

q9
∆
= DSP-L-TH : Double Support Phase toe and heel left

q10
∆
= DSP-R-TH : Double Support Phase toe and heel right

(5.35)

~X contains the continuous variables for the joint angles:

~X = ~θ19 , ~X ∈ ℜ19 (5.36)

Init contains the initial condition of the system at time zero:

Init = θ1 = 0 , θ2 = 0 , ... , θ19 = 0 , ~Q = DSP-L (5.37)

All the Double Support Phases are a combination of two single support phases. The
phase is determined by evaluating the states in the model, using Equation (5.38). This
equation is made from simple observations of the individual states.

~Q =

q1 if zr > ǫ1 ∧ zl < ǫ2 ∧ Ollp < ǫ4 ∧ θ14 < ǫ6
q2 if zr < ǫ1 ∧ zl > ǫ2 ∧ Orlp < ǫ4 ∧ θ1 < ǫ5
q3 if zr > ǫ1 ∧ zl < ǫ2 ∧ Ollp < ǫ4 ∧ θ14 > ǫ6
q4 if zr < ǫ1 ∧ zl > ǫ2 ∧ Orlp < ǫ4 ∧ θ1 > ǫ5
q5 if zr < ǫ1 ∧ zl < ǫ2 ∧ Orlp < ǫ3 ∧ Ollp < ǫ4 ∧ θ1 < ǫ5 ∧ θ14 < ǫ6 ∧ xr < xl

q6 if zr < ǫ1 ∧ zl < ǫ2 ∧ Orlp < ǫ3 ∧ Ollp < ǫ4 ∧ θ1 < ǫ5 ∧ θ14 < ǫ6 ∧ xr > xl

q7 if zr < ǫ1 ∧ zl < ǫ2 ∧ Orlp < ǫ3 ∧ Ollp < ǫ4 ∧ θ1 > ǫ5 ∧ xr < xl

q8 if zr < ǫ1 ∧ zl < ǫ2 ∧ Orlp < ǫ3 ∧ Ollp < ǫ4 ∧ θ14 > ǫ6 ∧ xr > xl

q9 if zr < ǫ1 ∧ zl < ǫ2 ∧ Ollp > ǫ4 ∧ θ1 > ǫ5 ∧ xr < xl

q10 if zr < ǫ1 ∧ zl < ǫ2 ∧ Orlp > ǫ3 ∧ θ14 > ǫ6 ∧ xr > xl

(5.38)

where:
ǫn is threshold n, determined experimentally with AAU-BOT1
zr is the z-value of the right foot.
zl is the z-value of the left foot.
Ollp is the pitch of the left foot.
Orlp is the pitch of the right foot.
θ1 is the angle of the right toe.
θ14 is the angle of the left toe.

The Phase Estimator will be used with the kinematic model and the dynamic model, to
create a hybrid model. The verification is done concurrent with the system test described
in Chapter 8 on page 143.

Instrumentation, Modeling and Control of AAU-BOT1

Inverse Kinematics 91

5.7 Inverse Kinematics

The derivation of the kinematic model was done in Section 5.4 and the purpose was
to describe the positions of all the links in cartesian space given the joint angles. The
purpose of the inverse kinematic model is to determine the joint angles which yield a
specific position of the limbs in cartesian space. The inputs to the inverse kinematic are
all the positions and orientations of the legs ~Ptr

, ~Otr
, ~Ptl

, ~Otl
and the orientation of the

torso and arms ~Ow, ~Oar
, ~Oal

In Figure 5.16 the position vectors for the inverse kinematics
can be seen.

Inverse
kinematic model

~Ptr
, ~Otr

~Ptl
, ~Otl

~Ow

~Oar
, ~Oal

~θ

Figure 5.16: Block diagram of input and output for the inverse kinematic model.

Different methods have been developed to accommodate the inverse kinematic prob-
lem. Two widely used methods are the numerical solution and the analytical solution.
One numerical solution is used by [Goldenberg et al., 1985] is done by solving the pseudo
inverse Jacobian in order to transform the desired position of a limb into joint angles.
As the first solution of this method does not always deliver an accurate outcome, this
method is done in an iterative way to ensure a precise outcome. This method has been
carried out by [Christensen et al., 2007] on a biped robot. They concluded that this
method serves its purpose, but the downside is that the transformation of the position to
joint angles on one leg with 6 DOF takes 209s for five iterations on a 2.4 GHz P4 com-
puter. This is only for one leg and if the rest of the links are considered as well, it would
result in an even higher calculation time. This demonstrates that this method is a very
heavy computational task. Since it is assumed that the control loop of the AAU-BOT1
is supposed to be much faster than the time it takes to calculate the inverse kinematic
the numerical way, then this method is discarded.

The other method considered are an analytical method. This method is also called
closed-form solution and can be solved directly as a resolution of the non-linear equations
and is only supported on robot manipulators with few DOF [Craig, 2005]. Often robot
manipulators are designed in such a way that a solution to the inverse kinematic problem
exist. A great advantage is that it is very fast computational vise and moreover a robust
method. The downside is that is only works on robot manipulators with up to 6 DOF.
This method is preferable and with the right assumptions this method can be applied
the AAU-BOT1, which is described in the following.

5.7.1 Closed Form Solution

The main idea with the closed form solution is to solve the inverse kinematic problem
by geometric inspection. The position of the feet and orientation of the torso are all
determined by the orientation of the legs. It is therefore crucial that the legs are in the

Group 08gr1032b

92 Modeling

X

Z

Y

X

Z

Y

X

Z

Y

X

Z

Y

X

Z

Y

X

Z

Y

Ptl

Ptr

Ow

Oal

Oar

Otr

Otl

Figure 5.17: Position vectors and orientations in the inverse kinematic.

right position with the right orientation in order to obtain the right posture of torso.
The different position vectors and orientations can be seen in Figure 5.17.

As mentioned before the closed form can only be used on kinematic chains of up to
6 links. Where the last three links are one revolute joint [Craig, 2005]. But as it can
be seen in Figure 5.17 one leg consist of 7 joints and this includes the toe joint. Since
the toe joint is unactuated and can be influence by e.g. moving the leg in a toe of phase
trajectory such that the toe will be bended according to the angle between the foot and
the ground, when the toe is not in contact with the ground or any other objects, is pulled
back to its origin by a spring. To perform a toe of phase it is important to know the exact
position and orientation of the concerning foot. This concludes that the toe is actuated
indirectly by the movement of the leg, foot-base and interaction with the ground.

This means that in the inverse kinematic problem for the legs can be reduced to a
inverse kinematic problem with 6 joints from the foot base and to the hip. Hence, the
closed form solution to the inverse kinematic problem can be utilized for the legs. Besides
from the legs the torso can also be orientated in the x-y-y axis and the arms can only
be rotated around the y-axis. This method is called Pieper’s solution and is described
in [Craig, 2005]. In Figure 5.18 the axis of rotation for the torso, the arms and the hips
can be seen and is indicated by green vectors. Furthermore the vectors used in the closed
form solution to the inverse kinematics can be seen in the figure. The method of Pieper
is applied in the following.

Inverse Kinematic for the Legs

The problem is split up into two main tasks. Assuming that the feet are on the ground
the first task is to derive the angles of the first three joints which are the ankle roll,
ankle pitch and knee pitch joints. The specific angles for the desired position of the hip
can be obtained with this task. The next task is to give the hip the desired orientation

Instrumentation, Modeling and Control of AAU-BOT1

Inverse Kinematics 93

1
7
~P

θ3

θ2

~a4

~a5

θ4

θ5

θ6

θ7

15
17R

θ18

1
7R

θ17
θ16

θ15

Figure 5.18: Used vectors and rotations in the inverse kinematic. The green axis are the
axis of rotation in the concerned joint.

Group 08gr1032b

94 Modeling

by a x-y-z rotation with the three intercepting joints at the top of the leg connecting
the hip. The position from the toe to the revolute joint starting at θ5 is given as in
Equation (5.39).

1
5~p =1

2 T 2
3T

3
4T

4
5~p (5.39)

Here 1
2T describes the rotation and position of frame 2 relative to frame 1 and so

on. The reason why the first transformation matrix is not 0
1T is because the rotation in

the toe is not included as described before. Equation (5.39) can according to Pieper’s
solution to [Craig, 2005] be written as in Equation (5.40):

1
5~p =1

2 T 2
3T

f1(θ4)
f2(θ4)
f3(θ4)

1

(5.40)

where f is a function that gives the position of joint 5 relative to joint 4. The function f
only contains θ4 and can be expressed as in Equation (5.41)

~f(θ4) =3
4 T 4

5~p (5.41)

if ~f(θ4) is written out it will look as in Equation (5.42) - (5.44)

f1 = s4a5z
(5.42)

f2 = 0 (5.43)

f3 = c4a5z
+ a4z

(5.44)

The squared magnitude of ~f(θ4) can be calculated as Equation (5.46) and is furthermore
the length squared of 1

5~p:

r2 = f2
1 + f2

2 + f2
3 (5.45)

= s2
4a

2
5z

+ c2
4a

2
5z

+ a2
4z

+ 2c4a5z
a4z

(5.46)

This can be rewritten to Equation (5.47)

r2 − a2
5z

− a2
4z

= c4(2a5z
a4z

) (5.47)

Now the first angle can be found by isolating θ4 and Equation (5.48) is found

θ4 = arccos

(
r2 − a2

5z
− a2

4z

2c4a5z
a4z

)

(5.48)

By writing out 1
5~p in terms of 1

2T
2
3T and ~f(θ4) the right side of Equation (5.49) is

found. Note that 1
5~p is the desired position of the leg.

Instrumentation, Modeling and Control of AAU-BOT1

Inverse Kinematics 95

1
5~p =

xdesired
ydesired
zdesired

 =

c3f1 + s3f3

s2(s3f1 − c3f3)
−s3c2f1 + c3c2f3

 (5.49)

Here it can be seen that the x component only depends of θ3 and θ4 in f3, but since
θ4 is known θ3 can be used by using the arctan2 function in MatlabTM and subtracting
θ3:

θ3 =
(

arctan2(f3, f1) ± arctan2
(√

f2
1 + f2

2 − x2
desired

, xdesired

))

(5.50)

Now θ2 can be found since it is the only unknown factor in the y-component, θ2 is
found in Equation (5.51)

θ2 = arcsin

(
ydesired

s3f1 − c3f3

)

(5.51)

Now the angles of the joints for the first three joints are found for the position of
the hip. Now the angles of the last three joints has to be found in order to obtain the
orientation of the hip. The last three joints are mounted as a x-y-z rotation given as 5

7R

and can be calculated by:

5
7R =1

5 R−1 1
7R (5.52)

The rotation of the last three links is a rotation around θ5, θ6, θ7 and Equation (5.52)
can be rewritten to Equation (5.53)

r11 r12 r13

r21 r22 r23

r31 r32 r33

 =

c6c7 −c6s7 s6

s5s6c7 + c5s7 −s5s6s7 + c5c7 −s5c6

−c5s6c7 + s5s7 c5s6s7 + s5c7 c5c6

 (5.53)

It can be seen that θ6 can be expressed as in Equation (5.54)

θ6 = arcsin(r13) (5.54)

Since θ6 is known θ7 can be found by using r11 and r12 of Equation (5.53) [Craig,
2005]:

θ7 = arctan2(
r12

−c6
,
r11

c6
) (5.55)

θ5 can be found using r23 and r33 from Equation (5.53) [Craig, 2005]:

θ5 = arctan2(
r23

−c5
,
r33

c5
) (5.56)

Now all the angles for the joints are found such that it is possible to find position
and orientation of the right hip. Note that if AAU-BOT1 is in left phase it is the
foot which is positioned and orientated. The same procedure is used when deriving the
inverse kinematics for the left leg θ8 - θ13

Group 08gr1032b

96 Modeling

Inverse Kinematics for Torso and Arms

Since the torso is connected to the legs through the waist and hip the overall position
is determined by the inverse kinematics for the legs and the orientation of the waist.
In Figure 5.18 the hip is located by 1

7~p thereafter waist can be located by using the
regular link vectors found in Table 5.4. With the waist located the x-y-z rotation can
be performed according to the desired orientation of the torso Ot. From the waist the
arm can easily be located again by using the regular link vectors. Both arms can only
be rotated around the Y axis as show with the green axis in Figure 5.18.

5.7.2 Verification of Inverse Kinematics Model

The inverse kinematics are verified by setting the output of the inverse kinematics to the
kinematics and seeing whether the resulting output is equal to the input. The largest
error between the inputs and the output was smaller than 0.6 mm, meaning that the
inverse kinematics are regarded as correct. This is described i detail in Appendix A.3.

5.8 Summary of Modeling

In this chapter a DC motor model has been derived for single actuated joints and for
double actuated joints. In order to verify the DC motor model, parameter estimation
for one arm has been derived as well. The DC motor model has been derived in such
an extent that it only had a mean square error of 12.1%, and the DC motor model is
assumed to be correct.

The kinematic model is derived such that the global positions, velocity and accelera-
tion of the individual link’s and their CoM’s is found given the joint angles. The model
has been verified towards the simulation tool Webots and the largest error in this test
was 0.004 m. The error is considered as being uncertainties in Webots and the kinematic
model is therefore assumed to be correct.

A dynamic model of AAU-BOT1 has been derived using Lagrangian, Jacobian
transformations, the kinematic model and the DC motor model. The result is a hybrid
state space model with 38 states, 17 inputs and 19 outputs. Due to missing safety systems
at AAU-BOT1 and problems with Webots it has not been possible to verify the model.

In order to determine the support phase AAU-BOT1 is in, a support phase estimator
has been derived. The phase estimator is utilized by the dynamical model, foot model,
and the kinematic model.

An inverse kinematic model has been derived and verified. By dividing the kinematic
chain into parts that are only 6 links long, a unique solution to a position and orientation
of a link is found. This has been utilized by the trajectory generation, which will be
elaborated on in the following chapter.

Instrumentation, Modeling and Control of AAU-BOT1

Chapter 6

Trajectory generation

This section describes different approaches to generate trajectories, i.e. online, offline
or in a combination. Hereafter different methods for trajectory generation are described,
i.e. should the trajectory be generated from human trajectories, the highest stability, the
lowest energy consumption or the CoM method. The outline for this master’s thesis is to
walk static gait and dynamic gait, so a method is developed to generate these two types of
gait. However to avoid replications the dynamic gait trajectory is described in Appendix F
on page 203. Last in this chapter, the result of the trajectory generation is presented and
a summary of the entire chapter is given.

6.1 Trajectory Generation Requirements

One of the challenges by moving a humanoid robot is to find suitable trajectories for
each joint. During the last 25-30 years many strategies have been developed for deriving
trajectories. In order to choose the right strategy all the constraints/features of AAU-
BOT1 regarding to trajectory generation must be defined. The requirements are deduced
from [Pedersen et al., 2007] and Chapter 3 on page 31:

• AAU-BOT1 is dimensioned to be able to walk dynamical as a human.

• AAU-BOT1 do not have the same energy efficiency and are not able to store
energy as a human.

• AAU-BOT1 should be able to walk with an average speed of 1 m/s.

• It should be possible to implement it on the on-board computer.

One of the more essential parts of generating trajectories is to investigate whether
the generation of trajectories are done online or offline. This will be elaborated on the
following section.

6.1.1 Online Trajectory Generation

Online gait trajectory generation is calculated on the fly during walk. One of the advan-
tages of using online trajectories is that unexpected changes in the terrain will not affect
the walk of the robot more than it will affect a human. Which means the trajectories
will always be optimal according to energy or/and stability depending on the terrain.

97

98 Trajectory generation

Furthermore online trajectories will also be able to correct errors, i.e. if there is flexi-
bility in the mechanical design or the terrain is soft. A soft terrain will cause the foot
to strike the ground before or after it was expected. If offline generated trajectories are
used, it will result in deviations from the intended trajectory and stability might also be
reduced.

Many papers have been written about online trajectories gait generation, but many of
them require high computational power [Kondak and Hommel, 2003a], they are presented
on very simple models or they simple have failed to implement an algorithm that is able
to work on a real systems. In [Kondak and Hommel, 2003a] a method is presented that
generate online trajectories in simulation. However this method does not consider torque
limits in the motors. In order to understand how difficult online generation of trajectories
are, a study trip to Massachusetts Institute of Technology (MIT) was arranged. [Frazzoli,
2008] demonstrated how MIT’s Darpa Urban Challenge1 car generates online trajectories.
This car has a very complex sensor system to get knowledge about the surroundings and
10 Quad-core computers to handle the sensor data, trajectory generation and control.
Even though the cars is computational well equipped, it still has to slow down or stop
some time in order to find and follow a correct trajectory. Based on the field trip to
MIT and [Kondak and Hommel, 2003a] it has been concluded that it will be infeasible to
use online generation of trajectories on AAU-BOT1, because it would require cameras
or/and radars to get knowledge of the surroundings. The on-board computer do not either
have enough computational processor power and an extra computer will be needed.

6.1.2 Offline Trajectory Generation

Offline trajectory generation is well known and often used in trajectory generation. Of-
fline trajectory generation means that some or all of the trajectories for each joint are
calculated before the walking experiment. One of the advantages of using offline trajec-
tory generation is that it is possible to achieve an optimal trajectory, i.e. a trajectory that
looks like human dynamic gait, which use minimum energy and still has high stability.
However this requires a very accurately model of AAU-BOT1 in order to get useful tra-
jectories that can be implemented on AAU-BOT1. Furthermore offline generated tra-
jectories sometimes result in unstable walking [Wollherr et al., 2003]. In [Wollherr et al.,
2003] the problem was solved by making an online compensation. This type of trajec-
tory generation will be discussed in Section 6.1.3. As mentioned in 6.1.1 on the preceding
page it requires a controller structure that maintain stability to the system during walk,
because flexibilities in the mechanical parts and noise in the sensors sometimes cause the
robot to plant the foot before or after it was scheduled. This problem also increases the
energy consumption since the trajectories would not be ideal.

Offline generated trajectories will be best suitable for AAU-BOT1. This will be a
good way to test how the controller performs and it will be possible to combine these with
adaptive generated trajectories as described in Section 6.1.3. Using offline generation also
means that the trajectories have to be recalculated when the real AAU-BOT1 model is
known and when the hardware is mounted in order to get an accurate weight and inertia
distribution for it.

6.1.3 Hybrid Trajectory Generation

A Hybrid Trajectory Generation combines offline and online trajectory generation. It is
usually offline generated trajectories that is being modified online. Quite often the tra-

1An autonomous car which participate in the Darpa Urban Challenges.

Instrumentation, Modeling and Control of AAU-BOT1

Different Trajectory Generation Approaches 99

jectory is tuned online, either to minimize the energy consumption, increase the stability
or to be able to follow a rough terrain.

[Bebek and Erbatur, 2003] has presented a way, where the stability of a biped robot
is tuned via neuro-fuzzy during walk to increase the stability. By training the neuro-fuzzy
algorithm it was slowly able to increase stability on one joint, however the algorithm was
slow and it was not possible to increase the stability on all joint simultaneously.

Another approach is a central pattern generator(CPG), which also often are used
for adaptive, self-improving algorithms to realize human-like, energy efficient motion
[Takahashi et al., 2005]. The adaptive property improves the robustness of the robot
during environmental changes and the external disturbance, and a biped robot will be
able to walk naturally on the sophisticated ground. The downside of using CPG is, that
it is computational demanding and the presented method [Takahashi et al., 2005] is only
applied on a 5 linked biped robot.

Improving trajectories by adaptive tuning would be a good solution to minimize the
energy consumption and increase the stability. The focus in this project is to make
to AAU-BOT1 walk for the first time and not to optimize it, adaptive tuning will not
be implemented in this iteration.

6.2 Different Trajectory Generation Approaches

6.2.1 Inverted Pendulum

Biped robots are often modeled as inverted pendulums [Wollherr, 2005], [Park and Kim,
1998], [Kajita et al., 2003], to reduce the complexity of the mechanical model. In [Wollherr,
2005] a 3D-Linear Inverted Pendulum Method is presented, where the mass of the robot
is assumed to be concentrated in one point. Therefore the CoM is considered to remain
in a fixed position relative to the main body of the robot, this assumption is justified
when the main body, the head and the arms amount is more than 70% of the total robot
mass. Furthermore the motion range of the legs is limited, hence the error caused by
this assumption is treated as a disturbance and is suppressed by the controller traking
the trajectoies. Using the inverted pendulum method also assumes that there is no ankle
torque applied at the base of the pendulum. The 3D inverted pendulum method has also
been used by [Pedersen et al., 2007]. Their result of the CoM and ZMP can be seen at
Figure 6.1 on the following page.

Group 08gr1032b

100 Trajectory generation

Figure 6.1: Sketch of CoM and ZMP trajectory [Pedersen et al., 2007].

AAU-BOT1 do not have 70% of its weight in the torso, arms and pelvis, which why
the method is not used.

6.2.2 GCoM Method

The GCoM method is often used to generate trajectories. The idea with the GCoM
methods is to walk very slowly, which means that GCoM and ZMP are the same. The
method works by moving the CoM from one foot to the other one and vice versa. It
is a relative simple way of getting a stable walk, but it has several disadvantages, e.g.
this method only makes it possible to walk static and not dynamic gait as a human.
In [Christensen et al., 2006] the technique was utilized on the first biped robot at Aalborg
University. It resulted in a duck-like walk [Christensen et al., 2006]. This method also
has high energy consumption. However for the first test of biped robots this method
is often used since the trajectories are very slow, which makes it easier to follow the
individual joints to verify whether they follow the trajectory correct.

6.2.3 Human Trajectories

One of the obvious ways of designing trajectories for biped robots is by using recorded
human trajectories. Humans are said to have the most energy optimized walk and is it
stable. In [Pedersen et al., 2007] experiment with motion capture of a human trajectory
and use this for simulation. The results of these experiment were poor and the group
ended up with using an own developed trajectory. Looking at human motion graphs in
the book [Vaughan et al., 1992] supports the solution in [Pedersen et al., 2007] to used
a different method than human trajectories, because humans are very different in size
and weight. If human trajectories should be used for a biped robot trajectory, the biped
robot should have the exact same dimensions and weights as the human, whose motions

Instrumentation, Modeling and Control of AAU-BOT1

Different Trajectory Generation Approaches 101

are captured. Furthermore there is no guarantee that a trajectory based on a human
would be energy optimal, since the human anatomy is very complex and it is impossible
to make a biped robot exactly as a human with exiting technology.

6.2.4 Energy Efficiently Walk

One of the major concerns with autonomous biped robots is the amount of energy con-
sumption during walk. Human walk is defined as the most energy efficiency walking
type [Vaughan et al., 1992]. In [Pedersen et al., 2007] the AAU-BOT1is designed to op-
erate in 15 minus and therefore AAU-BOT1 energy consumption has to be low. [Tedrake,
2008] and [McGeer, 1990] have researched in passive walkers. The principle of passive
walker is that it should be able to walk downhill of a slope by using the gravity and
inertia to produce forward motion. This type of motion do not have any actuated joints,
it must walk downhill and AAU-BOT1 has high friction in the joints, which is why it
cannot be implement on AAU-BOT1.

Another approach is a method develop by [Djoudi et al., 2005]. They have suggested
a method where they use optimal cyclic joint reference trajectories for the walking of an
under-actuated biped. The optimal trajectory is defined by a small number of parameters.
The joint evolutions of the legs are fourth order polynomial functions of a scalar path
parameter. By using a dynamical model, some constraints as limits on torque and velocity
an optimal walking trajectory is found. It will be possible to use parts of this method on
the AAU-BOT1. However AAU-BOT1 have 17 actuated joints, where the presented
method in [Djoudi et al., 2005] do not have actuated ankle joints, so the methods must
be modified if it should be used.

6.2.5 ZMP Stability

Generation of trajectories, where the ZMP stability is considered, is one of the most
popular trajectory generation methods. In [Choi et al., 2004] and in [Huang et al., 2000]
methods to generate different trajectories with high stability are presented. The used
principle is to simulate different trajectories and chose the trajectory with the highest
stability.

Another popular method is seen in [Huang et al., 2001] which has focus on increasing
the ZMP stability while walking. The paper describes a method for planning walking
patterns, which includes the ground conditions, dynamic stability constraints, and re-
lationship between walking patterns and actuator specifications. The method can be
applied directly to a biped a robot, using constraints from human trajectories. The
method use a stability margin, which ensure that the trajectory is not only marginal
stable, but it can have a certain degree of stability. The principle of the technique is
to develop one predefined trajectory for the feet, and then adjust the hip motion in the
vertical and the horizontal direction, such that high stability is gained. It means sever-
ally changes of the hip parameters are simulated. The different trajectories are found via
Cubic Spline Interpolations, which ensures that the trajectory is smooth and it do not
result in any sudden high changes in the ZMP. Unfortunately this method only includes
ZMP stability and might result in trajectory that is not energy optimal, even though the
trajectory is created from a human trajectory. This is due to the mechanical design of a
biped robot which is not as complex as the human anatomy.

Group 08gr1032b

102 Trajectory generation

6.3 Establishing Trajectories for AAU-BOT1

The previous section discussed different methods of generate trajectories. During this
thesis dynamic and static gait is designed, dynamic in simulation and static gait at AAU-
BOT1, which is why two trajectory generation strategies have been developed. It is de-
cided to use offline trajectory generation, because the on-board computer does not have
enough computational power to do online trajectory generation. The hybrid trajectory
generation is not used because of lack of time, but it will be possible for future research
groups working at the AAU-BOT1 project to use the developed offline trajectory gen-
eration method to a hybrid solution.

The dynamic gait trajectory generation will combine several methods described in Sec-
tion 6.2 on page 99. The ZMP-stability method is used to ensure stability, to ensure
that the AAU-BOT1 moves similar to a human. To make the trajectory as smooth
as possible and to reduce the energy consumption, some parts of energy optimal gait
is used. Real dynamic gait is hard to realize, that is why it has been decided only to
implement the toe-off phase and not the heal-strike phase during dynamic gait, as de-
scribed in Section 1.4 on page 18. To ensure that the legs are long enough to take a
normal step when heal-strike phase is not used, the step length is reduced by 18 cm.
However the dynamical model is not complete, and the trajectory cannot be simulated
correct, but only the design method is derived. To avoid replication it will be described
in Appendix F on page 203.

The static gait trajectory generation also combines several methods described in Sec-
tion 6 on page 97. The CoM method (which is the same as the ZMP-stability method
during static gait) and the human trajectory generation method are used to generate the
trajectories. In order to design humanoid trajectories, the parameters have be chosen as
seen in Table 6.1 on the next page and in Table 6.2 on the facing page. The parameters
are found in [Huang et al., 2001], [Pedersen et al., 2007] and [Vaughan et al., 1992]. The
mechanical design have angle limits in each joints, which why the static gait trajecto-
ries are very slow and the step length is small, otherwise it would be infeasible to create it.

Furthermore knowledge about AAU-BOT1 has to be obtained before the speed is in-
creased. The trajectory generation is calculated in Cartesian space, i.e. the origo is in
the left toe. The following sections describe the developed method to obtain stable walk
trajecories and the results are described in Section 6.4 on page 112. This section will
also describe things that are common for static gait and dynamic gait.

6.3.1 ZMP Stability

The stability of AAU-BOT1 is very important. In order to extract trajectories with
the highest stability, more than 50000 different trajectories have been simulated, given
the parameters in Table 6.1 on the facing page and Table 6.2 on the next page. Each
simulation has small variation in the trajectory [Huang et al., 2001]. By using the in-
verse kinematic, the kinematic and the ZMP estimator it is possible to simulate walk
trajectories. The stability definition for the biped robot can be seen below:

• During static gait, the GCoM must be within the support area. The GCoM and
the ZMP is the same.

Instrumentation, Modeling and Control of AAU-BOT1

Establishing Trajectories for AAU-BOT1 103

Table 6.1: Parameters defining a static gait trajectory
Parameters Values
Step length[m], lstep 0.10
Averages speed[m

s], Vspeed 0.002
Cycle time[s], Tcycle 50
Step time[s], Tstep 0.001
SSP time[s], TSSP Tstep · 0.6
DSP time[s], TDSP Tstep · 0.40
Max ankle height[m], hamax 0.20
Ankle height max time[s], Tmax Tstep · 0.6
Ankle height max length[m], lmax lstep · 0.5
Torso max[m], htmax 0.9452
Torso min[m], htmin 0.9152
Toe angle during toe off[degree] 0

Table 6.2: Parameters defining a dynamic gait trajectory
Parameters Values
Step length[m], lstep 1.10
Averages speed[m

s], Vspeed 1
Cycle time[s], Tcycle 1.1
Step time[s], Tstep 0.55
SSP time[s], TSSP Tstep · 0.8
DSP time[s], TDSP Tstep · 0.2
Max ankle height[m], hamax 0.22
Ankle height max time[s], Tmax Tstep · 0.45
Ankle height max length[m], lmax lstep · 0.45
Torso max[m], htmax 0.9702
Torso min[m], htmin 0.9102
Toe angle during toe off[degree] 16

• During dynamic gait, the ZMP must be within the support area. The GCoM is
not the same as ZMP.

The area and the shape of the support area (SA) depends on how large step that AAU-
BOT1 has to walk with. Furthermore the shape also depends on what type of gait
that is intended. As described in Section 1.4 on page 17 the scope for this thesis is
to design AAU-BOT1, such that it is possible to walk dynamical in simulation and
static gait with AAU-BOT1. This also results in a different support area. In order to
maximize the support area, the toe feature has been disabled, i.e. the foot and the toe is
considered as one plate. Figure 6.2 on page 105 is the SA of SSP. As it can be seen at the
figure, support area in built of severally coordinates (xi, yi), which is marked with the
black circles. Between each of the SA coordinates, there are vectors, which will be defined
as edge vectors ~vi. In order to calculate whether the ZMP points are inside the SA or
outside the SA as in Figure 6.2 on page 105, the perpendicular distance from the edge
of the SA to a ZMP point is calculated via Equation (6.1) [WolframMathWorld, 2004].
Using this equation will always result in a positive distance, which is why Equation (6.2)
is used to obtain negative distance as well.

Group 08gr1032b

104 Trajectory generation

di =
∣
∣
∣ ~̂vi • ~ri

∣
∣
∣ =

|(xi+1 − xi)(yi − yzmp) − (xi − xzmp)(yi+1 − yi)|
√

(xi+1 − xi)2 + (yi+1 − yi)2
(6.1)

di,stabMarg =
(xi+1 − xi)(yi − yzmp) − (xi − xzmp)(yi+1 − yi)

√

(xi+1 − xi)2 + (yi+1 − yi)2
(6.2)

where:
i is 1,2,...,k
k is the number of SA coordinates.
di are the normalized perpendicular distance between the vectors ~vi ZMP.
di,stabMarg is the stability margin, positive if the ZMP is within the support area

otherwise negative.
~vi are vectors in the edge around the support area.
~ri is a vector from the ZMP point to the start of edge vector.
xzmp is the x coordinate of the ZMP point.
yzmp is the y coordinate of the ZMP point.
xi is the x coordinate of the start of vi.
yi is the y coordinate of the start of vi.
xi+1 is the x coordinate of the end of vi.
yi+1 is the y coordinate of the end of vi.

The smallest distance di,stabMarg is called the stability margin, positive if the ZMP is
stable otherwise negative as described in Equation (6.3). The method has not been pre-
sented in any known papers, so in order to test the principle, 250 random ZMP points
has been tested to see whether they are stable or not. Figure 6.2 on the next page shows
that the principle is 100% able to calculate whether the ZMP points are stable or not.
The size of the stability margin measure in which extent the ZMP point is stable, i.e. a
large stability margin is the same as high stability.

ZMP point = stable for 0 ≤ min(di,stabMarg) i = 1, 2, ..., k
ZMP point = unstable for 0 > min(di,stabMarg) i = 1, 2, ..., k

(6.3)

Instrumentation, Modeling and Control of AAU-BOT1

Establishing Trajectories for AAU-BOT1 105

−0.3 −0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

X direction [m]

Y
 d

ire
ct

io
n

[m
]

250 random ZMP points in SSP

Support Area (SA)
SA coordinates
ZMP outside SA
ZMP inside SA

Figure 6.2: Test of the stability margin principle with 250 random ZMP points.

To determine whether the trajectories are stable or not, all ZMPs during one trajec-
tory is calculated and tested whether they are inside or outside the support area. Each
time the ZMP point is inside the support area a variable called stability index stabIndex
is increased by one. When all the different trajectories have been simulated, the trajec-
tories with maximum stability index are the most stable. When the extent of stability
is increased, a lower boundary for the stability margin is used. If the stability margin is
larger than the lower boundary, the stability index will be increased with 1 otherwise it
will not be increased. This technique is universal, and it can be used for dynamic gait
and static gait.

stabIndexmax = max(stabIndex(i)) i = 1, 2, 3...n (6.4)

where:
n is the number of simulations.
stabIndexmax is the maximal number of stable ZMP’s is all simulations.
stabIndex is the array of stability indexes for all simulations.

Another thing that has to be taken in to consideration is the energy consumption
during walk. High stability often requires more power to maintain the stability. In
[Arakawa and Fukuda, 1996] a method is presented to obtain energy optimized gait tra-
jectory. The idea behind this method is that a walk with high energy efficiency will
be similarly to human walk. In [Arakawa and Fukuda, 1996] the method was used with
success, but they did not verified the results against a human. In [Ogino1 et al., 2001]
another method presented where the trajectory was optimized such that it will minimize
the energy consumption. The result of the energy optimized trajectory was similarly to

Group 08gr1032b

106 Trajectory generation

human gait. The result of all simulations with AAU-BOT1 might result in severally
stable trajectories which have stabIndexmax of stable ZMP’s. If this is the case, the one
with the lowest energy consumption will be used. This will also result in a smoother
trajectory. However since a complete dynamical model is not found, it has not possible
to obtain an accurate ZMP and an accurate torque. Equation (6.5) describes the energy
consumption during a trajectory.

P =
1

Tsim

∫ Tsim

0

τ θ̇dt (6.5)

where:
P is the energy consumption during a simulation.
Tsim is the simulation time.
τ is the used torque.

θ̇ is each joint rotational speed.
Using the trajectory with the lowest energy consumption and a satisfying stability mar-
gin, would result in the most optimal trajectory for AAU-BOT1. In order to obtain a
static gait trajectory, the trajectory with the highest stability index and highest stability
margin is used, since the ZMP is the GCoM when using static gait.

6.3.2 Cubic Spline Interpolation

In order to calculate a smooth trajectory, Cubic Spline Interpolation is used. This mini-
mize the accelerations, which result in a smooth ZMP trajectory. [Wolfram MathWorld,
2004] describe a cubic spline function as the following:

A cubic spline is a spline constructed of piecewise third-order polynomials which pass
through a set of m control points. The second derivative of each polynomial is commonly
set to zero at the endpoints, since this provides a boundary condition that completes the
system of m-2 equations. This produces a so-called "natural" cubic spline and leads to a
simple tridiagonal system which can be solved easily to give the coefficients of the polyno-
mials. However, this choice is not the only one possible and other boundary conditions
can be used instead.

The trajectories for the static gait and the dynamic gait are designed via the MatlabTM

function cspline.

6.3.3 Arm Trajectory

Common for static and dynamic trajectories are that the arms do not affect the stability,
because of the low weight. However a trajectory is created in order to make the walk
look natural. Different variations of the arm trajectory have been simulated. The arm
trajectory for the right arm is the same as for the left arm. The Trajectory has been
created from the constraints in Equation (6.6) and in Equation (6.7).

−30 ≤ θarm(t) ≤ −60 , t = t1
30 ≤ θarm(t) ≤ 60 , t = t4

(6.6)

θ̇arm(t1) = 0

θ̇arm(t4) = 0
(6.7)

Instrumentation, Modeling and Control of AAU-BOT1

Establishing Trajectories for AAU-BOT1 107

6.3.4 Foot Trajectory

The foot trajectories are designed via the method used in [Huang et al., 2001]. The biped
robot is symmetric and it will only be necessary to design a trajectory for one foot, and
copy it to the other foot with a delay of Tstep. In the following section a foot trajectory
for static gait will be designed and dynamic gait trajectory for the foot is described in
Appendix F on page 203. Parameters for a step can be found in Table 6.1 on page 103.

Foot Trajectory for static gait

The trajectory has been designed for the right foot. In order to create the trajectory for
the foot, a time line is defined as shown in Equation (6.8). The time line is only for Tstep,
during the second part of Tcycle the right foot is on the ground. The distance between
the feet is set to 0.28, which is the same as the hip width. Figure 6.3 on the following
page shows a sketch of the static gait during Tstep, it will be described in the following
sections. Note that the left side of AAU-BOT1 is marked with red color and the right
side is marked with green color.

t1 = (k − 1)Tstep

t2 = kTstep − TSSP

t3 = (k − 1)Tstep + Tmax

t4 = kTstep

(6.8)

where:
Tstep is the time it takes to move right foot in front of the left.
TSSP is the time AAU-BOT1 is in SSP during Tstep.
Tmax is the time it takes to raise the ankle to max height hamax.
k is 1, 2...n where n is the number steps.

Group 08gr1032b

108 Trajectory generation

xtmax

htmin

x
y

z

(a) static gait at time = t1.

htmax

x
y

z

(b) static gait at time is = t2.

htmax

hamax

x
y

z

(c) static gait at time is = t3.

htmin

x
y

z

(d) static gait at time is = t4.

Figure 6.3: Sketch of the static gait during Tstep

Instrumentation, Modeling and Control of AAU-BOT1

Establishing Trajectories for AAU-BOT1 109

Movement of the foot can be divided in to three steps. Firstly the rotation of the
foot should be defined, which is zero during static gait. Secondly the forward motion of
the foot must be defined, this is done in Equation(6.9).

xa(t) = −lat − 0.5lstep , t = t1 and t2
xa(t) = −lat − 0.5lstep + lmax , t = t3
xa(t) = −lat − lstep , t = t4

(6.9)

where:
xa(t) is the horizontal movement of the ankle during Tstep.
lat is the horizontal distance between the ankle and toe.

Third and last the vertical movement must be defined as in Equation (6.10).

za(t) = lan , t = t1 and t2
za(t) = hamax , t = t3
za(t) = lan , t = t4

(6.10)

where:
za(t) is the vertical movement of the ankle during Tstep.
lan is the height of the ankle from the ground.
hamax is the maximum ankle height during Tstep .

In order to achieve static gaiting the following constraints must be applied. This will
also secure a smooth movement of the foot and not suddenly change in the movement di-
rection. All constraints are used to derive different 3th order spline interpolation function
as described in Section 6.3.2 on page 106.

ẋa(t3) = 0
ẋa(t4) = 0
ża(t3) = 0
ża(t4) = 0

(6.11)

6.3.5 Torso Trajectory Generation

The torso trajectory has also been designed after [Huang et al., 2001]. However the used
biped robot in that paper do not have a waist with 3 DoF as AAU-BOT1, that is
one of the main differences compared to other biped robots. This makes possible to use
a ZMP controller acting on joint θ16, θ17 and θ18, that does not affect the rest of the
system. For further details see Section 7.3.3 on page 136. During trajectory generation
the torso rotation is zero. The Yaw rotation in the pelvis is implemented in the trajectory
generation. The trajectory is designed for the waist and not the hip as in [Huang et al.,
2001]. The static gait trajectory is presented and the dynamical trajectory is described
in Appendix F on page 203.

Torso Trajectory for static gait

The parameters in the following equations can be seen in Table 6.1 on page 103. The
constraints for the vertical movement of the torso can be found in Equation (6.12) and

Group 08gr1032b

110 Trajectory generation

in Equation (6.13).

zt(t) = htmin , t = t1
zt(t) = htmax , t = t2
zt(t) = htmax , t = t3
zt(t) = hamin , t = t4

(6.12)

where:
zt(t) is the vertical movement of the torso during Tstep.
htmax is the maximum height of the torso.
htmin is the minimum height of the torso.

żt(t2) = 0
żt(t4) = 0

(6.13)

According to [Vaughan et al., 1992] normal yaw rotation in the pelvis is around ±18◦.
However this is on a normal human and the rotation affect the stability, which is why
several different values have been tested. The constraints for the pelvis rotation can be
seen in Equation (6.14) and Equation (6.15).

−4.5◦ ≤ θ16(t) ≤ −18◦ , t = t1 and t2
4.5◦ ≤ θ16(t) ≤ 18◦ , t = t4

(6.14)

θ̇16(t2) = 0

θ̇16(t4) = 0
(6.15)

The trajectory for the movement of the torso in the transverse plane is quite simple,
since it is only moved during DSP, i.e. the CoM is moved from right leg to left leg.
Figure 6.3(a) on page 108 and Figure 6.4 on the facing page shows sketches of how the
torso is placed in the transverse plane.

The constraints for the torso movement in the sagital plane which is in the x-directions
is listed in Equation (6.16) and in Equation (6.17).

xt(t) = −lat − 0.5lstep + xtmax , t = t1
xt(t) = −latxtmax , t = t2 and t3 and t4

(6.16)

where:
xt(t) is the movement of the torso in the x-direction during Tstep.
lat is the transverse distance between the ankle and toe.
xtmax is the length in the x-axis from the torso to the right foot.

ẋt(t1) = 0
ẋt(t2) = 0

(6.17)

In order to obtain a good stability, xtmax has been tested in a interval given in
Equation (6.18).

Instrumentation, Modeling and Control of AAU-BOT1

Establishing Trajectories for AAU-BOT1 111

ytmin

ytmid

x
y

z

Figure 6.4: Sketch of the AAU-BOT1 seen from the front.

0.4lstep ≤ xtmax ≤ 2.3 (6.18)

The constraints for the torso movement in the y-directions is listed in Equation (6.19)
and in Equation (6.20).

yt(t) = −ytmid − ytmin , t = t1
yt(t) = −ytmid + ytmin , t = t2 and t3 and t4

(6.19)

where:
yt(t) is the movement of the torso in the y-direction during Tstep.
ymid is the distance from center of the pelvis to one hip.
ytmin is the length in the y-axis from the torso to the right foot.

ẏt(t1) = 0
ẏt(t2) = 0

(6.20)

In order to obtain a good stability, ytmin has been tested in a interval given in
Equation (6.21).

0.9ymid ≤ ytmin ≤ 1.5ymid (6.21)

Group 08gr1032b

112 Trajectory generation

6.3.6 Start and Stop Trajectory

To ensure that the AAU-BOT1 is not unstable during the start of a walk trajectory
and in the end of a trajectory, a special trajectory has to be generated for the static gait
and the dynamic gait. The start trajectory moves the robot from initial position, to a
path that leads into the chosen trajectory. The trajectory starts very slow, such that it
has high stability. When the start trajectory is generated, the stop trajectory is just the
inverse of it. The design and implementation of it will not be mentioned further to avoid
replications.

6.4 Simulation and Results of Trajectory Generation

This section contains the simulation results of trajectory generation only for the static
gait simulations.

In order to find the best trajectory for static gait 2181 different trajectories has been
simulated. Each simulation used the Inverse kinematic Model and the kinematic Model
to evaluate the GCoM. As mentioned in Section 6.3.1 on page 102 the toe feature has
been disabled to increase the Support Area. At each simulation the stability margin and
stability index for the entire trajectory is measured. The trajectory for AAU-BOT1
is simulated at a walking speed of 0.002m

s , however to reduce the simulation time, the
walking speed will be 0.06m

s and it will still be static gait. Figure 6.5(a) shows the
result of the stability margin. As is can be seen most of the trajectory simulations are
stable through the entire simulation. To find the best trajectory out of all simulations,
the trajectory with the highest stability margin and the highest is chosen. The best
trajectory has stability index 414 and a stability margin at 0.0475m.

0 500 1000 1500 2000 2500
−0.01

0

0.01

0.02

0.03

0.04

0.05

Simulation number

[m
]

d

i,stabMarg

Max d
i,stabMarg

(a) Stability margins during all simulations.

0 500 1000 1500 2000 2500
280

300

320

340

360

380

400

420

Simulation number

S
ta

bi
lit

y
in

de
x

stabIndex
stabIndex

max

(b) Stability indexs during all simulations.

Figure 6.5: Stability during all simulations.

The parameters that is used to design the best trajectory can be seen in Table 6.3 on
the next page

Instrumentation, Modeling and Control of AAU-BOT1

Simulation and Results of Trajectory Generation
113

Table 6.3: Parameters from the best trajectory
Parameters/results Values
Torso x-direction displacement, xtmax 0.13m
Torso y-direction displacement, ytmax 0.182m
Torso max/min angles, θ16 ±12.86◦

Arm max/min angle, θarm ±60◦

Simulation number 1062
Max stability margin, d1062,stabMarg 0.0475m
Max stability index, stabIndexmax 414

Each simulation is only simulated for Tcycle. The different phases during one the
simulation can be seen at Figure 6.6. Note that the used simulation walking speed is
0.002m

s . Only simulation for 1 step cycle is in the following graphs.

0 5 10 15 20 25 30 35 40 45
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Time [s]

P
ha

se
s

1 = SSP_R, 2 = SSP_L, 3 = DSP_R, 4 = DSP_L

Figure 6.6: The different phases during simulation of the best trajectory.

Figure 6.7(a) on the next page is the resulting ZMP trajectory in the x-direction and
Figure 6.7(b) on the following page is the resulting ZMP trajectory in the y-direction.
The minimum margin for the ZMP point to the SA edge is 0.0475m. As expected the
ZMP is moved from one foot to the other during DSP.

Group 08gr1032b

114 Trajectory generation

0 10 20 30 40 50
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Time [s]

X
−

di
re

ct
io

n
[m

]

ZMP in X direction
SA edges in X−direction

(a) X values of ZMP during Tcycle

0 10 20 30 40 50
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Time [s]

Y
−

di
re

ct
io

n
[m

]

ZMP in Y direction
SA edges in Y−direction

(b) Y values of ZMP during Tcycle

Figure 6.7: ZMP during Tcycle

Figure 6.8 is a graph of the movement in the x-direction for the ankles and the torso
during the best trajectory. Figure 6.9 on the facing page is the movement of the torso
and the ankles in the y-direction. As it can be seen at the figure, the torso joint, θ16, has
to be move further than the ankles in order to obtain the best trajectory. This can be a
problem if the physical constraints of AAU-BOT1limit this action shown in Figure 6.8,
this information is however not obtained due to time constraints. The green graphs are
the right ankle and the red graphs are the left ankle.

0 10 20 30 40 50
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Time [s]

X
 d

ire
ct

io
n

[m
]

Left ankle
Right ankle
Torso

Figure 6.8: Ankles and Torso movement in the x-direction during Tcycle.

Instrumentation, Modeling and Control of AAU-BOT1

Simulation and Results of Trajectory Generation
115

0 10 20 30 40 50
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Time [s]

Y
−

di
re

ct
io

n
[m

]

Left ankle
Right ankle
Torso

Figure 6.9: Ankles and Torso movement in the y-direction during Tcycle.

Figure 6.10 is a graph of the movement of the torso and ankles in the z-direction
during the simulation of the best trajectory. As is can be seen the torso moves up during
DSP and down in SSP. This is very similarly to what humans do during static gait. The
ankle also moves as expected, which means that the right ankle is move first and the left
ankle is moved secondly.

0 10 20 30 40 50
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time [s]

Z
−

di
re

ct
io

n
[m

]

Left ankle
Right ankle
Torso

Figure 6.10: Ankles and Torso movement in the z-direction during Tcycle.

The resulting maximum ankle joint angles can be seen in Table 6.4 on the next page.
It is specially the pitch angle, θ3 and θ13, that are high. The maximum pitch angles
occurs when the ankles are at the maximum height at time 14.5 and 40 sec as shown on
Figure 6.10. This is because the inverse kinematic always will try to set the feet level.
However in order to create a trajectory that is the most stable for AAU-BOT1, further

Group 08gr1032b

116 Trajectory generation

information about the weight distribution and maximum joint angles constraints on the
physical AAU-BOT1 must be obtained.

Table 6.4: Max ankle roll and pitch angles during simulations
Joint # Max pos. rotation [degree] Max neg. rotation [degree]

2 16.52◦ -17.97◦

3 37.64◦ 5.18◦

12 -5.19◦ -38.47◦

13 16.52◦ -18.11◦

Figure 6.11 shows a graph of the rotation of the arms and the torso. During all
simulations it was verified that the arms do not affect the stability much. As is can been
seen there is a maximum rotation on ±12.86◦. Which means a small rotation in the torso
does increase the stability.

0 10 20 30 40 50
−60

−40

−20

0

20

40

60

Time [s]

R
ad

ia
ns

Left arm rotation
Right arm rotation
Torso rotation

Figure 6.11: Arms and Torso rotations during Tcycle.

6.5 Summary of Trajectory Generation

This chapter describes how to create a trajectory for AAU-BOT1 that has the highest
stability. It also describes different approaches that can be used to derive dynamic gait
in simulation and static gait trajectories.

Deriving a dynamic model in such extent that it is accurate enough to obtain a correct
ZMP, has proved to be hard. This means that only a method to design dynamic gait
trajectories has been derived.

It has been possible to obtain from the test, the best static gait trajectory. The
trajectory has been tested in simulation and at AAU-BOT1. The test of the trajectory
on AAU-BOT1 can be found in Section 8 on page 143. The best found trajectory,
i.e. the most stable trajectory, had a high stability margin, which means that the ZMP
during the entire simulation is not closer than 0.0475 m to the edge of the Support

Instrumentation, Modeling and Control of AAU-BOT1

Summary of Trajectory Generation 117

Area. Unfortunately it was not possible to measure the energy consumption during the
simulation, due to the incomplete dynamic model, so it cannot be guaranteed that the
found trajectory is the most energy efficient. The used method to detect the Stability,
i.e. by using the stability margin and the stability index is efficient. The method can
be used to detect whether the trajectory is stable. However a problem occuredduring
the simulation of the best trajectory, since AAU-BOT1 is designed to be able to walk
dynamic gait and not static gait. I.e. it has limited joint angles and that the best
trajectory exceeds these limits. However accurate knowledge about the angle limits and
the weight distribution on the physical AAU-BOT1has to be obtained before these can
be used for simulation and a evaluation can be done.

Group 08gr1032b

118 Trajectory generation

Instrumentation, Modeling and Control of AAU-BOT1

Chapter 7

Control

This chapter describes the development of two different controller strategies which both
have the same main objective. The main objective can be split up into two parts, the first
part is to control the joint angles such that the trajectories are tracked, this is called a pos-
ture controller. The next part is the balance controller that tracks the GCoM trajectories
at all time and ensures that the robot is operating within the support area, this is called
a ZMP controller. The controller strategies are tested and verified in three stages. The
first stages is to test the controllers toward the developed model in Simulink. Hereafter
the controller strategy is verified on the virtual robot in Webots. The last verification is
done on the actual AAU-BOT1. The controllers are verified to the extent it is possible,
as one controller may be dependent of another controller in the control strategy.

7.1 Controller Structure

By now an overall model for the robot has been derived, and furthermore the inverse
kinematics and the trajectories for the robot has been developed. The trajectories is
based on the model and throughout the derivation the stability has been in focus. This
was done by making sure that GCoM is inside the support area. The inverse kinematic
and the trajectories has been used together to derive the preplanned motion patterns
for each joint. This will be called the ”pre-generated posture trajectory”. Along with
the posture trajectory a trajectory for the GCoM is derived. It is crucial that the robot
keeps its GCoM close to this pre-generated GCoM trajectory or it can cause the robot
to tip over the edge of a foot.

Many different control strategies are pursued when browsing through the biped robot
literature. The strategy on inexpensive commercial toy robots are often the same, they
usually run from a macro and can only do preprogrammed movements, usually little
control is combined with these robots.

A more interesting approach can be seen in [Kondak and Hommel, 2003b], where a
5 DoF biped robots is simulated. The angular acceleration in this approach is used as a
control reference and by converting this input with an inverse dynamical model the torque
in each joint can be calculated. Two controllers are implemented. The first controller is
a nonlinear feedback controller that linearize and decouple the nonlinear system where
it uses the dynamic model to calculate the joint torques, given the angular acceleration.
The other controller is three PD controllers, they are used to control the position of the
motors. The input are the positions from the kinematic transformation and the output

119

120 Control

are the angular acceleration which is the input to the nonlinear controller. The output
from the system is the angular velocity and position, these are used by the PD controllers
as feedback.

Another control strategy is seen in [Bachar, 2004], where it is described how ZMP
controller is used to retain balance even if exposed to external disturbance. The idea is
to utilize the inverse Jacobian to describe the ZMP position based on the generalized
coordinates. Thereby it is possible to move ZMP in any desired direction. If this idea is
used to ensure that ZMP is within the Support Area then stability is ensured.

7.1.1 Controller Strategies

As stated in the problem formulation 1.4 on page 17 this master’s thesis concentrates on
obtaining static gait. However since AAU-BOT1 is a long term project scheduled to
finish in year 2010, the possibilities for dynamic gait is also exploited to some extent in
this master’s thesis as well.

With the above considerations taken into account, it has been chosen to develop two
posture controller strategies.

Control Strategy A utilizes the knowledge obtained in the dynamic model, to gener-
ate a model based controller, see Figure 7.1. This strategy depends heavily on a
correct dynamic model, and is harder to verify due to its high complexity. The
reference scaling Nx and Nu ensures a steady state gain of 1 from the reference
position to the steady state position. A Kalman filter is implemented to observe all
observable states in the system and minimizes noise. The states are then utilized in
a feedback control loop together with a posture controller that ensures the system is
in the correct position. The reference to the posture controller is the pre-generated
posture trajectory from Section 6. The balance is monitored and controlled by the
ZMP controller. This controller enables AAU-BOT1 to stay balanced by using
the waist joints 16 and 17 during gait. Control Strategy A is most likely not to be
implemented on actual system as a number of key parameters such as the masses,
inertia, friction and CoM are not known. Before this can be done the hardware
implementation on the AAU-BOT1 has to be done, the new hardware setup has
to be implemented in SolidWorks, which can derive most of these parameters. This
means that this control strategy only will be used to control the simulation.

Control Strategy B utilize the build in position control loops in the EPOS amplifiers
and the Webots simulation, see Figure 7.2. This is a big advantage as this inner po-
sition control loop will have higher sample rate on AAU-BOT1 (1 ms [Maxon Motors,
2007a]) and will utilize noncausal [Cyberbotics Ltd., 2008] features in Webots. The
disadvantage is that the dual axis motors are not supported, and those joints still
have to be current controlled. Note that the ZMP controller in this strategy uses
custom model for obtaining the torso roll and pitch states. Since this is a rela-
tively small model the derivation from start to end can be observed. This is not
feasible for the complete model as this model contains 38 states, 17 inputs and 38
outputs. Nx and Nu is reference scaling that ensures a steady state gain of 1 from
the reference to the state.

In the following the two controller strategies are derived and discussed.

Instrumentation, Modeling and Control of AAU-BOT1

Control Strategy A 121

Pre−generated
Posture

trajectorie

ZMP
controller

Nu

Nx
Posture

controller
AAU−BOT1

ZMP
estimator

Kalman
estimator

[16,17]

Supervisor

Phase
estimator

Pre−generated
ZMP

trajectorie

Figure 7.1: Control strategy A.

Pre−generated
ZMP

trajectorie

ZMP
controller

Nu

Nx
Torso

controller

ZMP
estimator

Kalman
estimator

[16,17]

Supervisor

AAU−BOT1
Pre−generated

Posture
trajectorie

Position
controller

[16,17]

[2,..13,15,18,19]

Figure 7.2: Control strategy B.

7.2 Control Strategy A

This section describes the first control strategy, which involves two independent con-
trollers: one ensures that the joints of the robots is in the correct position and the other
ensures stable balance.

7.2.1 Posture Control

This controller is necessary in order to follow a trajectory, or just to stand in an up-
right position. The layout for the posture controller can be seen in Figure 7.3. The

Group 08gr1032b

122 Control

control reference to this control strategy is the angles from the trajectory. The input
to the AAU-BOT1 is torque and the output is the angles of the joints. The feed-
back control consists of a gain matrix calculated on background of a Linear Quadratic
Regulator (LQR) weight performance function and two reference scaling matrices. This
feedback controls the model by using the predicted states from the Kalman filter. With
the Kalman filter and LQR controller together they form a Linear Quadratic Gaussian
(LQG) controller [Dutton et al., 1997]. Before the actual values can be calculated, some
requirements have to be satisfied.

Posture
trajectorie

Nu

Nx KLQR AAU−BOT1

Kalman
filter

Figure 7.3: The posture controller setup; a LQR controller together with a Kalman filter
forms the LQG controller.

Prerequisites

To perform the control strategy some properties have to be complied in order to be
sure that the system can be controlled and observed. To test for controllability and
observability the state space representation of the robot, derived in Section 5.5.2, is
needed. The state space system consist of the A matrix which is (n,n), the B matrix is
(n,m), the C is (m,n) and D matrix is (n,m) and can be seen in Equation (5.29). First
controllability is checked. One way to determine whether a system is controllable, is
to check whether the controllability matrix has full rank. Furthermore the system has
to be stabilizable, for a control design to result in something usable. To check whether
the system is controllable the sensitivity matrix method can be used as described in
[Dutton et al., 1997] and can be seen in Equation (7.1).

s(λi) = [(A − λiI), B] i = 1, 2, 3...n (7.1)

where:
λi is the eigenvalues of the system
A is a 38x38 system matrix
B is a 38x19 input matrix

If the rank of s(λi) is n, the state is controllable, but if rank(s(λi)) < n the state is
uncontrollable. In order for a system to be stabilizable all the uncontrollable states must
be in the left half plane and all states with poles in right half plane must be controllable.

Instrumentation, Modeling and Control of AAU-BOT1

Control Strategy A 123

This means that all the unstable poles can be moved to the left half plane by using
control feedback. By applying the method using MatlabTM yields the following:

rank(s(λi)) = 38 i = 1, 2, 3...n (7.2)

Equation (7.2) states that all the modes are controllable, hence feedback control can be
applied to stabilize the system.

The same procedure as mention above for the controllability can be used to check
whether the system is observable. The sensitivity matrix for observability can be seen in
Equation (7.3)

o(λi) =

[
(A − λiI)

C

]

i = 1, 2, 3...n (7.3)

where:
λi is the eigenvalues of the system
A is a 38x38 system matrix
C is a 38x19 output matrix

If the rank(o(λi)) = n the state is observable, but if rank(o(λi)) < n the mode is
unobservable.

rank(o(λi)) = 38 i = 1, 2, 3...n (7.4)

With full rank the system can be observed and an observer can be applied to the
system.

Linear Quadratic Regulator

The LQR can be used to design an optimal feedback controller to a linear model. The
controller is based on regular state space feedback topology. The input to the system
is the error between the reference multiplied by the gain matrix generated by the LQR
method. The system used to calculate the LQR gains is the linearized state space rep-
resentation of the AAU-BOT1. The model has been linearized in the working point
where the AAU-BOT1 is standing in an upright position, with all angles equal to zero
as seen in Figure 7.4.

As it can be seen in the figure the model is derived for two phases. SSP-R can be
seen in Figure 7.4(a) and the SSP-L can be seen in Figure 7.4(b). It looks like the model
is in DSP when linearized, but this is not the case. DSP can be obtained by combining
the the SSP models as described in Section 5.5 on page 83. The controllers for the two
models are done analogously, and by describing the development of the first controller for
the SSP-R model will automatically generated parameters used for the second controller.
Here the development of the controller for the model in SSP-R will be described.

In Figure 7.5 the pole-zero map of the linearized model in SSP-R can be seen. The
Figure shows multiple poles close to zero and the imaginer axis, and a number of poles
in the right half plane. The feedback controller must move these poles to the left half
plane to stabilize the system.

Since the discrete model is needed a Zero Order Hold (ZOH) is used with a sample
time Ts=0.004. The discrete system is on the form as shown in Equation (7.5).

X(k + 1) = ΦX(k) + ΓU(k) (7.5)

Group 08gr1032b

124 Control

YX

Z

(a) Single support phase right.

YX

Z

(b) Single support phase left.

Figure 7.4: The working point for the linearized model in both phases.

The feedback control law is defined as in Equation (7.6)

U(k) = −L(k)X(k) (7.6)

The performance function used in the LQR design is defined in equation (7.7), as-
suming H is quadratic in u(k) and x(k) [Sørensen, 2007].

IN
i =

N∑

k=i

H(X(k), U(k))

=

N∑

k=i

(X ′(k)QX(k) + U ′(k)RU(k)) (7.7)

−50 −40 −30 −20 −10 0 10 20 30 40 50
−20

−15

−10

−5

0

5

10

15

20

Pole−Zero Map

Real Axis

Im
ag

in
ar

y
A

xi
s

Figure 7.5: Pole-zero map of linear system.

Instrumentation, Modeling and Control of AAU-BOT1

Control Strategy A 125

where:
Q is the weight matrix on the state vector (n, n).
R is the weight matrix on the output vector (m, m).

The design process derives control signals that will minimize the performance function
from Equation (7.7). The optimal controller is calculated given the set of weights (Q
and R). This is done by recursively calculating the values of L(k).

In order to choose these proper weights a certain knowledge of the system is needed.
The first noticeable thing about this system is the great amount of cross coupling. A
change on one state can cause multiple other states to move as well. States that rotate
around one axis are most likely to influence other states rotating around the same axis.

The weights should be weighted more on those states that contain the largest process
noise and are more influenced by other states. Since this is the model for SSP-R the first
joints in the kinematic are more influential and therefore they have to be weighted higher
than the joints in the end of this kinematic chain. Two different types of weights have to
be chosen. Q in Equation 7.8 contains both weights for the position and velocity. R from
Equation (7.9) contains the control signal weights. Generally the position and velocity
can be weighted higher if a more accurate system is wanted. If a fast system is needed,
the control signal can be weighted higher. For this LQR controller, the weights on the
states are higher since an accurate controller is wanted, further more the weights on the
states in the beginning of the kinematic chain is weighted higher. The chosen weights
for the linear model can be seen in the following two Equations:

Q =diag([330000 180000 600000 18000 980000 800000 400800 900000 900000

1080000 880000 80000 500000 1800 800000 950000 180 100000

100000 60000 10 90050 40000 500000 250000 255000 20000 300000

400000 5085 9040 50000 600 8000 100000 20005 16080 16080]) (7.8)

R =diag([35 25 10 30 25 20 20 500 15 2.5

80 3000 3000 10 100 20 35 325 325]) (7.9)

With these weights the LQR method can derive a feedback gain matrix such that the
linear model can perform steps on one state and suppress cross coupling to a minimum.

Reference Scaling To use the output from the inverse kinematics, a scaling of the
input to the model is needed. This scaling is derived such that the DC-gain from the
position of the trajectory to the torque for the model can be considered a one. These
scaling parameters are calculated with the MatlabTM command refi.m and takes the
model and a Hr matrix that defines which states that can be controlled as input. The
command generates two gain matrices Nx and Nu. Nx is the scaling to the states and
Nu is the scaling of the input.

Before the developed LQR controller together with the reference scaling can be tested
the Kalman predictor must be derived.

Kalman Filter

In order to reduce the noise on the angular velocities from the AAU-BOT1, a Kalman
filter is implemented, see Figure 7.6. A high precision measurement of the angular
velocities are important due to the fact that the LQR controller uses them in the feedback.
The Kalman filter design is based on [Grewal and Andrews, 2001]. A Kalman filter

Group 08gr1032b

126 Control

Posture
trajectorie

Nu

Nx KLQR AAU−BOT1

Z−1

KkΦ

Γ H

Figure 7.6: The LQG controller.

consists of two steps:

• Predict step:

~̂x−
k = Φ~̂xk−1 + Γ~uk−1 (7.10)

P−
k = ΦP k−1Φ

T + Q (7.11)

• Update step:

Kk = P−
k HT (HP−

k HT + R)−1 (7.12)

~̂xk = ~̂x−
k + Kk(zk − H~̂x−

k) (7.13)

P k = (I − KkH)P−
k (7.14)

where:
~̂xk is the estimated value of the state at the time k
Φ is the discrete value of the A matrix
Γ is the discrete value of the B matrix
H is the discrete value of the C matrix
~uk is the input at time k
P k is the error covariance matrix at time k
Q is the noise on the states
Kk is the Kalman filter feedback at time k
R is the noise on the measurements
zk is the output of AAU-BOT1 at time k

A caret (ˆ) denotes an estimated value and a minus (−) denotes an internal variable in
the Kalman filter. The Q matrix is set to 10−5 ·I and the R matrix is set to 10−5 ·I. The
Kalman filter is implemented and verified with the rest of the controller in Appendix B.1.

Verification

The verification is done in a number of steps and is described thoroughly in Appendix
B.1. Here the linearized model was verified with the LQG controller without problems.

Instrumentation, Modeling and Control of AAU-BOT1

Control Strategy A 127

Hereafter the nonlinear model was verified with the LQG controller, this did not work
initially and the Kalman filter was disabled in order to test the LQR controller. With
this attempt the nonlinear model could be stabilized. The Kalman filter was enabled
again and the weights on the position states was increased. The weights increased most
are those states which are more affected by other states. In Equation (7.15) and (7.16)
the new weights are found.

Q =1010diag(·[830000000000 180 10000 580 9200000000 100 20 10 70

90.8 50000 100 1000 1.8 100 15 100 9 9 0.00006

0.000000001 0.00009 0.000004 0.0005 0.00000025 0.00000755

0.0002 0.00003 0.000004 0.00000205 0.0000091

0.00001 0.00006 0.00008 0.0005 0.0000002 0.00000002 0.00000002]) (7.15)

R = diag([35 25 10 30 25 20 20 500 15 2.5

80 3000 3000 10 100 20 35 325 325]) (7.16)

The weights on the position is roughly increased by a factor 1010 in order to stabilize
the nonlinear model with the LQG controller. These are a very large weight values, and
this can only be done because the model assume that the supporting foot is fixed to the
ground. These high values can not be used on the actual system nor on the virtual robot,
as the supporting foot of the AAU-BOT1 is not fixed to the ground. In Figure 7.7(a)
and (b) two steps are performed on the nonlinear model.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−8

−6

−4

−2

0

2

4

6

Step performed on right ankle roll
2
 with LQR control and kalman filter on nonlinear model

Time [s]

A
ng

le
 [d

eg
re

e]

1,..,19

2
θ

θ

θ

(a) Step on θ2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−4

−2

0

2

4

6

8

Step performed on the left arm
19

 with LQR control and kalman filter on nonlinear model

Time [s]

A
ng

le
 [d

eg
re

e]

1,..,18

19
θ

θ

θ

(b) Step on θ19

Figure 7.7: Steps performed on the nonlinear model with LQR controller and Kalman
filter.

The first step in Figure 7.7(a) shows a step of 5 degrees on θ2 ankle roll. This shows a
significant steady state error, both on the states that should be zero and on the stepped
state. The same is valid for the step on θ19 the arm, where a steady state error is present
on most of the states.

Even though the LQG controller is able to stabilize the nonlinear model, it was not
possible to stabilize the Webots representation of AAU-BOT1. As stated before the
weights used for the nonlinear model was not suitable for the virtual robot nor the actual

Group 08gr1032b

128 Control

system, since they both contain an extra joint. Initially the Webots representation of
AAU-BOT1 was tested by increasing the size and weight of the supporting foot. This
was done to imitate the model in SSP as truly as possible. Problems occurred when
doing this. The supporting foot can only be so heavy since the solid foot will penetrate
through the floor and fall into the virtual eternity. The large supporting solid foot is set
to 100 kg this is larger than the rest of the robot 68.5 kg. This setup ensures that the
virtual robot does not fall through the floor. Even a large heavy weight foot was not
enough to disable the extra joint between the virtual robot and the floor.

Instead of testing the SSP-R model on the virtual AAU-BOT1 in Webots, the DSP
model is implemented and tested instead. This is done as described in Section 5.5. The
models both for SSP-R and SSP-L is used to derive two LQG controllers, the output
from the two controllers are weighted by a factor that is calculated on basis of how much
the AAU-BOT1 is in one or another phase. For test purpose only the weight factor is
chosen to 0.5 this means that both phases are weighted equal when in DSP.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−400

−300

−200

−100

0

100

200

300

400

500

600
LQR controller and kalman filter on the Webots representation of the robots

Time [s]

A
ng

le
 [d

eg
re

e]

1,..,19
θ

Figure 7.8: Zero step on the Webots representation of the robot.

In Figure 7.8 it can be seen that the controllers try to stabilize the virtual AAU-
BOT1, and at roughly 0.5 s the states are to far from the working point for the Kalman
estimator to give a proper state estimate, and the system becomes unstable.

7.2.2 ZMP Controller

The ZMP controller is proposed such that AAU-BOT1 can remain balanced during
walk. The input to the ZMP controller is the error between the pre-generated ZMP
trajectory and the estimated ZMP. As mentioned in the beginning of the chapter the ZMP
controller can unfortunately not be derived and verified without the posture controller,
and since the posture controller failed to stabilize the Webots model, the ZMP controller
is not developed further in Control Strategy A.

7.3 Control Strategy B

This second control strategy is proposed to utilize the build in position controller in the
EPOS amplifiers. Also the build in feature of a position controller in Webots is utilized.

Instrumentation, Modeling and Control of AAU-BOT1

Control Strategy B 129

7.3.1 Posture Controller

The posture controller in this control strategy consist of 17 classical controllers, one for
each actuated joint. The input to the controllers is the error between the pre-generated
posture trajectories and the actual position of the robots.

Webots representation of AAU-BOT1

The virtual robot in Webots is implemented with the default controller found in Webots.
This controller is not a usual P controller, known from classical control theory.

In Webots position control can be considered in three steps[Cyberbotics Ltd., 2008].
The first step is to determine which angle the controller should be in. This is determined
by the proposed trajectories. The second step is performed by the build in proportinal
controller that computes the current velocity Vc as shown in Equation (7.17). The third
step is carried out by the Open Dynamics Engine (ODE). At every simulation step the
P controller calculates the current velocity Vc by the following equation:

Vc = Pgain(Pt − Pc) (7.17)

The current velocity is the control input to the ODE. The way the ODE handles the
control input are described in [Smith, 2006]. Here it is stated that the torque is calculated
by effectively looking one time step into the future and thereby calculate the needed
torque to obtain the desired velocity. This ensures that the joint is brought up to speed
in one time step, provided that it does not take more torque than allowed. This feature
is computationally expensive, but is robust and stable. As regular control does not look
one time step into the future and calculate the necessary torque, this controller in Webots
can not be compared directly with a regular classical P controller. It is however chosen
to use the build in controller in Webots since the posture controller in Control Strategy
A could not stabilize Webots by using torque as input.

A control proportional gain of 10 and a max torque of 150 Nm are used when the two
steps are performed on the virtual robot in Webots and can be seen in Figure 7.9.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

0

1

2

3

4

5

6

Step performed on right ankle roll
2
 with LQR control and kalman filter on nonlinear model

Time [s]

A
ng

le
 [d

eg
re

e]

1,3,4,6,..,19

2

5
θ

θ

θ

θ

(a) Step on θ2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

0

1

2

3

4

5

Step performed on the left arm
19

 with LQR control and kalman filter on nonlinear model

Time [s]

A
ng

le
 [d

eg
re

e]

1,..,18

19
θ

θ

θ

(b) Step on θ19

Figure 7.9: Steps performed on the virtual robot. The joints share the same dynamic
due to the Webots controller.

The first steps can be seen in Figure 7.9(a) where a step of 5 degree on ankle roll is
performed. Here it is possible to see that 150 Nm is not enough for θ5 to stay in zero.

Group 08gr1032b

130 Control

The virtual robot is in DSP at all time during this test. The net step is on the left arm
and is also of 5 degree. Here is can be seen that it settles after approximately 0.5 seconds.
This is a convenient rate, it is important that the system is not to fast as the system is
greatly influenced by cross couplings, and if the arm moves to fast can cause the body
to moved unwanted. The posture controller for Webots are now configured and performs
satisfying.

AAU-BOT1

This section describes the use of the EPOS amplifiers, when using them as part of the
posture controller. The information used in the setup comes from [Maxon Motors, 2007a]
and [Maxon Motors, 2007b]. The controller has to be versatile such that it can be used
in both SSP-R, SSP-L and DSP. This is necessary to avoid changing controller gains
during operation.

The general control strategy of the EPOS amplifiers can be seen in Figure 7.10. Profile
Position Mode uses two parts of it:

• Position Control loop, generating the Current demand value

• Trajectory Generator generating the Position demand value.

Figure 7.10: Control Strategy of the EPOS amplifiers. The Position demand value
and the Velocity demand value are generated by the Trajectory Generator, the Current
demand value is taken directly from a command (see Appendix J). Only one demand
value is used at a time. [Maxon Motors, 2007a]

Position Control loop: The Position Control loop has the structure seen in Fig-
ure 7.11. The control parameters in Figure 7.11 is listed along with their attributes in
Table 7.1. In addition to a classical discrete PID regulator, the Position Control loop
consists of two Feed Forward constants

Instrumentation, Modeling and Control of AAU-BOT1

Control Strategy B 131

Figure 7.11: Block diagram of the Position Control loop. [Maxon Motors, 2007b]

• Kω: Velocity Feed Forward Factor, that compensates for viscous friction.

• Kα: Acceleration Feed Forward Factor, that compensates for the moment of inertia
and provides additional current in case of a high acceleration.

By adding these two to the transfer function, the DC motor model becomes:

θ̈J = iKt − µθ̇ − τc − τL + Kαθ̈Kt + Kωθ̇Kt, (7.18)

which means that if the Feed Forward parameters are chosen using Equation (7.19)
and (7.20), the PID regulator is less sensitive to high values of µ and J .

Kα = J/Kt · 100 (7.19)

Kω =
30

π

∆I

∆θ̇
(7.20)

As KP , KI and KD are discretisized values of a PID controller, they are converted to
continuous values using the EPOS sample time TS = 0.001:

KP /kSP = 100
mA

kSPksqc

1

kSP

= 100 ·
0.001

4 · 2 · 1
512·4

1

4
= 6.4 (7.21)

KI/kSI = 10
mA

kSIksTSqc

1

kSI

= 10
0.001

32 · 2 · 0.001 · 1
512·4

1

32
= 10 (7.22)

KD/kSD = 200
mATS

kSDksqc

1

kSP

= 100
0.001 · 0.001

1 · 2 · 1
512·4

1

1
= 0.2048 (7.23)

Group 08gr1032b

132 Control

Table 7.1: Control parameters of Profile Position Mode.
Symbol Name Value Unit
kSP Input scaling of P-Gain 4 []
kSI Input scaling of I-Gain 32 []
kSD Input scaling of D-Gain 1 []
ke Encoder pulse no. 512 ticks
ks Encoder scaling 2 []
P Position [qc]= 1

ke·4

KP Position Regulator P-Gain 100† mA
kSPksqc

KI Position Regulator I-Gain 10† mA
kSIksTSqc

KD Position Regulator D-Gain 200† mATS

kSDksqc

Kω Velocity Feed Forward Factor 1600† µA
rad/s

Kα Acceleration Feed Forward Factor 1000† µA
rad/s2

†: Default setting of the editable parameters.

The value of KI is a considered a bit high compared to KP , however the limits on the
acceleration and velocity in the EPOS amplifiers can change the total transfer function
of the DC motor to something that has a benefit of a high I-Gain. Implementing the
controller on the DC motor model for the arm yields the step response seen in Figure 7.12.

Trajectory generator: To provide the input to the Position Control loop, the refer-
ence input is fed into a Trajectory generator, which generates a trajectory based on the
following configurable parameters:

• Maximum Velocity

• Maximum Acceleration

• Maximum Deceleration

• Trajectory shape

By submitting the left arm to a 10◦ step yields the result seen in Figure 7.13. Due to
the fact that this step response is stable, has a steady state error of 0% and is relatively
fast, it is chosen not to change the settings of the EPOS amplifiers. By submitting all
the joints to a step, it is seen that this response is universal for all the joints.

Double Actuated Joints: The intention with double actuated joints is to distribute
the torque of a joint evenly amongst two DC motors. To demonstrate the problem, a
test has been made on the left knee with both amplifiers in Profile Position mode, see
Figure 7.14. To use the double actuated joints, three different control approaches has
been considered:

1. The first solution is using a feature in the EPOS amplifiers called "‘Master encoder
mode"’. This basically works by having one motor as a master motor which receives
the reference signal from an outer control loop. The second motor receives its

Instrumentation, Modeling and Control of AAU-BOT1

Control Strategy B 133

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

2

4

6

8

10

12

14

Time [s]

A
ng

le
 [°

]

Figure 7.12: Step response of the DC motor model with the implemented Position Control
loop. The step response is nonlinear due to the fact that it is submitted to the nonlinear
DC motor model derived in Chapter 5.3 and parameter estimated in Appendix A.1,
which has a high coulomb friction.

0 0.5 1 1.5 2 2.5
−2

0

2

4

6

8

10

12

A
ng

le
 [

°]

Time [s]

u

pos 17

θ
rel 17

Figure 7.13: Step response of the left arm by submitting it to a step of 10◦, with both
the trajectory generator and the Position Controller activated.

Group 08gr1032b

134 Control

reference signal from the master motors encoder signal and follows this signal as
fast as possible. This feature would be very easy and straight forward to use as it
is already incorporated in the EPOS amplifiers. However, the synchronous motors
are interconnected by a belt and if even a small bias occur in the encoders or small
elasticity is present in the belt then this means that the motors are not running
completely synchronous, resulting will be that one motor is doing most the work
and the slave motor would just follow the first motors without contributing with
torque, before the first motor encounter its torque limit.

2. The second solution is to use the Current Mode controller in the EPOS amplifiers.
Due to the fact that the torque is derived directly from the current and angular
velocity, the controllers in the EPOS amplifiers should not counteract each other
using this procedure.

3. The third solution is to turn off one of the motors, thus making it a single actuated
joint.

Due to the fact that the Hardware Supervisor was not implemented at the time of the
controller testing, the dual actuated joints has not been verified and designed for control
Strategy B. Thus, the double actuated joints are actuated with a single motor (Control
approach # 3) to avoid that the amplifiers on the double actuated joints will counteract
each other. This yields the step response seen in Figure 7.15.

0 5 10 15 20 25 30
−4

−2

0

2

4

C
ur

re
nt

s
[A

]

i
4

i
20

0 5 10 15 20 25 30
−2

0

2

4

6

8

10

12

Time [t]

A
ng

le
 [°

]

Control Signal
θ

4
θ

20

Figure 7.14: Measurement from step input test on the right knee with both motors
activated.

7.3.2 Verification of Position Controller for Control Strategy B

Control strategy B is verified in Appendix B.2.3. All the controllers are stable and has
a steady state error of 0. By submitting joint #2 and joint # 19 to a step of 3◦ and

Instrumentation, Modeling and Control of AAU-BOT1

Control Strategy B 135

0 5 10 15 20 25 30
−5

0

5

C
ur

re
nt

s
[A

]

I
4

I
20

0 5 10 15 20 25 30
−2

0

2

4

6

8

10

12

Time [t]

A
ng

le
 [°

]

Control Signal
θ

4
θ

20

Figure 7.15: Measurement from step input test on the right knee with only one motor
activated.

5◦, respectively, yields the step response seen in Figure 7.16. Control Strategy B is
considered to be working, and will be used in the final test of submitting the trajectories
to AAU-BOT1.

Group 08gr1032b

136 Control

0 1 2 3 4 5 6 7 8 9 10
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Step performed on right ankle roll
2
 on the actual system

Time [s]

A
ng

le
 [d

eg
re

e]

2

3,..,13,15,..,19
θ

θ

θ

(a) Step on θ2. The change at 4 s is due to the
fact that AAU-BOT1 is in DSP.

0 1 2 3 4 5 6 7 8 9 10
−1

0

1

2

3

4

5

6

Step performed on the left arm
19

 on the actual system

Time [s]

A
ng

le
 [d

eg
re

e]

2,..,13,15,..,18

19
θ

θ

θ

(b) Step on θ19.

Figure 7.16: Steps performed on the actual system.

7.3.3 Torso Controller

To control the position of the ZMP in real time when executing the trajectories described
in Chapter 6, a controller for the upper body (The torso and the arms) is created. The
ZMP of the upper body can be moved along both the x and y axis using only joint 16
and 17 (Waist Pitch and Roll, respectively).

Model

The torso control is to be used in Webots, which has torque as input and the angle of
the joint as output. The torso controller will be modeled by using parts of the DC motor
model seen in Figure 5.2 on page 71. τL and τF is modeled by using Equation (7.24)
and (7.25). The FTS sensors broke before the torso controller was designed, thus the
torso control has not been designed for use on the actual AAU-BOT1.

τL = sin(θ) · |bt| · m · g (7.24)

τF = −θ̇ · µ (7.25)

where
τL is the load on the DC motor.
θ is the angle of the joint.
|bt| is the length of the CoM vector of the torso (bt).
m is the mass of the torso.
g is the gravitational acceleration constant.
τF is the friction of the joint.

θ̇ is the angular velocity of the joint.
µ is the viscous friction coefficient of the joint.

Equation (7.25) assumes that the coulomb friction and the stiction are negligible. The
effect of the arms is also neglected, due to the relatively low weight. Inserting Equa-
tion (7.24) and (7.25) into the model yields the following transfer function:

θ̈ =
τM + sin(θ) · |bt| · m · g − θ̇ · µ

J
(7.26)

Instrumentation, Modeling and Control of AAU-BOT1

Control Strategy B 137

From this equation, the states (~x) and the input (~u) can be seen:

~x =
[

θ16 θ17 θ̇16 θ̇17

]T
~u =

[
τ16 τ17

]T
(7.27)

Using a 1st order Taylor approximation to linearize Equation (7.26) yields the following
state space equation:

θ̇16

θ̇17

θ̈16

θ̈17

=

0 0 1 0
0 0 0 1

|bt|mg

Jy

0 −µ16

Jy

0

0 |bt|mg

Jx

0 −µ17

Jx

θ16

θ17

θ̇16

θ̇17

+

0 0
0 0
1

Jy

0

0 1

Jx

[
τM16

τM17

]

(7.28)

[
θ16

θ17

]

=

[
1 0 0 0
0 1 0 0

]

θ16

θ17

θ̇16

θ̇17

+

[
0 0
0 0

] [
τM16

τM17

]

(7.29)

Parameter Estimation

The parameters of the Torso controller are:

• The mass of the torso (m).

• The moment of inertia of the upper body (~J).

• The friction of the joints (µ).

The mass of the torso is found in table C.1 on page 183 to be 21.60 kg. The moment of
inertia is calculated by transposing the Inertia tensor to the joint using Equation (7.30)
and (7.31) [Serway et al., 2000, p. 304]:

Jx = JTorso,x + m · |~bt|
2 (7.30)

Jy = JTorso,y + m · |~bt|
2 (7.31)

The friction (µ) is set to 1 [N m s
rad], as this is the current setting in Webots. To enable the

controller to be used with Webots, it is discretisized with the MatlabTM c2d command.

Linear Quadratic Gaussian Controller Design

By examining the controlabillity matrix and the observability matrix, the system is deter-
mined to be both controllable and observable. To control the Torso, a Linear Quadratic
Gaussian (LQG) controller is designed. The process noise QK , observation noise RK ,
process cost QC and input cost RC matrices can be seen in Equation (7.32).

QK = 10−5 · I4×4 (7.32)

RK = 10−4 · I2×2 (7.33)

QC = diag(
[

500 500 2000 2000
]
) (7.34)

RC = 500 · I2×2 (7.35)

Group 08gr1032b

138 Control

Initially QC and R where set to 200 · I4×4 and 100I2×2, respectively. However by hand
tuning to this value, a better performance was achieved when implemented in Webots,
with regards to rise time and stability. As the controller is to follow a reference, two
reference gain matrices (Nx and Nu) are calculated by using the MatlabTM function
refi.m [Franklin et al., 1997, p. 313]. In addition to the system and controller, refi.m
requires a matrix (Hr) that determines which states are to be controlled. As the desired
controllable states are the angles, Hr is:

Hr =

[
1 0 0 0
0 1 0 0

]

(7.36)

ZMP controller

To determine the input for the Torso control, a outer loop is created, which can be seen
in Figure 7.17. As the Torso control does not take the effects of acceleration into account
when achieving balance, the outer loop is designed to be slow and have zero steady state
error. This is done by using a PI controller with a P gain set to 1 and a I gain set to 2.

ZMP
trajectorie

PI

Nu

Nx KLQR

ZMP
estimator

Kalman
estimator

[16,17]

AAU−BOT
[16,17]

Figure 7.17: Design of Outer loop for Torso ZMP Control.

Due to the fact that the ZMP coincides with the GCoM when using static gait, the
maximum correction of ZMP by moving the torso can be found using Equation (2.1)
from page 29:

xGCoM =

∑NLinks

n=1 ~xn · mn
∑NLinks

n=1 mn

(7.37)

∆xGCoM =
∆xTorso · mTorso
∑NLinks

n=1 mn

(7.38)

max ∆xGCoM =
sin max θ16,max · |bt| · mt

∑NLinks

n=1 mn

(7.39)

=
sin(13) ·

√

0.0192 + 02 + (−0.341)2 · 21.6

70
= 0.024 [m] (7.40)

max∆yGCoM =
sin(56) ·

√

0.0192 + 02 + (−0.341)2 · 21.6

70
= 0.087 [m] (7.41)

Instrumentation, Modeling and Control of AAU-BOT1

Observers 139

Verification of Torso Controller and ZMP Controller

The description of the verification of the torso controller can be found in Appendix B.2.2,
it is tested by implementing it on the Webots simulation, as seen in Figure 7.2. The torso
controller is found to have a fairly large steady state error, however this does not matter
as the ZMP Controller has an Integral Gain.

7.4 Observers

The purpose of the observers is to extract measurements of the current stance phase and
the position of ZMP, for usage in the controllers.

7.4.1 Phase Observer

The Phases are observed using the Force Torque Sensors (FTS), the orientation of the
feet (Ollp and Orlp) and the angle of the toes (θ1 and θ14).

~Q =

q1 if FzR < ǫ1 ∧ FzL > ǫ2 ∧ Ollp < ǫ4 ∧ θ14 < ǫ6
q2 if FzR > ǫ1 ∧ FzL < ǫ2 ∧ Orlp < ǫ4 ∧ θ1 < ǫ5
q3 if FzR < ǫ1 ∧ FzL > ǫ2 ∧ Ollp < ǫ4 ∧ θ14 > ǫ6
q4 if FzR > ǫ1 ∧ FzL < ǫ2 ∧ Orlp < ǫ4 ∧ θ1 > ǫ5
q5 if FzR > ǫ1 ∧ FzL > ǫ2 ∧ Orlp < ǫ3 ∧ Ollp < ǫ4 ∧ θ1 < ǫ5 ∧ θ14 < ǫ6 ∧ xr < xl

q6 if FzR > ǫ1 ∧ FzL > ǫ2 ∧ Orlp < ǫ3 ∧ Ollp < ǫ4 ∧ θ1 < ǫ5 ∧ θ14 < ǫ6 ∧ xr > xl

q7 if FzR > ǫ1 ∧ FzL > ǫ2 ∧ Orlp < ǫ3 ∧ Ollp < ǫ4 ∧ θ1 > ǫ5 ∧ xr < xl

q8 if FzR > ǫ1 ∧ FzL > ǫ2 ∧ Orlp < ǫ3 ∧ Ollp < ǫ4 ∧ θ14 > ǫ6 ∧ xr > xl

q9 if FzR > ǫ1 ∧ FzL > ǫ2 ∧ Ollp > ǫ4 ∧ θ1 > ǫ5 ∧ xr < xl

q10 if FzR > ǫ1 ∧ FzL > ǫ2 ∧ Orlp > ǫ3 ∧ θ14 > ǫ6 ∧ xr > xl

(7.42)

where:
ǫn is threshold n, determined experimentally with AAU-BOT1
FzR is the force excerted in the z-direction on the right foot.
FzL is the force excerted in the z-direction on the left foot.
Ollp is the pitch of the left foot.
Orlp is the pitch of the right foot.
θ1 is the angle of the right toe.
θ14 is the angle of the left toe.

The Phase Observer has not been implemented on the Webots simulation. The Webots
simulation does not contain a force torque sensor, so to estimate the stance phase, the
Phase Estimator designed in Section 5.6 is used. This is also the reason it is the phase
estimator that is featured in Figure 7.1 and 7.2. One of the FTS amplifier on AAU-
BOT1 broke before the Phase Observer was made, so it has never been tested or used.

7.4.2 ZMP Estimator

The purpose of the ZMP estimator is to observe the position of the ZMP, for use in the
ZMP Controller. The ZMP is measured using the FTS amplifiers and and the positions
of the feet. The inputs and outputs of the ZMP estimator can be seen in Figure 7.18.
The measurements obtained in the FTS for both feet are:

• The force in the x-direction: Fx

Group 08gr1032b

140 Control

• The force in the y-direction: Fy

• The force in the z-direction: Fz

• The moment around the x-axis: Mx

• The moment around the y-axis: My

• The moment around the z-axis: Mz

To estimate the ZMP, the observations of Figure 7.19 are used in Equation (7.43). The
ZMP estimator is to only function correctly with the feet flat on the ground, as this is the
primary state of AAU-BOT1, and the additional complexity of adding support for heel-
strike does not add significant value, as the angle of the feet relative to the ground should
always be small. The x-value of the ZMP for SSP is calculated using Equation (7.44).

lx =
Mx

Fz
(7.43)

xZMP = P0 + PFTS,x + lx (7.44)

The same procedure is done for the yZMP. In the Double Support phase, the ZMP is

P_R

0

P_L

1

M_yR

1

M_yL

1

M_xR

3

M_xL

1

F_zR

1

F_zL

0

Embedded
MATLAB Function

P_R

P_L

F_zR

F_zL

M_xR

M_xL

M_yR

M_yL

x_zmp

y_zmp

SSP_L

SSP_R

ZMPObserver

Display3

Display2

Display1

Display

Figure 7.18: ZMP estimator, rendered as a Simulink block.

found by combining the ZMP for the left and the right foot, using Equation (7.45):

PZMP =
Fz,L · xZMPL + Fz,R · xZMPR

Fz,L + Fz,R
(7.45)

The ZMP estimator was not verified due to the lack of force torque sensors in Webots
and the FTS amplifiers in AAU-BOT1 broke down before it was implemented. The
ZMP is estimated using Equation (2.7) and (2.8) and measured data from Webots.

7.5 Supervisor

To ensure that AAU-BOT1 does not damage itself, a supervisor is added. The Super-
visor has three layers:

Instrumentation, Modeling and Control of AAU-BOT1

Summary of Control 141

l

FN

xZMP

Fz

My

PFTS,x

P0

x

y

z

FTS

Figure 7.19: Free body diagram of foot. l is the distance between the ankle and the ZMP
in the x-direction, FN is the normal force excerted by the ground.

• Sofware layer within Simulink
The Position commands sent to the Actuator Sink are limited to be only within
the limits defined in Table 5.3 on page 76.

• Software layer in the EPOS Amplifiers
The EPOS Amplifiers detects whether the angle of the motor is within 2000 ticks
of the reference given by the Trajectorie generator.

• Hardware layer
A circuit is designed to monitor the angles of the joints with potentiometers. If the
angle is outside its permitted range, the circuit turns off the EPOS amplifier.

These three in combination are sufficient to ensure that AAU-BOT1 does not damage
itself using the joint that the motors are attached to. However, this does not ensure that
the joints does not touch each other further down the kinematic chain. Additionally, a
supervisor for when the controllers are in other control modes than Profile Position Mode
is not designed.

7.6 Summary of Control

In this chapter, multiple controllers for two different controller strategies has been pro-
posed. The ZMP controller, phase observer and the ZMP estimator are not implemented
on the actual system due to the fact that one of the FTS amplifiers broke. The ZMP
controller was however implemented with the virtual robot in Webots as the ZMP could
be estimated from other measurements.

Control Strategy A: It was possible to stabilize the nonlinear model with the proposed
LQG controller. This showed that the weights on the states had to be significantly
larger on the joints in the beginning of the kinematic chain, in order to stabilize
the nonlinear model. This makes sense as they are most influenced by the other
states. Furthermore it was observed that the steady state errors on the model were

Group 08gr1032b

142 Control

large. It is clear that integral action is needed to minimize these steady state errors
if further development on this control strategy has to be done.

Control Strategy B: In this section, a control strategy for posture control of AAU-
BOT1 was developed. The main strategy of this was to utilize the build-in con-
trollers in Webots and in the EPOS amplifiers, putting a PID controller on each of
the joints except joint # 16 and 17, which were controlled with a LQG controller.
This controller was capable of controlling both Webots and AAU-BOT1.

ZMP Controller: To balance the virtual robot in Webots and AAU-BOT1, a ZMP
controller was designed. Its main feature is to be very slow, to keep the acceleration
of the torso to a minimum, as this otherwise would move the ZMP in the other
direction than intended.

Phase Observer: To observe which phase AAU-BOT1 is in, the phase observer was
designed. The phases are determine from the force torque sensors.

ZMP estimator: To enable the ZMP controller to work on AAU-BOT1 the ZMP
estimator was created.

Supervisor: To prevent AAU-BOT1 in destroying itself, a number of limitations are
implemented. During tests these have shown to be efficient to prevent damages.

Instrumentation, Modeling and Control of AAU-BOT1

Chapter 8

System Test

This chapter deals with the test of the complete system. The test will be carried out in
two steps. The first step is to test the complete system on the virtual AAU-BOT1 in
Webots. After this the complete system will be tested on the actual AAU-BOT1, only
the posture controller is tested here as it is not possible to obtain a ZMP measurement.

8.1 Introduction to Complete Test

In the previous chapters a complete system for the AAU-BOT1 has been designed and
developed. This includes models such that trajectories for static gait and controllers
could be developed. Furthermore instrumentation of the actual robot together with a
software platform was completed. All this is needed to conduct this final test.

The test is split up into two parts. This is chosen since both the Webots representation
of the AAU-BOT1 and the actual AAU-BOT1 are tested. The first part is the virtual
robot in Webots which is tested with Control Strategy B, described in Section 7.3 on
page 128. The virtual AAU-BOT1 is tested with both the posture controller and the
ZMP-controller.

Hereafter the actual AAU-BOT1 is tested. The actual AAU-BOT1 is also tested
with Control strategy B, described in Section 7.3 on page 128. As mentioned in the
Section 3.6.5 on page 42 it has not been possible to extract ZMP measurements from the
actual robots due to malfunctioning hardware, hence it has not been possible to test the
ZMP controller on the actual AAU-BOT1.

The trajectories for the posture controller is 100 s long and contains a startup phase
followed by two walking steps, the trajectories for the posture controller can be seen in
Figure 8.1(a) and corresponding support phases can be seen in Figure 8.1(b).

The startup phase includes a settling sequence of 2 s in the beginning, this is included
to ensure that the robot is settled in an upright position. After this the actual start phase
begins by taking half a step followed by two regular steps.

8.2 Virtual Robot in Webots

The trajectories from Figure 8.1(a) are now tested together with the two controllers from
Control Strategy B. The first controller is the posture controller and the second is the
ZMP controller which maintains the robot in a stable state. In Figure 8.2(a) the measured
joint angles can be seen and in Figure 8.2(b) the error between the input trajectories and

143

144 System Test

0 10 20 30 40 50 60 70 80 90 100
−60

−40

−20

0

20

40

60
Pre−generated posture trajectory

Time [s]

A
ng

le
 [d

eg
re

e]

ref

2,..,13,15,..,19
θ

(a) Input trajectory.

0 10 20 30 40 50 60 70 80 90 100

SSP−R

SSP−L

DSP−R

DSP−L

Time [s]

P
ha

se

(b) Estimated support phase of input trajectory.

Figure 8.1: The trajectories and the phase of the input trajectory.

the measured joint angles can be seen. The trajectories are made such that the robots
is moving smoothly and relatively slow such that static gait is possible and the posture
controller is able to track the trajectories.

Figure 8.2(b) shows the errors between the trajectories and the measured joint angles.
The largest spike is seen at time 52 s, this is an error in the trajectory for the right arm
when switching phase. The errors seen at time 2 s, 62-63 s and 85-87 s are all caused
by a offset mismatch between the trajectory generator and the inverse kinematics. The
mentioned errors are relatively simple to correct but unfortunately they where discovered
late in the project period and is therefore not corrected. Besides the spikes the remaining
errors are relatively small and roughly not larger than 1 degree which is considered
satisfying.

The performance of the ZMP controller can be seen in Figure 8.3, that includes the
input ZMP reference and the measured ZMP for both the x- and y-direction. Furthermore
the error between the reference and output for both directions can be seen.

In Figure 8.3(b) and (d) the error for the ZMP controller in both directions can be
seen. Two spikes is present both in the x- and y-direction and can be seen at time 52 s
and 78 s. Both spikes are connected with the phase transition. The ZMP controller in

Instrumentation, Modeling and Control of AAU-BOT1

Actual AAU-BOT1 145

0 10 20 30 40 50 60 70 80 90 100
−60

−40

−20

0

20

40

60
Pre−generated posture trajectory

Time [s]

A
ng

le
 [d

eg
re

e]

ref

2,..,13,15,..,19
θ

(a) Measured joint angles.

0 10 20 30 40 50 60 70 80 90 100
−15

−10

−5

0

5

10

15

20

25

30

35
The error between the input trajectory and the measured joints

Time [s]

A
ng

le
 [d

eg
re

e]

err

1,...,15,18,19
θ

(b) The error between the measured angle and the tra-
jectory.

Figure 8.2: Static gait trajectory on the virtual AAU-BOT1 in Webots.

the x-direction has a mean following error of 0.5 cm. In the y-direction the mean error is
0.07 cm. The errors are considered small since the controller is developed to be slow and
steady but not necessarily accurate. The ZMP controller ripples at time 60-80 s. The
ripples occurs due to the movement of the upper body. By moving the upper body the
lower body will be influenced by the same torque just in the opposite direction. This is
unavoidable, but to suppress this phenomenon the controller can be slowed down such
that it is steady, when tracking the ZMP reference. If it is slowed down too much it will
not be fast enough to prevent the robot from falling. The controller has to handtuned,
if it is used for e.g. dynamical walk.

8.3 Actual AAU-BOT1

The static gait trajectory shown in Figure 8.1 is now tested on the actual AAU-BOT1.
Figure 8.4(a) shows the measured angles and Figure 8.4(b) shows the errors between the

Group 08gr1032b

146 System Test

0 10 20 30 40 50 60 70 80 90 100

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25
Complete test, ZMP in the X direction

Time [s]

di
st

an
ce

 [m
]

ZMPX

ref

ZMPX
measured

(a) ZMP reference and measured ZMP in the x-
direction.

0 10 20 30 40 50 60 70 80 90 100
−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06
ZMP error in the X direction

Time [s]

di
st

an
ce

 [m
]

ZMPX

err

(b) Error between the measured and the refer-
ence in the x-direction.

0 10 20 30 40 50 60 70 80 90 100
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Complete test, ZMP in the Y direction

Time [s]

di
st

an
ce

 [m
]

ZMPY

ref

ZMPY
measured

(c) ZMP reference and measured ZMP in the y-
direction.

0 10 20 30 40 50 60 70 80 90 100
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3
ZMP error in the Y direction

Time [s]

di
st

an
ce

 [m
]

ZMPY

err

(d) Error between the measured and the refer-
ence in y-direction.

Figure 8.3: The ZMP trajectory and the measured ZMP on Webots

input trajectories and the measured joints. Figure 8.4(b) show similar errors as noticed
when testing the virtual AAU-BOT1. The large spikes to time 2 s, 52 s, 60-62 s,
and 88-90 s are caused, since the dynamics of the AAU-BOT1 can not follow some
of the joint trajectories fast enough. Although the trajectories for the feet and torso
in cartesian space are made soft and continuously the trajectories are truncated by the
inverse kinematics and this makes the trajectories discontinuously in some points. This
truncation can be avoided by ensuring that the mismatch between the inverse kinematics
and the cartesian space trajectories.

Another interesting observation is seen in the time frames 55-60 s and 80-85 s, here
two upside down trapezoidal signals can be seen. This is the two knee joints which are
limited by the current. The reason why there is not enough energy, is because only one
DC motor is connected to each of the 6 joints that are supposed to be double actuated.

Joint limitations of the physical system are an important factor, this was observed on
the actual system while performing the complete test. Ankle roll and ankle pitch were
initially limited by physical constraints. After altering the mounting of the potentiometer
on ankle roll this solved the problem for this joint. Ankle pitch are still limited to -10
degrees which is sufficient for dynamic gait, but is not as suitable for static gait.

Instrumentation, Modeling and Control of AAU-BOT1

Summary of System Test 147

0 10 20 30 40 50 60 70 80 90 100
−80

−60

−40

−20

0

20

40

60
Measured joint angles

Time [s]

A
ng

le
 [d

eg
re

e]

2,..,13,15,..,19
θ

(a) Input trajectory to the actual system.

0 10 20 30 40 50 60 70 80 90 100
−15

−10

−5

0

5

10

15

20

25

30

35
Error between measured joint angles and trajectories

Time [s]

A
ng

le
 [d

eg
re

e]

2,..,13,15,..,19
θ

(b) Trajectory on the actual system.

Figure 8.4: Static gait trajectory on actual system.

8.4 Summary of System Test

The trajectories together with Control Strategy B enabled the virtual robot to take steps
and thereby move forward with static gait. The strategy proposes a ZMP controller
which maintains stability while walking. The ZMP controller worked as intended in this
complete test on the virtual AAU-BOT1.

The performance of the posture controller on the actual system are acceptable, but the
physical constraints of the system complicates the static gait, as static gait requires larger
joint angle fluctuations than dynamic walk. The performance of the ZMP controller are
yet unknown as the AAU-BOT1 is still not able to measure the ZMP due to a faulty
FTS amplifier.

The total performance of the actual AAU-BOT1 is still unknown, but it is assumed
that it is possible to obtain static gait if the actual physical constraints of AAU-BOT1
are included in the trajectory generation and proper ZMP measurements are obtained.
In order to do that, further tests has to be conducted, since the trajectory has only been
tried once.

Group 08gr1032b

148 System Test

Instrumentation, Modeling and Control of AAU-BOT1

Chapter 9

Epilogue

In this chapter the epilogue to this master’s thesis is given. It contains a discussion of
some of the main problems and possibilities discovered during the project. The discussion
is divided into the following key areas: instrumentation, software architecture, modeling,
trajectory generation and control. During the discussion the results obtained through-
out this master’s thesis are compared to the entire AAU-BOT1 project starting with the
mechanics group, who was the first project group working on the AAU-BOT1 research
project. After this a conclusion to the entire master’s thesis is given and ideas for future
work is presented.

9.1 Discussion

This section will mainly bring up areas of the thesis that has been problematic to some
extent and discuss them.

9.1.1 Instrumentation Strategy

A complete solution to the instrumentation strategy is described and proposed. The
complete solution is implemented as intended. The following hardware parts has been
dimensioned and applied to AAU-BOT1.

EPOS Amplifiers: Initially the mechanics group who previously worked on AAU-
BOT1 bought analog power amplifiers for the DC motors. It has not been possible
to develop nor find a suitable on-board solution to sample all 23 analog amplifiers.
It was thus decided to discard the analog amplifiers and buy new digital amplifiers
of the type EPOS 70/10 from Maxon Motors. A great advantage of these amplifiers
is that they can communicate via the CAN-Open protocol and thereby transmit
sampled data via a shared bus. This gives an amplifier system that suppress noise
well. The downside is the limited bandwidth of the CAN network, but this is solved
by implementing 5 CAN networks serving the 23 EPOS amplifiers. Furthermore
it have features as current limitation, position limitation and it shuts down if the
implemented controller becomes unstable.

FTS and FTS Amplifiers: AAU-BOT1 was delivered with two custom build FTS’s,
each containing 6 strain gauge full bridges. The instrumentation strategy proposed
a solution where the analog signals from the full bridges have to be amplified,

149

150 Epilogue

filtered, sampled and transmitted via a digital bus. The development of such a
device with these features was initiated, but this development was stopped since a
similar device with the right specifications was discovered and bought. FTS ampli-
fiers with build in RS485 were bought for the project. The amplifiers worked well
when sampling the 12 full bridges. The FTS was calibrated and showed promising
results, but yet still not satisfying results as an offset of 50 N was present, if this
offset is removed only a RMS error of 2.4% is present. This large offset is assumed
to be caused by an insufficient calibration test rig. An accident with a faulty EPOS
caused one of the amplifiers to malfunction. This resulted in a system where only
one FTS is operational and it has not been possible to test the total throughput.

IMU: An IMU has been bought, however it has not been implemented, as focus is placed
elsewhere in the master’s thesis. Even though the IMU is not implemented, it is
still taken into consideration when designing the software architecture.

On-board Computer: An ordinary, but small laptop computer was bought and used
as an on-board computer. It is an IBM with a 2.0 GHz Core 2 Duo processor. The
hard drive of the on-board computer has been replaced by a Flash HDD, since this
disk has no moving parts it is less prone to faults when submitted to a shaking
environment during operation. The new Flash HDD is unfortunately very slow
and should be replaced by a faster one, if the on-Board computer is used as a
development tool. It does not have an effect on the system when running the real
time target, since the program is loaded into memory and does not access the Flash
hard drive during runtime.

9.1.2 Software

The software architecture is based on a Linux platform developed by Xubuntu which
is the smallest and most optimized Ubuntu distribution. It runs with Kernel 2.6 and
it was possible to implement the needed drivers for the CAN network. The software is
divided into two main parts. The first part utilized a real time target for MatlabTM.
The second part contains a multi threaded software architecture. The multi threaded
software handles data between the actuators, sensors and updates the shared memory.

By using this approach, the controller which is running real time do not have to wait
for the communication to take place. The threaded parts can run as fast as possible
and update the shared memory with data from the sensors. Furthermore it updates the
actuators with data from shared memory.

The software architecture has both advantages and disadvantages. The advantages are
that it has a simple structure, and the layout has been used and proved useful for other
projects. Furthermore there is no need for real time drivers for all the peripheral hard-
ware.

The main disadvantage of this software architecture is that, if the system has insuffi-
cient processing power to run both the real time target and the multi threaded software,
the real time target will uses all the processing power and leaving the multi threaded
software unprocessed. This means the actuators and sensors are not updated and this
can lead to a faulty system. To ensure that this is not the case, test has been performed
to verify that the CAN busses have the necessary bandwidth. The test showed that a loss
in packages of 13.6% when running 250 Hz. The packages loss is random distributed. By

Instrumentation, Modeling and Control of AAU-BOT1

Discussion 151

lowering the update frequency to 200Hz the loss of packages are lowered to 1.9 %. A loss
of 13.6% is not considered acceptable, this can be optimized by several means. One solu-
tion could be to set the actuator server and the sensor servers to the same priority as the
real time target. Another solution is to use a custom build optimized Linux distribution,
such that unnecessary modules are not compiled into the kernel. This will leave more
processing power to the multi threaded software. If the software architecture is used in
its current state, it should be considered to lower the update frequency to 200 Hz to
lower the packages loss. It should also be noted that the throughput test the EPOS’s are
in position mode with all measurements of the EPOS amplifiers on. Using the EPOS’s
in current mode require less packages and reduces the load on the bus. Since the safety
system has not been completed in such extend that it is justifiable to use current mode,
this has not been tested.

When visualizing the model two methods have been developed. The first method was to
use the MatlabTM plot function to representation the kinematics of the robot. As the
dynamics of the AAU-BOT1 does not include the extra degree of freedom that exist
between robot and the ground, it is chosen to use a three dimensional robot simulator.
This robot simulator gives a more realistic picture of how AAU-BOT1 behave. It has
been difficult to construct the virtual AAU-BOT1 in Webots such that it behaves like
the developed dynamical model. It has not been determined whether this is caused by a
faulty dynamical model or a faulty configuration of Webots.

9.1.3 Model

The model is divided into multiple parts, and these are discussed separately:

DC motor model: The DC motor model is derived from physical and electrical models,
and one joint i parameter estimated (the left arm). Using the estimated parameters
the model is verified with a mean squared error of 12.1%. Due to the high inter-
connectivity of the measured states, this is regarded as a fairly good result. The
parameter estimation is done for one joint only to show the procedure of finding
the parameters for the DC motors. Unfortunately due to time constraints in this
thesis, the rest of the joints are not parameter estimated, but it is a necessary task
as the friction is large and has to be estimated along with the other parameters
in the DC motor model. Furthermore a method to implementation of the double
actuated joint has been developed. However this method has not been verified.

Kinematic model: The kinematic model determines the position, velocity and acceller-
ation of all links’ CoM, based on the angles of the joints of AAU-BOT1. It was
made by using transformation matrices and the mechanical data of AAU-BOT1.
The kinematic model is verified and works satisfactory.

Inverse Kinematic model: The inverse kinematic model determines the angles of the
joints of AAU-BOT1 from positions of the links’ center of mass. By deciding
both the orientation and position of the pelvis joint, and the foot that is not on
the ground, a unique solution is found. The inverse kinematic model is verified and
works satisfactory.

Dynamic model: The dynamic model was derived by using Lagrangian dynamics, com-
bined with the Jacobian matrix and the kinematic model. Due to the immense size

Group 08gr1032b

152 Epilogue

of the model, this was done by using Maple. Problems occurred during develop-
ment, the matrices which had to be computed caused Maple to fail due to insuf-
ficient amount of available RAM. To overcome this problem the matrices where
exported to Simulink which was capable of linearizing it. The nonlinear dynamical
model was also implemented in Simulink for test purposes. The dynamical model
has not been verified toward the actual system, as the parameters of the actual
system are still unknown and still subject to changes.

Foot Model: The foot model was derived in such extend that it is possible to determine
the forces and the torques that the floor impose on the foot. The foot model also
include the hybrid states that AAU-BOT1 is in. However since the left FTS was
not implemented due to a defect amplifier, it has not been possible to verify the
foot model.

Phase Observer: The phase observer was developed based on the orientation of the feet
(Ollp and Orlp) and the angle of the toes (θ1 and θ14). However since the phases are
observed by the FTS, it has not been possible to verify the phase observer, because
one of the FTS amplifiers broke. It was neither possible to verify the phase observer
in Webots since it is not possible to use a 6 axis FTS in Webots.

9.1.4 Trajectory Generation

A method for offline trajectories generation was developed and implemented. The devel-
oped method can be extended adn combined with adaptive trajectory adjustments, to
ensure a more stable or energy efficient walk.

In order to develop trajectories for dynamic gait and static gait, human movement data
through walking was studied, to obtain a natural movement of AAU-BOT1. It ended
up with a method to generate trajectories based on high stability and energy efficiency.
However due to an inaccurate dynamic model it has not been possible to simulate dy-
namic gait nor to get the most energy efficient trajectories. However the dynamic gait
trajectory has been verified via visual test in Simulink, which means the presented method
work as intended.

A static gait trajectory has been possible to obtain, via the inverse kinematic model
and the kinematic model. In order to get a large support area, the toe feature was dis-
abled and a minimum stability margin of 4.75 cm from all GCoM points to the edge
of the support area were accomplished. However it was not possible to find the most
energy efficient trajectory, due to the dynamic model. When knowledge about weight
distribution and joint angle limits are obtained from the physical AAU-BOT1, these
have to be added to the model and it will require a new evaluation of the trajectories, in
order to find the most stable and energy efficient trajectories.

9.1.5 Controller

To control AAU-BOT1, three different controllers were developed:

Control Strategy A: Control Strategy A utilize the dynamic model to create a Linear
Quadratic Gaussian (LQG) controller, utilizing the knowledge about the joints
interference on each other to make a more stable controller. After tweaking the
controller it was discovered that the model was not an accurate description of the

Instrumentation, Modeling and Control of AAU-BOT1

Discussion 153

implementation in Webots. Even though the controller was able to stabilize the
nonlinear model it was not able to stabilize the virtual AAU-BOT1 in Webots.

Control Strategy B: Control Strategy B utilize the controllers in the amplifiers and
Webots, having a separate PID controller for each joint. In addition, joint # 16 and
17, was controlled by a LQG controller. This controller was capable of controlling
both Webots and AAU-BOT1, thus enabling the use of the generated trajectories.
Unfortunately this approach did not allow control of the double actuated joints.
This lead to removing one of the motors on the double actuated joints, meaning
that they did not have sufficient power to be controlled.

ZMP controller: To ensure that AAU-BOT1 is capable of maintaining its balance,
a ZMP controller was implemented. The ZMP controller utilizes that the Torso
can move in both the x and y direction by using joint #16 and 17. The resulting
controller was capable of moving the ZMP, thus making Control Strategy B capable
of walking through its first step in Webots. Due to the fact that one of the FTS
amplifiers broke, it has not been possible to test this controller on AAU-BOT1.

9.1.6 Status of the AAU-BOT1 Project

The AAU-BOT1 project is the first humanoid robot project where a humanoid robot of
this size has been entirely designed by students. The overall plan of the AAU-BOT1 re-
search project is that [Pedersen et al., 2007] design the mechanical part of AAU-BOT1
in 2006/2007, in September 2007 it should be handed over to the Control department.
AAU-BOT1 should be in the Control department until year 2010, where it is handed
over to the department of Health Science and Technology . When it is handed over to the
department of Health Science and Technology it should be able to perform human-like
gait. The scope for this project in 2007/2008 was to establish a platform where control
of AAU-BOT1 can be implemented and develop the control part in such extent that it
is possible to walk static gait with the physical AAU-BOT1 and walk dynamic gait in
simulation.

Development and installation of hardware and networks on AAU-BOT1 was delayed
since AAU-BOT1 was handed over partially assembled the 30th of November, i.e. some
of the belts that drive the joints were still missing. The delay was a setback, since some
of the safety circuits, that justifies operation with AAU-BOT1 was first mounted the
14th of May. This resulted in short time periode to perform test with the physical AAU-
BOT1, due to the limited project time. Even though the hardware has been challenging
and time consuming, the groups effort has resulted in a flexible platform. The platform
gives the possibilities to control by using current mode, velocity mode or position mode.
AAU-BOT1 has been developed in such extend that it follows a static gait trajectory
when it is hanging in the air. However due to a problem with double actuated joints, i.e.
only one motor can be used in the double actuated joint, AAU-BOT1cannot walk on
the floor. This problem has to be solved by further groups on the AAU-BOT1 project.
Since AAU-BOT1 followed the trajectory for the first time the 1st of June, it has not
been possible to make any adjustment to optimize the performance, due to limited time
of this thesis.

Group 08gr1032b

154 Epilogue

9.2 Conclusion

Humanoid robots are one of the hardest problems in the area of control, due to the com-
plex mechanical motion of humans. The aim of controlling humanoid robots vary, some
are made to show purposes, others are made to relieve humans by carrying out their
work, but common for all humanoid robots are that they must be able to move around in
human environment, e.g. walk on steps or walk in terrain. Another area where humanoid
robots are expected to be used is in the area of health care, where the robots can be used
to help humans who are physically disabled, to rehabilitate their physically movement.
The third humanoid robot at Aalborg University, AAU-BOT1, is made for that purpose.

AAU-BOT1 is the first humanoid robot in Denmark of its size. It has 19 degrees
of freedom, where 17 of these are actuated, weighs 68 kg and it is 180 cm tall. It is also
the first humanoid robot of its size, that has been entirely developed by students. The
main focus for this thesis is to develop and implement an instrumentation strategy and
network design for AAU-BOT1, modeling it, and develop control strategies, such that
it is possible to obtain static gait with AAU-BOT1 and enable it to obtain dynamic
gait in simulation.

One of the key points of the master’s thesis was to find a solution to the instrumen-
tation. The solution require implementation of a system with high performance, a high
number of sensors and actuators and a requirement of low weight. The result ended up
replacing the chosen amplifiers for the DC motors, with CAN enabled DC motor ampli-
fiers (EPOS), and implementing Force Torque Sensor (FTS) amplifiers that have a RS485
interface. Both types of amplifiers were implemented with success. By implementing the
EPOS amplifiers it was possible to control the motors with high precision and get read-
ings of relative position, absolute position, velocity and current. Furthermore the EPOS
amplifiers enables use of current control, velocity control and position control, which can
be used directly to control AAU-BOT1. The FTS amplifier has excellent performance
comparing with other available amplifiers on the market, i.e. high resolution and high
sample rate, which is necessary to determine the stability during walk of AAU-BOT1.
Unfortunately one of the EPOS short circuited, which caused one of FTS amplifier to
break due to a common power supply. Even though it has been possible to obtain a
maximal RMS error of 2.4% on the remaining FTS, the stability cannot be calculated
without a new FTS amplifier.

To enable the on-board computer to retrieve data from the FTS amplifiers and to send
and receive data from the 23 EPOS amplifiers, drivers for each sensor and actuator were
developed. The result of this is an interface and a software architecture that is module
based and simple to use, which will be easy to maintain for future groups working on
AAU-BOT1. It has not been possible to test the total real time performance of the
entire software since one of the FTS amplifiers were disabled, however by measuring the
throughput it was found that 86% of the frames were send and received at a sampling
rate of 250 Hz on the 5 CAN busses.

In order to design a controller, several models have been developed, describing the dif-
ferent parts of AAU-BOT1. Firstly, the DC motor model was developed to give an
accurate view of the actuators. To verify it, the motor on the left arm is parameter
estimated, yielding that the model has a mean squared error of 12.1%. Secondly, The
kinematic model and inverse model were developed to determine the position and angles

Instrumentation, Modeling and Control of AAU-BOT1

Future Work 155

of AAU-BOT1 by using transformation matrices and mechanical data of AAU-BOT1.
Lastly, the dynamic model was developed by applying the Lagrange method on the data
from AAU-BOT1 in each single stance phase and including the kinematic model and
the DC motor model. This resulted in a hybrid state space model with 38 states, 17
inputs and 34 outputs. Unfortunately it has not been possible to verify the dynamic
model, due to its immense size combined with the relative short project period.

To be able to walk dynamically and statically, trajectories were developed using an
off-line trajectory generator. Based on stability, energy consumption and human param-
eters a method was developed to generate the best trajectory for static and dynamic
gait. However since the dynamic model was not complete it was not possible obtain a
ZMP that was accurate in an extent that could be used for trajectory generation. A
static gait trajectory was developed, using the inverse kinematic model. This resulted in
a maximum stability margin of 4.75 cm to the edge of the support area.

Two control strategies have been proposed. The first control strategy uses an LQG
controller as a posture controller. The controller stabilized the nonlinear model, but is
not found feasible to use on the actual robot, before e.g feedback linearization has been
implemented and a more accurate model has been obtained.

The second control strategy utilizes PID controllers on all the joints except the ones
controlling the waist pitch and roll, which uses a LQG controller. Furthermore the
strategy proposes a ZMP controller which maintains stability while walking. The ZMP
controller worked as intended and The second control strategy has been tested success-
fully up against the virtual robot in the Webots environment.

The performance of the second control strategy on the actual system are yet unknown as
AAU-BOT1 is still not able to measure the ZMP due to a faulty FTS amplifier. The
preliminary results show that the actual AAU-BOT1 can track the trajectories, but
cannot maintain balance without the ZMP controller.

To summarize, a platform for AAU-BOT1 has been developed. It consists of a complete
instrumentation strategy, containing both EPOS power amplifiers and FTS amplifiers
together with the belonging network strategy. Furthermore a software architecture was
implemented on the on-board computer, enabling communication between the controllers
and the transducers. A model has been developed and used to derive trajectories which
are stable and suitable for the robot. It is therefore concluded that this master’s thesis
gives a solution to the implementation, modeling and control of the AAU-BOT1 and
thereby ending this second step of the AAU-BOT1 project successfully.

9.3 Future Work

During this master’s thesis it has been possible to build a platform that is able to con-
trol AAU-BOT1 in simulation and on the physical robot. The platform has been build
such that it is possible to implement a more sophisticated control of AAU-BOT1, in
order to obtain dynamic gait on the physical robot. This section describes what the
authors regard as the next step in the AAU-BOT1 project.

The IMU has not been fully implemented yet, i.e. driver software need to be devel-

Group 08gr1032b

156 Epilogue

oped, such that is it possible to obtain a precise rotational orientation. The IMU has
been purchased, but has not been implemented. The S-function and the shared memory
server are however prepared for its inclusion.

A new FTS amplifier has been ordered, such that it is possible to replace it with the
faulty one. It is recommended that all amplifier gets their firmware updated since the
software protocol contains a design bug from the manufacturer. This bug results in a
time consuming survey of all received bytes in order to retrieve data from the amplifiers.
When the new FTS amplifier is received a new calibration is needed of both FTS because
the designed test rig has to be redesigned.

Currently, potentiometers are utilized to obtain the absolute position of each joint, how-
ever these seems to drift over time. This means that the system has to be recalibrated
often. It is recommended that the potentiometers are replaced by hall effect sensors to
prevent this.

To increase the control of the flow of information on the CAN bus, the actuator S-
functions and the sensor S-function is recommended to be combined into one S-function.
This will also make the software easier to maintain.

AAU-BOT1 is still not fully equipped with the required safety measures. This in-
cludes emergency stop devices and protection against short circuit. The FTS amplifiers
requires a noise decoupled power supply to operate properly. It is recommended to sep-
arate the EPOS’s in groups, such that each group has its own protection.

To obtain an accurate dynamic model knowledge about friction in each joint and the
precise weight distribution must be obtained. The friction can be obtained by perform-
ing the proposed parameter estimation method for all joints. The weight distribution
can be obtained by updating the SolidWorks model and extracting the parameters. Fur-
thermore all joint movement constraints from the physical system must be implemented
in the inverse kinematics. This should be done since the physical constraints are shifted
with the implementation of the potentiometers. With these constraints the trajectories
can be improved for the actual robot. Furthermore, the heel impact is neglected and the
toe off phase is not fully implemented in the models of this master’s thesis and should
be among the next subjects examined in the AAU-BOT1 project.

Instrumentation, Modeling and Control of AAU-BOT1

Bibliography

Palle Andersen and Tom S. Pedersen. Modeldannelse. Lecture note about
modelling of systems (in danish), used in the 6th semester at AAU,
http://www.control.aau.dk/~pa/kurser/PR6model/modelnote.pdf, february
2007.

Takemasa Arakawa and Toshio Fukuda. Natural motion trajectory generation of biped
locomotion robot using genetic algorithm through energy optimization. IEEE 1996,
pages 1495–1500, 1996. doi: None.

ASLSOFT. ASL "standard" software (active). Autonomous System Lab (ASL), which
is part of the Swiss Federal Institute of Technology in Zürich, 408th edition, 2008.
https://lsa1pc12.ethz.ch/.

Yariv Bachar. Developing controllers for biped humanoid locomotion. Technical report,
The University of Edinburgh, 2004.

Thomas Bak and Roozbeh Izadi-Zamanabadi. Lecture notes - Hybrid systems at Aalborg
University. Lecture note for the Hybrid systems course at AAU, IAS, 2004.

Ozkan Bebek and Kemalettin Erbatur. Adaptive fuzzy system for tuning biped robot
gate parameter. Fira Robot World Congress 2003, 3, Oct. 2003. doi: None.

Morten Bisgaard. Instrumentation and Data network at Autonomous Systems. Lecture
in instrumentation, wirering and finding the right computer system for Autonomous
Systems., November 2007a.

Morten Bisgaard. Modeling, Estimation and Control of Helicopter Slung Load System.
PhD thesis, Aalborg University, 2007b.

Youngjin Choi, Bum-Jae You, and Sang-Rok Oh. On the stability of indirect zmp con-
troller for biped robot systems. Proceedings of 2004 IEEORSl International Conference
on intelligent Robots and Systems, pages 1966–1971, Sep. 2004. doi: None.

Jens Christensen, Jesper Lundgaard Nielsen, Mads Sølver Svendsen, Mikael Svenstrup,
Kasper Winther, and Peter Falkesgaard Ørts. Modelling and control of a biped robot.
Technical report, Aalborg University, 2006.

Jens Christensen, Jesper Lundgaard Nielsen, Mads Sølver Svendsen, and Pe-
ter Falkesgaard Ørts. Development, Modeling And Control of A Humanoid Robot.
Master’s thesis, Aalborg University, 2007.

John J. Craig. Introduction to Robotics: Mechanics and Control. Pearson Prentice Hall,
3rd edition, 2005. ISBN: 0-13-123629-6.

157

http://www.control.aau.dk/~pa/kurser/PR6model/modelnote.pdf
https://lsa1pc12.ethz.ch/

158 BIBLIOGRAPHY

Cyberbotics Ltd. Webots Reference Manual, 5.9.0 edition, April 2008.

Jens Dalsgaard. Using CAN in control systems. Meeting about using CAN on AAU-
BOT1 and finding the right number of CAN network when using a sampling rate at
1000 Hz., November 2007.

D. Djoudi, C. Chevallereau, and Y. Aoustin. Optimal reference motions for walking of a
biped robot. Proceedings of the 2005 IEEE Conference on Robotics and Automation,
pages 2002–2007, April 2005. doi: None.

L. Dozio and P. Mantegazza. Real time distributed control systems using rtai. Object-
Oriented Real-Time Distributed Computing, 2003. Sixth IEEE International Sympo-
sium on, 1:11–18, May 2003. doi: 10.1109/ISORC.2003.1199229.

Ken Dutton, Steve Thompson, and Bill Barraclough. The art of control engineering,
1997.

R.G.J. Flay and I.J. Vuletich. Development of a wind tunnel test facility for yacht
aerodynamic studies. Journal of Wind Engineering and Industrial Aerodynamics, 58:
231–258, July 1995. doi: None.

Gene F. Franklin, J. David Powell, and Michael Workman. Digital Control of Dynamic
Systems. Addison-Wesley, 3rd edition, 1997.

Emilio Frazzoli. Talk about online trajectory generation on MIT’s Darpa car. Study trip
to Massachusetts Institute of Technology, where Associate Professor (of Aeronautics
and Astronautics) Emilio Frazzoli demonstrated how the generated trajectories during
Darpa challenges., Februar 2008.

Adolfo Garcia. SINGLE-SUPPLY AMPLIFIERS, 2000.

Andrew A. Goldenberg, B. Benhabib, and Robert G. Fenton. A complete generalized
solution to the iverse kinematics of robots. IEEE Journal of Robotics and Automation,
RA-1(1):14–20, March 1985.

Mohinder S. Grewal and Angus P. Andrews. Kalman Filtering, Theory and Prac-
tice Using MATLAB. Wiley-Interscience Publication, 2nd edition, 2001. doi:
10.1002/0471266388.ref, ISBN: 9780471392545.

Jørgen Haffgaard. Lecture Notes in Data Aqusition at Engineer Colleges Aarhus, 2005.

Jan Helbo. Homepage for Jan Helbo. web, 2008. url:
http://www.control.aau.dk/~jan/.

Qiang Huang, Kenji Kaneko, Kazuhito Yokoi, Shuuji Kajita, Tetsuo Kotoku, Noriho
Koyachi, Hirohiko Arai, Nobuaki Imamura, Kiyoshi Komoriya, and Kazuo Tanie. Bal-
ance control of a biped robot combining off-line pattern with real-time modification.
Proceedings of the 2000 IEEE International Conference on Robotics and Automation
San Francisco, pages 3346–3352, April 2000. doi: None.

Qiang Huang, Kazuhito Yokoi, Shuuji Kajita, Kenji Kaneko, Hirohiko Arai, Noriho Koy-
achi, and Kazuo Tanie. Planning walking patterns for a biped robot. IEEE TRANS-
ACTIONS ON ROBOTICS AND AUTOMATION, 17(3):874–879, June 2001. doi:
None.

Instrumentation, Modeling and Control of AAU-BOT1

http://dx.doi.org/10.1109/ISORC.2003.1199229
http://dx.doi.org/10.1002/0471266388.ref
http://www.control.aau.dk/~jan/

BIBLIOGRAPHY 159

Shuuji Kajita, Fumoi Kanehiro, Kenji Kaneko, Kiyoshi Fujiwara, Kazuhito Yokoi, and
Hirohisa Hirukuwa. Biped walking pattern generation by a simple three-dimensional
inverted pendulum model. Advanced Robotics, VSP and Robotics Society of Japan, 17
(2):131–147, May 2003. doi: None.

Charles Kitchin, Lew Counts, and Moshe Gerstenhaber. Reducing RFI Rectification
Errors in In-Amp Circuits, 2003.

Morten Knudsen. Experimental modelling of dynamic systems. Afd. for Proceskontrol,
AAU, 0.2 edition, January 2004.

Konstantin Kondak and Gunter Hommel. Control and online computation of stable
movement for biped robots. Intl. Conference on Intelligent Robots and Systems. Las
Vegas, Nevaaa, pages 874–879, Oct. 2003a. doi: None.

Konstantin Kondak and Günter Hommel. Control and online computatopm pof stable
movement for biped rogbots. Intelligent Robots and Systems, 2003 IEEE/RSJ Inter-
national Conference on, pages 874–879, Oct. 2003b. doi:.

David C. Lay. Linear Algebra. Greg Tobin, 3rd edition, 2003.

LOLITech. CanFestival, 2007. http://www.canfestival.org/.

Lorenz Messtechnik. RS485 USB Protokoll und Datenblocks, 2001.

Klaus Löffler, Michael Gienger, and Friedrich Pfeiffer. Sensors and control concept of a
biped robot. Industrial Electronics, IEEE Transactions on, 51(5):972–980, Oct. 2004a.
ISSN 0278-0046. doi: 10.1109/TIE.2004.834948.

Klaus Löffler, Michael Gienger, Friedrich Pfeiffer, Fellow, IEEE, and Heinz Ulbrich. Sen-
sors and control concept of a biped robot. IEEE TRANSACTIONS ON INDUSTRIAL
ELECTRONICS, 51(5):972–980, Oct. 2004b. doi: None.

Maxon Motors. EPOS Positioning Controller Firmware Specification. maxon motor
ag, Brünigstrasse 220 P.O. Box 263 CH-6072 Sachseln, May 2007a. Maxon document
#798675-01.

Maxon Motors. EPOS Application Note: Position Regulation with Feed Forward. maxon
motor ag, Brünigstrasse 220 P.O. Box 263 CH-6072 Sachseln, 06 edition, May 2007b.

Maxon Motors. RE ø40mm, Graphite Brushes, 150 Watt, 2007c.

Maxon Motors. RE ø30mm, Graphite Brushes, 60 Watt, 2007d.

Maxon Motors. RE ø35mm, Graphite Brushes, 90 Watt, 2007e.

Tad McGeer. Passive walking with knees. 1990 IEEE, pages 1640–1645, 1990. doi: None.

Alan S. Morris. Measurement & Instrumentation Principles. Elsevier Butterworth Heine-
man, 3rd edition, 2005. doi: 10.1088/0957-0233/12/10/702, ISBN: 0-7506-5081-8.

Masaki Ogino1, Koh Hosoda2, and Minoru Asada3. Learning energy efficient walking
based on ballistics. IEEE 1996, 17(3):1495–1500, June 2001. doi: None.

Group 08gr1032b

http://www.canfestival.org/
http://dx.doi.org/10.1109/TIE.2004.834948
http://dx.doi.org/10.1088/0957-0233/12/10/702

160 BIBLIOGRAPHY

Yu Ogura, Kazushi Shimomura, Hideki Kondo, Akitoshi Morishima, Tatsu Okubo, Shim-
pei Momoki, Hun ok Lim, and Atsuo Takanishi. Human-like walking with knee
stretched, heel-contact and toe-off motion by a humanoid robot. Intelligent Robots
and Systems, 2006 IEEE/RSJ International Conference on, pages 3976–3981, Oct.
2006. doi: 10.1109/IROS.2006.281834.

Jong H. Park and Kyoung D. Kim. Biped robot walking using gravity-compensated
inverted pendulum mode and computed torque control. International Conference on
Robotics and Automation in Leuven, Belgium, May 1998. doi: None.

Mikkel Melters Pedersen, Allan Agerbo Nielsen, and Lars Fuglsang Christiansen. Design
of Biped Robot AAUBOT1. Master’s thesis, Aalborg University, 2007.

Peter Rydesäter. TCP UDP IP toolbox for MatlabTM, 2003.

Jean-Claude Samin. Mechanics of Multibody Systems, preliminary edition, January 2005.

Raymond Serway, Robert Beichner, and John Jewett. Physics for Scientists and Engi-
neers. 5th edition, 2000.

Russell Smith. Open Dynamics Engine, V0.5 User Guide, February 2006.

Ole Sørensen. Optimal Control, preliminary edition, February 2007.

Jakob Stoustrup. Data systems at Autonomous Systems. Meeting about finding the
right computer system for Autonomous Systems., November 2007.

Masaki Takahashi, Terumasa Narukawa, Ken Miyakawa, and Kazuo Yoshida. Combined
control of cpg and torso attitude control for biped locomotion. Intelligent Robots and
Systems, 2005, 2005. doi: None.

Russ Tedrake. Biped robots energy consumption during human locomotion. Study trip
to Massachusetts Institute of Technology, where the master thesis group visit CSAIL
department and followed Professor Russ Tedrake one day, February 2008.

Dimitri van Heesch. Doxygen, May 2008. www.doxygen.org, Doxygen is a tool for
automatic creation of documentation of software.

Christopher L. Vaughan, Brian L. Davis, and Jeremy C. O’Connor. DYNAMICS OF
HUMAN GAIT. Kiboho Publishers, 2nd edition, 1992.

Richard Voyles, James Morrow, and Pradeep Khosla. The shape from motion approach
to rapid and precise force/torque sensor calibration. Journal of Dynamic Systems,
Measurement and Control, 119(2):229–235, June 1997.

M. Vukobratović, B. Borovac, and V. Potkonjak. Contribution to the synthesis of biped
gait. In Proceedings of the IFAC Symposium on Technical and Biological Problem and
Control, 1969.

M. Vukobratović, B. Borovac, and V. Potkonjak. Towards a unified understanding of
basic notions and terms in humanoid robotics. Robotica, 25(1):87–101, 2007. ISSN
0263-5747. doi: 10.1017/S0263574706003031.

Wolfram MathWorld. Cubic spline, 2004. URL
http://mathworld.wolfram.com/CubicSpline.html. The web’s most extensive
mathematics resource.

Instrumentation, Modeling and Control of AAU-BOT1

http://dx.doi.org/10.1109/IROS.2006.281834
www.doxygen.org
http://dx.doi.org/10.1017/S0263574706003031
http://mathworld.wolfram.com/CubicSpline.html

BIBLIOGRAPHY 161

WolframMathWorld. Point to line equaltion, 2004. URL
http://mathworld.wolfram.com/Point-LineDistance2-Dimensional.html. The
web’s most extensive mathematics resource.

Dirk Wollherr. Design and Control Aspects of Humanoid Walking Robots. PhD thesis,
Technical University Munich, 2005.

Dirk Wollherr, Martin Buss, Michael Hardt, and Oskar von Stryk. Research and de-
velopment towards an autonomous biped walking robot. International Conference on
Advanced Intelligent Mechatronics, pages 968–973, 2003. doi: None.

Xiuping Mu; Qiong Wu. A complete dynamic model of five-link bipedal walking. Ameri-
can Control Conference, 2003. Proceedings of the 2003, 6:4926–4931, June 2003. ISSN
0743-1619. doi: 10.1109/ACC.2003.1242503.

Xubuntu. http://www.xubuntu.org, 2008. URL http://www.xubuntu.org. Xubuntu
is an entirely open source operating system, which uses the Xfce desktop environment
on top of a Ubuntu GNU/Linux core.

Group 08gr1032b

http://mathworld.wolfram.com/Point-LineDistance2-Dimensional.html
http://dx.doi.org/10.1109/ACC.2003.1242503
http://www.xubuntu.org
http://www.xubuntu.org

162 BIBLIOGRAPHY

Instrumentation, Modeling and Control of AAU-BOT1

Appendix A

Verification of Models

In this appendix, the models that are designed in Chapter 5 will be verified. Firstly, the
DC Motor model is parameter estimated using the MatlabTM toolbox SENSTOOLS.
Then the kinematic model is verified visually and using Webots, and lastly the inverse
kinematic model is verified using the kinematic model.

A.1 Verification and Parameter Estimation of DC Mo-
tor Model

To verify the DC Motor model seen in Section 5.3, the parameters of the model are
parameter estimated. Due to the fact that the amplifiers allow direct control of the
current (i), the model is simplified to the following:

θ̈J = Kti
︸︷︷︸

τM

−µθ̇
︸︷︷︸

τµ

−τc −
sin(θ

G)mlg

G
︸ ︷︷ ︸

τL

(A.1)

where:
J is the inertia of the arm
Kt is the motor constant
µ is the viscous friction coefficient
m is the mass of the arm
l is the distance from the joint to the center of mass of the arm
g is the gravity constant
G is the gear ratio
θ is the angle of the rotor of the DC motor
τM is the torque exerted by the DC motor
τµ is the torque exerted by the viscous friction
τc is the torque exerted by the coulomb friction
τL is the torque exerted by the load

The model is discretizised and implemented nonlinearly in SENSTOOLS [Knudsen, 2004],
which is a parameter estimation toolbox for MatlabTM.

163

164 Verification of Models

A.1.1 Method

The DC motor model is tested by subjecting the left arm of AAU-BOT1 to an escalating
pulse train current command (ui, see Figure A.2). The measured current i is used as input
to the nonlinear model seen in Equation (A.1). The results from the test is implemented

3

2

1

1

ui

ui

ω

ω
θ

θ
i

i
AAU-BOT1

Figure A.1: Test setup for the parameter estimation.

in SENSTOOLS, with the following known parameters:

• The gearing G for the arm is found in Table 5.1 to be 111

• The motor constant Kt is 53.8 · 10−3[Nm
A]

The parameters that are to be estimated has the following starting values:

• Inertia of the arm (from Table C.2 on page 185) :

J = 0.0419
111 = 377.48 · 10−6 kg

cm2

• Coulomb friction is estimated by examining how much torque is exerted at the
point where the motor starts moving:
τc ≈ imotor starts · Kt ≈ 0.75 · 0.0538 = 40.3 · 10−3

• The load constant T l = |bla| · m · g
G is estimated to

T l = |bla| · m · g
G = 0.3503 · 0.9 · 9.82

111 = 0.0279

• The starting value of the viscous friction µ is chosen to
µ = 0.0002

A.1.2 Result

The results can be seen in Figure A.2 and A.3. The measured angle is the angle of the
motor. By using SENSTOOLS, the parameters are found to be the following, yielding
a mean squared error of 12.1% (see Figure A.3 on the next page):

• J = 12.15 · 10−6 kg
cm2

• τc = 48.76 · 10−3Nm

• T l = 21.40 · 10−3 Nm
m

• µ = 52.42 · 10−6 Nm s
rad

Instrumentation, Modeling and Control of AAU-BOT1

DC Motor Model 165

0 2 4 6 8 10 12 14 16 18 20
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Time [s]

C
ur

re
nt

 [A
]

u

i

i

Figure A.2: Input for parameter estimation.

0 2 4 6 8 10 12 14 16 18 20
−10

−5

0

5

Time [s]

A
ng

le
 [r

ad
]

θ

19
 Meas

θ
19

 Model

0 2 4 6 8 10 12 14 16 18 20

−500

0

500

1000

Time [s]

A
ng

ul
ar

 v
el

oc
ity

 [r
ad

/s
]

ω

19
 Meas

ω
19

 Model

Figure A.3: Output of parameter estimation test. The model has a squared mean error
of 12.1%.

Group 08gr1032b

166 Verification of Models

A.1.3 Discussion and Conclusion

By parameter estimating the model, a mean squared error of 12.1% is achieved. This
error is considered low due to the high value of the gearing, the high degree coulomb
friction and potential offset of the angle. Another thing to consider is the high degree
of mutual cross coupling of the measurements. According to [Knudsen, 2004], a normed
squared error of only 5-8% should be obtainable. The found parameters are perceived
as correct, and will be used in the model. For the same reasons the DC Motor Model is
considered verified as being correct.

A.2 Verification of Kinematic Model

The kinematics are used to derive the positions of individual links and their CoM’s from
the joint angles. This is done by a transformation from joint space to Cartesian space.
To do this transformation different kinematic chains has been developed as described in
Section 5.4. To verify the kinematics the different kinematic chains are verified towards
the Webots representation of the AAU-BOT1. Webots is a robots simulation tool which
contains its own 3D virtual world and is described in Section 4.8. The AAU-BOT1 has
been constructed in this virtual environment such that the physical proportion of the
robots match the parameters used for the kinematic model.

A.2.1 Method

The outputs from the kinematic chains are described in two phases, SSP-R and SSP-
L. The two phases will be verified for some given joint angles as input. This is done
by utilizing the developed Webots representation of AAU-BOT1 together with the
programmed functions used to interface Webots from Simulink. The following commands
are used: set_theta_joints(angles)which sets the joint angles of the AAU-BOT1 in
Webots from Simulink. When the joints of the AAU-BOT1 are set to the correct angle
the commands get_Pj_webots() are used to retrieve the absolute Cartesian position of
all the links where after they are transmitted back to Simulink.

The retrieved positions of the links from Webots are compared to the link positions
generated from the kinematic model in Simulink.

As this test is performed to verify the kinematic, the dynamics in the Webots world
has to be disabled. Unfortunately there is no direct option to disable the physics engine
such that the Webots model can be considered ideal. To accommodate this problem the
gravity is set to a small value and the supporting toe is set to a relatively high value
compared to the weight of the rest of the robot. This value can not be set to high since
this will cause the robot in the Webots world to penetrate and break through the virtual
floor, the weight is set to 100 kg since this is greater than 68.47 kg which is the weight
of AAU-BOT1 used for the simulation. Lastly the supporting toe of the robot in the
Webots world is made wide and long this will ensure a stable system and this is needed
to compare the kinematic in Simulink with Webots.

A.2.2 Results

The verification is done in two steps. First in SSP-R and thereafter in SSP-L. The joint
angles used to test with are listed in Table A.1: With these test angles as input to the
Webots model and the kinematic model the models are actuated and the visual result
for SSP-R can be seen in Figure A.4

Instrumentation, Modeling and Control of AAU-BOT1

Verification of Kinematic Model 167

(a) Webot representation of AAU-BOT1 in
SSP-R.

−0.100.10.2

−0.1 0 0.1 0.2 0.3 0.4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

 Length [m]

AAU−BOT1 from Matlab

Width [m]

H
ig

ht
 [m

]

(b) Matlab plot of AAU-BOT1 in SSP-R. The red dots represent
the position of joints and the black dots are the CoM.

Figure A.4: Visual result by applying the test angles for SSP-R.

Group 08gr1032b

168 Verification of Models

Table A.1: Test angles for the two phases.
SSP-R SSP-L

θ1 · · · θ7=0◦ θ1=0◦

θ8=5◦ θ2=5◦

θ9=-45◦ θ3=-5◦

θ10=0◦ θ4=-45◦

θ11=45◦ θ5=0◦

θ12=5◦ θ6=45◦

θ13=5◦ θ7=5◦

θ14 · · · θ19=0◦ θ8 · · · θ19=0◦

From visual inspection the two models seem similar and to verify the similarity the
position of the last joint in the chain is compared to each other. The last joint is the left
toe when in SSP-R and the right toe when in SSP-L. The result of this comparison can
be seen in Figure A.5-(a) and in Figure A.5-(b). Here the coordinates for feet in both
phases are listed and the red dashed line is the output from the kinematics in Simulink
and the black solid line is the output from the Webots model.

0 1 2 3 4 5 6 7 8
−0.5

0

0.5
The X outputs for left toe in SSP−R

Time [s]

D
is

ta
nc

e
[m

]

X
kin

X
webots

0 1 2 3 4 5 6 7 8
0

0.2

0.4
The Y input and output for left toe in SSP−R

Time [s]

D
is

ta
nc

e
[m

]

Y
kin

Y
webots

0 1 2 3 4 5 6 7 8
−0.05

0

0.05

0.1
The Z outputs for left toe in SSP−R

Time [s]

D
is

ta
nc

e
[m

]

Z
kin

Z
webots

(a) Right phase.

0 1 2 3 4 5 6 7 8
−0.5

0

0.5
The X outputs for left toe in SSP−L

Time [s]

D
is

ta
nc

e
[m

]

X
kin

X
webots

0 1 2 3 4 5 6 7 8
−0.4

−0.2

0
The Y input and output for left toe in SSP−L

Time [s]

D
is

ta
nc

e
[m

]

Y

kin

Y
webots

0 1 2 3 4 5 6 7 8
−0.1

0

0.1
The Z outputs for left toe in SSP−L

Time [s]

D
is

ta
nc

e
[m

]

Z
kin

Z
webots

(b) Left phase.

Figure A.5: Graph showing the output position for toe joint for kinematic model and for
Webot model.

To show the difference between the two models the error can be seen in Figure A.6.
From both figures it is obvious that the Webots model contains dynamics and the

kinematic contains none. This can be seen since the Webots model propagates towards
the kinematic model.

The largest error can be seen in the z-coordinate both for SSP-R and SSP-L. When
the Webots model is settled the error is roughly 0.004 m. This is not necessarily an error
in the kinematic model, but more likely a steady state error in the position controller
used to control the servo motor controller in Webots. The proportional gain in Webots
is by default set to 10 and this value is also suitable for this verification even though it
is changeable.

Instrumentation, Modeling and Control of AAU-BOT1

Verification of Inverse Kinematic Model 169

0 1 2 3 4 5 6 7 8
0

0.2

0.4
Error on the X−axis for left toe in SSP−R

Time [s]

D
is

ta
nc

e
[m

]

X

terr

0 1 2 3 4 5 6 7 8
−0.5

0

0.5
Error on the Y−axis for left toe in SSP−R

Time [s]

D
is

ta
nc

e
[m

]

Y

terr

0 1 2 3 4 5 6 7 8
0

0.05

0.1
Error on the Z−axis for left toe in SSP−R

Time [s]

D
is

ta
nc

e
[m

]

Z

terr

(a) Right phase.

0 1 2 3 4 5 6 7 8

0

0.1

0.2

0.3

Error on the X−axis for left toe in SSP−L

Time [s]

D
is

ta
nc

e
[m

]

X

terr

0 1 2 3 4 5 6 7 8
−0.3

−0.2

−0.1

0

Error on the Y−axis for left toe in SSP−L

Time [s]

D
is

ta
nc

e
[m

]

Y
terr

1 2 3 4 5 6 7 8

0

0.02

0.04

0.06

0.08
Error on the Z−axis for left toe in SSP−L

Time [s]

D
is

ta
nc

e
[m

]

Z

terr

(b) Left phase.

Figure A.6: Graph showing the output error between the kinematic model and the Webot
model.

A.2.3 Discussion and Conclusion

The error between the toe joints from the Webots model and the kinematic model are
at first relatively large, but when the dynamics in Webots is propagated the error comes
close to zero in both phases. The small deviation of 0.004 m are considered to be
caused by the dynamics in Webots and not by an faulty kinematics. The kinematic is
now considered successfully verified towards the virtual world in Webots. This does not
verify the actual AAU-BOT1 as the hardware mounting results in new parameters and
may lead to inaccuracy between the model and the system.

A.3 Verification of Inverse Kinematic Model

During this appendix the inverse kinematic is verified. The inputs to the inverse kine-
matic model are the ~Ptr

, ~Otr
,~Ptl

, ~Otl
The first input is the position of torso joint 17

calculated from right foot, consult Figure 5.9 to see the geometry. The following input
are the orientation of torso given by the right leg and the last two inputs are the position
and orientation of torso given by the left leg. The output of the inverse kinematic are
the angles in joint space. This means that the kinematic model gives a coordinate trans-
formation from the generalized coordinates of the end of each limb and torso, to joint
space. It has been chosen to verify the inverse kinematic model toward the kinematic
model, as the kinematic model do the opposite transformation, from joint space to gen-
eralized coordinates. This means that the input to the inverse kinematic model and the
output from the kinematic model can be compared and should be equal, under normal
circumstances. The test set up can be seen in Figure A.7 and is setup the same way in
simulink.

Group 08gr1032b

170 Verification of Models

Kinematic model
Inverse

kinematic model

~Ptr
, ~Otr

~Ptl
, ~Otl

~Ow

~Oar
, ~Oal

~θ
~Pj

Figure A.7: Block diagram of input and output for the test setup.

A.3.1 Translatory Displacement of Torso

The first test is developed to verify the translatory motion of the torso joint J17 by
actuating ~Ptr

, ~Ptl
which is the position of torso given for the right and left phases. In

Figure A.8(a) x,y and z components of the trajectory for ~Ptr
can be seen and for left

phase~Ptl
can be seen in Figure A.8(b).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−0.2

−0.1

0

0.1
The X input and output for torso joint J17

Time [s]

D
is

ta
nc

e
[m

]

X

ref

X
out

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.1

0

0.1

0.2

0.3
The Y input and output for torso joint J17

Time [s]

D
is

ta
nc

e
[m

]

Y
ref

Y
out

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.7

0.75

0.8

0.85

The Z input and output for torso joint J17

Time [s]

D
is

ta
nc

e
[m

]

Z
ref

Z
out

(a) Right phase.

0 1 2 3 4 5

−0.2

−0.1

0

0.1
The X input and output for torso joint J17

Time [s]

D
is

ta
nc

e
[m

]

X

ref

X
out

0 1 2 3 4 5

−0.2

−0.1

0

0.1
The X input and output for torso joint J17

Time [s]

D
is

ta
nc

e
[m

]

Y
ref

Y
out

0 1 2 3 4 5

0.7

0.75

0.8

0.85

The Z input and output for torso joint J17

Time [s]

D
is

ta
nc

e
[m

]

Z
ref

Z
out

(b) Left phase.

Figure A.8: Graph showing the input for the inverse kinematic model and output for the
inverse kinematic model.

As is can be seen in Figure A.8 the torso is first moved translatory in a sine wave
motion in x-direction and next in the y-direction and lastly in the z-direction. Since the
AAU-BOT1 is standing upright from start, only the negative part of the sinewave is
used. The span of the test is 5 sec. The output from the kinematic model is also shown
in the Figure A.8 but it is hard to see the difference between the input and output so in
order to see the difference the input is subtracted from the output and the error can be
viewed. The error between the reference-input and the output can be seen for the right
phase in Figure A.9(a) and for the left phase in Figure A.9(b).

In Figure A.9 is can be seen that the errors for the right and left phase are the same,
this is because the left a right phase make use of substantially the same inverse kinematic
model, the only difference is the negative signs applied in the left side model so that is

Instrumentation, Modeling and Control of AAU-BOT1

Verification of Inverse Kinematic Model 171

0 1 2 3 4 5
−5

0

5

10
x 10

−5 Error on the X−axis for torso joint J17

Time [s]

D
is

ta
nc

e
[m

]

X

terr

0 1 2 3 4 5
−1

0

1
x 10

−3 Error on the Y−axis for torso joint J17

Time [s]

D
is

ta
nc

e
[m

]

Y

terr

0 1 2 3 4 5
−5

0

5

10
x 10

−16 Error on the Z−axis for torso joint J17

Time [s]

D
is

ta
nc

e
[m

]

Z

terr

(a) Right phase.

0 1 2 3 4 5
−5

0

5

10
x 10

−5 Error on the X−axis for torso joint J17

Time [s]

D
is

ta
nc

e
[m

]

X

terr

0 1 2 3 4 5
−1

0

1
x 10

−3 Error on the Y−axis for torso joint J17

Time [s]

D
is

ta
nc

e
[m

]

Y

terr

0 1 2 3 4 5
−5

0

5

10
x 10

−16 Error on the Z−axis for torso joint J17

Time [s]

D
is

ta
nc

e
[m

]

Z

terr

(b) Left phase.

Figure A.9: Graph showing the error between the input to inverse kinematics and output
from the kinematic model.

it behaves the opposite way of the right phase.

Furthermore the errors between the input to the inverse kinematic model and the
output from the kinematic model are small. The max error on the x-direction is in
scope of 10−5 and the y-direction is roughly 0.6 mm and the z-direction is in the scope of
10−16. The errors in the x, y and z-directions are substantially small and can be regarded
as zero. Since the backlash and precision on joint angle measurement on the physical
system, will give larger error than the one seen in this test. This is because it is chosen to
calibrate the absolute position with an analog potentiometer which is potentially noisy
and it will be hard to even detect the errors shown in this test.

A.3.2 Torso Rotation

This test is conducted to verify the rotation of the torso caused by the hips. In order to
test this a test trajectory has be proposed. This trajectory includes rotation around the
x-,y- and z-axis as seen in Figure A.10 on the following page. Here the red are rotation
around x-axis and the green are rotation around y-axis and the last rotation is around
the z-axis.

The test is for rotations in the hip, but the verification is done from the torso as a
rotation in the hip will rotate the entire torso. So when the hip is given a rotation it will
result in a similar rotation on the generalized coordinate for the torso Ptr

,Ptl
. This extra

rotation is applied to the torso coordinate and it is used as the reference input to this test
and the output is from the kinematic model. The reference input and output for the right
phase can be seen in Figure A.11(a) and the left phase can be seen in Figure A.11(b).

The difference between the input and output are hard to distinguish between since
they are very small. In order to see the performance better, the signals are subtracted
and the errors is displayed. The errors for the right phase is seen in Figure A.12(a) and
the left phase can be seen in Figure A.12(b)

The errors shown in Figure A.12 are equal, which is because the inverse kinematic

Group 08gr1032b

172 Verification of Models

0 1 2 3 4 5
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Time [s]

R
ot

at
io

n
[r

ad
]

X
rot

Y
rot

Z
rot

Figure A.10: Graph showing the test rotation around the three axis.

0 1 2 3 4 5

−0.2

0

0.2

The X input and output for torso joint J17 when rotating around the hip

Time [s]

D
is

ta
nc

e
[m

]

X

ref

X
out

0 1 2 3 4 5

0

0.2

0.4

The Y input and output for torso joint J17 when rotating around the hip

Time [s]

D
is

ta
nc

e
[m

]

Y

ref

Y
out

0 1 2 3 4 5

0.8

1

1.2

The Z input and output for torso joint J17 when rotating around the hip

Time [s]

D
is

ta
nc

e
[m

]

Z

ref

Z
out

(a) Right phase.

0 1 2 3 4 5

−0.2

0

0.2

The X input and output for torso joint J17 when rotating around the hip

Time [s]
D

is
ta

nc
e

[m
]

X

ref

X
out

0 1 2 3 4 5

−0.2

0

0.2

The Y input and output for torso joint J17 when rotating around the hip

Time [s]

D
is

ta
nc

e
[m

]

Y

ref

Y
out

0 1 2 3 4 5
0.7

0.8

0.9

1
The Z input and output for torso joint J17 when rotating around the hip

Time [s]

D
is

ta
nc

e
[m

]

Z
ref

Z
out

(b) Left phase.

Figure A.11: Graphs showing the input for the inverse kinematic model and output for
the inverse kinematic model when rotating around the hip.

model for the left and right phase only differs with negative signs. The errors on the X,
Y and Z component are small but a little larger than in the first test. The largest error
is 2 mm and can be seen on the Y component and is considered very small on this size
system. The largest errors on the X and Z component are roughly -0.8 mm and -0.06
mm which are considered small. It is obvious that these small errors are caused by the
rotation in pelvis as the errors have a smooth wave behavior just as the test trajectory.
This also means that it is possible to reduce the errors if higher precision is needed.

Instrumentation, Modeling and Control of AAU-BOT1

Verification of Inverse Kinematic Model 173

0 1 2 3 4 5
−1

0

1
x 10

−3 Error on the X−axis when rotating around the hip

Time [s]

D
is

ta
nc

e
[m

]

X

terr

0 1 2 3 4 5

0

2

4

6

x 10
−3 Error on the Y−axis when rotating around the hip

Time [s]

D
is

ta
nc

e
[m

]

Y

terr

0 1 2 3 4 5

−5

0

5

10
x 10

−4 Error on the Z−axis when rotating around the hip

Time [s]

D
is

ta
nc

e
[m

]

Z

terr

(a) Right phase.

0 1 2 3 4 5
−1

0

1
x 10

−3 Error on the X−axis when rotating around the hip

Time [s]

D
is

ta
nc

e
[m

]

X

terr

0 1 2 3 4 5

0

2

4

6

x 10
−3 Error on the Y−axis when rotating around the hip

Time [s]

D
is

ta
nc

e
[m

]

Y

terr

0 1 2 3 4 5

−5

0

5

10
x 10

−4 Error on the Z−axis when rotating around the hip

Time [s]

D
is

ta
nc

e
[m

]

Z

terr

(b) Left phase.

Figure A.12: Graph showing the error between the input to inverse kinematics and output
from the kinematic model when rotating around the hip.

A.3.3 Discussion and Conclusion

Two tests have be conducted. The first test was carried out to verify and test the
performance of the inverse kinematic model when performing a translatory motion with
the torso. The next test was made to verify and test the performance when rotating the
torso with the hip. During the two tests small errors were found. This concludes that
the performance of the inverse kinematic is very high and a success. The errors are so
small that they will not be noticeable on the physical system as they will be hidden in
other noise from e.g. the potentiometers and errors due to backlash.

Group 08gr1032b

174 Verification of Models

Instrumentation, Modeling and Control of AAU-BOT1

Appendix B

Verification and Implementation

of Controllers

In this appendix, the controllers that are designed in Chapter 7 will be verified. This
concerns the controllers from both Control Strategy A and Control Strategy B. Both
controller strategies are based on the same main idea. To each control strategy, two
controllers with different objectives are proposed. The first controller enables the robot
to track the walking trajectories, this is also called a posture controller. The second
controller proposed is a balance controller. That works by moving the torso such that
the robot is in balance.

B.1 Verification of Control Strategy A

This section describes the implementation and verification of the first control strategy
and which involves two controllers. The first controller is for the posture control and the
next is the balance controller.

B.1.1 Posture Controller Verification

The posture controller consists of a LQG controller. It is verified after a bottom up
method. This means that the controller is verified on the linear model first and thereafter
on the nonlinear model. Lastly on the Webots representation of the AAU-BOT1.

In Section 7.2.1 on page 121 the initial LQG weights on the state are proposed, these
weights are for the linear model and are listed below in Equation (B.1) and (B.2)

Q =diag[330000 180000 600000 18000 980000 800000 400800 900000 900000

1080000 880000 80000 500000 1800 800000 950000 180 100000

100000 60000 10 90050 40000 500000 250000 255000 20000 300000

400000 05085 9040 50000 600 8000 100000 20005 16080 16080] (B.1)

R = diag[35 25 10 30 25 20 20 500 15 2.5

80 3000 3000 10 100 20 35 325 325] (B.2)

175

176 Verification and Implementation of Controllers

The Kalman filter is also implemented with the linear model, this will not cause any
loss in performance as the Kalman filter is developed from the linear model. In order to
see the performance of the controller with the specified weights and the Kalman filter,
two steps are applied. It is chosen to step θ2 which is ankle roll and θ19 the left arm with
5◦. These two joints are chosen as the first one is heavily influenced by other states and
contains relatively large process noise. The two steps on the linear model can be seen in
Figure B.1a and B.1b.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

0

1

2

3

4

5

6

Step performed on right ankle roll
2

Time [s]

A
ng

le
 [d

eg
re

e]

1,3,4,6,7,..,19

2

5
θ
θ
θ

θ

(a) Step on θ2.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

0

1

2

3

4

5

Step performed on the left arm
19

Time [s]

A
ng

le
 [d

eg
re

e]

1,..,18

19
θ

θ

θ

(b) Step on θ19.

Figure B.1: Steps performed on the linear model with LQR controller and kalman filter.

In Figure B.1a a step on ankle roll is performed, where it is possible to see another
state θ5 that is especially influenced by this step. This is because they rotate around
the same axis. This is the general picture of the cross coupling situation on the robot.
The states that rotates around one axis are most likely to influence other states rotating
around the same axis. The LQG controller is able to stabilize the linear model.

The controller can now by tested on the nonlinear model. Initially the controller
was not able to stabilize the nonlinear model, therefore the verification is split up into
two parts. First with the LQR controller and thereafter adding the kalman filter. In
Figure B.2 on the next page(a) the LQR controller with the weights used with the linear
model can be seen. The initial weights are not sufficient as multiple states is settling
in the area of 20 degrees. To accommodate this problem the weight on the position is
roughly raised by a factor 106. Because this is the model for SSP-R the first joints are
influenced more and therefore they have to be weighted higher than the joints in the end
of this kinematic chain. The new gains can be seen in Equation (B.3) and (B.4).

diag(Q) =106[830000 7800 900 1800 5200 800 901 10 70

508 10 100 100 1.8 100 950 900 10 10

0.06 0.000001 0.09 0.004 0.05 0.025 0.0255 0.002 0.03 0.04

0.0205 0.00091 0.005 0.000006 0.8 0.001 0.002 0.0002 0.0002] (B.3)

diag(R) = [35 25 10 30 25 20 20 500 15 2.5

80 3000 3000 10 100 20 35 325 325] (B.4)

In Figure B.2 on the facing page(b) the tuned weights to the nonlinear model are
tested. Here it can be seen that the steady state error is in some cases improved by a
factor 100. The largest steady state error is now 0.16 and -0.25 degree. The performance

Instrumentation, Modeling and Control of AAU-BOT1

Verification of Control Strategy A 177

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−30

−20

−10

0

10

20

30
Initial weights for LQR control nonlinear model

Time [s]

A
ng

le
 [d

eg
re

e]

1,..,19
θ

(a) Initial weights on the states, zero input.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
Tuned weights for LQR control on nonlinear model

Time [s]

A
ng

le
 [d

eg
re

e]

1,..,19
θ

(b) Handtuned weights for the states, zero in-
put.

Figure B.2: LQR controller on the nonlinear model.

is accepted and the Kalman filter can now be added to see whether this can stabilize the
nonlinear model.

The Kalman filter is now added to the verification. The purpose of the Kalman filter
is to estimate the angular velocity of the model and later on the real system. Since the
Kalman filter is based on the linearized model it can only to some extent predict the
angular velocities. This means that if the nonlinearities are to high or the process noise
has a great factor this result in a faulty prediction of the angular velocities.

In Figure B.3 on the next page(a) the tuned weights for the nonlinear model with
LQR controller are tested on the nonlinear model both with Kalman filter and LQR
controller. Here it can be seen that one state is oscillating, to minimize this oscillating
state the weight on the angular velocity is raised a factor 10. Furthermore the weight
on the position is raised roughly a factor 104 in order to reduce the steady state error.
In order to reduce the steady state error further an integral regulator has to be included
in this design and thereby forcing the states towards zero. The tunes gains for the LQR
controller with the Kalman filter can be seen in Equation (B.5) and (B.6).

diag(Q) =1010 · [830000000000 180 10000 580 9200000000 100 20 10 70

90.8 50000 100 1000 1.8 100 15 100 9 9

0.00006 0.000000001 0.00009 0.000004 0.0005 0.00000025

0.00000755 0.0002 0.00003 0.000004 0.00000205 0.0000091

0.00001 0.00006 0.00008 0.0005 0.0000002 0.00000002 0.00000002] (B.5)

diag(R) = [35 25 10 30 25 20 20 500 15 2.5

80 3000 3000 10 100 20 35 325 325] (B.6)

In Figure B.3 on the following page(b) the tuned weight for the Kalman filter and
LQR controller can be seen. The oscillation is suppressed and the steady state errors are
slightly improved, where the largest error was -9 degrees and is now -3.5 degrees. Now
the nonlinear model together with the LQR controller and the Kalman filter is tested

Group 08gr1032b

178 Verification and Implementation of Controllers

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−10

−8

−6

−4

−2

0

2

4

6
Initial weights for LQR control with Kalman filter on nonlinear model

Time [s]

A
ng

le
 [d

eg
re

e]

1,..,19
θ

(a) Initial weights on the states, zero input.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−4

−3

−2

−1

0

1

2

3
Tuned weights for LQR control with Kalman filter on nonlinear model

Time [s]

A
ng

le
 [d

eg
re

e]

1,..,19
θ

(b) Altered weights for the states, zero input.

Figure B.3: LQR controller and kalman filter on the nonlinear model.

with two different steps. Both steps have the magnitude of 5 degrees and the first is
applied to right ankle roll θ2 which are heavily influenced by other states. The next is
applied to the left arm θ19. The two steps can be seen in Figure B.4(a) and (b).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−8

−6

−4

−2

0

2

4

6

Step performed on right ankle roll
2
 with LQR control and kalman filter on nonlinear model

Time [s]

A
ng

le
 [d

eg
re

e]

1,..,19

2
θ

θ

θ

(a) Step on θ2.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−4

−2

0

2

4

6

8

Step performed on the left arm
19

 with LQR control and kalman filter on nonlinear model

Time [s]

A
ng

le
 [d

eg
re

e]

1,..,18

19
θ

θ

θ

(b) Step on θ19.

Figure B.4: Steps performed on the nonlinear model with LQG controller.

In Figure B.4(a) the controller is not able to settle θ2 in 5 degrees and has a steady
state error of roughly 2 degree. In Figure B.4(b) a step of 5 degrees on the arm is
performed here the arm swing up to 5 degrees, but propagates to roughly 7 degrees this
presumably happens together with the propagation of torso pitch.

Now the LQR controller together with the Kalman filter can stabilize the non linear
model, and the next step is to verify the controller and Kalman filter toward the Webots
representation of the AAU-BOT1. The verification is done with a zero input and the
result can be seen in Figure B.5 on the facing page.

Unfortunately it has not been possible to stabilize the Webots representation of the
AAU-BOT1. This is presumably because the model is not accurate enough toward
the virtual robot in Webots. All the inertia, mass and proportions parameters of the
virtual robot has been double checked with the model parameters. It is presumed that
it is the friction on the virtual robot in Webots that is not modeled thoroughly. It is

Instrumentation, Modeling and Control of AAU-BOT1

Verification of Control Strategy A 179

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−400

−300

−200

−100

0

100

200

300

400

500

600
LQR controller and kalman filter on the Webots representation of the robots

Time [s]

A
ng

le
 [d

eg
re

e]

1,..,19
θ

Figure B.5: Zero step on the Webots representation of the robot.

still unknown how the virtual world deals with viscous friction and coulomb friction in
motors and joints.

Another important factor is that the model is derived for a robot where the first
link, the toe link, is pinned to the ground. This is not entirely right as there exist an
unactuated joint between the robot and the floor. This unactuated joint is present in
Webots model, but not in the dynamical model for the robot. This means that the first
3-4 joints in the kinematic chain cannot be moved as aggressively as the LQR controller
dictates. If the intended LQR controller weights are used it results in a system that
moves the lower leg aggressively such that it is the lower leg that is moved and not the
upper robot as intended. When this happens the unactuated joint between the robot
and the ground comes into play. This results in a unstable system as seen in Figure B.5.

B.1.2 Verification of ZMP Controller

The ZMP controller is verified together with the posture controller. This is a requirement
since the ZMP controller is the outer loop in the cascade control strategy. Since the
posture controller failed to stabilize the Webots representation of the AAU-BOT1 it
is not possible to verify the ZMP controller in Control Strategy A. However in control
strategy B a similar controller is developed and verified, so the interested reader can
consult Appendix B.2 where Control Strategy B is verified.

B.1.3 Discussion and Conclusion

It was possible to stabilize the nonlinear model with the proposed LQG controller. This
showed that the weights on the states have to be larger on the first joints in the kinematic
chain in order to stabilize the nonlinear model. Furthermore it was observed that steady
state error was large and it is clear that integral action is needed to minimize these steady
state before is can be used on the actual system.

Group 08gr1032b

180 Verification and Implementation of Controllers

B.2 Verification of Control Strategy B

This section describes the implementation and verification of the second control strategy
which involves two independent controllers. The first controller is for the posture and
the next is a balance controller. The verification is conducted on both the Webots
representation of the AAU-BOT1 and on the actual system.

B.2.1 Webots

Posture Controller Verification

As described in Section 7.3 The posture controller consist of a position controller for the
actual AAU-BOT1 and a P controller for the Webots representation of the robots.

In Figure B.6(a) and B.6(b) two step on the virtual robot in Webots are conducted.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

0

1

2

3

4

5

6

Step performed on right ankle roll
2
 with LQR control and kalman filter on nonlinear model

Time [s]

A
ng

le
 [d

eg
re

e]

1,3,4,6,..,19

2

5
θ

θ

θ

θ

(a) Step on θ2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

0

1

2

3

4

5

Step performed on the left arm
19

 with LQR control and kalman filter on nonlinear model

Time [s]

A
ng

le
 [d

eg
re

e]

1,..,18

19
θ

θ

θ

(b) Step on θ19

Figure B.6: Steps performed on the virtual robot.

The first steps can be seen in Figure B.6(a) where a step of 5 degree on ankle roll is
performed. Here it is possible to see that 150 Nm is not enough for θ5 to stay in zero.
The virtual robot is in DSP at all time during this test. The net step is on the left arm
and is also of 5 degree. Here is can be seen that it settles after approximately 0.5 seconds.
This is a convenient rate, it is important that the system is not to fast as the system is
greatly influenced by cross couplings, and if the arm moves to fast can cause the body
to moved unwanted.

B.2.2 ZMP Controller Verification

The torso controller consist of a LQG controller, the Kalman filter in this strategy is
proposed to estimate the angular velocity of the torso roll and pitch movements. These
are tested on the Webots representation of the AAU-BOT1. In Figure B.7 on the facing
page two steps of 5 degrees can be seen. In Figure B.7 on the next page(a) it can be seen
that the step settles in roughly 1 degree which indicates a large steady state error and
reveal that the linear model of the upper torso does not fit the Webots representation of
the AAU-BOT1 very well. Figure B.7 on the facing page(b) shows a even larger steady
state error.

The large steady state error from the test for the LQR controller and the Kalman
filter is reduced with the integral action in the PI controller for the ZMP controller. In

Instrumentation, Modeling and Control of AAU-BOT1

Verification of Control Strategy B 181

0 5 10 15

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Step on torso roll

Time [s]

A
ng

le
 [d

eg
re

e]

ref

16

meas
16

θ

θ

(a) Step on θ16

0 5 10 15
−3

−2

−1

0

1

2

3

4

5

Step on torso pitch

Time [s]
A

ng
le

 [d
eg

re
e]

ref

17

meas
17

θ

θ

(b) Step on θ17

Figure B.7: Steps performed on the webots representation of the robot.

Figure B.8 two steps on the ZMP controller can be seen. In Figure B.8(a) step on the
x-direction can be seen and in Figure B.8(b) a step in the y-direction can be seen.

0 5 10 15
−0.14

−0.13

−0.12

−0.11

−0.1

−0.09

−0.08

−0.07

−0.06

−0.05
Step on ZMP in the X direction

Time [s]

di
st

an
ce

 [m
]

ZMPX

ref

ZMPX
measured

(a) Step on ZMP in x-direction

0 5 10 15
0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2
Step on ZMP in the Y direction

Time [s]

di
st

an
ce

 [m
]

ZMPY

ref

ZMPY
measured

(b) Step on ZMP in y-direction

Figure B.8: Steps performed on the webots representation of the robot.

The large steady state error is gone and the system settles with an oscillation that is
slowly suppressed. This can be explained by the dynamics in the Webots. The robots
can rock back and forward by a small factor and that causes some of the oscillation.

B.2.3 Actual AAU-BOT1

In order to test the actual system a step has been performed at the ankle joint θ2. In
Figure B.9 on the next page-(a) the step is shown. As it can be seen there is a large
offset error, due to that the joint is only actuated by one motor and it should be double
actuated. In the time period 1.5-4 sec the angle is higher, this is because the EPOS allow
the current to be more than the nominal current for 2.5 sec., before it limits the current
to nominal current again. Since motor cannot produce enough torque to obtain a step
on 5 degree it has a large steady state error. In Figure B.9 on the following page-(b) a
step on the joint in the arm θ19 is performed. As shown at the graph the arm has no
problem with a step on 5 degrees. On both graphs there is a small spike in the beginning

Group 08gr1032b

182 Verification and Implementation of Controllers

of the test, this is because AAU-BOT1 has to obtain 0 degrees on all joints, before it
perform the step after 1 sec.

0 1 2 3 4 5 6 7 8 9 10
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Step performed on right ankle roll
2
 on the actual system

Time [s]

A
ng

le
 [d

eg
re

e]

2

3,..,13,15,..,19
θ

θ

θ

(a) Step on θ2.

0 1 2 3 4 5 6 7 8 9 10
−1

0

1

2

3

4

5

6

Step performed on the left arm
19

 on the actual system

Time [s]

A
ng

le
 [d

eg
re

e]

2,..,13,15,..,18

19
θ

θ

θ

(b) Step on θ19.

Figure B.9: Steps performed on the actual system.

B.2.4 Discussion and Conclusion

Now the posture controller and the ZMP controller is verified. The ZMP controller is
able to track a ZMP reference, but it is slow due to when a step is performed on the ZMP
the acceleration of the torso affects the ZMP in the opposite direction. It is important
that this controller is calm and does not have any fast movements, as this can cause the
robot to tip and thereby become unstable. At the real system is was clearly that AAU-
BOT1 has problems with obtaining the wanted joint angle in the joint where it have
been double actuated joints. Further groups at the AAU-BOT1 project must enable
this feature in order to obtain a steady state error at zero.

Instrumentation, Modeling and Control of AAU-BOT1

Appendix C

Mechanical Data

In this appendix, the mechanical data of AAU-BOT1, extracted from[Pedersen et al.,
2007, app. N] will be listed in table C.1 to C.4.

Table C.1: Motor/joint properties.
Motors/joints mrotor Jgear + Jrotor Jbelt (est). ubelt ugear utot
Waist yaw m60 J60 + J17 0.1080e-4 48/16 100 300
Waist pitch m150 J150 + J17 0.3171e-4 56/18 120 373
Waist roll m90 J90 + J14 0.2911e-4 62/18 100 344
Shoulder pitch m60 J60 + J14 0.0051e-4 20/18 100 111
Hip yaw m60 J60 + J17 0.0510e-4 40/16 100 250
Hip roll 2 m150 2 J150 + J20 0.5576e-4 72/30 120 288
Hip pitch m150 J150 + J20 0.2937e-4 60/28 160 342
Knee pitch 2 m150 2 J150 + J17 0.2111e-4 32/24 100 133
Ankle pitch 2 m150 2 J150 + J20 0.0421e-4 38/18 100 211
Ankle roll m90 J90 + J14 0.0789e-4 44/22 100 200

183

184 Mechanical Data

Figure C.1: Local vectors from the individual body’s CoM to the joints connecting the
adjacent bodies. Regular bodies (left) and motor bodies (right). The colors of the rotor
coordinate systems, defines the axis of rotation (red, green and blue for roll, pitch and
yaw, respectively). The size of the vectors are found in table C.3.

Instrumentation, Modeling and Control of AAU-BOT1

185

Table C.2: Overview of 37 bodys that AAU-BOT1 consists of [Pedersen et al., 2007,
App. N].

Name Mass [kg] Inertia [x y z] [kg·m2]
1 Pelvis 4.90 [5.47e-02 1.29e-02 6.57e-02]
2 Waist yaw motor 0.28 [3.34e-05 3.34e-05 3.34e-05]
3 Waist pitch joint 2.27 [9.88e-03 6.78e-03 5.87e-03]
4 Waist pitch motor 0.48 [6.48e-05 6.48e-05 6.48e-05]
5 Waist cross 0.75 [3.49e-04 9.56e-04 1.21e-03]
6 Waist roll motor 0.34 [4.50e-05 4.50e-05 4.50e-05]
7 Torso 21.60 [8.26e-01 5.86e-01 5.02e-01]
8 Left shoulder motor 0.28 [1.30e-05 1.30e-05 1.30e-05]
9 Left arm 0.90 [3.07e-02 4.19e-02 1.25e-02]
10 Right shoulder motor 0.28 [1.30e-05 1.30e-05 1.30e-05]
11 Right arm 0.90 [3.07e-02 4.19e-02 1.25e-02]
12 Left hip yaw motor 0.28 [2.78e-05 2.78e-05 2.78e-05]
13 Left hip roll joint 3.07 [1.61e-02 1.27e-02 9.32e-03]
14 Left hip roll motor 0.96 [1.24e-04 1.24e-04 1.24e-04]
15 Left hip cross joint 0.64 [4.70e-04 3.24e-04 6.44e-04]
16 Left hip pitch motor 0.48 [8.36e-05 8.36e-05 8.36e-05]
17 Left thigh 6.66 [9.90e-02 8.94e-02 2.40e-02]
18 Left knee motor 0.96 [6.80e-05 6.80e-05 6.80e-05]
19 Left shin 4.97 [7.26e-02 6.86e-02 1.30e-02]
20 Left ankle pitch motor 0.96 [7.22e-05 7.22e-05 7.22e-05]
21 Left ankle cross joint 0.47 [1.81e-04 3.58e-04 4.34e-04]
22 Left ankle roll motor 0.34 [2.38e-05 2.38e-05 2.38e-05]
23 Left foot 2.75 [7.89e-03 1.67e-02 1.45e-02]
24 Right hip yaw motor 0.28 [2.78e-05 2.78e-05 2.78e-05]
25 Right roll hip joint 3.07 [1.61e-02 1.27e-02 9.32e-03]
26 Right hip roll motor 0.96 [1.24e-04 1.24e-04 1.24e-04]
27 Right hip cross joint 0.64 [4.70e-04 3.24e-04 6.44e-04]
28 Right hip pitch motor 0.48 [8.36e-05 8.36e-05 8.36e-05]
29 Right thigh 6.66 [9.90e-02 8.94e-02 2.40e-02]
30 Right knee motor 0.96 [6.80e-05 6.80e-05 6.80e-05]
31 Right shin 4.97 [7.26e-02 6.86e-02 1.30e-02]
32 Right ankle pitch motor 0.96 [7.22e-05 7.22e-05 7.22e-05]
33 Right ankle cross joint 0.47 [1.81e-04 3.58e-04 4.34e-04]
34 Right ankle roll motor 0.34 [2.38e-05 2.38e-05 2.38e-05]
35 Right foot 2.75 [7.89e-03 1.67e-02 1.45e-02]
36 Left toe 0.01 [1.39e-04 4.26e-04 3.12e-04]
37 Right toe 0.01 [1.39e-04 4.26e-04 3.12e-04]

Group 08gr1032b

186 Mechanical Data

Table C.3: Overview of distance vectors that AAU-BOT1 consists of [Pedersen et al.,
2007, App. N].

Vector Size [mm] Vector Size [mm]

s1/2 [0 0 0]T s1/3 [4 38 −80]T

s1/12 [0 0 0]T s1/13 [38 −24 28]T

s1/24 [0 0 0]T s1/25 [38 24 28]T

s2/1 [−80 0 4]T s3/1 [22 0 14]T

s3/4 [0 0 0]T s3/5 [0 0 0]T

s4/3 [−16 −22 −32]T s5/3 [4 38 40]T

s5/7 [19 0 −341]T s6/7 [−54 0 −211]T

s7/5 [0 0 0]T s7/6 [0 0 0]T

s7/8 [0 0 0]T s7/9 [−4 −48 347]T

s7/10 [0 0 0]T s7/11 [−4 48 347]T

s8/7 [75 222 84]T s9/7 [25 280 84]T

s10/7 [75 −222 84]T s11/7 [25 −280 84]T

s12/1 [−96 77 4]T s13/1 [22 140 −16]T

s13/14 [0 0 0]T s13/15 [0 0 0]T

s14/13 [−24 54 77]T s15/13 [41 −24 −36]T

s15/17 [2 −41 146]T s16/17 [−19 27 37]T

s17/15 [0 0 0]T s17/16 [0 0 0]T

s17/18 [0 0 0]T s17/19 [−4 30 252]T

s18/17 [13 27 −34]T s19/17 [2 −41 −165]T

s19/20 [0 0 0]T s19/21 [0 0 0]T

s20/19 [21 −25 −13]T s21/19 [−4 30 −118]T

s21/23 [19 −10 46]T s22/23 [0 30 46]T

s23/21 [0 0 0]T s23/22 [0 0 0]T

s23/36 [0 0 0]T s24/1 [−96 −77 4]T

s25/1 [22 −140 −16]T s25/26 [0 0 0]T

s25/27 [0 0 0]T s26/25 [−24 −54 77]T

s27/25 [41 24 −36]T s27/29 [2 41 146]T

s28/29 [−19 −27 37]T s29/27 [0 0 0]T

s29/28 [0 0 0]T s29/30 [0 0 0]T

s29/31 [−4 −30 252]T s30/29 [13 −27 −34]T

s31/29 [2 41 −165]T s31/32 [0 0 0]T

s31/33 [0 0 0]T s32/31 [21 25 −13]T

s33/31 [−4 −30 −118]T s33/35 [19 10 46]T

s34/35 [0 −30 46]T s35/33 [0 0 0]T

s35/34 [0 0 0]T s35/37 [0 0 0]T

s36/23 [132 10 −76]T s37/35 [132 10 −76]T

Instrumentation, Modeling and Control of AAU-BOT1

187

Table C.4: Overview of Rotation Joints (RJs) AAU-BOT1 consists of. [Pedersen et al.,
2007, App. N]

Joint Joint name Vector Drive

RJ1/2 Waist yaw motor [0 0 1]T Gear Output
RJ1/3 Waist yaw joint [0 0 1]T Motor Joint
RJ3/4 Waist pitch motor [0 1 0]T Gear Output
RJ3/5 Waist pitch joint [0 1 0]T Motor Joint
RJ7/6 Waist roll motor [1 0 0]T Gear Output
RJ5/7 Waist roll joint [1 0 0]T Gear Input
RJ7/8 Left shoulder motor [0 1 0]T Gear Output
RJ7/9 Left shoulder joint [0 1 0]T Motor Joint
RJ7/10 Right shoulder motor [0 1 0]T Gear Output
RJ7/11 Right shoulder joint [0 1 0]T Motor Joint
RJ1/12 Left hip yaw motor [0 0 1]T Gear Output
RJ1/13 Left hip yaw joint [0 0 1]T Motor Joint
RJ13/14 Left hip roll motor [1 0 0]T Gear Output
RJ13/15 Left hip roll joint [1 0 0]T Motor Joint
RJ17/16 Left hip pitch motor [0 1 0]T Gear Output
RJ15/17 Left hip pitch joint [0 1 0]T Gear Input
RJ17/18 Left knee motor [0 1 0]T Gear Output
RJ17/19 Left knee joint [0 1 0]T Motor Joint
RJ19/20 Left ankle pitch motor [0 1 0]T Gear Output
RJ19/21 Left ankle pitch joint [0 1 0]T Motor Joint
RJ23/22 Left ankle roll motor [1 0 0]T Gear Output
RJ21/23 Left ankle roll joint [1 0 0]T Gear Input
RJ1/24 Right hip yaw motor [0 0 1]T Gear Output
RJ1/25 Right hip yaw joint [0 0 1]T Motor Joint
RJ25/26 Right hip roll motor [1 0 0]T Gear Output
RJ25/27 Right hip roll joint [1 0 0]T Motor Joint
RJ29/28 Right hip pitch motor [0 1 0]T Gear Output
RJ27/29 Right hip pitch joint [0 1 0]T Gear Input
RJ29/30 Right knee motor [0 1 0]T Gear Output
RJ29/31 Right knee joint [0 1 0]T Motor Joint
RJ31/32 Right ankle pitch motor [0 1 0]T Gear Output
RJ31/33 Right ankle pitch joint [0 1 0]T Motor Joint
RJ35/34 Right ankle roll motor [1 0 0]T Gear Output
RJ33/35 Right ankle roll joint [1 0 0]T Gear Input
RJ23/36 Left toe [0 1 0]T Unactuated
RJ35/37 Right toe [0 1 0]T Unactuated

Group 08gr1032b

Appendix D

Foot Model

In this appendix the foot model is desrived. The purpose of the foot model is to determine
the forces and the torques that exerted on the foot.

The forces and moments depends on which hybrid state the robot is in. E.g. if the
AAU-BOT1 is in SSP-L, the right foot will not be affected by the passive springs or
forces caused by the floor. Figure D.1 is a simplified sketch of the foot model. Further
explanation will be given in the following sections.

∆L

~̇P

~θf

~ω

~Q

~Ff

~MfFoot Model

Figure D.1: Foot model input and output relations.

Where:
~θf is the CoM rotation of the foot.
~ω is the CoM rotational velocity of the foot.
∆L is the penetration depth of the spring in the heel [m].

~̇Pf is the x,y,z CoM velocities of the foot.
Q is the phase model that the robot is in.
~Ff is the forces that are acting on the CoM of the foot.
~Mf is the moments that are acting on the CoM of the foot.

D.1 Foot Design Overview

Very few of the observed existing robots incorporates toes, since they are unnecessary
when walking flat-footed. The objective of this project is to make the AAU-BOT1 walk
dynamically and it is therefore essential that the toe is implemented on AAU-BOT1.
The feet have been designed as a spring actuated system, i.e. a spring is attached to
the toe and springs have been mounted in the heel. Figure D.2 shows a sketch of the
developed foot.

188

Forces and Torques on the Foot 189

Force

Torque

Sensor

x

z
y

Toe

Adjustment

Bolt Heel

Foot Plate

Heel Springs

Heel plate

Toe Spring

Adjustment Bolt

Toe

Figure D.2: Sketch of the designed foot with springs in heel and toe.

D.2 Forces and Torques on the Foot

The force and the moment caused by springs in the heel and the toe can be decomposed
in sets of rotational and translational 3D-vectors. Initially the AAU-BOT1 is in DSP,
i.e. both feet have contact with the floor, and the translational spring reference position
is recorded as the initial position of the feet. The reference angles for the rotational
springs are set to zero during the initial phase.

The coefficients have been found by [Pedersen et al., 2007] via laboratory experiments.
The experiments showed that the rotational and the translational spring and dampening
coefficients are non-linear, and they are therefore scaled to ensure a smooth walking.
The coefficients have to be calculated for each foot, the general coefficients are described
below and the penetration depth is sketched at Figure D.3:

kt =
mTotg

Lmax
=

68.47kg · 9.82 m

s2

0.001m
(D.1)

ct = 7000 Ns
m

(D.2)

kr = 5000 Nm
rad

(D.3)

cr = 35000 Nms
rad

(D.4)

~kt = kt[0.5 0.2 1.0]T (D.5)

~ct = ct[0.5 0.2 1.0]T
∆Lf

Lmax
(D.6)

~kr = kr[1.0 1.0 0.5]T (D.7)

~cr = cr[1.0 1.0 0.5]T
∆Lf

Lmax
(D.8)

Where:

Group 08gr1032b

190 Foot Model

∆Lf is the penetration depth of the spring in the heel [m].
Lmax is the maximum penetration depth of the spring in the heel [m].
mTot is the AAU-BOT1’s total weight [kg].

~ct is the translational dampening coefficients [N s
m].

~kt is the translational spring coefficients [Nm].

~cr is the rotational dampening coefficients [Nm s
rad

].

~kr is the rotational spring coefficients [Nm
rad].

∆L
Lmax

Sole

Figure D.3: Sketch of the heel

The resulting forces ~F and moments ~M acting on the CoM of the foot are calculated as
the sum of the spring and damper forces and moments as in Equations (D.9), (D.10), (D.11)
and (D.12) where (f, L) denotes the left foot’s link index and (f, R) denotes the right
foot’s link index.

~Ff,L =

~kT

t ∆Lf,L − ~cT

t
~̇Pf,L if Q = {q1, q5, q6, q8, q10}

0 else

(D.9)

~Ff,R =

~kT

t ∆Lf,R − ~cT

t
~̇Pf,R if Q = {q2, q5, q6, q7, q9}

0 else

(D.10)

~Mf,L =

~kT

r ∆Θf,L − ~cT

r ωf,L if Q = {q1, q3, q5, q7, q9}

0 else

(D.11)

~Mf,R =

~kT

r ∆Θf,R − ~cT

r ωf,R if Q = {q2, q3, q5, q8, q10}

0 else

(D.12)

In Section 5.4 the true rotational and the translational spring and dampening coefficients
are to be fully determined when the final weight has been found and motor dynamic have
been determined since to high coefficients will result in saturation of the motor during
dynamic gait.

Instrumentation, Modeling and Control of AAU-BOT1

Constraints 191

D.3 Constraints

Since there are some physical limitations the forces and moments are defined in restricted
areas, e.g. Fz can not be less than zero, since it otherwise will mean that the foot is
pulled down by the floor. The forces and moments are calculated positive on the foot
and negative on the floor. The vertical force is defined as:

Fz ≥ 0 (D.13)

Furthermore the two transverse moments, Mx and My, are also limited because of the
foot’s design. Figure D.4 is a sketch of the limits that are applied to the horizontal
moments. Equation (D.14) and (D.15) describes the applied limits mathematical.

Figure D.4: Sketch of the foot with limits.

−d2Fz ≤ My ≤ d1Fz (D.14)

−d3Fz ≤ Mx ≤ d3Fz (D.15)

If the transverse moments are higher than the limits, they are simply set to the
maximum value. The traction forces are also limited, which makes it possible to slip
the floor. The maximum forces must not exceed the following values, otherwise they are
scaled down. Equation (D.16) describe the relation to traction forces and the friction
force.

√

F 2
x + F 2

y ≤ µFz (D.16)

Group [Pedersen et al., 2007] has determined the friction coefficient (µ) to be 0.5 via
simulation. Based on the result of the simulations all traction forces are ignored if the
foot moves upwards, such that only the vertical spring forces acts on the foot.

Group 08gr1032b

192 Foot Model

Instrumentation, Modeling and Control of AAU-BOT1

Appendix E

Motivating Example

This chapter will go through the calculations in Appendix 5.4 and 5.5 on a relatively
simple (3 DoF, 2 dimensional) biped robot named Strider. The distances and revolution
joints are defined in Figure E.1. Only the left phases are calculated, as the right phases
are calculated using the same algorithm from the right side. It is assumed that Strider
has the zero moment point within its support area at all times, so that Strider does not
rotate around origo (PJ0).

+

Support Area

Feet

m1

m2

m3

m4

~b1

0
1R

~b2

0
2R

~b3

0
3R

~b4

~a1

0
1R~a2

0
2R~a3

0
3R~a4

θ1

θ2

θ3

y

z

Figure E.1: Definitions of the joint angles and link parameters for the simple 3 DoF imag-
inary biped robot (Strider) in SSP-L. Strider is only used to demonstrate the methods
used for creating the kinematic and dynamic model for AAU-BOT1.

E.1 Kinematic Model

The purpose of the kinematic model is to determine the position, velocity and acceleration
of the individual links, see Figure E.2. The global positions of the CoM of the individual

193

194 Motivating Example

~θ
~̇θ
~̈θ
~Q

~P
~̇P
~̈P

Kinematic model

Figure E.2: Block diagram of kinematic model with joint angles as input and generalized
coordinates as output. Q determines which state the model is in, in this example the
model is in SSP-L.

links of Strider can be calculated using Equation (E.1) [Craig, 2005, Chap. 2]:

~Pj =

(
j−1
∏

i=1

[
i−1
i R ~ai

0 1

])(
~bj

1

)

(E.1)

where:
~Pj is the position of the CoM of link j, in global coordinates
i−1
i R is the rotation matrix of joint i
~ai is the distance vector from joint i − 1 to i
~bj is the distance vector from joint j − 1 to the CoM of link j, in local

coordinates

As the rotation only occurs around the x-axis, i−1
i R is simplified to:

i−1
i R =

1 0 0
0 ci −si

0 si ci

 (E.2)

where ci and si are abbreviations of cos(θi) and sin(θi), respectively. As θ0 and ~a0

describes the starting point of the chain,

θ0 = 0, ~a0 =
(

0 0 0
)T

(E.3)

The movement in the x direction is neglected in this model, thus the generalized position
vector is reduced to:

~q =
(

y1 y2 y3 y4 z1 z2 z3 z4 θ1 θ2 θ3

)T
(E.4)

where:
yi is the y coordinate of the CoM of link i, in global coordinates
zi is the z coordinate of the CoM of link i, in global coordinates
θi is the relative angle of joint i

Instrumentation, Modeling and Control of AAU-BOT1

Kinematic Model 195

Utilizing Equation (E.1) on Equation (E.4) yields:

~q =

b1y

a1y + c1b2y − s1b2z

a1y + c1a2y − s1a2z + c1+2b3y − s1+2b3z

a1y + c1a2y − s1a2z + c1+2a3y

−s1+2a3z + c1+2+3b4y − s1+2+3b4z

b1z

a1z + s1b2y + c1b2z

a1z + s1a2y + c1a2z + s1+2b3y + c1+2b3z

a1z + s1a2y + c1a2z + s1+2a3y

+c1+2a3z + s1+2+3b4y + c1+2+3b4z

θ1

θ2

θ3

(E.5)

As the dynamic model requires ~̈q, Equation (E.5) is differentiated twice:

~̇q =

0

−s1θ̇1b2y − c1θ̇1b2z

−s1θ̇1a2y − c1θ̇1a2z − s1+2b3yθ̇1 − s1+2b3y θ̇2

−c1+2b3z θ̇1 − c1+2b3z θ̇2

−s1θ̇1a2y − c1θ̇1a2z − s1+2a3y θ̇1 − s1+2a3y θ̇2

−c1+2a3z θ̇1 − c1+2a3z θ̇2 − s1+2+3b4y θ̇1 − s1+2+3b4yθ̇2

−s1+2+3b4y θ̇3 − c1+2+3b4z θ̇1 − c1+2+3b4z θ̇2 − c1+2+3b4z θ̇3

0

c1θ̇1b2y − s1θ̇1b2z

c1θ̇1a2y − s1θ̇1a2z + c1+2b3y θ̇1 + c1+2b3yθ̇2

−s1+2b3z θ̇1 − s1+2b3z θ̇2

c1θ̇1a2y − s1θ̇1a2z + c1+2a3y θ̇1 + c1+2a3y θ̇2

−s1+2a3z θ̇1 − s1+2a3z θ̇2 + c1+2+3b4y θ̇1 + c1+2+3b4yθ̇2

+c1+2+3b4y θ̇3 − s1+2+3b4z θ̇1 − s1+2+3b4z θ̇2 − s1+2+3b4z θ̇3

θ̇1

θ̇2

θ̇3

(E.6)

Group 08gr1032b

196 Motivating Example

~̈q =

0

−c1θ̇
2
1b2y − s1θ̈1b2y + s1θ̇

2
1b2z − c1θ̈1b2z

−c1θ̇
2
1a2y − s1θ̈1a2y + s1θ̇

2
1a2z − c1θ̈1a2z

−b3yθ̇
2
1c1+2 − b3y θ̈1s1+2 − 2 b3yθ̇1θ̇2c1+2 − b3y θ̇2

2c1+2

−b3yθ̈2s1+2 + b3z θ̇
2
1s1+2 − b3z θ̈1c1+2 + 2 b3zθ̇1θ̇2s1+2

+b3z θ̇
2
2s1+2 − b3z θ̈2c1+2

b4z θ̇
2
2s1+2+3 − b4z θ̈2c1+2+3 + 2 b4zθ̇3θ̇1s1+2+3 + 2 b4zθ̇3θ̇2s1+2+3

+2 b4zθ̇1θ̇2s1+2+3 + b4z θ̇
2
3s1+2+3 − c1θ̇

2
1a2y − s1θ̈1a2y

+s1θ̇
2
1a2z − c1θ̈1a2z − b4y θ̈1s1+2+3 − b4y θ̈2s1+2+3

−b4yθ̇
2
2c1+2+3 − b4y θ̈3s1+2+3 − 2 b4yθ̇3θ̇2c1+2+3 − b4y θ̇2

3c1+2+3

−2 b4yθ̇3θ̇1c1+2+3 − 2 b4yθ̇1θ̇2c1+2+3 − b4yθ̇
2
1c1+2+3 + a3z θ̇

2
1s1+2

−a3z θ̈1c1+2 + a3z θ̇
2
2s1+2 − a3z θ̈2c1+2 + 2 a3zθ̇1θ̇2s1+2 − b4z θ̈3c1+2+3

+b4zθ̇
2
1s1+2+3 − b4z θ̈1c1+2+3 − a3y θ̇2

1c1+2 − a3y θ̈1s1+2

−a3y θ̇2
2c1+2 − a3y θ̈2s1+2 − 2 a3yθ̇1θ̇2c1+2

0

−s1θ̇
2
1b2y + c1θ̈1b2y − c1θ̇

2
1b2z − s1θ̈1b2z

−s1θ̇
2
1a2y + c1θ̈1a2y − c1θ̇

2
1a2z − s1θ̈1a2z

−b3yθ̇
2
1s1+2 + b3y θ̈1c1+2 − 2 b3yθ̇1θ̇2s1+2 − b3y θ̇2

2s1+2

+b3yθ̈2c1+2 − b3z θ̇
2
1c1+2 − b3z θ̈1s1+2 − 2 b3zθ̇1θ̇2c1+2

−b3z θ̇
2
2c1+2 − b3z θ̈2s1+2

−a3z θ̇
2
1c1+2 − a3z θ̈1s1+2 − a3z θ̇

2
2c1+2 − a3z θ̈2s1+2

−s1θ̇
2
1a2y + c1θ̈1a2y − c1θ̇

2
1a2z − s1θ̈1a2z − 2 a3yθ̇1θ̇2s1+2

−b4y θ̇2
3s1+2+3 − b4y θ̇2

1s1+2+3 + b4yθ̈1c1+2+3 − b4y θ̇2
2s1+2+3

+b4y θ̈3c1+2+3 + b4yθ̈2c1+2+3 − b4z θ̈3s1+2+3 − 2 b4yθ̇3θ̇1s1+2+3

−2 b4yθ̇3θ̇2s1+2+3 − 2 b4yθ̇1θ̇2s1+2+3 − a3y θ̇2
1s1+2 + a3y θ̈1c1+2

−a3y θ̇2
2s1+2 + a3y θ̈2c1+2 − 2 a3zθ̇1θ̇2c1+2 − b4z θ̇

2
2c1+2+3

−b4z θ̈2s1+2+3 − b4z θ̇
2
1c1+2+3 − b4z θ̈1s1+2+3 − b4z θ̇

2
3c1+2+3

−2 b4zθ̇1θ̇2c1+2+3 − 2 b4z θ̇3θ̇1c1+2+3 − 2 b4zθ̇3θ̇2c1+2+3

θ̈1

θ̈2

θ̈3

(E.7)

The kinematic model will be utilized to create the dynamic model.

E.2 Dynamics in SSP

The dynamics in SSP-L are derived by using the Lagrange-d’Alembert equation[Craig,
2005, p. 182]:

d

dt

(
∂L

∂q̇i

)

−
∂L

∂qi
= Fi,L (E.8)

Instrumentation, Modeling and Control of AAU-BOT1

Dynamics in SSP 197

where:
LL is the Lagrangian for SSP-L
qi is system state i
Fi,L is external force i for SSP-L

The Lagrangian (LL) is defined as:

LL = Ekin,L − Epot,L (E.9)

where:
Ekin,L is the kinetic energy of the system in SSP-L
Epot,L is the potential energy of the system in SSP-L

The kinetic energy is calculated using [Craig, 2005, Eq. (6.69) and (6.70), p. 182]:

Ekin,L =
1

2

((
N∑

i=1

mi(ẏ
2
i + ż2

i)

)

+ θ̇2
1Jx,2

+ (θ̇1 + θ̇2)
2Jx,3 + (θ̇1 + θ̇2 + θ̇3)

2Jx,4

)

(E.10)

The potential energy is calculated to:

Epot,L =

N∑

i=1

migzi (E.11)

Inserting Equation (E.10) and (E.11) into Equation (E.9) yields:

LL =
1

2

((
N∑

i=1

mi(ẏi
2 + żi

2 − 2gzi)

)

+ θ̇2
1Jx,2 + (θ̇1 + θ̇2)

2Jx,3 + (θ̇1 + θ̇2 + θ̇3)
2Jx,4

)

(E.12)

Partial differentiation of Equation (E.12) with regards to ~q yields:

∂LL

∂~q
=

∂LL

∂y1

∂LL

∂y2

∂LL

∂y3

∂LL

∂y4

∂LL

∂z1

∂LL

∂z2

∂LL

∂z3

∂LL

∂z4

∂LL

∂θ1

∂LL

∂θ2

∂LL

∂θ3

=

0
0
0
0

m1g
m2g
m3g
m4g

0
0
0

(E.13)

Group 08gr1032b

198 Motivating Example

To obtain the second part of Equation (E.8), LL is partially differentiated with regards

to ~̇q:

∂LL

∂~̇q
=

∂LL

∂ẏ1

∂LL

∂ẏ2

∂LL

∂ẏ3

∂LL

∂ẏ4

∂LL

∂ż1

∂LL

∂ż2

∂LL

∂ż3

∂LL

∂ż4

∂LL

∂θ̇1

∂LL

∂θ̇2

∂LL

∂θ̇3

=

m1ẏ1

m2ẏ2

m3ẏ3

m4ẏ4

m1ż1

m2ż2

m3ż3

m4ż4

θ̇1Jx,2 + (θ̇1 + θ̇2)Jx,3 + (θ̇1 + θ̇2 + θ̇3)Jx,4

(θ̇1 + θ̇2)Jx,3 + (θ̇1 + θ̇2 + θ̇3)Jx,4

(θ̇1 + θ̇2 + θ̇3)Jx,4

(E.14)

Differentiating Equation (E.14) with regards to time yields:

d

dt

∂LL

∂~̇q
=

m1ÿ1

m2ÿ2

m3ÿ3

m4ÿ4

m1z̈1

m2z̈2

m3z̈3

m4z̈4

θ̈1Jx,2 + (θ̈1 + θ̈2)Jx,3 + (θ̈1 + θ̈2 + θ̈3)Jx,4

(θ̈1 + θ̈2)Jx,3 + (θ̈1 + θ̈2 + θ̈3)Jx,4

(θ̈1 + θ̈2 + θ̈3)Jx,4

(E.15)

To map the Lagrangian to the joints, the Jacobian is used[Craig, 2005, p. 186]:

JF,L(~θ) =
∂~q

∂~θ
(E.16)

JF,L(~θ) =

∂q1

∂θ1

∂q1

∂θ2

∂q1

∂θ3

...
...

...
∂q11

∂θ1

∂q11

∂θ2

∂q11

∂θ3

 (E.17)

Instrumentation, Modeling and Control of AAU-BOT1

Dynamics in SSP 199

Due to the size of JF,L(~θ), it is divided into subsets:

∂q1

∂θ1

...
∂q11

∂θ1

 =

0
−s1b2y − c1b2z

−s1a2y − c1a2z − s1c2b3y + c1s2b3z

−s1a2y − c1a2z − s1c2a3y + c1s2a3z − s1c2c3b4y − c1s2s3b4z

0
c1b2y − s1b2z

c1a2y − s1a2z + c1s2b3y − s1c2b3z

c1a2y − s1a2z + c1s2a3y − s1c2a3z + c1s2s3b4y − s1c2c3b4z

1
0
0

(E.18)

∂q1

∂θ2

...
∂q11

∂θ2

 =

0
0

−c1s2b3y + s1c2b3z

−c1s2a3y + s1c2a3z − c1s2s3b4y − s1c2s3b4z

0
0

s1c2b3y − c1s2b3z

s1c2a3y − c1s2a3z + s1c2s3b4y − c1s2c3b4z

0
1
0

(E.19)

∂q1

∂θ3

...
∂q11

∂θ3

 =

0
0
0

−c1c2s3b4y − s1s2c3b4z

0
0
0

s1s2c3b4y − c1c2s3b4z

0
0
1

(E.20)

The Jacobian is applied to the Lagrange-d’Alembert equation by using Equation (E.21):

~τL = JT

F,L(~θ) ~FL =

(
∂~q

∂~θ

)T(
d

dt

(
∂L

∂~̇q

)

−
∂L

∂~q

)

(E.21)

where:
~τ is the torque excerted on the links

Group 08gr1032b

200 Motivating Example

This yields the resulting moment (~τ) on each of the joints:

~τ=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

(s1b2y+c1b2z)m1ÿ2

+(s1a2y+c1a2z+s1c2b3y+c1s2b3z)m3ÿ3

+(s1a2y+c1a2z+s1c2a3y+c1s2a3z

+s1c2c3b4y+c1s2s3b4z)m4ÿ4

−(c1b2y−s1b2z)(m2g+m2z̈2)

−(c1a2y−s1a2z+c1s2b3y−s1c2b3z)(m3g+m3z̈3)

−(c1a2y−s1a2z+c1s2a3y−s1c2a3z

+c1s2s3b4y−s1c2c3b4z)(m4g+m4z̈4)

−(Jx,2+Jx,3+Jx,4)θ̈1−(Jx,3+Jx,4)θ̈2−Jx,4θ̈3

(−c1s2b3y+s1c2b3z)(−m3ÿ3)

+(−c1s2a3y+s1c2a3z−c1s2c3b4y−s1c2s3b4z)(−m4ÿ4)

+(s1c2b3y−c1s2b3z)(−m3g−m3z̈3)

−m4(g+z̈4)(s1c2a3y−c1s2a3z+s1c2s3b4y−c1s2c3b4z)

−(θ̈1+θ̈2)Jx,3−(θ̈1+θ̈2+θ̈3)Jx,4

−m4ÿ4(−c1c2s3b4y−s1s2c3b4z)

−m4(g+z̈4)(s1s2c3b4z−c1c2s3b4z)

−(θ̈1+θ̈2+θ̈3)Jx,4

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

(E.22)

The model of Strider in SSP-L is given by combining Equation (E.7) with Equation (E.22).
The model of Strider in SSP-R can be calculated using the same principle as was used
in calculating the model for SSP-L. The final part of the motivating example deals with
combining SSP-L and SSP-R into the model for the Double Support Phase. By inspection
of Equation (E.7) and Equation (E.22), it is seen that the equation can be subdivided
into the parts seen in

~τ = M (~θ)~̈θ + V (θ, ~̇θ) + G(~θ) (E.23)

where:
M(~θ) is the mass matrix.

~V (θ, ~̇θ) is a vector of centrifugal and Coriolis terms.
~G(~θ) is a vector of gravity terms.

By isolating ~̈θ using Equation (E.24), the model can be implemented in simulink (see
Figure E.3).

~̈θ = M−1(~θ)
(

~τ − V (θ, ~̇θ) − G(~θ)
)

(E.24)

Figure E.3: Simulink implementation of the model for Strider.

E.3 Dynamics of Strider in DSP

The dynamics of Strider are computed as a combination of SSP-L and SSP-R, by using
Equation (E.25):

~τDSP = ρ~τL + (1 − ρ)~τR (E.25)

Instrumentation, Modeling and Control of AAU-BOT1

Dynamics of Strider in DSP 201

where:
~τDSP is the torque of the individual links of Strider in DSP
~τL is the torque of the individual links of Strider in SSP-L
~τR is the torque of the individual links of Strider in SSP-R
ρ is the weighting between the SSP-L and SSP-R

ρ is calculated by calculating the distance from the origo of each SSP to the ZMP (ZMP
is calculated using Equation (2.8). Due to the fact that the x-direction is ignored in this
example, ZMP is a scalar):

ρ1 =
yZMP

∆y
(E.26)

ρ =

1 ρ1 ≥ 1
ρ1 0 < ρ1 < 1
0 ρ1 ≤ 0

(E.27)

where:
yZMP is the y coordinate of the ZMP
∆y is the distance between the legs

Support Area

Feet

m1

m2

m3

m4

~b1

0
1R

~b2

0
2R

~b3

0
3R

~b4
~a1

0
1R~a2

0
2R~a3

0
3R~a4

θ1

θ2

θ3

y

z

yZMP~PJ0
~PJ4

∆y

Figure E.4: Strider in DSP-L.

Group 08gr1032b

202 Motivating Example

Instrumentation, Modeling and Control of AAU-BOT1

Appendix F

Dynamic Gait Trajectories

To avoid replication in the main report, the dynamic gait trajectories is described in this
appendix. Even though the dynamic walk trajectories cannot be simulated correct due
to a inexact ZMP estimation, then the Matlab functions, that have to be used in order
to obtain the best trajectory have been developed, such that future groups can use it.
The time line that is used in the following sections are described in Equation (6.8).

F.1 Foot Trajectory for Dynamic Gait

The walking pattern is given for a dynamic gait trajectory in Table 6.2 on page 103.
Figure F.1 on the next page is a step for the right foot in the duration Tstep, all lengths
at the figure is described during this section.

In order to be able to create the trajectory for the foot, a time line has to be defined
as in Equation (6.8). The second part of Tcycle the right foot is on the ground. The time
line for the dynamic gait trajectory is only equal to the static gait time line symbolic, i.e.
distance and speed for dynamical and statically walking are very different. The distance
between the feet is set to 0.28, which is the same as the hip width. Movement of the foot
is divided in to three steps; first the rotation of the foot should be defined. This is done
in Equation (F.1)

θa(t) = 0 , t = t1
θa(t) = θb , t = t2
θa(t) = 0 , t = t3 and t4

(F.1)

where:
θa is the rotation of the toe joint during Tstep.
θb is the rotation of the toe joint during toe off.

Secondly the transverse motion of the foot must be defined, this is done in Equa-
tion (F.2).

xa(t) = −lat − 0.5lstep , t = t1
xa(t) = −lat − 0.5lstep + lansin(θb) + lat(1 − cos(θb)) , t = t2
xa(t) = −lat − 0.5lstep + lmax , t = t3
xa(t) = −lat − lstep , t = t4

(F.2)

203

204 Dynamic Gait Trajectories

htmin

0.5lsteplan

xte

lat

xy

z

(a) AAU-BOT1 in DSP_L at time =

t1.

xtb

xy

z

θb

(b) AAU-BOT1 in DSP_L_T at time
= t2.

htmax

hamax

0.5lstep

lmax

xy

z

(c) AAU-BOT1 in SSP_L at time =

t3.

htmin

0.5lsteplan lat

xy

z

(d) AAU-BOT1 in DSP_R at time =

t4.

Figure F.1: Sketch of a step for the right foot during Tstep.

Instrumentation, Modeling and Control of AAU-BOT1

Torso Trajectory for Dynamic Gait 205

where:
xa(t) is the transverse movement i the x-direction of the ankle during Tstep.
lan is the height of the ankle from the ground.
lat is the transverse distance between the ankle and toe.
θb is the rotation of the toe joint during toe off.

Third and last the vertical movement must be defined as in Equation (F.3).

za(t) = lan , t = t1
za(t) = latsin(θb) + lancos(θb) , t = t2
za(t) = hamax , t = t3
za(t) = lan , t = t4

(F.3)

where:
za(t) is vertical movement of the ankle during Tstep.
lan is the height of the ankle from the ground.
lat is the transverse distance between the ankle and toe.
hamax is maximum ankle height during Tstep.
θb is the rotation of the toe joint during toe off.

In order to achieve dynamic gait the constraints in Equation (F.4) must be applied.
All rotational, vertical and transverse movement, and the constraints can be used to
derive a different 3rd order spline interpolation function as described in Section 6.3.2 on
page 106.

θ̇b(t1) = 0

θ̇b(t2) = 0
ẋa(t1) = 0
ẋa(t2) = 0
ża(t1) = 0
ża(t2) = 0
ża(t3) = 0
ża(t4) = 0

(F.4)

F.2 Torso Trajectory for Dynamic Gait

The value of the used symbols in the following equations can be seen in Table 6.2 on
page 103. The constraints for the vertical movement of the torso can be found in Equa-
tion (F.5) and in Table F.6.

zt(t) = htmin , t = t1
zt(t) = htmax , t = t3
zt(t) = hamin , t = t4

(F.5)

where:
zt(t) is vertical movement of the torso during Tstep.
htmax is the maximum height of the torso.
htmin is the minimum height of the torso.

żt(t3) = 0
żt(t4) = 0

(F.6)

Group 08gr1032b

206 Dynamic Gait Trajectories

The normal rotation in the pelvis is [Vaughan et al., 1992] ±18 degrees for a normal
male. To ensure that the dynamic walking results in maximal stability, severally torso
rotation trajectory have been simulated. The constraints for the pelvis rotation can be
seen in Equation (F.7) and Equation (F.8).

−4.5◦ ≤ θpelvis(t) ≤ −18◦ , t = t1
4.5◦ ≤ θpelvis(t) ≤ 18◦ , t = t4

(F.7)

θ̇pelvis(t1) = 0

θ̇pelvis(t4) = 0
(F.8)

The movement of the torso in the transverse plane quit different during dynamic
gait, since it should have a smooth sine trajectory, and it should move forward with
a constant speed in the start and in the end of Tstep to complete the cyclic motion.
Equation (F.9) and Equation (F.10) describes the constraint for the torso’s forward
motion. The parameters used in the equations can be seen in Figure F.1 on page 204.

xt(t) = −lat − 0.5lstep + xte , t = t1
xt(t) = −lat − xtb t =, t2
xt(t) = −lat − xte t =, t4

(F.9)

where:
xt(t) is movement of the torso in the x-direction during Tstep.
lat is the transverse distance between the ankle and toe.
xtb is the length from the left ankle to the torso during toe off phase.
xte is the length from the right ankle to the torso at time = t4.

ẋt(t2) = Vspeed

ẋt(t4) = Vspeed
(F.10)

To be able to generate a trajectory with high stability as described in Section 6.3.1
on page 102, small variations for xtb and xte have been simulated. The interval of the
variations has been found via simulation. The variations are listed in Equation (F.11)

0.2lstep ≤ xtb ≤ 0.8lstep

0.2lstep ≤ xte ≤ 0.6lstep
(F.11)

In order to obtain a ZMP that is within the support polygon during dynamic gait,
constraints in the movement in the y-direction must be as Equation (F.12) and Equa-
tion (F.13). The parameters used in the equations can be seen in Figure 6.4 on page 111.

yt(t) = −ytmid , t = t1
yt(t) = −ytmid + ytmin , t = t3
yt(t) = −ytmid , t = t4

(F.12)

where:
yt(t) is movement of the torso in the y-direction during Tstep.
ymid is distance from center of the pelvis to one hip.
ytmin is the length in the y-axis from the torso to the right foot.

Instrumentation, Modeling and Control of AAU-BOT1

Torso Trajectory for Dynamic Gait 207

ẏt(t1) = 0
ẏt(t3) = 0
ẏt(t4) = 0

(F.13)

In order to obtain a good stability, ytmax has been tested in an interval given in
Equation (F.14).

0 ≤ ytmin ≤ 0.7ymid (F.14)

Group 08gr1032b

208 Dynamic Gait Trajectories

Instrumentation, Modeling and Control of AAU-BOT1

Appendix G

Alternative FTS DAQ

This Appendix describes two alternative solutions to measure the signals from the Force
Torque Sensor located in each foot. In the beginning of the project an analog strain gauge
data acquisition (DAQ) system seemed appropriate, but this solution was discarded due
to the fact that it would take too long time [Bisgaard, 2007a] to develop and test a FTS
DAQ system.

Secondly a digital solution was examined and it looked very promising, but unfortu-
nately the product could not meet the requirements that was listed in the product sheet
(the company had made a creative product description) and was therefore also discarded.

Before both solution were discarded they were designed and developed, and the result
of that is therefore described here.

G.1 Analog FTS DAQ

Since it was decided to use single supply, the following considerations must be taken into
account:

• Signal swing limited, therefore more sensitive to errors caused by offset voltage,
bias current, finite open-loop gain, noise, etc.

• More likely to have noisy power supply because of sharing with digital circuits

• Rail-to-rail op amps needed to maximize signal swings.

For the highest precision and performance, the three op amp instrumentation ampli-
fier (in-amp) topology is the optimum for bridge and other offset transducer applications
where high accuracy and low nonlinearity is required. While there are many good preci-
sion single supply amplifiers (some rail-to-rail), the highest performance instrumentation
amplifiers are still specified for dual supply operation according to [Garcia, 2000]. To be
able to get the performance of a dual supply instrumentation amplifier, an AD620 dual
supply instrumentation amplifier is chosen and wired so it is possible to use it in combi-
nation with the rail to rail op-amp, AD822, and thereby use 2.5 V as reference instead
of GND. Two different circuits are made since there are 2 different strain gauge types
each full bridges. Figure G.1 shows the simplified diagram of the FTS circuit. The strain
gauge circuits have the following properties listed below, which each will be discussed.

• 3 op amp instrumentation amplifier.
Choosing this type of amplifier ensures high performance, low non-linearity and it

209

210 Alternative FTS DAQ

Figure G.1: Simplified FTS circuit.

is good at rejecting common mode noise according to [Garcia, 2000] and [Morris,
2005, p. 88].

• Radio Frequency interference (RFI) filter in the input
To avoid RFI, a RFI filter has been implemented in the differential input signal,
since strong RFI is sometimes rectified inside the in-amp and appears as DC-offset
on the output of the in-amp (3 amp instrumentation amplifier), and thereby reduces
the amplified common mode rejection. The RFI filter is designed via Analog Devices
approach [Kitchin et al., 2003, 3]. According to Analogs design rules, Rrfi should
be between 2-10k Ω, the differential bandwidth frequency should be 10 times larger
than the sample frequency. C1 should be 10 % of the value of C2 or smaller. Rrfi

is chosen to 2 kΩ, the band width should be 10 kHz, since [Kitchin et al., 2003, 3]
recommend to have a band width 10 times higher than the measured signal. Using
Equation (G.1) C1 and C2 can be found. C1 is calculated to 0.378 nF and C2 is
calculated to 3.78 nF.

BWDiff =
1

2 · π · Rrfi · (2 · C2 + C1)
(G.1)

• Active output filter, Low impedance reference for the AD620 and Rail to rail output
op amp.
To ensure that the noise do not affect the final analog output a 10 kHz low pass
filter has been designed via the Equation (G.2).

BWout =
1

2 · π · Rf · CF
(G.2)

The AD620 requires low reference impedance this is done by using an AD822 am-
plifier as a buffer. The AD822 amplifier is a rail to rail op amp, and a dual package
AD822 is used to buffer and as final output amplifier/filter.

Bridge Supply
According to [Morris, 2005, 250] the maximum current should be between 5-50 mA in a
full bridge circuit. Therefore the supply voltages is chosen to 5 V and 3.3 V to the 350

Instrumentation, Modeling and Control of AAU-BOT1

Analog FTS DAQ 211

Ω bridge and for the 120 Ω respectively. This gives the following current at 14.089 mA
and 27.05 mA. The voltage at 3.3 V is ensured by a TPS7433D voltage regulator and
the 5 V is ensured by a 78L05 from Maxim-IC.

Required gain and A/D requirement
Gain in the FTS-circuit must be calculated such that the absolute maximum strain gauge
signal is amplified to 2.5 V abs. The signals have to swing around 2.5 V, where 2.5 V
is equal to no impact to the full bridge. The Gain factors for the strain gauge are 2.09
and 2.10 for the 350 Ω and 120 Ω strain gauges respectively. The maximum stretch
of each strain gauge is guessed to 190 µm. Equation (G.3) is the maximum resistance
changes [Haffgaard, 2005]. In the following equations the measured resistant value is
used see Tablefig:jk:FTSSGsketch

∆R

R
= K ·

∆L

L
⇒ ∆Rmax = K · R ·

∆L

L
(G.3)

∆Rmax ,350 = 2.09 · 355 ·
190 · 10−3

7.6
= ±18.5488Ω (G.4)

∆Rmax ,120 = 2.10 · 122 ·
190 · 10−3

8.8
= ±5.5316Ω (G.5)

Via the Equation (G.6) the maximum output from the bridge can be calculated.

VBridge, max, Out =

(
R + ∆Rmax

2 · R + ∆RRmax
+

R

2 · R

)

· Vss (G.6)

VBridge, 120, max, Out =

∣
∣
∣
∣

(
122 + 5.5316

2 · 122 + 5.5316
−

122

2 · 122

)∣
∣
∣
∣
· 3.3 = 36.577mV (G.7)

VBridge, 350, max, Out =

∣
∣
∣
∣

(
355 + 18.5486

2 · 355 + 18.5486
−

355

2 · 355

)∣
∣
∣
∣
· 5 = 63.649mV (G.8)

Since the AD620 is an in-amp and it has the best noise properties most of the gain
is amplified in this. The AD822 amplifies the signal 2 times, so the signal becomes rail
to rail(0-5 V). Via Equation (G.9) and (G.9) the total gain can be found.

Gtot, 120 =
Vss

VBridge, 120, max, Out

=
5

0.036577
= 136.7 ≈ 137 (G.9)

Gtot, 350 =
Vss

VBridge, 350, max,Out

=
5

0.063649
= 78.6 ≈ 79 (G.10)

The gain in the AD620 in the 120 Ω bridge circuit must be 68.5 and 39.5 in the 350
Ω bridge circuit. Via Equation (G.11) the resistor Rg can be found for both circuits.

Gaintot =

(
49.9k

Rg
+ 1

)

·

(
Rf

Ri

)

(G.11)

Table G.1 gives the value of the main components. Beside the main components,
several noise decoupling capacitors have been placed in the circuit.

The strain gauge signals must be converted in an AD-converter. Group [Pedersen et al.,
2007] used a Spider8 16 bit ADC strain gauge amplifier to measure the strain gauges sig-
nals. It is evaluated that measurement circuit must have the same resolution, which gives
a maximum resolution of 0.0305 N. The final print circuit board (PCB) can be seen in
Figure G.2

Group 08gr1032b

212 Alternative FTS DAQ

Rg = Gain resistor connected to the AD620.
Rf = Resistor in the output filter.
Ri = Input resistor to the AD822.

Table G.1: Essential components in the 120 Ω bridge circuit and the 350 Ω bridge
Name Value 120 Ω Value 350 Ω Unit
Rrfi 2k 2k Ω
Ri 25k 25k Ω
Rf 50k 50k Ω
Rg 740 1296 Ω
C1 0.378 0.378 nF
C2 3.78 3.78 nF
CF 0.318 0.318 nF

Figure G.2: Final PCB.

Instrumentation, Modeling and Control of AAU-BOT1

Alternative Digital FTS DAQ 213

G.2 Alternative Digital FTS DAQ

The FTS consist of 6 full-bridge strain gauges. This gives 12 analog signals that can
be either feed back to the on-board computer directly and AD converted, or it can
be converted through an ADC at the strain gauge and transmitted on a bus. A long
wire with analog signals from the strain gauges to the on-board computer will with a
high probability give a lot of noise. Therefore it is chosen to AD convert the signals
and transmit it on a bus to the on-board computer. A company called Mantracourt is
developing transducers for strain gauges. The unit called DSC contains an amplifier, filter
and an AD Converter. The DSC comes with different interfaces: CANopen, MODBUS,
ASCII, MantraBUS. The pro and cons have to be found for the different bus types before
a certain type can be selected.

• CANopen

– Same bus as used with the EPOS 70/10

– CRC code

– Max sampling rate of 200Hz

• MODBUS (RS485)

– Need a new protocol stack (MODBUS protocol)

– CRC code

– Max sampling rate of 500Hz

• ASCII protocol (RS485)

– Simple to use (terminal program)

– No CRC code

– Max sampling rate of 500Hz

• MantraBUS protocol (RS485)

– Mantracourts own protocol, bound to their windows SW

– CRC code

– Max sampling rate of 500Hz

All the protocols runs on a serial bus and it is possible to have multiple nodes on
the same bus. The first protocol is the CANopen protocol and the good thing about
this is that the EPOS amplifier also runs with the CANopen protocol. In this way the
knowledge obtained by implementing the EPOS, can be reused when the DSC for the
strain gauges is implemented. Unfortunately the DSC with CAN is only able to run with
a sampling rate of 200Hz.

The DSC with other protocol versions can sample with a sampling rate of 500 Hz.
The first of these versions is the ASCII protocol, this protocol is straightforward to use,
but it features no CRC code. Another version is the MantraBUS which runs with the
SW version from Mantracourt (the manufacture) and is optimized for their Windows
API software. The MODBUS is mostly used by the industry and is comparable with the
CANopen protocol, as it has CRC and it own protocol stack.

Group 08gr1032b

214 Alternative FTS DAQ

Instrumentation, Modeling and Control of AAU-BOT1

Appendix H

Calibration and Test of the FTS’s

and Amplifiers

When the Force Torque Sensor (FTS) is used to measure strain gauges, small changes
in resistance are measured. The voltages are sampled and amplified in 6 strain gauge
amplifiers. The strain gauges and amplifiers have different gains and different offsets.
In order to get forces and torques that can be used for a ZMP estimation, a calibra-
tion is needed. [Flay and Vuletich, 1995] and [Löffler et al., 2004b] have used the least
square method to calibrate FTS’s and [Pedersen et al., 2007] used this method as well
to calibrate the first generation of the FTS to AAU-BOT1. The second FTS version
has been optimized, such that the weight is reduced. Equation (H.1) describes how the
calibration matrix is found via the least square method, which is a method that uses the
orthogonality principle [Lay, 2003].

C = FV T (V V T)−1 (H.1)

C is the calibration matrix, which has to be multiplied
with the measured strains in order to get forces and torques.

F is the actual forces and torques caused by the calibration loads.
V is the measured strains

H.1 Calibration Test Method

In order to obtain a good calibration of the FTS it must be excitated as much as possible.
To excitate the FTS a calibration test rig has been developed in collaboration with
PhD. student Mads Soelver Svendsen. The calibration have been done twice, because
the original test rig did not excitate the FTS around the Z-axis, to accommodate this
problem a stick is mounted as in Figure H.1 on the next page. If the wire is not attached
to the stick, the calibration will give inaccurate results, because Mz is not measured.

Calibration with the least square method uses data from 6 different loading situations
(M1-M6). At each loading situation 4 measurements have been measured with 4 different
weights. In Table H.1 on the following page the different loading situations are listed.
Each measurement used to the calibration is the mean value of 2001 measurements. By
using a Tait-Bryan matrix [Samin, 2005] the force can be decomposed in Fx, Fy, Fz and

215

216 Calibration and Test of the FTS’s and Amplifiers

(a) Picture of the FTS calibration test rig.

FTS

Beam

Stick

Newton meter

θy

θz

(b) Sketch of the calibration test rig.

the torque Mx, My, Mz are found by multipling a skew matrix by the forces [Samin,
2005].

Table H.1: Calibration loading situation.
Loading θx[degrees] θy[degrees] θz[degrees] Loads [kg]
situation
M1 0 15.9688 40 5,15,25,35
M2 0 15.9688 0 5,15,25,35
M3 0 15.9688 -40 5,15,25,35
M4 0 30.1204 40 5,15,25,35
M5 0 30.1204 0 5,15,25,35
M6 0 30.1204 -40 5,15,25,35

To test the result of the calibration, 4 measurements have been tested. In Table H.2
the loads from the test have been listed. The result of the calibration is discussed in
Section H.2 on the facing page.

Table H.2: Loads to test the final calibration matrix.
Loading θx[degrees] θy[degrees] θz[degrees] Loads [kg]
situation
M6 0 30.1204 -40 10,20,30,40

Instrumentation, Modeling and Control of AAU-BOT1

Results of Calibration 217

H.2 Results of Calibration

Table H.3 shows the result of the calibration, notice that only one sensor is calibrated.
Due to one of the amplifiers in the left leg is defect, which means that the left FTS cannot
be calibrated. The amplifier broke down after a short circuit in one of the EPOS’s which
uses the same power supply as the amplifiers. The amplifier must be repaired before a
calibration can be accomplished, but because of delivering time it is not possible to get
a new amplifier before the handover of this thesis. However it has be tested that the
principle works since the right and left FTS’s were calibrated with the original calibration
test rig, but these measurements were discarded since the torque Mz was not excitated,
which resulted in high gain errors. Table H.3 is the result of the new calibration and it
shows a high RMS error in the force Fz, i.e. 16.693%. Figure H.2(c) shows the error is
an offset error. The offset error in the Fz direction can be corrected by adding 50N to
Fz. When the offset is added, the RMS error is reduced to 2.103%. After examine the
possibilities of errors, it has been concluded that the test rig is designed wrong. The beam
was mounted in the center hole of the FTS, which gave a stiffness of FTS in the vertical
direction and the strains were reduced. In order to correct this problem, the beam has
to be redesigned, such that it is possible to mount the beam in the same way as the FTS
is mounted on the ankle. A picture of the center bolt that caused the stiffness can be
seen in Figurejk:fig:FTSCenterBolt. In section H.3 future proposals to improvements of
the calibration is described.

Figure H.1: The FTS seen from below where the center bolt is mounted.

Beside from the high RMS error in Fz, the maximal RMS error is 2.403%. [Flay and Vuletich,
1995] describes that a maximum RMS error at 6% RMS error is normal, and an average

Group 08gr1032b

218 Calibration and Test of the FTS’s and Amplifiers

RMS error around 2-4% is normal, that is why the results of the FTS amplifier and
the calibration is concluded to be a succes, at least for the right FTS. The result of the
calibration can be seen in Figure H.2 on the next page.

Table H.3: Result of the RMS error at the right FTS and amplifier.
Force/Torque RMS error
Fx 2.373 %N
Fy 2.096 %N
Fz 16.693 %N
Mx (roll) 2.349 % Nm
My (pitch) 2.228 % Nm
Mz (yaw) 2.403 % Nm

The final result for the calibration matrix can be found in Equation (H.2). In the
equation there is not added 50 N on Fz since this offset error should disappear as soon
as the calibration test rig is redesigned.

Fx

Fy

Fz

Mx

My

Mz

=

−0.007 −0.0263 −0.0086 0.0176 0.0035 −0.0193
0.2093 −0.1552 0.2375 −0.1925 −0.0229 −0.0107
0.017 0.0073 0.0197 −0.0227 −0.0036 0.0116

−0.0029 −0.0096 −0.0082 −0.0037 0.0222 −0.0098
0.0002 0.0009 0.0007 0.0005 −0.0021 0.0009

Vb1

Vs1

Vb2

Vs2

Vb3

Vs3

(H.2)

Where:
Fx is the measured force in x-direction.
Fy is the measured force in y-direction.
Fz is the measured force in z-direction.
Mx is the measured torque in x-direction.
My is the measured torque in y-direction.
Mz is the measured torque in z-direction.
Vb1 is the measured bending strain in bridge 1.
Vs1 is the measured shear strain in bridge 1.
Vb2 is the measured bending strain in bridge 2.
Vs2 is the measured shear strain in bridge 2.
Vb3 is the measured bending strain in bridge 3.
Vs3 is the measured shear strain in bridge 3.

Instrumentation, Modeling and Control of AAU-BOT1

Results of Calibration 219

1 1.5 2 2.5 3 3.5 4
20

40

60

80

100

120

140

160
Fx

Sample number [k]

F
or

ce
 [N

]

Ideal line
Fx(LSC)

(a) Fx accuracy.

1 1.5 2 2.5 3 3.5 4
20

40

60

80

100

120

140
Fy

Sample number [k]
F

or
ce

 [N
]

Ideal line
Fy(LSC)

(b) Fy accuracy.

1 1.5 2 2.5 3 3.5 4
−450

−400

−350

−300

−250

−200

−150

−100

−50
Fz

Sample number [k]

F
or

ce
 [N

]

Ideal line
Fz(LSC)

(c) Fz accuracy.

1 1.5 2 2.5 3 3.5 4
−110

−100

−90

−80

−70

−60

−50

−40

−30

−20
Mx

Sample number [k]

M
om

en
t [

N
m

]

Ideal line
Mx(LSC)

(d) Mx accuracy.

1 1.5 2 2.5 3 3.5 4
20

30

40

50

60

70

80

90

100
My

Sample number [k]

M
om

en
t [

N
m

]

Ideal line
My(LSC)

(e) My accuracy.

1 1.5 2 2.5 3 3.5 4
−9

−8

−7

−6

−5

−4

−3

−2

−1
Mz

Samples number [k]

M
om

en
t [

N
m

]

Ideal line
Mz(LSC)

(f) Mz accuracy.

Figure H.2: Calibration results for the right FTS and amplifier.

Group 08gr1032b

220 Calibration and Test of the FTS’s and Amplifiers

H.3 Future Work

To achieve a better calibration of the FTS, i.e. improve the calibration results of the Fz

axis, the following suggestion have been made :

• Changes the beams design, such that the mounting plate that has to be attached
to the test rig, it must similar to the one on the ankle. This should give a better
result in the Fz direction.

• Use solid weights instead of a Newton meter. This minimizes human reading errors.
Furthermore it was also noticed that the Newton meter drifted a bit.

• Make sure that the entire test rig is designed in E.g. Solid Works. If mechanical
part is done well, it will possible to obtain the exact dimensions of the calibration
test rig.

• The beam must be made in a stiff material such that all applied force and torque
is transferred directly to FTS.

• The test rig must be redesigned such that it is possible to use weights

• The amplifier with HW ID 14692 must be repaired or changed.

Instrumentation, Modeling and Control of AAU-BOT1

Appendix I

Test of CAN Throughput at

Different Samplerates

To test the function of the designed CAN driver, the Actuator Server and the Sensor
Server, the throughput of the CAN is tested.

I.1 Method

The CAN throughput is tested by putting a ramp as the input to the left arm, with
the rest of the inputs set to 0. The test is set to run for 20 seconds to ensure that any
effects of initializing are neglible. By doing this, the measurement of the relative angle of
the left arm should be a different value at each sample. The test is carried out at three
different sample rates, 100Hz, 200Hz and 250Hz. Afterwards, the last 1000 samples are
tested, if any of them are equal to the sample before, there has been an error.

I.2 Result

The result from the 200Hz test can be seen in Figure I.1, the errors from the tests are
counted and yields the following:

• Errors at 100Hz: 0%

• Errors at 200Hz: 1.9%

• Errors at 250Hz: 13.6%

I.3 Discussion

Although the amount of errors at 250Hz are fairly high compared to the others, the effect
on AAU-BOT1 are not noticeable by the human eye during the test. This is due to
two design features:

• The CAN/EPOS driver uses PDO-frames to communicate, which does not use any
retransmission strategies.

221

222 Throughput Test

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15
x 10

4

Time [s]

R
el

at
iv

e
an

gl
e

[T
ic

ks
]

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Time [s]

E
rr

or
s

[]

Figure I.1: Result from the 200Hz Test.

• The EPOS amplifiers are in position mode which means that if a frame is lost, the
only consequence is that the next position command will make the DC motor move
twice as far.

The Actuator Server and the Sensor Server should be optimized to ensure that all samples
comes through, or a different sample rate should be chosen.

I.4 Summary

The CAN driver, the Actuator Server and the Sensor Server 1 are fully functional, and
98.1% of the frames are both sent and recieved by lowering the sample rate to 200Hz.

Instrumentation, Modeling and Control of AAU-BOT1

Appendix J

CAN Frame Overview

In this appendix, the individual PDO frames used to communicate with the EPOS am-
plifiers are defined. The RxPDOs1 are defined in Table J.1 to J.4. The TxPDOs2 are
defined in Table J.7. To start the EPOS amplifiers, an operational mode (see Table J.5)
and a sync command (see Table J.6) is sent.

Table J.1: PDO frames containing the velocity commands. These are sent from the
on-Board computer to the EPOS amplifiers.

Adress Length Data
0x201 8 uω2 uω3

0x202 4 uω4

0x203 8 uω5 uω6

0x204 8 uω7 uω18

0x205 8 uω8 uω9

0x206 8 uω10 uω19

0x207 8 uω11 uω12

0x208 4 uω13

0x209 8 uω15 uω16

0x20A 4 uω17

1RxPDOs are sent from the on-Board computer to the EPOS amplifiers.
2TxPDOs are sent from the EPOS amplifiers to the on-Board computer.

223

224 CAN Frame Overview

Table J.2: PDO frames containing the position commands. These are sent from the
on-Board computer to the EPOS amplifiers.

Adress Length Data
0x301 8 uθ2 uθ3

0x302 4 uθ4

0x303 8 uθ5 uθ6

0x304 8 uθ7 uθ18

0x305 8 uθ8 uθ9

0x306 8 uθ10 uθ19

0x307 8 uθ11 uθ12

0x308 4 uθ13

0x309 8 uθ15 uθ16

0x30A 4 uθ17

Table J.3: PDO frames containing the current commands. These are sent from the
on-Board computer to the EPOS amplifiers.

Adress Length Data
0x401 6 uI2 uI3 uI4

0x402 8 uI5 uI6 uI7 uI18

0x403 8 uI8 uI9 uI10 uI19

0x404 6 uI11 uI12 uI13

0x405 6 uI15 uI16 uI17

Table J.4: PDO frames containing the control word. It is heard by all the EPOS ampli-
fiers.

Adress Length Data
0x501 2 Control word

Table J.5: Operational mode command.
Adress Length Data
0x000 2 0x01 0x00

Table J.6: Sync Command.
Adress Length
0x080 0

Instrumentation, Modeling and Control of AAU-BOT1

225

Table J.7: PDO frames sent from the EPOS amplifiers to the on-board computer. These
are sent every time a sync command is recieved.

Adress Length Data
0x182 8 ω2 θrel2

0x183 8 ω3,1 θrel3,1

...
...

...
...

0x19F 8 ω12,2 θrel12,2

0x282 8 ω2 I2 θabs2

0x283 8 ω3,1 I3,1 θabs3,1

...
...

...
...

...
0x29F 8 ω12,2 I12,2 θabs12,2

0x382 8 θrel2 I2 θabs2

0x383 8 θrel3,1 I3,1 θabs3,1

...
...

...
...

...
0x39F 8 θrel12,2 I12,2 θabs12,2

Group 08gr1032b

226 CAN Frame Overview

Instrumentation, Modeling and Control of AAU-BOT1

Appendix K

Node Overview

To identify the individual EPOS amplifiers, Table K.1 is used. The Node IDs are deter-
mined by the Joint #, however at the joints with double actuated joint nodes, the second
node is equal to the first Node ID + 19. The Input # and Output # are the index used
in the .mat files.

Table K.1: Identification of nodes. The Input # and Output # is the used index in the
.mat files.

Joint Name Joint # Node ID Input # Output # CAN #
Right Ankle roll 2 0x002 1 1 5

Right Ankle Pitch(1) 3 0x003 2 2 5
Right Ankle Pitch(2) 3 0x016 2 18 5
Right Knee Pitch(1) 4 0x004 3 3 5
Right Knee Pitch(2) 4 0x017 3 19 5

Right Hip Roll(1) 5 0x005 4 4 3
Right Hip Roll(2) 5 0x018 4 20 3
Right Hip Pitch 6 0x006 5 5 3
Right Hip Yaw 7 0x007 6 6 3

Left Hip Yaw 8 0x008 7 7 2
Left Hip Pitch 9 0x009 8 8 2

Left Hip Roll(1) 10 0x00A 9 9 2
Left Hip Roll(2) 10 0x01D 9 21 2

Left Knee Pitch(1) 11 0x00B 10 10 4
Left Knee Pitch(2) 11 0x01E 10 22 4
Left Ankle Pitch(1) 12 0x00C 11 11 4
Left Ankle Pitch(2) 12 0x01F 11 23 4

Left Ankle Roll 13 0x00D 12 12 4

Waist Yaw 15 0x00F 13 13 1
Waist Roll 16 0x010 14 14 1
Waist Pitch 17 0x011 15 15 1

Right Arm 18 0x012 16 16 3

Left Arm 19 0x013 17 17 2

227

228 Node Overview

Instrumentation, Modeling and Control of AAU-BOT1

Appendix L

List of Acronyms

Acronym Description

ADC Analog to Digital Converter
CAN Controller Area Network
CANopen A higher-layer protocol for CAN.
CoM Center of Mass
CoP Center of Pressure
CPU Central Processing Unit
CPG Central Pattern Generator
DC Direct Current
DoF Degrees of Freedom
DSP Double Support Phase
DSP-X Double Support Phase Left/Right
DSP-X-H Strike Double Support Phase Left/Right - Heel-strike
DSP-X-T Double Support Phase Left/Right Toe
DSP-X-TH Double Support Phase Left/Right Toe Heel
FTS Force Torque Sensor
FZMP Fictitious Zero Moment Point
GCC GNU Compiler Collection
GCoM Ground projection of Center of Mass
IMU Inertia Measurement Unit
LAN Local Area Network
OP-AMP Operation Amplifier
PCB Printed Circuit Board
PDO Process Data Object
PSU Power Supply Unit
SA Support Area
SDO Service Data Object
SNR Signal to Noise Ratio
SSP Single Support Phase
SSP-X Single Support Phase Left/Right
SSP-X-T Single Support Phase Left/Right Toe
TLA Three Letter Acronym
USB Universal Serial Bus
ZMP Zero Moment Point

229

230 List of Acronyms

Instrumentation, Modeling and Control of AAU-BOT1

Appendix M

Contents of the enclosed CD

The enclosed CD has the following contents:

• /bibliography/: Contains some of the papers from the bibliography.

• /datasheets/: Contains the data sheets of the hardware of AAU-BOT1.

• /doc/: Contains the documentation of the source code in /src/.

• /images/: Contains the raw images of this report.

• /maple/: Contains the Maple code of the models.

• /masterThesis/: Contains this report, in pdf and ps format.

• /matlab/: Contains the Matlab code of the models.

• /src/: Contains the source code of the software that was designed in Chapter 4.

• /webots/: Contains the Webots model and the source code.

231

232 Contents of the enclosed CD

Instrumentation, Modeling and Control of AAU-BOT1

Index

Balanced gait, 30

Center of Mass, 28
Center of Pressure, 30
Controller structure, 119

DC Motor, 35
Actuation Limits, 74
Amplifiers for, 37

Feedback Control of, 72, 130–132
Double Actuated Joints, 73

Control of, 132
Gearing, 72
Model of, 71

Verification of, 163
Definition of coordinate system, 23
Double Support Phase (DSP), 26
Dynamic Model, 83–89

DSP, 89
DSP Example, 200–201
SSP, 85
SSP Example, 196–200

Dynamically balanced gait, 30
Trajectory for, 203

Fictitious Zero Moment Point, 30
Foot Model, 188
Force Torque Sensor, 38–43

Alternative FTS DAQ, 209–213

Gait, 23
Ground projection of Center of Mass, 29,

138

Human gait, 24

Inertia Measurement Unit, 45
Inverse Kinematics, 91

Verification of, 169

Kalman Filter, 125

Kinematics, 77–83
Example, 193–196
Verification of, 166

Observer, 139
On-board Computer, 43

Phase Estimator, 89, 139
Posture Control, 121
Potentiometers, 37

Single Support Phase (SSP), 26
Software, 49

Actuator Server, 57
EPOS/CAN Driver, 57
FTS driver, 60
S-Functions, 51
Sensor Server, 54
Shared Memory Server, 54
Webots, 66

Statically balanced gait, 30
Trajectory for, 102

Step, 23
Supervisor, 140
Support Area, 28

Example, 193, 201
Support Phases, 26–28
System Representation, 77

Trajectory Generation, 97
Transformation matrices, 78

Walk, 23

Zero Moment Point, 29, 89, 138, 139, 201
ZMP estimator, 139

233

	Nomenclature
	Introduction
	Background information
	Existing Biped Robots
	Walking Robots at Aalborg University
	Objectives
	Thesis Outline

	Humanoid Robotics Definitions
	Coordinate system
	Definitions used in this report

	Instrumentation and Network Design
	AAU-BOT1 Description
	Network Design
	Actuators
	EPOS Amplifiers
	Absolute Joint Angle Measurements
	Force Torque Sensor
	On-board Computer
	Inertia Measurement Unit
	Summary of Instrumentation and Network Design

	Software Architecture
	General Software Description
	Simulink S-function Interface
	Shared Memory Server
	Sensor Servers
	Actuator Server
	EPOS/CAN Driver
	FTS driver
	Visulisation
	Summary of Software

	Modeling
	Introduction to Modeling
	Elements in the Model
	DC Motor Model
	Kinematic Model
	Dynamic Model
	Support Phase Estimator
	Inverse Kinematics
	Summary of Modeling

	Trajectory generation
	Trajectory Generation Requirements
	Different Trajectory Generation Approaches
	Establishing Trajectories for AAU-BOT1
	Simulation and Results of Trajectory Generation
	Summary of Trajectory Generation

	Control
	Controller Structure
	Control Strategy A
	Control Strategy B
	Observers
	Supervisor
	Summary of Control

	System Test
	Introduction to Complete Test
	Virtual Robot in Webots
	Actual AAU-BOT1
	Summary of System Test

	Epilogue
	Discussion
	Conclusion
	Future Work

	Bibliography
	Verification of Models
	DC Motor Model
	Verification of Kinematic Model
	Verification of Inverse Kinematic Model

	Verification and Implementation of Controllers
	Verification of Control Strategy A
	Verification of Control Strategy B

	Mechanical Data
	Foot Model
	Foot Design Overview
	Forces and Torques on the Foot
	Constraints

	Motivating Example
	Kinematic Model
	Dynamics in SSP
	Dynamics of Strider in DSP

	Dynamic Gait Trajectories
	Foot Trajectory for Dynamic Gait
	Torso Trajectory for Dynamic Gait

	Alternative FTS DAQ
	Analog FTS DAQ
	Alternative Digital FTS DAQ

	Calibration and Test of the FTS's and Amplifiers
	Calibration Test Method
	Results of Calibration
	Future Work

	Throughput Test
	Method
	Result
	Discussion
	Summary

	CAN Frame Overview
	Node Overview
	List of Acronyms
	Contents of the enclosed CD
	Index

