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Abstract:
In this thesis, we focus on the modeling
formalism networks of probabilistic timed
automata. Networks of probabilistic timed
automata may be used to model systems
where time, i.e. delays and timeouts, con-
currency and synchronisation as well as
probabilistic behaviour, either from the sys-
tem or its environment, are all important
properties in the model.

We introduce a forward state space ex-
ploration and reduction algorithm to par-
tition the state space of probabilistic and
normal timed automata according to time-
abstract equivalences.

We demonstrate how this partitioning
can be used to compute probabilistic reach-
abilities.

A prototype tool, Uppaal Prob, has been
implemented as an extension to the Uppaal
Prob tool. This includes the state space ex-
ploration and reduction algorithm, refine-
ment according to probabilistic reachabil-
ity formulae and computation of maximal
reachability probabilities.
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1 Introduction

Real time systems have been modelled in timed automata for about the last two decades.

start

x ≤ 11 x ≤ 11

success

failure

x ≤ 11

x := 0

x ≥ 8

Figure 1.1: The timed automaton A.

In Figure 1.1, the timed automaton A is given. From the start location, A can take a
transition to the anonymous location, where it can choose nondeterministically between a
transition leading to the success state, and one leading to the failure state. When taking
the transition leading to the failure state, the clock x is reset, and only when x ≥ 8 can
A take a transition back to start, where it may try again. In all states except success,
time is only allowed to pass until x = 11 at which point a transition must be taken, if
not sooner.
A timed automaton like A has no reason ever to fail, since it may always simply choose

the shortest path to the success state. However, it is possible never to have success either;
A may loop between start and failure forever.
The choice between failure and success is normally not really a choice: It is more likely

a chance of success or a risk of failure, where both the word chance and the word risk
are the key. We would like to express such choices as chance or risk in timed automata.
In Figure 1.2, an analogue of the timed automaton A is given, namely the probabilis-

tic timed automaton A′. From the start location, A′ can take a transition that with
probability 3

4 will lead to success, and with probability 1
4 , the clock x is reset and the

transition will lead to the failure state. While in the failure state, A′ must delay for 8
time units until it can take a transition back to start, where it may try again; just like
A. In all states except success, time is only allowed to pass until x = 11 at which point
a transition must be taken, if not sooner.
A probabilistic timed automaton like A′ will, unlike the timed automaton A, have

reasons both to fail and to succeed. The property from A, about it being possible never

9



1 Introduction

start

x ≤ 11

success

failure

x ≤ 11

3
4

1
4

x := 0

x ≥ 8

Figure 1.2: The probabilistic timed automaton A′.

to have success, has a slightly more informative analogue in A′, namely it being possible,
but highly unlikely, never to have success; the event “never to have success” involves
looping from start to failure back to start for ever, and the probability of that is

Pr (“never to have success”) = lim
n→∞

1
4n

= 0

We call such a property a soft property of a real time system.
Real time model checkers, such as Uppaal, are used to check hard properties such as

“is it possible never to have success” and “is it possible to always have success” for timed
automata like A.
In this project, we extend Uppaal so that it is able to check soft properties such as

“how likely is it eventually to have success” for probabilistic timed automata like A′. We
call this extension Uppaal Prob.
Analysis of timed automata is normally done using convex zones of clock valuations.

An example of a convex zone of clock valuations is {u | 11 ≥ u(x) ≥ 8}, where u are
functions from clocks into R called clock valuations. This symbolic representation is
necessary since there are uncountable many clock valuations.
When analysing probabilistic timed automata, computational problems arise that were

not an issue for timed automata. In particular, there may be two different paths leading to
some goal state, and we need to know where these overlap to know how their probabilities
contribute. In other words, we will need a forward stable partitioning of relevant parts of
the state space. The partitions that represent overlaps of convex zones, i.e. intersections,
are themselves convex zones, but those remaining, i.e. subtractions, need not to be convex.
In this project, we show how those remainder sets of clock valuations may be repre-

sented using federations — unions of convex zones — and how to construct a relevant
forward stable partitioning of the state space of a given network of probabilistic timed
automata.
We also show how to calculate the maximum probability of reaching a given class of

symbolic states in such a partitioning. In particular, we have implemented this function-
ality in Uppaal Prob.
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1.1 Related Work

1.1 Related Work

Time abstract bisimulation1 is often used in the analysis of timed automata. A well
known, easy to get, bisimulation quotient is the region graph. The region graph is a
bit stronger than all other time abstract bisimulations in that all configurations in an
augmented region (a symbolic state) in the region graph satisfy the same PTCTL2

Region graphs are always exponential in the number of components in a given net-
work of (probabilistic) timed automata, so analysis on region graphs quickly becomes
intractable. Nevertheless, Kwiatkowska et al. gives an algorithm for model checking
probabilistic timed automata against PTCTL formulae using region graphs in [KNSS02].
We believe that similar algorithms may be applied on bisimulation quotients, say ρ, given
bisimulation classes are either fully satisfying or fully violating each atomic proposition
being part of the given PTCTL formula. This is why time abstract bisimulation quotient
construction is interesting.
In [BFHR92], Bouajjani et al. gives a minimal graph generation algorithm that gen-

erates a bisimulation quotient ρ of the reachable state space from an initial state space
partitioning ρ0; this algorithm works on any transition system. The bisimulation quo-
tient ρ is minimal with respect to ρ0. The real contribution of [BFHR92] is bisimulation
quotient generation on the fly while doing forward exploration.
In [ACH+92], Alur et al. adapts the minimal graph generation algorithm by [BFHR92]

for timed automata, at the expense of minimality; nevertheless, the output is a time
abstract bisimulation quotient which is potentially much coarser than the region graph.
As in [BFHR92], the time abstract bisimulation quotient of [ACH+92] is generated on
the fly while doing forward exploration.
In [EH07], we made the time abstract bisimulation quotient of [ACH+92] minimal

again, with respect to certain initial state space partitionings, namely those that do not
make abstractions of the discrete part of the state space. As in [BFHR92] the time
abstract bisimulation quotient of [EH07] is generated on the fly while doing forward
exploration.

1A bisimulation where the length of delays are ignored. For a probabilistic analogue see Definition 5.1.2
2Probabilistic Timed Computation Tree Logic. There are a few variants of this logic in the literature.

But the main idea seem to be some kind of CTL with atomic propositions involving clocks and formulae
involving probability bounds, not to forget maximum and minimum probability formulae.
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Part I

Preliminaries

In this part, we establish the preliminary theory about probabilities, probabilistic
reachability and probabilistic timed automata. Many of these definitions and theorems
may also be found in [EH07].
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2 Probabilities

2.1 The Axioms of Probability

In Section 2.2 we will need at least the basics of probability theory. In this subsection we
introduce probability theory in terms of the axioms of probability. For a more thorough
introduction to probability theory, we can recommend [Olo05].

Definition 2.1.1 (Events and Sample Spaces)
Let S be a sample space of a random experiment. An event of S is a subset of S. The
set of all events of S is written P(S). 2

Definition 2.1.2 (Axioms of Probability)
Let S be a sample space of a random experiment. A probability measure is a function
Pr : P(S)→ [0; 1] that maps events into probabilities such that

Pr (S) = 1

and for pair wise disjoint events A1, A2, . . . ⊆ S we have

Pr

( ∞⋃
k=1

Ak

)
=
∞∑
k=1

Pr (Ak) 2

2.2 Random Variables

In the following we define random variables so that we may later specify the semantics
of probabilistic timed automata in terms of these1.

Definition 2.2.1 (Random Variable)
Let S be a sample space. A random variable is a function X : S → X .
The set of all random variables with codomain X is denoted by V (X ). 2

Let X be a random variable and S be a sample space. When an event s ∈ P(S) is
unimportant in the given context we write X as notation for X(s).

Definition 2.2.2 (The Distribution of a Random Variable)
Let X be a random variable with codomain X . The distribution of X is a function
p : X → [0; 1], such that p(x) = Pr (X = x). 2

1When specifying the semantics of stochastic systems, two different formalisms can be considered; σ-
algebra and random variables. These are equivalent, but due to more reader friendly syntax, we use
random variables
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2 Probabilities

Let X be a random variable. If p is the distribution of X we write X ∼ p.
To give a random variable X ∼ p with codomain X of size n explicitly, we write

{x1p1
, . . . , xnpn},

where x1, . . . , xn ∈ X and pi = p(xi) for i = 1, . . . , n.

Definition 2.2.3 (Probability Distribution)
Let X be a set. A probability distribution on X is a function p : X → [0; 1], where∑

x∈X
p(x) = 1.

The set of all probability distributions on finite subsets of X is written P (X ). 2

2.3 Labelled Markov Transition Systems

In the following we define labelled Markov transition systems so that we may later specify
the semantics of probabilistic timed automata in terms of these2.
Recall that a partial function f : A ⇀ B is a function except that is not well defined

on all of it’s domain A.

Definition 2.3.1 (Labelled Markov Transition System)
A labelled Markov transition system is a tuple (Γ, A,−→), where Γ is a set of configurations
and A is a set of labels (or actions) and −→ : Γ×A ⇀ V (Γ) is the transition function. 2

Given a labelled Markov transition system (Γ, A,−→), we shall write x a−→ X for

−→ (x, a) = X,

where x ∈ Γ, X ∈ V (Γ) and a ∈ A, and −→ (x, a) is well defined.

2In computer science, we prefer discrete Markov chains with the property that the probability distri-
bution of the next configuration (the target of a probabilistic transition) is a function of the current
configuration, but not the number of transitions taken so far. Such discrete Markov chains are called
time homogeneous discrete Markov chains. A labelled Markov transition system is a hybrid of time
homogeneous discrete Markov chains and labelled transition systems.

16



3 Probabilistic Reachability for Labelled
Markov Transition Systems

3.1 Adversary

Definition 3.1.1 (Path)
Let M = (Γ, A,−→) be a labelled Markov transition system. A path ω of M is a tu-
ple ω = (x0, {(an, xn)}n≥1), where {(an, xn)}n≥1 is a sequence of actions an ∈ A and
configurations xn ∈ Γ, such that xn

an+1−−−→ X, where xn+1 ∈ img(X) for n ≥ 0.
The set of all paths ofM is denoted Ω(M). 2

Definition 3.1.2 (Adversary)
Let M = (Γ, A,−→) be a labelled Markov transition system. An adversary of M is a
partial function f : Ω ⇀ A, where −→ is well-defined on (xk, f(ω)) for all paths ω =
(x0, {(an, xn)}k≥n≥1) where f(ω) is well defined.
We write F(M) for the set of all adversaries ofM. 2

Definition 3.1.3 (Memoryless Adversary)
LetM = (Γ, A,−→) be a labelled Markov transition system, and let f be an adversary of
M. If there exists a partial function g : Γ ⇀ A such that

g(xk) = f(x0, {(an, xn)}k≥n≥1) for all k where f is well defined,

for all paths (x0, {(an, xn)}k≥n≥1) in Ω(M), we say that f is memoryless. 2

If f is a memoryless adversary, we may write f(xk) instead of f(x0, {(an, xn)}k≥n≥1).

Definition 3.1.4 (Run)
LetM = (Γ, A,−→) be a labelled Markov transition system, let f be an adversary ofM,
and let ω = (x0, {(an, xn)}n≥1) be a path ofM. We say that ω is a run of f if

ak+1 = f(x0, {(am, xm)}k≥m≥1),

for each k ≥ 0. 2

3.2 Stochastic Process of an Adversary

Definition 3.2.1 (Stochastic Process)
A stochastic process is a sequence {Xn}n≥1 of random variables. 2

17



3 Probabilistic Reachability for Labelled Markov Transition Systems

Definition 3.2.2 (The Stochastic Process of an Adversary)
Let M = (X , A,−→) be a labelled Markov transition system, and let f be an adversary
ofM. A stochastic process of f and x0 ∈ X is a sequence {fn}n>0 of random variables
with codomain (A×X ) with

fn = (an, Xn) where an = f(x0, {fk}k<n), Xn−1
an−→ Xn, X0 = x0. 2

Definition 3.2.3 (Markov Chain)
Let {Xn}n≥1 be a stochastic process. If the Markov property

Pr (Xn = xn | Xn−1 = xn−1) = Pr (Xn = xn | Xn−1 = xn−1, . . . , X1 = x1) (3.1)

holds for all n > 1 then {Xn}n≥1 is called Markov chain. 2

Theorem 3.2.4
If f is a memoryless adversary, then the stochastic process {fn}n≥1 is a Markov chain.

Proof
Proof by induction over the length of {fn}n≥1.

Ad {fn}n=1 is a Markov chain: By Definition 3.2.3 all sequences of random variables
with one element is a Markov chain

Ad {fn}2≥n≥1 is a Markov chain: The Markov property (3.1) is trivially true for n = 2,
and by {fn}n=1 is a Markov chain we have that {fn}2≥n≥1 is a Markov chain.

Ad {fn}k≥n≥1 is a Markov chain: Assume by induction that {fn}k′≥n≥1 is a Markov
chain for all k′ < k. It is enough to show (3.1) holds for n = k.

For any sequence of events {fi = (ai, xi)}k−1≥i≥1 it follows from Definition 3.2.2 and

18



3.3 Probabilistic Reachability for Labelled Markov Transition Systems

Definition 3.1.3 that

Pr

fk = (ak, xk)

∣∣∣∣∣∣∣∣
fk−1 = (ak−1, xk−1)

...
f1 = (a1, x1)



= Pr

f(x0, {ai, xi}k−1≥i≥1) = (ak, xk)

∣∣∣∣∣∣∣∣
fk−1 = (ak−1, xk−1)

...
f1 = (a1, x1)



= Pr

f(xk−1) = (ak, xk)

∣∣∣∣∣∣∣∣
fk−1 = (ak−1, xk−1)

...
f1 = (a1, x1)



= Pr

f(xk−1) = (ak, xk)

∣∣∣∣∣∣∣∣∣∣

fk−1 = (ak−1, xk−1)
fk−2 = (a′k−2, x

′
k−2)

...
f1 = (a′1, x

′
1)


for all sequences
{fi = (a′i, x

′
i)}k−2≥i≥1

of events.

= Pr (f(xk−1) = (ak, xk) | fk−1 = (ak−1, xk−1))
= Pr (fk = (ak, xk) | fk−1 = (ak−1, xk−1)) ,

which is (3.1) for n = k. �

3.3 Probabilistic Reachability for Labelled Markov Transition
Systems

Definition 3.3.1 (Atomic Proposition)
Let {Xn}n≥1 be a stochastic process where img(Xn) ⊆ X for all n. Any subset B ⊆ X
is an atomic proposition of {Xn}n≥1. 2

Example 3.3.2
Let M = (X , A,−→) be a labelled Markov transition system, let x0 be an initial con-
figuration for M, and let f be an adversary of M. By Definition 3.3.1 it follows that
B ⊆ A × X is an atomic proposition of fn, where fn is the stochastic process of f and
x0. 2

With the same definitions as in Example 3.3.2 we will write B ⊆ X as notation for
A×B ⊆ A×X , when we are only interested in configurations.
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3 Probabilistic Reachability for Labelled Markov Transition Systems

Definition 3.3.3
Let A ⊆ X be a set of states of a stochastic process {Xn}n≥1, where img(Xn) ⊆ X for
n ≥ 1. The probability of {Xn}n≥1 ever reaching A is written

Pr

(⋃
n>1

{Xn ∈ A | Xn−1, . . . , X1 /∈ A}

)
. 2

Remark 3.3.4
By event inclusion we have that⋃

n>1

{Xn ∈ A | Xn−1, . . . , X1 /∈ A} =
⋃
n>1

{Xn ∈ A}. 2

In what follows we will need to range over different stochastic processes instantiated
by a given labelled Markov transition system, an initial configuration and an adversary.
So we define some syntax to make this more readable:

Definition 3.3.5
LetM = (X , A,−→) be a labelled Markov transition system, let x0 be an initial configu-
ration forM, let f be an adversary ofM, and let B ⊆ A×X be an atomic proposition.
We write

{M, x0 |= f : fn ∈ B}

for the event ⋃
n>1

{fn ∈ B}

where fn is the stochastic process of f and x0 2

Corollary 3.3.6
Let M = (X , A,−→) be a labelled Markov transition system, let x0 be an initial configu-
ration for M, let f be an adversary of M, and let fn be the stochastic process of f and
x0. Clearly img(fn) ⊆ A× X for all n ≥ 1. Therefore any subset B ⊆ A× X is a valid
atomic proposition for fn. 2

Definition 3.3.7 (Probability of the Best Adversary)
LetM = (X , A,−→) be a labelled Markov transition system, let x0 be an initial configu-
ration ofM and let B ⊆ A× X be an atomic proposition. We define the probability of
the best adversary for reaching B as

max
f∈F(M)

Pr (M, x0 |= f : fn ∈ B) , (3.2)

where the adversary f that maximises (3.2) is called the best adversary for reaching B.2

20



3.3 Probabilistic Reachability for Labelled Markov Transition Systems

Definition 3.3.8 (Probability of the Worst Adversary)
LetM = (X , A,−→) be a labelled Markov transition system, let x0 be an initial configu-
ration ofM and let B ⊆ A× X be an atomic proposition. We define the probability of
the worst adversary for reaching B as

min
f∈F(M)

Pr (M, x0 |= f : fn ∈ B) , (3.3)

where the adversary f that minimises (3.3) is called the worst adversary for reaching B.2

The following theorem states that a memoryless greedy adversary is the best.

Theorem 3.3.9
Let M = (X , A,−→) be a labelled Markov transition system, let x0 be an initial configu-
ration ofM and let B ⊆ A×X be an atomic proposition for all fn, where f ∈ F(M).
Let g be the memoryless adversary defined by g(x) = a, where x a−→ X such that the

expected supreme reachability probability∑
x′0∈img(X)

sup
h∈F(M)

Pr
(
{M, x′0 |= h : hn ∈ B}, {X = x′0}

)
, (3.4)

is maximal. Then

Pr (M, x0 |= g : gn ∈ B) = max
f ′∈F(M)

Pr
(
M, x0 |= f ′ : f ′n ∈ B

)
. (3.5)

Proof
We have that

Pr (M, x0 |= g : gn ∈ B) =
∑

x′0∈img(X)

sup
h∈F(M)

Pr
(
{M, x′0 |= h : hn ∈ B}, {X = x′0}

)
,

where x0
g(x0)−−−→ X. Since we can construct an adversary h′ such that x0

h′(x0)−−−−→ X and h′

behaves like the supreme h for each x′0 ∈ img(X), we can safely set h′ to start from x0

and marginalise X inside the supremum expression.

Pr (M, x0 |= g : gn ∈ B) = sup
h′∈F(M)

∑
x′0∈img(X)

Pr
(
{M, x0 |= h′ : h′n ∈ B}, {X = x′0}

)
= sup

h′∈F(M)
Pr
(
M, x0 |= h′ : h′n ∈ B

)
(3.6)

Since there exists an adversary having the reachability probability of (3.6), (namely g),
the supremum is a maximum, and (3.5) follows. �

Corollary 3.3.10
By Theorem 3.3.9 it follows that (3.2) is well defined. 2

Corollary 3.3.11
By a similar procedure as in Theorem 3.3.9 it can be shown that (3.3) is also well defined.2
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4 Probabilistic Timed Automata

4.1 Probabilistic Timed Automata
Definition 4.1.1
Let C be a set of clocks. The clock constraints on C are defined as

B(C) ::= c1 − c2 ∼ k | c1 ∼ k′ | k′ ∼ c1,

where c1, c2 ∈ C, ∼ ∈ {<,≤}, and k ∈ Z, k′ ∈ Z+. 2

Definition 4.1.2 (Clock Valuation)
Let C be a set of clocks, then a function u : C → R+ is called a clock valuation. The set
of all clock valuations on C is written U(C). 2

Definition 4.1.3 (Zone)
Let Z ⊆ U(C) be a set of clocks. If there exists a z ∈ 2B(C) such that for all u ∈ U(C)
we have u ∈ Z if and only if u satisfies all clock constraints of z we call Z a zone.
The set of all zones is denoted Z. 2

Definition 4.1.4 (Probabilistic Timed Automata)
A probabilistic timed automata is a tuple (L, l0, C,A,E, I), where

i) L is a finite set of locations,

ii) l0 ∈ L is the initial location,

iii) C is a finite set of clocks,

iv) A is a finite set of actions, co-actions and the internal τ -action,

v) E ⊆ L×A×Z ×P (2C ×L) is a finite set of edges from locations with an action, a
guard and a probability distribution for the target set of clocks to be assigned and
the target location.

vi) I : L→ Z assigns invariants to locations. 2

Let (L, l0, C,A,E, I) be a probabilistic timed automaton and let (l, a, g, p) be an edge
in E. We always assume that if a clock valuation u ∈ U(C) satisfies g then the clock
valuation u′ = [r 7→ 0]u satisfies the invariant of l′ for all (r, l′) in the domain of p.
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4 Probabilistic Timed Automata

4.2 The Semantics of Probabilistic Timed Automata
Definition 4.2.1 (Configuration of Probabilistic Timed Automata)
Let T = (L, l0, C,A,E, I) be a probabilistic timed automaton. A configuration of T is
a tuple (l, v) where l ∈ L is a location and v : C → R+ is a clock valuation. The initial
configuration of T is (l0, u0), where u0(c) = 0 for all c ∈ C. 2

Definition 4.2.2 (Target Random Variable)
Let T = (L, l0, C,A,E, I) be a probabilistic timed automaton, let p ∈ P (2C × L) be a
probability distribution, and let u ∈ U(C) be a clock valuation. The (target) random
variable of u and p is then defined as

X(u, p) =

(l′, u′)µ

∣∣∣∣∣∣µ =
∑

r|u′=[r 7→0]u

p(r, l′), l′ ∈ L, u′ ∈ U(C)

 . 2

Definition 4.2.3 (Semantics of Probabilistic Timed Automata)
Let T = (L, l0, C,A,E, I) be a probabilistic timed automaton. The operational semantics
is given by the labelled Markov transition system (Γ, A′,−→), where Γ = L × U(C),
A′ = A ∪ R+, and −→ is the least partial function from Γ × A′ to V (Γ) satisfying the
following rules:

[u, d+ u] ⊆ I(l)

(l, u) d−→ {(l, u+ d)1}
(DELAY)

(l, a, g, p) ∈ E u ∈ g
(l, u) a−→ X(u, p)

(SWITCH)
2

4.3 Networks of Probabilistic Timed Automata
Definition 4.3.1 (Network of Probabilistic Timed Automata)
A network of probabilistic timed automata is a sequence of probabilistic timed automata
{Ai}1≤i≤n where Ai = (Li, l0i , C,A,Ei, Ii) is a probabilistic timed automaton for each
1 ≤ i ≤ n. 2

4.4 The Semantics of Networks of Probabilistic Timed
Automata

Definition 4.4.1 (Configuration of Networks of Probabilistic Timed Automata)
Let {Ai}1≤i≤n be a network of probabilistic timed automata, with clock set C. A con-
figuration of {Ai}1≤i≤n is a tuple (l, v), where li ∈ Li for i = 1, . . . , n and u ∈ U(C) is a
clock valuation. The initial configuration of {Ai}1≤i≤n is (l0, u0) where each entry l0i in
l0 is the initial location of Ai and u0(c) = 0 for all c ∈ C. 2
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4.4 The Semantics of Networks of Probabilistic Timed Automata

Definition 4.4.2
Let {Ai}0≤i≤n be a network of probabilistic timed automata where

Ai = (Li, l0i , C,A,Ei, Ii) for i=1,. . . ,n,

and let Y ∼ p be a random variable with codomain L1× · · · ×Ln×U(C). The invariant
map of Y is then defined as

I(Y ) =
{

(l, u) ∈ img(Y ) | u ∈ Ii(li) for i = 1, . . . , n
}
. 2

Definition 4.4.3 (Semantics of Network of Probabilistic Timed Automata)
Let {Ai}1≤i≤n be a network of probabilistic timed automata. The operational semantics
is given by the labelled Markov transition system (Γ, A′,−→), where Γ = L1 × · · · ×Ln ×
U(C) are the configurations, Li is the location set of Ai, A′ = A ∪ R+ are the actions,
and −→ is the least partial function from Γ×A′ to V (Γ) satisfying the following rules:

(l1, u) d−→ {(l1, u+ d)1} · · · (ln, u) d−→ {(ln, u+ d)1}

(l, u) d−→ {(l, u+ d)1}
where d ∈ R+ (DELAY)

(li, u) τ−→ X img(Y ) = I(Y )

(l, u) τ−→ Y
where Y =

n`
l{l/li}, u

´
µ
|(l, u)µ ∈ X

o
(TAU)

(li, u) c!−→ X (lj , u) c?−→ X ′

i 6= j img(Y ) = I(Y )

(l, u) c−→ Y
where

Y =

`
l{l/li, l′/lj}, u′

´
µ·µ′

˛̨̨̨
(l, ui)µ ∈ X,
(l′, uj)µ′ ∈ X ′

ff
u′(c) =

(
u(c) if ui(c) = uj(c) = u(c)

0 otherwise
(SYNC)

2

25





Part II

Algorithms

In this part, we give algorithms used for probabilistic reachability analysis.
As we show in Chapter 6, probabilistic reachability analysis can be reduced to linear

programming. In order to do this, however, a forward stable partitioning of the state
space must be computed.
Computing a forward stable state space for timed automata is a major task, previously

engaged by Alur et al. in [ACH+92], and later by the authors in [EH07]. In Chapter 5,
we reengage this task.
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5 State Space Exploration and Reduction
for Probabilistic Timed Automata

In [ACH+92], Alur et al. gave a forward stable state space generation algorithm for timed
automata. The symbolic states of [ACH+92] was given by augmented convex zones. In
[EH07], we noted that the convexity of zones was only a requirement in the direction of
time, and we thus introduced time convexity, and rewrote the forward stable state space
algorithm to use time convex federations instead of convex zones, resulting in a possible
coarser state space. In this chapter, we give an abstract state space exploration and
reduction algorithm in sections 5.1, 5.2 and 5.3, along with some results about it — and
in Section 5.5 and 5.6 we modify this algorithm slightly, while giving concrete details for
implementation.

5.1 State Space Exploration and Reduction Algorithm I

In [EH07], we adapted the minimisation algorithm for finite transition systems by Boua-
jjani et al. [BFHR92] to reduce the state space of networks of probabilistic timed au-
tomata.
This has previously been done by Alur et al. in [ACH+92]. That approach, however,

featured symbolic states with single fully convex zones, and inherently the resulting state
space was not minimal, and we showed this in [EH07]. Our approach is not minimal
either, however, its at least as small as that of [ACH+92], with equality as worst case.

Definition 5.1.1 (Equivalent Random Variables)
Let M = (Γ, A,−→) be a labelled Markov transition system, let ≡ be an equivalence
relation on Γ, and let X,X ′ ∈ V (Γ). X and X ′ are equivalent with respect to ≡, written
X ≡ X ′, if

Pr (X ∈ S) = Pr
(
X ′ ∈ S

)
for all S ∈ Γ/ ≡ 2

Definition 5.1.2 (Time Abstract Markov Equivalence)
LetM = (Γ, A∪R+,−→) be a labelled Markov transition system. An equivalence relation
≡ on Γ is a time abstract Markov equivalence if for all x, y ∈ Γ where x ≡ y it holds that

i) If x a−→ X then there exists Y ∈ V (Γ), and d ∈ R+ such that y d−→ a−→ Y and X ≡ Y

ii) If x d−→ X then there exists Y ∈ V (Γ) and d′ ∈ R+ such that y d′−→ Y and X ≡ Y .

for all a ∈ A and all d ∈ R+. 2
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5 State Space Exploration and Reduction for Probabilistic Timed Automata

Definition 5.1.3 (Partitions)
Let Γ be a set. A subpartitioning α of Γ is a set of disjoint subsets of Γ. If the union⋃

S∈α
S = Γ,

we call α a partitioning of Γ. The elements of α are called partitions. 2

We use α, σ and ρ to range over (sub)partitionings.

Definition 5.1.4 (Symbolic State)
Let M = (Γ, A,−→) be a labelled Markov transition system. A partitioning ρ of Γ is
called a symbolic state space and each S ∈ ρ is called a symbolic state. 2

Example 5.1.5
LetM = (Γ, A,−→) be a labelled Markov transition system, and let ≡ be a time abstract
Markov equivalence on Γ. The quotient set Γ/ ≡ is a symbolic state space. 2

Definition 5.1.6 (Time Abstract Markov Transition)
Switch: There is a time abstract Markov switch transition from (s, u) to X if there

exists a d ∈ R+ such that (s, u) d−→ {(s, u+ d)1}
a−→ X for some action a.

Delay: There is a time abstract delay transition from (s, u) to {(s, u+ d)1}, if (s, u) d−→
{(s, u+ d)1}. 2

Definition 5.1.7 (Symbolic Transition)
Let ρ be a symbolic state space for the labelled Markov transition systemM = (Γ, A,−→).
Let x ∈ Γ be a configuration. We say that there is a symbolic transition from x to X,
where img(X) ⊆ ρ, if there exists a time abstract Markov transition from x to X, where
{X = S} = {X ∈ S} for all S ∈ ρ. 2

Definition 5.1.8 (Split)
Let S be a symbolic state and let ρ be a symbolic state space. The split of S with respect
to ρ is a minimal partitioning α of S, such that all elements of each symbolic state S′ ∈ α
can take the same symbolic transitions with respect to the partitioning ρ.
We denote the split of S with respect to ρ by split(S,ρ). 2

Definition 5.1.9 (Pre-states)
Let S be a symbolic state and let ρ be a symbolic state space. The pre-states of S in ρ
are the symbolic states in ρ from which there exists a symbolic transition to S.
We denote the pre-states of S in ρ by preρ(S). 2

Definition 5.1.10 (Post-states)
Let S be a symbolic state and let ρ be a symbolic state space. The post-states of S in ρ
are the symbolic states in ρ to which there exists a symbolic transition from S.
We denote the post-states of S in ρ by postρ(S). 2

Inspired by our minimisation algorithm of [EH07], our current approach, the state
space reduction algorithm, is given in Algorithm 5.1.1.
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5.2 State Space Exploration and Reduction Algorithm I Computability

Algorithm 5.1.1: State Space Exploration and Reduction Algorithm I
Input: A partitioning ρ0, and an initial configuration s0
Output: A quotient set, ρ, of a time abstract Markov equivalence relation.

ρ := ρ01

α := {[s0]ρ}2

σ := ∅3

while α 6= σ do4

choose S in α\σ5

let α′ = split(S,ρ)6

if α′ = {S} then7

σ := σ ∪ {S}8

α := α ∪ postρ(S)9

else10

α := α\{S}11

if ∃S′ ∈ α′ such that s0 ∈ S′ then12

α := α ∪ {S′}13

σ := σ\preρ(S)14

ρ := (ρ\{S}) ∪ α′15

5.2 State Space Exploration and Reduction Algorithm I
Computability

In addition to the common set operations of intersection, union and subtraction, we will
use the following operations on sets of clock valuations:

Definition 5.2.1 (Past and Future)
Let S be a set of clock valuations. A clock valuation u is in the past of S if there exists
a real number δ ≥ 0 such that u+ δ ∈ S. The set of all clock valuations in the past of S
is written S↙.
Similarly, a clock valuation u is in the future of S if there exists a real number δ ≥ 0

such that u− δ ∈ S. The set of all clock valuations in the future of S is written S↗. 2

Definition 5.2.2 (Up Relaxation, Down Relaxation)
Let S be a set of clock valuations. A clock valuation u is in the up relaxation of S if for
all δ > 0 there exists a δ′ ∈ [0; δ] and a u′ ∈ S such that u′ + δ′ = u. The set of all clock
valuations in the up relaxation of S is written S=.
Similarly, a clock valuation u is in the down relaxation of S if for all δ > 0 there exists

a δ′ ∈ [0; δ] and u′ ∈ S such that u′ − δ′ = u. The set of all clock valuations in the down
relaxation of S is written S<. 2

Definition 5.2.3 (Direct Delay Predecessor)
Let S and S′ be sets of clock valuations. u ∈ S is called a direct delay predecessor of S′
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5 State Space Exploration and Reduction for Probabilistic Timed Automata

in S if there exists a δ ≥ 0 such that u + δ ∈ S′ and for all δ′ ∈ [0; δ], u + δ′ ∈ S ∪ S′.
The set of all direct delay predecessors of S′ in S is written S ⇑ S′. 2

Definition 5.2.4 (Clock reset)
Let u be a clock valuation and r a set of clocks. Then the result of the reset of r from u,
written [r 7→ 0]u is the clock valuation where, for each clock c,

([r 7→ 0]u)(c) =

{
0 if c ∈ r,
u(c) otherwise.

For S a set of clock valuations, [r 7→ 0]S is defined as {[r 7→ 0]u | u ∈ S}. 2

Definition 5.2.5 (Inverse clock reset)
Let S be a set of clock valuations and r a set of clocks. The result of the inverse reset of
r from S, written [r 7→ 0]−1S is the set of clock valuations

{u | ([r 7→ 0]u) ∈ S}. 2

Definition 5.2.6
In the context of networks of probabilistic timed automata we write 〈s, U〉 as notation
for the symbolic state {(s, u) | u ∈ U}, where s is a common vector of discrete values for
configurations contained in the symbolic state. 2

Remark 5.2.7
The symbolic states of Definition 5.2.6 does not range over multiple discrete vectors, so
the symbolic states used here are in a subclass of those defined in Definition 5.1.4. 2

Corollary 5.2.8 (Direct Time Abstract Delay Predecessor)
Let 〈s, U〉, 〈s, U ′〉 be symbolic states. For all u ∈ U , there is a time abstract Markov delay
transition from (s, u) to some {(s, u′)1}, such that [u;u′] ⊆ U ∪U ′, where u′ ∈ U ′, if and
only if u ∈ U ⇑ U ′.

Proof
This follows directly from Definition 5.2.3 and Definition 5.1.6. �

Definition 5.2.9 (Symbolic Edge)
There exists a symbolic edge between s and s′ guarded by f and with resets r, written

s
f,r−−→ s′, if for some action a, and some p ∈ (0; 1], f is the largest non-empty federation

that satisfies
(s, u) a−→ X, where Pr

(
X = (s′, [r 7→ 0]u)

)
= p

for all u ∈ f . 2
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5.2 State Space Exploration and Reduction Algorithm I Computability

Lemma 5.2.10 (Direct Time Abstract Markov Switch Transition Predecessor)
Let 〈s, U〉 and 〈s′, U ′〉 be symbolic states. There exists a p ∈ (0; 1], such that for all
u ∈ U , there is a time abstract Markov switch transition from (s, u) to some X, such that

Pr
(
X ∈ 〈s′, U ′〉

)
= p > 0 and (s, u) d−→ {(s, u+ d)1}

a−→ X,

where [u;u+ d] ⊆ U , if and only if

u ∈ U ⇑ (U ∩ f ∩ [r 7→ 0]−1U ′) (5.1)

for some federation f and clock set r, for which there exists a symbolic edge between s
and s′ with f as guard and with r as resets.

Proof
Ad (5.1) implies existence: Assume (5.1). By Definition 5.2.3 there exists a d ∈ R+ such

that (s, u) d−→ {(s, u+d)1}, where u+d ∈ (U ∩f ∩ [r 7→ 0]−1U ′) and [u;u+d] ⊆ U , for all
u. By assumption u+d ∈ f and by Definition 5.2.9 it follows that (s, u+d) a−→ X, where
Pr (X = (s′, [r 7→ 0]u+ d)) = p > 0, for all u and some p ∈ (0; 1]. Since by assumption
u + d ∈ [r 7→ 0]−1U ′ it follows from Definition 5.2.5 that [r 7→ 0]u + d ∈ U ′, and thus
Pr (X ∈ 〈s′, U ′〉) = p > 0 for all u. The result now follows from Definition 5.1.6.

Ad existence implies (5.1): Assume that there is a time abstract Markov switch transition
from (s, u) to X, such that

Pr
(
X ∈ 〈s′, U ′〉

)
> 0 and (s, u) d−→ {(s, u+ d)1}

a−→ X,

where [u;u + d] ⊆ U . From (s, u + d) a−→ X and Pr (X ∈ 〈s′, U ′〉) > 0 it follows by
Definition 5.2.9 that there exists a federation f and a clock set r such that there is a
symbolic edge between s and s′ with guard f and resets r, such that u + d ∈ f and
Pr (X = (s′, [r 7→ 0]u+ d)) > 0, where [r 7→ 0]u + d ∈ U ′. By Definition 5.2.5 it follows
that u+d ∈ [r 7→ 0]−1U ′. Since u+d ∈ U ∩f ∩ [r 7→ 0]−1U ′ it follows by Definition 5.2.3
that

u ∈ U ⇑ (U ∩ f ∩ [r 7→ 0]−1U ′). �

Definition 5.2.11 (Partitioning According to Intersection)
Let U1, . . . , Un be sets of clock valuations. The partitioning according to intersection of
U1, . . . , Un, written U1 t · · · tUn, is defined as the minimum partitioning of U1 ∪ · · · ∪Un
such that for each U ∈ U1t· · ·tUn and for each i = 1, . . . , n either U ⊆ Ui or U∩Ui = ∅.2
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5 State Space Exploration and Reduction for Probabilistic Timed Automata

Lemma 5.2.12
Let 〈s, U〉 be a symbolic state, let ρ be a symbolic state space and let s′ 6= s. Then

split(〈s, U〉,ρ) =
⊔

〈s′,U ′〉∈ρ

split(〈s, U〉,〈s′, U ′〉), (5.2)

split(〈s, U〉,〈s′, U ′〉) = 〈s, U〉 t
⊔

s
f,r−−→s′

〈s, U ⇑ (U ∩ f ∩ [r 7→ 0]−1U ′)〉, and (5.3)

split(〈s, U〉,〈s, U ′〉) = 〈s, U〉 t 〈s, U ⇑ U ′〉 t
⊔

s
f,r−−→s

〈s, U ⇑ (U ∩ f ∩ [r 7→ 0]−1U ′)〉.

(5.4)

Proof
By Definition 5.2.11 the right hand side of (5.2) is the least partitioning such that all
configurations in each symbolic state

i) can take the same time abstract Markov delay transitions by Corollary 5.2.8 and
the right hand side of (5.3), and

ii) can take the same time abstract Markov switch transitions by Lemma 5.2.10, the
right hand side of (5.3) and the right hand side of (5.4),

which by Definition 5.1.8 was to be shown. �

Definition 5.2.13 (Time Convexity)
A clock valuation set F is called time convex if for all u ∈ F it holds that for all δ, where
0 < δ < δsup, we have u+ δ ∈ F , where δsup is the supremum of {δ′ ∈ R | u+ δ′ ∈ F}.2

Corollary 5.2.14 (Time Convexity of ↗ and ↙)
If F is a set of clock valuations, then F↗ and F↙ are time convex. 2

Corollary 5.2.15 (Time Convexity is Closed under = and <)
If F is a time convex set of clock valuations, then F= and F< are time convex. 2

Remark 5.2.16
Even if F and F ′ are time convex sets of clock valuations, F ∪F ′, [r 7→ 0]−1F and F\F ′
are not necessarily time convex. 2

Lemma 5.2.17 (Time Convexity is Closed under ∩)
Let F and F ′ be time convex clock valuation sets. Then the intersection F ∩ F ′ is also a
time convex clock valuation set.
Proof
Let z be in F ∩ F ′, let δsup be the supremum of {δ′ ∈ R | z + δ′ ∈ F}, let δ′sup be the
supremum of {δ′ ∈ R | z + δ′ ∈ F ′} and let δ′′sup be the supremum of {δ′ ∈ R | z + δ′ ∈
F ∩ F ′}. Clearly δ′′sup ≤ δsup and δ′′sup ≤ δ′sup, thus for all δ ∈ [0, δ′′sup], we have that
z + δ ∈ F ∩ F ′. �
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5.2 State Space Exploration and Reduction Algorithm I Computability

Lemma 5.2.18 (Time Convexity of ⇑)
Let F and F ′ be clock valuation sets, with F time convex. Then F ⇑ F ′ is a time convex
clock valuation set.

Proof
Let z be in F ⇑ F ′. Choose δsup as the supremum of

{δ′ ∈ R+ | z + δ′ ∈ F , and there exists a δ such that δ′ < δ, and z + δ ∈ F ′}, (5.5)

where existence of δ follows from Definition 5.2.3. By the time convexity of F , it follows
that z+δ′ ∈ F for all δ′ ∈ [0; δsup). By (5.5) and by z ∈ F ⇑ F ′, we get that z+δ′ ∈ F ⇑ F ′
for all δ′ ∈ [0; δsup). �

Lemma 5.2.19 (Time Convexity of \ ⇑)
Let F and F ′ be clock valuation sets, with F time convex. Then F\(F ⇑ F ′) is a time
convex clock valuation set.

Proof
Let z ∈ F\(F ⇑ F ′). By the time convexity of F we have z + δ ∈ F for all δ ∈ [0; δsup),
where δsup is the supremum of {δ′ ∈ R+ | z + δ′ ∈ F}.
Assume erroneously that z + δ′′ ∈ F ⇑ F ′, for some δ′′ ∈ [0; δsup). But then, by the

time convexity of F , it follows that z ∈ F ⇑ F ′. But the definition of z then contradicts
the assumption, and the assumption must be wrong. Time convexity for F\(F ⇑ F ′)
now follows by the time convexity of F . �

Lemma 5.2.20 (Time Convexity is Closed Under [r 7→ 0])
Let F be a time convex clock valuation set, and r be a set of clocks. Then [r 7→ 0]F is a
time convex clock valuation set.

Proof
By Definition 5.2.4 δsup = 0 for all z ∈ [r 7→ 0]F , where δsup is the supremum of

{δ′ ∈ R+ | z + δ′ ∈ [r 7→ 0]F},

which implies time convexity for [r 7→ 0]F . �

Theorem 5.2.21 (The Time Convexity Theorem [EH07])
Let U and U ′ be sets of clock valuations, where U is time convex. Then

U ⇑ U ′ = ((U= ∩ U ′) ∪ (U ∩ U ′<))↙ ∩ U.

Proof
It is enough to show that u ∈ U ⇑ U ′ if and only if

u ∈ ((U= ∩ U ′) ∪ (U ∩ U ′<))↙ ∩ U. (5.6)
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Ad u ∈ U ⇑ U ′ implies (5.6): Let u ∈ U ⇑ U ′. By definition of u there exists a real
number δ ≥ 0 such that u+δ ∈ U ′. Let δsup be the supremum of {δ′ ∈ [0; δ] | δ′+u ∈ U}.
Clearly u+ δ sup ∈ (U= ∩U ′) ∪ (U ∩U ′<) and thus u ∈ ((U= ∩U ′) ∪ (U ∩U ′<))↙ and by
definition u ∈ U , which was to be shown.

Ad (5.6) implies u ∈ U ⇑ U ′: Let (5.6) be given.
By definition u ∈ U .
By (5.6) there exists a δ′′ ≥ 0 such that u+ δ′′ ∈ (U= ∩U ′)∪ (U ∩U ′<). If u+ δ′′ ∈ U ′

choose δ = δ′′ otherwise by Definition 5.2.2 there exists an ε > 0 such that u+δ′′+ε ∈ U ′
and in that case chose δ = δ′′+ ε. By the time convexity of U (Definition 5.2.13) and by
Definition 5.2.2 it holds that for all δ′ ∈ [0; δ] we get u+ δ′ ∈ U ∪U ′, which was what to
be shown. �

Lemma 5.2.22 (Time Convexity is Closed under t)
If U is a time convex set of clock valuations then all

U ′ ∈
n⊔
i=1

U ⇑ Ui (5.7)

are time convex sets of clock valuations, where Ui is a set of clock valuations for all i.

Proof
Proof by induction over n.

Ad (5.7) for n = 1: This follows immediately from Lemma 5.2.18.

Ad (5.7) for n = k > 1: Assume (5.7) for n = k − 1. Let

V ∈
k−1⊔
i=1

U ⇑ Ui. (5.8)

By assumption V is a time convex set of clock valuations.
It is enough to show that V \U ⇑ Uk and V ∩ U ⇑ Uk are time convex sets of clock

valuations.
By deduction V \U ⇑ Uk = V \V ⇑ Uk, since V ⊆ U . It follows by Lemma 5.2.19 that

V \U ⇑ Uk is time convex.
And since V ∩ U ⇑ Uk is time convex by Lemma 5.2.17 and Lemma 5.2.18, (5.7) for

n = k follows. �

Corollary 5.2.23 (split is computable)
Given algorithms for computing U↙, U↗, U=, U<, [r 7→ 0]U , [r 7→ 0]−1U , U\U ′ and
U ∩U , where U and U ′ are sets of clock valuations split(〈s, V 〉, ρ) is computable, where
V is a time convex set of clock valuations and s is a location vector.

Proof
This follows by Lemma 5.2.12 and Lemma 5.2.22. �
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5.3 State Space Exploration and Reduction Algorithm I Correctness

Corollary 5.2.24 (State Space Reduction is Computable)
Given algorithms for computing U↙, U↗, U=, U<, [r 7→ 0]U , [r 7→ 0]−1U , U\U ′ and
U ∩U , where U and U ′ are sets of clock valuations, it follows by Corollary 5.2.23 and Al-
gorithm 5.1.1, that state space reduction for probabilistic timed automata is computable.2

5.3 State Space Exploration and Reduction Algorithm I
Correctness

Definition 5.3.1 (Forward Stability)
LetM = (Γ, A,−→) be a labelled Markov transition system, and let ρ be a partitioning
of Γ. If all x, y ∈ S are time abstract Markov equivalent for all S ∈ ρ, we call ρ forward
stable. 2

Theorem 5.3.2 (State Space Reduction Algorithm Correctness)
Let ρ be the result of Algorithm 5.1.1. Then ρ is forward stable.

Proof
By Definition 5.3.1 it is enough to show that if (s, u) and (s, u′) are in the same symbolic
state 〈s, U〉 ∈ ρ, then (s, u) and (s, u′) are time abstract Markov equivalent. And by
Definition 5.1.1 it is enough to show that (s, u) and (s, v) can reach the same symbolic
states in ρ with equal probability, by a single probabilistic time abstract transitions, that
is

i) by the same probabilistic time abstract delay transitions, and

ii) by the same probabilistic time abstract switch transitions

Ad i): Assume (s, u) d−→ {(s, u+ d)1} where d ∈ R+, and Pr ({(s, u+ d)1 ∈ 〈s, U ′〉}) = 1
for some symbolic state 〈s, U ′〉 and zero probability for all others (this assumption is
sound by Definition 2.1.2), then there exists d1, . . . , dn ∈ R+ such that

n∑
i=1

di = d,

[u;u+ d1] ⊆ U ∪ U1, u+
n−1∑
j=1

dj ; u+ d

 ⊆ Un−1 ∪ U ′, and

 u+
i∑

j=1

dj ; u+
i+1∑
j=1

dj

 ⊆ Ui ∪ Ui+1 for i = 1, . . . , n− 2,

for some symbolic states 〈s, U1〉, . . . , 〈s, Un−1〉 ∈ ρ. By construction there exists

d′1, . . . , d
′
n ∈ R+,
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5 State Space Exploration and Reduction for Probabilistic Timed Automata

such that

[v; v + d′1] ⊆ U ∪ U1, v +
n−1∑
j=1

d′j ; v +
n∑
j=1

d′j

 ⊆ Un−1 ∪ U ′ and

 v +
i∑

j=1

d′j ; v +
i+1∑
j=1

d′j

 ⊆ Ui ∪ Ui+1 for i = 1, . . . , n− 2.

Now let

d′ =
n∑
i=1

d′i.

Since (s, v)
d′1−→ · · · d′n−→ {(s, v + d′)1} we have that (s, v) d′−→ {(s, v + d′)1}, where

Pr ({(s, v + d)1} ∈ 〈s, U ′〉) = 1 and zero for all others, by Definition 2.1.2.

Ad ii): Assume (s, u) d−→ {(s, u+ d)1}
a−→ X where d ∈ R+,

Pr
(
{(s, u+ d)1} ∈ 〈s, U ′〉

)
= 1,

and Pr (X ∈ 〈s′, U ′′〉) = p. By i) there exists a d′ ∈ R+ such that (s, v) d′−→ {(s, v+ d′)1},
where Pr ({(s, v + d′)1} ∈ 〈s, U ′〉) = 1. By Lemma 5.2.10 it follows that there exists a
random variable Y satisfying Pr (Y ∈ 〈s′, U ′′〉) = p such that

(s, v + d′) d′′−→ {(s, v + d′ + d′′)1}
a−→ Y. �

5.4 State Space Exploration and Reduction Algorithm I
Minimality

Definition 5.4.1 (Minimal Equivalence Quotient Modulo a Partitioning)
Let ≡⊆ Γ× Γ be an equivalence relation, and let ρ0 be a partitioning of Γ, where Γ is a
set of configurations. If

ρ = (Γ/ ≡) t ρ0,

where Γ/ ≡ is the quotient set of ≡, we call ρ a minimal equivalence quotient of ≡ modulo
ρ0. 2

Corollary 5.4.2 (Minimality)
Let A = {Ai}1≤i≤n be a network of probabilistic timed automata, with state space Ln ×
U(C) and invariant map I : Ln → Z, where C is the set of clocks in A.
Let

ρ0 =

{
〈s, U〉

∣∣∣∣∣s ∈ Ln, U ∈ (I(s) t U(C))

}
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5.5 State Space Exploration and Reduction Algorithm II

be an initial state space partitioning.
Let ρ be the output of Algorithm 5.1.1 evaluated on ρ0. Then ρ is the minimal equiva-

lence quotient of time abstract Markov equivalence modulo ρ0.

Proof
By the definition of ρ0 we can use split as defined in Lemma 5.2.12. The result follows
from definitions 5.1.8, 5.1.6, 5.1.7 and 5.1.2. �

5.5 State Space Exploration and Reduction Algorithm II

Algorithm 5.5.1: State Space Exploration and Reduction Algorithm II
STATES := ∅1

STABLE := ∅2

STATES.prepare(initial.discretes)3

WAITING := {S ∈ STATES | S.is_initial}4

while not WAITING.is_empty() do5

source := WAITING.pop()6

if not split_on_transitions(source) then7

if not split_on_delays(source) then8

STABLE.add(source)9

To make the exploration part of the algorithm explicit, we choose to represent the
state space being explored with STATES, WAITING and STABLE. STATES is the set of
symbolic states for which we need in-memory representations. WAITING and STABLE are
both subsets of STATES; STABLE contains symbolic states that are stable with respect to
action- and delay-transitions to symbolic states in STATES; all configurations reachable
in one such transition from a symbolic state in STABLE are represented by members of
STATES. Furthermore, states known to be reachable from the initial configuration will
be in either WAITING or STABLE.
We only reduce with respect to time — configurations with different location- or vari-

able vectors cannot be part of the same symbolic state. We will use the term discretes
for the combined location- and variable-vectors of symbolic states or configurations.

Initialisation; lines 1–4: We first initialise the in-memory state space and stable subset
to empty sets.
The state space is then extended: STATES.prepare will ensure that all configurations

with the given discretes are represented by some symbolic state in memory. Whenever
this procedure is called, we are sure that either all configurations with these discretes
are already represented, or none are. In the case where no such configurations are rep-
resented, one or two symbolic states must be added: The first representing the config-
urations fulfilling the appropriate invariants, the second representing the configurations
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5 State Space Exploration and Reduction for Probabilistic Timed Automata

not fulfilling the invariants. As either set may be empty, we may need only one symbolic
state.

WAITING will then be assigned the set of symbolic states representing the initial con-
figuration — in practice a singleton set.

Main loop; lines 5–9: WAITING will contain symbolic states that are accessible but not
yet ensured to be stable with respect to transitions to other symbolic states; including
those that are in memory and those that are not. When WAITING is empty, all accessible
states are stable and we are done.
Otherwise, we take an element from WAITING, and try to split it; first according

to action-transitions, then according to delay-transitions. These procedures may add
symbolic states to WAITING, remove symbolic states from STABLE, extend STATES with
STATES.prepare and — most important — they may replace their input symbolic state
with some partitioning of it.
If the selected symbolic state is stable according to both action- and delay-transitions;

i.e. neither split_on_transitions nor split_on_delays find reasons to split it, it is
marked as stable.

Split on Transitions

Procedure split_on_transitions(source)

foreach transition in source.transitions do1

if source ⇑ (transition.guard ∩ source) = source then2

target := transition.apply(source)3

STATES.prepare(target.discretes)4

T := {t ∈ STATES | t ∩ target 6= ∅}5

if T.size() > 1 then6

foreach t in T do7

s := source.shrink(transition,t)8

if s 6= source then9

simple_split(source,s)10

return true11

else12

target := T.pop()13

if target 6= source then14

add_path(source,target)15

else if source ⇑ (transition.guard ∩ source) 6= ∅ then16

simple_split(source,source ⇑ (transition.guard ∩ source))17

return true18

return false19
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5.5 State Space Exploration and Reduction Algorithm II

Main loop; lines 1 and 19: We consider — and split according to — each transition
from the input state source. Any actual split will prematurely return from the procedure;
thus, if we reach line 19, we know that the input state has not been split and return false.

Check guards; lines 2 and 16: On line 2 we check which parts of the input symbolic
state can reach configurations satisfying the guard of the transition through delays.
If all of the input state can delay to the guard, we go on to consider splits according

to which symbolic states may be reached; if only part of it can delay to the guard, we
need to split the symbolic state into the part that can and the part that cannot. If no
part of the symbolic state can delay to the guard, then no action is necessary on behalf
of this transition.

Splitting on transition targets; lines 3–15: When we can take the transition, we com-
pute the result of actually doing so. The result may be outside the in-memory part of
the state space; i.e. we may need to extend STATES by calling STATES.prepare.
After ensuring that relevant symbolic states are in STATES, we find those intersecting

with the computed target. If there is only one, then source is stable with respect to this
transition. In that case, source is saved as a predecessor of the target symbolic state, and
the target symbolic state will be added to WAITING if it is not already in WAITING or
STABLE.
Otherwise, source is unstable with respect to this transition to at least one of the target

symbolic states; see Proposition B.1.1. We split source according to the first of these and
return.

Splitting on guards; lines 17–18: We do a simple_split of the source with respect to
the part that can delay its way to the guard. We then return true from the procedure,
signifying that a split has taken place.

Split on Delay

Procedure split_on_delays(source)

foreach target in STATES.with_discretes(source) do1

if target 6= source then2

if source ⇑ target = source then3

add_path(source,target)4

return false5

else if source ⇑ target 6= ∅ then6

simple_split(source,source ⇑ target)7

return true8

return false9
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5 State Space Exploration and Reduction for Probabilistic Timed Automata

Main loop; lines 1 and 9: We consider all symbolic states with the same discretes to
be potential delay-successors. As in split_on_transitions, we return false if no split
has taken place.

Examining the possible successor; lines 2, 3 and 6: When we find the input symbolic
state, no action should be taken. Otherwise, we check what part of the input symbolic
state may reach the target symbolic state; all of source, some of source or no part of
source.
If all of source is a direct delay predecessor of the target, then, under the assumption

that symbolic states are disjoint, source can have no other direct delay successors. We
save source as a predecessor of the target symbolic state and add the target symbolic
state to WAITING if it is not already in WAITING or STABLE.
If only some of source is a direct delay predecessor of the target, we do a simple_split

of the source with respect to this and return.

Reconsider Predecessors

Predecessors of the input state that were considered stable are moved to WAITING to be
checked again.
Procedure reconsider_predecessors(source)

foreach predecessor in source.predecessors do1

if STABLE.contains(predecessor) then2

STABLE.remove(predecessor)3

WAITING.add(predecessor)4

New State

When a new symbolic state is added to STATES, we will want to check whether it contains
the initial configuration — if it does, that symbolic state should be added to WAITING.1

Procedure new_state(s)
STATES.add(s)1

if s.is_initial then2

WAITING.add(s)3

Simple Split

The input state source is split according to intersecting with target.2Before removing
source, we call reconsider_predecessors, as predecessors of source are not necessarily

1As an optimisation, the check can often be avoided. For example, it is unnecessary if the source is not
initial before splitting it in simple_split.

2We assume that source and other are time convex, and that source ∩ other 6= ∅ and source\other 6= ∅.

42
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stable with respect to the new partitioning after source has been split. We then remove
source from STATES and replace it with the part intersecting with other and the part not
intersecting with other.
Procedure simple_split(source,other)

reconsider_predecessors(source)1

STATES.remove(source)2

new_state(source ∩ other)3

new_state(source\other)4

Add Path

The predecessor set of target is updated, and target is added to WAITING unless it is
already in WAITING or STABLE.
Procedure add_path(source,target)

target.predecessors.add(source)1

if not STABLE.contains(target) then2

WAITING.add(target)3

5.6 State Space Exploration and Reduction Algorithm II
Termination

In this section we argue that Algorithm 5.5.1 terminates. We do this by establishing that
the size of STATES is non descending, in Lemma 5.6.4, and that the size of STATES is
always changed within a bounded number of iterations, N (the size of the region graph),
in Lemma 5.6.3 and Theorem 5.6.5 — that is, the size of STATES is increased within a
bounded number of iterations. Since the size of STATES has an upper bound, also N ,
we can establish that the algorithm will run in O(N2) iterations, which is finite.3

Definition 5.6.1
Let A be a variable in an algorithm with a main loop. The value of A before the first
iteration of the main loop is written A0 and the value of A after the n’th iteration is
written An. 2

Lemma 5.6.2
Invariantly WAITING and STABLE are disjoint subsets of STATES.

Proof
Enough to show that

i) WAITING and STABLE are invariantly subsets of STATES and
3This should not be interpreted as the algorithm runs in squared time of the input, sinceN is exponential

in the number of clocks and in the number of probabilistic timed automata in the network of probabilistic
timed automata.
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5 State Space Exploration and Reduction for Probabilistic Timed Automata

ii) WAITING and STABLE are invariantly disjoint.

We do this by induction over the number of iterations n.

Ad i) and ii) for n = 0: Initially STABLE is empty and WAITING ⊆ STATES. i) and ii)
are therefore trivially true.

Ad i) for n > 0: Assume ii) for the n− 1’th iteration.
Enough to show i) for new_state, simple_split and add_path, in the n’th iteration,

since these are the only ones altering the contents of WAITING ∪ STABLE or STATES.
In new_state, s is added to STATES before it is added to WAITING.
In simple_split it follows by induction that source is not in STABLE = STABLEn−1

since it is in WAITING = WAITINGn−1 in Algorithm 5.5.1 line 6, where it is removed from
WAITING; source is neither in STABLE nor WAITING when it is deleted from STATES in
simple_split.
In add_path, we know that target is taken from STATES by split_on_delays or

split_on_transitions respectively, therefore target can safely be added to WAITING.

Ad ii) for n > 0: By induction, assume i) for the n’th iteration.
Enough to show that WAITING and STABLE being disjoint is an invariant of add_path,

reconsider_predecessors and new_state, since these are the only procedures altering
the contents of WAITING and STABLE.
In add_path nothing already in STABLE will be added to WAITING.
In reconsider_predecessors anything added to WAITING is first removed from STA-

BLE.
In new_state, it follows by simple_split that only symbolic states not already in

STATES are added to STATES, and then added to WAITING. It follows by induction that
no such symbolic state can exist in STABLE at this point as STABLE ⊆ STATES. �

Whenever a symbolic state is added to WAITING, it holds that that symbolic state has
not previously been used as source with the current partitioning in STATES:

Lemma 5.6.3
Let S be a symbolic state. For any 0 ≤ n ≤ k ≤ m, if

S ∈WAITINGn, S ∈WAITINGm and STATESn = · · · = STATESm (5.9)

then S ∈WAITINGk.

Proof
Assume (5.9), where 0 ≤ n ≤ m. Assume erroneously that there exists a k, where
n ≤ k ≤ m, such that S /∈WAITINGk. By assumption, (5.9) and Algorithm 5.5.1 line 6–
9 it follows that S ∈ STABLEk. By Lemma 5.6.2 it follows from S ∈ WAITINGm that
S /∈ STABLEm. This implies that simple_split has been called somewhere between the
k’th and the m’th iteration of Algorithm 5.5.1. But simple_split line 2 falsifies (5.9),
which is a contradiction. �
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Lemma 5.6.4
|STATESn+1| ≥ |STATESn| for all n ≥ 0.

Proof
By split_on_delays and split_on_transitions we know that simple_split is always
called with a symbolic state and a federation that intersects, without the symbolic state
being fully contained in the federation. By simple_split it follows that if a symbolic
state is removed from STATES two new are added. �

Theorem 5.6.5 (Termination)
Given a network of probabilistic timed automata, Algorithm 5.5.1 will terminate.

Proof
STATES is refined at least every |STATES|’th iteration, since otherwise all symbolic states
in WAITING would have been moved to STABLE, by Lemma 5.6.3, and we would have
terminated. By image finiteness a region graph R exists and thus |STATES| has an upper
bound N = |R|.
When STATESn is refined into STATESn+1 we get that

|STATESn+1| = |STATESn|+ 1,

and by Lemma 5.6.4 |STATES| is non descending. It follows that the number of refine-
ments also has the upper bound N . Therefore Algorithm 5.5.1 terminates within N2

iterations. �
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6 Probabilistic Reachability for Probabilistic
Timed Automata

In this chapter we reduce probabilistic reachability analysis to linear programming prob-
lem using the forward stable state space of Chapter 5.

6.1 Reducing Probabilistic Reachability to Linear Programming

Definition 6.1.1 (Probabilistic Reachability)
Input: A tuple (Φ, {Ai}1≤i≤n), where Φ is Pmax(a) or Pmin(a), a ∈ A× Γ is an atomic

proposition, and {Ai}1≤i≤n is a network of probabilistic timed automata, where
M = (Γ, A,−→) is the labelled Markov transition system of {Ai}1≤i≤n.

Output: A value v ∈ R defined by

v =
{

maxf∈F(M) Pr (M, x0, |= fn : a) if Φ = Pmax(a)
minf∈F(M) Pr (M, x0, |= fn : a) if Φ = Pmin(a)

,

where x0 is the initial configuration ofM. 2

Definition 6.1.2 (Linear Programming)
Input: A tuple (V,K,B) where V is a vector of free variables (v1, v2, . . . , vn), K is a set

of linear constraints
n∑
j=1

a1,jvj ≤ k1

...
n∑
j=1

am,jvj ≤ km

where each ai,j ∈ R, and B is a linear combination of variables

b1v1 + b2v2 + · · · bnvn,

where each bj ∈ R.

Output: A valuation vector (c1, c2, . . . , cn) ∈ Rn such that B is maximal under the
linear constraints of K when vi is bound to ci for 1 ≤ i ≤ n. 2
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Definition 6.1.3 (Symbolic Labelled Markov Transition System)
Let {Ai}1≤i≤n be a network of probabilistic timed automata, let M = (Γ, A,−→) be a
labelled Markov transition system of {Ai}1≤i≤n and let ρ be a symbolic state space of Γ.
We define the labelled Markov transition system of ρ andM as M = (ρ,A,−→′), where

x ∈ S x
a−→ X

S
a−→
′
X

(SYMBOLIC)

such that X is a random variable with img(X) ⊆ ρ and

{X = S′} def=
⋃
x∈S′
{X = x},

for all S′ ∈ ρ. 2

Theorem 6.1.4
Probabilistic reachability is reducible to linear programming solving.

Proof
Given a probabilistic reachability instance D = (Φ, {Ai}1≤i≤n) we build a linear pro-
gramming instance E = (V,K,B). It is then enough to show how to find the solution
for D, given the solution for E.
We assume Φ = Pmax(a), where a is an atomic proposition. For Φ = Pmin(a), see

Section 11.3.

Ad building E from D:

1. Take the probabilistic reachability instance D = (Φ, {Ai}1≤i≤n) as input.

2. LetM = (Ln×U(C), A,−→) be the labelled Markov transition system of {Ai}1≤i≤n.

3. Let the atomic formula of Φ be

a =
⋃

1≤j≤m
〈sj , Uj〉.

4. Let

ρ0 =

〈s, U〉
∣∣∣∣∣s ∈ Ln, U ∈

I(s) t U(C)
⊔

1≤j≤m
Uj


be an initial state space partitioning.

5. Run Algorithm 5.1.1 on ρ0 and get the forward stable partitioning ρ.

6. Let V be an initially empty variable vector.

7. Add each symbolic state S ∈ ρ as a new free variable S′ to V .

8. Let K be an initially empty set of linear constraints on V .
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9. For each variable S′i in V , add the linear constraint

−S′i ≤ 0

to K.

10. Let M = (ρ,A,−→′) be the labelled Markov transition system of ρ andM.

11. For each transition S −→′ {S1,p1 , S2,p2 , . . . Sq,pq} of M, add the linear constraint

−S′ + p1S
′
1 + p2S

′
2 + · · ·+ pqS

′
q ≤ 0

to K, where S′, S′j is the variable of S and Sj , respectively, in V , for 1 ≤ j ≤ q.

12. For each S ⊆ a add −S′ ≤ −1 to K, where S′ is the variable of S in V .

13. Let B = −
∑

S∈ρ S
′, where S′ is the variable of S in V .

14. Give the linear programming instance E = (V,K,B) as output.

Ad solving D from a solution of E:

1. Take (c1, c2, . . . , c|ρ|) ∈ R|ρ| as input.

2. Give the cj corresponding to the variable of the symbolic state in ρ containing the
initial configuration ofM as output.

Soundness follows from Theorem 3.3.9 since cj is the least upper bound (supremum)
for any configuration in Sj to reach a, for 1 ≤ j ≤ |ρ|. �

Example 6.1.5
In the following we go step-wise through the first part of the proof of Theorem 6.1.4, on
a simple probabilistic reachability instance.

l0 l1
τ x ≤ 1 1

2

1
2x := 0

Figure 6.1: The network of probabilistic timed automata {A}

1. Take the probabilistic reachability instance D = (Φ, {A}) as input, where Φ =
Pmax(l1) and {A} is given in Figure 6.1.

3. Let a = 〈l1, x ≥ 0〉.

4. Let ρ0 = {〈l0, x ≥ 0〉, 〈l1, x ≥ 0〉}.
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5. By Algorithm 5.1.1 we get the forward stable partitioning

ρ = {〈l0, x ≥ 0 ∧ x ≤ 1〉, 〈l0, x > 1〉, 〈l1, x ≥ 0〉}.

7. We represent these symbolic states with variables V = {v0, v1, v2}, in the written
order.

9. Let

K =


−v0 ≤ 0,
−v1 ≤ 0,
−v2 ≤ 0

 .

10. Let M be the labeled Markov transition system illustrated in Figure 6.2.

S0 S2

S1

τ

δ

1
2

1
2

Figure 6.2: The labelled Markov transition system M

11. We have two “probabilistic” transitions in the labeled Markov transition system,
labeled τ and δ. The delay-transition, δ, is treated as a probabilistic transition
where the probability of reaching v1 is 1. From this, we get

K = K ∪

 −v0 + v1 ≤ 0

−v0 +
1
2
v0 +

1
2
v2 ≤ 0

 .

12. We have that 〈l1, x ≥ 0〉 fulfills the atomic proposition;

K = K ∪ {−v2 ≤ −1}.

13. We construct the linear combination to be maximised:

B = −v0 − v1 − v2.
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14. We now output the linear programming problem (V,K,B), where

V = {v0, v1, v2}

K =



−v0 ≤ 0,
−v1 ≤ 0,
−v2 ≤ 0,

−v0 + v1 ≤ 0,

−v0 +
1
2
v0 +

1
2
v2 ≤ 0,

−v2 ≤ −1


B = −v0 − v1 − v2. 2
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Part III

Implementation

In this part we describe how State Space Exploration and Reduction Algorithm II is
implemented, and how checking probabilistic reachability is implemented.
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7 State Space Exploration and Reduction
Algorithm II Implementation

In this chapter, we give an overview on how we have implemented State Space Exploration
and Reduction Algorithm II. Finding predecessors is troublesome in Uppaal, and we
elaborate this further in Section 7.1. In Section 7.2 we present our solution for keeping
track of predecessors. Finally, we give a Uppaal pipeline for State Space Exploration
and Reduction Algorithm II in Section 7.3.

7.1 Probabilistic Timed Automata in Uppaal

In Uppaal Prob, we use an extended version of the existing language of Uppaal for
specifying timed automata and networks thereof. This has the obvious advantage to
us that we do not need to implement the parts of Uppaal Prob that are already in
Uppaal. But this also entails some limitations, especially regarding computations of
predecessors, that we must somehow circumvent in Uppaal Prob.

In Uppaal, timed automata are instantiated from templates and composed into net-
works of timed automata in a system declaration. The configurations of timed automata
in Uppaal also contains shared and local variables, besides locations. Naturally, in the
context of variables, it is possible to evaluate user defined procedures in the update part
of edges.

Since the number of and range of variables is limited, the timed automata in Uppaal
are equivalent in computation power to those of Definition 4.1.4 and Definition 4.3.1,
in the absence of probabilities. However, since a target state of a transition may be
computed as the result of multiple procedural expressions, we get the aforementioned
limitation of predecessor computations; before an assignment, a variable could have had
any value in its entire domain.

Our extension of the timed automata in Uppaal — probabilistic timed automata,
and networks thereof — lies in branching edges; that is, edges with multiple targets
(locations, updates and resets) and a probability procedure for each such target. The
probability procedures may use the values of local and global variables and output an
integer between 0 and 100, representing the probability of that target given in percentages
(the sum should be 100). This is an analogue to the difference between formal timed
automata and Uppaal timed automata.
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7 State Space Exploration and Reduction Algorithm II Implementation

7.2 Singleton Data Structures

Since the algorithm is Section 5.5 is still based on a number of sets; WAITING, STABLE
and STATES; we will require some kind of data structures for representing these efficiently.
As described in Section 7.1, we will need to keep track of reached predecessors of

the symbolic states that we reach. Naturally we may simple store a symbolic state as
predecessor of any symbolic states that it can reach in a single transition.
We use a single data structure to keep track of STATES and STABLE as well as pre-

decessors. This data structure is, in a sense, a predecessor graph, hence we have called
it the PredecessorGraph.
For use in the implementation, this data structure provides lookups by location and

variable vectors, by intersection with symbolics states which may or may not be members
of STATES and by identity — where we have assigned identifiers to each symbolic state
in STATES to simplify parts of the implementation.
Separately, we have WAITING as a set of symbolic state identifiers inside the Waiting-

Buffer component. WaitingBuffer is described with the other “pipeline” components in
Section 7.3.

7.3 Explore and Reduce Pipeline

In Uppaal, algorithms are composed of components, in what in the Uppaal architec-
ture is called a “pipelines”. There are a number of different interfaces for components,
depending on the way they can be connected.
The most frequently used component type is filter: Filters are procedure wrapping

objects that can be connected sequentially after each other, and instead of returning the
result of the procedure, the result is forwarded to the next filter1. The advantage is that
no bookkeeping is necessary for handling collections of data between each procedure call,
since data may be passed on one piece at the time.
The overall pipeline of explore and reduce is shown in Figure 7.1, where the idea is

that we keep splitting until the WaitingBuffer is empty.
The complete pipeline of SplitFilter, i.e. the main part of the algorithm, can be seen

in Figure 7.2. In the following, the filters used for building the exploration and reduction
algorithm are described.

SplitFilter

The SplitFilter is responsible for splitting a symbolic state with respect to all outgoing
transitions, and all possible delay transitions. It is also responsible for marking symbolic
states as stable, when they can not be split. In other words, SplitFilter is the main com-
ponent of the pipeline constructed here — actions are taken directly by this component
or components within it.

1Hence it is called a “pipeline” architecture
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7.3 Explore and Reduce Pipeline

SplitFilter

WaitingBuffer

Figure 7.1: The pipeline of explore and reduce. The components that compose the
pipeline are drawn as boxes. The internal logic of the pipeline is drawn
as circles. The flow of data through the pipeline is illustrated by arrows.
Where data is pulled from a buffer is marked with a dot.

In Figure 7.3 the pipeline of the SplitFilter is shown. As input the SplitFilter takes a
SymbolicStateHandle. It then tries to split the corresponding symbolic state with respect
to first jump-transitions and then delay-transitions.2 This is done with the internal Spli-
tOnTransitionFilter and SplitOnDelayFilter. During these computations, new symbolic
states may be found reachable, or, in case the input symbolic state is split, some symbolic
states previously considered stable needs to be checked again. In both cases, these are
sent as output of the SplitFilter. The output from SplitFilter is expected to be be sent
to WaitingBuffer or some component with similar semantics.
If the symbolic state corresponding to the input SymbolicStateHandle is not split

according to either jump-transitions or delay-transitions, it is marked as stable.

SplitOnDelayFilter

The SplitOnDelayFilter is responsible for splitting a symbolic state with respect to delay-
wise successor symbolic states.
As input the SplitOnDelayFilter takes a SymbolicStateHandle. The symbolic state for

this handle, as well as other with the same location- and variable-vectors, for it to be
split according to, are looked up in the PredecessorGraph.
This component corresponds closely to the code for split_on_delays in Section 5.5.

To work with the pipeline architecture, adding symbolic states to WAITING in
split_on_delays corresponds to outputting SymbolicStateHandles from the SplitOn-
DelayFilter.
The SplitOnDelayFilter is intended for use inside the SplitFilter component.

2In the Uppaal code base, these are commonly referred to as transitions and delays; this convention
has been adopted in our implementation.
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7 State Space Exploration and Reduction Algorithm II Implementation

SplitFilter

HandleToSymbolicStateFilter SplitOnDelayFilterSplitOnTransitionFilter

InvariantFilter

TransitionFilter

IgnoreRemainderFilter

SuccessorFilter SplitOnFederationFilter

SplitOnSingleTransitionFilter

SplitOnTargetFilter

SplitOnFederationFilter

LocalExtrapolationFilter

Figure 7.2: Pipeline for the contents of the main loop in Algorithm 5.5.1. The internal
logic of composite components is drawn as circles. The filters that compose
the pipeline are drawn as boxes. The flow of data through the pipeline is
illustrated by arrows.
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7.3 Explore and Reduce Pipeline

SplitFilter

SplitOnDelayFilter SplitOnTransitionFilter

Figure 7.3: The pipeline of the SplitFilter. The internal logic of the pipeline is drawn as
circles. The filters that compose the pipeline are drawn as boxes. The flow
of data through the pipeline is illustrated by arrows.

SplitOnTransitionFilter

The SplitOnTransitionFilter is responsible for splitting a symbolic state with respect to
all outgoing transitions. This corresponds to split_on_transitions in Section 5.5.

In Figure 7.4, the pipeline of the SplitOnTransitionFilter is shown. As input the Spli-
tOnTransitionFilter takes a SymbolicStateHandle. This SymbolicStateHandle is con-
verted to a SymbolicState by the HandleToSymbolicStateFilter and handed on to the
InvariantFilter. The InvariantFilter only lets SymbolicStates through that satisfy their
invariant. If the SymbolicState got through the InvariantFilter, it is handed on to the
TransitionFilter. The TransitionFilter enumerates all satisfied outgoing discrete tran-
sitions as Successor structures and sends them on to the IgnoreRemainderFilter. The
IgnoreRemainderFilter will forward these to the SplitOnSingleTransitionFilter until the
SplitOnSingleTransitionFilter signals a “stop” for the current symbolic state, i.e. when
the symbolic state under consideration has been split by SplitOnSingleTransitionFilter.

Note that since TransitionFilter does not support SymbolicStateHandles, it is neces-
sary for the HandleToSymbolicStateFilter to forward the SymbolicStateHandle to the
SplitOnSingleTransitionFilter. This is illustrated by the dashed arrow in Figure 7.4.

The SplitOnTransitionFilter is intended for use inside the SplitFilter component.
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7 State Space Exploration and Reduction Algorithm II Implementation

HandleToSymbolicStateFilter SplitOnTransitionFilter

InvariantFilter

SplitOnSingleTransitionFilter

TransitionFilter

IgnoreRemainderFilter

Figure 7.4: The pipeline of the SplitOnTransitionFilter. The filters that compose the
pipeline are drawn as boxes. The flow of data through the pipeline is illus-
trated by arrows and the flow of meta data through the pipeline is illustrated
by dashed arrows.
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HandleToSymbolicStateFilter

This simply looks up a SymbolicState from a SymbolicStateHandle in our Predecessor-
Graph data structure. The obtained SymbolicState is passed on as output.

InvariantFilter

This filter checks that all relevant invariants for the symbolic state are fulfilled. The
symbolic state will be passed on only when they are.

TransitionFilter

This is a pre-existing component from the verifier module of Uppaal. It generates a
number of Successor structures representing each jump-transition whose guard is satisfied
somewhere in the input SymbolicState.3 These are followed by a special sentinel value
indicating that all transitions from the input symbolic state has been generated.

IgnoreRemainderFilter

When some symbolic state is split by some later component, specifically SplitOnSin-
gleTransitionFilter, further transitions from that symbolic state should be disregarded.
There is no built-in way to prematurely end the generation of Successors from Transi-
tionFilter. In the interest of abstraction and separation of concern, the IgnoreRemain-
derFilter makes it appear that there is: When the next filter returns true to signal that
the symbolic state has been split, it will not receive subsequent Successor structures for
that symbolic state.

SplitOnSingleTransitionFilter

The SplitOnSingleTransitionFilter is responsible for splitting a symbolic state with re-
spect to a single outgoing transition.
In Figure 7.5, the pipeline of the SplitOnSingleTransitionFilter is shown. As input the

SplitOnSingleTransitionFilter takes a Successor structure; a source SymbolicState and a
transition.

• If all of the source SymbolicState can take the given transition, i.e. s ⇑ g = s,
where s is the federation of the source SymbolicState, and g is the guard of the
given transition, the Successor is forwarded to the SuccessorFilter, which calculates
the target SymbolicState of the transition taken from the source SymbolicState and
sends it on to the LocalExtrapolationFilter and then the SplitOnTargetFilter.

• If only some of the source SymbolicState can take the given transition, i.e. s ⇑ g is
non empty and s ⇑ g 6= s, where s is the federation of the source SymbolicState,
and g is the guard of the given transition, then the source SymbolicState and the

3The filter has some more advanced features regarding broadcasts and committed locations and edges,
though those are not otherwise supported in our implementation.
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SplitOnSingleTransitionFilter

SuccessorFilter

SplitOnTargetFilter

SplitOnFederationFilterLocalExtrapolationFilter

Figure 7.5: The pipeline of the SplitOnTransitionFilter. The filters that compose the
pipeline are drawn as boxes. The internal logic of the pipeline is drawn as
circles. The flow of data through the pipeline is illustrated by arrows and the
flow of meta data through the pipeline is illustrated by dashed arrows.
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7.3 Explore and Reduce Pipeline

direct delay predecessor between the source Symbolic State and the guard of the
transition, s ⇑ g, is send on to the SplitOnFederationFilter.

Note that the SplitOnSingleTransitionFilter maintains a source SymbolicStateHan-
dle, which was also mentioned in the description of SplitOnTransitionFilter: Since the
SuccessorFilter does not support SymbolicStateHandles, and since its output does not
even contain information on what the source was, the source SymbolicStateHandle of the
SplitOnTargetFilter is updated whenever the source SymbolicStateHandle of SplitOnSin-
gleTransition is. The flow of the source SymbolicStateHandle is illustrated in Figure 7.5
by the dashed arrows.

SuccessorFilter

This is a pre-existing component from the verifier module of Uppaal. It takes a (source,
transition) Successor data structure, computes the results of the transition and outputs
this in a (target, transition) Successor data structure.

LocalExtrapolationFilter

This is a pre-existing component from the verifier module in Uppaal. It optimises
the difference bound matrices of the federation of a symbolic state such that they only
contain important bound combinations. The class of important bound combinations are
established by static analysis, before the filter is used the first time. This filter ensures
that we will only consider a finite symbolic state space.

SplitOnTargetFilter

The SplitOnTargetFilter is responsible for splitting a SymbolicState with respect to the
target SymbolicStates of a given transition.
A SplitOnTransitionFilter has a current source SymbolicState. As input the SplitOn-

TransitionFilter takes a Successor data structure containing a target SymbolicState and
a transition. It obtains the SymbolicStates in our PredecessorGraph that overlap the tar-
get SymbolicState, and checks what parts may reach each specific symbolic state through
the transition. In case some target symbolic state can only be reach from part of the
source, SplitOnFederation is used to split the source symbolic state according to the first
of these.
The output is SymbolicStateHandles for consideration in our WaitingBuffer; either a

single SymbolicStateHandle reachable through a stable transition or a number of Sym-
bolicStateHandles to be considered as the consequence of a split.
The SplitOnTargetFilter is intended for use inside the SplitOnSingleTransitionFilter

component.

SplitOnFederationFilter

The SplitOnFederationFilter is responsible for splitting a SymbolicState into the part
that intersects a given federation and the part that does not.
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7 State Space Exploration and Reduction Algorithm II Implementation

SplitOnTargetFilter

SplitOnFederationFilter

Figure 7.6: The pipeline of the SplitOnTransitionFilter. The filters that compose the
pipeline are drawn as boxes. The internal logic of the pipeline is drawn as
circles. The flow of data through the pipeline is illustrated by arrows.

As input the SplitOnFederationFilter takes a SymbolicStateHandle and a federation.
As output it gives two SymbolicStateHandles. No checks are performed to ensure that the
resulting symbolic states are non-empty. For valid input, the federation should describe
a non-empty strict subset of the clock valuations given in the symbolic state.

WaitingBuffer

The WaitingBuffer is a pipeline-component for maintaining the WAITING set: Its input
is added to the set, and it provides methods for checking whether the set is empty and
for obtaining and removing “some member” from the set.
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8 Probabilistic Reachability in Probabilistic
Timed Automata

In this chapter, we document how the probabilistic reachability solver of Uppaal Prob
is implemented. Probabilistic reachability was defined in Definition 6.1.1. The main idea
is closely related to that of Theorem 6.1.4, with a few modifications. As in the proof of
Theorem 6.1.4, we only consider Pmax(a) formulae, where a is an atomic proposition.
First, the predecessor graph is generated so that it respects the atomic propositions.

The details of this pipeline is found in Section 8.1.
When the predecessor graph is stable with respect to a, the probabilistic symbolic

transitions are translated to linear constraints, as in Theorem 6.1.4. This is done in the
probabilistic reachability pipeline described in Section 8.2, that also takes care of the rest
of the reduction to linear programming.

8.1 Split on Atomic Propositions Pipeline

Since the predecessor graph does not initially contain a partitioning of the reachable state
space, we can not do exactly as in Theorem 6.1.4, where we pre splitted the initial state
space partitioning with respect to the atomic proposition a.
Instead, we do the splitting with respect to atomic propositions after the predecessor

graph has been built. This destabalises the predecessors of the symbolic states that are
split. The predecessors of the symbolic states that are split are yet again added to the
WaitingBuffer. The overall pipeline of splitting with respect to atomic proposition is
shown in Figure 8.1.
After splitting with respect to atomic propositions the main pipeline of Chapter 7 is

rerun, to restabalise the predecessor graph.

8.2 Probabilistic Reachability Pipeline

As before, we use the pipeline-architecture of Uppaal when implementing construction
of linear programming problems. The InvariantFilter, TransitionFilter, SuccessorFilter
and LocalExtrapolationFilter are reused; these have been described in Section 7.3.
The overall pipeline of probabilistic reachability is shown in Figure 8.2.
In the following, the StableToTransitionFilter, CopyFilter, SuccessorToProbabilistic-

TransitionClusterFilter and StableToDelayTransitionFilter will be described.
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SplitOnFederation

WaitingBuffer

Figure 8.1: Split on atomic propositions pipeline. The filters that compose the pipeline
are drawn as boxes. The internal logic of the pipeline is drawn as circles. The
flow of data through the pipeline is illustrated by arrows.

StableToTransitionFilter

TransitionToLPSink

Figure 8.2: The pipeline of probabilistic reachability. The filters that compose the
pipeline are drawn as boxes. The internal logic of the pipeline is drawn
as circles. The flow of data through the pipeline is illustrated by arrows.
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8.2 Probabilistic Reachability Pipeline

StableToTransitionFilter

The StableToTransitionFilter will, given a handle to a stable symbolic state, generate
a sequence of tuples representing probabilistic symbolic transitions from this symbolic
state.
StableToTransitionFilter uses InvariantFilter, TransitionFilter, CopyFilter, Successor-

Filter, LocalExtrapolationFilter and SuccessorToProbabilisticTransitionClusterFilter in
sequence to generate action-transitions, and StableToDelayTransitionFilter to generate
delay-transitions. This is illustrated in Figure 8.3.

CopyFilter

This component is part of Uppaal. The CopyFilter exists mainly to support the differ-
ences in memory management conventions between TransitionFilter and SuccessorFilter.1

Variants with different optimisation exist.

SuccessorToProbabilisticTransitionClusterFilter

This component will receive a sequence of (target, transition) Successor data structures,
and from these generate a sequence of (source, transition, target, probability) tuples.
Transitions that are the probabilistic consequences of the same choices are sent as a
sequence, with a sentinel at the end of each such sequence.
The component is responsible for remembering the source symbolic state handle, ob-

taining a symbolic state handle for the target symbolic state, computing the probability
for probabilistic transitions and ordering the transitions according to what probabilistic
edges take part in them.

StableToDelayTransitionFilter

Given a stable symbolic state, StableToDelayTransitionFilter outputs a sequence of
(source, transition, target, probability) tuples, with sentinels after each transition. The
output format is compatible with that of SuccessorToProbabilisticTransitionClusterFil-
ter.
The probability is always one, i.e. with the semantics from SuccessorToProbabilistic-

TransitionClusterFilter, the probability of reaching a specific target through a delay is
one when at all possible, and for stable symbolic states, at most one other symbolic state
is accessible through delays.

TransitionToLPSink

The overall functionality of this component is to solve probabilistic reachability, by re-
ducing to linear programming and using lp_solve to solve the linear programming

1TransitionFilter and SuccessorFilter are often used together, though they disagree strongly on memory
management conventions: The TransitionFilter will reuse the same data structure as “source” for each
transition, while the SuccessorFilter will immediately overwrite the received data structure with the
target computed from the source and transition.
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StableToTransitionFilter

StableToDelayTransitionFilter

InvariantFilter

TransitionFilter

CopyFilter

SuccessorFilter

LocalExtrapolationFilter

SuccessorToProbabilisticTransitionClusterFilter

Figure 8.3: The pipeline of the StableToTransitionFilter. The internal logic of the
pipeline is drawn as circles. The filters that compose the pipeline are drawn
as boxes. The flow of data through the pipeline is illustrated by arrows.
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8.2 Probabilistic Reachability Pipeline

instance. The reduction is done as described in the proof of Theorem 6.1.4.
This component takes a sequence of transition tuples separated by sentinels as input.

Multiple transitions received successively are expected to be transitions of the same prob-
abilistic transition. When a sentinel is received, a linear constraint on the form specified
by step 11 in the proof of Theorem 6.1.4 is constructed from the current probabilistic
transition.

69





Part IV

Uppaal Prob

In this part, we describe some basic features of Uppaal Prob: The two exporters and
we give a short tour of the graphical user interface.
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9 Exporting the Symbolic State Space

9.1 Exporting to the Graphviz DOT language

Graphviz is an open source graph visualisation software suite, capable of graphically
organising nodes and edges in graphs described in the DOT language. For debugging
purposes we support exporting the predecessor graph to a DOT file.
Recall the timed automata example from Chapter 1 in Figure 9.1. In Figure 9.2 the

predecessor graph of Figure 9.1 is shown. Qualitative reachability analysis can easily be
performed by humans given such a predecessor graph; if you can see it, it is reachable.

start

x ≤ 11 x ≤ 11

success

failure

x ≤ 11

x := 0

x ≥ 8

Figure 9.1: The timed automaton A, again.

9.2 Encoding Networks of Probabilistic Timed Automata in
Prism

Prism [HKNP06] is a probabilistic model checker for discrete time Markov chains, con-
tinuous time Markov chains, Markov decision processes, and variations thereof. In Prism
the specification language for discrete stochastic processes is called PCTL1.

Definition 9.2.1
Let A be a network of probabilistic timed automata with state space Γ × U(C). An
atomic PCTL proposition of A is a set a ⊆ Γ of discrete vectors. 2

1probabilistic computation tree logic

73



9 Exporting the Symbolic State Space

( Process.start )

 

(x<=11)

( Process.start )

 

(11<x)

( Process._id2 )

 

(x<=11)

( Process.failure )

 

(x<=11)

( Process.failure )

 

(11<x)

( Process._id2 )

 

(11<x)

( Process.success )

 

true

Figure 9.2: The predecessor graph of the timed automaton A. The arrows indicates a
predecessor relation (the arrow goes from source to target). The tables are
symbolic states: The first entry in the tables is the location vector, the second
is the variable vector (does not apply for this model), and finally the third
entry in the table is a human readable description of the federation of clock
valuations.
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9.2 Encoding Networks of Probabilistic Timed Automata in Prism

With the above definition of atomic propositions, clock valuations need not be repre-
sented in any human readable form in the Prism model, and it is now enough to encode
a network of probabilistic timed automata as a single Prism module where:

• The current location is stored in an integer variable for each probabilistic timed
automata.

• The current value of a variable is stored in an integer variable for each variable in
the network of probabilistic timed automata.

• The current federation is stored in an integer variable using the serial number of
the federation.

The pipeline for building such a prism module is illustrated in Figure 9.3. The com-
ponents that we have not seen before are documented in the following.

StableToTransitionFilter

TransitionToPRISMStringFilter

OStringSink

Figure 9.3: The Prism exporter pipeline. The components that compose the pipeline are
drawn as boxes. The internal logic of the pipeline is drawn as circles. The
flow of data through the pipeline is illustrated by arrows.

TransitionToPRISMStringFilter

This component takes a sequence of transition tuples separated by sentinels as input.
Multiple transitions received successively are expected to be transitions of the same
probabilistic transition. When a sentinel is received, a Prism transition is constructed
for the currently stored probabilistic transition and passed on as a string to the sink.

OStringSink

The responsibility of this component is to write its input to a given stream.
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10 Graphical User Interface

10.1 Editor

An edge with multiple targets could be drawn as a tree, with the root at the source
location and each leaf at a target location. To simplify the file format and the GUI, we
allow only to use one intermediate node, from which all branches start.
In Figure 10.1 an edge with multiple targets is shown. The connection from the source

to the intermediate node is a regular arrow, while the one from the dashed intermediate
node to the targets are dashed arrows.

Figure 10.1: Edge with multiple targets.

For each probabilistic branch, a probability must be assigned. The probabilities are
currently expressed in percent; using an integer-based representation means that we can
allow Uppaal’s general integer expressions to be used. The probability distribution for a
transition can thus be computed from the values of integer variables in the configuration.
Guard and synchronisation can be specified only on the edge leading to the interme-

diate node; as it is only the target of the edge that should be probabilistic.
Updates, i.e. clock resets and changes to integer variables may, on the other hand,

be specified on both parts of the probabilistic edge. Here, having some update on the
edge to the intermediate node is simply shorthand for including it in all the branches:
When evaluating updates, the updates from the edge leading to the intermediate node
are performed first, followed by updates from the selected branch.

10.2 Making a Simple Probabilistic Model

We give a step-by-step description of how some simple probabilistic model may be entered
in Uppaal Prob.
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10 Graphical User Interface

Uppaal Prob, like the normal Uppaal, by default starts with a model containing
only an initial location in a single template.

Select the location tool. Hereafter, each click on the modelling canvas adds a new
location. Use this to add three locations.

We want to make a probabilistic model. To do this, we need to add a branching node.
Select the branching tool.

Again, clicking on the modelling canvas will add branching nodes to the model.
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10.2 Making a Simple Probabilistic Model

Now, we wish to connect the locations in the model by some transition. Select the
edge tool.

Clicking on the initial location, and then clicking on the branching node will add an
edge part between them.

Repeat this for edge parts from the branching node to the other locations. Note that
these edge parts are dashed, to signify that they are part of a probabilistic edge.

Finally, we wish to specify a guard, some updates and probabilities for the probabilistic
edge. To do this, we need the selection tool.
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10 Graphical User Interface

Double-clicking on the edge part from the initial location to the intermediate node
brings up an “edit edge” window. Here, we enter the guard x ≤ 5 and the update y := 0.

The entered information is shown as text labels in different colours; these can be
dragged around to make the model clearer, or more aesthetically pleasing.

The edge parts from the intermediate node can be similarly selected and edited. Here,
we may not specify guards or synchronisation channels; instead, we can — and should
— specify a probability. Probabilities are specified in percent; general Uppaal integer
expressions may be used.
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10.2 Making a Simple Probabilistic Model

We now have a simple probabilistic model. With the guards, updates and probabilities
entered here, we will need x to be a clock, y to be a clock or variable and a to be a variable
or constant. For declaring these, we refer to [BDL04].

81





Part V

Conclusion

In this part, we conclude the project with future work and a summary.
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11 Future work

11.1 Prism as a Back-end

In Section 9.2 we explained how we encode networks of probabilistic timed automata as
Prism models in Uppaal Prob.
In our current version of Uppaal Prob, any query containing clock constraints would

require the user to figure out which federation index corresponds to the given clock
constraint if any: As future work we would really like to see Prism as a back-end for
Uppaal Prob, so that we may make these formula translations automatically, and hide
the indexing of federations from the user. This would make it possible to verify PTCTL
formulae from Uppaal Prob, using PCTL in Prism.

11.2 Partial Exploration and Refinement

Running the exploration and refinement algorithm to completion should not always be
necessary: When some specific formula is to be checked, what is reachable after fulfilling
the formula may not be important. Furthermore, some simpler analysis may reveal
e.g. that the target cannot be reached from certain location vectors; exploration and
refinement of these are then unnecessary.
If only some upper or lower bounds on e.g. Pmax are desired, further optimisations

can be done: The order in which exploration and reduction takes place will impact the
number of steps necessary to obtain some given accuracy. It would be beneficial to use the
maximum probabilities of reaching various symbolic states to select which symbolic state
should first be further refined. On the other hand, the overhead from bookkeeping to
obtain accurate numbers may negate the gain. Similarly, focusing on transitions leading
to symbolic states where the actual probabilities of fulfilling the formula are high would
give the most useful information on the symbolic state under consideration.
In both cases, however, obtaining accurate data would in itself be rather expensive. In-

stead, we expect that focusing on various heuristics can lead to significant improvements
in model-checking “common” models.
Since the the exploration and refinement algorithm only has one main loop, and since

the WaitingBuffer is defined using the Buffer interface of the pipeline library, it is straight
forward to insert heuristics for which symbolic states not to consider, and which to
consider. This can be done by either changing the main loop, which is very simple or by
making some AdvancedWaitingBuffer and insert it in place of WaitingBuffer.
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11.3 Computing Pmin

Computing Pmin is more involved than computing Pmax: Rather than minimise with
transitions giving lower bounds, we ought to maximise with transitions giving upper
bounds; we expect the sibling theorem of Theorem 3.3.9 to be true.
A naive approach would be to translate the method for Pmax in this way; i.e. “reverse”

the constraints from transitions and then obtain the maximal valuations of the variables.
The problem here is that no actually interesting constraints are introduced; assigning 1.0
to each variable is a solution to the linear programming problem. While this is clearly
the solution maximising the valuations of the variables, it is also completely independent
of the actual probabilities of fulfilling the formula from each symbolic state.
To compute the actual probabilities, we need to find the symbolic states for which

some strategy with probability 0 of fulfilling the formula exists. Setting the variables for
these to 0, the solution to the linear programming problem should provide the correct
probabilities.
However, rather than computing this set directly, where we may have to consider

deadlocks, infinite delays and complex “loops” in transition sequences, we may instead
compute the complement subset of STATES.

Algorithm 11.3.1: Finding the symbolic states for which all adversaries will fulfill
some formula with positive probability.
GOAL := the set of symbolic states fulfilling the formula to be checked1

WAITING := predecessors(GOAL)2

while WAITING 6= ∅ do3

CLEARED := ∅4

foreach s in WAITING do5

if successors(s) ⊆ GOAL then6

CLEARED := CLEARED ∪ {s}7

GOAL := GOAL ∪ CLEARED8

WAITING := predecessors(CLEARED )\GOAL;9

11.4 From Reachability to Model Checking

Fundamentally, our translation to a linear programming problem is based on probabilistic
transitions between symbolic states, with some known set of symbolic states fulfilling an
atomic proposition. The translation is independent of how the set of symbolic states
fulfilling the atomic proposition is computed. Using some threshold on probabilities,
filtering out those symbolic states that meet these thresholds is easy.
A formula like

Pmax(Pmax(lx) > 0.8 ∨ Pmax(a = 11) > 0.7)
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11.5 Probabilistic Simulator in Uppaal

can be considered in parts: First, splitting and stabilising the state space according
to the inner formulae; here lx and a = 11.1 Subsequently, computing Pmax(lx) and
Pmax(a = 11) for all symbolic states. When solving the constructed linear programming
problems, values are assigned to all variables, and so obtaining these for all symbolic
states rather than just the initial state will not significantly increase the computational
cost. Finally, as both Pmax(lx) > 0.8 and Pmax(a = 11) > 0.7 specifies sets of symbolic
states, we may take their union — this is now the target set of symbolic states for the
outer instance of Pmax, which may then be computed normally.

11.5 Probabilistic Simulator in Uppaal

In addition to editing and model-checking networks of timed automata, Uppaal also
has a part dedicated to simulation. Here, specific execution traces may be examined in
detail. Furthermore, the normal non-deterministic reachability model checker is capable
of generating diagnostic traces that can be loaded in the simulator.
The simulator already has a “random simulation” function; this may be extended to

take probability distributions into account. To examine specific execution traces, it
should also be possible to explicitly specify the result of a transition, among the results
with positive probability. Between these, we may have a third kind of simulation: The
user may specify the non-deterministic choices, i.e. which transitions to take; the results
should then be automatically selected, with the simulator making a probabilistic choice
based on probability distributions in the model.
When considering diagnostic traces, single execution traces are significantly less use-

ful in demonstrating probabilistic reachability than in demonstrating nondeterministic
reachability.
As an example, consider Figure 1.2 in the introduction. Clearly, a strategy with

high probability of success exists: Retry in case of failure. This strategy cannot be
demonstrated by a single execution trace. For network of probabilistic timed automata,
a strategy should encompass only the nondeterministic choices. This adds complications
to the data exchange format; rather than a sequence of actions — sufficient for the normal
traces — what is relevant for the simulator is a mapping from symbolic states to actions.
Again, two modes of simulation may be beneficial; one with the simulator performing

the probabilistic choices, and another with the probabilistic choices under the users’
control.

1We assume that lx specifies that some process must be in a specific location, while a is a variable
which is here checked for the numeric value 11.
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12 Summary

Stochastic real time systems are modelled as probabilistic timed automata. Probabilistic
timed automata were defined in Chapter 4 as traditional timed automata, with the
extension of discrete probabilistic edges.
To make probabilistic reachability analysis on a network of probabilistic timed au-

tomata, we require time abstract Markov equivalence quotients.
In Section 5.1, we specified State Space Exploration and Reduction Algorithm I. This

algorithm symbolically explores the reachable parts of the state space of networks of
probabilistic timed automata. It will, on the fly, refine the explored parts of the state
space, partitioning symbolic states according to time abstract Markov equivalence. Upon
completion, the algorithm has constructed a stable partitioning of the reachable parts of
the symbolic state space; a time abstract Markov equivalence quotient.
We make the algorithm more concrete with State Space Exploration and Reduction

Algorithm II. Here, we include pseudocode for the non-trivial parts of the algorithm; this
specification is more useful when actually implementing the algorithm as a computer
program.
In the Uppaal model of timed automata, timed automata may include (bounded)

integer variables. Variable updates may be specified by general user-defined procedures.
If we wish to support these extensions, we need to avoid computing predecessors; we
can not, in general, expect to generate the inverse of some procedure. In Chapter 7
we implement State Space Exploration and Reduction Algorithm II by the means of
a predecessor graph, and a pipeline for splitting symbolic states with respect to their
transitions. The predecessor graph solves the problem of predecessor generation.
Probabilistic reachability is reduced to linear programming in Chapter 6. We show

that given a probabilistic reachability instance, we can construct a linear programming
instance using a time abstract Markov equivalence quotient. We also show how to cal-
culate the solution to the probabilistic reachability instance from a solution to the linear
programming instance.
The implementation of probabilistic reachability solving is described in Chapter 8,

where we use the implemented State Space Exploration and Reduction Algorithm II
along with lp_solve to calculate the maximal probability for reaching a set of states.
Networks of probabilistic timed automata are exported to Prism models in Section 9.2.

Locations and variables from Uppaal are stores as integer variables in Prism. Prism
does not support clocks, so federations are indexed, and stored as integer variables too.
The federations stems from a time abstract Markov equivalence quotient. As a conse-
quence of the absence of clocks, only probabilistic discrete specifications may be verified
in Prism.
The data structure called predecessor graph from Chapter 7 is exported to a graphviz
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12 Summary

DOT file in Section 9.1.
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A Howtos

A.1 Uploading an XML file to Uppaal Prob server

Below, we give the XML encoding of A from Figure 9.1.1

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE nta PUBLIC ’-//Uppaal Team//DTD Flat System 1.1//EN’

’http://www.it.uu.se/research/group/darts/uppaal/flat-1_1.dtd’>
<nta>

<declaration>
// Place global declarations here.
clock x;

</declaration>
<template>

<name x="5" y="5">A</name>
<declaration>

// Place local declarations here.
</declaration>
<location id="id0" x="184" y="40">

<name x="160" y="56">failure</name>
<label kind="invariant" x="208" y="32">x&lt;=11</label>

</location>
<location id="id1" x="184" y="-104">

<name x="160" y="-136">success</name>
</location>
<location id="id2" x="120" y="-40">

<label kind="invariant" x="72" y="-72">x &lt;= 11</label>
</location>
<location id="id3" x="16" y="-40">

<name x="-32" y="-56">start</name>
<label kind="invariant" x="-8" y="-80">x&lt;=11</label>

</location>
<init ref="id3"/>
<transition>

<source ref="id0"/>
<target ref="id3"/>
<label kind="guard" x="32" y="48">x&gt;=8</label>

1this is simply the XML file one gets when saving from Uppaal Prob or Uppaal.
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<nail x="72" y="40"/>
</transition>
<transition>

<source ref="id2"/>
<target ref="id0"/>
<label kind="assignment" x="92" y="0">x=0</label>

</transition>
<transition>

<source ref="id2"/>
<target ref="id1"/>

</transition>
<transition>

<source ref="id3"/>
<target ref="id2"/>

</transition>
</template>
<system>

// Place template instantiations here.
Process = A();

// List one or more processes to be composed into a system.
system Process;

</system>
</nta>

To send this XML file to the Uppaal Prob server start the Uppaal Prob server
binary (./server) and type in newXMLSystem3 followed by a newline, the contents of the
above XML file and then finally a dot and a newline.

A.2 Exporting a Predecessor Graph to a DOT file

To export the predecessor graph of the network of timed automata given in Figure 9.1
start the Uppaal Prob server and upload the XML file for the above (see Section A.1)
and type getDotModel
The server will then output various protocol keywords, and replace each dot with two

dots — after stripping this away, we have the dot file below, which renders as Figure 9.2.

digraph predecessorgraph {
node [shape = circle ];
"((4121546772,0,0),0)" [ shape = record,

label = " { ( Process.start ) | | (x\<=11) } " ];

"((4121546804,0,0),0)" -> "((4121546772,0,0),0)";
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A.2 Exporting a Predecessor Graph to a DOT file

"((4121546772,0,0),1)" [ shape = record,
label = " { ( Process.start ) | | (11\<x) } " ];

"((4121546772,0,0),0)" -> "((4121546772,0,0),1)";

"((4121546788,0,0),0)" [ shape = record,
label = " { ( Process._id2 ) | | (x\<=11) } " ];

"((4121546772,0,0),0)" -> "((4121546788,0,0),0)";

"((4121546788,0,0),1)" [ shape = record,
label = " { ( Process._id2 ) | | (11\<x) } " ];

"((4121546788,0,0),0)" -> "((4121546788,0,0),1)";

"((4121546804,0,0),0)" [ shape = record,
label = " { ( Process.failure ) | | (x\<=11) } " ];

"((4121546788,0,0),0)" -> "((4121546804,0,0),0)";

"((4121546804,0,0),1)" [ shape = record,
label = " { ( Process.failure ) | | (11\<x) } " ];

"((4121546804,0,0),0)" -> "((4121546804,0,0),1)";

"((4121546820,0,0),0)" [ shape = record,
label = " { ( Process.success ) | | true } " ];

"((4121546788,0,0),0)" -> "((4121546820,0,0),0)";
}
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B Additional Theorems

B.1 Different Direct Delay Predecessors

In Section 5.5, we claimed that if a symbolic state source has two symbolic states as time
abstract successors by the same transition, the source is unstable. This is, however, not
completely obvious.
Given a configuration c ∈ source it may be possible that one can take the same transi-

tion and end up in two different target symbolic states by means of different delays from
c.
At any one point, however, if no further delay is allowed, the target of a transition

is unique. Having two such targets indicates the existence of two disjoint sets of clock
valuations U,U ′ ⊆ source, where configurations contained in U will have one unique
target, and the configurations contained in U ′ will have a different unique target. It
is now enough to show that at least one configuration in source is unable to have both
targets as time abstract successors by the same transition:

Proposition B.1.1
Let F be a time convex set of clock valuations, and let U,U ′ ⊆ F be two nonempty disjoint
sets of clock valuations. Then

F ⇑ U 6= F ⇑ U ′. (B.1)

Proof
Assume erroneously that

F ⇑ U = F ⇑ U ′. (B.2)

Let u ∈ F ⇑ U . By (B.2) there must exist at least one d ∈ R+ such that u + d ∈ U .
Therefore the suprememum

dsup
def= sup

u+d∈U
d

is well defined.
Let {dn}n≥0 be an non-descending sequence in R that converges to dsup, such that

u+ dn ∈ U for all n ≥ 0. Note that {dn}n≥0 is well defined since U is not empty.
Since u + dn ∈ U and U ⊆ F ⇑ U , it follows by (B.2) that u + dn ∈ F ⇑ U ′ for all

n ≥ 0. But by Definition 5.2.3 there exists an N > 0 such that for all n > N we have
u+dn ∈ U ′, which violates disjointness of U and U ′; a contradiction, and (B.1) follows.�
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