
Seismic Ground Response Analysis 
of Soil Sites

Master Thesis
by Casper Holmgaard Jensen
Department of Civil Engineering - Aalborg University - 2008





 

 

 

 

 

 

 

 

 

 

Seismic Ground Response Analysis 
of Soil Sites 

 

 

 

 

 

 

Casper Holmgaard Jensen 

 

 

Aalborg University 

June 2008





 

 

Preface 
This master thesis is prepared at the Department of Civil Engineering at the Faculty of Engineering, 
Science and Medicine at Aalborg University by the undersigned. The thesis is prepared in the period 
from the 4th of February 2008 through the 11th of June 2008. 

The title of this thesis is Seismic Ground Response Analysis of Soil Sites. The thesis concerns a series 
of methods for ground response analyses for seismic excitation and seeks to discover the effects of 
each method on the resulting surface motion. The thesis is written based on knowledge acquired at 
courses taken at the University of California at Berkeley as part of a 9th semester study abroad period. 
Further needed knowledge is acquired through literature studies with the references located in the ref-
erence list at the end of the thesis. 

The master thesis is prepared with the supervision from Associate Professor Lars Andersen and Pro-
fessor MSO John Dalsgaard Sørensen. I thank them for their highly appreciated supervision. 

 

 

 

 

 

   

Casper Holmgaard Jensen





 

 

Abstract 
This thesis present analysis methods for describing the seismic ground response and the influence of 
soil overlaying a firm elastic bedrock. The site is not for a specific location but the analyses are per-
formed for a soil profile with soil to a significant depth and for an area with large seismic hazard. 

The thesis describes the altering of the earthquake ground motion as it propagates through the soil 
from bedrock to surface. The ground motion analyses are compared with the approach described by 
Eurocode 8,EN1998.  

Detailed analyses are performed by an equivalent linear and by a nonlinear modelling of the soil. The 
equivalent linear model includes strain dependant dynamic soil properties and rate independent damp-
ing. The nonlinear model is performed by modelling the soil with the extended Masing model which 
furthermore includes the hysteretic behaviour and plastic deformation of the soil.  

The comparison of the analyses methods indicates that the nonlinear model gives the best results. The 
equivalent linear model also gives reasonable results for well described input motions and for lower 
strain levels of the soil. For large strains the equivalent linear model fails to describe the nonlinear 
behaviour of the soil. 

The procedure given by Eurocode EC8 gives satisfactory results for low period input motions but fails 
to describe the amplification of the motion at higher period. For bedrock input motions with signifi-
cant energy at high periods this amplification results in an underestimation of the surface motion and 
in such cases the equivalent linear and the nonlinear models are recommended.  
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1. Introduction 
When constructions are build in seismic active areas one of the design criteria is that the construction 
must perform satisfactory during an earthquake event. Therefore it is necessary to know which seismic 
ground motions the construction must be designed for. One of the challenges is to describe the magni-
tude of earthquakes that can be expected in the region and estimate how the earthquake waves travel 
from the centre of the rupture to the bedrock beneath the construction site. For sites where the bedrock 
is overlain by a layer of softer soil the bedrock ground motion can be greatly altered before it reaches 
the surface, and if not anticipated cause great damage. Different analysis methods for describing this 
effect called local site effect is described in this project.  

An event where local site effects played a major role occurred during the Mexico City earthquake of 
1985 where parts of the city was destroyed even thou the epicentre of the earthquake was 350 kilome-
tres away and buildings in the vicinity of the epicentre was only moderately damaged. The damage in 
Mexico City was mainly caused by local site effects where soil overlaying firm bedrock altered and 
amplified the bedrock motion to such an extend where a large number of buildings in specific areas 
were unable to withstand the seismic load and collapsed. 

To understand what happened during the Mexico City earthquake it is important to know the subsur-
face condition beneath Mexico City. The city is divided into three seismic zones with pronounced 
different subsurface conditions. In Figure 1.1 the foothill zone seen consist of shallow well compacted 
granular material. The lake zone consists of old and younger lake deposits with thick deposits of very 
soft soils, with the thickness decreasing towards the foothill zone as indicated in Figure 1.1 (right). 
Between the foothill zone and lake zone is the transition zone that consists of a thin layer of soft soils 
broken up by layers of denser soils. 

 
Figure 1.1. Subsurface of Mexico City divided into three zones (left). Depth of soft soil in lake zone (right).  

[Kramer 1996, p314] 
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From strong motion sensors placed at stations in the foothill and lake zone the ground surface accel-
eration showed significantly different motions as shown in Figure 1.2. In the foothill zone only minor 
ground motion was detected whereas in the lake zone large amplification of the motion was detected. 
It can also be seen the motion at the lake zone is oscillating at a lower frequency but for a longer dura-
tion.  

 
Figure 1.2. Acceleration ground motions recorded at Mexico City stations. UNAM: foothill zone. SCT: lake 

zone. [Kramer 1996, p314] 

The reason for this difference is that the thick layer of softer soils in the lake zone acts as a filter that 
filters away high frequency motion and amplifies motion that corresponds to the natural period of the 
soil. The effect on the bedrock motion that happened at the lake zone caused many building to collapse 
in that region of the city. Especially building with a natural period in the same range as the natural 
period of the soil was heavily damaged since the motion in such cases was amplified twice, first by 
travelling through the soft soil to the surface and then again when travelling through the building. 
Buildings in the foothill zone suffered negligible damage. 

The Mexico City earthquake is a good example of the importance of a good analysis of the seismic 
ground response at sites with soft soils or the consequences of neglecting them. 

 



 

 

2. Preliminaries 
In this chapter the preliminaries for the different analyses are described. This includes the possible 
location of the construction site and the defined soil profile for the site. 

2.1. Earthquake generation and propagation 

In this section the general terms and behaviour of earthquakes are described. Both the generation of 
earthquakes and the propagation of the following waves are described.  

2.1.1. Generation of earthquakes 

The majority of significant earthquakes are generated in the boundaries between tectonic plates as a 
consequence of their movement relative to each other. In Figure 2.1 a map of the major tectonic plates 
are shown where also the movement of the plates are given. The interrelationship between the plate 
boundaries are indicated with the fault environments given as subduction zone, ridge axis (spreading 
ridge) and strike slip fault. 

 
Figure 2.1. Worldwide map of major tectonic plates. Arrows indicate individual plate movement. [Kramer 1996, 

p26]  
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The three fault types are shown in Figure 2.2. The most severe earthquakes are mostly generated in 
areas with subduction zones and strike slip faults.  

       
Figure 2.2. Subduction zone (left) [dkimages.com 2008], spreading ridge (middle)[dkimages.com 2008b] and 

strike slip fault (right) [usgs.com 2008]. 

The fundamental theory of energy build up in seismic active regions is called the elastic rebound the-
ory. This theory states that when two tectonic plates moves relative to each other elastic strain energy 
is stored in the material near the boundaries between the two plates. When the shear stress in the fault 
plane separating the plates reach a certain level the stored energy is released which causes an earth-
quake.  

A key feature of a fault is a parameter describing the annual strain energy build up. The slip rate of a 
fault is therefore defined as the annual relative movement of two adjoining plates and this parameter is 
a key parameter in the determination of the probability distribution of earthquake with a certain mag-
nitude generated at the fault.  

The hypocenter is the point where the strain energy of the earthquake is released and the depth of this 
point can be from a few kilometres to several hundred of kilometres.  

2.1.2. Propagation of earthquakes 

During a fault rupture the strain energy is released and body waves are generated and propagates away 
from the source. Body waves consist of two types of waves, namely p- and s-waves as shown in 
Figure 2.3. 

 
Figure 2.3. P-waves (upper) and s-waves (lower). The wave propagation is from left to right. 

  [Andersen 2006, 11] 
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p-waves involves compression and rarefaction of the medium and are therefore often called compres-
sion waves. The particle motion is parallel to the direction of the wave propagation as indicated in 
Figure 2.3 (upper). s-waves involves shearing deformation of the medium and are therefore often 
called shear waves. The particle motion is perpendicular to the direction of the wave propagation as 
indicated in Figure 2.3 (lower). s-waves cannot travel through fluids since no shearing can occur in 
such medium. 

The body waves are initially propagating away from the source as a sphere. Because the wave velocity 
decreases with decreasing stiffness of the soil a refraction phenomena occur. In general the stiffness of 
the rock is increasing with increasing depth and this tendency is even more pronounced in the shal-
lower soil layers. Because of this decrease in stiffness and thereby decrease in wave velocity as the 
wave propagates towards the surface the incoming wave fronts will be refracted to a more vertical 
direction of propagation. An illustration of the refraction phenomena is given in Figure 2.4 where it is 
seen that the wave front changes direction due to the difference in velocity between the two sides of 
the wave orthogonals. The figure shows the path for s-waves but the same refraction phenomena ap-
plies to p-wave propagation.   
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Figure 2.4. Refraction of inclined wave fronts. Vs is shear wave velocity. 

The refraction phenomena for the body wave propagation is similar to the refraction phenomena in 
coastal hydraulics when ocean waves propagates toward the shore. The path of the body wave travel-
ling from the source to the surface at the specified site is illustrated in Figure 2.5. As indicated in the 
figure the refraction is most predominant in the shallower layers where the decrease in stiffness be-
tween the layers are greater. 
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Figure 2.5. Earthquake wave propagation and refraction process. 

2.2. Location of site 

This project is not dealing with a specific site. Instead this project is a more general comparison of the 
different methods of analysing the soil and building response to earthquake loading. Since the Euro-
code design method described in EN1998:2003 is one of the methods to be considered, it is assumed 
that the site is located in Europe. Also it is assumed that the site is on a location with noticeable earth-
quake hazards.  

A site specific description of the seismic hazard level can be developed, but this requires extensive 
seismological knowledge of fault characteristics in the area and the use of attenuation relationships to 
attenuate the ground motion to the site. In the absence of such seismological information for this pro-
ject the more general seismic hazard map is used to give the seismic hazard level.  

The seismic hazard map as given in Figure 2.6 shows the level of peak ground acceleration corre-
sponding to 10 % exceedence in 50 years. In this project the location is set to a site corresponding to a 
peak ground acceleration (PGA) of ag = 0.5g for firm ground corresponding to bedrock with a 10 % 
exceedence in 50 years. 
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Figure 2.7. Soil profile as used in the soil response analyses. h is thickness, z is depth, and ρ is unit density. 

Vs,max is the measured shear wave velocity at an infinitesimal strain level. 

 





 

 

3. Soil response by Eurocode EC8 
In this chapter the soil response is analysed by use of the procedure described in Eurocode 8,EN1998. 
First a general description of the response spectrum concept and the design procedure for earthquake 
loads on buildings are given. Following is the design by Eurocode EC8 corresponding to the specific 
site of this project.  

3.1. Definition of response spectrum 

Seismic design by Eurocode EC8 involves the generation of a response spectrum. A response spec-
trum is defined as the maximum response of a single degree of freedom (SDOF) system with varying 
natural periods excited with a given ground motion. In earthquake design the response is taken as the 
maximum absolute acceleration of the mass. In Figure 3.1 the concept of a response spectrum is illus-
trated. As indicated in the figure the response spectrum is generated as the maximum mass response of 
a SDOF where the input motion is the earthquake ground motion.  

 
Figure 3.1. Illustration of the response spectrum concept.. [Kramer 1996, p571] 

From the definition of the response spectrum a ground motion can be transformed into a response 
spectrum by letting a SDOF system with varying natural periods be excited with the ground motion. 
The response spectrum is then generated by plotting the maximum response of the system as a func-
tion of the natural period of the system. 
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In the following analyses two ground motions are transformed into response spectra. The first is the 
bedrock ground motion, since this motion is the basis of the following wave propagation through the 
soft soil layers. The bedrock motion is required to be as similar to the bedrock motion defined in 
Eurocode EC8 as possible, since this input motion is a prerequisite for the real analysis which is the 
analysis of the soft soil effect on the surface ground motion. The second ground motion is the surface 
ground motion after the wave propagation through the soft soil layers has been analysed. This ground 
motion is needed so the results from different analysis methods can be compared to the response spec-
trum defined in Eurocode EC8. An illustration of the two ground motions and their interpretation as a 
response spectrum are shown in Figure 3.2. 
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bedrock
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surface ωn
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bedrock motion

ωn

eS

surface motion

ω

Nc bedrock
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Figure 3.2. The two ground motions for which response spectra are generated. The outcropping bedrock has a 
ground motion assumed equal to the bedrock ground motion. cN is the Fourier amplitude spectrum of the bed-
rock ground motion and c1 is the Fourier amplitude spectrum of the surface motion. Note that the ground mo-

tions for the nonlinear analysis are given as time histories and not Fourier amplitude spectra. 

3.2. General design procedure by Eurocode EC8 

The design procedure by Eurocode EC8 can be divided into four sections.  

1) Estimation of ground motion for firm ground 

2) Correction of ground motion for sites with softer soil than firm ground 

3) Generation of elastic response spectrum to describe the ground motion effect on structures 

4) Calculate the response of the structure by use of the response spectrum 

3.2.1. Estimation of ground motion for firm ground 

The estimation of the ground motion for the site as if it were firm ground is most often found from 
seismic hazard maps. A seismic hazard map is a map of a region which indicates the expected peak 
ground motion of firm ground for a given return period. Such maps are generated on the basis of 
knowledge of distance to active faults and the characteristics of these. A seismic hazard map is seen in 
Figure 2.6.  
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3.2.2. Correction of ground motion for soft soil sites 

For sites where softer soil is overlaying the bedrock a correction must be made since soft soils have a 
great effect on the ground motion as described in Section 1. The correction is done by classifying the 
soil profiles in different ground types corresponding to the grade of soil stiffness. The parameter dic-
tating the ground type is the average shear wave velocity for the top 30 m of soil. In Figure 3.3 the 
design spectra for all the ground types defined in Eurocode EC8 are shown. 

 
Figure 3.3. Normalized design response spectra as defined in EC8 for 5% damping. The ground stiffness de-

creases from ground type A to E. [EN1998:2003, p25] 

3.2.3. Generation of elastic response spectrum 

An elastic response spectrum is defined on the basis of the ground type and the firm ground motion 
found from the seismic map. The response spectrum is normally generated for an elastic and viscous 
damped one degree of freedom system with a damping ratio of 5 %. For systems with damping ratio 
different from 5 % a damping correction factor can be used to correct the response spectrum. The elas-
tic response spectrum can also be modified to fit a structure where a some plastic deformation are al-
lowed by use of a behaviour factor.  
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3.2.4. Response of structure by use of response spectrum 

The total response of a multi degree of freedom system can be estimated by using the response spec-
trum. First the modes of the structure is found by modal analysis of the structure. A response for each 
mode is found as the value in the response spectrum corresponding to the frequency for the given 
mode. The response for each mode can then be combined to a total response of the structure by using 
the SRSS rule (Square Root of the Sum of Squares), where the response for each mode is squared, 
then summed and finally the square root of this sum is used as the total response of the structure. This 
method gives good estimates for well separated modes. 

3.3. Shape of design spectrum 

The response spectra defined in Eurocode EC8 are design spectra used to describe a whole group of 
individual site specific response spectra. The defined design spectra can be thought of as spectra which 
envelopes a broad variety of site specific spectra where the soil profiles are lumped together in classes 
as described in Section 3.2.2. For the period range of the response spectrum for a single site, different 
earthquake events can also be predominant at different periods which is further illustrated in Section 
3.3.2. The design spectra defined in design codes are therefore often more conservative than site spe-
cific response spectra which on the other hand requires more information of the site and active faults 
in the area. In the following section the shape of the design spectra given by Eurocode EC8 are dis-
cussed.  

3.3.1. Constant acceleration, velocity and displacement spectrum 

In Figure 3.4 the general shape of a design spectrum defined in Eurocode EC8 is shown with indica-
tion of the different line segments. 

constant 
acceleration

constant
velocity

constant
displacement

 
Figure 3.4. Shape of design spectra with indication of constant acceleration, velocity and displacement seg-

ments. [EN1998:2003, p24] 
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It is seen that the design spectrum are constructed of several line segments. By looking at the formulas 
defining these line segments, it can be shown that the lines relates to constant acceleration, constant 
pseudo velocity and constant pseudo displacement. The design spectra are defined by 
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(3-1)

where 

( )
eS T is the elastic response spectrum for acceleration 

T is the vibration period of a linear SDOF system 

ag is the design ground acceleration on bedrock 

TB is the lower limit of the period of the constant acceleration line segment 

TC is the lower limit of the period of the constant velocity line segment 

TD is the lower limit of the period of the constant displacement line segment 

S is the soil factor 

η is the damping correction factor with reference value of η = 1 for 5% viscous damping

[EN1998:2003, p23] 

The values of TB, TC, TD and S are given in [EN1998:2003, p24] for each ground type. ag is most often 
found from seismic hazard maps of the area of the site. To show that the line segments in (3-1) corre-
spond to constant acceleration, velocity and displacement the definition of pseudo velocity and pseudo 
displacement are discussed. These two quantities are given as  

ω=e n VS S  and 2ω=e n DS S  (3-2)

where 

SV is the pseudo velocity spectrum 

SD is the pseudo displacement spectrum 

ωn is the circular natural frequency of the linear SDOF system

[Chopra 2007, p209-210] 
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The real velocity and displacement spectra can be found by integration of the Duhamel integral and it 
can be shown that these spectra are proportional to the acceleration spectra by a factor of 1

nω −  and 
2

nω −  respectively except for a phase shift and that the phase shift does not have significant influence 
on the maximum response. Therefore the pseudo velocity and pseudo displacement defined in (3-2) 
gives a close approximation to the real velocity and displacement spectra. [Kramer 1996, p572] 

Since the period T is inversely proportional to ωn it can be seen that the line segment in (3-1) of the 
acceleration response spectrum from TC to TD corresponds to a constant velocity spectrum and the line 
segment of the acceleration response spectrum from TD to 4 s corresponds to a constant displacement 
spectrum.  

As an example, the constant velocity is calculated for a case with firm ground, damping ratio equal to 
5% (η = 1) and firm ground motion equal to ag = 0.5 g. For this case S = 1, TC = 0.4 s, TD = 2 s as 
found in [EN1998:2003, p24]. By insertion of these values in (3-1) for the line segment corresponding 
to constant velocity this gives a constant velocity of 

( ) ( )
( ) ( )2

m
s

m
s

: 2.5

0.4s0.4 2 : 0.5 9.81 1 1 2.5
2

0.4 2 : 0.78

C
C D e g

n
e

e n

TT T T S T a S
T

s T s S

s T s S

η

ω
π

ω

≤ ≤ = ⋅ ⋅ ⋅

⋅
≤ ≤ = ⋅ ⋅ ⋅ ⋅

≤ ≤ = ⋅

(3-3)

By comparing (3-3) with (3-2) it is seen that m
s0.78VS = . Same procedure can be used to find con-

stant displacement values.  

3.3.2. Design spectra contra response spectra 

A design spectra is used as a basis for design of earthquake resistant constructions. The shape with 
constant acceleration, velocity and displacement has been shown to give reasonable fits to response 
spectra based on recorded time histories of earthquake events. Response spectra from individual 
measurements will have a highly irregular shape with peaks at different periods and the design spectra 
seeks to include all these irregular shapes.  

Another effect that requires the design spectrum to have a more smooth shape than for a single re-
sponse spectrum is due to the difference in frequency contents for smaller magnitude and close earth-
quake events compared to larger magnitude and distant earthquakes. A design spectrum is often gen-
erated on the basis of a uniform seismic hazard, which therefore includes the contribution from all 
active faults which causes seismic hazard to the site.  
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The contribution to the seismic hazard from several faults are in the following illustrated by an exam-
ple. The site is chosen as the Oakland side of the San Francisco–Oakland Bay Bridge, California, 
USA. Through the U.S. Geological Survey's homepage it is possible to generate the seismic hazard for 
the site by a probabilistic seismic hazard analysis, which gives the relative contribution for different 
distance and magnitude combinations for all nearby faults. For a more thorough description of prob-
abilistic seismic hazard analysis the reader is recommended [Abrahamson 2000]. In Figure 3.5 the 
relative contribution to the hazard from different sources are shown for a 10 % exceedence in 50 years 
for the Bay Bridge site. A map is shown for both the relative contribution for the peak ground accel-
eration (PGA) and for the ( )2eS s  value corresponding to the maximum response for a SDOF system 
with natural period 2 s.  

  
Figure 3.5. Relative contribution to seismic hazard from significant sources. Contribution to PGA (left) and to 

( )2seS  response (right). Site is indicated with yellow circle. [usgs.com 2008b] 

It is seen from the contributions in Figure 3.5 that the most significant source is dependent on the 
wanted period value for the response spectrum. The short period values are often determined by closer 
but smaller earthquakes which also is the tendency in Figure 3.5 (left) while the longer period values 
more often is determined by larger earthquakes more distant from the site, which is the tendency seen 
in Figure 3.5 (right). 

The reason for this is that the high frequency contents of the waves gets filtered while travelling from 
the source to the site. When the distance to the site is large most of the high frequent motion is filtered 
away. Therefore the predominant period of the ground motion increases with increasing distance be-
tween source and site. The same tendency is seen with the magnitude of the earthquake event, where 
larger magnitude more often increases the predominant period of the ground motion. The increase in 
the predominant period of the input ground motion then influences the response of the SDOF system 
so the value of the response spectrum for the chosen period follows the tendency of the frequency 
content of the ground motion. [Rathje et al. 2004] 
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The above mentioned tendencies are shown in Figure 3.6 where two response spectra and a design 
spectrum are shown. The response spectra are generated using attenuation relationships described by 
[Abrahamson & Silva 1997] for two earthquake events. One moderate sized at small distance and one 
large sized at large distance for a deep soil site and strike slip fault mechanism. As discussed above, 
the response at short periods are governed by the moderate sized but closer earthquake, while for the 
longer periods the more distant but larger sized earthquake governs the response. This is also the ten-
dency shown in Figure 3.5. An imagined design spectrum for this case is included in Figure 3.6 but 
has no basis in Eurocode EC8 or similar codes. 

 
Figure 3.6. Response spectra from attenuation relationships described in [Abrahamson & Silva 1997]. MW is the 
magnitude and R is the distance between site and source. An imagined design spectrum is included in the figure. 

3.4. Design spectrum at defined site 

In this section the generation of a response spectrum corresponding to the specified site is generated. 
The design ground acceleration for firm ground is given in Section 2.2 as a peak ground acceleration 
of ag = 0.5 g. To find the ground type for the given soil profile the average shear wave velocity for the 
top 30 m of soil is calculated. This is done by 

,30

,1

30 m
s N

i

s ii

V
h

V=

=

∑
 (3-4)

where 

Vs,30 is the average shear wave velocity for the top 30 m soil
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hi is the thickness of layer i in [m] 

Vs,i is the shear wave velocity of layer i 

[EN1998:2003, p20] 

For the soil profile defined in Section 2.4 the calculated average shear wave velocity as defined in (3-
4) is Vs,30 = 250 m/s which corresponds to ground type C: Deep deposits of dense or medium dense 
sand, gravel or stiff clay with thickness from tens to many hundreds of metres. [EN1998:2003, p20] 

For ground type C the horizontal elastic response spectrum for a 5% damped structure is shown in 
Figure 3.7. Here it is assumed that the earthquake event that contribute the most to the seismic hazard 
have a surface-wave magnitude grater than 5.5 so a type 1 spectrum is applied [EN1998:2003, p24].  

 
Figure 3.7. Elastic response spectrum for soil type C and 5 % damping. [EN1998:2003, p23]





 

 

4. Analysis methods 
In this chapter an outline of the general procedures for the different ground response analyses used in 
this project are given. 

4.1. Equivalent linear method using power spectrum input 

This analysis uses an equivalent linear description of the soil response where the bedrock input motion 
is given as a power spectrum. The analysis is performed in the frequency domain by the procedure 
illustrated in Figure 4.1. 
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Figure 4.1. Equivalent linear method using a power spectrum bedrock input motion. 
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4.2. Equivalent linear method using Fourier series input 

This analysis uses an equivalent linear description of the soil response where the bedrock input motion 
is given as a Fourier series including both amplitude and phase spectra. The analysis is performed in 
the frequency domain by the procedure illustrated in Figure 4.2. 
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Figure 4.2. Equivalent linear method using a Fourier series bedrock input motion. 

4.3. Nonlinear method using time history input 

This analysis uses a nonlinear description of the soil response where the bedrock input motion is given 
as a time history. The analysis is performed in the time domain by the procedure illustrated in Figure 
4.3. 



 

4.3. Nonlinear method using time history input 

– 23 – 

bedrock time history

surface time history

SDOF acceleration
time history

surface response
spectrum

soil

SDOF

bedrock

surface

 
Figure 4.3. Nonlinear method using time history input. 

 

 

 

 

 





 

 

5. Input bedrock motion 
In this chapter the ground motion at bedrock is determined for the equivalent linear and the nonlinear 
analyses used in this project. The bedrock motion is used as input to the analyses and to be able to 
make a comparison of the analyses results the input motions for the equivalent linear analysis and the 
nonlinear analysis must be as similar as possible to the corresponding bedrock motion defined by the 
procedure in Eurocode EC8. 

5.1. Target response spectrum 

The basis for the bedrock motion is taken as the design response spectrum defined by the Eurocode 
EC8 procedure described in Section 3.2.2 for a rock site. A rock site is the stiffest of the sites defined 
in Eurocode EC8 and therefore this soil type corresponds well to bedrock. The use of a more general 
design spectrum is done, since generation of a site specific response spectrum on the basis of attenua-
tion relationship needs more seismic data for the site than is known, see Section 2.2. The bedrock mo-
tions used in the equivalent linear and the nonlinear analyses must be calibrated to give values that 
resemble the target design spectrum as close as possible. Therefore the response spectrum given by 
Eurocode EC8 for rock site and with the same seismic hazard level as given in Section 2.2 is called the 
target response spectrum, see Figure 5.1. 

 
Figure 5.1. Target response spectrum. 5 % damping. 

5.2. Bedrock motion by Kanai-Tajimi power spectrum 

The input bedrock motion used for the equivalent linear analysis can be described by a power spec-
trum. An often used power spectrum for soil motion due to earthquake loading is the Kanai-Tajimi 
power spectrum. 
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The Kanai-Tajimi power spectrum is a filtered white noise defined by 
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 (5-1)

where 

G0 is the ground intensity 

ωg is the ground frequency. For rock site ωg is set to 27.0 rad/s

ζg is the ground damping. For rock site ζg is set to 0.34 

[Kramer 1996, p78] 

The power spectrum is described for the bedrock motion where the ground frequency and ground 
damping values are given in (5-1). The ground intensity needs to be calibrated to the target spectrum 
as done later in this section. 

A power spectrum describes the power of the signal. To rewrite it to the quantity of the signal as given 
by a Fourier amplitude spectrum of acceleration the following relation is used 

( ) ( )( )

( ) ( )

21
2

2

G c

c G

ω ω

ω ω

=

=
 (5-2)

where 

( )c ω is the Fourier amplitude spectrum of acceleration 

[Kramer 1996, p542] 

It is noted that a power spectrum describes the power of the signal and by transferring a power spec-
trum to a Fourier amplitude spectrum a signal time history can not be fully described. To describe a 
time history also a Fourier phase spectrum is needed but information about the phase spectrum can not 
be extracted from the power spectrum. This problem is further discussed in Section 6.4. 

To compare the result in the equivalent linear soil response analysis with the soil response analysis by 
Eurocode EC8 it is important that the seismic input  load is of similar magnitude. Therefore the ground 
intensity factor G0 must be determined in such a way that the bedrock power spectrum and the target 
response spectrum given in Figure 5.1 corresponds to similar seismic bedrock load. 
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This is done by generating an elastic response spectrum from the Kanai-Tajimi power spectrum and 
then compare this response spectrum with the target response spectrum. The transformation procedure 
from a power spectrum to a response spectrum is described in Chapter 8. A comparison of the re-
sponse spectra for bedrock motion generated from a power spectrum are shown in Figure 5.2, where 
the motion are fitted using the time simulation curve as fitting curve to the target spectrum. The 
ground intensity in the power spectrum that gives the best fit to the target spectrum is 2

0 0.0016gG =  
which is the value used for the input motion for the surface response analysis.  

 
Figure 5.2. Response spectrum for bedrock motion. "SRSS" and "simulation" corresponds to generated response 

spectrum as described in Chapter 8. "Eurocode" is the target bedrock spectrum.  

The power spectrum and the Fourier amplitude spectrum of the bedrock acceleration used in the 
equivalent linear analysis are given in Figure 5.3. 

The bedrock motion described by a Fourier power spectrum needs assumptions of the phase spectrum 
in order to fully describe the time history of the motion. In the equivalent linear analyses using the 
bedrock motion described by the power spectrum assumptions of the phase spectrum are done after 
multiplication of the transfer function for the soil as described in Section 6.4. 

An alternative approach is to assume a phase spectrum before the transmission through the soil layers 
and thereby give a fully described bedrock input motion. The phase spectrum could either be assumed 
uniform distributed and made to a transient time history by the procedure described in Section 5.3.1 or 
extracted from a time history for a recorded earthquake event.  
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Figure 5.3. Input bedrock motion described by power and Fourier amplitude spectra. 

5.3. Bedrock motion by time history 

For the nonlinear analysis a velocity time series is needed. Two methods to find a time history is either 
by generating an artificially time history from an amplitude spectrum or by using a modified time his-
tory recorded from a past earthquake event. Both procedures are described here but for the nonlinear 
analysis the time history is found from a past earthquake event. In [EN1998:2003, p29] it is stated that 
at least 3 time histories must be used for the seismic analysis and if at least 7 time histories are used 
the response of the structure can be taken as the mean of the responses from the 7 time history analy-
ses [EN1998:2003, p50]. In this project only one time history is used. 

5.3.1. Artificially generated time history 

An artificially generated time history can be generated on the basis of an amplitude spectrum by the 
following procedure. An illustration of the procedure is given in Figure 5.4. 

First a phase spectrum of random uniform distributed phases are generated and combined with the 
known Fourier amplitude spectrum to give a stationary acceleration time history. The phase and am-
plitude spectra can either be combined by (8-14) in Section 8.2 or by taking the inverse FFT (Fast 
Fourier Transformation), see Section 5.4. 

Next an envelope function is applied to the stationary time series to resemble the build-up and decay 
of a real earthquake motion. An envelope function only scales the amplitude of the time history so this 
procedure can not capture the nonstationary behaviour of the frequency contents which also is present 
in real earthquake motions.  
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Figure 5.4. Illustration of artificially generated time history. Fourier amplitude spectrum (upper left), stationary 

time history (upper right), envelope function (lower left), nonstationary time history (lower right). The used 
parameter values are only chosen as example. 

A problem with this method for time history generation is that the acceleration time history must be 
integrated to give a velocity time history which is needed in the nonlinear analysis. When this trans-
formation from acceleration to velocity is performed a baseline error is introduced so the residual ve-
locity is not equal to zero after the ground motion has subsided. An example of a velocity time history 
with baseline error is given in Figure 5.5. 

A non-zero value of the velocity after the ground motion has ended is not physically meaningful so a 
baseline correction is needed in order to get a velocity time history with a residual velocity equal to 
zero. Such a correction is possible by modern data processing techniques but is not performed in this 
project [Kramer 1996, p62]. Another method to circumvent the baseline error is to generate the veloc-
ity time history directly from a velocity amplitude spectrum by the same procedure as the acceleration 
time history is generated by an acceleration amplitude spectrum. This method needs information of a 
velocity amplitude spectrum and since it most often is acceleration amplitude spectra that are specified 
this method is not used in this project. 
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Figure 5.5. Velocity time history for the artificially generated time series. 

By comparing the artificially generated velocity time history in Figure 5.5 with the recorded velocity 
time history in Figure 5.6, the problems with generating an artificial velocity time history is seen in 
that this gives a velocity time history without close resemblance to an actual velocity time history 
shown in Figure 5.6. Besides the baseline error, the artificially generated velocity time series also fails 
to describe the nonstationary behaviour of the frequency contents. In Figure 5.6 the velocity time se-
ries clearly shows a lower frequency for the decaying part of the time series (from 60 s to 90 s) which 
is not captures in the time series in Figure 5.5. 

5.3.2. Modified time history records 

Another method for getting time histories is by modification of recorded ground motions for past 
earthquake events. It is recommended that as many characteristics of the target ground motion is cap-
tured by the trial ground motion. The trial ground motion is the recorded time history used to simulate 
the wanted target earthquake. Of earthquake characteristics can be mentioned acceleration response 
spectrum, velocity response spectrum, duration but also fault and site characteristics such as fault type, 
distance to site, magnitude and soil type. It is generally accepted that a scaling of the magnitude can be 
done as long as the scaling factor is as close to 1 as possible and always between 0.25 and 4.0 [Kramer 
1996, p340]. It is not recommended to scale the time scale since this also scales the frequency contents 
of the ground motion [Bray 2007b]. 

In this project only the target acceleration response spectrum is given, see Figure 5.1. Also a trial re-
cord corresponding to firm ground is recommended since the record must simulate bedrock motion. 
The chosen trial ground motion which has a matching response spectrum is a record from the Chi-Chi 
earthquake event in Taiwan. The record is from a site corresponding to firm ground and is the northern 
component of the record ID: P1450:TCU078-N [PEER 2008] and recorded with a sampling frequency 
of 200 Hzsf = . The amplitude of the record is scaled by 1.3 to give the best fit. 
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The PEER database includes time histories of the velocity time histories where the records has been 
corrected for baseline error. In that way a velocity time history with residual velocity equal to zero is 
obtained from [PEER 2008] and thereafter scaled by the scaling factor 1.3 to give the time histories 
shown in Figure 5.6 where also the acceleration and displacement time histories are shown. The veloc-
ity time history in Figure 5.6 is used as bedrock input in the nonlinear analysis. 

 
Figure 5.6. Scaled acceleration, velocity and displacement time histories for the used record from the Chi-Chi 

earthquake event. 
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In Figure 5.7 the target and trial response spectra are shown where the trial response spectrum is 
scaled by 1.3 to give a best fit to the target response spectrum. The response spectrum can be 
downloaded directly from the PEER database [PEER 2008] or can be calculated from the acceleration 
time history by the central difference method given in (7-12). 

 
Figure 5.7. Target response spectrum and scaled trial response spectrum. Scaling factor is 1.3. 5 % damping. 

5.4. Bedrock motion by Fourier series  

The time histories found in Section 5.3 can be transformed to the frequency domain by using the the-
ory of Fourier transformation. In this section it is done by the Fast Fourier Transformation (FFT), 
which has optimized the calculation speed of Fourier transformation. The transformation to Fourier 
series can be done for both acceleration, velocity and displacement time histories. 

The sampling frequency for the time history is calculated as 

1
sf t
=
Δ

 (5-3)

where 

fs is the sampling frequency 

tΔ is the time step for the recorded time history
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When taking the Fourier transform of a time history the maximum frequency which can be detected is 
the Nyquist frequency given as 

2
s

nyq
ff =  (5-4)

where 

fnyq is the Nyquist frequency

The Fourier transformation is mirrored around the Nyquist frequency but at frequencies higher than 
fnyq the values no longer gives a physical meaning. 

The FFT algorithm is fastest when the number of data used is equal to a number where the n'th root is 
equal to 2, where n is a positive integer. Because of this, a number of trailing zeroes are added to the 
end of the recorded time series so the total number is equal to  

2n
recordedN N= >  (5-5)

 where 

N is the total number of data points including trailing zeroes

n is a positive integer 

Nrecorded is the number of recorded data points 

The displacement time series from Figure 5.6 is shown in Figure 5.8 including trailing. 

 
Figure 5.8. Displacement time history including trailing zeroes. Total number of points are 32768.  
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One of the concepts FFT is that it only can be done for periodic signals. This means that in the FFT 
algorithm the signal is treated as a periodic signal which repeats itself continuously as shown in Figure 
5.9. By adding enough trailing zeroes it is assured that the response of the preceding sequence has no 
influence on the response of the succeeding sequence since the system again is at rest before the sys-
tem is excited with the new input motion. Note that the periodic signal in Figure 5.9 is for the input 
motion and that the response motion first is at rest at a time after the input motion has stopped.   

 
Figure 5.9. Periodic extension of the input signal. 

The FFT algorithm is a built-in function in Matlab and in the discrete representation of the signal the 
Fourier series of the signal is given as 

( ) ( ){ } 1Y f FFT y t
N

= ⋅  for ] ]0; sf f=  (5-6)

where 

( )Y f  is the Fourier series of the signal as function of frequency

( )y t  is the time history of the signal as function of time 

{ }.FFT is the FFT algorithm defined in Matlab 

fΔ  is the frequency step given as sff
N

Δ =  

A single sided Fourier series is wanted so the frequencies above the Nyquist frequency are discarded. 
The single sided Fourier series is given as 

( ) ( ){ } 12ssY f FFT y t
N

= ⋅ ⋅  for ] ]0; nyqf f= (5-7)
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where 

( )ssY f is the single sided Fourier series as function of frequency

The Fourier series is a set of complex numbers where both amplitude and phase spectra can be ex-
tracted. The Fourier amplitude spectrum is generated as 

( ) ( ){ }ssc f abs Y f=  for ] ]0; nyqf f=  (5-8)

where 

( )c f is the Fourier amplitude spectrum as function of frequency

In Figure 5.10 (left) the Fourier amplitude spectrum for the acceleration time series in Figure 5.8 is 
given. The spectrum is also given for a smoothed amplitude spectrum by averaging over intervals of 
25 values Figure 5.10 (right). The amplitude is normalized so the generated amplitude spectra can be 
compared independent of the sample frequency.  

 
Figure 5.10. Fourier amplitude spectrum of acceleration for the time history given in Figure 5.6. Non-smoothed 
curve (left) and smoothed curve by averaging over intervals  of 25 values (right). Sampling frequency is 200 Hz. 
Values between 25 Hz and the Nyquist frequency at 100 Hz are not shown due to negligible amplitudes in that 

interval.  





 

 

6. Equivalent linear soil response 
In this chapter the response of the soft soil is analysed in the frequency domain by use of the wave 
equation. The response is analysed for two types of input bedrock motions given as a power spectrum 
and a Fourier series as described in Section 5.2 and 5.4 respectively. 

6.1. Dynamic soil properties 

The soil properties have shown to vary with varying shear strain under dynamic loading. Under dy-
namic loading the stress strain behaviour is given as hysteresis loops where both energy dissipation 
and stiffness is varying with the magnitude of strain. The shear stiffness as a function of shear strain 
can be described in a simplified manner by use of a backbone curve, see Figure 6.1. 

1
secG

3
secG

τ

γ

τ

γ

backbone curve

1

2
secG

11

1
secG

3
secG

1

2
secG

11

hysteresis loops

 
Figure 6.1. Hysteresis loops described by equivalent linear stiffness as the backbone curve.  

Each soil type are assigned a curve with the shear modulus ratio as a function of shear strain. The 
shear modulus ratio is given as the ratio between the reduced shear modulus given from the backbone 
curve and the maximum shear modulus given as the shear stiffness corresponding to infinitesimal 
shear strain. The terms degraded and nondegraded stiffness are used for the reduced and the maximum 
stiffness respectively. 

The maximum shear modulus is calculated by (6-1) with the measured shear wave velocities in the soil 
profile in Figure 2.7.  

The relationship between shear wave velocity and shear modulus is given as 

2
sG Vρ=   (6‐1)
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where 

G is the shear stiffness 

ρ is the density 

Vs is the shear wave velocity

[Kramer 1996, p232] 

Curves for the shear modulus ratio for each soil type are shown in Figure 6.2 (left). 

The energy dissipation is given by introducing an equivalent viscous damping ratio which also varies 
with shear strain. The application of an equivalent viscous damping ratio is discussed further in Sec-
tion 0. The equivalent viscous damping ratio curves are shown in Figure 6.2 (right). 

 
Figure 6.2. Shear modulus ratio curves (left) and equivalent damping ratio curves (right) for each soil type. For 

γeff see Section 6.4.2. 

The used curves are found from published test results of various soils and the names of the used curves 
are listed in Table 6.1. 

Table 6.1. Used reduction curves for shear modulus and damping ratio. [Bray 2007]. 

Soil type Shear modulus curve Damping ratio curve 
1 Seed & Idriss, 1970, mean  Seed & Idriss, 1970, mean  
2 Seed & Idriss, 1970, upper Seed & Idriss, 1970, lower 
3 Vucetic & Dobry, 1991, PI=15 Vucetic & Dobry, 1991, PI=15 
4 Vucetic & Dobry, 1991, PI=50 Vucetic & Dobry, 1991, PI=50 
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6.2. Application of the wave equation 

The equation of motion for vertically propagation s-waves are given as 

2

2

u
zt
τρ ∂ ∂

=
∂∂

 (6-2)

where 

ρ is the unit density 

u is the displacement 

t is the time 

τ is the shear stress 

z is the depth 

[Kramer 1996, p177] 

By using a Kelvin-Voigt solid the resistance to shearing consist of an elastic part and a viscous part. 
The stress – strain relationship for a Kelvin-Voigt solid is given as 

2

G c
t

u uG c
z z t

γτ γ

τ

∂
= +

∂
∂ ∂

= +
∂ ∂ ∂

 (6-3)

where 

G is the shear modulus 

c is the viscous damping coefficient

γ is given as u
z
∂
∂

 as derived in (6-28)

[Kramer 1996, p175] 

By inserting (6-3) in (6-2) the wave equation for a Kelvin-Voigt solid can then be expressed as  

2 2 3

2 2 2

u u uG c
t z z t

ρ ∂ ∂ ∂
= +

∂ ∂ ∂ ∂
 (6-4)

For soils it has been shown that viscous damping is a poor assumption and that damping is better esti-
mated as rate-independent damping, sometimes also called hysteretic damping. Therefore a modifica-
tion of damping term in the wave equation as given in (6-4) is discussed in the following section.  
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6.2.1. Viscous damping 

First the damping term is discussed for the case with viscous damping and thereafter a modification is 
explained which gives an equivalent viscous damping. 

The equation of motion for a damped single degree of freedom system excited with a harmonic vibra-
tion is given as 

( )
0 sinI D Sf f f p tω+ + =  (6-5)

where 

fI is the inertia force 

fD is the damping force 

fS is the elastic resisting force 

p0 is the amplitude of the external force

ω is the forcing frequency 

[Chopra 2007, p72] 

For a viscous damped system the damping force is given as 

Df cu=  (6-6)

where 

u is the velocity

[Chopra 2007, p13] 

The solution to (6-5) can be shown in a force-displacement diagram which gives a hysteresis loop as 
shown in Figure 6.3. 
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Figure 6.3. A hysteresis loop with definition of energy loss for a cycle. 
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The area encircled by the loop, as indicated in Figure 6.3, is the energy dissipation for one cycle and is 
for a viscous damped system given as 

2
,viscous 0DE c uπ ω=  (6-7)

where 

ED is the dissipated energy in one cycle  

u0 is the maximum value of the displacement

[Chopra 2007, p99] 

The energy in (6-7) for a viscous damped system can be rewritten by using the relation between the 
viscous damping coefficient and the viscous damping ratio and the value of the maximum strain en-
ergy both given in (6-8) as 

21
0 02

2 2n
n
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E ku

ζ ω ζ
ω

= =

=
 (6-8)

where 

ζ is the viscous damping ratio  

ES0 is the maximum strain energy as shown in Figure 6.3

k is the system stiffness 

m is the mass of the system 

ωn is the natural frequency of the system 

[Chopra 2007, p48,102] 

With the relations given in (6-8) the dissipated energy in (6-7) can be written as 

,viscous 04D S
n

E Eωπζ
ω

=  (6-9)

It is seen that the energy dissipation for a viscous damped system is proportional to the forcing fre-
quency. 

6.2.2. Rate independent damping 

To modify the above procedure to account for rate independent damping the damping term in (6-6) is 
redefined as 
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D
kf uη
ω

=  (6-10)

where 

η is a damping coefficient for rate independent damping

[Chopra 2007, p106] 

By replacing c with the term from (6-10) and inserting this in (6-7) the energy dissipation is expressed 
as 

2
,rate independent 0

,rate independent 02
D

D S

E ku
E E

πη
πη

=

=
 (6-11)

[Chopra 2007, p106] 

It is seen that the energy dissipation for a rate independent damped system now is independent of the 
forcing frequency. 

The energy dissipation for viscous and rate independent damping as a function of the forcing fre-
quency are illustrated in Figure 6.4. 
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Figure 6.4. Energy dissipation for viscous and rate independent damping as a function of forcing frequency. 

6.2.3. Equivalent viscous damping 

For a structure which is not viscous damped the energy dissipated in one cycle is still given as the 
area, ED, enclosed by the hysteresis loop. Therefore an equivalent viscous damping ratio can be found 
by equating ED for the non-viscously damped system with the energy term for the viscous damped 
system as given in (6-9). This is done for the case with nω ω=  since the damping effect is most sensi-
tive at this value.  
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where 

ζeq is the equivalent viscous damping ratio

[Chopra 2007, p103-104] 

By inserting the term for the energy dissipation for rate independent damping the relation between 
equivalent viscous damping ratio and the damping coefficient η is given as 
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 (6-13)

[Chopra 2007, p107] 

With the relation between the damping coefficient η and the equivalent damping ratio ζeq an equivalent 
viscous damped system can be defined by the wave equation in (6-4) with c replaced by 

2
eq

k kc η ζ
ω ω

= =  (6-14)

The wave equation can then by applied as if it was a viscous damped system but with the damping 
coefficient c replaced by (6-14). The system stiffness used in the wave equation is given as the shear 
modulus which leads to the modified wave equation given as 

2 2 3

2 2 2

2 equ u uG G
t z z t

ζ
ρ

ω
∂ ∂ ∂

= +
∂ ∂ ∂ ∂

 (6-15)

6.3. Solution to the wave equation 

By assuming harmonic waves the displacement can be written as 

( , ) ( ) i tu z t U z e ω=  (6-16)

By insertion of (6-16) in (6-15) the wave equation can be rewritten as 
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where 

G* is the complex shear modulus

The solution to (6-17) is given as 

( ) ( )( , ) i t k z i t k zu z t Ae Beω ω∗ ∗+ −= +  (6-18)

where 

k* is the complex wave number defined as k
G
ρω∗
∗=  

A,B are integration constants describing the amplitude of the upward- and downward travelling 
wave respectively 

[Kramer 1996, p177] 

6.3.1. Application to multilayered soil 

In the following determination of A and B it is assumed that the bedrock is modelled as elastic rock 
with parameters as given in Section 2.4 and damping in the soil layers are included. To include the 
damping and stiffness dependence of strain the soil is divided into a series of sublayers where the 
strain is assumed constant over the thickness of each sublayer and only a function of time.  

The analysis is done by using the wave equation which is an analytical solution so the only require-
ment of the discretization is from the assumption that the strain is constant over the thickness of a 
sublayer. The discretization of the soil must be fine enough to describe the altered stiffness and damp-
ing throughout the soil types due to difference in maximum strain. Therefore the finest discretization is 
needed for the depth where the strain difference between sublayers are largest.  

The sublayer thickness for each soil type are given in Table 6.2. Note that a finer subdivision is made 
for the soil types with larger strain variation, which is the upper soil types. 
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Table 6.2. Sublayer thickness for each soil type. Soil type refers to Figure 2.7. 

Soil type Sublayer thickness [m] 
1 0.5 
2 1 
3 2 
4 3 

Due to the multilayered soil the depth z in (6-18) must be taken as the local depth corresponding to the 
depth from the top of the examined layer. By using that both displacements and shear stresses must be 
compatible in adjacent layer boundaries the relations between coefficients A and B for different layers 
can be expressed as 

( ) ( ) ( )
( ) ( ) ( )

1 1
1 2 2

1 1
1 2 2

1 1

1 1

m m m m

m m m m

ik h ik h
m m m m m
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A A e B e

B A e B e

ω α α

ω α α

∗ ∗

∗ ∗

∗ ∗ −
+

∗ ∗ −
+

= + + −

= − + +
(6-19)

where 

α* is the complex impedance ratio between layer m and m+1 given as (6-22) with complex val-
ues G* and k* 

m is the layer index with 1 being the top layer 

[Kramer 1996, p269] 

The complex impedance ratio is derived from the definition of mechanical impedance, which is given 
as the resulting particle velocity in a medium generated from a unit force applied at the surface of the 
medium. For an analysis with only s-waves the mechanical impedance is defined as 

sZ Vρ=  (6-20)

where 

Z is the mechanical impedance

Vs is the shear wave velocity 

[Andersen 2006, p14] 

The mechanical impedance ratio can then be rewritten by using the definitions of the wave number k 
from (6-18) and shear wave velocity Vs from (6-1) 

( )2
2

GZ G

k kGZ G

ρ ρ
ρ

ω ω

= =

= =

 (6-21)
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The impedance ratio can then be written as (6-22) which is used in (6-19) where the parameters con-
sist of complex values 
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 (6-22)

Since it is known that the shear stress at the surface must equal zero it can be shown that A1 = B1. Then 
the relations in (6-19) can be expressed as (6-23) where it has been exploited that A1 = B1 and rear-
ranged since it for this analysis is the input bedrock motion AN which is known 
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By use of (6-19) am and bm can be expressed as 
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 (6-24)

From (6-24) it is seen that all the coefficients am and bm for m = [2;N] can be found by forward itera-
tion when it from (6-23) is seen that a1 = b1 = 1. 

6.4. Solution for power spectrum bedrock input 

The following analysis is for the case when the input bedrock motion used for the equivalent linear 
analysis is described as a power spectrum as discussed in Section 5.2, where the power spectrum given 
as a Kanai-Tajimi power spectrum is used to create a Fourier amplitude spectrum. 
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The problem with a power spectrum or Fourier amplitude spectrum is that they do not fully describe 
the time history of the input signal since a phase spectrum also is needed. Therefore this method in-
cludes assumptions about the length of the signal and the distribution of phases as described later in 
this section. 

6.4.1. Ground displacement amplitude 

To get the quantity of the displacement amplitude input AN as needed in (6-23) the Fourier acceleration 
amplitudes can be rewritten to Fourier displacement amplitudes as follows. 

The displacement field defined by a harmonic wave can be expressed as stated in(6-16). By differen-
tiation with respect to time, the displacement can be expressed as a function of the acceleration 

2 2

2
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( , ) ( , )

( , )( , )

i tu z t U z e
u z t i u z t

u z tu z t

ω

ω

ω

=

=

= −

 (6-25)

When combining (5-2) and (6-25) the displacement amplitude described as a function of the power 
spectrum is given as 

( )
( )

( )
( )

2

2

2

N

N

cA

GA

ωω
ω

ωω
ω

=

=
 (6-26)

where 

( )
NA ω is the displacement amplitude for a given frequency

6.4.2. Shear strain 

The shear strain needed for the reduction curves described in Section 6.1 is the effective shear strain, 
γeff. The effective shear strain is calculated as a percentage of the maximal experienced shear strain 
during the earthquake loading and is often set to γeff = 0.65γmax [Kramer 1996, p271]. A time series of 
the effective shear strain is shown in Figure 6.6. 

The shear strain is for this wave equation problem defined as the displacement differentiated with re-
spect to depth. This is seen from the definition of shear strain and its relation to the strain tensor as 
shown in the following. For a one dimensional response analysis an infinitesimal element deformed by 
shear strain is given as shown in Figure 6.5. 
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Figure 6.5. Shear deformation in one dimension. 

By using the definition of infinitesimal strain tensors and that for the one dimensional problem as 
sketched in Figure 6.5 0v w= =  the strain tensors defining the shear are given as 
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u w u
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 (6-27)

The shear strain is defined as the following 
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γ γ ε

γ γ

∂
= = =

∂
= =

 (6-28)

The index on the shear strain is ignored in the following, since only one value is different from zero. 

By differentiation of (6-18) the shear strain is given as 

( ) ( )( ) ( )i t k z i t k zu ik Ae Be
z

ω ωγ ω ∗ ∗∗ + −∂
= = −
∂

 (6-29)

The maximum shear strain in the top of each layer is found by setting z = 0 and taking the amplitude in 
(6-29) which gives 

( ) ( )
max k A Bγ ω ∗= −  (6-30)

In the discretized calculation the strain contribution from each frequency step is added by the square 
root of the sum of squares (SRSS). This rule is used because the phases in the spectrum are unknown 
and assumed uncorrelated which gives a total strain for the top of each sublayer of 

( )2
max, max

1

I

total i
i

γ γ ω ω
=

= Δ∑  (6-31)
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where 

i is indicating shear strain contribution from frequency step i

I is the total number of frequency intervals 

ωΔ is the frequency discretization 

6.4.3. Effective shear strain 

To illustrate the concept of an effective shear strain two strain time series are described in the follow-
ing. Both a strain time series simulating the real time history and a time series consisting of a har-
monic varying strain corresponding to the effective strain.  

The real strain time history is simulated by generating a Fourier series with the discretized strain am-
plitudes and a set of random generated and uniformly distributed phase angles, δi. The strain time se-
ries for a given sublayer is then given as 

( ) ( ) ( )max
1

cos
I

i i i
i

t tγ γ ω ω δ
=

= +∑  (6-32)

In Figure 6.6 a time series of the shear strain is shown for a sublayer at a depth of 10 m. In the same 
figure a harmonic wave corresponding to the effective shear strain ( ) ( )sineff efft tγ γ ω=  is given. The 
amplitude γeff is set to ( )( )0.65 max tγ⋅  as described earlier in this section and the frequency ω is set 
to 5 rad/s. 

 
Figure 6.6. Strain time series for the sublayer at a depth of 10 m. 
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The harmonic wave for γeff(t) can be seen as the time series used to get the dynamic soil parameters as 
described in Section 6.1. 

6.4.4. Iteration procedure 

The iteration procedure for the equivalent linear analysis using a power spectrum input is as follows 

5) Use power spectrum as bedrock acceleration input 

6) Guess initial effective shear strain values for each layer 

7) Get degraded dynamic soil properties corresponding to the effective shear strain values 

8) Calculate coefficients ai and bi 

9) Calculate Ai and Bi values 

10) Calculate effective shear strain 

11) Unless convergence is achieved start next iteration from 3) 

6.4.5. Results 

From the described procedure above for the equivalent linear analysis using a power spectrum as bed-
rock input the following results are found.  

Convergence of strain 

As a control that the iteration procedure is converging the strain distribution for each iteration are re-
corded. The strain distribution for chosen iteration loops are shown in Figure 6.7 where it is seen that 
there is little change in the strain distribution from iteration #7 to iteration #10.  

The shifts in shear strain at certain depths in Figure 6.7 corresponds to a shift in stiffness which hap-
pens at soil type boundaries. Since the stress must be continuous at these boundaries the shift in stiff-
ness results in a shift in shear strain. 
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Figure 6.7. Maximum strain for chosen iteration loops. 

To give a clearer picture of the change in the maximum strain from one iteration to the next the fol-
lowing quantity is defined 

max, max, 1
,

1 max,

1 jN j
i i

error i j
j i

abs
N

γ γ
γ

γ
−

=

−⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑  (6-33)

where 

γerror,i is the sum of the maximum strain difference between iteration i and i-1 for all sublayers

max,
j

iγ is the maximum strain of sublayer j for iteration i 

N is the total number of sublayers 

By plotting the sum of the strain difference for each iteration it is again seen from Figure 6.8 that with 
10 iterations the strain distribution is converged. 



 

6. Equivalent linear soil response 

– 52 – 

 
Figure 6.8. Sum of strain error as defined in (6-33). 

Transfer function 

The transfer function relates the motion at the surface with the bedrock motion and is given as the 
following 

( ) i
iN

N

uF
u

ω =  (6-34)

where 

( )
iNF ω is the transfer function between bedrock and sublayer i as a function of frequency 

iu  is the complex amplitude of the acceleration at the top of layer i 

The amplitude of the acceleration of layer i is found from (6-18) with z = 0, since the acceleration is 
needed for the top of the layer. By using (6-23) and the fact that A1 = B1 the amplitude is given in (6-
35) 
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Now the transfer function between sublayer i and bedrock is given as 
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In Figure 6.9 the transfer function between bedrock and surface motion is shown as function of fre-
quency for the degraded case where both stiffness and damping are functions of effective strain. As a 
comparison a result for a nondegraded case where it is assumed than the stiffness correspond to infini-
tesimal shear and that the damping ratio has a constant value of 5 % and that both stiffness and damp-
ing is unaffected of effective strain. The resulting dynamic soil parameters for both the degraded and 
nondegraded case are shown in Figure 6.11. 

By comparing the degraded and nondegraded transfer functions it is seen that when degradation is 
included the peaks shifts towards lower frequencies corresponding to a softening of the soil. Also the 
peaks are lower corresponding to an increase in damping for the degraded analysis. 

 
Figure 6.9. Transfer function between bedrock and surface motion. 

Surface motion 

The surface motion is calculated as the product of the transfer function and the bedrock Fourier ampli-
tude spectrum as given in (6-37) 

1 1N Nc F c=  (6-37)

where 

c1 is the surface Fourier amplitude spectrum  

cN is the bedrock Fourier amplitude spectrum as defined in Section 5.2
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The Fourier amplitude spectrum for the surface is shown for both the degraded and nondegraded 
analyses. Again the degraded response gives lower amplitudes with peaks shifted towards lower fre-
quencies.  

 
Figure 6.10. Surface Fourier amplitude spectrum. 

Degraded soil parameters 

A comparison between the degraded and nondegraded soil parameters are shown in Figure 6.11. It is 
seen that the shear wave velocity as expected is decreased in the degraded case and that the highest 
reduction is in the layers experiencing the highest maximum shear strain. The damping is for the most 
part increased for the degraded case and for large strains this increase is by a factor larger than three.  

 
Figure 6.11. Degraded and nondegraded soil parameters. 
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It is assumed that an analysis using degraded soil parameters gives a better estimate of the soil re-
sponse due to cyclic earthquake loading since this method better describes the behaviour of soil pa-
rameters when significant strain is present. The degraded analysis has shown to give good estimates 
for soils where the shear strain is below 1 % since dynamic soil properties at higher strains are poorly 
captured by reduction curves as described in Section 6.1 [Bray 2007b]. From Figure 6.7 it is seen that 
the maximum strain is below 1 % for all sublayers. 

6.5. Solution for Fourier series input 

When the bedrock input motion is described by a time series this can be transformed to the frequency 
domain using FFT as described in Section 5.4. By using FFT the bedrock input motion is given as a 
single sided complex Fourier series, YN,ss, which can be used for the equivalent linear analysis since 
this analysis is performed in the frequency domain. 

For the iterative procedure the Fourier series of the displacement time history is used. This is done 
since the iterations seeks to find the maximum strain for each sublayer, where the strain is the deriva-
tive of displacement with respect to depth. 

6.5.1. Fourier series for sublayers 

The Fourier series for the sublayers are found by using the transfer function given in (6-36). The Fou-
rier series for sublayer i is found by 

( ) ( ) ( ), ,i ss N ss iNY f Y f F f= ⋅  (6-38)

where 

( ),i ssY f  is the single sided Fourier series for sublayer i 

( ),N ssY f is the single sided Fourier series for bedrock 

( )iNF f  is the transfer function between bedrock and sublayer i

6.5.2. Time history for sublayers 

The time history of sublayer i is found by using the inverse FFT on the Fourier series of the sublayer. 
When the inverse FFT on a single sided Fourier series the series needs to be extended to the original 
length of the signal to get the right scale on the time history. Therefore trailing zeroes are added to the 
single sided Fourier series so the total number of frequencies are N, where N is the number of data 
points including trailing zeroes in the transformed input time series for the bedrock motion. The time 
history for sublayer i is found by 
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( ) ( )( ){ },i i ssy t N e IFFT Y f= ⋅ℜ  for ] ]0; sf f= (6-39)

where 

( )
iy t  is the time history of sublayer i 

N is number of data points in the bedrock input time history including trailing zeroes 

( ).IFFT is the inverse FFT algorithm defined in Matlab 

fs is the sampling frequency 

6.5.3. Effective strain for sublayers 

By using the displacement Fourier series as bedrock input motion the displacement time history for all 
sublayers can be found by use of (6-38) and (6-39). When all displacement time histories are known 
the strain can be calculated as the difference in displacement between two adjacent sublayers at time t 

( )
( ) ( )

1i i
i

u t u tt
z

γ −−
≈

Δ
 (6-40)

The effective strain for each sublayers are found as 65 % of the maximum strain as described in Sec-
tion 6.4.3 

( ){ }, 0.65 maxi eff i tγ γ= ⋅  (6-41)

6.5.4. Iteration procedure 

The following summary of the iteration procedure is given as 

1) Use displacement Fourier series as input bedrock motion 

2) Guess initial effective shear strain values for each layer 

3) Get degraded dynamic soil properties corresponding to the effective shear strain values 

4) Calculate coefficients ai and bi 

5) Calculate transfer function FiN 

6) Calculate effective shear strain for each sublayer 

7) Unless convergence is achieved start next iteration from 3) 

8) When convergence is reached use acceleration Fourier series as bedrock motion and degraded 
soil properties to get surface acceleration Fourier series. 
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6.5.5. Results 

From the described procedure above for the equivalent linear analysis using a time history bedrock as 
bedrock input the following results are found.  

Convergence of strain 

The convergence is for this analysis slower than for the analysis using a power spectrum as input. The 
slow convergence is seen in Figure 6.12 (left) where it is seen that convergence has stopped after itera-
tion 6. To improve the convergence a new procedure for calculation of degraded soil parameters are 
used. Instead of calculation the degraded soil parameters from the maximum strain of the previous 
iteration, the mean of the maximum strain from the last two iterations are used instead. This method 
ensures that the strain value is not continuously shifting between two values without  reaching con-
verge. The convergence by this method is shown in Figure 6.12 (right), which is the method used for 
the results given later in this section. 

 
Figure 6.12. Sum of maximum strain difference between iterations. Convergence curve by using maximum strain 

from previous iteration (left). Convergence curve by using mean of last two maximum strain values (right). 

The maximum strain distribution throughout the sublayers for chosen iteration loops are given in 
Figure 6.13. 
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Figure 6.13. Maximum strain distribution for iteration 5, 10 and 15.  

From Figure 6.13 it is seen that the maximum strain for all sublayers are below 1 % which is in the 
range where the dynamic soil properties are well captured by the reduction curves. 

Transfer function 

The absolute value of the degraded transfer function between bedrock and surface are shown in Figure 
6.14. 

 
Figure 6.14. Transfer function between bedrock and surface. 
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The same tendency as the transfer function in Figure 6.9 are seen. The degraded transfer function is 
shifted towards lower periods and the magnitude is smaller than the non degraded transfer function. 

Surface motion 

Since this analysis has used a Fourier series and not only the Fourier amplitude spectrum it is possible 
to extract both the surface acceleration as a time history and as a Fourier amplitude spectrum. In 
Figure 6.15 the surface acceleration time history is shown for the degraded case. 

 
Figure 6.15. Surface acceleration time history. 

The surface Fourier amplitude spectrum is shown in Figure 6.16. This figure also indicates the above 
observations of increase in amplitude and shift towards lower frequencies. 

 
Figure 6.16. Fourier amplitude spectrum of acceleration for the surface. Smoothed curve by averaging over 

intervals  of 25 values.  Sampling frequency is 200. 

 





 

 

7. Nonlinear dynamic soil analysis 
In this chapter a nonlinear dynamic soil analysis is described. The nonlinear analysis is performed with 
the purpose of comparing the soil behaviour during an earthquake with the results from an equivalent 
linear analysis and the results from the procedure described in Eurocode EC8. This gives an insight 
into the effect of using more advanced analyses where it is assumed that the nonlinear analysis is the 
most advanced followed by the equivalent linear analysis.  

7.1. Cyclic nonlinear model 

It is chosen to use a relatively simple nonlinear model to describe the stress – strain behaviour during 
cyclic loading. The chosen model is the extended Masing model which will be discussed further in the 
following sections. The Masing model is able to describe a cyclic stress – strain behaviour which en-
capsulates the hysteretic behaviour of the stress – strain curves and thereby the inelastic behaviour of 
the soil. The model also includes the strain dependence of the shear stiffness and is likewise able to 
describe the development of permanent strain. The stress is described only in terms of effective stress 
and the model is not able to describe volumetric strain and pore pressure development. 

7.2. General procedure 

In this section the general procedure for the nonlinear analysis using the extended Masing model is 
described. In Section 7.3 the implementation of the general procedure for the specific case is further 
discussed. The nonlinear analysis is done in the time domain where the state of the soil is calculated at 
each time step.  

7.2.1. Nonlinear algorithm 

The nonlinear analysis is as the equivalent linear analysis based on the equation of motion given in 
Section 0 and here repeated as 

u
z t
τ ρ∂ ∂
=

∂ ∂
 (7-1)

where 

ρ is the density of the soil

u is the particle velocity 
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t is the time 

τ is the shear stress 

z is the depth 

[Kramer 1996, p275] 

For the nonlinear analysis the soil is divided into a series of sublayers where the stress, strain, dis-
placement and particle velocity is calculated by formulas given in the following. The numbering of the 
sublayers are shown in Figure 7.1.  

τ γ2 2,

bedrock

surface
τ γ= =1 1 0

1 1,u u

2 2,u u
τ γ3 3,

3 3,u u

− −1 1,j ju u
τ γ,j j
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τ γ,N N

,N Nu u
τ γ+ +1 1,N N

+ +1 1,N Nu u
τ τ+ =2N r

Δz

ρ2

ρ3

ρ j

ρN

ρ +1N

 
Figure 7.1. Definition of layer numbering. Displacement and velocity is taken as the value in the interface be-
tween two sublayers. Stress and strain is taken as the value in the middle of each sublayer. The soil is divided 

into N sublayers. 

By using forward difference approximation the derivatives in (7-1) can be approximated as 

1, ,j t j t

z z
τ ττ + −∂

≈
∂ Δ

 (7-2)

and 

, ,j t t j tu uu
t t

+Δ −∂
≈

∂ Δ
 (7-3)

where 

Δz is the sublayer thickness as indicated in Figure 7.1
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Δt is the time step used in the analysis 

u is the displacement at the sublayer interface 

[Kramer 1996, p276] 

by substituting (7-2) and (7-3) into (7-1) and solving for ,j t tu +Δ , the equation of motion can be ap-
proximated by the explicit finite difference equation given as 

( )

1, , , ,
1

, , 1, ,
1

j t j t j t t j t
j

j t t j t j t j t
j

u u
z t

tu u
z

τ τ
ρ

τ τ
ρ

+ +Δ
+

+Δ +
+

− −
=

Δ Δ
Δ

= + −
Δ

 (7-4)

The boundary conditions must be satisfied, which for the surface means that the stress and strain are 
both equal to zero as indicated in Figure 7.1. The boundary condition at bedrock depends on the be-
haviour of the bedrock. For the case with elastic bedrock, which is used for this analysis, the boundary 
condition that must be satisfied is that the stress at the interface between the bottom of the soil and the 
top of the bedrock must be equal. This boundary condition is shown to be satisfied when the shear 
stress at the top bedrock layer, τr, is given as 

( ), , 1,2r t r sr r t t N t tv u uτ ρ +Δ + +Δ≈ −  (7-5)

where 

ρr is the density of bedrock 

vsr is the shear wave velocity of bedrock 

ru is the input bedrock velocity 

τr is the shear stress at the top of bedrock as indicated in Figure 7.1

[Kramer 1996, p277] 

Since 2N rτ τ+ =  the boundary condition at the bedrock can be expressed as a formula for the velocity 
at the interface between bedrock and sublayer N+1 by insertion of (7-5) into (7-4) and solving for 

1,N t tu + +Δ . Thus the boundary condition is given as 
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(7-6)

Note that the boundary condition in (7-6) are different than the condition in the procedure described in 
[Kramer 1996, p278] due to difference in definition of layer numbers. 

Since the input bedrock motion is known for all time steps, the velocity profile for all sublayers can be 
calculated by knowledge of the velocity profile in the previous time step.  

The incremental displacement from time step t to time step t t+ Δ  is given as 

, ,j t t j t tu u t+Δ +ΔΔ = Δ  (7-7)

where 

,j t tu +ΔΔ is the incremental displacement from time step t to time step t t+ Δ

[Kramer 1996, p278] 

The displacement at time step t t+ Δ  is then found by summation of the incremental displacements 
from tΔ  to t t+ Δ  as shown in (7-8) 

, ,

t t

j t t j t
t t

u u
+Δ

+Δ
=Δ

= Δ∑  (7-8)

 The shear strain in each sublayer is given as 

, 1,
,

j t t j t t
j t t

u u
z

γ +Δ − +Δ
+Δ

−
≈

Δ
 (7-9)

[Kramer 1996, p278] 

The strain is only found for [2; 1]j N= +  since for 1j =  the strain is zero, see Figure 7.1 and for 
2j N= +  the strain is not needed.  

The shear stress is found from the shear strain by use of the defined stress-strain relationship. In this 
case the relationship is nonlinear and given as the extended Masing model. 



 

7.2. General procedure 

– 65 – 

7.2.2. Extended Masing model 

One of the key elements in the extended Masing model is the backbone curve as discussed in Section 
6.1. The backbone curve defines the strain dependency of the stiffness. 

The extended Masing model consist of four criteria which describe the stress-strain relation. The crite-
ria are as follows: 

1)   For initial loading, the stress – strain curve follows the backbone curve. 

2) If a stress reversal point occurs at a point defined by ( ),p pγ τ , the stress – strain curve follows a 

path given by (7-10). 

3) If the unloading or reloading curve exceeds the maximum magnitude of past strain and thereby 
intersects the backbone curve it follows the backbone curve until the next stress reversal. 

4) If an unloading or reloading curve crosses an unloading or reloading curve from the previous 
cycle, the stress – strain curve follows that of the previous cycle. 

( )2 2
p p

bbF
τ τ γ γ− −

=  (7-10)

where 

τp is the stress reversal point

γp is the strain reversal point

Fbb is the backbone function 

[Kramer 1996, p241-242] 

The criteria are easier understood by using an example which is done in the following. First it is noted 
that when a stress reversal point is reached a strain reversal point is reached at the same time. Since it 
is the strain that is known in this analysis the strain reversal point is instead used as an indicator. For 
this example the whole strain history is given beforehand as indicated in Figure 7.2. 

For a given backbone curve and by applying the four rules for the extended Masing model, the stress – 
strain behaviour is as shown in Figure 7.3. 
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Figure 7.2. Strain time history for the extended Masing example. 
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Figure 7.3. Stress – strain behaviour for the strain history example given in Figure 7.2 when the extended 

Masing model is applied. The letters correspond to the strain time history in Figure 7.2. 
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It is seen that for the initial unloading the curve follows the backbone curve from A-B according to 
rule 1). From B-C and C–D the curve follows the reloading and unloading curves defined by rule 2). 
At D the maximum strain is reached and the curve now follows the backbone curve as prescribed in 
rule 3). After a few unloading reloading curves the reloading curve I-J intersects the previous reload-
ing curve at J and hereafter the curve follows the path of the previous reloading curve E-F until the 
strain reversal point at K as prescribed in rule 4). 

7.3. Implementation of model for specific site 

In this section a description of the implementation of the nonlinear model to the specific site is given. 
The site profile is given in Figure 2.7.  

7.3.1. Backbone curves 

The data sets describing the backbone curves for the four different soil types are simplified to hyper-
bolic functions where the quantities Gmax and τmax giving the shape of the hyperbola are fitted to the 
actual data sets. The hyperbolic functions are given as 

( ) max

max

max
1

bb
GF G

γτ γ
γ

γ

= =
+

 (7-11)

where 

Gmax is a shape parameter corresponding to shear stiffness at infinitesimal strain 

τmax is a shape parameter corresponding to the shear strength of the soil 

[Kramer 1996, p241] 

The maximum shear modulus, Gmax, can be calculated from the shear wave velocities given in the soil 
profile by (6-1). Instead of using the formula Gmax is fitted since by fitting Gmax the backbone curve 
described by the hyperbolic function gives a better fit to the data values in the whole range of γ. The 
backbone curve given by data values are derived from the data for the shear modulus reduction curves 
in Figure 6.2 (left). The maximum shear strength, τmax, is also fitted and the backbone curves given by 
the data and the fitted curves for all four soil types are shown in Figure 7.4.  
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Figure 7.4. Data values for backbone curves for the four soil types fitted with hyperbola functions. Soil type 1 

(upper left), soil type 2 (upper right), soil type 3 (lower left), soil type 4 (lower right). Soil types are indicated in 
Figure 2.7. 

In Table 7.1 the fitted values of Gmax and τmax for the backbone curves described by the hyperbola func-
tions in (7-11) are given.  

Table 7.1. Used values for the hyperbolic backbone functions for all four soil types. 

 Soil type 1 Soil type 2 Soil type 3 Soil type 4 
Gmax [MPa] 35 100 160 330 
τmax [kPa] 52 180 240 1300 

7.3.2. Input velocity bedrock motion 

The input velocity bedrock motion used for the nonlinear analysis must be described as a time history 
since the nonlinear method is in the time domain. The used bedrock motion is found as a scaled re-
corded time history from a past earthquake event as described in Section 5.3.2 and shown in Figure 
5.6. 
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7.3.3. Algorithm for stress – strain relationship 

In this section a note is made about how the algorithm for the stress – strain relationship is coded in 
Matlab. This is only a description of the overall procedure. For a complete description see the full 
Matlab code on the project CD-ROM. 

The strain is known at time step t and all previous time steps by the nonlinear algorithm given in Sec-
tion 7.2.1. With known strain history until time t the stress is found at time t for the extended Masing 
model by the following general procedure. 

The procedure includes a set of key parameters described in the following 

• Base: the stress – strain point used as parameters ( ),p pτ γ  for the unloading – reloading curve 

described in (7-10). 

• Target: the stress – strain point where the current hysteresis loop crosses the previous hystere-
sis loop. This point indicates when the current curve needs to switch path to the previous curve, 
see rule 4. in Section 7.2.2. 

• Beta: matrix storing the previous reversal points for all sublayers. This matrix is used when a 
redefinition of base and target are needed due to crossing of previous hysteresis loop. 

The general procedure for determination of the stress when the strain is known is as follows 

1) Test if new strain reversal point is reached 

a) If reversal point is reached new definition of base and target are made. 

b) If reversal point is not reached 

i) If target strain is reached redefine base and target to that of previous hysteresis loop. 

ii) If target strain is not reached base and target stays the same. 

2) The stress value is calculated 

a) If the base is the backbone curve the stress is calculated by the backbone formula (7-11). 

b) If the base is not the backbone curve the stress is calculated by the strain reversal formula (7-
10). 

7.4. Results for nonlinear analysis 

By the procedure and input as described in Section 7.3 the following results for the surface motion is 
found. 
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7.4.1. Surface velocity time history 

The velocity time history for both the bedrock input motion and the calculated time history for the 
surface velocity are shown in Figure 7.5.   

 
Figure 7.5. Surface velocity time history from the nonlinear analysis. 

7.4.2. Surface acceleration time history 

The output from the nonlinear model is the surface velocity time history. It is necessary to transform 
this to an acceleration time history which is used in the generation of an acceleration response spec-
trum as described in Chapter 10. 

For constant time steps the time derivative of a discrete signal can be approximated by the central dif-
ference expression (7-12). Since the acceleration is the time derivative of the velocity an expression 
for the acceleration is the following  

1 1

2
i i

i
u uu

t
+ −−

=
Δ

 (7-12)

where 

iu  is the acceleration of the mass relative to the ground at time step i

iu  is the velocity of the mass relative to the ground at time step i 

tΔ is the time step 

[Chopra 2007, p171] 

The above expression is used to get the acceleration time history for the surface response in the 
nonlinear analysis shown in Figure 7.6. 
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Figure 7.6. Surface acceleration time history from the nonlinear analysis. 

7.4.3. Surface Fourier amplitude spectrum 

The surface Fourier amplitude spectrum corresponding to the acceleration time history shown in 
Figure 7.6 can be generated by the procedure described in Section 5.4. 

 
Figure 7.7. Surface Fourier amplitude spectrum. 

7.4.4. Stress strain relationship 

The stress-strain relationship for the sublayer at a depth of 10 metres is shown in Figure 7.8. Hystere-
sis loops of different sizes are seen along with the behaviour of shift in path when previous hysteresis 
loops are encountered. It can be noticed that for large magnitude strain cycles the area encircled by the 
hysteresis loops are much larger than for the small magnitude strain cycles. This indicates the effect 
that damping increases with increasing magnitude of strain cycles.  
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Figure 7.8. Stress-strain relationship for the sublayer at a depth of 10 metres. 

7.4.5. Strain time history 

A strain time history for the sublayer at a depth of 10 metres are shown in Figure 7.9.   

 
Figure 7.9. Strain time history for sublayer at a depth of 10 metres. 
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The given strain time history illustrates one of the features of the chosen nonlinear model in that a 
permanent strain is seen after the ground motion has subsided. This indicates that plastic deformation 
can be described by the nonlinear model, even thou only in a simplified manner. 

 





 

 

8. Response spectrum for power spectrum 
To compare the results from the equivalent linear and the nonlinear soil response analyses with the 
response spectrum defined in Eurocode EC8 it is necessary to transform the surface motions found in 
the equivalent linear and the nonlinear analyses to response spectra. A general description of the re-
sponse spectrum concept are given in Section 3.1. 

For the equivalent linear model using a Fourier amplitude spectrum the response spectrum is calcu-
lated on the basis of assumptions of the combination of the amplitudes for the different frequencies. 

8.1. Combination by SRSS rule 

This method combines the amplitudes in the amplitude spectrum by the SRSS rule where the ampli-
tudes are combined by taking the square root of the sum of squares. The SRSS rule assumes that the 
contributions from amplitudes at different frequencies are uncorrelated. First the amplitudes of the 
total acceleration of the SDOF are found by the transmissibility formula.  

8.1.1. Transmissibility formula 

The maximum response for a SDOF system excited with harmonic ground motion can be determined 
by use of the transmissibility defined as (8-1) which gives the ratio between the amplitude of the vi-
bration of the mass and the amplitude of the excitation. 
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ωζ
ωω

ω ωζ
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⎛ ⎞⎛ ⎞+ ⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟= =
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⎝ ⎝ ⎝ ⎠ ⎠ ⎝ ⎠ ⎠

(8‐1)

where 

TR is the transmissibility 

0
tu  is the amplitude of the total acceleration of the mass 

0gu is the amplitude of a harmonic ground acceleration

ω is the frequency of the harmonic ground motion 

ωn is the natural frequency of the SDOF system 
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ζ is the damping ratio of the SDOF system 

[Chopra 2007, p92] 

The formula in (8-1) can be derived by using the expression for a harmonic transfer function as shown 
in the following. The following derivations are for a single degree of freedom system excited with 
harmonic ground motion and for stable response given as the stationary response after initial condi-
tions are subsided. The total acceleration of the mass is given as 

( ) ( ) ( )t
gu t u t u t= +   (8‐2)

where 

( )tu t  is the total acceleration of the mass 

( )
gu t is the ground acceleration 

( )u t  is the acceleration of the mass relative to the ground

[Chopra 2007, p92] 

The ground acceleration is given as 

( )
0

i t
g gu t u e ω= ⋅   (8‐3)

[Chopra 2007, p91] 

The response of the mass relative to the ground motion when a stationary response is achieved can be 
described by the harmonic transfer function. First the expression is given for the relative displacement 
excited with a harmonic motion 

( ) ( ) ( ) i tu t H f e ωω ω= ⋅ ⋅   (8‐4)

where 

( )u t  is the displacement of the mass relative to the ground motion

( )H ω is the harmonic transfer function 

( )f ω  is the Fourier amplitude of the harmonic excitation 

[Lutes & Sarkani 2004, p235] 

By taking the second derivative of (8-4) with respect to time the relative acceleration of the mass is 
given as 
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( ) ( ) ( )2 i tu t H f e ωω ω ω= − ⋅  (8-5)

The Fourier amplitude of the excitation is for this case with ground motion given as 

( ) 0gf muω = −   (8‐6)

where 

m is the mass of the system 

[Chopra 2007, p91] 

The harmonic transfer function can for the SDOF case be written as 

( )
( )2 2

1
2n n

H
m i

ω
ω ζω ω ω

=
+ −

  (8‐7)

[Lutes & Sarkani 2004, p245] 

By inserting (8-6) and (8-7) in (8-5) the relative acceleration is given as 
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 (8-8)

By inserting (8-8) and (8-3) in (8-2) the total acceleration is given as 

( )
2

0 21
1 2

t i t
gu t u e

i
ω α

α ζα
⎛ ⎞= ⋅ +⎜ ⎟− +⎝ ⎠

 (8-9)

The amplitude of the total acceleration is taken as the modulus of the complex value given in (8-9). 
This gives an amplitude of the total acceleration given as 

( )
( ) ( )

1
2 2

0 0 2 22

1 2
1 2

t
gu u ζα

α ζα
⎛ ⎞+

= ⎜ ⎟
− +⎝ ⎠

 (8-10)

The transmissibility as given in (8-1) is the ratio between the amplitude of the total mass acceleration 
and the amplitude of the ground acceleration. By dividing the expression in (8-10) with the amplitude 
of the harmonic ground acceleration 0gu  the transmissibility formula is derived as given in (8-11).  
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 (8-11)

8.1.2. Total response of mass 

The transmissibility can be used for a single harmonic excitation. By discretization of the input Fourier 
amplitude spectrum of the surface acceleration, (8-1) can be used for each excitation frequency and 
corresponding amplitude. This gives a series of contributions to the total response of the mass. Each 
contribution is determined as 

( ) ( )0, 0i

t
i g iu TR uω ω ω= ⋅   (8‐12)

where 

0, i

tu ω  is the distribution to the mass response from the excitation with ωi

( )0g iu ω is the amplitude of the excitation with ωi 

To add all the contributions the square root of the sum of squares (SRSS) are used as adding rule. This 
gives an estimation of the maximum response of the mass given as 

( )2
0,max 0,

1
i

N
t t

i
u u ω ω

=

= Δ∑   (8‐13)

where 

N is the number of components of the Fourier amplitude spectrum of the surface accelera-
tion 

0,max
tu is the total maximum response of the mass when SRSS rule is assumed 

Δω is the frequency interval of the discretized input Fourier amplitude spectrum 
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8.1.3. Procedure for response spectrum generation 

The following steps are used to generate the response spectrum for a given Fourier amplitude spec-
trum. 

1) Set an array of the natural frequency values ωn and for each value do the following 

a) Calculate TR by (8-1) 

b) Calculate the response distribution vector 0, i

tu ω  by (8-12) 

c) Calculate the total response 0,max
tu  by (8-13) 

2) Collect the total response values 0,max
tu  and the corresponding ωn values which gives the re-

sponse spectrum Se(ωn) 

Response spectra for bedrock and surface motion generated by the procedure described in this section 
are given in Figure 8.2. 

8.2. Combination by time series simulations 

The SRSS rule used in Section 8.1 does not include the duration for which the earthquake loading is at 
its peak stationary period. The stationary duration has an influence on how the contributions from the 
discretized frequencies are added together in that a longer duration increases the probability of a cross-
ing of a specified threshold. In this section an analysis is performed which includes the duration of the 
stationary part of the motion by generating an assumed Fourier phase spectrum and combine this with 
the Fourier amplitude spectrum for the mass of the SDOF. 

8.2.1. Fourier series generation 

Fourier series can be used to describe a signal which in this case is the acceleration time history of the 
mass in a SDOF system. The Fourier series for a given natural frequency is given as 

( ) ( )0,
1

cos
i

N
t t

i i
i

u t u tω ω δ ω
=

= + Δ∑   (8‐14)

where 

( )tu t is the total response of the mass as function of time

iδ  is the phase angle corresponding to ωi 

t is time 
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The Fourier amplitudes 0, i

tu ω  is found in (8-12) whereas the phase spectrum is assumed to consist of 
random values uniformly distributed in the interval [0;2π[. In this way a time series of the mass accel-
eration can be generated and a maximum value in the given time interval corresponding to the station-
ary duration of the motion can be found for each simulation of a phase spectrum. The duration of the 
stationary part of the input bedrock motion is set to 10 s, which is the minimum duration recom-
mended in Eurocode EC8 [EN8 2003, p29]. It is assumed that the stationary duration of the motion of 
the mass of the SDOF also is 10 s. It shall be noted that there is a possibility of the peak acceleration 
occurring after the stationary part of the earthquake motion is over, but this possibility is not included 
in this method. 

Since the phase angles are random values each simulation will give a different time series and thereby 
a different maximum value. A number of simulations are therefore performed so a probability distribu-
tion of the maximum response is generated. In this analysis it is chosen to use the mean value of the 
generated distribution as the response value used for the response spectrum. By this procedure the 
response is given as the expected value of the maximum acceleration distribution. The mean value is 
chosen since the analysis is performed to give as realistic a result as possible and not to introduce extra 
safety in the earthquake response. 

8.2.2. Procedure for time series simulation 

By the above calculation a transformation of a Fourier amplitude spectrum can be transformed to a 
response spectrum by time series simulation. The following is the used procedure: 

1) Define a fundamental frequency, ωn, for the SDOF system 

2) Generate N phase angles as random numbers uniformly distributed between 0 and 2π 

3) Generate ( )tu t  and find the maximum acceleration in the specified time period  

4) Repeat 2) and 3) 100 times to get a probability distribution and use the mean of the maximum 
values as a final response value 

5) Repeat 1) – 4) for each ωn to get the total response spectrum ( )e nS ω  

8.2.3. Determination of discretization values 

In Section 8.2 both time interval, Δt and number of simulations must be determined to give a accurate 
result. Also the frequency interval, Δω, is needed for both analyses in Section 8.1 and 8.2. In this sec-
tion these three values will be determined on the basis of a series of convergence studies. The value of 
ΔTn is set to 0.02 s. 
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Determination of Δt 

By letting Δt vary and for a fixed set of δi, and for different values of Tn the response spectrum values 
for the surface motion  are calculated. The values are shown in Table 8.1 and the index values of Table 
8.1 are shown in Table 8.2. 

Table 8.1. Response of mass in units of g for different time step and natural frequencies. 

Δt \ Tn 0.2 s 0.5 s 1 s 
0.3 s 1.793 1.192 2.597 
0.1 s 1.793 1.192 2.597 
0.03 s 1.793 1.192 2.611 
0.01 s 1.830 1.193 2.619 
0.003 s 1.830 1.195 2.619 
0.001 s 1.831 1.195 2.619 
0.0003 s 1.831 1.195 2.619 

Table 8.2. Response values from Table 8.1 index after Δt = 0.0003 s values. 

Δt \ Tn 0.2 s 0.5 s 1 s 
0.3 s 0.980 0.998 0.992 
0.1 s 0.980 0.998 0.992 
0.03 s 0.980 0.998 0.997 
0.01 s 1.000 0.998 1.000 
0.003 s 1.000 1.000 1.000 
0.001 s 1.000 1.000 1.000 
0.0003 s 1.000 1.000 1.000 

It is seen that the sensitivity of the time step value is not to sensitive so a time step of Δt = 0.01 s is 
used for the analysis. 

Determination of number of simulations 

A similar convergence analysis is performed for determination of number of needed simulations. Here 
an increasing number of simulations are performed and the result for different natural periods are 
given in Table 8.3 and index values in Table 8.4. 

Table 8.3. Response of mass in units of g for different number of simulations (# sim) and natural periods. 

# sim\ Tn 0.2 s 0.5 s 1 s 
5 1.977 1.465 1.927 
50 1.865 1.500 2.229 
100 1.912 1.438 2.158 
200 1.887 1.480 2.293 
500 1.879 1.460 2.195 
1000 1.882 1.470 2.226 
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 Table 8.4. Response values from Table 8.3 index after # sim = 150 values. 

# sim\ Tn 0.2 s 0.5 s 1 s 
5 1.051 0.997 0.866 
50 0.991 1.021 1.001 
100 1.016 0.978 0.970 
200 1.003 1.007 1.030 
500 0.999 0.994 0.986 
1000 1.000 1.000 1.000 

The index values in Table 8.4 shows that there is no clear picture towards convergence. It is known 
that the quality of the estimate is better increasing number of simulations and therefore 100 simula-
tions are chosen as a compromise between precision and calculation time. 

Determination of Δω 

A study of the influence of the frequency interval is carried out by generating a response spectrum for 
the bedrock motion using the SRSS method for different values of the frequency interval. The re-
sponse spectrums are shown in Figure 8.1. 

 

 
Figure 8.1. Response spectrum for bedrock for frequency interval values Δω of 1 rad/s  (upper left), 0.3 rad/s 

(upper right), 0.1 rad/s (lower left), 0.03 rad/s (lower right). ζ = 5 %. 
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From Figure 8.1 it is seen that the shapes of the four response spectra are similar except at higher natu-
ral periods, where irregularities are seen for the spectra corresponding to Δω = 1 rad/s and Δω = 0.3 
rad/s. For Δω = 0.1 rad/s and 0.3 rad/s no irregularities are seen and the shape of the response spectra 
looks as it should. A frequency interval of Δω = 0.1 rad/s is chosen for the analysis.   

8.3. Results for power spectrum motion  

The transformation of a Fourier amplitude spectrum to response spectrum is performed by the equiva-
lent linear method with combination of the amplitudes by both the methods described in Section 8.1 
and 8.2. The values used for the time simulation method are, Δω = 0.1 rad/s, Δt = 0.01 s and number of 
simulations = 100. The results are shown for degraded responses. 

In Figure 8.2 the response spectrum for the surface motion is shown both for the response spectrum 
generated by the SRSS rule and for the time series simulation. It is seen that the time series simulation 
method gives a lower response than by using the SRSS rule. Since the time series simulation includes 
assumptions of the duration of the earthquake it is assumed that this analysis is more correct than the 
SRSS combination rule. Therefore the combination rule by time series simulation is used for fitting of 
the bedrock input motion as described in Section 5.2. 

 
Figure 8.2. Response spectrum for surface motion. Damping is 5 %. 





 

 

9. Response spectrum for Fourier series 
In this chapter a description of how to generate a response spectrum from a ground motion given as a 
Fourier series. The method utilizes the harmonic transfer function for a SDOF system together with 
the inverse FFT. 

9.1. Fourier series for SDOF system 

The generated Fourier series for the surface motion calculated in (6-38) is transmitted through the 
SDOF in the frequency domain by multiplication with the harmonic transfer function for the SDOF 
system in the same way as the bedrock motion was multiplied with the transfer function of the soil as 
described in (6-38).  

The harmonic transfer function for the SDOF system is given in (8-7) and the relative acceleration of 
the SDOF given as a Fourier series is calculated by 

( ) ( ) ( ), 1,mass ss ssY f Y f H f= ⋅  (9-1)

where 

Ymass,ss is the single sided Fourier series for the relative mass acceleration 

Y1,ss is the single sided Fourier series for the surface acceleration 

H is the harmonic transfer function for the SDOF system 

9.2. Total acceleration time history 

The Fourier series Ymass,ss is transformed to a time history using the inverse FFT algorithm as described 
in (6-39) 

( ) ( )( ){ },mass mass ssy t N e IFFT Y f= ⋅ℜ  for ] ]0; sf f= (9-2)

The total acceleration of the SDOF used to get the response spectrum is found by adding the time his-
tory of the relative mass acceleration with the time history of the surface acceleration as described by 

( ) ( ) ( )1
t
mass massy t y t y t= +  (9-3)
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where 

( )t
massy t is the total acceleration of the SDOF system 

( )
1y t  is the surface acceleration 

9.3. Response spectrum 

The response spectrum value corresponding to the chosen natural circular frequency in the harmonic 
transfer function is found as the maximum value of the generated time history of total mass accelera-
tion. For a series of generations with varying values of natural frequencies the response spectrum in 
Figure 9.1 is generated. 

 
Figure 9.1. Surface acceleration response spectrum for the equivalent linear method using a Fourier series 

input. 

 

 

 



 

 

10. Response spectrum for time history 
In this chapter a description of how do generate a response spectrum from acceleration time histories 
is given. The Newmark time stepping algorithm is used to solve the equation of motion of a SDOF 
system excited with the ground acceleration. 

10.1. Newmark algorithm 

To generate a response spectrum corresponding to the surface acceleration time history a SDOF sys-
tem is solved. In the time domain this can be done by the Newmark algorithm. In this section only the 
algorithm is given and criteria for stability and reasonable accuracy. 

10.1.1. Initial conditions are calculated as 

The initial conditions are calculated as 

0 0 0
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p cu kuu
m

− −
=  (10-1)
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 (10-4)

where 

0u  is the initial acceleration of the mass  

0u  is the initial velocity 

0u  is the initial displacement 

p0 is the initial excitation 

c is the damping coefficient given as 2 nc mζω=  

k is the stiffness given as 2
nk mω=  
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m is the mass 

ζ is the damping ratio 

ωn is the natural circular frequency 

γ,β are a parameters set to 1
2γ =  and 1

4β =  corresponding to the average acceleration method

[Chopra 2007, p177] 

In this analysis the initial conditions are all equal to zero. The damping ratio is set to ζ = 0.05  which 
gives a response spectrum for 5% damping. The natural circular frequency is varied to give the re-
sponse spectrum for a range of natural frequencies. 

10.1.2. Time stepping calculation 

For each time step in the analysis the following calculations are performed 

ˆ i i i ip p au buΔ = Δ + +  (10-5)
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where 

ipΔ is the increment in excitation given as 1i i ip p p+Δ = −  

ui is the displacement of the mass relative to the ground at time step i

pi is the excitation at time step i 

[Chopra 2007, p177] 

Since the excitation in this case is ground acceleration the load p is given as ,i g ip mu= − , where gu  is 
the ground acceleration. 
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10.1.3. Time step criteria 

The Newmark algorithm is stable for any chosen time step value when the average acceleration 
method is used.  

To make sure the Newmark algorithm also gives accurate results the following criterion for the time 
step is typically used 

0.1 nt TΔ ≤  (10-10)

where 

Tn is the natural period of the system given as 2
n

n
T π

ω
=

[Chopra 2007, p173] 

In the response spectrum generation the smallest used value for Tn is set to 0.02 snT =  so the time 
step criterion is 0.002 stΔ ≤ . For the analysis a time step of 0.0005 stΔ =  is used so the Newmark 
algorithm is assumed to give stable and accurate results. 

10.2. Response spectrum for nonlinear analysis 

A response spectrum is generated by using the Newmark algorithm described in Section 10.1 for a 
SDOF. For the response spectrum the total acceleration is needed and not the relative acceleration as 
calculated by (10-9). The total acceleration is given as 

,
t
i i g iu u u= +  (10-11)

where 

t
iu is the total acceleration of the mass at time i

[Chopra 2007, p177] 

with the use of (10-11) the total acceleration time history for the SDOF system excited with the sur-
face acceleration time history can be calculated. The values in the response spectrum is then found by 
varying Tn with values between [0.02;4] snT =  and for each chosen value of Tn take the maximum 
value of t

iu  as stated in (10-12) 

( ) ( ){ }max t
e n i nS T u T=  (10-12)
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where 

( )e nS T is the response spectrum for a given Tn

The generated response spectrum for the surface acceleration time history from the nonlinear analysis 
is shown in Figure 10.1. 

 
Figure 10.1. Response spectrum for the surface motion calculated from the nonlinear analysis. 5 % damping. 

 

 



 

 

11. Comparisons 
The seismic ground response has been analysed by different analysis methods and by different de-
scriptions of the input bedrock motions by the procedures illustrated in Chapter 4. In this chapter a 
series of comparisons of the different methods are made in order to give an estimate of which analysis 
methods are the most accurate and for which cases simpler analyses gives satisfactory results.  

The used analysis methods to get the surface ground motion is the following: 

1) Procedure by Eurocode EC8 

a) Gives surface response spectrum 

2) Equivalent linear model with power spectrum bedrock input motion 

a) Gives surface Fourier amplitude spectrum 

b) Gives surface response spectrum 

3) Equivalent linear model with Fourier series bedrock input motion 

a) Gives surface Fourier amplitude spectrum 

b) Gives surface response spectrum 

4) Nonlinear model with time history bedrock input motion 

a) Gives surface Fourier amplitude spectrum 

b) Estimates surface response spectrum 

A comparison are made of the generated surface response spectra since this is the only representation 
of the surface motion defined in Eurocode EC8. Comparisons with alternative soil profile and bedrock 
input are also performed is Section 11.2 and 11.3 respectively. 

11.1. Surface response spectra comparisons 

The analysis results for the equivalent linear method and nonlinear method are compared with the 
procedure by Eurocode EC8 by comparing the generated surface acceleration response spectra. In 
Figure 11.1 the surface acceleration response spectrum for the equivalent linear method using both the 
power spectrum and Fourier series bedrock input are shown together with the nonlinear analysis and 
the surface acceleration response spectrum defined by Eurocode EC8. 
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Figure 11.1. Surface acceleration response spectrum for all relevant analysis methods. 

From the comparison of the response spectra it is seen that the equivalent linear method using a Fou-
rier series input and the nonlinear analysis gives similar results, but the equivalent linear method has a 
tendency to overdamp the response at lower and higher periods than 0.3 snT ≈  and 1.6 snT ≈  respec-
tively. The equivalent linear method using a power spectrum and assumed phase spectrum gives a 
much higher response. Compared with the response spectrum given by Eurocode EC8 the equivalent 
linear method using Fourier series and the nonlinear analysis fits the design spectrum quite well for 
periods in the range up to 1 snT ≈  but with a tendency to give a higher response. The design spectrum 
given by Eurocode EC8 does not capture the large response in the region of 1.5 snT ≈  as indicated by 
both the equivalent linear and the nonlinear analyses.  

The high period peak at 1 snT ≈  for the equivalent linear method using a power spectrum input is at a 
lower period than for the equivalent linear analysis using a Fourier series and for the nonlinear analy-
sis. The reason for this peak at a lower period can be explained by comparing the range of effective 
shear strain and resulting transfer function for the soil of both the equivalent linear analysis using a 
power spectrum and the analysis using a Fourier series input.  
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The effective shear strain and transfer functions for the two analyses are seen in Figure 6.7, Figure 6.9, 
Figure 6.13 and Figure 6.14. The range of the effective shear strains for the analysis using a power 
spectrum are around [0.06 %;0.2 %]effγ ≈  whereas the effective shear strain for the analysis using a 
Fourier series are around [0.4 %;0.9 %]effγ ≈ . The much lower shear strain for the analysis using a 
power spectrum results in a stiffer soil and by that a transfer function with modes at a higher frequency 
than for the analysis using a Fourier series. Large amplification is generated at frequencies in the re-
gions of the modes, and the peak at the lower period for the analysis using a power spectrum therefore 
correspond well to this observation. 

The second peak at a period around 0.4 snT ≈  for the equivalent linear analysis using a power spec-
trum as input can also be explain on the basis of the transfer function in that the second peak in the 
transfer function, corresponding to the second mode, is significant compared to peak of the second 
mode for the analysis using a Fourier series.  

To illustrate the change in ground motion from bedrock to surface the bedrock and surface accelera-
tion response spectra for all four analysis methods are given in Figure 11.2. 

  

 
Figure 11.2. Bedrock and surface acceleration response spectra for the four compared analysis methods.  
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It is seen that the surface motion generally is higher than the bedrock motion for all analysis results. A 
shift in the frequency contents of the motion towards higher periods is seen for all analyses. From the 
figure for equivalent linear analysis using Fourier series and for the nonlinear analysis a small peak is 
seen at 1.2 snT ≈  for the bedrock motion. The energy at this frequency range is partly what causes the 
large peak for the surface motion but by calculation of the amplification ratio as done in Section 11.1.1 
it can be shown that the soil is still greatly amplified at this period range.  

11.1.1. Amplification ratio 

For a clearer picture of the amplification of the ground motion from bedrock to surface an amplifica-
tion ratio can be calculated for the range of the natural period. The amplification ratio is defined as the 
ratio between the surface response value and the bedrock response value. 

In Figure 11.3 the calculated amplification ratios on the basis of the response spectra in Figure 11.2 
are shown. 

 
Figure 11.3. Amplification ratio curves for the four compared analysis methods. 
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By calculation of the amplification ratio it is easier seen, at which periods the motion is amplified the 
most. In Figure 11.3 it is seen that the periods around 1.2 snT ≈  to 2.2 snT ≈  gives the highest ampli-
fication of the motion for the equivalent linear and the nonlinear analyses. 

An estimate of which period will give the highest amplification can be made on the basis of some ba-
sic estimation rules which gives an estimate of the degraded natural period. Excitation at the natural 
period of a soil site will be amplified the most, just as it is seen for all other dynamic systems.  

Firstly the nondegraded natural period of a soil site can be estimated by (11-1), where nondegraded 
means a soil with stiffness not softened by shear strain 

4
n

s

HT
V

≈  (11-1)

where 

Tn is the nondegraded natural period of the site 

H is the total thickness of the soil layers 

sV is the average nondegraded shear wave velocity for all soil layers

[Bray 2007b] 

By the soil properties given in Figure 2.7 the nondegraded average shear wave velocity is calculated to 
m354 s sV = . As an estimate the degraded natural period, 'nT , is given as ' 1.5n nT T≈  [Bray 2007b]. 

With these basic estimation rules the degraded natural period of the site is given as 

4' 1.5

' 1.4 s

n
s

n

HT
V

T

≈

≈
 (11-2)

From (11-2) it is seen that this estimation correspond well with what is seen in Figure 11.3 but esti-
mated slightly in the lower range of the period.  
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11.2. Soil response for 30 m soil profiles 

In this section analyses of the soil response of an altered soil profile is performed. The motivation is 
that in Eurocode EC8 the soil type is defined on the basis of the average shear wave velocity for the 
top 30 m soil. The comparison in Section 11.1 are based on a soil profile with 80 m, where the soil 
from 30 m to 80 m of depth might have an influence on the surface response which the procedure by 
Eurocode EC8 does not take into account. The altered soil profile for this modified analysis is given in 
Figure 11.4 and is chosen as the top 30 m of the original soil profile from Figure 2.7 directly overlay-
ing bedrock. With this altered soil profile the average shear wave velocity for the top 30 m is the same 
as for the original analysis and therefore the prescribed response by Eurocode EC8 is the same as for 
the original soil profile of 80 m soil. 
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Figure 11.4. Modified soil profile. 

The surface motion for this soil profile is analysed using the equivalent linear analysis with the Fourier 
series input as described in 6.5 and by the nonlinear analysis described in Chapter 7. The surface mo-
tion is compared with the design response spectrum defined by Eurocode EC8 where all three re-
sponse spectra are shown in Figure 11.5. 

 
Figure 11.5. Surface acceleration response spectra using 30 m soil profile. 
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The response for this soil profile is generally smaller than for the analyses for the 80 m soil profile but 
with a significant large peak for the equivalent linear analysis. This peak corresponds to the first mode 
of the soil which is at a lower period than for the 80 m soil profile corresponding to the decreased 
value of H in (11-2). The large peak is partly caused by resonance but because the stiffness of the soil 
changes over the duration of the earthquake which is not captured by the equivalent linear model this 
high amplification due to resonance is likely to be an overestimation.  

From the figure a peak for the nonlinear analysis is seen at a period around 1.5 s as with the original 
soil profile. As before this peak is not captured by the design spectrum defined by Eurocode EC8. The 
peak for the nonlinear analysis must correspond to the first mode in the analysis. The reason for the 
higher value of the period in the nonlinear analysis is because larger strains are calculated and thereby 
larger softening of the soil which shifts the first mode towards higher periods. The maximum strain 
distribution throughout the depth of the soil is shown in Figure 11.6. 

 
Figure 11.6. Maximum strain distribution (left). Stress-strain curve for sublayer at soil type interface at 12 m of 

depth (right). 

As seen in Figure 11.6 large strains are experienced in the sublayers at 12 m of depth where a change 
in the soil type is present. The strain at that depth reaches values where the hyperbolic function de-
scribing the backbone curve gives deformations corresponding to failure of the soil. By looking at the 
actual measured backbone curve in Figure 7.4 it is seen that the measurements only are given for strain 
values below 1 %, but the tendency of the measured backbone curve is an continuously inclining 
curve. By comparing the fit of the hyperbolic function to the measured backbone curve in the region of 
strain values 1 %, it is seen that the inclination of the fitted curve is much less, indicating a shear 
strength lower than for the measured curve. The large softening of the soil in the nonlinear analysis 
might not be as large as calculated if a better fit of the backbone curve is used instead of the hyper-
bolic function. 
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11.3. Alternative bedrock input record 

In this section an analysis of the effect of using another bedrock time history record as input is per-
formed. The time history is chosen with the same target spectrum and by the same procedure as de-
scribed in Section 5.3.2. The chosen trial ground motion is a record from the Northridge earthquake 
event in California, USA in 1994. The record is from a site corresponding to firm ground and with the 
record ID: P0926:MTW000 [PEER 2008] and recorded with a sampling frequency of 50 Hzsf = . 
The scaled acceleration, velocity and displacement time history are shown in Figure 11.7. 

 
Figure 11.7. Acceleration, velocity and displacement time history scaled by 1.5. 
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The target and scaled trial acceleration response spectra are shown in Figure 11.8. 

 
Figure 11.8. Target and scaled trial response spectra. Scaling is 1.5. 

The soil profile is the full profile of 80 m soil as shown in Figure 2.7. 

The analysis using the new bedrock time history is performed for both the equivalent linear and the 
nonlinear analyses. The result is shown as the surface acceleration response spectrum together with the 
prescribed surface acceleration defined by the Eurocode EC8 procedure. The response spectra are 
shown in Figure 11.9.  

 
Figure 11.9. Surface acceleration response spectra using Northridge record. 
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The result using the new bedrock time history shows that the equivalent linear and nonlinear analyses 
gives similar results. For this record the response is generally below the design spectrum defined by 
Eurocode EC8. The peak for the response at the first mode of the soil around 1.1 snT ≈  is for this 
input motion also captured by the design spectrum.  

Compared with the nonlinear response it is seen that the equivalent linear method tends to overdamp 
the response. The reason for this might be explained by the way the equivalent linear method incorpo-
rates the strain dependant damping as an effective strain proportional with the maximum strain. If the 
maximum strain is much larger than the majority of remaining strain cycles the effective strain should 
be lower than the prescribed 65 % of the maximum strain.  

 

 

 

 



 

 

12. Conclusion 
On the basis of the comparison of the analysis results the following conclusions can be made. 

The Eurocode EC8 procedure is the fastest method to get an estimate of the seismic response at a 
given site. The procedure can be implemented with only basic knowledge of the site characteristics 
and seismic hazard for the area, and the procedure can therefore be used to get a qualified picture of 
the seismic load at a site. The Eurocode procedure only takes the soil effect into account in a simpli-
fied manner by including the top 30 m of soil. Therefore the procedure comes short in predicting the 
large amplification of the ground motion at the first period of the soil when soil deposits at a larger 
depth is present at the site. When the energy for the input motion is concentrated at small periods the 
Eurocode EC8 gives satisfactory results in that the design spectrum captures the amplification at larger 
periods. 

An equivalent linear model can be implemented for a better estimate of the ground motion amplifica-
tion at sites with deep soil deposits. The equivalent linear model takes all the soil layers and the strain 
dependency of the soil parameters into account. The model has shown to give satisfactory results, but 
some overestimated resonance effects can be calculated which will not happen in the field due to the 
varying stiffness of the soil throughout the duration of the earthquake. The equivalent linear method is 
not recommended for strain levels above 1 % since dynamic soil properties above this level are poorly 
described due to increasing nonlinearity in the soil response at these strain levels. 

The nonlinear model gives satisfactory results both for low and high levels of strain. The model re-
quires more extensive description of the constitutive model and therefore more laboratory testing is 
needed. The nonlinear analysis must be performed in the time domain which results in larger computa-
tional time but with today's computer power this should be no limitation.  

It is important that good input motions are available for both the equivalent linear and nonlinear analy-
ses. Both an amplitude and a phase spectrum must be given since estimations of the phase spectrum is 
attached with large uncertainty due to the complex structure of earthquake motions. Modified earth-
quake record are recommended as input motions for the analyses. 
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