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problems of the soil have also been evaluated. 

Free-span analyses are made in a non-linear 
Winkler model with main focus on fatigue 
damage due to dynamic excitation from waves 
and current. Parametric study is performed to 
detect the governing parameters for the damage 
of a pipeline free-span.    

Finally, the project contains multi-span 
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RESUMÉ 

Dette projekt omhandler numerisk modellering af dynamiske problemstillinger med udgangspunkt i 
fritspændsanalyser af en offshore rørledning i det danske område af Nordsøen. Fritspændsanalyserne 
er tværfaglige og projektet indeholder tre fagområder: konstruktion, hydrodynamik og geoteknik.  

Hydrodynamiske lastmodeller, der inkluderer tidsvarierende kraftkoefficienter og wake-effekt er 
undersøgt og sammenlignet med den konventionelle Morison Model. Implementering af 
hydrodynamisk dæmpning er inddraget i lastmodellerne som en feedback lastmodel. Empirisk 
lastmodellering af hvirvel lock-in er også inddraget i projektet.     

Jorden omkring rørledningen er i den numeriske modellering beskrevet som fjedre efter princippet 
for en Winkler-model. De analytiske fjedre er blevet vurderet i forhold til stivheden beregnet i en 
numerisk 2D kontinuummodel. Transmitterende randbetingelser for rør og jord er blevet udviklet og 
implementeret i Winkler-modellen. Udmattelse i jorden som konsekvens af cyklisk belastning af 
jorden omkring rørledningen er blevet vurderet kvalitativt. 

De konstruktionsmæssige problemstillinger har primært fokus på udmattelse af rørledningen som 
konsekvens af den dynamiske påvirkning af fritspændet. Søjleinstabilitet er også inddraget i 
projektet for at vurdere denne problemstilling i forhold til udmattelse. 

Et parameterstudie er blevet foretaget for et enkeltspænd for at få overblik over de styrende 
parametre for det dynamiske respons og udmattelse af rørledningen. Herunder er forskellen i 
udmattelseskonsekvensen ved at benytte laster fra regelmæssige og uregelmæssige bølger blevet 
analyseret. Analyse af flerspænd er inddraget med fokus på de dynamiske konsekvenser der opstår 
når to nærliggende fritspænd interagerer. 
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PREFACE 

This master project is made by two students attending the 3-4 semester of the master program in 
civil engineering at Aalborg University, Denmark. The project is written in the period from 5 
September 2007 until 11 June 2008. The main theme for the master project is “Design and analysis 
of advanced/unusual structures”.  

The project is composed of two parts: 

• A report containing design conditions, results, conclusions and chosen calculations. 
• A DVD with the students' programs, numerical models, simulations and a digital version 

of the report.  

The reader is suggested to read the appendices that are available for the individual chapters before 
reading the next chapter in order to get the full perspective of the analyses. Formulas are repeated in 
the appendices if they are considered to improve the context between report and appendix.  

The following notation and sign-convention has generally been used in this project: 

• In the chapters on soil mechanics and buckling, compressive stresses and strains are 
defined as positive, but everywhere else compression is defined as negative. 

• Differentiation of a variable with respect to time t is denoted with prime, e.g. dy y
dt

≡ � , 

whereas differentiation of a variable with respect to other variables are shown in full 

conventional notation, e.g. dy
dx

 . 

• Vectors and matrices are shown in bold typography. 
• When using index notation, Greek indices denote 1..2 and Latin indices denote 1..3. 
• Values or formulas that have been changed in the report in comparison with the original 

sources are denoted with *. 
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INTRODUCTION 

In this chapter, a broad perspective at offshore pipelines is taken. First, the background and involved 
fields of engineering are described. Then, the life cycle of an offshore pipeline is elaborated. Then 
follows an overview of typical loads and limit states. The chapter closes with a brief description of 
modelling challenges for an offshore pipeline. 

BACKGROUND 

Offshore pipelines are an effective way to transport oil and gas between offshore platforms or to 
transport oil and gas directly from offshore to land. In Denmark, offshore pipelines are used in the 
North Sea where most of the Danish oil reserves are located. The Danish shipping company Maersk 
daily handles more than 600.000 barrels of oil and 27.000.000 m3 gas [Maersk 2008], which has 
made the use of offshore pipelines a necessity. 

The use of offshore pipelines is a more recent development of the latter part of the twentieth century. 
The design of an offshore pipeline is multidisciplinary and typically involves three fields of 
engineering: Structural mechanics, hydrodynamics and soil mechanics which is illustrated in Figure 
1. 

 
Figure 1: The involved fields of engineering for an offshore pipeline. 

The design procedures for offshore pipelines are still under development which has lead to a 
substantial field of research that deals with a proper physical determination of the many aspects of a 
pipeline life cycle.  

LIFE CYCLE 

Many different aspects before and during the life cycle of a pipeline must be considered. Planning of 
the route demands a great deal of considerations. During the life cycle from fabrication to 
abandoning the installed pipeline after years of operation, the pipeline must provide safe 
transportation. In case of failure, severe environmental pollution and great economic loss may occur. 
The main aspects of pipeline life cycle have been evaluated in this section. Figure 2 shows the main 
aspects of a life cycle for a typical offshore pipeline. 
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Figure 2: Life cycle of an offshore pipeline. 

The enhanced box in Figure 2 shows the state of the pipeline life cycle that is in focus in this project. 
Most of the other states of the life cycle have to be considered in some way when the design 
conditions for the pipeline are determined.  

During route planning, it is important to consider the seabed conditions and the wave and current 
action on the pipeline. The pipeline sections must comply the transportation demand and at the same 
time have a bearing capacity and a proper protection to resist the rather rough environment of the sea 
during installation and operation. 

At installation, it is necessary to know the following: How is the pipe welded together, what laying 
technique is used (S-laying or J-laying) and is the pipeline trenched or not? Assembly and laying of 
the offshore pipeline is done by customised vessels. Pressure testing must be performed before the 
pipeline is taken into use. 

During the operational state, free-spans of the pipeline may appear due to an uneven seabed or 
erosion. The latter has been illustrated in Figure 3. The above-mentioned states in the life cycle have 
great influence on how to analyse the consequences of a free-span. Failure due to fatigue damage 
and buckling must be considered. 

Fabrication 
 

Onshore fabrication of pipeline 
sections. 

Installation 
 

Assembly and laying of pipeline on 
seabed followed by trenching and 
pressure testing. 

Operation 
 

The pipeline is taken into use by 
pumping oil or gas through it, but it 
must also comply the states of being 
water-filled or air-filled. 

Maintenance 
 

Annual inspections of the seabed 
condition. Corrosion and damage 
inspections of the pipeline. Possible 
repair work of the seabed or pipeline.   

Abandonment 
 

Pipeline is disconnected and left in 
safe condition. Removal of pipeline 
might be required. 
 

Route Planning 
 

The need for an offshore pipeline 
occurs and a pipeline route is planned. 
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Figure 3: Illustration of a pipeline free-span due to erosion. 

The maintenance is another important aspect of a pipeline life cycle. Annual inspections are made by 
video whereas the repair work of the seabed can be done by local rock-dumping at the free-span to 
prevent erosion in the future. If a pipeline section has suffered severe damage or buckling, it may be 
necessary to repair or replace the section. As mentioned before, this could have severe 
environmental and economical consequences. The combination of annual inspections and immediate 
repair work of a free-span will limit the design duration of a erosion-induced free-span to maximum 
one year which decrease the excitation from wave and current.  

When the pipeline has outlived its lifetime of typical 25 years or for some reason has lost its 
usability, the pipeline is emptied and disconnected. If no request for removal is made from the local 
authorities, the pipeline is typically left in a safe condition on the seabed.  

TYPICAL LOADS AND LIMIT STATES 

An offshore pipeline experiences loads from a variety of sources. In this section, a brief overview is 
given of the loads and limit states that are typical for an offshore pipeline. The loads that affect the 
side-span and free-span of an offshore pipeline are illustrated in Figure 4.  

Temperature load

Seabed

Self-weight

Temperature 
load

Seabed

Hydrodynamic 
load

Self-
weight

Trawling 
load

Hydrostatic pressure
Seepage pressure

Soil pressure

Internal 
pressure

Hydrostatic 
pressure

Internal 
pressure

 
Figure 4: Typical loads that affect the side-span (left) and free-span (right) of an offshore 
pipeline. 
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The typical loads are briefly explained in the following:   

• Self-weight: This static vertical load arises due to gravity and the mass of the pipeline with 
coating, internal fluid and possible marine growth for the free-span. The self-weight is 
typically largest during a water-filled state since the density of water is larger than air or oil. 

 
• Trawling load: This load arises from accidental trawling and may affect the free-span. The 

trawling load has not been considered further in this project. 
 

• Temperature load: This static axial load arises during an operational state due to the 
combination of the differences in temperature between the contents of the pipeline and the 
surrounding water and the prevention of expansion due to the relatively large length of the 
pipeline. The axial load from temperature is of considerable magnitude. 

 
• Internal pressure: This static pressure affects the inner surface of the pipe-wall and arises 

during the operational state of the pipeline. The internal pressure may be more than 20 times 
larger than the hydrostatic pressure at the seabed for an offshore pipeline in the North Sea. 

 
• Hydrostatic pressure: This static pressure affects the external surface of the pipeline and 

arises from the water pressure above the seabed.  
 

• Seepage pressure: This dynamic pressure arises in the pores of the soil that cover the 
pipeline side-span if the soil is sufficiently permeable. In this case, the pore pressure of the 
soil will be governed by the ambient pressure field which in turn is governed by the waves. 
When the waves attack the pipeline at a skew angle, the pressure gradient will also vary 
along the side-span and may cause different forces upon the side-spans. The sea page 
pressure has not been considered further in this project. 

 
• Hydrodynamic load: This dynamic load arises from the flow field around the pipeline free-

span that is induced by current and waves. The hydrodynamic forces may be both lateral 
and vertical where the latter is a known principle from aerodynamics to make airplanes 
airborne.  

 
• Soil pressure: When the pipeline is displaced, active or passive soil pressure may occur 

along the side-span in the same or opposite direction of the pipe displacement. 

The pipeline is typically evaluated in the following three limit states: 

• Ultimate Limit State Failure (ULS): In this limit state, the bearing capacity of the pipeline 
and the supporting soil is evaluated during extreme conditions. For the pipeline, the effects 
of global and local buckling may be considered. The pipeline is a dynamic system where 
considerable dynamic amplification may occur. Thus, analyses that consider the dynamic 
loads as static should include the possible effect of dynamic amplification. The combination 
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of vertical static self-weight and a considerable compressive axial load makes the pipeline 
susceptible for global buckling. Therefore, this limit state is typically governing for an 
offshore pipeline. 

 
• Fatigue Limit State (FLS): This limit state considers the pipeline and the soil during 

dynamic excitation which may induce fatigue in the pipeline and liquefaction in the soil. 
The latter may occur in saturated, cohesionless soil when locally undrained conditions arise 
due to cyclic loading which causes an increase in the pore pressure and a loss in soil 
strength. This is typically not investigated for offshore pipelines but could have devastating 
effects since it may increase the length of the free-span. 

 
• Accidental Limit State (ALS): This limit state considers the pipeline during accidental 

impact from a trawling load. This limit state is optional and has not been considered further 
in this project. 

MODELLING CHALLENGES  

An offshore pipeline is a complex structural system that poses several modelling challenges. In order 
to illustrate this, the challenges that lie in modelling the composite nature of the pipeline, the 
hydrodynamic loads and soil pressure are briefly described. In this context, one may bear in mind the 
following thoughtful words from an author in turbulence modelling: 

…an ideal model should introduce the minimum amount of complexity 
while capturing the essence of the relevant physics. [Wilcox 2000, p1] 

Composite Pipeline 

The pipeline is composed of several materials. For simplicity and without loss of accuracy for the 
global system, the pipeline may be regarded as homogenous. This requires that the effects of the 
internal and external pressure that act upon the pipe-wall are introduced as an additional compressive 
axial load. This is an important aspect when considering the ULS and FLS. The considerable 
stiffness of the concrete coating of the pipeline may also be included as additional stiffness.  

Hydrodynamic Loads 

The challenges of modelling hydrodynamic loads arise from the complexity of hydrodynamics. A 
myriad of analytical or numerical approaches are available. A relatively simple approach is to 
determine the hydrodynamic loads upon the oscillatory undisturbed plane flow according to 
appropriate wave theories such as 1st order Stoke's waves. The hydrodynamic load is typically based 
upon the classical Morison Model (1950) and the determination of the corresponding force 
coefficients has been the objective of research for the last century. 
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A relatively complex approach is to determine the hydrodynamic forces upon the disturbed three-
dimensional oscillatory flow by the method of Computational Fluid Dynamics (CFD). At the time of 
writing, such results depend greatly upon the choice of turbulence model and mesh size and require 
validation against experiments. Wave flume experiments of a model-scale pipeline are usually not 
possible for the severe sea states, but U-tube model-scale experiments may be performed. A further 
step with increased complexity is a numerical model that couples the hydrodynamics and the 
structural system which may capture the effects of hydrodynamic damping and vortex lock-in.  

Soil Pressure 

Another modelling challenge is the interaction between the pipeline and the soil at the side-spans of 
the pipeline. Since soil is a highly non-linear material, the structural system is inherently more 
computationally expensive than a linear system and further complexity is unappealing. The 
conventional approach is relatively simple and models the soil as a series of springs as illustrated in 
Figure 5. This is typically referred to as a Winkler foundation or a Winkler model. The springs may 
act in multiple directions and interact only through the pipeline.  

 
Figure 5: A Winkler foundation which is constituted by springs. 

A relatively complex approach is to model soil by anisotropic, three-dimensional continuum 
elements with plastic behaviour. Several plastic constitutive numerical models may be used such as 
the Mohr-Coulomb Model, Critical State Models or Hardening Soil Model. The numerical model 
that is in best accordance with experiments may be chosen which in practice limits the usability of 
plastic models with many empirical parameters. An accurate determination of the soil characteristics 
is rarely performed due to the great variation along the pipe route and the many resources that are 
involved in extracting offshore specimens and conducting triaxial tests. 

The modelling challenges that have been explored in this project are described in the following 
chapter on Project Thesis. 
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PROJECT THESIS 

This master project is about free-span analysis of an offshore pipeline placed in Danish waters. The 
topics of free-span analysis that have been treated in this project are explained below. 

Part 1: Design Conditions 

The design conditions for the free-span analyses are determined. This includes the location, 
environmental conditions, structural data, soil parameters, damping parameters and safety factors. 

Part 2: Structural Mechanics 

The main objective of a free-span analysis is to determine the maximum allowable free-span in the 
Fatigue Limit State (FLS) considering fatigue damage and the Ultimate Limit State (ULS) 
considering instability problems. A part of the objective of this project has been to present the 
current design procedures for these two limit states with regard to free-span analysis. 

Part 3: Hydrodynamics 

Flow conditions around a near-wall cylinder are examined by studying theory and experimental 
results in the literature. This should give basic knowledge about the origin of the hydrodynamic 
forces affecting the pipeline free-span. 

Different hydrodynamic force models have been studied primarily to challenge the conventional 
Morison Model by comparing this with more recently developed Wake Models. The force models 
are evaluated on their capability to describe the time variation in forces from regular and irregular 
waves including current. Also the calibration of the models is discussed.    

Part 4: Soil Mechanics 

The theory behind analytical modelling of soil springs has been studied. Analytical and numerical 
load-displacement curves have been compared. The latter has been made in Plaxis 8.2 which is a 
commercial geotechnical FEM-program. 

The concept of transmitting boundary conditions has been discussed considering the modelling of a 
finite soil domain. Transmitting boundary elements (TBE) are developed for a plane, straight 
Bernoulli-Euler beam with constant axial force upon a Winkler foundation. An analytical 
formulation of TBE is derived and cast into an element formulation to be used in the finite element 
models of the pipeline.  
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The dynamic response of the soil has been studied with respect to liquefaction. An overview of the 
theory of liquefaction is given and the liquefaction problem is evaluated considering a pipeline free-
span. 

Part 5: Single-span Analyses 

The pipeline free-span is modelled as a three-dimensional beam model with non-linear soil springs 
using Abaqus 6.7 which is a commercial general-purpose FEM-program. A force feedback model 
that accounts for fluid damping of the free-span is implemented in the Abaqus Model by the use of 
user-defined FORTRAN subroutines. A two-dimensional beam model with linear soil springs has 
been made in the commercial programming environment Matlab for benchmark testing of the 
Abaqus Model. 

The Abaqus Model is used for free-span analyses in FLS and ULS. An extensive parametric study 
has been made to determine the parameters of greatest influence to the dynamic response and fatigue 
of the pipeline free-span. Maximum spanning lengths of the pipeline free-span have been determined 
when considering FLS and ULS. 

Part 6: Multi-span Analyses 

Multi-span analyses have been made to examine the effect of potential interaction between two 
neighbouring free-spans. A parametric study of the governing parameters has been made considering 
the dynamic behaviour and fatigue of the neighbouring free-spans. Multi-span analysis when 
detecting neighbouring free-spans is a relatively new requirement. The objective for this part of the 
project is therefore also to outline some guidance for the verification of a multi-span pipeline. 
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CONCLUSION 

The main conclusions from chosen chapters of the project are given below. 

Near-wall Cylinder 

Studying literature and experiments made for a near-wall cylinder in simple and more complex 
ambient flows has given a good understanding of the origin of the hydrodynamic forces that affect a 
pipeline free-span. As the gap ratio decreases, the in-line force that affects the near-wall cylinder 
increases and the time variation of the in-line force is relatively consistent with the ambient flow. 
The time variation of the cross-flow force is more complex to describe because it originates from 
two phenomena. For decreasing gap ratios, the cross-flow force originates partly from the wall 
proximity and partly from vortex-shedding and vortex lock-in. 

Hydrodynamic Force Models 

The hydrodynamic force models that have been considered in this project generally estimate in-line 
forces that are in overall accordance with measurements. The main difference between the models 
lies in the estimation of the cross-flow force which is strongly dependent upon the patterns of vortex 
shedding and the correlation length. For a pipeline above the seabed, vortex shedding is usually 
limited to small cells along the pipeline so the resulting cross-flow force is practically zero. If lock-
in occurs, a Morison Model with a cross-flow force that oscillates at the lowest vertical 
eigenfrequency is used. For a pipeline upon the seabed, the Morison Model and the Wake Models 
are considered. The latter incorporate time-varying force coefficients and adjust the flow velocity 
based upon prior wakes. This offers a better description of the time history of the cross-flow at the 
expense of additional parameters to calibrate.  

Soil Springs 

Comparison of analytically modelled soil springs and a two-dimensional numerical model made in 
Plaxis has shown overall good agreement with respect to the maximum bearing capacity of the soil 
around the pipeline. However, the stiffness of the analytical soil springs is sensible to the choice of 
displacement that correspond to the maximum bearing capacity which must be estimated since the 
analytical solutions assume the soil is rigid-plastic. In the numerical model, the choice of Young’s 
modulus is governing for the stiffness of the soil. The choice of a single value of Young’s modulus 
in the numerical model does not agree with the analytical determined stiffness in various directions. 
The analytical springs are considered to give a good overall approximation of the soil stiffness and 
bearing capacity and are implemented in the Winkler model for the pipeline.   
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Transmitting Boundary 

The properties of the pipeline, soil and load in this project provide evanescent waves that reside 
relatively near the load source and vanish before they reach the pipe-ends when the side-spans are 
wide enough. Thus, the implementation of a transmitting boundary is hardly necessary. In case 
transmitting boundary elements are taken into use to obtain a reduced model, they are expected to 
perform satisfactorily for a range of load frequencies once they have been calibrated to a single load 
frequency. In practice, the efforts in deriving, verifying and implementing a transmitting boundary 
element may greatly exceed its computational gains and the method of using a boundary zone of 
highly damped material may be considered as a practical alternative.  

Liquefaction 

The liquefaction hazard for the pipeline free-span is evaluated in the context that the soil at the free-
span shoulders are exposed to cyclic excitation due to hydrodynamic loads at the free-span. 
Numerical modelling of liquefaction has been attempted but has been unsuccesful due to limitations 
in the pre-defined material models that are available in the used version of Abaqus. A qualitative 
evaluation based on the knowledge of the liquefaction mechanisms and susceptibility has led to the 
conclusion that flow liquefaction of the soil is highly unlikely to cause problems for the pipeline 
free-span.  Cyclic mobility is considered to be a more likely liquefaction mechanism to affect the 
pipeline free-span but is not considered to be critical because of the relatively small pipe diameters 
and trenching depth. Vortex lock-in will increase the risk of liquefaction.  

Winkler Model 

The Winkler Model has been created in two FEM-models – the relatively simple linear Matlab 
Model and the relatively complex non-linear Abaqus Model. The latter is a three-dimensional 
pipeline with initial stresses, large deformations, Rayleigh damping, user-defined force feedback and 
non-linear springs at the side-spans. The models show identical static and dynamic response in the 
case of a linear system. Thus, the results of the non-linear Abaqus Model are considered to be 
reliable. The non-linear Pipe Soil Elements that constitute the Winkler foundation in the Abaqus 
Model introduce irreversible plastic deformation and evolve the elastic range of the backbone load-
displacements curves. This deviates from the traditional understanding of a spring but is in better 
agreement with the plastic constitutive behaviour of soil. 

Fatigue of Single-span Pipeline for Regular or Irregular Waves 

A study of the parameters that are important for the dynamic response and fatigue damage of the 
pipeline free-span has been conducted. The axial load during the operational state was found to have 
great influence on the dynamic response and the estimated damage in this state was the most critical. 
Since the project pipeline is out of the range of vortex lock-in, the damage caused by in-line 
excitation is governing. This is also why a gap ratio of zero has been used conservatively in the 
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reference model which increases the damage considerable. A pipeline free-span that is sensible to 
vortex lock-in may show some diversity when comparing results from the parametric study in this 
project. 

The conventional approach of using regular waves with the significant wave height for fatigue 
analysis has been conservative since it provides relatively much damage due to the large amount of 
large-amplitude stress cycles in the pipeline. In contrast, impact from irregular waves provides few 
extreme stress cycles in the pipeline that correspond to the maximum wave height. In the latter case, 
the extreme loads introduce plastic deformation of the soil and considerable changes in the physical 
configuration of the pipeline but the total fatigue damage is negligible, nevertheless. 

Buckling of Single-span Pipeline 

Buckling analysis of the single-span has shown that global buckling is much more critical than 
fatigue damage of the pipeline free-span. The large axial force in the pipeline due to internal 
pressure and temperature expansion is critical when considering global buckling and does not allow 
the pipeline free-span to experience much bending from transversal load before the maximum 
bearing capacity in ULS is exceeded. Local buckling has been examined by empirical formulas 
according to DNV which has shown that this is not a problem for the project pipeline. 

Fatigue and Buckling of Multi-span Pipeline 

The analysis on a multi-span pipeline has shown that frequency analysis is efficient to detect 
interaction between neighbouring free-spans since the lowest eigenfrequency of the multi-span 
pipeline differs from the eigenfrequency of an equivalent single-span pipeline. The consequence of 
interaction increases with increasing spanning length and decreasing length of the mid-support. The 
multi-span analysis for the project pipeline does not indicate that interaction between neighbouring 
free-spans causes the fatigue damage to become more critical than global buckling. Failure analysis 
of the mid-support has shown that the mid-support fails in ULS before the interaction between two 
neighbouring free-span will cause severe damage in FLS. 
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The design conditions for the free-span analyses are 
determined. This includes the location, environmental 
conditions, structural data, soil parameters, damping 
parameters and safety factors.
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1.1 DESIGN CONDITIONS 

This chapter describes the design conditions. Additional properties may be applied in some analyses 
although they may not appear in this chapter mainly in order to perform parametric studies. It will 
however be made clear in the analyses, when the conditions differ from those that appear in this 
chapter. 

1.1.1 ENVIRONMENTAL CONDITIONS 

The environmental conditions are determined with general reference to the pipeline design basis in 
[LICengineering 2005]. This is done in order to model realistic environmental conditions for 
pipelines that are located in the Danish part of the North Sea. 

1.1.1.1. Field Location 

The field location is the Danish sector of the North Sea. Figure 6 shows Maersk’s licence area where 
Danish oil platforms are located. The pipeline is assumed to have environmental conditions that are 
identical to those measured from the oil platforms in this area.  

 
Figure 6: Location of Danish licence area for extraction of oil. [Maersk 2008] 

DNV divides the free-spans into four different categories depending on the ratio between the length 
and the outer diameter of the pipeline [DNV-RP-F105 2006, p9]. Figure 7 shows the first three cases 
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of free-spans. The fourth case of free-span is an extreme version of case 3 with a ratio 200L
D
>  and 

a response dominated by cable behaviour.  

Case 3: Long free-spans caused by
             an uneven seabed.

Typical response:
Very little dynamic amplification.

Response dominated by beam 
behaviour.

Response dominated by combined beam 
and cable behaviour.

30L
D
< 100< 200L

D
<30< 100L

D
<

Case 2: Free-span caused by erosion 
resulting in fully developed 
scour holes.

Case 1: Short free-span caused by 
local unevenness in or 
beginning erosion of the 
seabed. 

Sketch: Pipeline free-span and 
seabed in profile

 
Figure 7: Cases of free-spans and their typical response behaviour. L is the length of the free-
span and D is the outer pipe diameter. 

At the field location, inspections have shown that free-spans of pipelines are primarily caused by 
erosion which leads to relatively small spanning lengths. This observation entails that this project 
deals primarily with free-spans in Case 2. For this case, the response is dominated by beam 
behaviour which is in good agreement with the assumption made for the calculation models in 
Chapter 5.1 (Winkler Model). 

1.1.1.2. Water Depth 

It is assumed that the pipeline is located at relatively deep water corresponding to a pipeline near an 
offshore platform. The design water depth is taken as the Lowest Astronomic Tide which gives the 
highest particle velocities at the seabed. A design water depth of 42.9mh =  is taken at the DAN FG 

field as in [Design Basis 2005, p5]. 

1.1.1.3. Wave Data 

The wave data is taken from the IGOR-1 field which has the worst sea state as in [LIC-engineering 
2005, p 12]. 

Wave Data for Fatigue Limit State 

The wave data for FLS is determined based on the assumption that the free-span is a temporary 
condition. Annual seabed inspections followed by instant repair work limits the exposure from 
waves and current to a duration of 1 year for a free-span. The waves are divided into five 
characteristic sea states. Sea states 1-4 represent the distribution of waves within one year. Sea state 
5 corresponds to the significant wave height associated with a storm that has a return period of 10 
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years and a duration of 24 hours per year. The wave data for the fatigue limit state is shown in Table 
1. 

FLS sea states 
Hm0 

[m] 
Tz 

[s] 
Hmax 

[m] 
Tp 

[s] 
Duration 

[hours/year] 
Sea state 5 9.6 10.2 17.9 12.8 24 
Sea state 4 7.0 8.6 13.0 11.6 41 
Sea state 3 5.0 7.5 9.4 9.8 350 
Sea state 2 3.0 6.0 5.6 7.6 2662 
Sea state 1 1.0 4.0 1.9 4.4 5707 

The relation between the significant wave height 0mH  and the maximum wave height maxH  is 

determined under the assumption that the wave heights are Rayleigh distributed. This assumption is 
normally a good assumption for waves at deep water and implies that maxH  can be calculated as 

 max 01.86 mH H=  (1.1.1) 
where 
 maxH  is the maximum wave height [m] 

 0mH  is the significant wave height [m] 
[Frigaard og Hald 2004, p57] 

The mean period zT  has been determined from a scatter diagram but the peak period pT  is 

determined as a function of 0mH . The empirical relation between pT  and 0mH  is assumed to be 

 0190 m
p

H
T

g
=  (1.1.2) 

where 
 pT  is the peak period [s] 

 g is gravity 2
m
s
⎡ ⎤⎣ ⎦  

[LICengineering 2005, p12] 

It is noticed that the wave period in (1.1.2) corresponds to a wave steepness equal to 3-4% where the 
steepness is calculated as 

 0 0
0 2

0

2m m
P

p

H H
S

L g T
π⋅

= =
⋅

 (1.1.3) 

where 
 0 pS  is the wave steepness [-] 

 0L  is the wave length assuming deep water [m] 
 [Frigaard & Hald 2004, pp28-29]  

Table 1: Wave data for fatigue limit state [LICengineering 2005, p12]. 
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This shows that the waves described by the significant wave height are not assumed to be near the 
breaking state which is assumed to occur at wave steepnesses of 6-8%.  

The particle velocities from the waves are evaluated at half an outer pipe diameter above the seabed, 

i.e. 
2
Dz h= − + , where z is the vertical coordinate with origin at the water surface and that is defined 

positive in upward direction. This corresponds to the state where the pipeline lies upon the seabed 
and the velocity is assumed constant over the diameter of the pipe. The velocity profile from the 
waves is almost constant near the seabed if boundary layer effects from the seabed are neglected. 

Time Series  

Time series of regular and irregular waves are created in WaveLab2 which is a program for data 
acquisition and analysis in wave laboratories and has been developed at the department of civil 
engineering at Aalborg University. WaveLab2 is also used to determine the particle velocities for the 
waves where the wave kinematics for the regular waves are determined by Stoke's 5th order theory. 
This theory has been evaluated in comparison with stream function theory and has been found to be 
sufficiently accurate for all the sea states since the water depth is relatively deep.  

The time series for the irregular waves are determined by a parameterized JONSWAP spectrum with 
white noise filtering. The filter is implemented to simulate the stochastic behaviour of waves which 
also implies that the generated time series will be non-deterministic. A peak enhancement factor of 

3.3γ =  is chosen which is known to be an average value for the North Sea [Liu & Frigaard 2001, 

pp35-36]. Figure 8 shows an example of a JONSWAP spectrum that is generated for sea state 5. 

 
Figure 8: Standard JONSWAP spectrum (solid line) and a generated JONSWAP spectrum with 
white noise filtering (grey blocs). 

Figure 8 shows that the spectrum generated with white noise filter deviates from the target 
JONSWAP spectrum. This is due to the finite length of the time series and will thus also be the case 
for real measured waves. Data sheets for irregular sea states 1-5 can be found in Appendix E 
(Irregular Sea States). 
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Wave Data for Ultimate Limit State 

The wave data for the ultimate limit state is determined only for one sea state which represents a 
wave with a return period of 100 years. Table 2 show the wave data for the ultimate limit state 

ULS sea states 
Hm0 

[m] 
Tz 

[s] 
Hmax 

[m] 
Tp 

[s] 
Sea state 100 10.8 10.9 21.0 13.6 

The design current that has to be combined with the waves is given in the following section. 

1.1.1.4. Current 

The current that affects the pipeline is determined by assuming that the velocity profile is 
polynomial and can be formulated as  

 ( )
1
78

7
zu z uc h

⎛ ⎞= ⋅ ⎜ ⎟
⎝ ⎠

 (1.1.4) 

Where 
 u  is the current velocity affecting the pipe [m/s]  
 z  is the vertical coordinate with origin at the water surface [m] 
 h  is the water depth [m] 
 cu  is the basic current parameter [m/s] 
[LICengineering 2005, p12] 

The velocity profile (1.1.4) which uses a 1/7th-power profile is generally in good agreement with a 
logarithmic formulation of the velocity profile. However, it is however that the logarithmic velocity 
profile tends to be more accurate because the seabed roughness is included as an additional 
parameter in this formulation. In case of an even seabed without significant roughness, the 1/7th-
power profile will underestimate the flow velocity near the seabed. [Braestrup et al. 2005, p99]  

The basic current parameter varies according to the return period of the design wave. The basic 
current parameters have been reduced due to boundary layer interaction according to [DNV-RP-
E305 1988, pp 30-34]. The current that affects the pipe is taken at an elevation 1 m above the 
seabed, i.e. 1mz h= − + . Table 3 shows the steady current that affects the pipe.   

Table 2: Wave data for ultimate limit state [LICengineering 2005, p11] 
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Basic current 

parameter  
[m/s]cu  

Current 
affecting pipe 

1( m) [m/s]z hu =− +  

Extreme current associated 
with 1-year design wave 

0.25  0.17 

Extreme current associated 
with 10-year design wave 

0.45 0.30 

Extreme current associated 
with 100-year design wave 

0.60 0.40 

1.1.1.5. Marine Growth 

The effect of marine growth should be taken into account when it is unfavourable for the pipeline. 
The marine growth is only present at the pipeline free-span. 

Due to the annual inspections, marine growth with a thickness of 20 mm and a density of 1400 
kg/m3 is applied to the free-span of the pipe as suggested in [Design Basis 2005, p10] and 
[LICengineering 2005, p13]. 

The main effect of marine growth on a pipeline free-span is the change in outer diameter, roughness 
and mass which lead to increased hydrodynamic forces, increased self-weight and decreased 
eigenfrequencies of the pipeline. 

For the project pipeline, the effect of marine growth has generally been considered unfavourable and 
been taken into account in all calculation where nothing else is mentioned.  

1.1.2 STRUCTURAL AND FUNCTIONAL DATA 

The structural data is determined for a 20” Multiphase Pipeline. Figure 9 shows the composition of 
such a pipeline where also the marine growth is illustrated. 

 
Figure 9: Structural composition of 20” Multiphase Pipeline including illustration of marine 
growth. 

Table 3: Steady current affecting the pipe. 
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1.1.2.1. Pipeline Data 

The pipeline data is shown in Table 4 and is taken from [LICengineering 2005, p13]. 

Parameter Symbol Magnitude Unit 

Outer pipe diameter steelD  0.508  [m] 

Wall thickness steelt  0.016  [m] 

Steel density steelρ  7850  [kg/m3] 

Yield stress ydf  415 [MPa] 

Young’s modulus - Steel steelE  60.21 10⋅  [MPa] 

Poisson's ratio - Steel steelν  0.3 - 

Expansion coefficient - Steel steelα  612 10−⋅  [1/Co] 

Concrete coating concretet  0.050  [m] 

Concrete density concreteρ  3300  [kg/m3] 

Young’s modulus - Concrete concreteE  329.1 10⋅  [MPa] 

Asphalt coating asphaltt  0.006  [m] 

Asphalt density asphaltρ  1300  [kg/m3] 

Young’s modulus for concrete has been estimated for a concrete with the strength 35MPackf = as 

 
0.3

3

10000

29.1 10 MPa
concrete ckE f=

= ⋅
 (1.1.5) 

[DNV-RP-F105 2006, p31] 

1.1.2.2. Functional Data 

The functional data for the pipeline is determined for three functional states: water-filled, air-filled 
and operational state. It is noticed that if the state is either air-filled or operational, the effects of 
temperature and pressure difference must be included in the eigenfrequency analyses because these 
effects have influence on the dynamic properties of the pipeline. The functional data for the 20” 
Multiphase pipeline are shown in Table 5. 

Table 4:  Structural data for a 20" Multiphase Pipeline. 
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Functional 
state 

Density 
3[kg/m ]ρ  

Temperature 
difference 

[ ]T CΔ °  

Pressure difference 
[MPa]i ep p p= −  

Water-filled 1025 0 0 
Air-filled 1.28 0 -0.43 
Operational 113 56 9.8 

1.1.3 SOIL DATA 

The soil data in this project are not determined by geotechnical investigations, but estimated upon 
the basic knowledge of typical marine soil. The soil is assumed to be homogeneous and isotropic and 
where nothing else is mentioned the shear strength of the soil is determined by Couloumb’s theory 

 ' ' tan 'f cτ σ ϕ= +  (1.1.6) 
 where 
 fτ  is the shear strength [kPa] 

 'c  is the cohesion [kPa] 
 'σ  is the effective normal stress [kPa] 
 'ϕ  is the effective angle of friction [deg] 
[Ovesen et al. 2007, p158] 

The soil is assumed to be cohesionless which is a fairly good assumption for a typical marine soil. 
The basic soil data is shown in Table 6.  

Parameter Symbol Sand Unit 

Saturated soil weight satγ  20 kN/m3 

Cohesion c  0  kPa 

Angle of friction 'ϕ  30 °  

Additional soil data will be applied in some of the following analyses where this is found necessary. 
These additional soil parameters will be discussed in the analyses where they have been applied. 

1.1.4 DAMPING 

Damping is an important aspect when determining the dynamic behaviour of a structural system. 
Damping of a pipeline free-span arises from the following sources where some typical numbers for 
the damping ratios are also given: 

• Structural damping: ( 0.005)strζ =  

• Soil damping ( 0.010)soilζ =   

Table 5: Functional fluid data for the 20" Multiphase pipeline. ip  and ep  is the internal and 
external pressure, respectively. 

Table 6: Basic soil data. 
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• Fluid damping ( implicit in force models)fluidζ −  

The structural material damping arises due to internal friction forces of the pipe material. Since the 
pipe is welded together, the steel in the pipeline does not contribute with much damping. However, 
the coating contributes with some damping – partly because of the friction between the grains in the 
concrete and partly because of the friction between the steel and the coating. 

The soil at the boundaries of the pipeline has a damping effect in the form of geometrical damping 
due to wave propagation through the soil and material damping due to friction between the grains. 
The main parameters for estimating soil damping are to consider the type of soil: Is it a cohesion soil 
or a friction soil and is it a hard or soft soil. 

The fluid around the pipeline free-span also introduces damping due to interaction between the 
pipeline motion and the ambient flow. The fluid damping depends greatly upon the ratio between the 
pipeline velocity and the velocity of the ambient flow. For slender structures, this ratio is high and 
the fluid damping will be significant.  

The structural damping and the soil damping are sampled to an estimated global damping ratio of 
0.010globalζ = . The significance of this estimation has been evaluated in a parametric study in 

Chapter 5.2 (Parametric Study for Regular Waves). 

The global damping ratio is implemented as Rayleigh damping as explained in Appendix B 
(Rayleigh Damping).   

Fluid damping is implemented in the force models that are applied in the dynamic analyses, see 
Chapter 3.2 (Hydrodynamic Force Models). 

1.1.5 SAFETY ZONES AND SAFETY FACTORS 

The primary functional state that is investigated in this project is the operational state of the pipeline. 
The safety factors that have been used in this project correspond to “high” safety class and are taken 
from [DNV OS-F101 2000]. For comparisons between the buckling procedures of DNV and Danish 
Standards (DS), the safety factors from [DS412 1998] are also relevant. Table 7 shows the safety 
factors that are used in this project. 
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ULS FLS 
Description of factor Symbol 

DNV DS DNV 

Material resistance factor mγ  1.15 1.17 1.00 

Safety class resistance factor SCγ  1.26 1.10 1.26 

Condition load effect factor Cγ  1.00 - 1.00 

Functional load factor Fγ  1.10 - 1.00 

Environmental load factor Eγ  1.30 - 1.00 

Accidental load factor Aγ  - - - 

Pressure load factor Pγ  1.05 - 1.00 

 

Table 7: Safety factors corresponding to "high" safety class. 
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The main objective of a free-span analysis is to determine the 
maximum allowable free-span in the Fatigue Limit State 
considering fatigue damage and the Ultimate Limit State 
considering instability problems. A part of the objective of this 
project has been to present the current design procedures for 
these two limit states with regard to free-span analysis.
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2.1 FATIGUE 

Dynamic loads from wave action, vortex shedding etc. may give rise to cyclic stresses which may 
cause fatigue damage to the pipe-wall and ultimately lead to failure [Braestrup et al. 2005, p117].  

This chapter is introduced by a small section that briefly explains what causes fatigue damage. The 
rest of this chapter describes how to document the fatigue damage of the pipeline free-span 
according to the design criteria given in [DNV-RP-C203 2005]  

2.1.1 THE FATIGUE PHENOMENON 

In the steel wall and especially around the weldings of the pipeline, imperfection may be points of 
local crack initiation within the material. When applying load to the structure, the material will 
experience stress concentrations at the crack points which results in local yielding zones. Figure 10 
illustrates a yielding zone for a crack when the pipe-wall is assumed to be thin. 

  

local yielding zone

F

crack

F

pipe wall

 
Figure 10: Local yielding zone at crack point. 

Dynamic load causes cyclic stresses which induce local hardening followed by fracture near the 
crack point leading to development of the crack length. This phenomenon is what causes fatigue 
damage to the structure. 

2.1.2 VERIFICATION OF FATIGUE DAMAGE 

This section describes how to determine the fatigue damage of the pipeline free-span according to 
the design criteria given in [DNV-RP-C203 2005]. The overall method for determining fatigue 
damage for a pipeline free-span is described with reference to [Braestrup et al. 2005, p117-120]. The 
procedure of a fatigue damage check for the pipeline free-span is: 
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1.  Calculate the stress ranges and verify that the magnitude of the maximum stress is below the 
yield stress of the steel pipe. 

2.  Calculate the number of stress cycles. 
3.  Determine the allowable number of stress cycles to failure from S-N curves. 
4.  Calculate the damage by Palmgren-Miners rule. 
5.  Verify that the damage criterion is satisfied. 

Each step is described in the following sections. 

2.1.2.1. Stress Ranges 
Two different methods can be used to determine the stress ranges for the fatigue analysis [Braestrup 
et al. 2005, p117]: 

1.  Load model: The stress ranges are found by a time-domain dynamic analysis where the 
external load is applied to the free-span. 

 
2.  Response model: The stress ranges are determined using the normalised response 

amplitudes for a given flow situation appropriately scaled to the real free-span. 

In this project, the stress ranges are determined from a numerical dynamic model which is described 
in Chapter 5.1 (Winkler Model). The numerical model includes the dynamic effects when 
determining stress ranges and is applicable for impact from both regular and irregular waves. Thus, a 
load model is used. 

Response models can be found in [DNV-RP-C203 2005 pp23-26]. These are empirical models that 
are based upon available experimental laboratory test data and a limited amount of full scale tests. 
The response models account for vortex induced vibrations. However, the response model is not 
considered further in this project. 

Dominating Principal Stress 

The damage of the pipeline is determined for the principal stress with the largest variation, i.e. 
difference between maximum and minimum stresses. For the pipeline, this will be the normal 
stresses since the bending moment will cause the largest stress variation. It is noticed that Von Mises 
stresses defined in (2.1.2) will not be conservative as these will give larger maximum stresses but 
smaller stress ranges. 

Yield stress  

To ensure that the maximum stress range does not exceed the yield stress of the steel pipe, the Mises 
criterion for yielding is applied 

 mises ydfσ ≤  (2.1.1) 
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where 
 misesσ  is the Von Mises stress [Pa] 

 ydf  is the yield stress [Pa] 

The definition of Von Mises stresses for isotropic and linear elastic materials is described by the 
following relation where index notation is used 

 3 1
2 3, , 1,2,3, 1,2,3mises ij ij ij ij kk ijs s s i jσ σ σ δ= = − = =  (2.1.2) 

where 
 misesσ  is the Von Mises stress [Pa] 

 ijσ  is the stress in the ith cutting plane and the jth direction, positive in tension  [Pa] 

 ijs  is the stress deviator in the ith cutting plane and the jth direction [Pa] 

 ijδ  is Kronecker’s delta, defined as 
1,
0,ij

i j
i j

δ
=⎧

= ⎨ ≠⎩
 [-] 

[Byskov 2002, pp107-108] 

Determination of the Von Mises stress (2.1.2) is a standard feature in Abaqus. The yield criterion 
(2.1.1) is important to consider if the static loads on the pipeline have a large impact on the stresses. 
The potential misinterpretation of the damage of a steel pipe when the stress ranges are not 
determined from the state of static equilibrium is illustrated in Figure 11 and described below. 

staticσ

Stress σ

Time t

ydf

1dynσ

dynσ

 
Figure 11: Stress variation. 

Figure 11 shows that when the dynamic stress variation 1dynσ  exceeds the yield stress limit, the 

pipeline might fail even though the fatigue damage criterion has not been exceeded. It is noticed that 
the dynamic stress variations dynσ  and 1dynσ  that are shown in Figure 11 will mistakenly cause 

identical damage according to Palmgreen Miners rule shown in (2.1.4) because fatigue is determined 
only from the stress ranges which are identical for dynσ  and 1dynσ . This would have been correct if 

the stress contribution from the static load had been smaller so that 1dynσ  did not exceed the yield 

stress.  
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2.1.2.2. Stress Cycles 

Since each stress cycle causes a certain amount of damage to the structure, it is necessary to 
determine the number of stress cycles. For harmonic loading, this is relatively simple, but for 
irregular stress cycles, the counting of stress cycles is usually ambiguous. The two counting methods 
which are discussed in this section are 

• Half-cycle Counting 
• Rain Flow Counting 

Both counting methods are popular methods. In this project, only the Rain Flow counting method is 
used for the free-span analyses for irregular waves as this is considered to be the most accurate 
counting method. This is elaborated in the following. 

Half-cycle Counting 

As the name of the method implies, the number of cycles that are determined by this method is 
found by counting half-cycles. Figure 12 shows how this calculation is done by counting local 
minimum or maximum values of the stresses.  
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Figure 12: Principle of counting half cycles. 

In order to achieve the correct number of stress cycles, the number of stress ranges found by 
counting half cycles must be divided by two. The disadvantage of this counting method is the fact 
that it does not detect large stress ranges that occur over a longer period of time when smaller stress 
fluctuations are included in the response. This is an unfortunate feature since the large stress ranges 
are known to cause significantly more damage than the smaller stress ranges. An example of an 
undetected stress cycle and corresponding stress range is illustrated in Figure 13.  
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Figure 13: Undetected stress cycle and corresponding stress range. 

Rain Flow Counting 

The principle of the Rain Flow Counting method is described with reference to [Almar-Næss et al. 
1985, pp204-206]. This is the most popular counting method for damage of irregular cycles. The 
counting procedure is designed to count reversals in the material’s stress-strain response. This means 
that the counting method calculates loops of hysteresis which is illustrated in Figure 14.  
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Figure 14: Part of a strain history (A) and the stress strain response (B). Adopted from [Almar-
Næss et al. 1985, p204]. 

Figure 14 shows that the small stress cycle 2-3-2’ forms a closed hysteresis loop within the larger 
stress range 1-4, leaving the count of the latter undisturbed by the interruption. So the rain flow 
counting method counts both small and large stress range in contrast to the method of counting half-
cycles. The Rain Flow Counting method is described in steps to give a rough overview of how the 
method works.  The steps of the method are described as: 

1.  Reduce the time history to a sequence of tensile and compression peaks. 
2.  Imagine that the time history is a rigid sheet. 
3.  Turn the sheet 90° clock wise (earliest time to the top). 
4.  Each tensile peak is imagined as a source of water that “drips” down the sheet. 
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5.  Count the number of half-cycles by looking for termination of the flow occurring when 
either: 

a. It reaches the end of the time history. 
b. It merges a flow that started at an earlier tensile peak. 
c. It flows opposite a tensile peak of greater magnitude than the tensile peak for which 

the flow originates. 
6.  Repeat step 5 for compression peaks. 
7.  Assign a stress magnitude to each half-cycle equal to the stress difference between the start 

and termination of the flow. 
8.  Pair up half-cycles for tensile and compression with identical magnitude to count the 

number of complete cycles. Typically, there will be residual half cycles. 

A simple example is shown in order to illustrate the method. Figure 15 shows a stress sheet upon 
completion of steps 1-4 and illustrates the three criteria for counting the stress cycles in step 5.  
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Figure 15: Illustration of Rain Flow Counting. Adopted from [Almar-Næss et al. 1985, p206]. 

Completing step 7 and 8 will in this example result in the count of 3 cycles and 3 half-cycles which 
is also illustrated in the table shown in Figure 15. Each count has a corresponding stress range and 
period. The algorithm for Rain Flow Counting is taken from [Nieslony 2003] and can be found in 
[DVD/Fatigue/rainflow.m]. 

2.1.2.3. S-N Curves 

S-N curves determine the fatigue resistance of a local part of the structure as a function of the 
amount of cyclic loading. The S-N curves are based upon the following relationship 

 ( ) m
i iN a σ −= ⋅ Δ  (2.1.3) 

where 
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 iN  is the maximum allowable number of cycles at the ith stress range [-] 

 iσΔ  is the ith stress range [MPa] 
 a  is the intersect parameter of the S-N curve with the log N axis [-] 
 m  is the negative slope parameter of the S-N curve 

The S-N curves depend upon the detail category. This considers the type of constructional detail, 
welding type, the site conditions during the welding as and the loading type of the structure. The S-N 
curves for a steel structure in seawater with cathodic protection and in different detail categories are 
shown in Figure 16.   
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Figure 16: S-N curves in seawater with cathodic protection [DNV-RP-C203 2005, p14]. 

Table 1 shows the definition of detail categories for the pipeline according to [DNV-RP-C203 2005]. 
In this project, the detail category D is chosen which is marked by the bold line in Figure 16. 
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Table 8: Detail categories for hollow sections [DNV-RP-C203 2005, p63] 
Detail 

category 
Constructional detail Description Requirement 

C1 

Circumferential 
but weld made 
from both sides 
dressed flush 

D 
Circumferential 
but weld made 

from both sides. 

E 

Circumferential 
but weld made 

from both sides at 
site 

F 

 

Circumferential 
but weld made 

from one side at a 
backing 

The applied stress 
must include the 

stress 
concentration factor 

to allow for any 
thickness change and 

for fabrication 
tolerances, 

[DNV-RP-C203 
2005, section 3.3.7] 

 
The requirements to 
the corresponding 
detail category in  
[DNV-RP-C203 

2005,  
Table A-5] 

The parameters for the S-N curve in category D are given in Table 9.  

Number of  cycles Stress range m      10log a  

610 cyclesN ≤  83.4MPaσΔ ≥  3.0 11.764 
610 cyclesN >  83.4MPaσΔ <  5.0 15.606 

2.1.2.4. Fatigue Damage 

The damage caused by cyclic loading is determined by Palmgren-Miners accumulation rule. This 
way of determining damage assumes that the order of stress cycles does not have influence on the 
damage of the material. The stress range distribution is replaced by a histogram with a chosen 
number of blocks with constant stress ranges. The fatigue damage is then determined by 

 
1

k
i

fat fat
i i

n
D

N
α

=

= ≤∑  (2.1.4) 

where 
 fatD  is the accumulated fatigue damage [-] 

 fatα  is the allowable damage ratio [-] 

 in  is the actual number of stress cycles of the ith stress range [-] 

 k  is the total number of stress ranges [-] 
[DNV-RP-C203 2005, p10] 

Failure due to fatigue damage is assumed to occur when fatD =1. It is however common industry 

practice to allow no more damage than 10 % during the temporary phase in order to ensure a 

Table 9: Parameters for S-N curve for category D, adopted from [DNV-RP-C203 2005, p13]. 
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reasonable fatigue life in the operational state [Braestrup 2005, p120]. The allowable damage ratio 
according to DNV is shown in Table 10. 

Safety class fatα  

Low 1/3 
Normal 1/5 
High 1/10 

The pipeline free-span is considered to be in a temporary phase and the safety class is considered to 
be high. In this project the allowable damage ratio for fatigue is taken as 0.1fatα =  which is a 

conservative value. The damage ratio can be calculated by combining the S-N curves (2.1.3) and 
Palmgren-Miners rule (2.1.4) which provides 

 ( )
1

1 0.1
k

m
fat i i

i
D n

a
σ

=

= ⋅ ≤∑ +  (2.1.5) 

[DNV-RP-C203 2005, p10] 

Table 10: Allowable damage ratio for fatigue [DNV-OS-F101 2000, p40] 
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2.2 BUCKLING 

In this chapter, the pipeline free-span is analysed for global and local buckling. Global buckling 
features the concept of instability of a beam exposed to axial pressure combined with bending 
moment around two axes. The global buckling analysis has been made according to two different 
structural codes: [DS412 1998] and [DNV No. 30.1 2004]. Comparison has been performed of the 
procedure of buckling analysis in the two codes. The local buckling analysis contains an instability 
analysis of the section wall of the pipeline. This analysis is made according to the specification of 
[DNV No. 30.1 2004]. 

2.2.1 GLOBAL BUCKLING 

The pipeline is exposed to axial compression when oil or gas is pumped through the pipeline during 
its operational state. The pipeline free-span is also exposed to in-line and cross-flow load from wave 
and current. The forces are illustrated in Figure 17. In this chapter, the axial load is defined as 
positive in compression. 

in linef −
z

XF

XF y

x

cross flowf −

 
Figure 17: Forces affecting a part of the pipeline free-span. 

The procedure for analysing global buckling is to analyse the pipeline as a beam exposed to axial 
compression and bending moment around two axes. The crux of the matter is to include the moment 
enhancement that arises from large deformation and the presence of the axial force. This is 
illustrated for the in-line direction in Figure 18. The same principle must be applied in the cross-flow 
direction. Since the pipe is a closed section, torsional instability in not considered. 
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Figure 18: Moment enhancement due to axial load. 

Besides moment enhancement, other practical factors have to be considered when analysing 
buckling failure. Examples of such practical factors are pre-curvature of the pipe, residual stresses, 
slenderness, imperfections, plastic versus elastic stress distribution etc. [DS412 1998] and [DNV No. 
30.1 2004] provide procedures that include the necessary safety to prevent buckling failure and all 
the mentioned effects. Since the procedures are not identical, the main principles of the procedures 
of both structural codes have been evaluated and compared. The procedure for global buckling 
analysis in this section has the following structure:  

• Global buckling according to DS412 
• Global buckling according to DNV 
• Comparison 

2.2.1.1. Global Buckling According to DS412 

According to DS412, the interaction formula for a bar subjected to compression and biaxial bending 
is presented as 

 1.0sdysd sdz
y z

s yd y yd z yd

MF Mk k
A f W f W fχ

+ + ≤  (2.2.1) 

where 
 sdF  is the design axial compressive force, defined as positive in compression [N] 

 sA  is the cross section area [m2 ] 

 ydf  is the yield stress [Pa] 

 χ  is the reduction factor for buckling [-] 

 sdyM  is the design bending moment about the strong axis (y-axis) [N/m] 

 sdzM  is the design bending moment about the weak axis (z-axis) [N/m] 

 yW  is the section modulus about the strong axis  [m3] 
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 zW  is the section modulus about the weak axis [m3]   

   yk  is the bending moment enhancement factor about the strong axis [-] 

 zk  is the bending moment enhancement factor about the weak axis [-] 

The first term in (2.2.1) evaluates the compression resistance of the member including global 
buckling. The second and third term evaluate the resistance due to bending moment in lateral and 
vertical directions, respectively, where moment enhancement factors are included. 

Axial Compression 

To evaluate the buckling resistance due to compression in the member, the reduction factor for 
buckling that has to be implemented in (2.2.1) can be found as  

 
2 2

1 , 1.0χ χ
φ φ λ

= ≤
+ −

 (2.2.2) 

where 
 λ  is the factor for slenderness [-] 
 φ  is a factor [-]  

The factor φ  is defined as  

 ( )( )20.5 1 0.2φ α λ λ= ⋅ + ⋅ − +  (2.2.3) 
where 
 α  is a factor [-]  

The factor α is a table value that is defined according to the classification of the cross section and 
reduces the compression resistance due to imperfections. When assuming the pipeline section to be 
hot-rolled, the value 0.21α =  is obtained which is identical to the buckling curve a) in [DS412 
1998, p51]. 

The slenderness factor is defined as 

 1.05 s yd

E

A f
F

λ =  (2.2.4) 

where 
 EF  is the Euler load [N] 
[DS412 1998, p49] 

The Euler load in (2.2.4) is commonly known to be defined as 

 
2

2
d

E
c

E I
F

l
π

=  (2.2.5) 

where 
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 dE  is the design value for Young’s modulus [Pa]  

 cl  is the column length [m] 
[Bonnerup 2005, p126] 

Moment Enhancement Factor 

The moment enhancement factor that has to be implemented in (2.2.1) can be found as 

 1 , 1.5sd

yd

F
k k

A f
μ
χ

= − ≤  (2.2.6) 

where 
 μ  is a factor [-]  

The factor μ  is defined as  

 ( )2 4 , 0.9pl el
m

el

W W
W

μ λ β μ
−

= ⋅ − + ≤  (2.2.7) 

where 
 plW  is the plastic second moment of area [m3] 

 mβ  is a factor for equivalent bending moment [-] 

The factor mβ  is determined according to [DS412 1998, p55] and compensates for curvature of the 

member due to bending moment.  

When evaluating (2.2.6) and (2.2.7) it is seen that the moment enhancement factor depends in a 
rather complex way upon the ratio of the axial load normalised to the compression resistance, the 
slenderness, the difference between plastic and elastic second moment of area and the curve shape of 
the bending moment. 

2.2.1.2. Global Buckling According to DNV No. 30.1 

This section evaluates the procedure for buckling analysis according to [DNV No. 30.1 2004]. 
During the evaluation, comparisons are made with the buckling procedure of [DS 412 1998].  

As in [DS 412 1998], the buckling resistance according to [DNV No. 30.1 2004]  is also determined 
by a similar interaction formula for a bar that is subjected to compression and biaxial bending 

 
' '

1 1

bya bz

a aacr
yd yd

E E

f f

α σσ α σ
η

σ σσ
σ σ

+ + =
⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (2.2.8) 

where 
 η  is the usage factor [-] 

 aσ  is the axial stress due to the compressive force sdxF  [Pa] 
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 acrσ  is the characteristic buckling stress [Pa] 

 byσ  is the effective axial stress due to bending about the strong axis (y-axis) [Pa] 

 bzσ  is the effective axial stress due to bending about the weak axis (z-axis) [Pa] 

 Eσ  is the Euler stress [Pa] 

 'α  is a factor depending on the type of structure and reduced slenderness [-] 
[DNV No. 30.1 2004] 

It is seen that [DNV No. 30.1 2004] evaluates stresses when analysing buckling, similar to [DS412 
1998] that also evaluates stresses but with these formulated by the section forces. Similar to the 
interaction formula in (2.2.1), the individual terms in (2.2.8) express the bearing capacity with 
respect to axial compression and bending about two axes, respectively. 

Axial Compression 

Similar to the reduction factor χ defined in (2.2.2), a reduction ratio for buckling is defined in [DNV 

No. 30.1 2004]. The reduction ratio is defined as    

 ( )
0

22 2 2

02

1.0,

1 1 4
,

2

acr

ydf

λ λ
σ

μ λ μ λ λ
λ λ

λ

≤⎧
⎪

= ⎨ + + − + + −
⎪ >
⎩

 (2.2.9) 

 
where 
 μ  is a factor [-]  

In [DNV No. 30.1 2004],  the factor for slenderness is defined as  

 yd s yd

E E

f A f
F

λ
σ

= =  (2.2.10) 

When comparing (2.2.10) with (2.2.4), it is seen that [DS412 1998] introduces additional safety 
compared to DNV in the form of increasing the slenderness factor by a factor 1.05. The factor μ  is 

defined as  

 ( )0μ α λ λ= ⋅ −  (2.2.11) 
where 
 α  is a factor [-]  
 0λ  is a factor [-]  

In (2.2.11), one obtains the imperfection factor 0.20α =  and the factor 0 0.2λ =  according to [DNV 

N0. 30.1 2004, p6] .A comparison of the reduction factor χ  defined in (2.2.2) and the reduction 

ratio cr ydfσ  defined in (2.2.9) is shown in Figure 19. 
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Figure 19: Reduction for buckling due to axial compression according to [DS 412 1998] and 
[DNV No. 30.1 2004], respectively. 

It is seen from Figure 19 that the reduction factors due to buckling are similar in the two codes. 
However, some difference is found in the compression resistance since the two structural codes have 
different definitions of the slenderness factor and safety factors applied to the material.  

Moment Enhancement Factor 

By study of the interaction formula in (2.2.8), it may be seen that the moment enhancement factors 
can be defined as 

 ' 1

1 1a sd

E E

k
F
F

α
σ
σ

= =
⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (2.2.12) 

The moment enhancement factor in (2.2.12) is the theoretical exact value for moment enhancement 
of a beam subjected to compression and bending moment which is elaborated in [Albertsen et al. 
1997, pp238-240]. [DNV No. 30.1 2004] does not compensate for the influence of practical factors 
on the moment enhancement as in [DS412 1998]. To compensate for this, the usage factor in the 
interaction formula in (2.2.8) is reduced to a value below 1.0.  

2.2.1.3. Comparison 

It is seen that the global buckling procedures in [DS412 1998] and [DNV No. 30.1 2004] are 
generally similar. The consequences of the differences in the analysing procedure are showed in 
Chapter 5.4 (Buckling Analyses) where the maximum spanning length of the pipeline free-span is 
evaluated according to both codes. 

2.2.2 LOCAL BUCKLING 

Local buckling covers the concept of a local collapse of the pipe-wall as the compressive stresses in 
a local pipeline section exceed the bearing capacity of the pipe-wall.  The bearing capacity is 
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analysed according to [DNV-OS-F101 2000] but the formulas have not been investigated further. 
Figure 20 illustrates the local buckling problem. 

Local buckling of pipe wall

 
Figure 20: Illustration of the local buckling problem. 

Local buckling is prevented if the pipeline section fulfils the following empirical formulation in 
every section along the free-span 

 
2 2 2

2 2

1 1.0, for 45 and
( ) ( )

d d d d
SC M SC M i e

c p c p C b C b

S M p p D
p p

S M p t p t t
γ γ γ γ

α α α α
Δ Δ

+ − + ≤ ≤ ≥
⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

(2.2.13) 

where 
 SCγ  is the safety class resistance factor [-] 

 Mγ  is the material resistance factor [-] 

 dS  is the design effective axial force [N] 

 pS  is the plastic axial force resistance [N] 

 dM  is the design bending moment [Nm] 

 pM  is the plastic moment resistance [Nm] 

 cα  is the flow stress parameter accounting for strain hardening [-] 

 dpΔ   is the design differential overpressure [Pa] 

 2( )bp t   is the burst pressure [Pa] 

 2t  is the wall thickness for fabrication and corrosion allowances [m] 

 D  is the diameter [m] 
[DNV-OS-F101 2000, p38]  

It is seen that the formulation above evaluates the stresses in the pipe-wall due to axial force, 
bending moments and differential overpressure. Also the ratio between the diameter and the wall 
thickness and whether the internal pressure is higher than the external pressure is important 
parameters when analysing local buckling for pipelines. The latter is solved by introducing ranges of 
applicability for the empirical formulation. The definition of the parameters included in (2.2.13) can 
be found in [DNV-OS-F101 2000, pp37-p38].  
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Flow conditions around a near-wall cylinder are examined by 
studying theory and experimental results in the literature. This
should give basic knowledge about the origin of the 
hydrodynamic forces affecting the pipeline free-span.

Different hydrodynamic force models have been studied 
primarily to challenge the conventional Morison Model by 
comparing this with more recently developed Wake Models. The 
force models are evaluated on their capability to describe the 
time variation in forces from regular and irregular waves 
including current. Also the calibration of the models is discussed. 
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3.1 NEAR-WALL CYLINDER 

In this chapter, the flow condition for a cylinder near a wall is discussed. This is an important aspect 
of determining the hydrodynamic forces because the seabed proximity has a large effect on the 
hydrodynamic forces that affect the pipeline free-span. Usually, the order of magnitude of the gap 
for a pipeline free-span caused by erosion is in the range of (0.1 )O D  to (1 )O D  [Sumer & Fredsøe 

1997, p21] and thus these ranges will be discussed. The hydrodynamic forces that act upon buried or 
partly buried parts of the pipeline are not considered in this project. Figure 21 serves to illustrate 
some of the basic terms used in the following. 

Cylinder

In-line/lateral direction

Cross-flow/vertical direction

Wall e

D

 
Figure 21: Definition sketch for a near-wall cylinder. 

Flow Characteristics 

Some basic characteristics for the flow are determined before the flow around the cylinder is 
explained. The Reynolds number is here defined as  

 
( )m cU U D

Re
υ
+ ⋅

=  (3.1.1) 

where  
 Re  is the Reynolds number [-] 
 cU  is the in-line flow velocity for current [m/s] 

 mU  is the maximum in-line flow velocity for the wave [m/s] 
 υ  is the kinematic viscosity [m2 /s] 
 D  is the outer diameter of the cylinder [m] 
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In this project, the order of magnitude of Re is in the range 5 6(10 ) (10 )O O−  depending on the actual 

sea state described in Chapter 1.1 (Design Conditions). Re is used to determine the turbulence of the 
flow around the pipeline and the magnitude of Re in this project implies that the vortex shedding will 
have turbulence, see [Sumer & Fredsøe 1997, p2].  

The Keulegan-Carpenter number is defined as 

 
( )m cU U T

KC
D
+ ⋅

=  (3.1.2) 

where  
 KC  is the Keulegan-Carpenter number [-] 
 T  is the wave period [s] 

In this project, KC  has the magnitude of 0-50, depending on the sea state and the choice of wave 

height and period, i.e. sH or maxH  and zT  or pT . KC  is a value to characterise oscillatory flows. 

Temporary Force Model 

In most literature, it is common practice to examine the variation of the force coefficients 
, and D M LC C C  instead of comparing the actual load. The Morison Model is applied temporarily in 

order to define the force terms. The Morison Model for cylindrical structures with infinite stiffness 
reads 

 21
2 4

in line
D w M wf C DU U C D Uπρ ρ− = + �  (3.1.3) 

where 
 in linef −  is the in-line force per unit length of the pipe as function of time N

m⎡ ⎤⎣ ⎦  

 wρ  is the density of seawater [kg/m3] 

 DC  is the drag force coefficient [ ]-   

 MC  is the inertia force coefficient, including the added hydrodynamic mass  [ ]-  

 U  is the in-line flow velocity for wave and current m
s⎡ ⎤⎣ ⎦  

[Burcharth 2002, p33] 

Likewise, a temporary expression for the cross-flow force is determined as 

 21
2

cross flow
L wf C DUρ− =  (3.1.4) 

where 
 cross flowf −  is the cross-flow force per unit length of the pipe as function of time [ ]-  

 LC  is the lift force coefficient [ ]-  

[Justesen et al. 1987, p132] 
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The Morison Model is examined further in Chapter 3.2 (Hydrodynamic Force Models). 

3.1.1 CYLINDER IN STEADY CURRENT 

The presence of a cylinder in steady current will disturb the flow, especially when the value of 
Re 5>  which induces separation in the flow along the cylinder perimeter. This will create vortices 
in the flow region behind the cylinder called a wake region. Increasing values of Re  induces 
shedding of the vortices which can create vortex induced vibration (VIV) of the cylinder in both 
lateral and vertical direction. As the value of Re  increases, the vortex shedding and the flow in the 
wake region becomes more turbulent. 

When the cylinder approaches a wall in a steady current, a number of changes occur compared to a 
free cylinder. These changes can be summarized by the following:  

• Vortex shedding is suppressed for gap ratios smaller than / 0.3e D ≈ . 
• The stagnation point moves to a lower angular position as illustrated in Figure 22 (b).  
• The angular position of the separation points changes. 

[Sumer & Fredsøe 1997, p21] 

Figure 22 illustrates the flow around a free cylinder and a near-wall cylinder, respectively.  

 

 
Figure 22: Flow around a free cylinder (a) and a near-wall cylinder (b). S denotes separation 
points [Sumer & Fredsøe 1997, p21]. 

3.1.1.1. In-line Force 

In steady current, only the drag term has influence on the in-line force. The fluctuation of the drag 
force caused by VIV has been omitted in this project and only the mean drag from the ambient flow 
is evaluated. Experimental results from [Sumer & Fredsøe 1997, p59] show that the mean drag 
decreases as the gap ratio decreases. This is due to the influence of the boundary layer at the wall. 
The results are shown in Figure 23.  
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Figure 23: Mean drag force coefficient for a near-wall cylinder in steady current [Sumer & 
Fredsøe 1997, p59]. 

3.1.1.2. Cross-flow Force 

When the cylinder approaches the wall, the change in pressure along the pipe perimeter causes a 
resulting cross-flow force that is directed upwards. The change in pressure along the pipe perimeter 
is illustrated in Figure 24. This cross-flow force is represented by a mean value of the lift force 

coefficient LC . 

 

Figure 24: Pressure along the perimeter of a cylinder approaching a wall. [Sumer & Fredsøe 
1997, p59]. 

The cross-flow force contribution from vortex shedding is represented by LC  which is based on the 

amplitude of the oscillating cross-flow force. Figure 25 shows the tendency of LC  and LC  as a 

function of the gap ratio based on experimental results from [Sumer& Fredsøe 1997, p66]. 
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Figure 25: Lift force coefficients for a near-wall cylinder in steady current [Sumer & Fredsøe 
1997, p66]. 

In Figure 25, it is seen that vortex shedding will be suppressed when the gap between the cylinder 
and the wall becomes small and only the cross-flow force due to the wall proximity will be present. 
The opposite is the case for a free cylinder where the cross-flow force from vortex shedding will be 
governing. 

The understanding of the changes happening to the flow and forces around a near-wall cylinder in 
steady current may help the understanding of the changes happening when the ambient flow 
becomes more complex.  

3.1.2 CYLINDER IN REGULAR WAVES 

For a near-wall cylinder in regular wave, the effect of the wall proximity depends highly on the flow 
regime, i.e. the value of KC . In the following, the effect of wall proximity is explained for in-line 
and cross-flow forces, respectively. Experimental results from [Justesen et al. 1987] have been used 
to illustrate the change in in-line and cross-flow forces.  

3.1.2.1. In-line Force 

In [Justesen et al. 1987], experiments have been made for a near-wall cylinder with a large and small 
gap ratio for a flow regime with high and low values of KC  which provides four distinct cases. The 
in-line force, flow velocity and acceleration in these cases are shown in Figure 26.   
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Figure 26: In-line force, flow velocity and acceleration for a near-wall cylinder in regular 
waves [Justesen et al. 1987, p135]. 

a) KC = 60, e/D = 0.01 b) KC = 4, e/D = 0.01 
c) KC = 60, e/D = 1.0 d) KC = 4, e/D = 1.0  

Comparison of Figure 26 a) and c) shows no significant change in the in-line force which means that 
for high values of KC , the cylinder does not experience any significant increase in the in-line force 
as the cylinder approaches the wall. This is not the case for low values of KC  which are represented 
by Figure 26 b) and d) which show a significant increase in the in-line force when the pipe 
approaches the wall. 

Another important observation of the experiment is the fact that all four cases show that the in-line 
load frequency is identical to the wave frequency. For Figure 26 a) and c), the in-line force is in 
phase with the velocity of the ambient flow due to drag dominance and for Figure 26 b) and d), the 
in-line force is in phase with the acceleration due to inertia dominance.  

Based on additional experiments on this matter, some tendencies for the in-line force coefficients 
have been illustrated in [Sumer & Fredsøe 1997]. Figure 27 shows DC  and MC  as functions of 

KC for a cylinder with different gap ratios. 

 
Figure 27: DC  and MC  as functions of KC for different gap ratios in regular waves. The 

asymptotic values of MC  for 0KC → are the potential-flow solution. [Sumer & Fredsøe 1997, 
p181]. 

If it is kept in mind that the Morison Model is formulated so the drag term is governing for high 
values of KC ( 20KC > ) and the inertia term is governing for low values of KC ( 5)KC < , the 
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tendency of the force coefficients shown in Figure 27 are in relatively good agreement with the 
experimental results from [Justesen et al. 1987]. The inertia force coefficient MC  which is governing 

for the experiments in Figure 26 b) and d) is increasing for decreasing gap ratios at 4KC = . The 

drag force coefficient DC  which is governing for the experiments in Figure 26 a) and c) also seems 

to rise as the gap ratio decreases at 60KC = which contradicts the experimental results in Figure 26. 
According to Figure 27, the in-line force should increase with approximately 30 % as the gap ratio 
decreases from 1.0 to 0.05. 

3.1.2.2. Cross-flow Force 

The cross-flow force is examined upon experimental results from [Justesen et al. 1987] for the same 
cases of gap ratios and flow regimes as those used for the in-line force. Figure 28 shows the cross-
flow force, flow velocity and acceleration for the four cases of gap ratios and flow regimes. 

 

Figure 28: Cross-flow force, flow velocity and acceleration for a near-wall cylinder in a regular 
wave [Justesen et al. 1987, p135]. 

a) KC = 60, e/D = 0.01 b) KC = 4, e/D = 0.01 
c) KC = 60, e/D = 1.0 d) KC = 4, e/D = 1.0  

Comparison of Figure 28 a) and c) shows that for varying gap ratios, the maximum value of the 
cross-flow force does not change significantly but the variation of the force changes significantly. 
The cross-flow force in the two experiments arises from two different phenomena. In Figure 28 a), 
the cross-flow force arises primarily from the asymmetrical pressure field along the cylinder 
perimeter due to wall proximity. When neglecting the smaller fluctuation of the cross-flow force, the 
load frequency is nearly twice the wave frequency. In Figure 28 c), the cross-flow force is caused by 
vortex shedding which acts upon the pipe at a much higher frequency. The frequencies of cross-flow 
force will be elaborated later in this chapter. 

In Figure 28 b) it is seen that for a small value of KC  and /e D , the cross-flow force attains 
negative values of the same magnitude as the positive values. At small values of KC , vortex 
shedding appears although the gap ratio is small and this causes negative cross-flow forces. The load 
frequency is equal to twice the wave frequency since the shedding frequency is governed by the 
fundamental lift frequency which is defined later in this section. 
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In Figure 28 d), the value of the cross-flow force becomes insignificant as the vortex shedding does 
not result in any significant cross-flow force when the value of KC  is low and the gap ratio is large. 
Vortex shedding must occur in order to obtain cross-flow forces on a free cylinder. For a free 
cylinder far from the seabed, the cross-flow force will occur at 4KC ≥ [Sumer & Fredsøe 1997, 
pp149-150].  

Based on additional experiments on this matter, some tendencies for the cross-flow force coefficient 
have been illustrated in [Sumer & Fredsøe 1997]. Figure 29 shows LC  as function of KC for a 

cylinder with different gap ratios. 

 
Figure 29: Lift force coefficient for a near-wall cylinder.  The asymptotic values of LC   for 

0KC → indicated in the figure are the potential-flow solutions. [Sumer & Fredsøe 1997, 
p183] 

The literature does not distinguish between the values of LC  caused by vortex shedding or wall 

proximity in oscillatory flow. In this project, it is chosen to use the maximum absolute value of LC  

when the gap is small ( / 1)e D <  and the cross-flow force arises from wall proximity.  

For larger gap ratios ( / 1)e D ≥ , the cross-flow force is governed by vortex shedding and the 

conservative value of 0.9LC =  may be used. This value is taken from [Nedergaard et al. 1994] and 

is a basic value of LC  due to vortex shedding determined according to full-scale tests. 

The basic value of 0.9LC =  is also what is recommended in [LICengineering 2002, p17] assuming 

that the erosion beneath the pipeline free-span will increase the gap ratio to / 1e D ≥  within a short 
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time from the initial erosion. The cross flow force for small gaps has not been taken into account in 
[LICengineering 2002].  

3.1.2.3. Cross-flow Frequency 

The determination of the frequency of the cross-flow force is complex. The frequency of the cross-
flow force may be described by tree types of frequencies: 

1.  Fundamental frequency  
2.  Vortex shedding frequency (Strouhal frequency) 
3.  Lock-in frequency 

Fundamental Lift Frequency 

The cross-flow frequency which is also called the lift frequency can be determined by obtaining the 
power spectrum of the cross-flow force to identify the dominant frequency. This frequency is called 
the fundamental lift frequency [Sumer & Fredsøe 1997, p87]. To illustrate this approach, the power 
spectra of the cross-flow force are shown in Figure 30 for a free cylinder in oscillatory flow. 

 
Figure 30: Power spectra of lift for a free cylinder in oscillatory flow. 2σ  is the variance of the 
lift fluctuations, LN  is the ratio between the lift frequency Lf  and the wave frequency Wf .  

55 10Re = ⋅ . [Sumer & Fredsøe 1997, p87] 

Following Figure 30, the normalized fundamental lift frequency for a cylinder far from the wall can 
be approximated as 

 
2, for 4 13 and

3, for 13 24 and

L
L

W

eKCf DN
ef KC
D

⎧ ≤ ≤ = ∞⎪⎪= = ⎨
⎪ < ≤ = ∞
⎪⎩

 (3.1.5) 
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where 
 LN  is the normalized fundamental lift frequency [-] 

 Lf  is the lift frequency [Hz] 

 Wf  is the wave frequency [Hz] 

For small gap ratios, the normalized lift frequency will decrease for increasing values of KC  
according to experimental results in [Sumer & Fredsøe 1997, pp94-102]. The normalized lift 
frequency for small gap ratios is approximated as 

 2, for 7 24 and 0.1L
eN KC
D

= ≤ ≤ =  (3.1.6) 

In this project, the frequency given by (3.1.6) is used in the force models for pipelines with zero or 
small gaps when the cross-flow force is governed by wall proximity effects. This is elaborated in 
Chapter 3.2 (Hydrodynamic Force Models).  

Vortex Shedding Frequency 

The average vortex shedding frequency can be determined based on the number of short-duration 
peaks in the cross-flow force over a certain period. To estimate this frequency, the Strouhal number 
is defined for a cylinder in oscillating flow as 

 v

m

f D
St

U
=  (3.1.7) 

where 
 St  is the Strouhal number [-] 
 vf  is the average vortex shedding frequency (Strouhal frequency) [Hz] 

 mU  is the maximum flow velocity [m/s] 
[Sumer & Fredsøe 1997, p104] 

Figure 31 shows experimental results for the Strouhal number for different values of KC and gap 
ratios.  
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Figure 31: Strouhal number for various gap ratios [Sumer & Fredsøe p105]. 
  o: 20KC = ; Δ: 30KC = ; ; :  55KC =, ; : 65KC∇ = . 

It is seen from Figure 31 that St  is in the range of 0.2-0.4 and attains the lowest values when the gap 
ratio increases and KC  is large. The Strouhal number also depends on Reynolds number and 
roughness of the pipe but these effects are not examined further in this project. In this project, a 
constant value of St  is chosen as 

 0.25St =  (3.1.8) 

The average vortex shedding frequency can now be found by isolating vf  in (3.1.7) as 

 m
v

St U
f

D
⋅

=  (3.1.9) 

The vortex shedding frequency should be implemented in the force models when the gap ratio of the 
pipe increases and the value of KC  increases. It is noticed that the forces that act with the vortex 
shedding frequency will not have a great affect on the cylinder unless vortex lock-in is present. This 
is due to the fact that the vortices along the cylinder otherwise work out of phase which is also 
mentioned in the following section and in Chapter 3.2 (Hydrodynamic Force Models). 

Lock-in Frequency 

When the vortex shedding frequency approaches the natural frequency of the structure, the 
frequency of the vortex shedding and response of the structure collapses into one frequency close to 
the natural frequency of the structure. This phenomenon is called lock-in and is illustrated in Figure 
32. 
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Figure 32: Illustration of lock-in. rU is the reduced velocity and f is the natural frequency of the 
structure. 

The lock-in range is determined according to [Nedergaard et al. 1994] which implies that lock-in 
happens for 

 4.8 8.0rU< <  (3.1.10) 

When applying a force model that includes forces from vortex shedding, the lock-in phenomenon 
should be considered because lock-in can be crucial to the dynamic response of the structure.   

Another important aspect of the cross-flow force from vortex shedding and lock-in is the fact that the 
vortex shedding along the length of the cylinder can act out of phase in different parts of the 
structure [Sumer & Fredsøe 1997, pp28-29; pp104-112]. When applying a force model, a correlation 
length has to be determined which describes the length of a cell where the vortices are in phase. 

3.1.3  CYLINDER IN REGULAR WAVES & CURRENT 

This section shows the effect of combined waves and current on the force coefficients for in-line and 
cross-flow forces, respectively. The section is based on experimental results from [Justesen et al. 
1987]. 

3.1.3.1. In-line Force 

The in-line force coefficients DC  and MC  and their tendencies are shown in Figure 33. 
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Figure 33: Drag and inertia force coefficient DC  and MC   for a near-wall cylinder in regular 
wave with co-existing current [Justesen et al. 1987, p136]. 

It is seen that the drag and inertia force coefficients DC  and MC  generally decrease for increasing 

ratios of /c mU U . The drag force coefficient DC  must be expected to approach an asymptotic value 

that is equal to DC  for a cylinder in a steady current which is the case for a free cylinder according 

to [Sumer & Fredsøe 1997, p159]. 

3.1.3.2. Cross-flow Force 

The lift force coefficient LC  is evaluated similarly to the in-line force coefficients. The experimental 

result is shown in Figure 34. 

 
Figure 34: Lift force coefficient LC   for a near-wall cylinder for combined regular wave and 
current [Justesen et al. 1987, p136]. 

The lift force coefficient LC  decreases as the ratio of /c mU U  increases. This coefficient is also 

expected to reach the asymptotic value of LC  for a cylinder in steady current which is the case for a 

free cylinder according to [Sumer & Fredsøe 1997, p160]. 
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In this project the effect of co-existing current has been disregarded when LC  is estimated which is 

concluded to be conservative. 

3.1.3.3. Cross-flow Frequency 

The cross flow frequency is determined similarly to the method used for regular waves. Assuming 
combined regular waves and current, the Strouhal number is determined as 

 
( )

v

c m

f D
St

U U
=

+
 (3.1.11) 

[Sumer & Fredsøe 1997, p158]  

Because the Strouhal number is a known value from (3.1.8), the average vortex shedding frequency 
can be found as 

 
( )m c

v
St U U

f
D

⋅ +
=  (3.1.12) 

Lock-in and correlation length has to be considered as explained in the previous section for a 
cylinder in regular waves. 

3.1.4 EVALUATION  

It has been shown that the forces that act upon a near-wall cylinder vary in both magnitude and time 
depending upon the type of ambient flow. Force coefficients determined for steady current have 
been shown to be less than those determined for regular waves when assuming the same flow 
characteristics in the two cases. Determining joint force coefficients for regular waves with co-
existing current should therefore be decreased for the presence of current. Conservatively, this has 
not also been done for the lift force coefficient in this project. 

The time variation of the in-line force has been shown to be relatively simple with a load frequency 
identical to the wave frequency. The time variation of the cross-flow force has been shown to be far 
more complex. As the gap between the cylinder and the wall increases, the cross-flow force will no 
longer be affected by the wall proximity and only vortex shedding will create lift upon the cylinder. 
The difference between the frequency due to wall proximity and the frequency of vortex shedding is 
significant. 

It is an important aspect that the vortices along the cylinder only result in significant forces when 
vortex lock-in occurs because the vortices otherwise work out of phase. 
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3.2 HYDRODYNAMIC FORCE 

MODELS 

In this chapter, several models for hydrodynamic forces have been considered. First, the simplest 
and most popular model which is considered is the classical Morison Model from 1950. This model 
neglects the pipe's disturbance on the flow and uses constant force coefficients. The force 
coefficients are determined according to DNV and compared to experimental results.  

Another hydrodynamic force model that is considered is an extension of the Morison Model that 
incorporates the effects of vortex shedding for a pipeline above the seabed. 

Finally, three semi-empirical Wake Models are considered, namely the Wake I, Wake II and Wake II 
Extended Model. These models are intended for pipelines upon the seabed and incorporate the flow 
disturbance that the pipe creates and time variation of force coefficients. The Wake Models are 
compared to the Morison Model and their limitations are discussed. One of the Wake Models is 
chosen for the analyses for irregular waves. 

More advanced numerical hydrodynamic models such as those based upon Computational Fluid 
Dynamics have been considered beyond the scope of this project. 

3.2.1 THE MORISON MODEL 

The conventional model for determining hydrodynamic forces on cylindrical structures in the 
offshore industry is the Morison Model. The hydrodynamic forces affecting the pipeline have 
components in two directions – the in-line force and the cross-flow force. Figure 35 shows the forces 
affecting the pipeline. 
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in linef −

cross flowf − (cross-flow force) 

(In-line force) 
currentU waveU

 
Figure 35: Hydrodynamic forces acting on the pipeline. 

3.2.1.1. In-line Force 

For a cylindrical structure with infinite stiffness, the Morison Model for determining the in-line force 
reads 

 in line
D If g U U g U− = ⋅ + �  (3.2.1) 

where 
 in linef −  is the in-line force per unit length of the pipe as function of time N

m⎡ ⎤⎣ ⎦  

 Dg  is the drag force term 2
kg
m
⎡ ⎤⎣ ⎦   

 Ig  is the inertia force term kg
m⎡ ⎤⎣ ⎦  

 U  is the in-line flow velocity for wave and current m
s⎡ ⎤⎣ ⎦  

[Burcharth 2002, p33] 

In slender structures, the assumption of infinite stiffness is not applicable since the velocity of the 
structure is not negligible compared to the water particle velocity. In this case, the Morison Model 
for determining in-line forces on slender cylindrical structures reads 

 ( )in line
D I Af g U y U y g U g y− = ⋅ − − + −�� � ��  (3.2.2) 

where 

 Ag  is the added mass term due to movements of the pipe kg
m⎡ ⎤⎣ ⎦  

 y  is the lateral displacement of the pipe, defined positive in the flow direction [ ]m  

[DNV-RP-F105 2002, p26] 

The force terms for drag, inertia and added hydrodynamic mass are defined as 
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 where 
 DC  is the drag force coefficient [-] 

 MC  is the inertia force coefficient [-] 

 AC  is the added mass coefficient [-] 
[DNV-RP-F105 2002, p27] 

The fluid damping is identified in the drag force term in (3.2.2) since fluid damping may be defined 
as 

 , 0fluid D Df g y y g= >� �  (3.2.4) 
where 
 fluidf  is the damping term for fluid damping N

m⎡ ⎤⎣ ⎦  

[Nielsen 2004, p10]  

3.2.1.2. Cross-flow Force 

An equivalent formulation can be made for the cross-flow force. The Morison Model for the cross-
flow force reads 

 ( )2 , / 1.0cross flow
Lf g U y e D− = ⋅ − <�  (3.2.5) 

where 
 cross flowf −  is the cross-flow force per unit length of the pipe N

m⎡ ⎤⎣ ⎦  

 Lg  is the lift force term 2
kg
m
⎡ ⎤⎣ ⎦  

The lift force term is determined as 

 1
2L L wg C Dρ=  (3.2.6) 

where 
 LC  is the lift force coefficient [-] 
[Lambrakos et al. 1987, p123] 

The formulation made in (3.2.5) describes the variation of the cross-flow force poorly when the gap 
ratio between the pipeline and seabed increases. The cross-flow force goes from being induced by 
seabed proximity to being induced by vortex shedding.  

For larger gap ratios, an alternative cross-flow force model is implemented according to [Nedergaard 
et al. 1994]. This model is made so it includes the effect of VIV, lock-in and correlation length 
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which have been discussed in Chapter 3.1 (Near-Wall Cylinder). The cross-flow force model from 
VIV reads 

 2 sin( ) , / 1cros flow
viv Lf g U t e Dω− = ⋅ ≥  (3.2.7) 

 
where 
 cross flow

VIVf −  is the cross-flow force induced by VIV [N/m] 
 ω  is the circular vortex shedding frequency [rad/s] 
[Nedergaard et al. 1994] 

In this project, (3.2.7) is only considered for pipeline free-spans where the gap ratio is assumed to be 
equal or larger than 1.0. The lock-in effect is included in (3.2.7) by implementing the following 
condition for the circular vortex shedding frequency 

 ,
,

, 4.8 8.0
,

, else
i r i

r i
st i

U UU
f D

ω
ω

ω
< <⎧

= =⎨
⎩

 (3.2.8) 

where 
 iω  is the circular eigenfrequency of the pipeline free-span [rad/s] 

 stω  is the circular Strouhal frequency [rad/s] 

 rU  is the reduced velocity [m/s] 

 f  is the eigenfrequency of the pipeline free-span  [Hz] 
  i  is the mode number [-] 
[Nedergaard et al. 1994] 

Because the vortices along the pipeline can work out of phase, a correlation length depending on the 
amplitude of the structure is estimated as 

 
( , )3 35 , ( , ) 0.5

0.5 ( , )
, ( , ) 0.5

c

c

x tl D D x t D
D x t

l x t D

η η
η

η

= + <
−

= ∞ >
 (3.2.9) 

where  
 cl  is the correlation length [m] 
 η  is the amplitude of structure [m] 
 x  is the coordinate along the cylinder [m] 
[Nedergaard et al. 1994] 

The correlation length is short when lock-in does not occur which results in a small total response of 
the pipeline. The cross-flow force caused by vortex shedding out of the range of lock-in is neglected 
in this project. The same assumption has been made in [Nedergaard et al. 1994]. 
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3.2.1.3. Force Coefficients  

In order to get all contributions from the hydrodynamic load, three different force coefficients need 
to be determined: 

• Drag force coefficient 
• Inertia force coefficient 
• Lift force coefficient  

In reality, the hydrodynamic force coefficients vary with time and depend on multiple parameters, 
including the Reynolds number, the Keulegan-Carpenter number, the current-flow velocity ratio, 
seabed proximity and the pipe roughness. This section describes the determination of force 
coefficients independent of time, which are the estimated values that are typically implemented in 
the Morison Model. 

Drag Force Coefficient 

The drag force coefficient DC  is determined according to [DNV-RP-F105 2002, p27], and has been 

compared to the theory and experimental results from [Sumer & Fredsøe 1997] and [Justesen et al. 
1987] which have also been described in Chapter 3.1 (Near-Wall Cylinder). 

The drag force coefficient is determined as  

 ,0
CD CD CD CD

D D k proxi trench AC C ψ ψ ψ ψ= ⋅ ⋅ ⋅ ⋅  (3.2.10) 
where 
 DC  is the drag force coefficient [-] 

 ,0DC  is the basic drag force coefficient [-] 

 CD
kψ  is a correction factor for the pipe roughness [-] 

 CD
proxiψ  is a correction factor for the seabed proximity [-] 

 CD
trenchψ  is a correction factor accounting for a pipe in a trench [-] 

 CD
Aψ  is an amplification factor due to cross-flow vibration [-] 

[DNV-RP-F105 2002, p27] 

It is noticed that the amplification factor CD
Aψ  is equal to 1 in all further calculations because the 

impact from cross-flow vibration is determined implicitly in the dynamic model.  

The basic drag force coefficient for 5KC ≥ is taken as 

 ,0

0.9 (1 ) 5 / , 0.5
0.45 5 / , 0.5D

KC
C

KC
α α

α
⋅ − + ≤⎧

= ⎨ + >⎩
 (3.2.11) 

where  
 α  is the current-flow velocity ratio  [-] 
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[DNV-RP-F105 2002, p27] 

For small values of 5KC < , the drag force coefficient is of little practical importance as inertia 

forces are dominating but for completeness ,0DC  can be determined by interpolation. The basic drag 

force coefficient is shown in Figure 37 at the end of this section. The current-flow velocity ratio is 
determined as 

 c

c m

U
U U

α =
+

 (3.2.12) 

where 
 cU  is the velocity of the current [m/s] 

 mU  is the maximum velocity of the wave [m/s] 
[DNV-RP-F105 2002, p6] 

For increasing pipe roughness, the drag force coefficient will increase which is also shown in [Sumer 
& Fredsøe 1997, p183]. The correction factor for the pipe roughness is taken as 

 1.25 0.05lnCD
k

k
D

ψ ⎛ ⎞= + ⎜ ⎟
⎝ ⎠

 (3.2.13) 

where 
 k  is the coefficient for surface roughness [m] 
[DNV-RP-F105 2002, p27] 

Table 11 shows typical values for the surface roughness. In this project, the value of 1/100k = m is 
used when assuming marine growth on the pipeline free-span.  

Pipe surface [m]k  

Steel, painted 10-6 

Steel, uncoated (not rusted) 10-5 

Concrete 1/300 
Marine growth 1/200 – 1/20 

For small gap ratios, the seabed will have influence on the flow around the pipe. The drag force 
generally increases with decreasing gap ratios. The correction factor for the seabed proximity is 
taken as 

 

0.50.9 , 0.8
1 5

1, else

CD
proxi

e
e D
D

ψ

⎧ + <⎪⎪ += ⎨
⎪
⎪⎩

 (3.2.14) 

where 
 e  is the gap between the pipe and the seabed [m] 

 e
D

 is the gap ratio [-] 

[DNV-RP-F105 2002, p27] 

Table 11: Surface roughness [DNV-RP-F105 2002, p27]. 
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The free-span that is examined in this project is caused by erosion. The erosion creates a trench 
under the pipe which decreases the drag force compared to a plane seabed. The correction factor 
accounting for a pipe in a trench is taken as 

 21
3

CD
trench D

ψ Δ⎛ ⎞= − ⎜ ⎟
⎝ ⎠

 (3.2.15) 

where 

 
D
Δ  is the relative trenching depth [-] 

[DNV-RP-F105 2002, p27] 

Figure 36 shows the geometrical parameters to determine the relative trenching depth. 

 
Figure 36: Relative trench depth [DNV-RP-F105 2002, p23]. 

The relative trenching depth is determined as 

 1.25 , 0 1d e
D D D
Δ − Δ
= ≤ ≤  (3.2.16) 

[DNV-RP-F105 2002, p23] 

In this project, the conservative value of the correction factor 1CD
trenchψ =  is used. 

Figure 37 shows DC  as a function of KC  for different values of α before the correction factors are 

applied which corresponds to the case ,0D DC C= . Figure 37 shows that DC  peaks at 5KC =  and 

decreases asymptotically for higher values of KC . Figure 37 also shows that DC  decreases for 

increasing α . The values of DC  as a function of KC  are slightly conservative compared to [Sumer 

& Fredsøe, p181] and the peak value of DC  has been indicated to appear at 10KC = in [Justesen et 

al.1987, p132]. 
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Figure 37: Drag force coefficient in the case ,0D DC C=  [DNV-RP-F105 2002, p27]. 

The correction factors are applied to DC  corresponding to the conditions chosen in the individual 

analysis. A script has been made to determine DC  and can be found in [DVD/Hydrodynamic Force 

Models/Force Coefficients/forcecoefficients.m]. 

Inertia Force Coefficient 

The inertia force coefficient is determined according to [DNV-RP-F105 2002, pp27-28] and 
compared to the same literature as the drag force coefficient. The inertia force coefficient is 
determined as 

 ,0
CM CM CM

M M k proxi trenchC C ψ ψ ψ= ⋅ ⋅ ⋅  (3.2.17) 
where 
 ,0MC  is the basic inertia force coefficient [-] 

 CM
kψ  is a correction factor for the pipe roughness [-] 

 CM
proxiψ  is a correction factor for the seabed proximity [-] 

 CM
trenchψ  is a correction factor accounting for a pipe in a trench [-] 

The basic inertia force coefficient is determined as function of the current-flow velocity ratio α  
defined in (3.2.12) and KC . The basic inertia force coefficient is taken as 

 
( )

,0

1.6 2 , 0.55 2 ( )
( ) , ( )

0.6, 0.55M

f
C f f

KC
α αα

α α
α

− ≤− ⎧
= + = ⎨ >+ ⎩

 (3.2.18) 

[DNV-RP-F105 2002, p27] 

The basic coefficient is shown in Figure 38 at the end of this section.  
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For increasing pipe roughness, the inertia force will decrease. This corresponds well to the 
observation made in [Sumer & Fredsøe 1997, p153]. The correction factor for the pipe roughness is 
taken as 

 2CM CD
k kψ ψ= −  (3.2.19) 

[DNV-RP-F105 2002, p28] 

Like the drag force, the inertia force will increase for decreasing gap ratios. This tendency is also 
found in [Sumer & Fredsøe 1997, p181]. The correction factor for the seabed proximity is taken as 

 

0.80.84 , 0.8
1 5

1, 0.8

CM
proxi

e
e D
D

e
D

ψ

⎧ + <⎪
+⎪= ⎨

⎪
≥⎪

⎩

 (3.2.20) 

[DNV-RP-F105 2002, p28] 

The trenching depth caused by erosion also decreases the inertia force. The correction factor 
accounting for a pipe in a trench is taken as 

 11
3

CM
trench D

ψ Δ⎛ ⎞= − ⎜ ⎟
⎝ ⎠

 (3.2.21) 

[DNV-RP-F105 2002, p28] 

In this project, the conservative value of the correction factor 1CM
trenchψ =  is used. 

Figure 38 shows the values of MC  as a function of KC  for different values of α before the 

correction factors are applied corresponding to ,0M MC C= . The values of MC  are overall in good 

agreement with [Justesen et al.1987, p135] but for decreasing gap ratios MC  increases rapidly for 

higher values of KC . This effect is not taken into account in the formulation of MC  in [DNV-RP-

F105 2002]. However, it is of minor importance since the in-line force for higher values of KC  is 
drag dominated which has been illustrated in Chapter 3.1 (Near-Wall Cylinder). 
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Figure 38: Inertia force coefficient in the case ,0M mC C= . [DNV-RP-F105 2002, p28]. 

The correction factors are applied to MC  corresponding to the conditions chosen in the individual 

analysis. A script has been made to determine MC  and can be found in [DVD/Hydrodynamic Force 

Models/Force Coefficients/forcecoefficients.m]. 

Lift Force Coefficient 

[DNV-RP-F105 2002] does not specify values for the lift force coefficient. The lift force coefficient 
is estimated according to theory and experimental results from [Sumer & Fredsøe 1997] and 
[Justesen et al. 1987] which have been examined in Chapter 3.1 (Near-Wall Cylinder).   

The lift force coefficient for small gaps is estimated from Figure 39 which has been elaborated in 
Chapter 3.1 (Near-Wall Cylinder). This is the lift force coefficient that is used in (3.2.5) in this 
project to determine the cross-flow force for pipeline free-spans with small gap ratios ( / 1.0)e D < . 
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Figure 39: Lift force coefficient for a near-wall cylinder in a regular wave.  The asymptotic 
values of LC   for 0KC → indicated in the figure are the potential-flow solutions. [Sumer & 
Fredsøe 1997, p183]. 

The current-flow velocity ratio α  does also have an effect on the cross-flow force. For increasing 

α , LC will tend to decrease to the value determined for steady current. The pipe roughness has a 

small effect on the cross-flow force. The cross-flow force will increase for increasing pipe roughness 
which is shown in [Sumer & Fredsøe 1997, p185].  These effects have been disregarded in this 
project as the values of LC  shown in Figure 39 are considered to be conservative. 

For larger gap ratios ( / 1)e D ≥ , the value of 0.9LC =  should be used in the cross-flow force model 

for vortex shedding shown in (3.2.7). This is also considered to be a conservative value which has 
been elaborated in Chapter 3.1 (Near-Wall Cylinder). 

Lift Frequency 

In addition to estimating the value of the lift force coefficient, it is also important to know the lift 
frequency. For a pipeline free-span with an infinitesimal gap ratio, the lift frequency is about twice 
the wave frequency as described in Chapter 3.1 (Near-Wall Cylinder). This characteristic of the 
cross-flow force is inherent in the conventional force model. In the case of no current, (3.2.5) yields 
a cross-flow force that varies at exactly twice the circular frequency of the wave 

 ( ) ( ) ( )2sin sin sin 2 90cross flow
mU U t f t tω ω ω−= ⇒ ∝ ∝ − °  

where 
 ω is the circular wave frequency [rad/s] 

Figure 40 (left) shows the flow velocity for sea state 5 before any current is applied and Figure 40 
(right) shows the corresponding cross-flow force calculated by (3.2.5).  
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Figure 40: Flow velocity and corresponding cross-flow force by the Morison Model during sea 
state 5 without current. KC=31, 2.5LC = . 

It is seen that if LC  is given a positive constant value, the cross-flow force can only attain non-

negative values since the computed force can never have the opposite sign of the lift force 

coefficient according to (3.2.5), i.e. 0 0cross flow
LC f −> ⇒ ≥ .  

This is not a correct modelling of the cross-flow force when the gap ratio increases because 
experimental results show that the pipeline free-span will be affected by negative cross-flow forces 
even for small gaps, also described in Chapter 3.1 (Near-Wall Cylinder).  

For larger gaps, the cross-flow force model including vortex shedding is used. Figure 41 (left) shows 
the flow velocity for sea state 5 before any current is applied and Figure 41 (right) shows the 
corresponding cross-flow force calculated by (3.2.7). It is noticed that vortex shedding is assumed to 
be out of the range of lock-in.  
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Figure 41: Flow velocity and corresponding cross-flow force by the force model in (3.2.7) 
during sea state 5 without current. KC=31, 0.9LC = . 

The frequency of the vortex shedding according to the cross-flow force model described in (3.2.7) is 
evaluated according to the experimental result in [Justesen et al. p135] also shown in Chapter 3.1 
(Near-Wall Cylinder). It is seen that the cross-flow force is actually modelled quite well compared to 
the experimental results for high values of KC  and a gap ratio / 1e D = .  

3.2.2 THE WAKE MODELS  

Over the past two decades, several models have been proposed to determine the hydrodynamic 
forces upon pipelines on the seabed. These are the Wake I Model [Lambrakos et al. 1987], the Wake 
II Model [Soedigdo et al. 1998; Sabag et al. 2000] and the Wake II Extended Model [Aristodemo et 
al. 2006; Aristodemo et al. 2007]. These three models will be referred to as the Wake Models and 
are described in this section. 
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3.2.2.1. Overview 

All of the Wake Models extend the Morison Model with the following two features: 

• The start-up effect: A generic Pipe Impulse Test (PIT) was conducted during the years 
1982-1983 where two pipes in longitudinal contact were lifted suddenly through still fluid. 
The test was conducted on smooth and rough pipes with diameters 0.2 m and 0.3 m. The test 
showed that the hydrodynamic forces upon pipes which are suddenly moved in still fluid are 
greatest at the beginning of the impulse movement [Lambrakos et al. 1987, p126]. This 
effect is called the start-up effect and is incorporated in the Wake Models by the use of time 
varying force coefficients for the drag and cross-flow force that depend upon the flow and 
empirical parameters. The Wake Models use identical mathematical formulation of the start-
up effect but they differ in the values of the related empirical parameters. 

 
• The wake effect: The presence of the pipe is known to disturb the flow and create a wake in 

the downstream direction of the flow. In oscillatory flow, the pipe will meet this wake upon 
reversal of the flow direction which will affect the magnitude and phase of the local velocity 
that the pipe experiences. This effect is called the wake effect, and is incorporated in the 
Wake Models by use of an effective velocity. The Wake Models differ in the theoretical 
background, formulation and values of the empirical parameters for the effective velocity.  

As mentioned, the Wake Models introduce empirical parameters. These may be limited to the scope 
of flow and structural conditions which they have been calibrated against. The application scope and 
calibration bases of the Wake Models are given in Table 12 and described briefly below.  

Application scope Basis for calibration 

 Regular waves 
with and 

without current 

Irregular waves 
with and 

without current 
Experiment Flow conditions 

Wake I 
Model 

Yes Yes 

Wake II 
Model 

Yes No 

Full-scale pipe  
in shallow waters 5

0

0 40
0 8 10

e
D
KC

Re

=

≤ ≤

≤ ≤ ⋅

 

Smooth and rough pipe 

Wake II 
Extended 
Model 

Yes Yes 
Model-scale pipe 

in wave flume 

( )
( )

0

4 12 regular

4 9 irregular

e
D

KC

KC

=

≤ ≤

≤ ≤

 

Inertia-dominated 
Smooth pipe 

It is seen from Table 12 that the Wake II Model is not valid for irregular waves. It will therefore not 
enter as a candidate model for the dynamic analysis of the project but it is included in the following 
descriptions for the sake of completeness and illustration.  

Table 12: Overview of the Wake Models. Compiled upon literature study of [Lambrakos et al. 
1987, Soedigdo et al. 1998; Sabag et al. 2000, Aristodemo et al. 2006; Aristodemo et al. 2007]. 
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The basis of calibration for the Wake I and II Models is results from the Pipeline Field Measurement 
Program (PFMP) that was conducted during the years 1980-1981 in a bay outside Washington State, 
U.S. Data were recorded from full-scale smooth and rough pipe-sections with a diameter of 0.61 m 
on the seabed. The test was performed in shallow waters with a water depth of 18.3 m for a wide 
range of sea conditions. [Lambrakos et al. 1987, p119-120] 

The calibration basis for the Wake II Extended Model is a recent experiment with a model-scale 
smooth pipe section with a diameter of 0.22 m in a large wave flume which is 132 m long, 1.94 m 
wide and 2.50 m deep. The test was conducted for inertia-dominated sea states that cover a limited 
range of characteristic Keulegan-Carpenter numbers. [Aristodemo et al. 2006] 

The empirical parameters generally differ for the Wake Models and are shown in Appendix F 
(Empirical Parameters of Wake Models). In the calibration basis of the Wake I Model, one set of 
parameters are provided for all flow conditions whereas the Wake II and II Extended Models are 
provided with different sets of parameters that depend upon the flow condition.  

The numerical computations can be found in [DVD/Hydrodynamic Force Models/Force 
Models/forcemodels.m]. 

3.2.2.2. Hydrodynamic Forces of the Wake Models 

The formulation of the hydrodynamic forces is identical for all the Wake Models and is described in 
this section. The in-line force for a rigid cylinder in the Wake Models may be written as 

 ( ) ( ) ( ) ( ) ( )in line
D e e I A wf t g t U t U t g U t g U− = ⋅ + ⋅ − ⋅� �  (3.2.22) 

 
where 
 eU  is the effective flow velocity m

s⎡ ⎤⎣ ⎦  

 wU  is the wake flow velocity, defined positive in the ambient flow direction m
s⎡ ⎤⎣ ⎦  

[Lambrakos et al. 1987, p123; Soedigdo et al. 1998, p442; Sabag et al. 2000, p1297; Aristodemo et 
al. 2006, p2; Aristodemo et al. 2007, p3] 

The effective velocity is defined as the superposition of the ambient flow and wake velocity 

 ( ) ( ) ( )e wU t U t U t= +  (3.2.23) 
where 
 U  is the undisturbed in-line flow velocity for wave and current m

s⎡ ⎤⎣ ⎦  

It may be noted by comparison of (3.2.22) and (3.2.23) that a positive wake velocity correctly 
provides an increased value of the drag and inertia terms but a decreased value of the added mass 
term.  

The cross-flow force in the Wake Models is given by 
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 ( ) ( ) ( )( )2cross flow
L ef t g t U t− = ⋅  (3.2.24) 

[Lambrakos et al. 1987, p123; Soedigdo et al. 1998, p442; Sabag et al. 2000, p1297; Aristodemo et 
al. 2006, p2; Aristodemo et al. 2007, p3] 

3.2.2.3. Flow Condition Examples 

In order to illustrate the start-up and wake effect, some flow conditions are introduced. These flow 
conditions will be referred to as the flow condition examples. The flow condition is denoted with R 
or IR for cases with regular and irregular waves, respectively, and with NC or C for cases without 
and with current, respectively.  

The regular waves are represented by a sinusoidal function of the following general form 

 ( ) ( )sinm cU t U t Uω θ= + +  

As previously discussed, all of the Wake Models are valid for 10KC ≈ . In order to compare the 
models, this value is targeted and may be achieved by the following choice of parameters: 

 m m
s s9.8s, 0.5 , 0.17 , 70 , 0.6mm cT U U Dθ= = = = ° =   

By comparison with Chapter 1.1 (Design Conditions), it may be seen that the chosen parameters 
correspond to the flow condition in the centre-line of the pipe upon the seabed during sea state 3. 

For the case of irregular waves with current, a time-series of ambient flow from the PFMP is used 
because it provides a basis for benchmarking [Lambrakos et al. 1987, p129]. This flow is 
characterized by the following parameters: 

 m
s15s, 0.24 , 0.61mp cT U D= = − =  

The irregular flow has a characteristic 16KC ≈ . Since the smoothness of the ambient velocity is 
important for the computations of flow acceleration, the digitalized discrete signal has been 
transformed to a Fourier series from which the high-frequent noise has been removed.  

The time variation of the flow velocity for the flow condition examples for regular waves with and 
without current, and regular waves with current is shown in Figure 42. 
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Figure 42: Time variation of flow velocities in flow condition examples. 

3.2.2.4. Definition of Intersects and Maxima 

Before the start-up and wake effect of the Wake Models are described further, it is appropriate to 
introduce definitions of some relevant quantities. The instances in time ,1 ,2 ,, , ,e e e pt t t° ° °…  for 

intersects with the time axis of the effective velocity are here defined by the relation 

 ( ), 0, 1,2,...,e e fU t f p° = =  (3.2.25) 
where 
 ,e ft °  is the time for the fth intersect of the effective velocity [s] 

 p is the total number of intersects of the effective velocity [-] 

The instances in time 1 2, , , kt t t° ° °…  for intersects of ambient velocity are similarly defined by 

 ( ) 0, 1,2,...,fU t f k° = =  (3.2.26) 
where 
 ft °  is the time for the fth intersect of the ambient velocity [s] 

 k is the total number of intersects of the ambient velocity [-] 

The instances in time 1 2 1', ', , 'kt t t +…  for maximum absolute flow velocity within a half-cycle are 

defined by 

 ( )
( )
( )

( )

1 max,1 1

max, 1

1 max, 1

'

max ' 2,3,...,

'
h h h h

k k k

U t U t t

U t U t U t t t h k

U t U t t
−

+ +

⎧ = < °
⎪⎪= = ° < < ° =⎨
⎪ = ° <⎪⎩

 (3.2.27) 

where 
 jt′  is the time for maximum ambient velocity in the jth half-cycle [s] 

 max, jU  is the maximum absolute flow velocity in the jth half-cycle m
s⎡ ⎤⎣ ⎦  
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The definitions of intersect and maxima of the flow velocity are illustrated on Figure 43. 

max,1U

t

( )U t

max,2U−

max,3U

Half-cycles: 1 2 3 4...

1 't
2 't

3 't1t ° 2t °

 
Figure 43: Definitions of intersect and maxima of flow velocity. 

For convenience, the characteristics of the cycles of the flow condition example IR-C are shown in 
Table 13 where the local half-cycle period is the time difference between two intersects. 

Half-cycle 
j  

Maximum absolute 
ambient velocity 

max, [ ]m
sjU  

Local half-
cycle period 

, [s]loc jT  

1 0.51 3.50 
2 0.22 3.70 
3 1.05 7.65 
4 0.40 5.15 
5 0.80 11.60 
6 0.57 5.40 
7 1.33 6.85 
8 0.42 8.05 
9 1.31 7.25 
10 0.40 6.70 
11 1.06 7.75 
12 0.70 5.75 
13 0.71 9.05 
14 0.34 4.25 
15 0.65 11.70 
16 0.08 3.45 
17 0.88 8.40 
18 0.40 3.65 

Average 0.66 6.66 

3.2.2.5. The Start-up Effect of the Wake Models 

The first feature of the Wake Models is the start-up effect. This is formulated in the same general 
way for all the Wake Models but the values of the empirical parameters differ. The time variation of 
the drag and lift force coefficients is written as 

Table 13: Characteristics of flow condition example IR-C. 
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 ( ) ( ) ( )( )exp , ,k k

k kS k kC t C r t r t k D Lβ δα γ= + ⋅ =  (3.2.28) 

where 
 kC  is the time-varying force coefficient for drag or lift [-] 

 kSC  is the steady-flow force coefficient for drag or lift [-] 

 kα   is the height parameter for drag or lift [-] 

 kβ   is the rise parameter for drag or lift [-] 

 kγ   is the decay parameter for drag or lift [-] 

 kδ   is the width parameter for drag or lift [-] 
 r  is a time-varying impulse ratio [-] 
[Lambrakos et al. 1987, p127-128] 

Thus, the drag and lift force coefficients depend upon the impulse ratio and ten empirical parameters 
, , , , , , , , ,DS LS D D D D L L L LC C α β γ δ α β γ δ  when the effective velocity is known. The empirical 

parameters differ for the Wake Models and are given in Appendix F (Empirical Parameters of Wake 
Models).  

A comparison of the start-up effect follows in a later section but the transient part of the drag and lift 
force coefficient is illustrated in Figure 44 for the Wake I Model. Generally, the variation of the lift 
force coefficient is much larger than that of the drag force coefficient. 
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Figure 44: The transient drag and lift force coefficient for the Wake I Model. 

The impulse ratio is given by the ratio between the relative distance that the water particles travel 
after intersects in the effective velocity and the pipe diameter 

 ( ) ( )S t
r t

D
=  (3.2.29) 

where 
 S  is the relative distance of the water particles after intersects in the effective velocity [m] 

By the use of the definition for instances in time for intersects (3.2.25), the relative distance may be 
determined by numerical integration of the effective velocity 
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 ( ) ( )
,1

, 1 , 1 ,

, ,

0
, 2,3,...,

et

e e h e h e h
a

e k e k

t t
S t U d a t t t t h k

t t t
τ τ − −

⎧ < °
⎪= = ° ° < < ° =⎨
⎪ ° ° <⎩

∫  (3.2.30) 

[Lambrakos et al. 1987, p127] 

For illustration, the time variation of the relative distance for an effective velocity identical to the 
flow condition example for regular waves without current is shown in Figure 45. 
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Figure 45: The time variation of the relative distance for the flow condition R-NC. 

3.2.2.6. The Wake Effect of the Wake I Model 

The second feature of the Wake Models is the wake effect. This is described here for the Wake I 
Model which is valid for irregular waves with current. The Wake I Model is also known as the EPR 
(Exxon Production Research) Wake Model. 

In the derivation of the wake velocity, one may consider an oscillating pipe in still fluid or a still 
pipe in oscillatory flow. These two perspectives are illustrated in Figure 46 left and right, 
respectively. 

 
Figure 46: Two perspectives on wake flow around a pipe. Left: An oscillating pipe in still fluid. 
Right: A still pipe in oscillatory flow. 

In the first case, the wake appears behind the pipe with a velocity in the direction of the pipe motion. 
In the latter case, the wake appears in the downstream direction with a velocity that is directed in the 
upstream direction. Upon reversal, the wake will either counteract or contribute to the flow in the 
first and latter case, respectively. Since the first perspective is used in the Wake I Model and the 
latter perspective is the actual situation of the pipe, the actual wake velocity has the opposite sign of 
the apparent wake velocity, i.e.  
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 w wU U= − �  (3.2.31) 
where 
 wU�  is the apparent wake velocity m

s⎡ ⎤⎣ ⎦  

The wake is assumed to be generated at the time of maximum ambient velocity as defined by 
(3.2.27). Then, the apparent wake velocity may be found upon a simplified solution to the Navier–
Stokes equations for the wake flow that is generated by a pipe that moves with constant velocity 

 ( )

( )

2

,

,

,

DS
p

w i
DS

p
i

C D
U K x

K
U t C D

U elsewise
x t

⎧ ⋅ ≤⎪
⎪= ⎨
⎪ ⋅
⎪⎩

�
�

�
 (3.2.32) 

where 
 pU�  is the pipe velocity m

s⎡ ⎤⎣ ⎦  

 x is the distance along the flow motion between wake particles and pipe perimeter [m] 
 K is an empirical parameter [-]   
[Lambrakos et al. 1987, p124] 

The parameters are illustrated on Figure 47.  

 
Figure 47: Wake flow for a pipe moving with constant velocity in still fluid. Adopted from 
[Lambrakos et al. 1987, p124] 

All wake particles are assumed to travel with the same velocity as the wake front, i.e. the wake is a 
rigid segment. The distance travelled by the wake segment after wake generation is 

 ( ) ( )
'

t

w w
t

x t J U dτ τ= ∫ �  (3.2.33) 

where 
 J  is an empirical parameter [-] 
 wx  is the wake distance, defined positive in the flow direction [m] 
[Lambrakos et al. 1987, p125] 
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After wake generation, the pipe travels the distance 

 ( ) ( )
'

t

p p
t

x t U dτ τ= ∫ �  (3.2.34) 

where 
 px  is the pipe distance, defined positive in the flow direction [m] 

[Lambrakos et al. 1987, p125] 

The relative distance between the pipe and the wake segment which determines the wake velocity 
after wake generation is approximated by a Taylor expansion of first order 

 ( ) ( ) ( ) ( ) ( ) ( )' 'p w p wx t x t x t U t t t x t= − ≈ ⋅ − −�  (3.2.35) 
[Lambrakos et al. 1987, p125] 

Notice that equations (3.2.32), (3.2.33) and (3.2.35) are coupled, so an iterative solving method is 
needed. Collision is assumed to occur either when the pipe reverses, given by (3.2.26), or when the 
pipe has decelerated so the pipe and wake have equal distance, given by 

 ( ) ( )* *p wx t x t=  (3.2.36) 
where 
 *it  is the time for equal distance [s] 
[Lambrakos et al. 1987, p125] 

It is noticed that in most cases, collision will occur upon reversal of the ambient velocity. The 
parameters , , DSJ K C  are determined empirically and can be found in Appendix F (Empirical 

Parameters of Wake Models).  

The effective velocity in a half-cycle is assumed to be affected by the wake velocity of the wake 
generated in the previous half-cycle. The correction is introduced from the time of collision until the 
end of the present half-cycle. Unfortunately, it is unclear from the original paper whether the pipe 
velocity in (3.2.32) is identical to the maximum ambient velocity or the actual value of the ambient 
velocity at a time shifted from wake generation until collision, i.e.  

 
( ) ( )

,max , Interpretation A

, * ', Interpretation B
p p

p p

U U

U t U t t tτ τ

=

= − = −

�

�  

In this project, both interpretations have been investigated. The wake effect for interpretation A and 
B of the Wake I Model is illustrated in Figure 48 and Figure 49, respectively, for the flow condition 
example with regular waves and current. This serves as a basis for understanding the case of 
irregular waves. In both interpretations, the wake velocity has identical peak values. However, the 
wake velocities decay at different rates which greatly affect the effective velocity. It is seen from 
Figure 48 that interpretation A provides blocks of nearly constant wake velocities since the distance 
x never becomes relatively large. This interpretation is assessed unrealistic and is not considered in 
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the rest of the project. It may be noticed that none of the mentioned interpretations have been able to 
fully reproduce the Wake I Model results that appear in [Soedigdo et al. 1998, p449]. 
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Figure 48: The wake effect in interpretation A of the Wake I Model for flow condition example 
R-C. 
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Figure 49: The wake effect in interpretation B of the Wake I Model for flow condition example 
R-C. 

3.2.2.7. The Wake Effect of the Wake II Model 

The Wake II Model is valid for regular waves with and without current and will is briefly described 
for both cases.  

Without Current 

For the case of regular waves without current, the flow velocity may be assumed to have the 
following form 

 ( ) ( )sinmU t U tω θ= +  (3.2.37) 
where 
 θ  is an arbitrary phase angle [deg] 
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The related wake velocity is derived analytically from a closed-form solution to the linearised 
Navier–Stokes equations for oscillatory flow. The wake velocity, under influence of (3.2.37), is 
taken as 

 ( ) ( )1
2

2

1erf sin
2

nm
w

U CU t C t
C

π
ω θ φ ψ⎛ ⎞= + + +⎜ ⎟

⎝ ⎠
 (3.2.38) 

where 
 wU  is the wake velocity m

s⎡ ⎤⎣ ⎦  

 1C  is a parameter that determines the rise of the wake velocity [-] 

 2C  is a parameter that determines the decay of the wake velocity [-] 
 n  is a parameter that determines the sharpness of the wake velocity [-] 
 φ  is the phase shift between the flow velocity and the wake velocity [ ]deg  

 ψ  is an additional phase shift [ ]deg  

 erf is the error function [-] 
[Soedigdo et al. 1998, p441*] 

The empirical parameters 1 2, , ,C C n φ  can be found in Appendix F (Empirical Parameters of Wake 

Models). The parameter for additional phase shift 114ψ ≈ − °  has been introduced in order to correct 

an apparently erroneous phase shift in the original formula. The corrected formula has been found to 
be consistent with the computed wake velocity diagrams in the original paper which may be 

computed with { }m m
s s0.305m, 10s, 0.305 ;1.220 , 114mD T U θ= = ∈ = °  [Soedigdo et al. 1998, 

p442, 449-450].  

For the flow condition example for regular waves without current, the following values of the 
empirical parameters are obtained: 

 1 20.50, 0.95, 3, 173.5C C n φ= = = = °  

The wake effect is illustrated in Figure 50. 
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Figure 50: The wake effect in the Wake II Model for flow condition example R-NC. 
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With Current 

For the case of regular waves and current with current-wave ratios less than unity, the flow velocity 
is assumed to have the following form 

 ( ) ( )sin , 0m c c mU t U t U U Uω θ= + + < ≤  (3.2.39) 

The half-cycles of the flow regime may be characterised by two phases: 

• Phase A: The flow velocities from current and waves have identical directions which create 
a large wake with a large period in the downstream direction which is active in phase B. 

• Phase B: The flow velocities from current and waves have opposite directions where a 
minor wake with a little period is created in the upstream direction which is active in phase 
A.  

In the Wake II Model with current, the wake effect is based upon a numerical scheme where the 
wake velocity is similar to (3.2.38). The wake velocities during the two phases are taken as 

 ( ) ( )max, 1,
, 2,

2,

,1erf sin ,
,2

q k n
w k k k k

k

U C k A B
U t C t

q B AC
π

ω φ
=⎛ ⎞= − +⎜ ⎟ =⎝ ⎠

 (3.2.40) 

where 
 ,w kU  is the wake velocity during phase A or B m

s⎡ ⎤⎣ ⎦  

 max,qU  is the maximum absolute flow velocity during phase B or A m
s⎡ ⎤⎣ ⎦  

 1kC  is a parameter that determines the rise of the wake velocity during phase A or B [-] 

 2kC  is a parameter that determines the decay of the wake velocity during phase A or B [-] 

 kω  is the circular frequency of the wake velocity during phase A or B rad
s⎡ ⎤⎣ ⎦  

 kφ  is the phase shift between flow and wake velocity in phase A or B [ ]deg  

[Sabag et al. 2000, p1303*] 

It may be noticed that (3.2.40) has been changed compared to the formula in the original paper, 
which does not have a negative sign and uses max, max,,B AU U  in phase A and B, respectively. 

However, the implementation in this project has been found consistent with table values and wake 
velocity diagrams in the original paper which may be computed with 

{ }m m m
s s s0.305m, 10s, 0.610 ,1.220 , 0.6 , 114m c mD T U U U θ= = ∈ = = °  [Sabag et al. 2000, 

pp1307,1310-1311].  

The phase shifts and  θ ψ  are not implemented directly in (3.2.40), since they are implemented 

indirectly in the numerical scheme which is described later.  
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The empirical parameters 1, 1, 2, 2,, , , , , ,A B A B A BC C C C nφ φ  generally differ from those for (3.2.38) and 

are given in Appendix F (Empirical Parameters of Wake Models). Some of the other parameters are 
illustrated in Figure 51. 

 
Figure 51: Definition of Wake II parameters. Adopted from [Sabag et al., p1302]. 

Since m cU U≥ , the maximum absolute values of the flow velocity (3.2.39) during the phases are 

 max,

max,

A m c

B m c

U U U
U U U

= +

= −
 (3.2.41) 

[Sabag et al. 2000, p1302] 

The circular wake frequencies are taken as 

 
,

2
0

,
2

A

B

t
t

t

π ωω
π ω

π ωω
π ω

=
+ Δ

Δ <
=

− Δ

 (3.2.42) 

where 
 tΔ  is the time shift [s] 
[Sabag et al. 2000, p1302-1303] 

Then, the related wake periods are given as 

 2 , , ,k A B
k

T k A B T T Tπ
ω

= = < <  (3.2.43) 

where 
 kT  is the period of the wake velocity during phase A or B [s] 

 T  is the period of the flow velocity [s] 

The time shift describes the difference between the period of oscillatory flow with and without 
current which may be determined from the following relation 
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 ( )sin 0, 0m cU t U tωΔ + = Δ <  (3.2.44) 
[Sabag et al. 2000, p1303] 

Finally, the local Keulegan-Carpenter number is given by 

 , ,
, ,,m B A m A B

loc A loc B

U T U T
KC KC

D D
= =  (3.2.45) 

where 
 ,loc kKC  is the local Keulegan-Carpenter number during phase A or B [-] 

[Sabag et al. 2000, p1304*] 

Again, (3.2.45) has been corrected compared to the formula in the original paper since the wake 
velocity during phase A should be determined by the maximum flow velocity and the local 
Keulegan-Carpenter number during phase B. 

Once the wake velocities during the two phases have been estimated from (3.2.40), a correction 
needs to be performed. The wake velocities that are used range from 0t =  until the first intersection 
which is indicated with bold curves in Figure 52 for the flow condition example for regular waves 
with current. 
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Figure 52: The correction of actual wake velocities for flow condition example R-C.  

For the flow condition example for regular waves with current, the following parameters are 
obtained: 

 
radm

max, 1, 2,s s

radm
max, 1, 2,s s

0.67 , 263.9 , 0.82 , 4.20, 0.53, 0.95, 1

0.33 , 99.8 , 0.53 , 13.36, 0.60, 0.95
A A A A A A

B B B B B B

U KC C C n

U KC C C

φ ω

φ ω

= = ° = = = = =

= = ° = = = =
 

The wake effect is illustrated in Figure 53. 
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Figure 53: The wake effect in the Wake II Model for flow condition example R-C. 

3.2.2.8. The Wake Effect of the Wake II Extended Model 

The final Wake Model which is considered is the Wake II Extended Model. This is valid for  
irregular waves with and without current. The wake velocity for the Wake II Extended Model is for 
all cases given in the following general form 

 ( ) ( )1 1erf , 0
2 4 0.0222w j D j j j

D

DU t C U t
xC

τ τ
⎛ ⎞

= ⋅ − ≥⎜ ⎟⎜ ⎟
⎝ ⎠

 (3.2.46) 

where 
 jτ  is the time shift between the ambient and wake flow during the jth half-cycle [s] 

 DC  is an empirical parameter for drag [-] 
[Aristodemo et al. 2007, p5*] 

It may be noticed that (3.2.46) has been changed compared to the original formula. In the original 
formula, the actual wake velocity is a function of the ambient flow velocity at a subsequent time, i.e. 

( ) ( )w j j jU t U t τ∝ + . This is considered unphysical in the case of irregular waves. Unfortunately, 

the original formula has been found consistent with wake velocity diagrams in the original paper. 
For this reason, the implementation according to (3.2.46) which is used in this project cannot be 
verified against the original paper. 

One of the original diagrams is shown in Figure 54 for a case of irregular waves without current that 

is computed with m
s0.2191m, 4.65s, 0.4 , 8.53p mD T U KC= = = = . It may be seen from Figure 54 

that a large flow velocity in half-cycle I yields a minor wake in the subsequent half-cycle II and not a 
large wake as expected. It may also be observed how the wake velocity according to the original 
paper depends on the subsequent flow velocity. 



3.2 Hydrodynamic Force Models Hydrodynamics 

 

96 

 
Figure 54: The wake effect in the Wake II Extended Model in the original paper for a flow 
condition with irregular waves without current. Adopted from [Aristodemo et al. 2007, p8]. 

The remaining parameters are described in the following. The wake should be computed in the pipe 
centre which gives 

 
2
Dx =  (3.2.47) 

[Aristodemo et al. 2007, p4] 

The time shift is given by the local half-cycle period and a phase shift 

 , 180
j

j loc jT
φ

τ =
°

 (3.2.48) 

where 
 ,loc jT  is the period of the jth half-cycle of the flow velocity [s] 

 jφ  is the phase shift between the flow and wake velocity during the jth half-cycle [deg] 

[Aristodemo et al. 2007, p5] 

The half-cycle phase shift depends linearly upon the local Keulegan-Carpenter number 

 0 1 ,j loc ja a KCφ = +  (3.2.49) 
where 
 0 1,a a  are empirical parameters [deg] 
[Aristodemo et al. 2007, p5] 

For the cases without and with current, respectively, the local Keulegan-Carpenter number is defined 
as 
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2
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loc j

j loc j
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U T
D

⎧ ⋅
⎪
⎪= ⎨
⎪
⎪⎩

 (3.2.50) 

where 
 ,loc jKC  is the local Keulegan-Carpenter number of the jth half-cycle of the flow velocity [-] 

[Aristodemo et al. 2006, p3; Aristodemo et al. 2007, p5] 

The empirical parameters 0 1, , Da a C  differ greatly for the case with and without current and can be 

found in Appendix F (Empirical Parameters of Wake Models). The wake effect for the Wake II 
Extended Model with current is illustrated in Figure 55 for the flow condition example for regular 
waves with current.  
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Figure 55: The wake effect in the Wake II Extended Model for flow condition example R-C. 

3.2.3 COMPARISONS 

In this section, the start-up and wake effect of the Wake Models and the hydrodynamic forces of the 
Morison Model and the Wake Models are compared. This serves as the basis for a preliminary 
evaluation of the considered models. 

3.2.3.1. The Start-up Effect 
As mentioned previously, the start-up effect depends upon empirical parameters that attain different 
values in the Wake Models. The parameters depend upon the flow condition but are assumed 
constant throughout the flow regime. The transient parts of the drag and lift force coefficients as 
functions of the impulse ratio, defined by (3.2.29), are shown in Figure 56 and Figure 57 for the 
Wake Models. For the variation of the lift force coefficients, measurements are available from the 
PIT and PFMP [Lambrakos et al. 1987, p128]. 
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Figure 56: The transient drag force coefficient as function of the impulse ratio for the Wake 
Models. 
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Figure 57: The transient lift force coefficient as function of the impulse ratio for the Wake 
Models. 

From Figure 56, it can be seen that variation of the drag force coefficient is identical for the Wake I, 
II and II Extended Model without current. By comparison of Figure 56 and Figure 57, it may be seen 
that the time variation is modelled much larger for the lift force coefficient than the drag force 
coefficient. 

3.2.3.2. The Wake Effect 

In this section, the wake effect of the Wake Models is compared. The comparison is based upon the 
flow condition examples with current as defined in the section on flow condition examples since 
these are of interest in the dynamic analysis in the project. 

Regular Waves and Current 

For the flow condition example of regular waves with current, the wake and effective velocities of 
the Wake Models are shown in Figure 58 and Figure 59.  



Hydrodynamics 3.2 Hydrodynamic Force Models 

 

 99 

0 5 10 15 20 25 30
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time t [s]

V
el

oc
ity

 [m
/s]

 

 
U
Uw I

Uw II

Uw II Ext

 
Figure 58: Ambient velocity and wake velocities of Wake Models for flow condition example R-
C. 
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Figure 59: Ambient velocity and effective velocities of Wake Models for flow condition example 
R-C. 

It may be seen from Figure 58 that all of the Wake Models seem to estimate the same magnitude of 
the peaks of the wake velocity. Furthermore, the Wake I and II Models predict nearly identical phase 
and shape of the wake and effective velocity. Since the Wake II Extended Model predicts smaller 
phase shifts between the wake and flow velocity, its effective velocity is about 20 % greater than 
those of the other Wake Models for the considered flow condition example. 

Irregular Waves and Current 

For the flow condition example of irregular waves with current, the wake and effective velocities of 
the Wake I and II Extended Models are shown in Figure 60 and Figure 61. The two models predict 
wakes of nearly identical magnitude, but with different shapes and phases as in the case of regular 
waves with current. 
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Figure 60: Ambient and wake velocities of Wake Models for flow condition example IR-C. 
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Figure 61: Ambient and effective velocities of Wake Models for flow condition example IR-C. 

3.2.3.3. Hydrodynamic Forces 

For the comparison of hydrodynamic forces of the Morison Model and the Wake Models, the flow 
condition examples with current are considered. For the Wake Models, the wake acceleration is 
determined by numerical differentiation of the wake velocity where the momentan acceleration or 
deceleration at the birth and death of a sudden wake has been nullified. The density of water is taken 

as 3
kg
m

1025wρ = . 

Regular Waves and Current 

For regular waves and current, the Morison Model is computed with 3, 2, 2.7M D LC C C= = =  

whereas the parameters of the Wake Models are given in Appendix F (Empirical Parameters of 
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Wake Models). The in-line and cross-flow force history is shown in Figure 62 and Figure 63, 
respectively. 
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Figure 62: In-line force history of Morison and Wake Models for flow condition example R-C. 
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Figure 63: Cross-flow force history of Morison and Wake Models for flow condition example R-
C. 

It may be seen from Figure 62 that all the models provide nearly identical in-line forces. Figure 63 
shows that the cross-flow force history of the Wake I and II Models is nearly identical and has 
considerably smaller peaks than the Wake II Extended Model. The cross-flow force history of the 
Morison Model is distinguished from the Wake Models by having a different phase of the primary 
cycle and a considerably lower peak of the second cycle. 

Irregular Waves and Current 

For the flow condition example of irregular waves and current, force measurements are provided 
from the PFMP, along with computations with the Morison and Wake I Model. [Lambrakos et al. 
1987, p129-130].  
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In this section, the Morison and Wake I Model are each evaluated for two sets of force coefficients. 
The cases are shown in Table 14 where the remaining coefficients of the Wake I Model are given in 
Appendix F (Empirical Parameters of Wake Models). The cases are described below. 

In-line force coefficients Lift force coefficient 
Case 

Force 
model 

Calibration 
basis AC  MC  DC  LC  

Morison 
Model 

Computed 
Morison forces 

[Lambrakos et al. 
1987, p129-130] 

- 0.87 0.85 1.34 

A 

Wake I 
Model 

Appendix F 
(Empirical 

Parameters of 
Wake Models) 

0.25 2.5 
1.1 - 1.7 

( )1.1, 0.38DS DC α= =  
0.8 - 4.9 

( )0.8, 9.8LS LC α= =  

Morison 
Model 

Measurements 
[Lambrakos et al. 
1987, p129-130] 

- 1.70 0.60 0.60 

B 
Wake I 
Model 

Measurements 
[Lambrakos et al. 
1987, p129-130] 

0.46 0.87 
0.37 - 0.59 

( )0.37, 0.145DS DC α= =  
0.37 - 1.35 

( )0.37, 2.35LS LC α= =  

In case A, the force coefficients of the Morison Model have been fitted to the computed Morison 
forces that appear in the original paper [Lambrakos et al. 1987, p129-130]. The computed Morison 
forces of the original paper have been fitted to peak forces of several records from the PFMP which 
appear to have higher peaks than those in the flow condition example IR-C. The coefficients of the 
Wake I Model are evaluated at their default values which are given in Appendix F (Empirical 
Parameters of Wake Models). In case B, the force coefficients of the Morison and Wake I Model are 
fitted to the force measurements of the flow condition example IR-C alone. 

The in-line and cross-flow force history for the cases are shown in Figure 64-Figure 67. 
Furthermore, single-sided spectrums of the force amplitudes are shown for case B in Figure 68 and 
Figure 69 based upon Fast Fourier Transforms of the force histories. The figures are commented 
below. 

Table 14: Calibration basis and values of force coefficients for flow condition example IR-C. All 
coefficients are dimensionless. 



Hydrodynamics 3.2 Hydrodynamic Force Models 

 

 103 

360 380 400 420 440 460 480
-1500

-1000

-500

0

500

1000

Time t [s]

In
-li

ne
 fo

rc
e 

[N
/m

]

 

 
Measurements
Morison
Wake I

 
Figure 64: In-line force history of the Morison and Wake I Model for case A and flow condition 
example IR-C. 
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Figure 65: Cross-flow force history of the Morison and Wake I Model for case A and flow 
condition example IR-C. 
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Figure 66: In-line force history of the Morison and Wake I Model for case B and flow condition 
example IR-C. 
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Figure 67: Cross-flow force history of the Morison and Wake I Model for case B and flow 
condition example IR-C. 
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Figure 68: In-line force amplitude single-sided spectrum of the Morison and Wake I Model for 
case B and flow condition example IR-C. 
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Figure 69: Cross-flow force amplitude single-sided spectrum of the Morison and Wake I Model 
for case B and flow condition example IR-C. 
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Several observations may be obtained from Figure 64 and Figure 65. First, the in-line and cross-flow 
forces of the Morison Model are overestimated compared to the measurements. This must be due to 
the fact that the force coefficients for the Morison Model have been fitted to peak values that exceed 
those of Figure 64 and Figure 65. The overestimation is greatest for the cross-flow force where the 
computed Morison cross-flow force may be more than 200 % greater than the measured cross-flow 
force. 

When the force coefficients of the Morison Model are fitted to the maximum forces of the flow 
condition example IR-C alone, the phase and shape of the forces are predicted well for the in-line 
forces, but still poorly for the cross-flow forces. This may be seen by comparison of Figure 66-
Figure 69.  

Secondly, it may be seen that the Wake I Model with default empirical parameters has a poor 
prediction of the in-line and cross-flow force history. The cross-flow force is overestimated by more 
than 300 % compared to the measurements. In contrast, the model is able to predict the peaks, phase 
and shape of the in-line and cross-flow force when the parameters are fitted to the measurements. 
Compared to the Morison Model, the Wake I Model provides an improved description of the cross-
flow force which is also evident from the cross-flow force spectrum in Figure 69. 

Lastly, it may be seen from Figure 66 that the average in-line force is non-zero and nearly zero 
according to the Morison Model and measurements, respectively, which agrees with the results in 
the original paper. This attribute of the measurements for current-wave ratios below 0.5 may be 
explained by the paradox that although the presence of current increases the wake that is generated 
in the downstream direction, it is counteracted by the same wake when the ambient flow reverses. 
[Lambrakos et al. 1987, p122] 

3.2.4 EVALUATION 

It is concluded that the Morison Model can predict the peaks and the time-variation of the in-line 
force fairly accurately for pipelines above and upon the seabed. However, it requires an accurate 
determination of the corresponding force coefficients.  

The Morison Model provides a poor prediction of the time-variation of the cross-flow force. In 
contrast, a much better prediction is provided for a pipeline above the seabed by the extended 
Morison Model that includes the effects of vortex shedding. If lock-in occurs, the cross-flow force 
oscillates at the lowest vertical eigenfrequency.  

For a pipeline upon the seabed, a better description of the cross-flow force in comparison with the 
Morison Model is obtained by the Wake Models. The most versatile Wake Model appears to be the 
Wake I Model which has been calibrated against force measurements from the Pipeline Field 
Measurement Program. The Wake I Model is provided with a default set of empirical coefficients for 
all flow conditions but it appears to have been calibrated to provide a conservative fit. Due to the 
lack of measurements from the field location, the Wake I Model with the default set of coefficients is 
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chosen for the analyses for irregular waves. The Wake II and Wake II Extended Models have not 
been considered further due to limitations in their theoretical background or calibration basis. 
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The theory behind analytical modelling of soil springs has been 
studied. Analytical and numerical load-displacement curves have 
been compared. The latter has been made in Plaxis 8.2 which is a
commercial geotechnical FEM-program.

The concept of transmitting boundary conditions has been 
discussed considering the modelling of a finite soil domain. 
Transmitting boundary elements (TBE) are developed for a plane, 
straight Bernoulli-Euler beam with constant axial force upon a 
Winkler foundation. An analytical formulation of TBE is derived 
and cast into an element formulation to be used in the finite 
element modelling of the pipeline free-span. 

The dynamic response of the soil has been studied with respect 
to the phenomenon of liquefaction. An overview of the theory of 
liquefaction is given and the liquefaction problem is evaluated 
considering a pipeline free-span.
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4.1 SOIL SPRINGS 

To make a Winkler model of a pipeline free-span, the soil surrounding the pipeline is modelled as 
springs. An analytical approach to spring modelling of the soil will be described in this chapter with 
general reference to [LICengineering 2005]. In [LICengineering 2005], assumptions and 
simplifications have been made to make load-displacement curves based on simple analytical 
models. These assumptions have significant impact on the shape of the load-displacement curves and 
this chapter will clarify whether the analytically determined load-displacement curves are in 
agreement with the shape of numerically determined load-displacement curves. The numerical 
models are made in Plaxis which is a commercial geotechnical non-linear FEM-program. 

In principle, the soil should be modelled with springs in various directions. The first assumption is 
that this can be simplified to springs that act independently in three directions. Movements in various 
directions are described by interaction between the following springs: 

• Axial springs 
• Vertical springs 
• Lateral springs 

To clarify whether the interaction between the springs gives satisfactory results when the pipe moves 
in various directions, numerical load-displacement curves have been made for diagonal movement of 
the pipe.  

Structural and Soil Data 

In order to compare the analytically and numerically determined load-displacement curves, the 
following conditions for pipeline and soil are chosen. Table 15 shows the relevant structural data 
determined for a water-filled 20” Multiphase Pipeline where the pipeline data is taken from Chapter 
1.1 (Design Conditions).  

Parameter Symbol Value Unit 

Submerged pipe weight  pipeW  2.607 kN/m 

Diameter incl. coating D  0.620 m 

Trenching depth bd  1.620 m 

The soil is assumed to be cohesionless. This is convenient for the analytical spring models and a 
reasonable assumption for typical marine soil. A small value of cohesion ( 0.2kPac = ) is applied in 

Table 15: Structural data for the pipeline. 
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the numerical models for the sake of stability. Parametric analysis has been made to verify that this 
small value of cohesion does not have significant impact on the load-displacement curves for any of 
the failure modes. Parametric analysis has also been made for Poisson’s ratio for values in the range 
of 0.2-0.4. The stiffness of the soil is assumed to be relatively low. The effect of this assumption will 
be discussed where this has a significant impact on the results. The analyses are performed with 
three different values of the friction angle to compare its effect on the spring models. All 
calculations are based on associated plasticity which means that the angle of friction and the angle of 
dilatation have equal values. Table 16 shows the soil conditions implemented in the following 
analyses.  

Parameter Symbol Sand Unit 
Material model Model Mohr-Coulomb - 
Type of analysis Type Drained - 
Saturated soil weight satγ  20 kN/m3 

Effective soil weight 'γ  10 kN/m3 

Young's modulus E  10 000 kPa 
Poisson's ratio ν  0.3 - 
Cohesion c  0 (0.2) kPa 
Angle of friction 'ϕ  25,30,35 Deg 
Angle of dilation ψ  25,30,35 Deg 

Pipe-soil friction int, erk R  0.7 - 

4.1.1 AXIAL SPRINGS 

The axial springs are modelled to determine the resistance of the soil when the free-span of the pipe 
is affected by hydrodynamic loads which cause axial forces to develop in the pipe when large 
deformations occur. The axial stiffness is determined by considering two failure modes as the 
pipeline strains longitudinally: 

• O-failure: This failure mode occurs when the soil fails around the entire perimeter of the 
pipe. 

• U-failure: This failure mode occurs when the soil fails along the bottom pipe perimeter and 
vertically up to the seabed. This is likely to dominate when the trenching depth is relatively 
small.  

Figure 70 shows the two axial failure modes. 

Table 16: Soil conditions. 
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Figure 70: Axial failure modes: O- failure (left) and U-failure (right). 

Since the failure modes will be determined by assuming kinematically admissible but not statically 
admissible failure mode, the soil will in both situations pose too strong behaviour compared to the 
unknown exact solution. Therefore, the maximum axial friction force is determined as the minimum 
value of the friction force from O-failure or U-failure, i.e. 

 min O failure
axial

U failure

f
f

f
−

−

⎧⎪= ⎨
⎪⎩

 (4.1.1) 

where 
 axialf  is the maximum axial friction force [kN/m] 

 O failuref −  is the friction force during O-failure [kN/m] 

 U failuref −  is the friction force during U-failure [kN/m] 

Each failure mode is explained in detail in the following. The axial springs will not be verified by 
numerical analysis. The analytical calculations of axial springs are performed in Matlab and can be 
found in [DVD/Soil Springs/axial_spring.m]. 

4.1.1.1. O-failure 

In this section, the friction force for the O-failure is determined analytically. Figure 71 (left) shows 
the variation of the effective normal stress along the failure line which develops around the pipeline 
perimeter. Figure 71 (right) shows a Mohr's diagram of the effective stress state at a failure point.  
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Figure 71: Effective normal stress variation for O-failure (left) and Mohr’s diagram of effective 
stress state at a failure point (right) 

The axial friction force per unit length is determined by polar integration of the effective normal 
stress around the upper and bottom pipe perimeter and exploiting vertical symmetry 
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 (4.1.2) 

where 
 μ  is the friction coefficient between pipe and soil, determined as ( )tan 'kμ ϕ=  [-] 

 k  is the friction factor [-] 
 'nσ  is the effective normal stress at a failure point [kPa] 

 R  is the outer radius of the pipe, including coating [m] 
 θ  is the angle between horizontal and a failure point [rad] 

Trigonometric considerations of Figure 71 (right) show that a failure point satisfies the following 
criterion which determines the effective normal stress 

 ' ' cos 2n v rσ σ τ θ= −  (4.1.3) 
where 
 'vσ  is the effective mean stress [kPa] 

 rτ  is the radius of Mohr’s circle [kPa] 

The effective mean stress is calculated as 

 ( )1' ' '
2v z xσ σ σ= +  (4.1.4) 

where 
 'zσ  is the effective vertical stress [kPa] 
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 'xσ  is the effective horizontal stress [kPa] 

The radius in Mohr’s circle is calculated as 

 ( )1 ' '
2r z xτ σ σ= −  (4.1.5) 

The effective horizontal stress is approximated from a state of rest which is a fair assumption for 
normally consolidated friction soil when the pipe strains axially 

 0' 'x zkσ σ=  (4.1.6) 
where 
 0k  is the soil pressure coefficient for friction soil at rest, 0 1 sin 'k ϕ= −  [-] 

 'ϕ  is the effective angle of friction [deg] 
[Ovesen et al. 2007, pp274-275] 

The vertical stress along the perimeter for the upper quarter of the submerged pipeline is calculated 
by the submerged weight of the soil  

 ( )' ' sin , 0 / 2upper
z H Rσ γ θ θ π= − < <  (4.1.7) 

where 
 'γ  is the submerged weight of the soil [kN/m3] 
 H is the distance between the seabed and the centre of the pipe [m] 

The weight of the pipe is assumed to contribute to the vertical stresses on the lower part of the pipe. 
The reuction from the soil suppressed by the pipe is taken into account. Considering this, the vertical 
stresses for the lower part of the soil is assumed to be  

 ( )'' ' sin 2 ' , / 2 0lower
z pH Rσ γ θ γ γ π θ= − ⋅ − − < <  (4.1.8) 

where 
 'pγ  is the equivalent weight of the submerged pipe per unit length [kN/m3] 

The equivalent weight of the submerged pipe is 

 '
2

pipe
p

W
R

γ
π

=  (4.1.9) 

where 
 pipeW  is the weight of the submerged pipe per unit length [kN/m] 

The vertical stresses along the pipe are now defined. By use of (4.1.3)-(4.1.9) in (4.1.2), the friction 
force on the upper and lower part of the pipe, respectively, is given as 

 ( ) ( )0 0
2' 1 2

2 3
upper

O failuref RH k kπμ γ−
⎛ ⎞= ⋅ + − +⎜ ⎟
⎝ ⎠

 (4.1.10) 
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 ( ) ( ) ( )2
0 0 0

4 2' 1 2 ' 2
2 3 3

lower
O failure pipef RH k W k R kπμ γ γ

π−
⎛ ⎞= ⋅ + + + − +⎜ ⎟
⎝ ⎠

 (4.1.11) 

 

By combination of (4.1.2), (4.1.10) and (4.1.11), the friction force on the entire pipe for O-failure is  

 ( ) ( ) ( )2
0 0 0

4 4' 1 2 ' 2
3 3O failure pipef R H k W k R kμ π γ γ
π−

⎛ ⎞= ⋅ + + + − +⎜ ⎟
⎝ ⎠

 (4.1.12) 

The derivation of (4.1.13) and (4.1.14) can be found in [DVD/Soil Springs/axial_spring.mws]. 

4.1.1.2. U-failure 

In this section, the friction force for U-failure is determined analytically. The failure mode is shown 
in Figure 72 where the effective normal stresses along the failure lines have also been sketched.  

Hvertical
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lower
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D
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Figure 72: Effective normal stresses along failure lines for U-failure. 

The friction force during U-failure is determined as 

 lower upper
U failure O failure U failuref f f− − −= +  (4.1.15) 

The friction force for the lower part of the pipe is identical to the friction force for O-failure in 
(4.1.11). The effective normal stresses along the vertical failure line is defined by 

 0' 'U failure
n k zσ γ− =  (4.1.16) 

where 
 z  is the depth of a failure point from the seabed [m] 

The friction force above the centreline of the pipe is determined by integration of normal stresses 
along the vertical failure lines and multiplying by tan( ')ϕ  

 2
0

0

2 tan ' ' ' tan '
H

upper U failure
U failure nf dz k Hϕ σ γ ϕ−
− = ⋅ =∫  (4.1.17) 
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By inserting (4.1.11) and (4.1.17) into (4.1.15), the friction force for U-failure is  

 ( ) ( ) ( )2 2
0 0 0 0

4 2' 1 2 ' 2 ' tan '
2 3 3U failure pipef RH k W k R k k Hπμ γ γ γ ϕ

π−
⎛ ⎞= + + + − + +⎜ ⎟
⎝ ⎠

 (4.1.18)  

4.1.1.3. Axial Load-Displacement Curve  

Regardless of the failure mode, the maximum axial friction force is assumed to be established at an 
axial displacement  

 2.5mmaxialδ =  (4.1.19) 

When defining the axial load-displacement curve, the soil is assumed to behave as a linear elastic- 
ideal plastic material with identical strength for both positive and negative values of pipe 
displacements. The magnitude of the axial resistance and the axial load-displacement curves are 
shown in Figure 73 for the conditions mentioned in Table 15 and Table 16. The maximum axial 
resistances have been determined for O-failure since U-failure is only governing at a trenching depth 
identical to 0-0.4 m depending on the angle of friction of soil.    
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Figure 73:  Load-displacement curve for axial displacement of pipe. 

4.1.2 VERTICAL SPRINGS 

The vertical springs are modelled to determine the resistance of the soil when the free-span of the 
pipe is affected by the cross-flow hydrodynamic force. The vertical springs are determined by 
calculating load-displacement curves for upward and downward movements of the pipe, 
respectively. Analytical and numerical models have been made for each of these two movements. 
The analytical calculations of vertical springs are made in Matlab and can be found in [DVD/Soil 
Springs/vertical_spring.m]. 
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4.1.2.1. Downward Spring   

Analytical Spring Model 

The analytical load-displacement curve is based upon Terzaghi’s formulation for bearing capacity of 
a strip foundation of infinite length with a central vertical load. In cohesionless soil, Terzaghi’s 
formulation for maximum bearing capacity for a buried pipeline can be written as  

 1 ' '
2downward b qf D DN d Nγγ γ⎛ ⎞= ⋅ +⎜ ⎟

⎝ ⎠
 (4.1.20) 

where 
 D  is the outer pipe diameter including coating [m] 
 bd  is the trenching depth [m] 

 , qN Nγ  are factors for bearing capacity [-] 

[Ovesen et al. 2007, p223]  

The factors for bearing capacity are determined respectively as 

 ( ) ( )
3
2

1 1 cos '
4 qN Nγ ϕ= −  (4.1.21) 

 tan ' 1 sin '
1 sin 'qN eπ ϕ ϕ

ϕ
+

=
−

 (4.1.22) 

[Ovesen et al. 2007, p224]  

The factors for the bearing capacity are based upon static or kinematic admissible failure modes 
which are shown in Figure 74. It is not possible to determine an exact value for Nγ  that satisfies the 

criteria for a kinematic and static admissible failure mode which means that the formulation in 
(4.1.20) is only an approximation to the bearing capacity. 

 
Figure 74: Static admissible failure mode (left) and kinematic admissible failure mode (right). 
[Ovesen et al. 2007, p223] 

The maximum downward resistance is assumed to occur at a displacement equal to 10% of the pipe 
diameter, i.e. 

 0.1downward Dδ =  (4.1.23) 

In the analytical downward load-displacement curves, it is assumed that the soil behaves as a linear 
elastic-ideal plastic material. 
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Numerical Model 

A pipeline buried in soil is modelled in Plaxis. The pipeline is applied a displacement downward in 
order to calculate the downward load-displacement curve. The numerical model can be found in 
[DVD/Soil Springs/downwardspring.plx]. Figure 75 shows the shear strain increments in the soil 
just before soil collapse. 

 
Figure 75: Shear strain increments in soil for downward displacement of pipeline. 

Figure 75 verifies the failure modes assumed in the analytical analysis by showing that the failure 
lines in the soil have a shape like a logarithmic spiral. 

Load-Displacement Curves - Downward 

In Figure 76, the analytical and numerical load-displacement curves are shown for comparison. The 
conditions for the pipeline and the soil in each analysis are given in Table 15 and Table 16. 
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Figure 76: Load-displacement curves for downward displacement of pipeline. 

Figure 76 shows relatively good agreement between the analytical and numerical load-displacements 
curves. The maximum resistances determined in the two types of analyses are of the same magnitude 
for all three values of 'ϕ  and the analytically determined resistances are conservative. The 

displacement of the numerically determined curves depends on the stiffness E  of the soil. If E  is 
increased, the slope of the first part of the curves increases. This means that the assumption made in 
the analytical solution that maximum resistance occurs at a displacement 0.1Dδ =  is inaccurate 

because the stiffness of the soil is not taken into account. In this case, the springs determined for 
higher values of 'ϕ  become too stiff. It is noticed that soil with a high value of 'ϕ will in most cases 

tend to be more stiff than soil with low values of 'ϕ . This tendency will decrease the difference 

between the analytical and numerical load-displacement curves.  

4.1.2.2. Upward Spring 

Analytical Spring Model 

The vertical resistance per unit length is determined for three states of upward displacement of the 
pipe. State 1 is when the pipe is applied an initial displacement which is assumed to generate a 
resistance identical to the sum of the weight of the pipe and the weight of the soil above the pipe. 
State 2 is when the pipeline has been displaced enough to activate diagonal failure lines which 
provide a resistance corresponding to the weight of the cone between the failure lines above the 
pipeline. State 3 is when the pipe is assumed to have displaced through the seabed. At this state, the 
upward resistance equals the weight of the pipe. In Figure 77, the soil areas that contribute to the 
upward resistance are shown.   
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Figure 77: Soil areas that contribute to upward resistance. 

The resistance for state 1 can be calculated as 

 .1upward pipe soilf W W= +  (4.1.24) 

The weight of the soil above the pipe is 

 2'
8soilW H D Dπγ ⎛ ⎞= −⎜ ⎟

⎝ ⎠
 (4.1.25) 

For convenience, the corresponding initial displacement is assumed to be zero 

 .1 0upwardδ =  (4.1.26) 

In order to calculate the upward resistance of state 2, the principle of virtual displacement can be 
formulated for the situation. Because associated plasticity is assumed, the internal work can be 
neglected. This means that only the weight of the soil and the pipeline contributes to the resistance. 
The diagonal failure lines are assumed to occur at an angle equal to 'ϕ  from the vertical axis. The 

resistance at state 2 can be written as 

 .2 ' 1 tan '
8upward pipe

D Hf W HD K
H D

πγ ϕ⎛ ⎞= + − +⎜ ⎟
⎝ ⎠

 (4.1.27) 

where 
 K  is a factor, 1K =  for loose sand [-] 

The displacement necessary to generate the resistance at state 2 is assumed to be the minimum of the 
following empirical values 

 .2

0.02 0.008
min

0.1
upward

H D
D

D
δ

⎧⎛ ⎞+ ⋅⎪⎜ ⎟= ⎝ ⎠⎨
⎪⎩

 (4.1.28) 
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The resistance of state 3 is assumed to be 

 .3upward pipef W=  (4.1.29) 

The pipe has to move all the way up to the seabed to reach state 3. This means that the displacement 
for this state has to be  

 .3upward Hδ =  (4.1.30) 

To give an overview of the resistance in the different states, the general shape of the analytically 
determined upward load-displacement curve is shown in Figure 78. 

.2upwardf

.1upwardf

1δ 2δ 3δ

.3upwardf

[kN/m]f

[m]δ

 
Figure 78: General shape of analytical load-displacement curve for upward displacement of the 
pipeline. 

Numerical Model 

A numerical model is made of the buried pipeline in the same way as the case for the downward 
spring. The numerical model can be found in [DVD/Soil Springs/upwardspring.plx]. The pipeline is 
applied a displacement in upward direction. In Figure 79, the shear strain increments are shown just 
before soil collapse.     

 
Figure 79: Shear strain  increments in soil for upward displacement of pipeline. 
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Figure 79 shows that diagonal failure lines occur in the numerical analysis which is in good 
agreement with the assumed failure lines made for state 2 in the analytical analysis. However, the 
pipe is not allowed to move through the soil in the numerical model as assumed in state 3 in the 
analytical analysis. In Plaxis, soil collapse will happen before the pipe reaches the seabed. The result 
of this difference is discussed in the following section. 

Load-Displacement Curves - Upward 

Figure 80 shows the analytical and numerical load-displacement curves. Since soil collapse occurs in 
the numerical model before the pipe reaches the seabed, only the first part of the load-displacement 
curves are shown. The conditions for the pipeline and the soil in each analysis are given in Table 15 
and Table 16.  
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Figure 80: Load-displacement curves for upward displacement of pipeline. 

It is seen from Figure 80 that the maximum resistances in the analytical and numerical models are in 
the same magnitude for all three values of 'ϕ . In contrast to the downward resistance, the 

analytically determined upward resistances seem to be overestimated. In the first part of the curves, 
there seems to be large disagreement between analytical and numerical models. The assumption of a 
resistance at a displacement equal to zero in the analytical analyses seems to be in conflict with what 
happens in the numerical analyses.  

In the numerical model, the soil underneath the pipe expands when the pipe is applied an upward 
motion. This expansion reduces the resistance for a given motion and a slope will occur in the 
numerical solution instead of the vertical line determined in the analytical solution. Although the 
basic assumptions for the two models are different, the stiffness for the two models are in the same 
ratio with high stiffness in the first part of the curves and rapidly decreasing stiffness for small 
displacements.  
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Again, the slope for the first part of the numerically determined load-displacement curves depends 
on the stiffness of the soil. 

4.1.3 LATERAL SPRINGS 

The lateral springs are modelled to determine the resistance of the soil when the free-span of the pipe 
is affected by the in-line hydrodynamic force. The analytical springs are based on anchor plate 
theory and compared to a numerical model made in Plaxis. The analytical calculations of lateral 
springs are made in Matlab and can be found in [DVD/Soil Springs/lateral_spring.m]. 

Analytical Spring Model 

To calculate the lateral resistance, it is assumed that a pipeline buried in soil behaves similarly to an 
anchor plate with finite height and infinite length. The principle for determining the lateral resistance 
is first to determine the anchor resistance 0A  for a basic case and then to determine the lateral 

resistance for the buried pipeline by reducing 0A  so it fits the present case. 

In the anchor plate theory, the basic case is defined as an anchor plate with an upper edge at the 
seabed and infinite length out of the plane. Figure 81 shows the failure mode for an anchor plate in 
the basic case. 

 
Figure 81: Failure mode for an anchor plate in the basic case.[Harremoës et al. 1980, p13.1] 

Failure is assumed to happen all around the anchor plate. Figure 82 shows the forces acting on an 
anchor plate in the basic case. 
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Figure 82: Forces for an anchor plate in the basic case. 

The self-weight wG  can be determined as  

 w soil pipeG W W= +  (4.1.31) 
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where 
 wG  is the self-weight per unit length on the anchor [kN/m] 

On the active side, the anchor plate is assumed to be rough. The active vertical force aF  can be 

determined as 

 tan 'a aF E ϕ=  (4.1.32) 
where 
 aF  is the active tangential soil pressure per unit length [kN/m] 

 aE  is the active normal soil pressure per unit length [kN/m] 

The active pressure aE can then be determined as  

 21 '
2

ar
a bE d Kγγ=  (4.1.33) 

where 
 arKγ  is the active rough soil pressure coefficient for soil weight [-] 

The active soil pressure coefficient for soil weight can be approximated as 

 ( )9sin '0.007 1ar ar
pK K e ϕ

γ
−≈ + −  (4.1.34) 

where 
 ar

pK  is the active rough soil pressure coefficient for load [-] 

The active soil pressure coefficient for load is defined as 

  ( )
' tan '

21 sin 'ar
pK e

πϕ ϕ
ϕ

⎛ ⎞−⎜ ⎟
⎝ ⎠= −  (4.1.35) 

On the passive side of the anchor plate, the vertical force pF  is defined as 

 21 ' tan , 0 '
2

p
p bF d Kγ γ γγ δ δ ϕ= ≤ ≤  (4.1.36) 

where 
 pF  is the passive tangential soil pressure per unit length [kN/m] 

 pKγ  is the passive soil pressure coefficient for soil weight [-] 

 tan γδ  is the passive friction coefficient between the soil and anchor plate [-] 

Since the movement of the anchor plate is purely horizontal, the forces must satisfy vertical 
equilibrium which gives the following condition for determination of the passive friction coefficient 
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2

0 tan , 0 '
1 '
2

p w a
w a p

b

G F
G F F K

d
γ γ γδ δ ϕ

γ

+
+ − = ⇔ = ≤ ≤  (4.1.37) 

The passive soil pressure coefficient can be determined by Figure 83 which shows the passive soil 
pressure coefficients in the basic case for different angles of friction. 

 
Figure 83: Passive soil pressure coefficients for an anchor plate in the basic case. [Ovesen et al. 
2007, p349] 

Once the passive soil pressure coefficient has been determined, the passive horizontal force pE  can 

be determined as  

 21 '
2

p
p bE d Kγγ=  (4.1.38) 

where 
 pE  is the passive normal soil pressure per unit length [kN/m] 

The anchor resistance in the basic case 0A  can be determined by demanding horizontal equilibrium 

 
0

21 ' ( )
2

p a

p ar
b

A E E

d K Kγ γγ

= −

= −
 (4.1.39) 

The soil resistance for lateral movement of the pipe is determined by reducing the anchor resistance 
in the basic case. The reduction ratio 0/sA A for the pipeline is based on tests made on anchor plates 

with finite height and placed in a row. In Figure 84, the results of these tests are shown for a dense 
and loose soil respectively. 
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Figure 84: Graphical presentation of the reduction ratio 0/sA A  [LICengineering 2005]. 

Finally, the lateral resistance per unit length can be determined as 

 0
0

s
lateral

A
f A

A
=  (4.1.40) 

In the analytical lateral load-displacement curves, it is assumed that the soil behaves as an linear 
elastic-ideal plastic material. The maximum lateral resistance is assumed to occur at a lateral 
displacement calculated as 

 0.02lateral bdδ =  (4.1.41) 

Numerical Model 

A buried pipeline is modelled in Plaxis in the same way as the previous sections. In this case, the 
pipe is applied a lateral displacement in order to calculate lateral load-displacement curves. The 
numerical model can be found in [DVD/Soil Springs/lateralspring.plx]. Figure 85 shows the shear 
strain increments just before soil collapse. 
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Figure 85: Shear strain increments for lateral displacement of pipeline. 

The numerical failure mode is compared to the analytical failure mode for the basic case of an 
anchor plate whih is shown in Figure 81. The comparison shows good agreement between the 
general shapes of the failure lines. 

4.1.3.1. Lateral Load-Displacement Curves  

In Figure 86, the analytical and numerical load-displacement curves are shown. The conditions for 
the pipe and the soil in each analysis are given in Table 15 and Table 16. 
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Figure 86: Load-displacement curves for lateral displacement of pipeline. 

Comparison of the load-displacement curves in Figure 86 shows that the lateral resistances are in the 
same order of magnitude for the numerical and analytical models. The analytically determined 
resistances seem to be conservative. The maximum lateral resistance is assumed to occur at a high 
value of displacement in the analytical model. The analytically determined stiffness is therefore 
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significantly lower than the numerically determined stiffness. This occurs even though a relatively 
low stiffness for the soil is applied in the present case. 

4.1.4 SPRINGS IN DIAGONAL DIRECTIONS 

When the pipe moves in various directions, the Winkler model is based on the assumption that the 
corresponding spring stiffness can be determined by superposition of the load-displacement curves 
determined in the previous sections. This means that if the pipe moves in a downward diagonal 
direction, the corresponding soil resistance is calculated by superposition of load-displacement 
curves made for lateral and downward movement of the pipe. In this section, analytical load-
displacement curves calculated by superposition are compared to numerical load-displacement 
curves for a buried pipeline that moves in diagonal directions. The numerical models can be found in 
[DVD/Soil Springs/diagonalup.plx; diagonaldown.plx].  

Figure 87 shows the numerical and analytical load-displacement curves when the pipeline is applied 
a displacement in 45 degrees upward direction. This analysis is only made for soil with an angle of 
friction equal to 30 degrees.  

0 0.01 0.02 0.03 0.04 0.05 0.06
0

5

10

15

20

25

30

35

δ [m]

 f di
ag

on
al

 u
p [k

N
/m

]

 

 

φ=30

Numerical
Analytical

 
Figure 87:  Load-displacement curves for 45 deg upward displacement of pipeline 

Superposition of the analytical curves does not increase the difference between the analytical and 
numerical load-displacement curves compared to the analytical and numerical curves for upward and 
lateral pipe displacement, respectively. This can be seen by comparing Figure 87 with Figure 80 and 
Figure 86. The analytical curve shows larger resistance than the numerical curve because the 
analytical upward resistance is overestimated. 

Figure 88 shows the load-displacement curves when the pipeline is applied a displacement in 45 
degrees downward direction. 
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Figure 88: Load-displacement curves for 45 deg downward displacement of pipeline 

Figure 88 shows good agreement between analytical and numerical load-displacement curves in the 
present case. There are no indications of increased difference between analytical and numerical load-
displacement curves caused by superposition of the analytical curves. 

4.1.5 EVALUATION OF SPRING MODELS 

In the directions where numerical verification of springs has been carried out, analyses show 
relatively good agreement between maximum resistances determined by analytical and numerical 
methods. The analytical maximum resistances in upward direction have been shown to be non-
conservative. Parametric study has shown that Poisson’s ratios in the range of 0.2-0.4 has no 
significant impact on the load-displacement curves for any of the failure modes. Furthermore, the 
small value of cohesion 0.2kPac =  that has been applied in the numerical models does not have 

significant impact on the load-displacement curves for any of the failure modes.  

The displacements that correspond to the analytical resistances seem to be highly inaccurate in some 
of the analytical models compared to the numerical models. The stiffness of the analytical soil 
springs is sensible to the choice of displacement corresponding to the maximum bearing capacity, 
which must be estimated since the analytical solutions assume that the soil has rigid-plastic 
constitutive behaviour. In the upward and lateral directions, the analytically determined spring 
appear too slack and in the downward direction, the analytical spring appears to be too stiff. This 
means that although the stiffness of the soil in the numerical model is fitted to an analytical load-
displacement curve in one direction, it will increase the difference between the numerical and 
analytical curves in some other direction.  

The analyses have shown that some inaccuracy is implemented by assuming a Winkler model with 
soil springs. It is at this point too early to conclude if the inaccuracies in the analytical spring models 
have a considerable impact on the fatigue analysis of the free-span. Parametric studies in Chapter 5.2 
(Parametric Study for Regular Waves) show that increased stiffness of the soil are favourable for the 
pipeline when considering fatigue damage. 
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4.2 TRANSMITTING BOUNDARY 

In this chapter, the concept of a transmitting boundary is investigated. This is an important aspect in 
numerical soil dynamics. First, the concept is briefly introduced. Then, in two subsequent steps, 
transmitting boundary elements are developed for a plane, straight Bernoulli-Euler beam with 
constant axial force upon a Winkler foundation with linear springs. In the first step, an analytical 
formulation is derived. In the second step, this is cast into element formulation to be used in the 
Finite Element Method. Then follows a benchmark test on the implemented elements and an 
evaluation. 

4.2.1 INTRODUCTION 

The hydrodynamic forces that act upon the free-span of the pipe induce waves that travel through the 
soil domain until they dissipate completely. In general, the dispersion length is governed by the 
relationship between the load frequency and a so-called cut-on frequency which depends upon the 
pipeline and soil properties. When the load frequency is below the cut-on frequency, the waves will 
tend to reside relatively close to the load source and are therefore referred to as evanescent waves. 
When the load frequency exceeds the cut-on frequency, the waves will propagate a significant 
distance away from the load source before they vanish and are referred to as propagating waves 
[Andersen 2006, p70]. The two cases are illustrated in Figure 89 left and right, respectively, where 
the only difference is the magnitude of the load frequency.  

slowF
fastF

slowF fastF
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Time

 
Figure 89: Waves in infinite soil domain that is dynamically loaded. Left: A low-frequent load 
induces evanescent waves. Right: A high-frequent load induces propagating waves. 
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In order to create a numerical model of the free-span pipeline by the Finite Element Method, the 
infinite domain of soil that supports the pipeline must be reduced to a finite domain. The core of the 
matter is to determine an appropriate size of the finite domain that is both computationally effective 
and accounts for the essential physical properties of the infinite soil domain. It is imperative that the 
boundary of the finite domain does not disturb the response of the rest of the model.  

Two general approaches may be followed. The first approach is to use a large finite domain that 
allows all waves to vanish due to material damping before they reach the boundary. In case of 
propagating waves, a relatively large model is required which is not considered to be 
computationally effective. The second approach is to use a smaller finite domain and predict the 
response at the boundary. Thus, the boundary will absorb the residual waves and will be referred to 
as a transmitting boundary. The two approaches of modelling finite soil domains are illustrated in 
Figure 90 where the approach of a transmitting boundary is investigated in this project. 

 
Figure 90: Finite soil domains that are dynamically loaded. Left: Large domain with reflecting 
boundary. Right: Small domain with transmitting boundary which is treated in this project. 

When modelling a transmitting boundary, several methods exist. One intuitive approach is to 
encapsulate the domain of interest by a boundary zone that consists of highly damped material. The 
material damping should be calibrated in such a way that it is small enough to avoid reflecting the 
waves back into the domain of interest when the waves encounter the boundary zone and large 
enough to absorb the residual waves as they travel through the boundary zone. This is illustrated in 
Figure 91 left. 

Another method is to encapsulate the domain of interest with transmitting boundary elements. These 
are derived by applying external stresses that are opposite-directed to the inner stresses that appear in 
the boundary in the absence of the remaining infinite domain. This is illustrated in Figure 91 right. In 
general, the latter method requires that the response is linear at the boundary which limits the 
minimum size of the domain. 
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Boundary zone  
Figure 91: Small finite domains with transmitting boundary of highly damped material (left) or 
transmitting boundary elements (right). 

The latter method is chosen in this project and is based upon a description of the pipeline as a 
Bernoulli-Euler beam upon Winkler foundation with linear springs. The description neglects 
material damping in the pipeline or soil but accounts implicitly for geometrical damping in the soil. 
The description includes stiffness adjustment due to an initial axial load but neglects contribution 
from transversal static loads. Thus, the transmitting boundary element includes the essential physical 
properties of the problem but requires some extension to be fully suited for practical use. It is 
emphasized that the transmitting boundary element in this project is a beam element while Abaqus 
only offers pre-defined transmitting boundary continuum elements. The latter has not been 
considered further. 

4.2.2 ANALYTICAL FORMULATION 

In this section, the analytic formulation is presented. First, the general presumptions for the beam are 
presented. Then an analytical solution of the transversal vibrations of the beam due to harmonic 
loading is derived. Finally, the section forces are written in terms of the displacements and rotations. 
Unless otherwise stated, all quantities are assumed to be real numbers. The derivations generally 
follow [Andersen pp66-67, pp96-98] but have been extended to include the stiffness reduction due to 
an initial axial load. A Maple worksheet with the derivations and supplementary verification may be 
found in [DVD/Transmitting Boundary/Analytic.mws]. 

4.2.2.1. General Presumptions 

The analytical formulation is based upon a Bernoulli-Euler beam with a constant axial load upon 
Winkler foundation with linear springs. This is shown in Figure 92 and explained below. 

κ ( ),M x t

( ),Q x t ( ),Q x t x

( ), ,y u x t

( ),x tθ

κ

( ),p x t ( ),p x t

EI
N N

 
Figure 92: Sign conventions of external forces, section forces, displacements and rotations for a 
Bernoulli-Euler beam with constant axial load upon Winkler foundation. 
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The space coordinate along the beam axis is x. The time coordinate is t. The vertical displacement 

( ),u x t  is measured from the state of static equilibrium and defined positive in the downward 

direction. Likewise, the rotation ( ),x tθ  is measured from the state of static equilibrium and defined 

positive counter-clockwise. The external distributed load ( ),p x t  is defined positive in downward 

direction. When cutting away the right side of the beam, the shear force ( ),Q x t  and inner moment 

( ),M x t  are defined positive downward and counter-clockwise, respectively. When cutting away the 

left side of the beam, these are defined positive in the opposite directions. The constant axial force 
N  is defined positive in tension. 

Kinematic Relations 

When neglecting shear strains, the only remaining measure of strain for the transversal displacement 
of a beam is the curvature ( ),x tβ . With the given directions of displacements and rotations and 

when also assuming strains to be infinitesimal, the curvature may be associated with the 
displacements through the following kinematical field conditions 

 ( ) ( ) ( ) ( ), ,
, , ,

x t u x t
x t x t

x x
θ

β θ
∂ ∂

≡ = −
∂ ∂

 (4.2.1) 

where 
 u is the downward displacement from the state of static equilibrium [m] 
 θ  is the clock-wise rotation from the state of static equilibrium [-] 
 β  is the curvature [m-1] 
 x is the position along the beam axis [m] 
 t is time [s] 
[Byskov 2002, pp118-119] 

Static Relations 

In order to derive the static relations, an infinitesimal part of the beam is shown in Figure 93. In 
order to capture the effects of adjusted stiffness due to the axial load, the strains are assumed to be 
infinitesimal but the rotations are assumed to be non-negligible. 

( ) ( ),
,

M x t
M x t dx

x
∂

+
∂

( ) ( ),
,

Q x t
Q x t dx

x
∂

+
∂

( ),p x t

N
N

( ),M x t

( ),Q x t

dx
( ),u x t

dx
x

∂
⋅

∂dx  
Figure 93: Infinitesimal part of the beam. Adopted from [Nielsen 2004, p116]. 
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With the given directions of section forces and the mentioned strain assumptions, vertical and 
moment equilibrium of an infinitesimal beam element will yield the following static field conditions, 
respectively 

 

( ) ( )

( ) ( ) ( )

,
, 0

, ,
, 0

Q x t
p x t

x
M x t u x t

Q x t N
x x

∂
+ =

∂
∂ ∂

− + =
∂ ∂

 (4.2.2) 

where 
 p is the external downward distributed load [N/m] 
 Q is the shear force [N] 
 N is the inner normal force [N] 
 M is the inner moment [Nm] 
[Nielsen 2004, p116] 

Constitutive Relation 

Finally, the beam is assumed to behave like an isotropic linear elastic material which fulfils Hooke’s 
law 

 ( ) ( ), ,M x t EI x tβ=  (4.2.3) 
where 
 E is the Young’s modulus [Pa] 
 I is the second moment of area about the y-axis [m4] 

Static Equation of Equilibrium 

For later reference, the kinematic, static and constitutive relations (4.2.1)-(4.2.3) are combined into 
some useful relations. The section forces are related to the second and third order spatial derivatives 
of the transversal displacements, respectively 

 ( ) ( )2

2

,
,

u x t
M x t EI

x
∂

= −
∂

 (4.2.4) 

 ( ) ( ) ( )3

3

, ,
,

u x t u x t
Q x t EI N

x x
∂ ∂

= − +
∂ ∂

 (4.2.5) 

Secondly, the static equation of equilibrium is given by the following 4th order ordinary differential 
equation 

 
( ) ( ) ( )

4 2

4 2

, ,
,

u x t u x t
EI N p x t

x x
∂ ∂

− =
∂ ∂

 (4.2.6) 
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4.2.2.2. Forced Transversal Vibrations during Harmonic Loading 

In this section, the forced transversal vibrations of the beam during harmonic loading are 
determined. After establishing the dynamic equation of motion, it is solved. In the search for the 
solution, the wave numbers and amplitudes are determined. 

Dynamic Equation of Motion 

To establish the dynamic equation of motion for the beam, the distributed load ( ),p x t  is assumed to 

be the resultant load of an external load, an inertia force and a transversal spring resistance 

 ( ) ( ) ( ) ( ) ( ) ( )
2

2

,
, , , , , , ,i i

u x t
p x t f x t f x t f x t f m f u x t

tκ κ κ
∂

= − − = =
∂

 (4.2.7) 

where 
 f is an external downward distributed load N

m⎡ ⎤⎣ ⎦  

 if  is the upward inertia distributed load N
m⎡ ⎤⎣ ⎦  

 fκ  is the upward transversal spring distributed load N
m⎡ ⎤⎣ ⎦  

 m is the beam mass per unit length kg
m⎡ ⎤⎣ ⎦  

 κ  is the transversal soil spring stiffness per unit length 2
N

m
⎡ ⎤⎣ ⎦  

The beam is considered in the case when the only external load is a concentrated force that acts 
downwardly at 0x =  and varies harmonically with time. Thus, the external distributed load takes the 
following form 

 ( ) ( ) ( ) 2, exp , , 1f x t x F i t F iδ ω= ∈ = −^  (4.2.8) 
where 
 F is the complex force amplitude [N] 
 ω  is the circular load frequency rad

s⎡ ⎤⎣ ⎦  

 i is the imaginary unit [-] 
 δ  is Dirac’s delta function [-] 

By use of (4.2.6)-(4.2.8), the forced transversal vibrations of the beam may be described by the 
following 4th order partial differential equation 

 
( ) ( ) ( ) ( ) ( ) ( )

4 2 2

4 2 2

, , ,
, exp

u x t u x t u x t
EI N m u x t x F i t

x x t
κ δ ω

∂ ∂ ∂
− + + =

∂ ∂ ∂
 (4.2.9) 

[Nielsen 2004, p118] 

In the section where the concentrated force acts, i.e. 0x = , the static and kinematic quantities must 
fulfil some continuity conditions. The displacements, rotations and inner moments on both sides of 
the mid-section must be identical. In addition, the shear force should increase in magnitude over the 
section with the magnitude of the external concentrated force. This yields the following equations 
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where the quantities on the left and right-hand-side of the concentrated force are denoted with an 
upper index of minus or plus, respectively 

 

( ) ( )
( ) ( )
( ) ( )

( ) ( ) ( )

0, 0, Identicaldisplacements

0, 0, Identical rotations

0, 0, Identicalinner moments

0, 0, , Jumpin shear force
x

x

u t u t

t t

M t M t

Q t Q t f x t dx

θ θ

+

−

− +

− +

− +

− +

=

=

=

= + ∫

 (4.2.10) 

Solution of Dynamic Equation of Motion - Wave numbers 

In order to solve (4.2.9), the form of the stationary displacement is guessed upon physical 
knowledge. First, the stationary displacement is assumed to be decomposed into its mutually 
independent spatial and time component 

 ( ) ( ) ( ) { }, , ,x t x tu x t U x U t U U= ⋅ ∈^  (4.2.11) 
where 
 xU  is the spatial component of the stationary displacement [m] 

 tU  is the time component of the stationary displacement [-] 

The components are generally complex quantities but only their real part will be interpreted as the 
physical stationary displacement. Since the load varies harmonically, the beam will also vibrate 
harmonically with the load frequency but possibly out of phase. Thus, the time component of the 
stationary displacement can be described by 

 ( ) ( )exptU t i tω=  (4.2.12) 

For the determination of the spatial component of the stationary displacement, it is known that the 
waves, which are induced by the harmonic load will decay in magnitude after having travelled a 
distance away from the load source. Then the waves may either continue to propagate harmonically 
or dissipate completely. Thus, a particular solution to the spatial component of the stationary 
displacement has the following form with a complex non-zero amplitude and wave number 

 ( ) ( ) { }, exp , 0, 0, ,x pU x U i k x U k U k= ≠ ≠ ∈^  (4.2.13) 
where 
 U is a displacement amplitude [m] 
 k is a wave number rad

m⎡ ⎤⎣ ⎦  

Since a wave number is generally complex, it may be decomposed into its real and imaginary parts 

 { }, 0, ,k a bi b a b= ± ≥ ∈\  (4.2.14) 
where 
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 a is the real part of a wave number rad
m⎡ ⎤⎣ ⎦  

 b is the absolute imaginary part of a wave number rad
m⎡ ⎤⎣ ⎦  

A particular solution of the spatial component (4.2.13) may be factorized by (4.2.14) which yields 

 ( ) ( )( ) ( ) ( ) ( ),

harmonic exponential

exp exp exp expx pU x U i x a bi U i x a b x U i x a b x= ⋅ ± = = ⋅∓ ∓��	�
 ��	�
  (4.2.15) 

It is seen from (4.2.15) that the real and imaginary parts of a wave number determine the harmonic 
and exponential variation, respectively, of a particular spatial component of the stationary 
displacement. It will vary either purely harmonically, purely exponentially or combined 
harmonically and exponentially as shown in Table 17.  

Case Wave number  
Wave number 
components 

Variation of spatial response 

1 Pure real 
0, 0
0, 0

a b
a b
> =
< =

 Pure harmonic 

2 Pure complex 0, 0a b= >  Pure exponential 

3 Complex 
0, 0
0, 0

a b
a b
< >
> >

 Combined harmonic and exponential 

In cases 2 and 3, (4.2.13) is physically valid only if it decays exponentially with the distance along 
the beam axis from the load source until it vanishes completely, i.e. 

 
( )
( )

,

,

0
0

x p

x p

x U x
x U x

−

+

→ −∞ ⇒ →
→∞ ⇒ →

 (4.2.16) 

In order to fulfil (4.2.16), a wave number with non-positive or non-negative imaginary parts must be 
associated with the left- or right-hand-side of the beam, respectively 

 ,k a bi k a bi− += − = +  (4.2.17) 

Substitution of (4.2.11)-(4.2.12) into (4.2.9) gives a 4th order linear ordinary differential equation 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

4 2
2

4 2

4 2
2

4 2

exp expx x
x

x x
x

U x U x
EI N m U x i t x F i t

x x

U x U x
EI N m U x x F

x x

κ ω ω δ ω

κ ω δ

⎛ ⎞∂ ∂
− + − ⋅ = ⇔⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

∂ ∂
− + − =

∂ ∂

 (4.2.18) 

Further substitution of (4.2.13) into the homogeneous part of (4.2.18) yields the following 4th order 
characteristic polynomial 

Table 17: Three cases for wave numbers and variation of particular spatial response. 
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( ) ( )( ) ( )4 2 2

4 2 2

2
4 2

1 2 1 2

exp 0

0

0, , , 0

EI i k N i k m U i k x

EI k N k m
N mk c k c c c EI
EI EI

κ ω

κ ω

κ ω

− + − ⋅ = ⇒

+ + − = ⇒

−
+ + = = = ≠

 (4.2.19) 

where 

 c1 is the ratio of the axial force and the bending stiffness -2m⎡ ⎤⎣ ⎦  

 c2 is the ratio of dynamic stiffness at a load frequency and the bending stiffness -4m⎡ ⎤⎣ ⎦  

The roots of (4.2.19) are four arbitrary wave numbers 1 2 3 4, , ,k k k k  which depend upon the 

coefficients 1 2,c c , and thus upon the beam, soil and load properties but not upon the load magnitude. 

The wave numbers must be ordered to fulfil (4.2.17).  

Since (4.2.18) is a fourth order linear differential equation, its general solution must contain four 
unique particular solutions of the form (4.2.13) where each particular solution is associated with one 
of the wave numbers. The general solution of the spatial component of the stationary displacement 
may be defined piece-wisely for the left and right-hand-side of the beam by 

 ( ) ( ) ( ) ( )
( ) ( ) ( )

1 1 2 2

3 3 4 4

exp exp , 0
exp exp , 0

x
x

x

U x U i k x U i k x x
U x

U x U i k x U i k x x

−

+

⎧ = + ≤⎪= ⎨ = + >⎪⎩
 (4.2.20) 

where 
 jU  is the jth displacement amplitude [m] 

 jk  is the jth ordered wave number rad
m⎡ ⎤⎣ ⎦  

By use of (4.2.11)-(4.2.12) and (4.2.20), the stationary displacement is fully described by 

 ( ) ( ) ( ) ( )
( ) ( ) ( )

1 1 2 2

3 3 4 4

, exp exp , 0
,

, exp exp , 0
u x t U i t i k x U i t i k x x

u x t
u x t U i t i k x U i t i k x x

ω ω
ω ω

−

+

⎧ = + + + ≤⎪= ⎨ = + + + >⎪⎩
 (4.2.21) 

Solution of Dynamic Equation of Motion - Amplitudes 

The amplitudes 1 2 3 4, , ,U U U U  are determined from the continuity conditions (4.2.10) and the 

relations (4.2.1), (4.2.4)-(4.2.5) and (4.2.21). This yields the following system of linear equations 
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(4.2.22) 



4.2 Transmitting Boundary Soil Mechanics 

 

138 

Equations (4.2.22) can be rewritten in matrix form 

 ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1
1 2 3 4

222 2 2
1 2 3 4

3
33 3 3

41 1 2 2 3 3 4 4

1 1 1 1 0
0
0

U
i k i k i k i k

U
i k i k i k i k U

FN N N N Ui k i k i k i k i k i k i k i k EIEI EI EI EI

− −⎡ ⎤ ⎡ ⎤⎡ ⎤⎢ ⎥ ⎢ ⎥− − ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ = ⎢ ⎥− − ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥− + − + − − ⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

(4.2.23) 

Equations (4.2.23) may be solved by Gauss elimination or matrix inversion. It may be seen from 

(4.2.23) that the amplitudes depend explicitly upon 1, Fc
EI

 and implicitly upon 2c  due to the wave 

numbers. 

Solution of Dynamic Equation of Motion – Evanescent or Propagating Waves 

In this section, the case of evanescent or propagating waves is investigated. The characteristic 
polynomial (4.2.19) may be rewritten as a second-order polynomial 

 2 2
1 2 0,c c kτ τ τ+ + = =  (4.2.24) 

The roots of the first equation in (4.2.24) are determined by its discriminant 

 2
1 24d c c= −  (4.2.25) 

where 

 d is the discriminant of the second-order polynomial -4m⎡ ⎤⎣ ⎦  

It appears that the cases of evanescent or propagating waves are separated by the case of resonance 
when (4.2.25) is exactly zero, i.e. 

 
21

2 2, 1 14
2,

2 2, 1

Propagating waves: , 0
,

Evanescent waves: 0, 0
c

c
c

c c c c
c

c c c
< ⎧ ≤⎪= ⎨> >⎪⎩

 (4.2.26) 

where 

 c2,c is the critical value of c2 -4m⎡ ⎤⎣ ⎦  

The domains of evanescent and propagating waves according to (4.2.26) are illustrated later in 
Figure 96. The coefficient 2c  may be rewritten in terms of the cut-on frequency 

 

2

22

2

1
, , 0c

c
mc m

EI EI m

ωκ
ωκ ω κω

⎛ ⎞
⋅ −⎜ ⎟

− ⎝ ⎠≡ = = ≠  (4.2.27) 

where 
 cω  is the circular cut-on frequency rad

s⎡ ⎤⎣ ⎦  
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From (4.2.27) it is seen that 2 0c <  when the load frequency exceeds the cut-on frequency, i.e. 

cω ω> . According to (4.2.26), this always results in propagating waves. Furthermore, (4.2.26) also 

suggests that propagating waves may occur when the load frequency is below the cut-on frequency 
and a compressive axial force of sufficient large magnitude is present. In practice, however, buckling 
may prevent this from occurring.  

To illustrate the case of evanescent or propagating waves, the physical spatial component of the 
stationary displacement for a beam that is subjected to harmonic loading is shown in Figure 94 and 
Figure 95. The load frequency is below and above the cut-on frequency, respectively. It may be 
noted that the amplitude of the propagating waves in Figure 95 remains constant because the analytic 
formulation neglects material damping of the pipeline and soil. 
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Figure 94: Example of the physical spatial component of stationary displacement for cω ω< . 
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Figure 95: Example of the physical spatial component of stationary displacement  for cω ω> . 

4.2.2.3. Project Assessment 

In this section, it is investigated whether the pipe in this project experiences evanescent or 
propagating waves. The assessment is based upon the most critical combinations of the extreme 
values of the properties of the pipeline, soil and load. These are given in Table 18 along with the 
coefficients 1 2,c c  at the most critical combinations. The sources of the values that are not obvious 

are commented below.  
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Parameter Minimum Maximum 
Young's modulus E [GPa] 210 340 
Second moment of area I [m4] 0.0075 
Initial axial load  N [MN] -4.2 0 

Mass of side-span per unit length kg
mm ⎡ ⎤⎣ ⎦  1088 1270 

In-line load frequency  fy [Hz] 0.08 0.23 
Cross-flow load frequency  fz [Hz] 0.16 0.45 

Lateral linear spring stiffness  2
MN
myκ ⎡ ⎤⎣ ⎦  0.77 

Vertical linear spring stiffness  2
MN
mzκ ⎡ ⎤⎣ ⎦  3.43 

First coefficient -2
1 mc ⎡ ⎤⎣ ⎦  -0.027 0 

Second coefficient – Lateral -4
2, myc ⎡ ⎤⎣ ⎦  0.003 0.005 

Second coefficient - Vertical -4
2, mzc ⎡ ⎤⎣ ⎦  0.013 0.022 

The minimum and maximum values of Young's modulus correspond to the stiffness steel and the 
equivalent stiffness of steel and concrete coating. The minimum and maximum values of the initial 
axial load correspond to the operational and water-filled state, respectively. The minimum and 
maximum values of the mass per unit length of the side-span correspond to the air-filled and water-
filled state. The minimum and maximum values of the load frequencies correspond to the in-line and 
cross-flow frequency according to the Morison Model during sea state 5 and 1, respectively.  

It is noted that the variation of -2
1 0.027 m ; 0c ⎡ ⎤∈ −⎣ ⎦  arises due to the potential variation of the 

bending stiffness and the initial axial load. Furthermore, the variation of 
-4 -4

2, 0.003m ; 0.005myc ⎡ ⎤∈ ⎣ ⎦  and -4 -4
2, 0.013m ; 0.022mzc ⎡ ⎤∈ ⎣ ⎦   is dominated by that of the bending 

stiffness and is affected only to a small degree by the variation of the mass of the side-span and the 
load frequencies. The domains of evanescent and propagating waves and the possible outcomes of 
the coefficients 1 2,c c  are shown in Figure 96. 
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Figure 96: The domains of evanescent and propagating wave. The crosses and circles denote 
possible outcomes of the project parameters. 

It is seen from Figure 96 that the possible outcomes of the project parameters lie within the domain 
of evanescent waves. Thus, waves will reside near the load source.  

Table 18: Extreme values of pipeline, soil and load properties and coefficients 1 2,c c . 
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4.2.2.4. Section Forces during Harmonic Loading 

In this section, different formulations of the section forces are derived. After introducing some 
relevant quantities, the section forces are written in terms of displacement spatial derivatives and 
eventually in terms of stiffness, damping and mass matrices which will be employed later in the 
element formulation. For the sake of space, the derivation is shown only for the left-hand-side of the 
beam in the first part of the section.  

Quantities 

The following vectors for section forces, general displacements and component displacements are 
introduced for the left-hand-side of the beam 

 ( )
( )

( )
( )

( )
( )

1 1

2 2

exp, ,
, ,

exp, ,
U i t i k xQ x t u x t
U i t i k xM x t x t

ω
ωθ

− −
− − −

− −

⎛ ⎞ ⎛ ⎞ +⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ +⎝ ⎠⎝ ⎠ ⎝ ⎠

f x u  (4.2.28) 

The static and kinematic quantities are illustrated in Figure 97. 

Q−

θ −

M − Q− Q+ Q+M +

θ +
u− u+

x

y  
Figure 97: Static and kinematic quantities. 

Section Forces in terms of Displacement Spatial Derivatives 

By use of (4.2.4)-(4.2.5), the section force vector may be expressed in terms of the bending stiffness 
and the displacement spatial derivatives 
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−⎜ ⎟
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⎜ ⎟
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f  (4.2.29) 

Section Forces in terms of Stiffness and Damping 

The section force vector may further be written in terms of the component displacement vector by 
use of (4.2.21) and (4.2.29) 
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Similarly, the general displacement vector may be written in terms of the component displacement 
vector 

 
1 2

1 1
,

i k i k
− − − − ⎡ ⎤
= = ⎢ ⎥− −⎣ ⎦

0 0x L u L  (4.2.31) 

The component displacement vector may be eliminated from (4.2.30) by left-multiplying (4.2.31) 

with the inverse of −
0L  and substituting the resulting equation into (4.2.30) 

 ( ) 1

0,
−− − − − − −= = 1f B x B L L  (4.2.32) 

Now, the section force vector depends upon a frequency response matrix and the general 
displacement vector. The nature of this relation may be better understood by decomposing the 
frequency response matrix into its real and complex parts, so (4.2.32) becomes 

 ( ) ( )Re Imi− − − − −= +f B x B x  (4.2.33) 

The first order time derivative of the general displacement vector in (4.2.28) is 

 1 , 0i
i

ω ω
ω

− − − −= ⇔ = ≠x x x x� �  (4.2.34) 

By use of (4.2.34), equation (4.2.33) may be rewritten as 

 ( ) ( ) ( )1, Re , Im Imi
iω ω

− − − − − − − − − −= + = = =f K x C K B C B Bx�  (4.2.35) 

Thus, the moment and shear force which constitute the section force vector are functions of stiffness 
and damping matrices and the given displacement and rotation at a section along the beam axis. 

Section Forces in terms of Modified Stiffness, Damping and Mass 

For reasons that will become clear later, an alternative expression for the force is necessary. The 
stiffness matrix can be rewritten as a linear combination of two matrices that fulfil 

 1 2
− − −= +K K K  (4.2.36) 

The second order time derivative of the general displacement vector in (4.2.28) yields 
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 ( )
( )

2
2 2

1 1i
i

ω
ωω

− − − − −= ⇔ = = −x xx x x�� �� ��  (4.2.37) 

By the use of (4.2.36) and (4.2.37), the spring force may be expressed in terms of a modified spring 
force and an inertia force 

 1 22

1,
ω

− − − − − − − −= + = −K x K x M x M K��  (4.2.38) 

Thus, (4.2.35) may alternatively be written in terms of a modified stiffness, damping and mass 
matrix 

 1
− − − − − − −= + +f K x C x M x� ��  (4.2.39) 

The equations for shear force and inner moment may be expanded into the following general form 
for the left- and right-hand-side where the matrix components are defined by either (4.2.35) or 
(4.2.39) 
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(4.2.40) 

Thus, the stiffness matrix is a function of 1 2, ,c c EI  while the damping and mass matrices are 

functions of  1 2, , ,c c EI ω . In the case of evanescent waves, all components of the frequency response 

matrix are real and all components of the damping matrix will be zero too. 

4.2.3 ELEMENT FORMULATION 

In this section, the analytic formulation is cast into element formulation. After a brief presentation of 
the element topology, the external forces that should be applied to the element are determined. 
Finally, a correction strategy is presented in the case of non-positive definite element matrices. 

Element Topology 

The transmitting boundary element is derived for a two-nodal beam element which has three degrees 
of freedom at each node with the numbering and directions given in Figure 98. This corresponds to 
the beam elements that are used in the Matlab Model, see Chapter 5.1 (Winkler Model).  
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Figure 98: Degrees of freedom of two-nodal plane beam element. 

Determination of Forces 

When deriving the transmitting boundary element, the idea is to apply external forces which will 
yield the moment and shear force that would appear in the boundary in the absence of the remaining 
infinite beam. This may be done by applying external opposite-directed moments and vertical forces 
in the appropriate degrees of freedom of the beam element. By comparison of Figure 97 and Figure 
98, the active external forces are given in Figure 99 for the left and right boundary element, 
respectively.  

3 bf M− −= −

2 bf Q− −= 5 bf Q+ += −

6 bf M+ +=

 
Figure 99: Active external forces that act upon left and right boundary element, respectively. 

The relations between the active degrees of freedom in the analytical and element formulation are 
given in Figure 100. It is seen that the displacements are opposite-directed whereas the rotations 
have same direction. 

3 bx θ− −=

2 bx u− −= − 5 bx u+ += −

6 bx θ+ +=

 
Figure 100: Relations between active degrees of freedom in the analytical and element 
formulation of left and right boundary element, respectively. 

By use of Figure 99, Figure 100 and (4.2.40), the active external forces may be written in terms of 
matrices and the general displacements in the left and right boundary, respectively 
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 (4.2.41) 
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Given the original element stiffness, damping and mass matrices , ,e e eK C M , the equations of motion 

for the boundary element are 
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M x C x K x f
f

�� �  (4.2.42) 

By use of (4.2.41), the external force vector ef  may be defined in terms of the boundary element 

stiffness, damping and mass matrices for the left and right boundary, respectively 

 

11 12

21 22

11 12

21 22

,
0 0 0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

, , ,
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0
0 0 0 0

e b e b e b e

b

b

A A
A A

A K C M

A A
A A

− −

− −
−

+

+ +

+ +

− = + +

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦ =
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥

−⎢ ⎥⎣ ⎦

f K x C M x

A

A

x ���

 (4.2.43) 

Summation of (4.2.42) and (4.2.43) yields the equations of motion in terms of the stiffness, damping 
and mass matrices of the final transmitting boundary element 
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M x C x K x 0

C C C K K K M M

�� �
 (4.2.44) 

The new set of equations of motion (4.2.44) may now be solved.  

A transmitting boundary element for a plane Bernoulli-Euler beam upon Winkler foundation may be 
interpreted as a series of transversal and rotational springs, dampers and point masses that are 
attached to the beam-ends and to a mass-less and rigid beam as shown in Figure 101. The presence 
of the rigid beam enables coupling between nodal displacements and rotations and thus represents 
the off-diagonal terms of the boundary element matrices. 

, 0EI m= ∞ =

 
Figure 101: Interpretation of a transmitting boundary element for a plane Bernoulli-Euler beam 
upon Winkler foundation. 
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Positive Definiteness Correction 

In order to obtain a stable FEM-scheme, the element matrices must fulfil some degree of positive 
definiteness. The definition of positive and semi-positive definiteness of a matrix B is 

 
Positive definiteness: 0 Eigenvalues of  are positive

, ,
Semi-positive definiteness: 0 Eigenvalues of  are positive or zero

n> ⇔
∈ ≠

≥ ⇔
aBa B

a a 0
aBa B

^   

The final transmitting boundary element damping matrix ˆ
eC  has to be semi-positive definite while 

the element stiffness and mass matrices ˆ ˆ,e eK M  further have to be positive definite. This means that 

the boundary damping matrices ,b b
− +C C  must be semi-positive definite and that the following sub 

matrices of , , ,b b b b
− + − +K K M M  must be positive definite by comparison with (4.2.43) 

 11 12 11 12 11 12 11 12

21 22 21 22 21 22 21 22

, , ,s s
K K K K M M M M
K K K K M M M M

− − + + − − + +
− +

− − + + − − + +

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤− − − −
= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

K K  

For certain combinations of material properties and load frequency, the sub matrix sK  will not be 

positive definite since its upper-left component is non-positive, i.e. 

 ,11 0sK ≤  

Only in this case should the element matrices be defined by (4.2.39). In order to fulfil (4.2.36) and 
positive definiteness, the sub matrices are modified in the following way so the non-positive 
component changes sign 

 
1 1

,11 ,12 ,11 ,122 2
1 21 1

,21 ,22 ,21 ,222 2

2
,

2
s s s s

s s s s

K K K K
K K K K

− −⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

K K  (4.2.45) 

Stiffness Matrix Components 

In this section, a brief presentation of the magnitude of the components of the stiffness matrix s
−K  is 

shown. This is important for determining the performance of the boundary elements when they are 
calibrated to one set of properties for the pipeline, soil and load. The components of the damping and 
mass matrices are not shown since they are zero in the case of evanescent waves.  

The stiffness matrix is governed by the parameters 1 2, ,EI c c . Given 2255MNmEI = , the contours 

in the domain of evanescent waves of the components of the stiffness matrix in the Matlab Model as 
function of 1c  and 2c  are shown in Figure 102-Figure 104. The limit between evanescent and 

propagating waves, according to (4.2.26), is given by the dashed curve. The crosses and dots denote 
the possible outcomes of the project parameters based upon Table 18. 



Soil Mechanics 4.2 Transmitting Boundary 

 

 147 

 

 

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1
0

0.005

0.01

0.015

0.02

0.025

0.5

1

1.5

2

2.5
x 10

7

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1
0

0.005

0.01

0.015

0.02

0.025

c1  [m-2]

c 2  [
m

-4
]

 

 
Lateral
Vertical

 
Figure 102: Contours of stiffness matrix component ,11sK  in N/m as a function of 1c  and 2c  for 

2255MNmEI = . Contour step is MN
m0.84 . 
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Figure 103: Contours of stiffness matrix component ,22sK  in Nm as a function of 1c  and 2c  for 

2255MNmEI = . Contour step is 1.3MNm . 
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Figure 104: Contours of stiffness matrix component ,12sK  in N as a function of 1c  and 2c  for 

2255MNmEI = . Contour step is 5.3MN . 

Typical values of the stiffness matrix of the transmitting boundary element for the lateral and 
vertical direction in this project, respectively, are 
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Transmitting Boundary Element in Abaqus 

In order to implement the transmitting boundary element in Abaqus, the definitions of degrees of 
freedom are considered. The plane beam is considered in the vertical and lateral plane as shown in 
Figure 105 (a) and (b), respectively, while the three-dimensional beam element in Abaqus has six 
degrees of freedom at each node as shown in Figure 105 (c). 
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Figure 105: Degrees of freedom of beam element in vertical plane (a), lateral plane (b) and in 
Abaqus (c). Inactive degrees of freedom are shown in gray. 

The relationships between the active degrees of freedom of the two models may be determined upon 
study of Figure 105 and are given in Table 19. 

Matlab 
Vertical Lateral 

Abaqus Direction 

- 2 2 Same 
2 - 3 Same 
3 - 5 Opposite 
- 3 6 Same 

The transmitting boundary element is implemented in Abaqus as a user-defined linear element with a 
single node and four active degrees of freedom. A user-defined element is connected to the PIPE31-
beam element in each end of the model. The matrices of the user-defined elements are derived from 
(4.2.43) for both the vertical and lateral plane. In the first case, the off-diagonal components of the 
boundary element matrices should change sign due to the opposite direction of the degrees of 
freedom according to Table 19. Thus, the final stiffness, damping and mass matrices for the left and 
right transmitting boundary element in Abaqus, respectively, are given as 

Table 19: Relationships between active degrees of freedom. 
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 (4.2.46) 

4.2.4 BENCHMARK TEST 

A benchmark test has been performed to verify the results of the analytic and element formulation in 
Matlab and Abaqus. In the case of propagating waves, the benchmark test is limited to verification of 
the analytic solution and the Matlab Model since the implementation of user-defined damping 
matrices in Abaqus appears to be rather complicated. 

The transmitting boundary elements are considered to be correctly implemented if the time history of 
the displacements and rotations at equivalent sections are identical for a small model with 
transmitting boundary elements at its beam-ends and a large model without transmitting boundary 
elements. The sections that are investigated are the mid-sections and another section where the 
response is linear and not negligible. The sections are shown in Figure 106 as the dashed lines (A) 
and (B), respectively, for the large and small model. 

TBE TBE

( )A ( )B

 
Figure 106: Investigated sections in benchmark test. Above: Large model without a transmitting 
boundary. Below: Small model with transmitting boundary elements (TBE) in the beam-ends. 
The mid-sections are denoted with (A) and the other sections are denoted with (B). 

4.2.4.1. Tests For Evanescent Waves 

In the case of evanescent waves, the benchmark test has been performed on four distinct cases with 
progressive complexity. The first case is a plane beam with linear soil springs, a plane harmonic 
concentrated load at the mid-section and without a free-span. The fourth case is a three-dimensional 
beam with non-linear soil springs and distributed harmonic loads in two dimensions along the free-
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span. In all cases, the harmonic load has been applied with a magnitude that grows exponentially 
from zero to its maximum after some time. This has been done to avoid impulse response due to 
initial conditions. The details of the individual cases are given in Table 20. The analytical 
formulation and the models in Matlab are located in [DVD/Matlab Model] whereas the models in 
Abaqus are located in [DVD/Transmitting Boundary].  

Case Free-span Load type 
Spring 

behaviour 
Models 

E1 No 1-D Central Linear Analytic, Matlab 
E2 Yes 1-D Central Linear Matlab, Abaqus 
E3 Yes 2-D Distributed Linear Matlab, Abaqus 
E4 Yes 2-D Distributed Non-linear Abaqus 

All cases show nearly identical results between the large and small model with transmitting 
boundary elements. In the following, the benchmark results are shown for case E4 that compares a 
large 220-meter-model with 50-meter and 40-meter-models that have beam-ends that are fixed, free 
or attached to transmitting boundary elements.  

The time history of the distributed loads is shown in Figure 107. The in-line load frequency is taken 
as 0.10 Hz and the cross-flow load frequency is taken as 0.20 Hz which are both below the cut-on 
frequencies. The maximum magnitude has been chosen large enough to induce non-linear 
displacements in the springs. Since the load varies harmonically, the response is expected to vary 
harmonically.  
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Figure 107: In-line and cross-flow distributed loads in case E4. 

The time history of the lateral and vertical displacements at the mid-section are shown in Figure 108 
and Figure 109, respectively. The vertical displacement for the small 40-meter model with free ends 
in Figure 109 terminates at 50st ≈  due to numerical instability. 

Table 20: Details of the investigated cases with progressive complexity for evanescent waves. 
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Figure 108: Lateral displacement at mid-section for varying boundary conditions in case E4. 
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Figure 109: Vertical displacement at mid-section for varying boundary conditions in case E4. 

It is seen from Figure 108 and Figure 109 that the small models with transmitting boundary elements 
correctly predict the history of the large model while the small models with free and fixed beam-
ends provide upper and lower bounds on the magnitude of the displacement, respectively. The non-
linearity of the vertical springs is evident due to the evolution of the average vertical displacement 
which is zero in the beginning of the analysis and about 0.12 m at the end of the analysis. 

4.2.4.2. Tests For Propagating Waves 

In the case of propagating waves, the benchmark test has been performed on three distinct cases 
whose details are given in Table 21. The latter case represents a plane beam with linear soil springs 
with a plane distributed harmonic load along the mid-span.   
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Case Free-span Load type 
Spring 

behaviour 
Models 

P1 No 1-D Central Linear Analytic, Matlab 
P2 Yes 1-D Central Linear Matlab 
P3 Yes 1-D Distributed Linear Matlab 

Again, all cases show nearly identical results between the large and small model with transmitting 
boundary elements. In the following, case P3 will be illustrated which compares 220-meter models 
that have beam-ends that are fixed, free or attached to transmitting boundary elements. 

A harmonic-ramp load has been applied at the load frequency 20 Hz which is above the cut-on 
frequency. The load history is shown in Figure 110. 
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Figure 110: Distributed load in case P3. 

The displacements at the end-section and mid-section are shown in Figure 111 and Figure 112, 
respectively. 
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Figure 111: Vertical displacement at end-section for varying boundary conditions in case P3. 

Table 21: Details of the investigated cases with progressive complexity of propagating waves. 
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Figure 112: Vertical displacement at mid-section for varying boundary conditions in case P3. 

It is seen from Figure 111 and Figure 112 that the model with transmitting boundary elements 
correctly provides a harmonic response with nearly constant amplitude. In contrast, the models with 
fixed or free ends exhibit wave interference where the waves are reflected back when they meet the 
boundary. It is seen that the first waves have travelled back to the mid-section at 0.7st ≈ . 

Interestingly, the models with fixed or free ends experience identical response which has been 
verified by observation of the deformed shape of the entire pipeline. 

4.2.5 EVALUATION 

First, it is concluded that the properties of the pipeline, soil and load only provide evanescent waves 
in this project. This means that the waves in the pipeline that are induced by the hydrodynamic 
forces will reside relatively near the load source and will vanish before they reach the pipe-ends 
when the side-spans are wide enough. Thus, the implementation of a transmitting boundary in this 
project is hardly necessary. 

Secondly, the transmitting boundary elements of this project may only be calibrated against a single 
load frequency but the hydrodynamic loads from irregular waves will act upon the pipe at a range of 
load frequencies. It has been estimated that a possible variation in the in-line load frequency 0.08-
0.23 Hz and the cross-flow load frequency 0.16-0.48 Hz does not affect the coefficients 1 2,c c  that 

govern the boundary element stiffness matrices in the case of evanescent waves. Thus, the 
transmitting boundary elements are expected to perform satisfactorily during an analysis with 
irregular waves once they have been tuned to an arbitrary load frequency within the mentioned 
ranges. However, such an analysis has not been performed in this project. 

Lastly, the efforts that are involved in deriving, verifying and implementing a transmitting boundary 
element may greatly exceed its computational gains. In practice, the method of using a boundary 
zone of highly damped material may be considered as an alternative. In the case of propagating 
waves, the damping matrices of the transmitting boundary elements appear to be difficult to 
implement in a commercial FEM-program such as Abaqus. 
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4.3 LIQUEFACTION 

Liquefaction is a geotechnical failure concept which was initially developed to explain failure of soil 
due to cyclic excitation from earthquake. In this project, liquefaction is analysed in a different 
context, namely that soil at the pipe shoulders is exposed to cyclic excitation due to hydrodynamic 
loads at the free-span. 

This chapter includes the following main subjects: 

• Liquefaction mechanism 
• Susceptibility for liquefaction 
• Numerical modelling of liquefaction 
• Liquefaction hazard assessment for a free-span 

In the early state of this project, it was a part of the project scope to make a numerical model that 
describes liquefaction considering a pipeline free-span. Limitations in the pre-defined material 
models that are available in the used version of Abaqus have made this quest difficult and it has been 
considered to be beyond the project scope to implement a user-defined material model that would be 
able to adopt the liquefaction mechanism of the soil. The section on numerical modelling of 
liquefaction has instead become a presentation of the used material model, what it is missing to 
describe liquefaction and a suggested approach in case an appropriate material is available. 

Since the numerical modelling of liquefaction failed, the liquefaction hazard for a free-span is 
evaluated in a qualitative matter based upon the knowledge of liquefaction mechanism and 
liquefaction susceptibility.  

This chapter follows the traditional geotechnical sign-convention where stresses and strains are 
defined positive in compression. 

4.3.1 LIQUEFACTION MECHANISM 

Liquefaction is a concept of failure for saturated friction soil which is exposed to cyclic load during 
a limited period of time. Liquefaction happens when the soil is exposed to cyclic excitation causing 
collapse of the grain structure and development of excess pore pressure if drainage is prevented. This 
leads to reduced friction between the grains which decreases the bearing capacity of the soil. In the 
worst case, the soil begins to act like a fluid when the effective stresses decrease to zero. Figure 113 
illustrates the collapse of the soil grain structure. 
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Figure 113: Collapse of grain structure in soil. The arrows indicate displacements of the grains. 

The stresses in the soil are according to Terzaghi’s effective stress principle composed by effective 
stresses and pore pressure. Because water is assumed not to sustain any shear stresses, the effective 
shear stresses are equal to the total shear stresses. The soil stresses can be described as 
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where  
 σ  is the total stress in the soil, defined as positive in compression [Pa] 
 σ'  is the effective stress in the soil, defined as positive in compression [Pa] 
 wp  is the pore pressure [Pa] 
 T denotes matrix transpose 
[Ovesen et al. 2007, p49] 

Liquefaction is not a concept of how the total stresses vary with the external load but how the stress 
distribution between effective stresses and pore pressure changes over time.  

Friction soil is however not always susceptible to liquefaction. If the soil may be drained, a 
densification of the soil will happen which will increase the bearing capacity of the soil. This is also 
what is exploited in the building industry when preparing loose friction soil for the foundation of 
structures. 

The initial void ratio of the soil does also have an impact on how the soil reacts to cyclic excitation. 
Dense soil will tend to dilate during drained loading which will reduce the pore pressure during 
undrained conditions and increase the effective stresses. This will have the opposite effect of 
liquefaction and increase the bearing capacity of the soil momentarily, also known as stabilization.  



Soil Mechanics 4.3 Liquefaction 

 

 157 

4.3.1.1. Basic Concepts 

Liquefaction may be divided into two main phenomena – flow liquefaction and cyclic mobility 
[Kramer 1996, p349]. The basic principles of the two phenomena are explained in the following: 

• Flow liquefaction: This is a phenomenon of instability that occurs when the static shear 
stress exceeds the shear strength of the liquefied soil which results in instant failure of the 
soil. This is also why flow liquefaction is known to be the most dramatic effect of all the 
liquefaction-related phenomena. Flow liquefaction is often the reason why some slopes 
become unstable during an earthquake but the phenomenon has also caused instability of 
large structures. 

 
• Cyclic mobility: This is a case of soil failure driven by the static and cyclic stresses 

exceeding the shear strength of the liquefied soil which can cause large incremental 
displacement of the soil. This phenomenon can cause severe damage to structures, roads etc. 
when the soil is exposed to an earthquake. 

The susceptibility zones for flow liquefaction and cyclic mobility are illustrated in Figure 114. 
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Figure 114: Susceptibility zones to flow liquefaction (left) and cyclic mobility (right), 
respectively. Adopted from [Kramer 1996, pp366-367]. q is the deviatoric stress and 'p  is the 
effective mean stress.   

To understand the illustration in Figure 114, the definition of the flow liquefaction surface and the 
steady state point is explained in the following:  

• Flow liquefaction surface: This describes the initiation of flow liquefaction in a stress 
space by a three dimensional surface. In practice, it is difficult to measure but it provides in 
conjunction with the steady-state concept a very useful framework for the conceptual 
understanding of the relationships between the various liquefaction phenomena [Kramer 
1996 p361]. 

 
• Steady-state point: This describes a point that defines the residual shear strength of the 

liquefied soil. This mainly depends upon the initial void ratio of the soil and moves toward 
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the origin of the ( , ')q p -diagram if the soil is loose. In order to obtain flow liquefaction, the 

point of static shear stresses must be placed above the steady-state point in Figure 114. 

4.3.2 SUSCEPTIBILITY FOR LIQUEFACTION 

The primary parameters affecting the susceptibility for liquefaction have been summarized in this 
section. Table 22 shows the parameters that increase the susceptibility of flow liquefaction and 
cyclic mobility. Table 22 is compiled upon the theory of liquefaction in [Kramer 1996, pp348-422]. 

Parameter Flow liquefaction Cyclic mobility 
Saturation Must be fully saturated 
Cohesion Little or none 

Type of grains Round and well-sorted  
Void ratio Large (loose soil) Large or small  
Drainage Little 

Consolidation ratio Small 
Earth pressure coefficients Small 

Soil 

Initial stresses Large Small 
Amplitude Large 
Frequency High 
Excitation Multi-directional 

Time of sustained pressure Short time 

Load or 
displacement 

Load-displacement history No previous cyclic excitation 

Since the parameters that influence the susceptibility for liquefaction are many and not of equal 
importance, it is a rather complex matter to evaluate whether liquefaction will be an issue 
considering a structural problem. However, Table 22 provides indication of how probable 
liquefaction will be by evaluating the parameters. 

4.3.3 NUMERICAL MODELLING OF LIQUEFACTION 

In this section, numerical modelling of liquefaction has been attempted. First, the key ingredients for 
numerical modelling of liquefaction are presented. These are important to know in order to 
understand their application scope and why the numerical modelling of liquefaction in this project 
has not been possible. Then follows a comparison of measured and predicted soil response. Finally, 
given an appropriate plastic model, an approach for a numerical model of liquefaction of the pipe 
free-span is suggested. 

4.3.3.1. Key Ingredients 

Several key ingredients are required for numerical modelling of liquefaction: An effective stress 
principle for the two-phase soil, an elastic model for elastic behaviour and an appropriate plastic 
model for describing the development of plastic strains. In addition, when considering locally 
drained conditions, a pore-fluid model is required to describe the flux through the soil and the 

Table 22: Tendency of primary parameters that increase the susceptibility for liquefaction. 
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development of pore pressure. Abaqus offers all these except an appropriate plastic model that offers 
plastic strains during cyclic loading which is described later. The effective stress principle is given in 
(4.3.1) while the remaining ingredients are described in the following.  

Darcy Flow and the Continuity Equation  

In Abaqus, a pore-fluid model is seamlessly incorporated into the dynamic analysis by the use of 
continuum pore pressure elements. These elements have the conventional degrees of freedom at the 
nodes for general displacements or forces and an additional degree of freedom for pore pressure or 
flux.  

The relationship between flux and pore pressure is described by Darcy's law which is a good model 
for flow at relatively low velocity through soil. Darcy's law in three dimensions is described as 

 , , 1,2,3w
i

i w

p
v k z i

x γ
∂Φ

= − ⋅ Φ = + =
∂

 (4.3.2) 

where 
 v  is the flux along the coordinate xi  of the pore-fluid per unit area [m/s] 
 k  is the hydraulic conductivity [m/s] 
 Φ  is the piezometric head [m] 
 z is the elevation from a reference elevation [m] 
 wγ  is the fluid weight [N/m3] 
[Ovesen et al. 2007, pp75-76; Dassault Systèmes 2007b, Section 2.8.4] 

The conservation of pore-fluid is described by the continuity equation 
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 (4.3.3) 

[Ovesen et al. 2007, p76] 

When performing soil procedures in Abaqus, the compressibility of the pore water in the soil may be 
considered. In practice, the pore water is usually assumed to be incompressible which is a good 
approximation when describing consolidation of soil.  

Linear and Porous Elasticity  

The elastic response may be modelled by different elastic models. With the geotechnical sign-
convention of this section, a linear isotropic model provides  

 ( ) ( )1
0 11 22 333

1 ,el
volp p p

K
ε σ σ σ⋅ − = − = ⋅ + +  (4.3.4) 

where 
 K is the bulk modulus [Pa] 
 p0 is the initial total mean stress [Pa] 
 p is the total mean stress [Pa] 
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 σ  is the total stress in the soil, defined as positive in compression [Pa] 

 el
volε  is the elastic volumetric strain, defined as positive in compression [-] 

[Rice 1998, p3] 

In contrast, a poroelastic material model allows the elastic bulk modulus to be pressure-dependent in 
a logarithmic fashion which is typical for soils [Zienkiewicz et al. 1999, p113].  Several definitions 
exist. In Abaqus, the following logarithmic model is available where the geotechnical sign-
convention has been used 
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where 
 κ is a logarithmic bulk modulus [-] 
 e0 is the initial void ratio [-] 
 el

tp  is the absolute total mean stress at large compaction [Pa] 

 elJ  is a Jacobian for the elastic volume ratio of the current and reference states [-] 
[Dassault Systèmes 2007, Section 17.3.1] 

The relationship between pressure and elastic volumetric strain for linear and porous elastic 
materials is illustrated in Figure 115 where the bulk modulus is the slope of the curves. 
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Figure 115: Relationship between pressure and elastic volumetric strain for linear and porous 
elastic materials.  

The shear stiffness of the material can be computed either by assuming constant shear modulus or 
constant Poisson's ratio ν. The latter results in increased shear stiffness as the material is compacted. 

The porous elastic material model in Abaqus may be combined with a few plastic models which are 
the extended and modified Drucker-Prager models and the modified Critical State model. The latter 
is described in the following. 

Critical State Plasticity 

The plastic response is modelled by a Critical State model which is also known as a Cam-Clay 
model. This is a classical plasticity model for soil that was originally developed at Cambridge 
University (1968). A Critical State model features an elastic model for elastic strains, a yield surface 
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and/or a plastic potential for the plastic strains and a hardening/softening rule that allows the yield 
surface to grow or shrink. 

A Critical State model is based upon the critical state of the soil which is also known as the 
characteristic state or state of critical void ratio. This is defined as the state when the soil volume or 
pore pressure does not change under drained or undrained conditions, respectively. Triaxial 
experiments have shown that the critical state is a linear relationship between the deviatoric stress 
and mean pressure and the relationship is independent of the initial void ratio, stress path and 
drainage conditions [Ibsen 1993, pp27-33; Kramer 1996, pp355-357]. The linear relationship is 
given by the critical state line 

 ( )1
11 33 11 22 333', ' ' , ' ' ' 'q M p q pσ σ σ σ σ= = − = ⋅ + +  (4.3.6) 

where 
 q is the deviatoric stress [Pa] 
 p' is the effective mean stress [Pa] 
 'σ  is the effective stress in the soil, defined as positive in compression [Pa] 
 M is an empirical slope of the critical state line, usually equal to 1.2-1.3 [-] 

The idea in a Critical State model is that the top-point of the yield surface intersects the critical state 
line. When assuming associated plasticity, the normal vector at the yield surface denotes the 
direction of the change in plastic strains. Thus, stress states at the yield surface that are above the 
critical state line result in dilation or decreasing pore pressure during drained or undrained 
conditions, respectively, which allows stabilization. In contrast, stress states at the yield surface that 
are below the critical state line result in compaction or pore pressure build-up during drained or 
undrained conditions, respectively, which allows liquefaction. The domains above and below the 
critical state line are usually refered to as the "dry" and "wet" zone, respectively. The characteristics 
are illustrated in Figure 116 for a compressive deviatoric stress where CSM denotes a Critical State 
model. 
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Figure 116: The critical state line and different formulations of the Critical State model. 

As shown in Figure 116, the original Critical State model is based upon non-associated plasticity and 
an elliptic-like yield surface and plastic potential. The modified Critical State model is based upon 
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associated plasticity and an elliptic yield surface that is vertically symmetrical about the top-point. 
Abaqus uses the modified model but with a possible semi-elliptic yield surface where the end-cap of 
the yield surface in the wet zone may be moved. [Zienkiewicz et al. 1999, p120-124; Dassault 
Systèmes 2007, Section 17.3.1] In the remaining section, the modified Critical State model is 
illustrated in which the elastic response is modelled by linear elasticity.  

The evolution of the yield surface may be illustrated by considering an initially loose and dense 
sample of the same specimen that is axially and monotonically strained from the same initial stress 
state during drained conditions. This is illustrated in Figure 117 left and right, respectively. The 
letters A-D denote stress states at progressive time instances while the numerals I, II, III denote the 
initial, intermediate and final yield surface.  
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Figure 117: Schematized evolution of yield surfaces (top) and strain curves (bottom) in a 
Critical State model for an initially loose (left) and dense (right) sample of the same specimen 
during drained monotonic axial straining from the same initial stress state. Arrows indicate the 
direction of plastic strains. volε  denotes the total volumetric strain. 

It is seen from Figure 117 left, that the initially loose sample has an initial yield surface of relatively 
little size. During axial straining, the sample will compact elastically along the path A-B and then 
compact elastoplastically along the path B-C until it reaches the critical state at point D with the 
shearing strength cq . It is seen from Figure 117 right that the initially dense sample has an initial 

yield surface of relatively large size. During axial straining from the same initial stress state as the 
initially loose sample, the initially dense specimen will compact elastically from point A to B, where 
the stress state reaches the yield surface and experiences its ultimate shearing strength cq q> . Once 

the yield surface has been reached, it shrinks as the sample dilates elastoplastically along path B-C 
until the critical state at point D is reached. It is observed that the Critical State model predicts that 
both an initially loose and dense sample that is strained from an identical initial stress state reach the 
same critical state but have varying ultimate shearing strengths.  
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4.3.4 COMPARISON OF MEASURED AND PREDICTED RESPONSE  

In this section, comparisons are performed between measured and predicted soil response. The first 
qualitative comparison illustrates the soil behaviour under drained and undrained conditions and 
deals with the corresponding performance of a Critical State Model. The second quantitative 
comparison deals with measured and numerical response during undrained cyclic loading. 

4.3.4.1. Undrained and Drained Monotonic Axial Straining 

The soil response during drained and undrained conditions under monotonic axial straining has been 
illustrated in Figure 118 (top) and (bottom), respectively. In addition, the failure curves under 
drained conditions and the critical state line are shown. An initially loose or dense sample is taken to 
correspond to the predicted response for a normally or over-consolidated soil.  
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Figure 118: Schematized soil response according to measurements and predictions of the 
Critical State Model during monotonic, axial straining in drained (top) and undrained (bottom) 
conditions. Compiled upon study of [Zienkiewicz et al. 1999, pp118-127; Ibsen 1993, pp19-35; 
Andersen 2006b] 

It may be seen from Figure 118 (top) that there is a reasonable agreement between measured and 
predicted response of sand during drained conditions. The difference in the stress path and the 
ultimate strength of sand between the measured and predicted response is less critical since the 
predicted response is conservative. 
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It may be seen from Figure 118 (bottom) that poor agreement is found between measured and 
predicted response during undrained conditions, except for a normally consolidated clay. The 
measured response of loose sand shows that flow liquefaction occurs when the deviatoric stress 
suddenly drops and the stress state ends at the steady-state point. In contrast, the predicted stress 
state ends at the critical state and thus overestimates the ultimate strength. For dense sand, 
measurements show that stabilization occurs where the shear strength continues to increase with the 
effective mean stress. The stress path appears to asymptotically follow the drained failure curve 
which explains the fact that drained strength parameters of a dense sample may be extracted from an 
undrained triaxial test. In contrast, the predicted response of dense sand results in a much smaller 
ultimate strength and a stress state that ends in the critical state. In this case, the predicted response is 
very conservative. 

The comparison above concerns monotonic axial straining. A comparison during cyclic loading is 
performed in the next section.  

4.3.4.2. Undrained Cyclic Loading 

The measured and predicted response during undrained cyclic loading follows the experimental 
triaxial test program no. 8727 of the sand specimen "Lund no. 0" [Ibsen 1993b]. The model database 
of the numerical model may be found in [DVD/Liquefaction/triax_8727.cae] 

The loads, boundary conditions and dimensions of the sample are defined in Figure 119. The 
numerical model is axisymmetrical in order to reduce the number of degrees of freedom without any 
loss in accuracy. The vertical displacements are restrained along the bottom surface of the numerical 
model while the lateral displacements are restrained along the centroidal axis of the sample. The 
boundary conditions along with identical height and diameter according to Danish laboratory 
traditions ensures a homogenous stress state in the sample which is important for an accurate 
estimation of the soil strength. [Ibsen 1993, pp13-16] 
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Figure 119: Loads, boundary conditions and dimensions of the sample. The gray part denotes 
the modelled part. 

The material parameters of the sample are: 

 00.070m, 0.617, 1.18H e M= = =  

The loose sample corresponds to a density index 25%,RD =  i.e. a loose sample. The following 

porous elastic properties have been estimated where the shear stiffness is computed by Poisson's 
ratio: 

 0.0044, 0, 0.3el
tpκ ν= = =  

The triaxial test is performed in three steps: isotropic consolidation, anisotropic consolidation and 
finally undrained cyclic loading. The steps and the corresponding initial stresses, final stresses and 
numerical procedure are given in Table 23. The stress path from the end of the first step to the 
beginning of the second step has not been described in the experiment and is of minor importance. 

Step Description Initial stress state Final stress state Numerical procedure 

1 Isotropic consolidation ' 0q p= =  0, ' 100 kPaq p= =  Specification of initial 
size of yield surface 

2 
Anisotropic 
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27 kPa

' 32 kPa
sq q
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= =
=
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The observed and predicted response during the undrained cyclic loading step is shown in Figure 
120. In addition, the curve for drained failure (FC) at the given initial void ratio, the asymptotic 
undrained stress curve for a dense sample of the specimen (SC), the critical state line (CSL) and the 

Table 23: Description of steps and the corresponding initial and final stress states and 
numerical procedures. t denotes the time coordinate. 
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initial yield surface in the modified Critical State model are shown. The initial stress state is from the 
beginning of the undrained cyclic loading step. 
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Figure 120: Measured and predicted response during cyclic loading. Measured response is 
from [Ibsen 1993b]. 

It may be seen from Figure 120 that the initial effective stress state is below the critical state line 
which indicates susceptibility for liquefaction. The first time the initial yield surface is touched in the 
numerical model, the yield surface is inflated and the pore pressure increases. However, since the 
effective stress path reverses before the critical state is reached, the subsequent response becomes 
elastic where the effective stress travels back and forth along the same path. In contrast, the 
measured response clearly shows the reduction of effective stresses due to pore pressure build-up. 

It turns out that in a classical plasticity model, e.g. a Critical State, Mohr-Coulomb or Drucker-
Prager model, plastic strains cannot develop within the yield surface. Since this is the domain where 
cyclic loading occurs, the classical plasticity models cannot reproduce liquefaction [Zienkiewicz et 
al. 1999, p129]. The development of cyclic plastic material models is currently a field of research.  

Abaqus offers a plastic model specifically for cyclic loading which is illustrated in Figure 121. This 
is based upon nested yield surfaces where the inner yield surface follows the stress state and 
introduces plastic strains. Unfortunately, the yield surfaces in the material model are based upon 
deviatoric stresses alone and not the effective mean stress. This is well-suited for metals but a poor 
assumption for soil.  

12σ

11σ

Stress path
Inner yield surface
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II I

 
Figure 121: Schematized evolution of inner yield surface and pore pressure build-up during 
cyclic loading due to plastic strains in a plastic model with nested yield surfaces. I and II denote 
the initial and final inner yield surface. 11σ  and 12σ  denote a principal and deviatoric stress, 
respectively. 
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4.3.4.3. Suggested Modelling of Liquefaction Considering a Free-span 

This section explains a possible set-up for numerical modelling of the pipeline free-span if sufficient 
material models had been available. The objective is to determine if the hydrodynamic loads 
affecting the pipeline free-span result in liquefaction of the soil near the free-span shoulder. 

The numerical modelling of the liquefaction problem could be analysed as an equivalent two-
dimensional problem. This procedure is explained in three steps: 

• Step 1 is to calculate the lateral and vertical displacements in a section near the shoulder of 
the free-span when the pipeline is affected by hydrodynamic load. This could be done in a 
three-dimensional Winkler Model as described in Chapter 5.1 (Winkler Model). The 
position of a possible section of interest is shown in Figure 122 as section A-A. 
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Figure 122: Position of section A-A where the displacements are extracted for the two-
dimensional model. 

 
• Step 2 is to transfer the calculated displacements into a two-dimensional numerical model 

of the pipe and soil in section A-A. Figure 123 shows the principal geometry for the 2-
dimensional model. The boundaries of the model should be drained and a pore-fluid model 
could allow locally undrained conditions. 
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Figure 123: Principal two-dimensional model for liquefaction analysis.   
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• Step 3 is to evaluate the effective stresses and pore pressure in the soil around the pipeline 

in section A-A to determine if excess pore pressure is present for the applied cyclic 
displacements. If excess pore pressure is present due to the cyclic excitation, the effect of 
this has to be evaluated considering either flow-liquefaction or cyclic mobility. 

The above-mentioned procedure is based upon the assumption that the flow problem of the pore 
water can be considered to be a two-dimensional problem. This is considered to be a conservative 
approximation since the drainage distance towards the seabed will be largest in the two-dimensional 
model. It is noticed that if section A-A is placed at a further distance from the free-span, the error of 
considering the flow problem as two-dimensional will decrease. 

4.3.5 LIQUEFACTION HAZARD ASSESSMENT OF A FREE-SPAN 

One way of evaluating the liquefaction hazard is to make the analyses necessary to answer the three 
questions asked in [Kramer 1996 p351]: 

1.  Is the soil susceptible to liquefaction? 
2.  If the soil is susceptible, will liquefaction be triggered? 
3.  If liquefaction is triggered, will damage occur? 

In this project, the liquefaction hazard for a pipeline free-span is evaluated in a qualitative manner 
because a numerical modelling of the liquefaction phenomenon has been considered too extensive 
for implementation in this project. The three questions above are discussed in the following. 

4.3.5.1. Soil Susceptibility to Liquefaction 

Since no soil analysis has been made in this project, the susceptibility to liquefaction is evaluated for 
typical marine soil. Table 22 serves as a general reference for the qualitative evaluation.  

Marine soil will always be saturated and is typically a well-sorted friction soil with little or no 
cohesion. Furthermore, the soil is typically normally consolidated and even if the soil is pre-
consolidated, this will be eliminated near the pipeline as the trenching of the pipeline disrupts the 
soil. All these factors make the soil more susceptible to liquefaction. 

The initial stresses in the soil around the pipeline are small as the pipeline is typically installed in a 
small trenching depth. This reduces the risk of flow liquefaction in the soil whereas the soil becomes 
more susceptible to cyclic mobility. The drainage of the soil around the pipeline is considered to be 
large because friction soil is permeable and the drainage distance for the soil around the pipeline 
toward the seabed is small. The latter is an important aspect that will lower the risk of liquefaction 
radically.  
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4.3.5.2. Free-span Susceptibility to Liquefaction 

This susceptibility evaluation is based on the knowledge of free-span behaviour from Chapter 5.2 
(Parametric Study for Regular Waves) and the susceptibility influence for the governing parameters 
that are shown in Table 22.  

The phenomenon of vortex lock-in described in Chapter 3.1 (Near-Wall Cylinder) becomes an 
important aspect when evaluating the free-span susceptibility to liquefaction. If the pipeline free-
span is exposed to vortex lock-in, the hydrodynamic load amplitude increases rapidly as the load 
frequency remains constantly equal to the natural frequency of the free-span. If the phenomenon of 
vortex lock-in does not appear, the load frequency from the hydrodynamic loads decreases as the 
amplitude of the force increases. This is due to the fact that larger waves creating larger load 
amplitudes also have longer wave periods and thereby decreasing load frequencies.  

The susceptibility to liquefaction has shown to be higher for increasing amplitude and frequencies of 
excitation which means that the free-span affected by vortex lock-in will also be more susceptible to 
liquefaction.  

The relatively small pipe diameters and trenching depth will however limit the risk of triggering 
liquefaction for a pipeline free-span due to the fact that the short drainage distance toward the seabed 
will prevent the presence of excess pore pressure. 

4.3.5.3. Free-span Consequence of Liquefaction 

This section evaluates the scenario and consequences of flow liquefaction and cyclic mobility, 
respectively, for a pipeline free-span in general. If liquefaction appears, the worst case scenarios of 
the two phenomena have been discussed in the following. 

Flow Liquefaction 

The worst case scenario of flow liquefaction considering a pipeline free-span would be that the 
increased buoyancy from the liquefied soil at the shoulders exceeds the self-weight of the pipeline 
creating an upward static resultant force. The upward static force could drive the pipeline up towards 
the seabed and thereby increase the spanning length of the free-span. This scenario will be most 
probable for light-weight pipelines but still depends upon the mobilization of liquefaction in a rather 
large volume of soil near the free-span shoulder. The scenario causing flow liquefaction for a 
pipeline free-span is sketched in Figure 124. 
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Figure 124: Sketch of the flow-liquefaction scenario. 

The mobilization of a soil volume large enough to create flow liquefaction is considered to be 
unlikely and flow liquefaction is therefore considered to be the least probable liquefaction 
phenomenon for a pipeline free-span.  

Cyclic Mobility 

The consequence of cyclic mobility considering a pipeline free-span will be that the stiffness of the 
soil springs in the liquefied soil will be decreased radically. This will result in larger displacements 
and lower structural frequencies which could lead to increased stresses and larger dynamic 
amplification if the hydrodynamic load frequencies are lower than the structural frequencies. This 
could ultimately lead to either exceeding the bearing capacity or cause considerable damage on the 
pipeline. Cyclic mobility could also result in an increase in spanning length if the cross-flow force 
from wave and current exceeds the reduced bearing capacity of the soil in upward direction and 
drive the pipeline toward the seabed. The scenario causing cyclic mobility considering a pipeline 
free-span is sketched in Figure 125. 
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Figure 125: Sketch of the cyclic mobility scenario.  

The free-span will be affected by cyclic mobility even though only a small volume of soil near the 
shoulder is mobilized to liquefaction. This will be the most probable phenomenon of liquefaction 
considering a pipeline free-span. 
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The pipeline free-span is modelled as a 3-dimensional beam 
model with non-linear soil springs using Abaqus 6.7 which is a 
commercial finite element program. A force feedback model 
that accounts for fluid damping of the free-span is implemented 
in the Abaqus Model by the use of user-defined FORTRAN 
subroutines. A 2-dimensional beam model with linear soil 
springs has been made in the commercial programming 
environment Matlab for benchmark testing of the Abaqus 
Model.

The Abaqus Model is used for free-span analyses in FLS and ULS. 
An extensive parametric study has been made to determine the 
parameters of greatest influence to the dynamic response and 
fatigue of the pipeline free-span. Maximum spanning lengths of 
the pipeline free-span has been determined when considering 
FLS and ULS.
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5.1 WINKLER MODEL 

In this chapter, a presentation is given of the single-span Winkler Model that has been created in two 
numerical models by the Finite Element Method. First, an overview of the features of the models is 
presented. Then, the common and specific properties of the models are described. Finally, the results 
of a benchmark test and a brief evaluation are presented. 

5.1.1 OVERVIEW 

The two numerical FEM-models of the Winkler Model are briefly described below:  

• Matlab Model: This FEM-model has been created from scratch in the commercial 
programming environment MATLAB version 7.4.0 and will be referred to as the Matlab 
Model. The model is a 2-D model with optional material damping and optional adjustment 
of the stiffness due to a constant initial axial load. Since the model is entirely linear, 
relatively simple linear solvers for the static response, dynamic response and eigenvalues 
may be used.  The purpose of this model is to explore the effects of a transmitting boundary 
and provide a verification basis for the more complex Abaqus Model. The code for the 
Matlab Model may be found in [DVD/Matlab Model/winklermodel.m]. 

 
• Abaqus Model: This FEM-model has been created in the commercial general-purpose 

FEM-program ABAQUS version 6.7 and will be referred to as the Abaqus Model. The 
model is a 3-D non-linear model with the capability to include effects of material damping, 
linear and non-linear soil springs, adjusted stiffness due to initial axial load and a feedback 
force. The internal non-linear solvers of Abaqus are used. An example of the model files for 
the Abaqus Model can be found in [DVD/Abaqus Model/Force 
Feedback/singlespan_example.inp]. 

An overview of the features of the two models is given in Table 24.  
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Matlab Model 

 

Abaqus Model 

 

Dimensions 2-D 3-D 
Spring material behaviour Linear Linear or non-linear 
Possible material damping Yes Yes 
Possible stiffness 
adjustment due to initial 
axial load 

Yes – but only constant axial load Yes 

Possible feedback force No Yes 

5.1.2 COMMON PROPERTIES 

In this section, the common properties of the models are presented. These properties are geometry,  
boundary conditions, added mass and stiffness. Since the loads that are applied in the models are 
particular for the analyses, the loads are specified during each analysis. 

5.1.2.1. Geometry 

The geometry of the single-span pipeline is modelled as a free-span in the middle and two equally-
sized side-spans that are covered by soil. For convenience, the soil strength is assumed to be constant 
along the side-spans which corresponds to a constant trenching depth along the side-spans. In reality, 
the trenching depth of the pipe will decrease near the pipe shoulder. Figure 126 shows a sketch of 
the geometry. 

1m

sidespan

L

e

midspan

pipe shoulder pipe shoulder

z

x

sidespan

 
Figure 126: Geometry. The length of the free-span and the gap between pipeline and seabed are 
denoted with L and e, respectively.  

The side-spans should be wide enough to allow fulfilment of static equilibrium. Since the pipeline 
experiences evanescent waves according to Chapter 4.2 (Transmitting Boundary), the side-spans 
should also be wide enough to allow complete dissipation of the evanescent waves. The latter is 
fulfilled when the lateral or transversal displacements vanish at the pipe-ends when they are free. It 
turns out that both conditions are fulfilled when the minimum length of a side-span is 17.5 m. 

Table 24: Overview of features of FEM-models. 
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5.1.2.2. Boundary Conditions 

In this section, the boundary conditions of the Matlab and Abaqus Model are presented. Since the 
pipeline experiences evanescent waves according to Chapter 4.2 (Transmitting Boundary) and the 
side-spans in the models are wide enough to allow dissipation of waves, all transversal 
displacements and rotations have vanished before reaching the boundary. Thus, the transversal and 
rotational boundary conditions at the pipe-ends will have no effect upon the static or dynamic 
response. However, in order to obtain reasonable transversal eigenmodes and eigenfrequencies for 
modes of higher order than the second-lowest mode, the transversal displacements and rotations at 
the pipe-ends are fixed. 

In the derivation of the axial load according to Appendix A (Axial Force), the pipeline has been 
assumed to be fully axially restrained. In the Matlab Model, this restraint is not imperative. This is 
due to the fact that the load is applied as an initial condition, no other external axial loads are applied 
and the Matlab Model is linear. In contrast, the transversal displacements and rotations in the non-
linear Abaqus Model may couple to the axial displacement and thus bring the axial boundary 
condition into effect. For simplicity, the axial displacement is fully restrained in the pipe-ends in 
both models. The boundary and initial conditions of the pipeline in the Matlab and Abaqus Model 
are illustrated in Figure 127. 

N

 
Figure 127: Boundary and initial conditions of the pipeline in the Matlab and Abaqus Model 
where N denotes an initial axial load. 

5.1.2.3. Added Mass 

In addition to the mass of the steel in the pipeline, these additional masses are applied in the FEM-
models: 

• Mass of content (internal fluid) 
• Mass of coating 
• Mass of marine growth 
• Hydrodynamic added mass  

In the following, only the hydrodynamic added mass is elaborated. This added mass arises in the 
case of considerable pipe acceleration. For the free-span, it corresponds to the added mass term in 
the in-line force for a slender structure in the Morison Model which is defined in (3.2.2). Instead of 
implementing this force as an external inertia force in the equations of motion, it is implemented 
indirectly as an added mass on the free-span pipeline. This way of implementing the hydrodynamic 
inertia force is chosen for the sake of simplicity, computational performance and to allow 
identification of the experienced eigenfrequencies and modes of the system. However, it introduces 
an inertia force in the cross-flow direction.  
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For the side-spans, it is assumed that the additional mass for the soil around the pipe can be 
calculated as an equivalent hydrodynamic mass for soil. This is a crude but safe assumption since the 
added soil mass reduces the natural frequency of the system and thus brings it closer to the load 
frequency. The hydrodynamic mass is calculated as 

 2

4h Am C Dπ ρ=  (5.1.1) 

where 
 hm  is the hydrodynamic mass per unit length [kg/m] 

 AC  is the added mass coefficient [-] 
 D is the pipe outer diameter [m] 

 ρ  is the density of ambient material 3
kg
m
⎡ ⎤⎣ ⎦  

The added mass coefficient corresponds to the hydrodynamic mass for a pipeline in oscillatory flow 
and increases for the free-span with a decrease in the gap ratio, see Figure 128. 

 
Figure 128: Hydrodynamic added mass coefficient for a cylinder in oscillatory flow near a wall. 
Adopted from [Sumer & Fredsøe 1997, p129]. 

The parameters for hydrodynamic added mass, the added masses and total added masses per unit 
length are shown in Table 25-Table 27, respectively. The calculations are based upon Chapter 1.1 
(Design Conditions). 

Parameter Side-span Free-span 

Added mass coefficient  [-]AC   1.0 2.29 

Pipe outer diameter [m]D  0.62 0.62 

Density 2[kg/m ]ρ  2000 1025 

 

Table 25: Parameters for hydrodynamic added mass. 



Single-Span Analyses 5.1 Winkler Model 

 

 179 

Added mass Side-span Free-span 
Marine growth - 55.2 
Coating 289.2 289.2 
Content – Air-filled 0.2 0.2 
Content – Water-filled 182.4 182.4 
Content – Operational 20.1 20.1 
Hydrodynamic mass 603.8 708.7 

 

Functional state Side-span Free-span 
Air-filled 893.2 1053.3 
Water-filled 1075.4 1235.5 
Operational  913.1 1073.2 

The total added masses in Table 27 are implemented in both the Matlab and Abaqus Model. In the 
latter, they are implemented as so-called non-structural mass per unit length.  

5.1.2.4. Stiffness 

When considering the stiffness of the concrete coating, the axial and bending stiffness of the 
homogenous pipeline becomes 

 steel steel concrete concreteEA E A E A= +  (5.1.2) 
 
 steel steel concrete concreteEI E I E I= +  (5.1.3) 
where 
 EA  is the axial stiffness [N] 
 EI  is the bending stiffness [Nm2] 
 steelE  is the Young’s modulus for steel [Pa] 

 concreteE  is the Young’s modulus for concrete  [Pa] 

 steelA  is the cross-sectional area of the steel [m2] 

 concreteA  is the cross-sectional area of the concrete coating [m2] 

  steelI  is the second moment of area of the steel [m4] 

  concreteI  is the second moment of area for the concrete coating [m4] 

A manual specification of the axial and bending stiffness or the use of an arbitrary section is less 
straight-forward in Abaqus. In contrast, it is easy to use a pipe section of a single material. 
Therefore, the pipe section is taken as that of the steel section with an equivalent Young's modulus 
instead of Young’s modulus for steel. The equivalent value is calculated as the weighted sum of 
bending stiffness of the steel and the coating with respect to the second moment of area so it fulfils 

 equivalent steelEI E I=  (5.1.4) 
where 

Table 26: Contributions of added mass per unit length in kg/m. 

Table 27: Total added mass per unit length in kg/m for the pipeline. 
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 equivalentE  is an equivalent Young's modulus [Pa] 

For simplicity, the same approach is used in the Matlab Model. The bending stiffness is modelled 
exactly at the expense of the axial stiffness that is overestimated according to (5.1.2). However, this 
is considered to be reasonable since the bending stiffness is considered to be the governing stiffness 
for the pipeline free-span. By use of the material properties from Chapter 1.1 (Design Conditions), 
the equivalent Young's modulus is  
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For convenience, the true distribution of axial strain and normal stress due to axial compression and 
bending of the pipeline is shown in Figure 129 where Bernoulli-Euler beam theory has been 
assumed. 

xxε xxσ

y

z

x

SteelConcrete

-

- -

-
 

Figure 129: Cross-section (left) and true distribution of axial strain xxε  (middle) and axial 

normal stress xxσ  (right) in the composite pipeline. The strains and stresses are defined as 
negative in compression. 

5.1.3 MATLAB MODEL  

In this section, the specific properties of the Matlab Model are presented. These are the elements, the 
mesh structure and resolution and fixed time increment.  

5.1.3.1. Overview of Elements 

The Matlab Model utilizes two-nodal 2-D Bernoulli-Euler linear elastic beam elements from the 
library of the CALMFEM v. 3.3 toolbox. This toolbox is developed at Lund University, Sweden 
[Department of Mechanics and Materials 1999]. The free-span is modelled as a series of regular 
beam elements while the soil at the side-span is modelled as a series of beam elements with an 
inherent Winkler foundation with linear transversal and axial springs. In the case of an initial axial 
load, the element stiffness matrices are adjusted. For clarity, the element stiffness and mass matrices 
are described in Appendix D (Element Matrices in Matlab Model). 
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5.1.3.2. Mesh 

In this section, the mesh of the Matlab Model is presented. The mesh resolution should be small 
enough to be computationally effective and large enough to give an accurate physical description 
during both static and dynamic analyses.  

For ease, the length and number of elements at each side-span and the mid-span may vary but is 
constant for all elements along a span as shown in Figure 130. This mesh structure will provide an 
accurate result when the number of elements is large enough. 

L side spanL −side spanL −

side spann − side spann −mid spann −Number of elements:

Lengths:

 
Figure 130: Mesh structure, element lengths and numbers in the Matlab Model. 

In the following, the mesh resolution is investigated. The resolution during static analysis is assessed 
upon convergence analysis of the external work since the external work of a linear system of 
elements that are based upon kinematic admissible fields will converge towards a maximum as the 
resolution increases [Byskov 2002, pp519-521]. The external work is taken as 

 1 0
2

T
eW = >x f  (5.1.5) 

where 
 eW  is the external work [Nm] 
 x  is the generalized displacements vector 
 f  is the generalized load vector 

The mesh resolution during dynamic analysis is assessed upon convergence analysis of the lowest 
and second-lowest eigenfrequencies that will converge towards minima as the resolution increases. 
In practice, the convergence analysis is carried out by a series of static and eigenfrequency analyses 
at different mesh resolutions and with the parameters for the pipeline that are given in Table 28. 



5.1 Winkler Model Single-Span Analyses 

 

182 

Parameter Side-span Free-span 
Length L [m] 60 25 
Mass per unit length m [kg/m] 1107 1267 
Bending stiffness  EI [MNm2] 255 

Lateral linear spring stiffness  2
MN
myκ ⎡ ⎤⎣ ⎦  0.77 

Axial linear spring stiffness  2
MN
maκ ⎡ ⎤⎣ ⎦  0 

In-line distributed load  fy [N/m] 0 4000 
Initial axial load  N [MN] -4.2 (compressive) 

The parameters in Table 28 correspond to a critical state for the pipeline during an operational state. 
The lateral direction is considered since it is the most slender transversal direction. The in-line 
distributed load along the mid-span corresponds in magnitude to the hydrodynamic drag force from 
maximum wave height during sea state 5. The compressive initial axial load corresponds in 
magnitude to the operational state, see Chapter 5.2 (Parametric Study for Regular Waves).  

The contours of the external work, the lowest eigenfrequency and the second-lowest eigenfrequency 
as functions of the resolution are shown in Figure 131-Figure 133, respectively. 
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Figure 131: Contours of external work in Nm as functions of mesh resolution. Contour step is 
8.76 Nm. 
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Figure 132: Contours of lowest eigenfrequency in Hz as functions of mesh resolution. Contour 
step is 0.0014 Hz.  

Table 28: Parameters of the side-span and free-span during the convergence analysis. 
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Figure 133: Contours of second-lowest eigenfrequency in Hz as functions of mesh resolution. 
Contour step is 0.0021 Hz. 

It is seen from Figure 131 and Figure 132 that the external work and the lowest eigenfrequency has 
converged at a resolution with 4mid spann − ≈  and 14side spann − ≈ . It is seen from Figure 133 that the 

second-lowest eigenfrequency has converged at a resolution with 6mid spann − ≈  and 13side spann − ≈ . The 

reason why the second-lowest eigenmode compared to the lowest eigenmode requires a greater 
number of elements along the mid-span is due to its greater variation along the mid-span as 
illustrated in Figure 134. 

 
Figure 134: Illustration of lowest (left) and second-lowest (right) eigenmodes in Matlab Model. 
The dots indicate the nodes of the elements. 

In general, higher order eigenfrequencies and eigenmodes require a higher mesh resolution. In order 
to avoid a poor description of these and to accommodate all states of interest, a mesh resolution with 

15mid spann − =  and 20side spann − =  is considered to be sufficiently accurate and will be used in the 

Matlab Model.  

5.1.3.3. Fixed Time Increment 

In this section, the order of magnitude of the time increment in the Matlab Model is investigated. 
The time-domain dynamic analyses are performed by the Generalized Alpha Method where the 
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equations of motion are solved by implicit direct integration. The method is unconditionally stable 
for linear systems and is based upon a fixed time increment [Nielsen 2005, p54-61]. 

Since an unconditionally stable algorithm is used, the time increment has no influence on the 
stability of the algorithm. However, the time increment has a significant influence on the accuracy of 
the response. The time period should be chosen large enough to be computationally effective but 
small enough to avoid considerable period elongation and to avoid that a wave can travel unnoticed 
through an element. An estimate on the latter is determined by the Courant condition. In practice, the 
time increment is chosen as the largest fraction of the load period that provides a smooth response. 

An estimate on the largest allowable ratio of the time increment and the element size due to wave 
propagation in the pipeline may be determined by the Courant condition 

 1c t
x
⋅ Δ

≤
Δ

 (5.1.6) 

where 
 c is a characteristic wave propagation speed [m/s] 
 tΔ  is the time increment [s] 
 xΔ  is a characteristic element size [m] 
[Andersen 2006, p72] 

The condition (5.1.6) states that for a large velocity, a small time increment or a large element size is 
needed. The velocity is related to the wave length and period in the following way 

 
( )

lc
T k

ω
ω

= =  (5.1.7) 

where 
 l is a wave length [m] 
 T is a wave period [s] 
 ω  is a circular wave frequency [rad/s] 
 k is a characteristic wave number [rad/m] 

The characteristic wave number is taken as the smallest absolute value of the wave numbers 
according to Chapter 4.2 (Transmitting Boundary). The wave numbers are functions of the load 
frequency and the properties of the pipeline and soil which are given in Table 29. These parameters 
correspond to an operational state. 
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Parameter Value 
Mass per unit length of side-span m 1107 kg/m 
Bending stiffness  EI 255 MNm2 

Lateral linear spring stiffness  yκ  0.77 MN/m2 

Transversal linear spring stiffness zκ  3.43 MN/m2 

Initial axial load  N -4.2 MN (compressive) 

By use of (4.2.19), (5.1.6)-(5.1.7) and the values in Table 29, the largest allowable ratio of the time 
increment and the element size for the lateral and vertical direction as function of the load frequency 
is shown in Figure 135. 
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Figure 135: Largest allowable ratio of time increment and element size as function of load 
frequency due to the Courant condition. 

It may be seen from Figure 135 that a smaller time increment or larger element size is required for 
the lateral direction compared to the vertical direction. This is due to the fact that waves that are 
induced by a harmonic load will have longer wave lengths and thus travel faster through the pipeline 
when the stiffness of its Winkler foundation is small.  

5.1.4 ABAQUS MODEL  

In this section, the specific properties of the Abaqus Model are presented. These are the elements, 
additional boundary conditions, the mesh, the time increment and the implementation of the 
feedback force. 

5.1.4.1. Overview of Elements 

The Abaqus Model uses two-nodal 3-D beam elements from the library of Abaqus/Standard v. 6.7. 
The pipeline at the side-spans and mid-span is modelled as a series of PIPE31-beam elements. The 
beam element at the side-span are attached to PSI34 (Pipe Soil Interaction) elements with non-linear 
material behaviour that has been investigated in the following section. The elements in the Abaqus 
Model are illustrated in Figure 136. The axial, lateral and vertical directions are given by the x-, y- 
and z-axis, respectively. 

Table 29: Parameters for Courant assessment. 
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Figure 136: Elements in the Abaqus Model. 

5.1.4.2. Constitutive Behaviour of the PSI-Element 

Since the PSI-element is particular for Abaqus, its constitutive behaviour has been investigated. This 
has been done in a displacement-controlled numerical dynamic analysis in Abaqus with a single PSI-
element. The material behaviour of the element has been defined as piece-wise non-linear, but 
differs from the non-linear soil springs in this project. The input file can be found in [DVD/Winkler 
Model/psi_element.inp].  

The boundary conditions and reaction forces in the active plane of the element are illustrated in 
Figure 137. Two of the nodes of the element are subjected to a prescribed vertical displacement that 
varies in time where extension is defined as positive. The remaining two nodes that are furthest away 
from the prescribed boundary are restrained in the vertical direction and will yield opposite-directed 
vertical reaction forces. All nodes of the element are restrained in the axial and lateral direction.   
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Figure 137: Active plane with boundary conditions and reaction forces of single PSI-element. 

The time history of the prescribed displacement u and the total vertical reaction force F is shown in 
Figure 138. The definition of the load-displacement curve of the element and the actual load-
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displacement pairs are shown in Figure 139. The letters A-N denote the pairs of load and 
displacement at progressive time steps. 
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Figure 138: Time history of total vertical reaction force and prescribed vertical displacement. 
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Figure 139: Definition and actual load-displacement for a PSI-element. 

Several observations may be made from the results in Figure 138 and Figure 139. First, the PSI-
element extends and compresses elastically between points B-C as expected for displacements 
within the elastic range A-B. However, when the element is extended beyond the initial elastic limit 
at point B, the element exhibits irreversible deformation that remains despite subsequent 
compression as seen from the path D-E. This has been found to be the case regardless of whether the 
piece-wise element load-displacement curve is monotonous or not. The plastic work of the element 
is indicated by the area of the nearly closed hysteresis loop from the path A-G-H-J-K-N.  

Secondly, once the element has experienced a force beyond the initial elastic limit, the point of the 
elastic limit is moved. When the element is subsequently relaxed, the element will exhibit elastic 
behaviour until it reaches the same force again. This is clear by comparison of the relaxation point G 
and the secondary path K-L-M-N with the load-displacement curve that is defined for extension. 
Thus, one may say that the element experiences hardening. 
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Thirdly, the stiffness of the PSI-element along secondary elastic paths in the domain of extension, 
i.e. along paths D-E, E-F, G-H or K-L, is always based upon the initial slope of the load-
displacement curve that is defined for extension, i.e. the path A-B. Equivalently, the stiffness along 
secondary elastic paths in the domain of compression is based upon the initial slope of load-
displacement curve that is defined in compression which may be seen by comparison of paths H-I or 
J-K with the definition.  

In conclusion, the constitutive behaviour of the PSI-element does not resemble that of a spring in a 
traditional sense but rather that of an element whose constitutive behaviour is elastoplastic with a 
hardening rule. The definition of the load-displacement curve is identified as a so-called backbone 
curve in the terminology of earthquake engineering [Kramer 1996, p242]. Thus, the PSI-element is 
considered to be a relatively simple way of modelling plastic soil behaviour compared to using 
traditional plastic continuum elements.  

The plastic behaviour and the evolution of the elastic limit of the PSI-element are documented in the 
Abaqus User's Manual [Dassault Systèmes 2007, Sect. 26.13.1].  

5.1.4.3. Additional Boundary Conditions 

The Abaqus Model uses the boundary conditions at the pipe-ends as shown in Figure 127 but with 
additional restraints on the nodes of the PSI-elements since these are not restrained by default. The 
axial, lateral and vertical displacement of each node of a PSI-element that is away from the pipeline 
must be zero which are denoted with "A" in Figure 140. Recall that the displacements and rotations 
at the pipe-ends are fixed which are denoted with "B". The remaining nodes of the pipeline are free 
which are denoted with "C". The red contour indicates the boundary of a single PSI-element. 

 
Figure 140: Boundary conditions in the Abaqus Model. A denotes zero-restraints on axial, 
lateral and vertical displacement. B denotes zero-restraints on all displacements and rotations. 
C denotes no restraints. 

5.1.4.4. Mesh 

The mesh of the Abaqus Model is subjected to higher performance requirements than the Matlab 
Model due to several reasons. First, the geometrical and material non-linearity of the Abaqus Model 
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requires a higher number of elements than the linear Matlab Model. Secondly, the Abaqus Model is 
used for a large series of analyses for parametric study and for dynamic analyses of great duration. 
Thus, it is of great interest to reduce the amount of the elements as much as possible. 

In the Abaqus Model, the element size along the side-spans varies from large elements at the pipe-
ends to small elements at the pipe shoulder. This is referred to as a biased discretisation. In addition, 
buffer zones with a high number of elements have been introduced at the mid-span close to the pipe 
shoulders in order to obtain a stable FEM-scheme. For the single-span pipeline, the Abaqus Model 
uses 70 PIPE-elements and 40 PSI-elements as illustrated in Figure 141. 

buffer zone (5 elements)

free-span (20 elements)side-span (20 elements) side-span (20 elements)

bias discretisation

 
Figure 141: Schematized illustration of mesh in the Abaqus Model for the single-span pipeline. 

5.1.4.5. Fixed or Variable Time Increment 

In the Abaqus Model, time-domain dynamic analyses are performed by implicit direct integration in 
a similar fashion to that of the Matlab Model. However, the internal algorithm in Abaqus allows the 
use of a variable time increment that is adjusted regularly during the dynamic analysis. The time 
increment is large or small when the response changes slowly or rapidly, respectively [Dassault 
Systèmes 2007, Sect. 6.3.2]. A variable time increment is a great advantage in the dynamic analyses 
of great duration where it has been used. In order to obtain stable FEM-scheme, it has been 
necessary to set a limit upon the maximum value of the time increment. 

5.1.4.6. Implementation of Feedback Force 

In this section, the implementation of force feedback in the Abaqus Model is briefly presented. Force 
feedback is relevant when the pipe velocity is in the same order of magnitude as the flow velocity 
which is the case when the pipe is slender or experiences vortex lock-in. In this case, the 
hydrodynamic force that acts upon the free-span depends upon the pipe velocity that in turn depends 
upon the hydrodynamic force and so on. Since this process is recursive, the force is referred to as a 
feedback force. 
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For simplicity, an explicit solution method is chosen. This means that the hydrodynamic force at a 
time step is computed by the response at the previous time step. In practice, this will provide the 
correct force when the time increment is small enough. 

Abaqus allows loads to be computed in user-defined subroutines that are written in FORTRAN. 
However, since Abaqus does not pass the response directly into the load subroutines, the feedback 
force is implemented through a library of user-defined subroutines. The response is extracted from a 
temporary results file that Abaqus can create during the analysis. Then, the response is saved into 
global variables and subsequently accessed by the load subroutine. The subroutines support the use 
of both fixed or variable time increment and a single-span or multi-span pipeline. The library of 
user-defined subroutines is located in [DVD/Abaqus Model/Force Feedback]. A flow chart and a 
description of the program execution steps and the file access are shown in Figure 142.  

Input file

This file contains definition of the model, analysis 
steps and requests of output variables.

User-defined subroutines file

This file contains the user-defined subroutines that 
are compiled into the main program.

Ambient flow file

This file contains the time-history of the ambient 
flow velocity and acceleration in a sea state.

Results file

This file contains output variables, e.g. the 
response, which are appended to the end of the file 
as the analysis in Abaqus is carried out

Program execution steps Files

Compilation

Start of analysis

Abaqus calls user-defined subroutine
uexternaldb(..):

Read ambient flow file and save flow data into
global variables.

Start of increment

Abaqus calls user-defined subroutine
uexternaldb(..):

Locate flow data for current time step and 
save into global variables.

Abaqus calls user-defined subroutine dload(..):

Read response and flow data from global 
variables.

Compute hydrodynamic load.

Run increment

End of increment

Abaqus writes response to results file.

Abaqus calls user-defined subroutine urdfil(..):

Read results file and save response data into
global variables.

End of analysis

Time

Time

Flow velocity and acceleration

Response

 
Figure 142: Flow chart of program execution steps and file access in implementing feedback 
force in the Abaqus Model.  
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5.1.5 BENCHMARK TEST  

In order to verify the models, benchmark tests have been performed between the Matlab and Abaqus 
Models. Static and dynamic response is compared when simple loads are applied. The Abaqus 
Model is made with linear and non-linear springs in order to capture the effect of the non-linearity of 
the model.  

5.1.5.1. Applied Loads 

In this section, the loads that are applied in the benchmark test are described. A load may be static or 
dynamic where the dynamic load may be one of the following: 

• Impulse load: This dynamic load acts suddenly in a very short time span and disappears 
just as suddenly. In practice, the duration is a few milliseconds for a maximum time history 
of a minute. The impulse load is useful for analysing transient response. 

 
• Harmonic load: This dynamic load is a perfect sinusoidal wave. The harmonic load occurs 

for hydrodynamic forces and is also useful for analyzing dynamic amplification. Unless 
otherwise stated, the harmonic load takes the following form 

 ( )sinyF F tω=�  (5.1.8) 
where 
 yF�  is the harmonic load [kN] 

 F is the load amplitude [kN] 
 ω  is the circular load frequency [rad/s] 
 t  is the time [s] 

 
• Harmonic-ramp load: This dynamic load varies harmonically but its amplitude grows 

exponentially from zero to its maximum value after some time. The harmonic-ramp load is 
useful for analysing stationary response since vibrations due to initial conditions are 
avoided. 

The time history of the loads is illustrated in Figure 143.   

Force

Time

Impulse
Harmonic
Harmonic-ramp

Static

F

 
Figure 143: Force history. 
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5.1.5.2. Static Response 

The static displacements are tested for a concentrated load that is applied in the mid-section of the 
free-span of the pipeline. Comparison of the deformations is made for loads applied individually in 
three directions as: 

• Axial load: 10kNxF =  

• Lateral load: 10kNyF =  

• Vertical load: 10kNzF =  

The corresponding displacements at the mid-section of the free-span are shown in Table 30. 

Model 
Axial displacement 

xδ [m] 
Lateral displacement 

yδ [m] 
Vertical displacement 

zδ  [m] 

Matlab 53.4 10−⋅  36.9 10−⋅  36.7 10−⋅  

Abaqus (linear) 53.4 10−⋅  36.9 10−⋅  36.7 10−⋅  

Abaqus (non-linear) 53.4 10−⋅  36.9 10−⋅  32.4 10−⋅  

There is good agreement between the deformation determined by the Matlab and the Abaqus Model 
with linear springs. The lateral displacements of the linear and non-linear model are identical since 
the stress state in the springs at the pipe shoulders is located at the linear part of the load-
displacement curves. The upward vertical displacement decreases because the non-linear load-
displacement curves increase the stiffness of the soil for small displacement in upward direction.  

5.1.5.3. Modes and Frequencies 

This test compares the eigenmodes and eigenfrequencies returned by the models. Figure 144 shows 
the four lowest eigenmodes that are returned by the Abaqus Model with linear springs and similar 
modes have been found in the Matlab Model. The modes 1-4 correspond to the four lowest 
eigenfrequencies and since the load frequency from the waves and current are also low, these will be 
the modes that have the largest impact on the response of the free-span. For reference with the 
undeformed state of the pipeline, see Figure 136. 

Table 30: Displacements in mid-section free-span. The Abaqus Model has linear or non-linear 
springs. 
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Figure 144: Eigenmodes for the models. 

The corresponding eigenfrequencies are shown in Table 31. 

Model 1 [Hz]f  2 [Hz]f  3 [Hz]f  4 [Hz]f  

Matlab 1.60 1.64 3.45 3.56 
Abaqus (linear) 1.60 1.64 3.44 3.55 
Abaqus (non-linear) 1.60 3.32 3.44 8.98 

There is a good agreement between the eigenfrequencies that are calculated in the linear models. In 
the Abaqus Model with non-linear springs, the vertical springs are modelled with significantly more 
stiffness for both upward and downward movements at the first part of the load-displacement curves. 
This gives rise to significantly higher vertical frequencies in the non-linear model. 

5.1.5.4. Dynamic Response 

The dynamic response of the Abaqus Model is tested by applying some simple dynamic loads to the 
model. The simple loads applied are chosen as: 

• Impulse load in lateral direction 
• Harmonic load in lateral direction 

Impulse load 

To verify dissipation due to damping, an impulse load acting in the lateral direction is applied as a 
concentrated force 10kNyF =  in the mid-section of the free-span. The force is applied in 0.005 s 

and the decay of the corresponding vibrations of the pipe is calculated for a time period of 10 
seconds. In both the Matlab and Abaqus Model, damping is implemented as Rayleigh damping 

Table 31: Eigenfrequencies. 
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according to Appendix B (Rayleigh Damping). Figure 145 shows the lateral dynamic response in the 
mid-section of the free-span in the Abaqus Model with and without damping.  
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Figure 145: Lateral response in the mid-section of the free-span when an impulse load is 
applied 

The Matlab Model shows dynamic response that is similar to that of the Abaqus Models. Since the 
lateral displacement is small, the Abaqus Model with linear springs and the Abaqus Model with non-
linear springs show identical results. 

Harmonic load 

This test is made to identify dynamic amplification in the linear models and the non-linear Abaqus 
Model. The load is applied harmonically as a concentrated force that acts in the lateral direction in 
the mid-section of the free-span according to (5.1.8). In order to induce significant dynamic 
amplification, the circular load frequency is chosen to be equal to the first circular eigenfrequency, 
i.e. rad

s1.60 2ω π= ⋅ .  

Similarly to the previous tests, the load amplitude is chosen as 10kNyF = . Figure 146 shows the 

lateral dynamic response in the mid-section of the free-span in the Abaqus Model with linear 
springs. The results are shown for a model with and without damping. 
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Figure 146: Lateral response in the mid-section of the free-span when a harmonic load is 
applied to the Abaqus Model with linear springs. 

The Matlab Model shows results that are identical to the results for the Abaqus Model with linear 
springs. Figure 146 shows that considerable dynamic amplification occurs, especially for the 
undamped model. This is in good agreement with the theory of dynamics. At a time step that 
exceeds those shown in Figure 146, the damped response becomes stationary, i.e. harmonic with 
constant amplitude. 

Because the dynamic amplification creates large displacements, some deviation is expected between 
the linear and non-linear model. Figure 147 shows the lateral dynamic response in the mid-section of 
the free-span in the Abaqus Model with non-linear springs. 
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Figure 147: Lateral response in the mid-section of the free-span when a harmonic load is 
applied to the Abaqus Model with non-linear springs. 
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From Figure 147, it is seen that dynamic amplification ceases after 3t > seconds and the dynamic 

response becomes stationary. When the displacement at the pipe shoulders reaches the non-linear 
part of the load-displacement curves at 3t ≈ seconds, the lowest eigenfrequency of the system 
decreases and damping is introduced due to plastic deformation according to the section on the 
constitutive behaviour of the PSI-element. As the difference between the load frequency and the 
eigenfrequency increases, the dynamic amplification ceases.  

5.1.5.5. Evaluation 

The strategy of creating two FEM-models – a relatively simple linear Matlab Model and a relatively 
complex non-linear Abaqus Model – has provided a verification basis for the non-linear Abaqus 
Model. In case of a linear system, the models show identical static and dynamic response. The latter 
is generally in agreement with the theory of dynamic systems. Thus, the results of the non-linear 
Abaqus Model are considered to be reliable.  

The strategy has also provided insights into the differences between linear and non-linear dynamic 
systems. One of the main differences lies in the constitutive behaviour of the Winkler foundation. 
The Pipe Soil Interaction (PSI) elements that constitute the Winkler foundation of the Abaqus Model 
undergo plastic deformation when they exceed their elastic range. When subsequently relaxed, the 
PSI-elements do not return to their initial state. This deviates from the traditional understanding of a 
spring but is in better agreement with the plastic constitutive behaviour of soil.  

This results in another important difference between the models. The possible change of the stiffness 
of the Winkler foundation in the Abaqus Model may change the eigenfrequencies of the non-linear 
system during a dynamic analysis. Thus, eigenfrequencies that are determined from the undeformed 
state could be misleading if they are not supplemented by eigenfrequencies that are determined from 
a deformed state after plastic deformation has occurred. This also applies when determining a  
reponse quantity by frequency-domain dynamic analysis. However, dynamic amplification is 
expected to decrease in magnitude during plastic deformation of the PSI-elements since they 
introduce damping during this process. 
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5.2 PARAMETRIC STUDY FOR 

REGULAR WAVES 

This parametric study is performed to detect the governing parameters of the dynamic response and 
fatigue for the pipeline free-span in FLS. The Abaqus Model with non-linear springs described in 
Chapter 5.1 (Winkler Model) is used for the parametric study. The parametric study is divided into 
the following parts:  

• Reference model   
• Functional state 
• Spanning length 
• Damping 
• Gap ratio 
• Friction angle of soil 
• Coating stiffness 
• Wave height 

The parametric study is ended with a brief evaluation on the damage effect of the above mentioned 
parameters. It is noticed that the parametric study is only valid for the project pipeline as different 
structural data or environmental conditions might change the tendencies found in this chapter. The 
parametric study will however give an idea of what to consider when parameters for free-span 
analyses have to be determined.   

5.2.1 REFERENCE MODEL 

In this section, the reference model for the parametric study is defined. The corresponding model 
files can be found in [DVD/Parametric Study of Regular Waves/singlespan.inp]. Figure 148 shows 
the design conditions and assumptions made in the reference model. 
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Figure 148: Design conditions and assumptions for the reference model. 

The input parameters defining the numerical model are equal to those defined in Chapter 5.1 
(Winkler Model). Only the loads that are applied to the model have to be redefined. The loads are 
divided into two separate parts: 

• Static loads 
• Dynamic loads 

The loads are defined positive in the directions of the coordinate system x, y, z in Figure 148. The 
initial loads and stresses are defined positive in tension.  

The analyses made for the reference model show the process of determining dynamic response and 
fatigue damage in the most critical areas of a pipeline free-span. The analyses are divided into the 
following sections: 

• Structural study  
• Frequency analysis 
• Fatigue analysis 

After the reference model is defined and analysed, the parametric study is initiated. 

5.2.1.1. Static Loads 

The static loads that have to be considered are: 

• Self-weight (distributed load) 
• Temperature load (axial load) 
• Internal and external pressure (axial load) 
• Poisson effect (axial load) 
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The self-weight is applied only at the free-span because the soil-springs at the side-spans are 
determined from the state of static equilibrium. The three contributions to axial load are applied at 
the total length of the pipeline. The physical interpretation of the axial loads is explained in 
Appendix A (Axial Force).   

Self-Weight 

The self-weight of the pipeline is the total submerged mass of the pipeline multiplied with gravity 
determined as  

 z totalf m g= − ⋅  (5.2.1) 
where 
 zf  is the distributed load [N/m] 

 totalm  is the total submerged mass of the pipeline [kg/m] 
 g is the gravity [N/kg] 

Temperature Load 

The temperature load emerges from the tendency of thermal expansion of the steel in the pipe-wall. 
If the pipe is assumed to be fully axially restrained, the temperature load creates an axial force in the 
pipeline determined as 

 temp
x steel sF E T Aα= − ⋅ ⋅ Δ ⋅  (5.2.2) 

where 
 temp

xF  is the axial force in the pipeline due to temperature [N] 

 steelE  is the Young’s modulus for steel [Pa] 

 α  is the expansion coefficient [1/°C ] 
 TΔ  is the temperature difference [ °C ] 
 sA  is the cross section area of the steel pipe [m2]  
[DNV-RP-F105 2006, p31] 

Internal and External Pressure 

The pressure conditions inside and outside the pipeline result in an axial load. The internal and 
external pressure is defined in Chapter 1.1 (Design Conditions). The axial force due to pressure is 
determined as 

 pressure
x i i e eF p A p A= − +  (5.2.3) 

where 
 pressure

xF  is the axial force in the pipeline due to pressure [N] 

 ip  is the internal pressure [Pa] 

 iA  is the internal cross section area of the pipe [m2] 
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 ep  is the external pressure [Pa] 

 eA  is the external cross section area of the pipe including coating [m2] 
[DNV-RP-F105 2006, p31] 

Poisson Effect 

This axial force contribution is a result of the Poisson effect and the pressure difference. Assuming 
the pipe is fully axially restrained and thin-walled, the axial force due to the Poisson effect can be 
formulated as 

 2 ( )poisson
x i eF p p Aν= −  (5.2.4) 

where 
 poisson

xF  is the axial force in the pipeline due to the Poisson effect [N] 
 ν  is the Poisson’s ratio for steel [-]  

 A  is the external cross section area of the pipe 2[m ]   
[DNV-RP-F105 2006, p31] 

Total Static Load  

The total axial force is determined as 

 
2 ( )

temp pressure poisson
x x x x

steel s i i e e i e

F F F F
E T A p A p A p p Aα ν

= + +

= − ⋅ ⋅ Δ ⋅ − + + −
 (5.2.5) 

The axial force during the operational state of the pipeline in the reference model is given in Table 
32. The loads have been determined according to the parameters defined in Chapter 1.1 (Design 
Conditions).  

Source Axial force [MN] 

Temperature  x
tempF  -3.490 

Pressure  x
pressureF  -1.744 

Poisson effect  x
poissonF  1.192 

Total  xF  -4.042 

In the Abaqus model, the axial load is implemented as an initial normal stress for the pipeline 
determined as 

 x
x

s

F
A

σ =  (5.2.6) 

where 
 xσ  is the initial axial stress in the pipeline [Pa] 

Table 32: Contributions to the axial force that is defined as positive in tension. 
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The static loads are given in Table 33. The static loads affect the stiffness of the pipeline if it 
undergoes large deformation. To include this impact, large deformation formulation has been used in 
the Abaqus Model which is referred to as non-linear geometry in Abaqus. 

Functional state 
Distributed load 

[N/m]zf  
Initial normal stress 

[Pa]xσ  

Operational 32.06 10− ⋅  6169.3 10− ⋅  

5.2.1.2. Dynamic Loads 

The dynamic load is assumed to act only at the free-span which means that the dynamic load due to 
change in pore pressure at the side-spans is not taken into account. In order to determine the dynamic 
load, the particle velocities from wave and current are determined for five different sea states 
according to Chapter 1.1 (Design Conditions). Figure 149 shows the in-line ambient flow velocity 
from wave and current at the centreline of the pipe section for sea states 1-5. 
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Figure 149: In-line ambient flow velocity at the centreline of the pipe section. 

Figure 150 shows the in-line ambient flow acceleration at the centreline of the pipe section for sea 
states 1-5. 
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Figure 150: In-line ambient flow acceleration at the centreline of the pipeline section. 

Table 33: Static loads applied to the reference model. 
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The dynamic loads in the in-line and cross-flow direction due to hydrodynamic forces are 
determined by the Morison Model according to Chapter 3.2 (Hydrodynamic Force Models). The 
Keulegan-Carpenter number and the force coefficients are shown in Table 34 for sea states 1-5. 

Sea state KC  DC  MC  LC  

Sea state 5 31.0 1.3 2.1 2.5 
Sea state 4 18.1 1.5 2.3 2.9 
Sea state 3 8.0 1.9 2.3 3.1 
Sea state 2 1.5 1.8 2.6 4.4 
Sea state 1 0.0 1.5 3.1 4.49 

Figure 151 and Figure 152 show the dynamic loads in the in-line and cross-flow direction, 
respectively, for sea state 1-5. It is noticed that a load ramp is implemented for 0-13st =  to reduce 

the impact of initial conditions. 
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Figure 151: In-line force in the reference model for sea states 1-5. 
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Figure 152: Cross-flow force in the reference model for sea states 1-5. 

It is seen from Figure 151 and Figure 152 that the magnitude of the loads varies greatly for the 
different sea states. 

Table 34: Keulegan-Carpenter number and force coefficients for sea states 1-5. 
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5.2.1.3. Structural Study 

This is a structural study of the pipeline free-span to determine the most critical areas for damage 
analyses along the pipeline. For simplicity, the stresses are based upon the effective stresses of the 
homogeneous pipe instead of the true stresses in the pipe-wall according to Appendix A (Axial 
Force). This has no effect for the determination of fatigue damage which is assumed to depend upon 
the amplitudes and not the mean value of the stresses according to Chapter 2.1 (Fatigue). The 
variation of the Von Mises stresses and normal stresses are examined when the dynamic load is 
determined for sea state 5. These stress variations will show the critical areas for yielding and 
fatigue, respectively.  

Only four section points are analysed in the pipe section and they are chosen so they represent the 
stress response for vertical and lateral displacements of the pipeline. The location of the section 
points is shown in Figure 153.  

z

y

Pipe Section

section point 5

section point 7

section point 1

section point 3  
Figure 153: Location of section points in the pipe section. 

The odd section point definition for the pipe element is determined by Abaqus. For some reason, 
intermediate points 2, 4, 6 and 8 are not available in Abaqus for this particular element. 

Von Mises Stresses 

Figure 154 shows the peak of the Von Mises stresses along the pipe during one wave period of sea 
state 5. The maximum Von Mises stress is calculated in section point 1.      
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Figure 154: Maximum Von Mises stresses along the pipeline in section point 1 for sea state 5. 

Figure 154 shows that the maximum Von Mises stress during a wave period is found in the centre of 
the pipeline mid-section.  

Normal Stresses 

To illustrate the difference of normal stresses along the pipeline, three sections have been examined. 
Figure 155 shows the location of these three sections. 
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Figure 155: Sections along the pipeline where the normal stresses are examined.  

Figure 156 and Figure 157 show the stress response for lateral and vertical excitation, respectively, 
in the three sections along the pipeline. 



Single-Span Analyses 5.2 Parametric Study for Regular Waves 

 

 205 

0 10 20 30 40 50
-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8
x 10

8

Time  t  [s]

N
or

m
al

 st
re

ss
  σ

x  [
Pa

]

 

 
Section A-A
Section B-B
Section C-C

 
Figure 156: Normal stress in the three sections along the pipeline. Normal stresses are taken in 
section point 5 representing the stress response for lateral excitation. 
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Figure 157: Normal stress in the three sections along the pipeline. Normal stresses are taken in 
section point 7 representing stress response for vertical excitation. 

Figure 156 and Figure 157 show that the largest normal stress ranges are found in section A-A. Thus 
the damage analyses of the pipeline should be performed at the centre of the mid-span. 

5.2.1.4. Frequency Analysis 

The frequency analysis is performed to compare the eigenfrequencies with the load frequencies 
because this is known to have great influence on the dynamic response. Table 35 shows the load 
frequencies for sea states 1-5, respectively. 
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Sea state 
In-line frequency 

[Hz]in linef −  
Cross-flow frequency 

[Hz]cross flowf −  

Sea state 5 0.08 0.16 
Sea state 4 0.09 0.17 
Sea state 3 0.10 0.20 
Sea state 2 0.13 0.26 
Sea state 1 0.23 0.45 

Table 36 shows the four lowest eigenfrequencies for the reference model. 

Rank 1 2 3 4 
Frequency [Hz]  0.73 1.23 2.31 3.81 
Direction Lateral Vertical Lateral Vertical 

To compare the dynamic response along the pipe, the normal stresses are calculated in the three 
sections defined in Figure 155. This will show if the critical cross section along the pipe depends on 
the load frequencies.  

Figure 158 and Figure 159 show the stress response for lateral and vertical excitation, respectively, 
when a distributed in-line load 1000 N/myf = or cross-flow load 1000 N/mzf = , respectively, is 

applied to the free-span as a harmonic load with various load frequencies. 
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Figure 158: Normal stresses for varying in-line load frequencies and sections. Normal stresses 
are taken in section point 5 representing the stress response for lateral excitation. 

Table 35: Load frequencies for in-line and cross-flow force for sea states 1-5. 

Table 36: The four lowest eigenfrequencies for the reference model. 
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Figure 159: Normal stresses for varying cross-flow load frequencies and sections.  Normal 
stresses are taken in section point 7 representing stress response for the vertical excitation. 

It is seen from Figure 158 and Figure 159 that the stress response for all 3 sections peak at the same 
load frequency similar to the lowest eigenfrequency in the lateral and vertical direction, respectively. 
Figure 158 and Figure 159 also show that the load frequencies in the in-line and cross flow direction 
shown in Table 35 are not within the critical range of the frequency response. 

5.2.1.5. Fatigue Analysis 

The damage of the pipeline free-span is determined according to Chapter 2.1 (Fatigue). Because the 
load emerges from regular waves, some simplified methods are used when determining stress ranges 
and cycles. The simplifications are showed in the following.  

Stress Ranges 

The stress ranges in section A-A for lateral and vertical excitation during sea states 1-5 are shown in 
Figure 160 and Figure 161, respectively. 
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Figure 160: Stress ranges in section A-A for lateral excitation during the sea states 1-5. 
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Figure 161: Stress ranges in section A-A for vertical excitation during the sea states 1-5. 

In order to reduce calculation time, the stress ranges within one period pT  is determined when the 

initial conditions no longer affect the dynamic response and the response has become stationary. 

Yield Stress Limit 

The maximum Von Mises stresses are calculated in section A-A during sea state 5. The peak of Von 
Mises stress is shown in Figure 154 where the maximum Von Mises stress is determined as 

 228MPa 415MPa OK!mises ydfσ = ≤ =  (5.2.7) 

Stress Cycles 

Because the stress ranges are determined within one wave period, the number of stress cycles for 
each sea state is found as 

 
,

, 1, 2,3,4,5i
i

p i

T
n i

T
= =  (5.2.8) 

where 
 in  is the number of stress cycles [-] 

 iT  is the duration of the individual sea state [s] 

 ,p iT  is the peak wave period of the individual sea state [s] 

 i  is the number of sea state [-] 

The duration of the sea states and the peak wave period can be found in Chapter 1.1 (Design 
Conditions). 
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Damage 

The damage caused by the stress ranges is determined in the mid-section A-A. The damage caused 
by lateral and vertical excitation is determined in section point 5 and 7, respectively. Table 37 shows 
the damage contributions from each sea state and the total damage calculated for the reference model 
is shown at the bottom of the table. 

Damage 
Sea state 

lateralD [-] verticalD  [-] 

Sea state 5 0.012 0.006 
Sea state 4 0.004 0.001 
Sea state 3 0.006 0.001 
Sea state 2 0.000 0.000 
Sea state 1 0.000 0.000 
Total 0.023 0.008 

Table 37 shows that only sea states 3-5 have significant impact on the total damage of the pipeline in 
the reference model. It is seen that sea state 5 which represents an environmental load from a 10 year 
storm causes more than 50% of the damage experienced by the pipeline.  

The damage caused by vertical excitation is significantly lower than the damage caused by lateral 
excitation. The number of cycles is higher in the vertical direction and the stress ranges are lower 
than the stress ranges caused by lateral excitation, which shows that the magnitude of stress ranges 
in this case has the largest impact on damage.  

The damage caused by lateral excitation has not reached the damage limit lim 0.1D =  which is 

described in Chapter 2.1 (Fatigue). The damage in the diagonal of the pipe section caused by 
resulting motion could be higher than the damage detected in section point 5 and 7. For the sake of 
simplicity, the damage ratios compared in the following parametric study are only compared for 
lateral and vertical pipeline excitation, respectively. 

5.2.2 EFFECT OF FUNCTIONAL STATE 

This analysis is made to find the most critical functional state for the pipeline free-span considering 
fatigue damage. The functional states that are considered are: 

1.  Water-filled condition 
2.  Air-filled condition 
3.  Operational condition (reference model) 

The design condition for each functional state is shown in Chapter 1.1 (Design Conditions). The 
functional state has an impact on the following input parameters: 

• Static loads 

Table 37: Damage in the mid-section in the reference model for sea states 1-5. 
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• Added mass 

The functional state have an impact on the load-displacement curves for the soil springs because the 
weight of the pipeline changes for different contents. However, this impact is considered to be 
limited and the load-displacement curves are determined for the water-filled condition in all 
functional states according to Chapter 4.1 (Soil Springs). The weight of the pipeline has the largest 
impact on the upward soil spring but calculations have shown that this impact is limited considering 
the dynamic behaviour of the global system of the pipeline free-span. 

The static loads that are applied in the functional states have an impact on the global stiffness of the 
pipeline free-span. An analysis of stiffness reduction due to initial stresses has been made by 
comparing the dynamic response of a pipeline free-span in water-filled and operational state. 

Static Loads 

The distributed load changes because of the difference in contents for each functional state. The 
temperature and pressure also changes for each functional state, which has an impact on the axial 
force applied to the pipe. Table 38 shows the static loads for each functional state.  

Functional State 
Distributed load 

[N/m]zf  
Initial normal stress 

[Pa]xσ  

Water filled 33.65 10− ⋅  0 

Air filled  31.86 10− ⋅  63.52 10⋅  

Operational 32.06 10− ⋅  6169.3 10− ⋅  

Added Mass 

The added mass is different for each functional state due to the density change of the pipeline's 
content. Table 39 shows the added mass for each functional state.  

Total added mass 
[kg/m] Functional State 

Added mass for content 
[kg/m] 

Side-span Free-span 

Water-filled 182.4 1075.4 1235.5 
Air-filled 0.2 893.2 1053.3 
Operational 20.1 913.1 1073.2 

5.2.2.1. Stiffness due to Initial Stresses 

The stiffness due to initial stresses is governed by the normal stress from the static load. If the 
pipeline is in tension, the stiffness due to initial stresses will contribute to the total stiffness of the 
pipe. The opposite will happen if the pipeline is in compression. The impact of stiffness due to initial 

Table 38: Static loads for each functional state. 

Table 39: Added mass for each functional state. 
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stresses will increase for increasing spanning lengths because the response of the pipeline goes from 
being dominated by beam behaviour to being dominated by cable behaviour. 

The stiffness due to initial stresses is analysed for a pipeline in water-filled and operational 
condition. The air-filled condition is considered to be of minor importance. Figure 162 shows a 
sketch of the pipeline free-span for a pipeline in water-filled and operational condition. 
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Figure 162: Initial conditions for water-filled and operational pipeline. 

As Figure 162 implies, the geometrical stiffness of the operational state is lower than that of the 
water-filled state. This will cause larger deflection of the pipeline and increase the normal stresses in 
the pipeline section due to the increase of bending moment. Because the total stiffness of the 
pipeline is lower in the operational state, larger dynamic displacements and stress ranges are 
expected for this functional state.  

Figure 163 shows the difference in lateral displacement in the centre of the mid-span for the water-
filled and operational condition, respectively, during sea state 5. 
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Figure 163: Lateral displacement in the centre of the mid-span for water-filled and operational 
condition in sea state 5. 
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It is seen that the geometrical stiffness has significant influence on the total stiffness of the pipeline 
because the axial pressure during the operational state causes the lateral displacements to increase 
radically. 

5.2.2.2. Frequency Analysis 

This section discusses the dynamic response influenced by the functional states. Table 33 shows the 
four lowest eigenfrequencies for each functional state. 

Functional state 
Lateral 

1 [Hz]f   
Vertical 

2 [Hz]f  
Lateral 

3 [Hz]f  
Vertical 

4 [Hz]f  

Water-filled  1.03 1.50 2.53 3.85 
Air-filled 1.11 1.61 2.72 4.15 
Operational 0.73 1.23 2.31 3.81 

To compare the dynamic response for each functional state, the normal stresses are calculated in the 
mid-section A-A. Figure 164 and Figure 165 show the normal stress response in section point 5 and 
7 when a distributed in-line load 1000 N/myf = or vertical load 1000 N/mzf = , respectively, is 

applied. The load is applied to the free-span as a harmonic load with various load frequencies. 
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Figure 164: Normal stresses for varying in-line load frequencies and functional states. Normal 
stresses are taken in mid-section A-A in section point 5. 

Table 40: The four lowest eigenfrequencies for each functional state. 
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Figure 165: Normal stresses for varying cross-flow load frequencies and functional states.  
Normal stresses are taken in mid-section A-A in section point 7. 

The load frequencies from the sea states are in the range of 0.08-0.45 Hz. Figure 164 and Figure 165 
show that the operational state will result in the largest stress response in this range of load 
frequencies. Thus, the operational state is most likely to be the critical functional state when 
considering fatigue. 

5.2.2.3. Fatigue Analysis 

The fatigue analysis is made to find the difference in fatigue damage for the 3 functional states. 
Table 41 shows the fatigue damage for each functional state respectively. 

Damage 
Functional state 

lateralD  [-] verticalD  [-] 

Water-filled 0.001 0.001 
Air-filled 0.001 0.001 
Operational 0.023 0.008 

It is seen that the operational pipeline is much more vulnerable considering fatigue compared to the 
two other functional states. This is mainly because of the loss of stiffness due to initial stresses in the 
operational state. 

5.2.3 EFFECT OF SPANNING LENGTH 

This analysis is made to determine the correlation between the spanning length and the damage of 
the pipeline. Frequency and damage analyses are made for spanning lengths in the range of 15-30 m. 

Table 41: Damage ratios for the three functional states. 
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5.2.3.1. Frequency Analysis 

The frequency analysis is made to see if the load frequencies result in critical dynamic amplification 
for some of the spanning lengths. Table 42 shows the four lowest eigenfrequencies for the different 
spanning lengths. 

Spanning length 
[m]L  

Lateral 

1 [Hz]f   
Vertical 

2 [Hz]f  
Lateral  

3 [Hz]f  
Vertical 

4 [Hz]f  

30.0 0.45 0.82 1.79 2.76 
25.0 0.73 1.23 2.31 3.81 
20.0 1.10 1.89 2.95 5.41 
15.0 1.61 3.00 3.63 7.92 

The frequency response for the different spanning lengths is compared. Figure 166 and Figure 167 
show the normal stress response in section point 5 and 7 when a distributed in-line load 

1000 N/myf = or vertical load 1000 N/mzf = , respectively, is applied. The load is applied to the 

free-span as a harmonic load with various load frequencies. 
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Figure 166: Normal stresses for varying in-line load frequencies and spanning lengths. Normal 
stresses are taken in mid-section A-A in section point 5. 

  

Table 42: Eigenfrequencies for different spanning lengths. 
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Figure 167: Normal stresses for varying cross-flow load frequencies and spanning lengths. 
Normal stresses are taken in mid-section A-A  in section point 7. 

Figure 166 and Figure 167 shows that the load frequencies approach the critical range of dynamic 
response for a spanning length 30mL = . 

5.2.3.2. Fatigue Analysis 

Table 43 shows the damage caused by lateral and vertical excitation as a function of the spanning 
lengths.  

 
Damage Spanning length 

[m]L  [ ]lateralD −   [ ]verticalD −  

30.0 0.25  0.05  

25.0 0.02  38.4 10−⋅  

20.0 33.3 10−⋅  31.4 10−⋅  

15.0 30.5 10−⋅  30.2 10−⋅  

Table 43 indicates that the damage limit of 0.1limitD =  is exceeded at a spanning length somewhere 

between 25-30m. This indicates that even though the damage ratio calculated at 25mL = is low, the 
damage can increase to a significant value within a few meters extension of the spanning length.    

Figure 168 illustrates the correlation between damage and spanning length by fitting curves 
according to the results shown in Table 43. 

Table 43: Damage ratio of pipeline as a function of spanning lengths. 
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Figure 168: Correlation between damage and spanning length. 

Figure 168 shows that the damage ratio increases rapidly when the spanning length exceeds 
25mL = . Figure 168 also shows that a pipeline free-span of 25mL < has hardly experienced any 

damage during 1 year of exposure.  

Analyses of the dynamic response for the spanning lengths of 30mL =  show that the soil springs at 
the pipe shoulder exceed their maximum bearing capacity, which also decreases the resistance of the 
structural system.  

5.2.4 EFFECT OF DAMPING 

In this section, the damping influence of the dynamic response is analysed for fluid damping and 
material damping, respectively. 

5.2.4.1. Fluid Damping 

The fluid damping is included in the Morison Model according to Chapter 3.2 (Hydrodynamic Force 
Models). The fluid damping is relevant if the structure has a significant velocity compared to the 
ambient velocity. To determine if this is the case, Figure 169 shows the velocity of the pipe and the 
ambient flow for sea state 5. 
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Figure 169: Velocity of pipe and ambient flow for sea state 5. The pipe velocity is shown for the 
mid-section A-A. 

Figure 169 shows that the pipe velocity is small and insignificant compared to the velocity of the 
ambient flow for sea state 5. The same comparison has been made for sea state 1-4, which shows 
similar results. The pipe velocity increases when the load frequency is closer to the eigenfrequency. 
This could happen if the pipeline free-span experiences vortex lock-in, in which case fluid damping 
should be included. 

To illustrate the fact that fluid damping does not affect the dynamic response of the pipeline, the 
stress ranges for lateral excitation are shown in Figure 170 for a dynamic model with and without 
fluid damping.  
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Figure 170: Stress ranges for lateral excitation in a dynamic model with and without fluid 
damping. Stress ranges are taken in the centre of the mid-span during sea state 5. 

Because the stress ranges are unchanged for a dynamic model with and without fluid damping, the 
fluid damping will not have any influence on the fatigue of the pipeline. 
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5.2.4.2. Material Damping 

The material damping is applied to the model as a Rayleigh damping according to Chapter 1.1 
(Design Conditions). The dynamic response is compared for three different damping ratios: 

• 0.005ζ =  

• 0.010ζ =  (reference model) 

• 0.015ζ =  

Figure 171 shows the stress ranges for lateral excitation in a dynamic model with three different 
damping ratios. 
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Figure 171: Stress ranges for lateral excitation in a dynamic model with different damping 
ratios. Stress ranges are taken in the centre of the mid-span. The ambient flow applied is sea 
state 5. 

Figure 171 shows that the small change in damping ratios does not affect the calculated stress 
response of the model. The reason for this is that the velocity of the pipeline is small due to the 
difference in load and eigenfrequencies, which has been shown in Figure 169. 

5.2.5 EFFECT OF GAP RATIO 

In this section, the gap ratio’s influence on the damage of the pipeline is investigated. Three gap 
ratios have been evaluated in this analysis: 

• Large gap ratio: / 1e D =  
• Small gap ratio: / 0.1e D =  
• No gap ratio: / 0e D =  (reference model) 

The gap ratio has great influence on the force coefficients that are applied in the force models, see 
Chapter 3.2 (Hydrodynamic Force Models), and the hydrodynamic mass that is applied to the free-
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span, see Chapter 5.1 (Winkler Model). The following input parameters must be recalculated when 
the gap ratio is changed: 

• Hydrodynamic mass and total added mass 
• Hydrodynamic force coefficients , andM D LC C C  

• In-line and cross-flow forces per unit length of the pipe , in line cross flowf f− −  

Added Mass 

Table 44 shows the hydrodynamic mass and the total added mass for the three different gap ratios. 
The hydrodynamic mass is determined according to Chapter 5.1 (Winkler Model) which also 
describes why the hydrodynamic mass increases with decreasing gap ratio. 

Total added mass 
[kg/m] Gap ratio 

e/D [-] 
Hydrodynamic mass 

[kg/m] 
Side-span Free-span 

1.0 309.5 913.2 399.2 
0.1 464.2 913.2 668.7 
0.0 708.7 913.2 1073.2 

Force Coefficients and Dynamic Loads 

Table 45 shows the force coefficients for the three gap ratios. The force coefficients are determined 
according to Chapter 3.2 (Hydrodynamic Force Models). 

1e
D
=  0 1.e

D
=  0e

D
=  

Sea state 
DC  MC  LC  DC  MC  LC  DC  MC  LC  

Sea state 5 1.0 1.3 0.5 1.1 1.7 1.4 1.3 2.1 2.5 
Sea state 4 1.1 1.4 1.0 1.3 1.8 1.9 1.5 2.3 2.9 
Sea state 3 1.4 1.4 1.9 1.6 1.8 2.3 1.9 2.3 3.1 
Sea state 2 1.3 1.6 2.0 1.5 2.0 2.5 1.8 2.6 4.4 
Sea state 1 1.0 1.9 2.1 1.2 2.5 2.6 1.5 3.1 4.49 

Figure 172 shows the in-line force for sea state 5 for the different gap ratios. The in-line force is 
determined according to Chapter 3.2 (Hydrodynamic Force Models). 

Table 44: Total added mass for the three different gap ratios.  

Table 45: Hydrodynamic force coefficients for different gap ratios. 
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Figure 172: In-line force for sea state 5 for the different gap ratios. 

The range between the maximum and minimum value of in linef −  increases with approximately 34% 

for / 0e D =  compared to the case where / 1.0e D = . The damage of the pipeline free-span is 
expected to increase for smaller gaps due to this change in force. Also the cross-flow force increases 
when the gap ratio decreases but the comparison of the cross-flow force is not illustrated. 

5.2.5.1. Frequency Analysis 

The change in added mass also changes the eigenfrequencies of the pipeline free-span. Table 46 
shows the change in the four lowest eigenfrequencies for different gap ratios. 

Gap ratio 
e/D [-] 

Lateral 

1 [Hz]f   
Vertical 

2 [Hz]f  
Lateral  

3 [Hz]f  
Vertical 

4 [Hz]f  

1.0 1.06 1.80 3.07 5.50 
0.1 0.88 1.41 2.70 4.60 
0.0 0.73 1.23 2.31 3.81 

It is seen from Table 46 that the eigenfrequencies of the pipeline free-span decreases as the gap ratio 
decreases, which is due to the increment of added mass. Because the load frequency are in the range 
of 0.08Hz 0.45Hz− , the dynamic response will rise as the gap ratio decreases. This, held together 

with the findings in the previous analysis of the force, means that the largest stress ranges and most 
damage will be expected to appear at a gap ratio of / 0.0e D = . 

5.2.5.2. Fatigue Analysis 

Table 47 shows the damage caused by lateral and vertical excitation of the pipeline free-span with 
three different gap ratios. 

Table 46: Eigenfrequencies for different gap ratios. 
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Damage Gap ratio 
e/D [-] lateralD  [-] verticalD  [-] 

1.0 20.8 10−⋅  42.3 10−⋅  
0.1 21.3 10−⋅  31.8 10−⋅  
0.0 22.3 10−⋅  38.4 10−⋅  

To illustrate the influence of gap ratio considering damage of the pipeline, the results from Table 47 
are shown in Figure 173. Tendency lines are shown according to the fatigue analysis for the three 
different gap ratios. 
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Figure 173: Damage for different gap ratios. 

It is seen that the damage of the pipeline increases significantly for / 0.1e D < . For larger gap ratios, 
the change in damage is of minor importance. It is however highly conservative to calculate the 
damage of the pipeline assuming / 0e D =  because practical experiences have shown that that the 
gap ratio will increase to / 0.1e D >  within a short time after the erosion under the pipeline has 
started. 

5.2.5.3. Vortex Lock-in 

As explained in Chapter 3.1 (Near-Wall Cylinder) and Chapter 3.2 (Hydrodynamic Force Models), 
vortex lock-in must be considered when the gap ratio exceeds the value of 1.0. To ensure the damage 
estimate made has not been compromised by this phenomenon, the reduced velocity rU  is 

calculated for the case with a gap ratio / 1.0e D = . Inserting the maximum velocity for sea state 5 
and the 1st eigenfrequency in the formula for the relative velocity gives 

 

max,5
,1

1
m
s1.80

1.06Hz 0.608m
2.79

r

U
U

f D
=

⋅

=
⋅

=

 (5.2.9) 

Table 47: Damage for different gap ratios. 
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The reduced velocity in calculated in (5.2.9) is below the range of vortex lock in (4.8-8.0). It can be 
concluded that vortex lock-in will not appear in any of the sea states as the reduced velocity takes the 
highest value for sea state 5 and vortex lock-in does not cause additional damage in the present case. 
It is noticed that the lowest vertical eigenfrequency for a free-span with a gap ratio of 1.0 should be 
below the value of 0.62 Hz during sea state 5 before the free-span experiences vortex lock-in. This is 
kept in mind in the further analyses.  

5.2.6 EFFECT OF FRICTION ANGLE OF SOIL 

This is a parametric study of the friction angle’s influence on the dynamic response and fatigue of 
the pipeline free-span. The analysis is made for three different frictions angles: 

• ' 25ϕ = °  

• ' 30ϕ = ° (reference model) 

• ' 35ϕ = °  

The load-displacement curves for the soil springs are determined analytically for the three different 
frictions angles as shown in Chapter 4.1 (Soil Springs). The soil springs in the Winkler model are 
adjusted according to the load-displacement curves calculated for each friction angle. In this way, it 
is possible to compare the effect on frequency, dynamic response and fatigue of the pipeline free-
span for different friction angles. 

5.2.6.1. Frequency Analysis 

Table 48 shows the four lowest eigenfrequencies of the pipeline free-span for the three different 
angles of friction. 

Friction angle 
[ ]'ϕ °  

Lateral 

1 [Hz]f   
Vertical 

2 [Hz]f  
Lateral  

3 [Hz]f  
Vertical 

4 [Hz]f  

25 0.66 1.23 2.14 3.81 
30 0.73 1.23 2.31 3.81 
35 0.78 1.23 2.49 3.81 

The results in Table 48 show that the change in friction angle only has a minor influence on the 
lateral frequencies. The vertical frequencies are unchanged because of the high vertical soil stiffness 
which does not change significantly for different friction angles. The frequency response in both 
lateral and vertical direction will be similar for the three different friction angles and is for this 
reason not shown in this analysis. 

5.2.6.2. Fatigue Analysis 

Table 49 shows the damage caused by lateral and vertical excitation of the pipeline free-span in soil 
with three different friction angles. 

Table 48: Eigenfrequencies for different friction angles. 
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Damage Friction angle 
[ ]'ϕ °  

lateralD  [-] verticalD  [-] 

25 23.3 10−⋅  312.4 10−⋅  
30 22.3 10−⋅  38.4 10−⋅  
35 21.6 10−⋅  30.6 10−⋅  

To illustrate the influence of the friction angle considering damage of the pipeline, the results from 
Table 49 are shown in Figure 173. Tendency lines are shown according to the fatigue analysis for the 
three different friction angles. 
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Figure 174: Damage for different friction angles 

Figure 174 shows that the damage decreases for higher values of friction angles. The correlation 
between damage and friction angle is almost linear for both lateral and vertical excitation.  

It is noticed that the correlation between damage and friction angle will not be linear if the spanning 
length or the forces affecting the pipeline free-span are increased so the soil springs near the pipe 
shoulders reach their non-linear area above the maximum bearing capacity. This will happen sooner 
for the soil with lower friction angles resulting in an instant and significant increase in damage. 

5.2.7 EFFECT OF COATING STIFFNESS 

If the contribution of the coating to the structural response is considered to be significant, 
appropriate models shall be used [DNV-RP-F105 p30]. This analysis will show the effect of 
including coating stiffness in the bending stiffness ( )EI of the dynamic model. Frequency and 

damage analyses are made for a pipeline free-span with and without coating stiffness, respectively. 
The pipeline free-span is calculated with two different Young’s moduli for the pipeline: 

• Young’s modulus for steel 120.21 10 PasteelE = ⋅  

• Equivalent Young’s modulus 120.34 10 PaequivalentE = ⋅  (reference model) 

Table 49: Damage for different friction angles 
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The effect of coating stiffness is included in the bending stiffness of the pipeline as described in 
Chapter 5.1 (Winkler Model). 

5.2.7.1. Frequency Analysis 

Table 50 shows the four lowest eigenfrequencies for the pipeline with and without coating stiffness, 
respectively.  

Young’s modulus 
[ ]GPaE  

Lateral 

1 [Hz]f   
Vertical 

2 [Hz]f  
Lateral  

3 [Hz]f  
Vertical 

4 [Hz]f  

210 0.36 0.83 1.83 2.96 
340 0.73 1.23 2.31 3.81 

The frequency response for steelE  and equivalentE  is compared. Figure 175 and Figure 176 show the 

normal stress response in section point 5 and 7 when a distributed in-line load 1000 N/myf = or 

vertical load 1000 N/mzf = , respectively, is applied to the free-span as a harmonic load with various 

load frequencies. 
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Figure 175: Normal stresses for varying in-line load frequencies.  Normal stresses are taken in 
section point 5 in mid-section A-A for steelE  and equivalentE , respectively. 

Table 50:Eigenfrequencies for steelE  and equivalentE . 
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Figure 176: Normal stresses for varying in-line load frequencies.  Normal stresses are taken in 
section point 5 in mid-section A-A for steelE  and equivalentE , respectively. 

It is seen that the eigenfrequency decreases significantly if coating stiffness is not included. This is a 
consequence of the initial normal stress which decreases the frequency of the pipeline free-span 
significantly as the free-span in principle is a beam-column.  

Figure 175 and Figure 176 show that the dynamic response will increase for the model without 
coating stiffness as the load frequencies is known to be in the range of 0.08 0.45Hz− . 

5.2.7.2. Fatigue Analyses 

Table 51 shows the damage caused by lateral and vertical excitation of the pipeline with and without 
coating stiffness. 

Damage Young’s modulus 
[ ]GPaE  

lateralD  [-] verticalD  [-] 

210 0.46  22.9 10−⋅  
340 22.3 10−⋅  38.4 10−⋅  

It is seen that the damage increases significantly if the coating stiffness is not included. For a 
spanning length of 25mL = , the damage caused by lateral excitation of the model without coating 

is much higher than the damage determined for the model where coating stiffness is included. For 
the representative pipeline, it is considered to be highly conservative not to include coating stiffness. 

5.2.8 EFFECT OF WAVE HEIGHT 

This is a parametric study of the wave height’s influence on the damage analyses. In this analysis, 
the significant wave height sH  and the maximum wave height maxH  are chosen to represent the sea 

Table 51: Damage for steelE  and equivalentE . 
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states, respectively. The wave height affects the particle velocities and acceleration around the 
pipeline, which leads to the change of dynamic load from waves and current. 

Changing the characteristic wave height entails that the following parameters have to be 
recalculated: 

• In-line flow velocity and acceleration: U , dU
dt

 

• Hydrodynamic force coefficients: , ,M D LC C C  

• In-line and cross-flow forces per unit length of the pipe: ,  in line liftf f−  

sH  and maxH  are taken from Chapter 1.1 (Design Conditions) where the method for determining the 

corresponding flow velocity and acceleration is also shown. 

Force Coefficients and Dynamic Loads 

Table 52 shows the difference in force coefficients for sH  and maxH , respectively. The force 

coefficients are determined according to Chapter 3.2 (Hydrodynamic Force Models). 

sH  maxH  
Sea state 

KC  DC  MC  LC  KC  DC  MC  LC  

Sea state 5 31.0 1.3 2.1 2.5 57.1 1.3 2.3 1.8 
Sea state 4 18.1 1.5 2.3 2.9 33.6 1.4 2.4 2.5 
Sea state 3 8.0 1.9 2.3 3.1 15.2 1.6 2.3 3.0 
Sea state 2 1.5 1.8 2.6 4.4 3.0 2.2 2.4 4.4 
Sea state 1 0.0 1.5 3.1 4.49 0.0 1.5 3.1 4.49 

Figure 177 and Figure 178 shows the change in in-line and cross-flow force, respectively for sH  and 

maxH , respectively. The comparisons of forces are shown only for sea state 5.  

Table 52: Force coefficients for maxandsH H .  
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Figure 177: In-line force for sea state 5 represented by sH  and maxH ,  respectively. 
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Figure 178: Cross-flow force for sea state 5 represented by sH  and maxH ,  respectively. 

Figure 177 and Figure 178 show that the dynamic forces affecting the pipeline are increased 
significantly when the ambient flow is represented by maxH  compared to sH . The maximum values 

for in linef −  and cross flowf −  increase with a factor 2.8 and 2.0, respectively and the difference between 

the maximum and minimum value of in linef −  increases with a factor 3.0. The main reason why the 

forces increase more than the ratio between maxH and sH  is that the ambient velocity is squared in 

the drag and lift term in the Morison Model, see Chapter 3.2 (Hydrodynamic Force Models). 

5.2.8.1. Fatigue Analyses 

Table 53 shows the damage caused by lateral and vertical excitation of the pipeline free-span when 
the sea states are represented by sH  and maxH , respectively. 
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Damage 
Wave height 

lateralD  [-] verticalD  [-] 

maxH  11 5 10. −⋅  28 8 10. −⋅  

sH  22.3 10−⋅  38.4 10−⋅  

Table 53 shows that the damages for lateral and vertical excitation are increased by a factor 10, 
approximately, when the sea states are represented by maxH  instead of sH . 

The analysis shows that it is important to consider the wave height chosen for the fatigue analyses. It 
is at this point too early to say which of the wave height that will give the most correct 
approximation of damage. Parametric studies in Chapter 5.3 (Parametric Study for Irregular Waves) 
show that sH  representing the sea states gives conservative damage results for the project pipeline. 

This means that choosing maxH  to represent the sea states will be highly conservative in the present 

case. 

5.2.9 EVALUATION 

This serves to summarize the main findings of the parametric study of the pipeline free-span 
evaluated as a single-span that is affected by regular waves.  

Because the pipeline does not experience vortex lock-in during all single-span analyses, the damage 
caused by lateral excitation has been shown to be more significant than the damage caused by 
vertical excitation. The cross-flow force has been determined by a force model that only applies 
upward loading which is an approximation since the real cross-flow force will affect the pipeline in 
both upward and downward direction.  

The functional state has been found to be the most critical state when considering damage as the 
increased axial load results in reduced stiffness and eigenfrequency of the pipeline. Because the load 
frequencies from all sea state are lower than the eigenfrequency of the free-span, the reduced 
stiffness also results in increased dynamic amplification which is unfavourable for the pipeline when 
considering fatigue damage. 

An evaluation of the damage contributions of the sea states has shown that sea state 5 causes more 
damage to the pipeline than sea states 1-4 all together. This means that the waves representing a 24-
hour storm with a return period of 10 years cause more damage than smaller waves that are 
distributed over an entire year. 

The damage calculated for the pipeline increases rapidly when the spanning length exceeds 25 m. 
The damage limit of lim 0.1D =  is exceeded at an approximate spanning length of 27 m.  

Table 53:  Damage of pipeline free-span when the sea states are represented by  sH  and maxH , 
respectively.  
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The effect of fluid and material damping has been shown to be of less significance to the dynamic 
behaviour for the project pipeline free-span. This is a result of the low dynamic amplification due to 
the difference in load frequency of the waves and eigenfrequency of the pipeline. In addition, the 
absence of vortex lock-in makes damping of less importance. These two effects result in low 
pipeline velocities compared to the ambient flow velocities which reduces the effect of damping. 

The friction angle affects the strength and stiffness of the soil springs and has been shown to 
increase the damage of the pipeline as the friction angle is decreased. The damage influence has 
been shown to be minor since flat-sloped linear relationships have been found between the damage 
ratio of the pipeline and the friction angle of the soil. 

The influence of coating stiffness has been shown to be significant to the dynamic response and the 
fatigue damage calculated for the pipeline free-span. The eigenfrequencies of the free-span decreases 
radically when coating stiffness is not included.  The pipeline acts like a beam column because of the 
presence of axial force which increase the change in eigenfrequencies since coating stiffness is 
disregarded. It is considered to be very conservative not to include coating stiffness when 
determining the dynamic response and fatigue damage for the pipeline free-span. 

The choice of wave height to represent the sea states has been shown to have a great influence upon 
the damage. Fatigue analysis has been made with the significant wave height sH  and maximum 

wave height maxH  as representative wave heights. As expected, the damage ratio calculated for maxH  

is highest. It is however expected to give a more reasonable damage estimate when sH  is used as the 

representative wave height. This is explored further in Chapter 5.3 (Parametric Study for Irregular 
Waves). 
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5.3 PARAMETRIC STUDY FOR 

IRREGULAR WAVES 

In practice, a spanning analysis of a pipeline free-span is conducted by assuming that the 
hydrodynamic forces are induced by regular waves. In nature, waves are irregular. In order to 
investigate the implications of this simplification, two analyses are performed with irregular waves 
on the reference model in Chapter 5.2 (Parametric Study for Regular Waves).  

The irregular sea states 1-5 are modelled for 3.0 hours duration and the actual durations are given in 
Chapter 1.1 (Design Conditions). In order to reduce impulse vibrations at the beginning of the 
numerical analyses, the magnitude of the flow velocities and accelerations have been ramped from 
zero to their actual values during the first minute of modelled duration. For convenience, the ambient 
flow velocity history and acceleration history of the irregular sea states are shown in Appendix E 
(Irregular Sea States).  

For the sake of simplicity, the effect of hydrodynamic damping induced by pipe vibrations is 
neglected. This is reasonable since it has been verified that the pipe velocity is of a considerably 
lower magnitude than that of the ambient flow velocity. As usual, the effect of hydrodynamic added 
inertia is taken into account by the use of hydrodynamic added mass. The diagrams of the 
hydrodynamic forces are without hydrodynamic added mass. 

The critical fatigue stresses are determined by the normal stresses in the mid-section of the pipeline, 
where the magnitude of the normal stresses is largest. The normal stress has been considered to be an 
appropriate stress measure, since the magnitude of the shear stresses in the mid-section is small 
compared to that of the normal stresses. Recall that the shear stresses are non-zero in the mid-section 
because the Abaqus Model uses beam theory with large deformations.  

The normal stresses are determined in section points 1 and 3 which are located in the lateral and 
bottom part of the pipe-section, see Figure 153. Thus, the section points correspond to the response 
that is induced by the in-line and cross-flow force, respectively. Since the response history is 
irregular, the Rain Flow Counting Method is used for determining stress ranges and cycles as 
described in Chapter 2.1 (Fatigue). The input files, output files and damage calculations can be 
found in [DVD/Parametric Study of Irregular Waves].  



5.3 Parametric Study for Irregular Waves Single-Span Analyses 

 

232 

5.3.1 EFFECT OF REGULAR AND IRREGULAR WAVES IN THE MORISON 

MODEL 

In this fatigue limit state analysis, the Morison Model for sea states 1-5 with irregular waves is 
considered and compared with the Morison Model with regular waves. For both regular and irregular 
waves, the force coefficients are taken from Table 34 in Chapter 5.2 (Parametric Study for Regular 
Waves). 

5.3.1.1. Force History 

The in-line and cross-flow force history for the irregular sea states 1-5 are shown in Figure 179 and 
Figure 180. By comparison with Figure 151 and Figure 152 in Chapter 5.2 (Parametric Study for 
Regular Waves), it may be seen that the magnitude of the peak in-line and cross-flow forces that are 
induced by the irregular sea states may be more than twice as large as those of the regular sea states. 
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Figure 179: In-line force history during irregular sea states 1-5. 
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Figure 180: Cross-flow force history during irregular sea states 1-5. 
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5.3.1.2. Stress History 

The normal stress history for section points 1 and 3 during the irregular sea states 1-5 and the yield 
limit is shown in Figure 181 and Figure 182. 
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Figure 181: Normal stress history in mid-section in section point 1 during irregular sea states 
1-5. 
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Figure 182: Normal stress history in mid-section in section point 3 during irregular sea states 
1-5. 

Figure 181 and Figure 182 show sudden and large changes of the magnitude of the normal stresses. 
This is due to plastic deformation in the lateral and vertical soil springs during irregular sea states 5 
and 4-5, respectively. By comparison with Figure 179 and Figure 180, it may be seen that this 
happens when a considerably large force hits the pipeline.  

This observation is explained by the plastic constitutive behaviour of the soil springs. In the vertical 
direction, the cross-flow force extends the relatively slender vertical upward soil springs in the pipe 
shoulders beyond their elastic range. Once the springs have undergone plastic deformation, they 
remain extended as demonstrated in Chapter 5.1 (Winkler Model). When the cross-flow force 
diminishes, the pipe remains in the new configuration and the stresses fluctuate about this state. 
Interestingly, the pipe-span has an initial configuration of downward bending due to the static self-
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weight but experiences configurations of increasing upward-bending each time plastic deformation 
occurs in the vertical soil springs. The occurrence of plastic deformation in the lateral soil springs 
may not be detected from the stress history since the in-line force can attain both negative and 
positive values and thus plastically extend and compress the lateral soil springs about the same state. 

At 650st ≈  during irregular sea state 5, the bottom of the pipeline experiences a compressive 

normal stress that exceeds the yield stress. Nevertheless, the fatigue analysis is carried out since it is 
primarily explorative in this parametric study. The magnitude of the tensile normal stress in the top 
of the pipe-section, i.e. section point 7, has been found to be below the yield stress. 

5.3.1.3. Stress Ranges and Damage 

The normal stress ranges and number of cycles for section points 1 and 3 during the irregular sea 
states 1-5 are shown in Figure 183 and Figure 184. The number of cycles has been scaled by the 
ratio between the actual and modelled duration of the irregular sea states. The figures also show the 
results from regular waves during sea state 5 and the maximum allowable number of cycles 
according to the S-N curves of DNV that have been described in Chapter 2.1 (Fatigue).   
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Figure 183: Normal stress ranges in mid-section in section point 1 as function of actual and 
maximum allowable number of cycles during irregular sea states 1-5 of actual duration. 
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Figure 184: Normal stress ranges in mid-section in section point 3 as function of actual and 
maximum allowable number of cycles during irregular sea states 1-5 of actual duration. 

It may be seen from Figure 184 that the Rain Flow Counting Method provides four cycles of the 
stress range 430 MPa in section point 3 during irregular sea state 5 of actual duration. By 
comparison with Figure 182, it is evident that this large stress range is based upon the major stress 
half-cycle due to the total plastic deformation during the entire modelled stress history and not the 
minor stress half-cycles due to the individual instances of plastic deformation. 

The damage ratio for the irregular and regular sea states is given in Table 54 and Figure 185. The 
damage ratio for the regular waves is taken from Chapter 5.2 (Parametric Study for Regular Waves). 

Irregular Regular 
Sea state 

lateralD  [-] verticalD  [-] lateralD  [-] verticalD  [-] 

1 0 0 0 0 
2 0 0 0 0 
3 0.00029 0.00056 0.006 0.001 
4 0.00092 0.00044 0.004 0.001 
5 0.00160 0.00095 0.012 0.006 

Total 0.00281 0.00195 0.023 0.008 
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Figure 185: Damage ratio in percent during irregular and regular sea states 1-5 of actual 
duration. 

Table 54: Damage ratio during irregular and regular sea states 1-5 of actual duration. 
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It is clear from Table 54 and Figure 185 that more damage is provided systematically by the regular 
sea states compared to the irregular waves – for some sea states nearly 8 times more damage. This 
may be explained by the many large stress cycles in the regular sea states that correspond to the 
significant wave height in contrast to the fewer but larger stress cycles in the irregular sea states due 
to extreme peaks and plastic deformation. Furthermore, most damage generally occurs in the lateral 
direction during the irregular sea states. 

5.3.2 EFFECT OF IRREGULAR WAVES IN DIFFERENT FORCE MODELS 

In this fatigue limit state analysis, the Morison Model with varying force coefficients and the Wake I 
Model are compared. This is done for the irregular sea state 5 which is governing sea state when 
considering fatigue damage. The coefficients of the models are given in Table 55 where the 
remaining coefficients of the Wake I Model are given in Appendix F (Empirical Parameters of Wake 
Models). 

In-line force coefficients 
Cross-flow force 

coefficient Case 
Force 
model 

Calibration basis 
Gap ratio 

e D  
AC  MC  DC  LC  

A 
Morison 
Model 

DNV and [Sumer & 
Fredsøe 1997, p183] 

1 1.0 1.3 1.0 0.5 

B 
Morison 
Model 

DNV and [Sumer & 
Fredsøe 1997, p183] 

0 2.29 2.1 1.3 2.5 

C 
Morison 
Model 

PFMP 0 2.29 3 2 2 

D 
Wake I 
Model 

PFMP 0 0.25 2.5 1.1 - 1.7 0.8 - 4.9 

Cases A and B show the Morison Model where the force coefficients have been determined for gap 
ratios 1 and 0, respectively, according to DNV and experimental results in [Sumer & Fredsøe 1997, 
p183]. These two cases may represent a typical choice when force data from the design location are 
unavailable. Case B is identical to the case with irregular sea state 5 in the fatigue analysis in the 
previous section.   

Cases C and D cover the cases with the Morison and Wake I Model, respectively, when they have 
been fitted to measurements from the PFMP, see Chapter 3.2 (Hydrodynamic Force Models). In 
practice, the PFMP measurements are taken as the results of the Wake I Model at default parameters. 

5.3.2.1. Force History and Spectrums 

The in-line and cross-flow force history and single-sided amplitude spectrums for the cases are 
shown in Figure 186-Figure 189. The spectrums are based upon averaged Fast Fourier Transforms of 
subsets of the force histories and are not shown for the cross-flow force in cases A-B. Due to 
practical reasons, the cases appear in different order in the legends of the figures but the colours of 
each case are identical in the figures.  

Table 55: Calibration basis and values of force coefficients for irregular sea state 5. All 
numbers are dimensionless 
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Figure 186: In-line force history during irregular sea state 5. 
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Figure 187: Cross-flow force history during irregular sea state 5. 
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Figure 188: In-line force amplitude single-sided spectrum during irregular sea state 5. 
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Figure 189: Cross-flow force amplitude single-sided spectrum during irregular sea state 5. 

The in-line and cross-flow force in the Morison Model in case A are of considerably smaller 
magnitudes than those of the other cases. This may be seen in Figure 186-Figure 188 and illustrates 
the experimental observation that increasing gap ratio provides decreasing in-line and cross-flow 
force. This has been previously discussed in the context of regular waves. 

As discussed in Chapter 3.2 (Hydrodynamic Force Models), the Morison Model is unable to predict 
an average in-line force equal to zero in the case of non-zero current-wave ratios below 0.5. Thus, in 
order to predict measured in-line force peaks that occur in the upstream direction, the in-line force 
peaks in the downstream direction are inevitably overestimated. 

Thus, the Morison Model in case B underestimates the negative in-line force peaks, but estimates 
well the positive in-line force peaks in comparison with the Wake I Model. In contrast, the Morison 
Model in case C estimates well the negative in-line force peaks, but overestimates the positive in-
line force peaks. This may be seen in Figure 186. Thus, the Morison Model in case B and C is 
expected to provide stress ranges in section point 3 of less and greater magnitude than those of the 
Wake I Model, respectively. 

As seen in Figure 187 and Figure 189, the magnitude of the cross-flow force peaks of the Morison 
Model in case C is almost identical to the Wake I Model. However, as discussed in Chapter 3.2 
(Hydrodynamic Force Models), the phase and shape of the Morison Model differ greatly from that of 
the Wake I Model. It is apparent from Figure 189 that the cross-flow force in both the Morison and 
Wake I Model is concentrated at the cross-flow frequency 0.16 Hz. But whereas the Morison Model 
has an additional considerable cross-flow force at the wave frequency 0.08 Hz, the Wake I Model 
has a considerable cross-flow force that is widely distributed at frequency ranges 0.16-0.50 Hz. 
Since the latter load frequencies are closer to and below the lowest eigenfrequency of the pipeline, 
the normal stress ranges in section point 3 that are provided by the Wake I Model are expected to be 
larger than those of the Morison Model. 
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5.3.2.2. Stress History 

The normal stress history for section points 1 and 3 for the cases and the yield limit are shown in 
Figure 190 and Figure 191. 
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Figure 190: Normal stress history in mid-section in section point 1 during irregular sea state 5. 
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Figure 191: Normal stress history in mid-section in section point 3 during irregular sea state 5. 

It may be seen from Figure 190 and Figure 191 that plastic deformation and yielding occurs in cases 
B-D. The largest stress amplitudes for lateral excitation are predicted by the Morison Model in case 
C. 

5.3.2.3. Stress Ranges and Damage 

The normal stress ranges as function of the actual and maximum allowable number of cycles for 
section points 1 and 3 during the irregular sea state 5 are shown in Figure 192 and Figure 193. The 
number of cycles has been scaled by 8 since this is the ratio between the actual and modelled 
duration of the irregular sea state 5.   
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Figure 192: Normal stress ranges in mid-section in section point 1 as function of actual and 
maximum allowable number of cycles during irregular sea state 5 of actual duration. 
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Figure 193: Normal stress ranges in mid-section in section point 3 as function of actual and 
maximum allowable number of cycles during irregular sea state 5 of actual duration. 

It is seen from Figure 193 that the Wake I Model provides both larger stress ranges and a larger 
number of cycles in section point 3 than the Morison Model in cases A-C. This is attributed to the 
considerable cross-flow force at the high frequency ranges 0.16-0.50 Hz in the Wake I Model which 
has been discussed previously. For all stress ranges, the number of cycles is much smaller than the 
maximum number of cycles which results in small damage ratios. The resulting damage ratio is 
given in Table 56. 
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Damage ratio 
Case Force model 

lateralD  [-] verticalD  [-] 

A Morison Model 0.0028 0.00004 
B Morison Model 0.0016 0.00095 
C Morison Model 0.0118 0.00062 
D Wake I Model 0.0104 0.00260 

It may be seen from Table 56 that most damage for lateral and vertical excitation is provided by the 
Morison Model in case C and the Wake I Model in case D, respectively. Furthermore, as discussed 
in a previous section, the Morison Model in case B and C indeed provides lower and upper bounds 
on the damage of the Wake I Model for lateral excitation.  

By comparison of Table 54 and Table 56, it is seen that the damage for lateral excitation during sea 
state 5 is nearly identical for the Morison Model with irregular waves in case C and the Morison 
Model for regular waves. Thus, the difference in damage for lateral excitation during regular waves 
compared to irregular waves with identical in-line force coefficients in case B vanishes by the use of 
greater in-line force coefficients for the irregular waves. However, this overestimates the in-line 
force compared to that from maximum wave height which is given in Chapter 5.2 (Parametric Study 
for Regular Waves). 

5.3.3 EVALUATION 

First, it is concluded that different estimates of fatigue damage are obtained during severe sea states 
when considering impact from irregular and regular waves. This may be explained by the sensibility 
of fatigue damage to variation in the amplitude of stress cycles, the actual number of stress cycles 
and the maximum allowable number of stress cycles.  

The impact from regular waves that are based upon the significant wave height provides a large 
amount of large-amplitude stress cycles in the pipeline. In contrast, impact from irregular waves 
provides few extreme stress cycles in the pipeline that correspond to the maximum wave height. In 
the latter case, the extreme loads introduce plastic deformation of the soil and considerable changes 
in the physical configuration of the pipeline but the total fatigue damage is negligible, nevertheless.  

Thus, the conventional approach of using regular waves with the significant wave height for fatigue 
analysis is conservative for the project pipeline. It is considered to be an attractive approach when 
considering the additional computational resources that are involved in performing time-domain 
dynamic analyses with irregular waves of relatively long duration. 

Secondly, different estimates of fatigue damage are obtained when predicting the hydrodynamic 
forces by the Morison Model and the Wake I Model with irregular waves. The difference appears to 
be relatively little when considering the fatigue of lateral section points of the pipe but considerably 
large for the top and bottom section points.  

Table 56: Damage ratio during irregular sea state 5 of actual duration. 
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The latter is attributed to the difference in cross-flow force spectrums. When current is present, the 
cross-flow force of the Morison Model is distributed narrow-bandly about two peaks at the wave and 
cross-flow frequency. In contrast, the cross-flow force of the Wake I Model is concentrated at the 
cross-flow frequency and widely distributed at higher frequencies. Since the lowest eigenfrequency 
of the pipeline in the vertical direction is usually larger than the cross-flow frequency, the Wake I 
Model provides more dynamic amplification and larger stress cycles than the Morison Model. 
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5.4 BUCKLING ANALYSES  

This chapter describes how to establish the maximum allowable spanning length in ultimate limit 
state (ULS) considering global and local buckling. The global buckling analysis has been made 
according to [DS412 1998] and [DNV No. 30.1 2004] as described in Chapter 2.2 (Buckling). The 
verification against local buckling analysis has been made according to [DNV-OS-F101], which is 
also described in Chapter 2.2 (Buckling). The main reason for making the buckling analysis is to 
determine if ULS is more critical to the pipeline free-span than the fatigue limit state (FLS). Because 
buckling is beyond the main focus of the project, some simplification has been made to ease the 
analysis.  

5.4.1 REFERENCE MODEL 

The buckling analyses are made according to a reference model whose design conditions and 
assumptions are shown in Figure 194. 
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Figure 194: Reference model for buckling analysis.  

A numerical model is made in the Abaqus Model similar to that of the fatigue analysis. The model is 
used to determine the section forces and critical buckling lengths, which are used as input to the 
buckling analysis according to the structural codes.  
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The calculation made in the Abaqus Model does not include the reduced stiffness due to axial force 
in the pipeline. The design procedures and the partial safety factors applied in the codes have already 
taken this in to account in ULS.  

5.4.1.1. Design Loads 

The characteristic loads from wave and current are established using the Morison Model for a 100 
year regular wave with corresponding current, according to Chapter 1.1 (Design Conditions). The 
maximum in-line and cross-flow loads are used as equivalent static loads.  

The force coefficients in the Morison Model have been determined according to Chapter 3.2 
(Hydrodynamic Force Models) with the assumption that the pipeline is laying on the seabed. Table 
57 shows the force coefficients that are used for the 100-year wave. 

ULS sea states DC  MC  LC  

Sea state 100 1.27 2.24 0.9 

The magnitude of the characteristic load for self-weight, temperature and pressure is identical to the 
loads determined in Chapter 5.2 (Parametric Study for Regular Waves). The characteristic loads are 
transformed to design loads using the safety factors shown in Chapter 1.1 (Design Conditions).  
Table 58-Table 60 show the loads that are applied in the buckling analyses. 

sdxF  Characteristic load [MN] Safety factors [-] Design load [MN] 

Temperature 3.490 1.0 3.490 
Pressure incl. 
Poisson effect 

0.552 1.05 0.580 

Total 4.042 - 4.070 

 

sdyf  Characteristic load [N/m] Safety factors [-] Design load [N/m] 

Hydrodynamic in-
line load 

6329 1.3 8228 

 

Table 57: Force coefficients used for ULS. 

Table 58: Design axial load that is defined as positive in compression. 

Table 59: Design in-line load. 
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sdzf  Characteristic load [N/m] Safety factors [-] Design load [N/m] 

Self weight -2060 1.0 -2060 
Hydrodynamic 
cross-flow load 

4428 1.3 5756 

Total 2368 - 3696 

5.4.1.2. Design Material and Soil Parameters 

The safety factors applied to the materials are shown in Chapter 1.1 (Design Conditions). It is 
noticed that the buckling length and section forces that are calculated in the Abaqus Model have all 
been determined using the safety factors given by DNV. 

There has not been made any effort to change the friction angle and thereby the strength of the soil 
to a design value. This is a simplification that works in small favour for the free-span analysis in 
ULS when comparing the maximum allowable spanning lengths in FLS and ULS, respectively. 

5.4.2 GLOBAL BUCKLING 

The main purpose of this analysis is to determine the maximum spanning length considering global 
buckling. The practical procedure for the global buckling analysis is divided into the following steps: 

1.  Section forces and buckling length are determined in the Abaqus Model 
2.  Buckling resistance is determined according to [DS412 1998] and [DNV No. 30.1 2004] 
3.  Maximum spanning length considering buckling is determined 

The computations that evaluate the pipeline’s resistance against global buckling according to [DNV 
No. 30.1 2004] can be found in [DVD/Buckling/buckling_DNV.m] and the computations for the 
global buckling analysis according to [DS412 1998] can be found in 
[DVD/Buckling/buckling_DS412.m]. The input file for the Abaqus Model that is used to calculate 
section forces and critical buckling load can be found in [DVD/Buckling/singlespan_buckling.inp]. 

5.4.2.1. Section Forces 

The section forces are determined in the numerical model. The maximum bending moments are 
found in the mid-section A-A of the free-span. Figure 195 shows the design moments for varying 
spanning lengths [10m;20m]L∈ . 

Table 60: Design cross-flow load. 
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Figure 195: Design moment determined in the mid-section of the free-span. 

 The axial force equals the external axial design load given in Table 58. 

5.4.2.2. Buckling Length 

The buckling length is an essential parameter when global buckling is considered. The buckling 
length is determined in the Abaqus Model by an eigenvalue analysis. This is described in Appendix 
C (Buckling Eigenvalue Problem).  

Critical Buckling Load  

To determine the critical axial force that induces buckling of the pipeline free-span, the temperature 
load is defined as the perturbation load in order to define an incremental axial force that is uniformly 
distributed along the length of the pipeline.  

Only the perturbation load is considered when determining the critical axial force and the initial 
temperature difference is 1.0TΔ = . The load multipliers that are returned by the Abaqus Model are 
identical to the maximum allowable temperature difference before the pipeline free-span becomes 
instable. 

The critical buckling force is determined as identical to the axial reaction force due to prevention of 
temperature expansion 

 , 1 Ctemp
cr x i sF F E T A Tα λ= − = ⋅ ⋅ ⋅ Δ ⋅ Δ = °  (5.4.1) 

where 
 crF  is the critical buckling load, defined as positive in compression [N] 

 temp
xF  is the axial force in the pipeline due to temperature, defined as positive in tension [N] 

 iλ  is the load multiplier for the thi  buckling mode [-] 
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 E  is the Young’s modulus [Pa] 
 α  is the expansion coefficient [1/°C ] 
 TΔ  is the temperature difference [ °C ] 
 sA  is the cross-sectional area of the steel pipe [m2]  

The critical buckling load has been determined for varying spanning lengths [10m;20m]L∈ . Figure 

196 shows the critical buckling load for the two lowest buckling modes which correspond to lateral 
and vertical buckling, respectively.  
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Figure 196: Critical buckling load for varying spanning lengths. Compression is positive. 

   
Figure 196 shows that the vertical buckling resistance is higher than the lateral buckling resistance. 
This is because the stiffness of the vertical soil springs is higher than the lateral soil springs, see 
Chapter 4.1 (Soil Springs). As the spanning length increases, the buckling influence of the soil 
springs decreases, which reduces the difference between the lateral and vertical buckling resistance. 

Buckling Length 

By assuming that the critical buckling load crF is identical to the Euler load, the buckling length cl  

can be found by the Euler formula for global buckling as 

  

 
2

c
cr

EIl
F
π

=  (5.4.2) 

where 
 lc is the buckling length [m] 
 I is the second moment of the area about a given axis [m4] 

By combination of the critical buckling loads shown in Figure 196 and (5.4.2), one obtains the 
buckling length cl  for varying spanning lengths L , as shown in Figure 197. 
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Figure 197: Buckling length for varying spanning lengths. 

Figure 197 shows that the buckling length increases with the spanning length, but the ratio /cl L  

increases as the spanning length decreases. This behaviour can be explained by studying the 
buckling modes for a pipeline free-span with spanning lengths of 10mL =  and 30mL = , 

respectively, which are shown in Figure 198. 

10mL = 30mL =Mode 1 Mode 1

10mL = Mode 2 30mL = Mode 2

z

y

x

 
Figure 198: Buckling modes for 10mL =  and 30mL = , respectively. 

The illustration of buckling modes in Figure 198 shows that for shorter free-span, the buckling mode 
propagate into the soil, since the global stiffness of the pipeline free-span increases when 
L decreases. The shorter free-span requires more strength of the soil in order to apply the same 
fixation of the pipeline as in the longer free-span. The buckling length is governed by the boundary 
of the pipeline free-span and so the ratio of /cl L must increase when the spanning length decreases. 
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5.4.2.3. Buckling Resistance 

Based upon the buckling length and section forces, the buckling resistance is determined in this 
section according to the analysing procedures of the structural codes. These have been explained in 
Chapter 2.2 (Buckling).   

Global Buckling according to DS412 

The global buckling is analysed for a beam-column using the following interaction formula, which is 
composed of a term for axial usage and two terms for bending usage about two axes 

 

max
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y y z z
k mn k m

sdysd sdz
y z
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+ + ≤
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 (5.4.3) 

where 
 maxn  is the axial usage [-] 

 sdF  is the design axial compressive force [N] 

 sA  is the cross section area [m2 ] 

 ydf  is the yield stress [Pa] 

 χ  is the reduction factor for buckling [-] 

 sdyM  is the design bending moment about the strong axis (y-axis) [N/m] 

 sdzM  is the design bending moment about the weak axis (z-axis) [N/m] 

 yW  is the section modulus about the strong axis  [m3] 

 zW  is the section modulus about the weak axis [m3]   

   yk  is the bending moment enhancement factor about the strong axis [-] 

 zk  is the bending moment enhancement factor about the weak axis [-] 

 ym  is the bending usage about the strong axis for infinitisimal deformation [-] 

 zm  is the bending usage about the weak axis for infinitisimal deformation [-] 

Figure 199 shows the usage ratio of each term in (5.4.3) for spanning lengths of [10m;20m]L∈ .  
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Figure 199: Usage ratio of the terms in the interaction formula according to [DS412 1998].  

Figure 199 show that the governing term for buckling is the axial force. It is seen that none of the 
usage terms increase rapidly when the spanning length increases. It is noticed that the upper limit of 
the moment enhancement factors, i.e. 1.5k = , has been reached which diminishes the increase of the 
bending usage terms.  

Figure 200 shows the total buckling resistance according to [DS412 1998]. 
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Figure 200: Buckling resistance for beam-column according to [DS412 1998]. 

Figure 200 shows that the approximate maximum spanning length of the pipeline free-span is 
14mmaxL =  as the total usage of the bearing capacity is exceeded at 14.5mL = . 

Global Buckling according to DNV No. 30.1 

The global buckling analysis according to DNV is also analysed using an interaction formula for a 
beam-column  
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 (5.4.4) 

where 
 η  is the usage factor [-] 

 aσ  is the axial stress due to the compressive force sdxF  [Pa] 

 acrσ  is the characteristic buckling stress [Pa] 

 byσ  is the effective axial stress due to bending about the strong axis (y-axis) [Pa] 

 bzσ  is the effective axial stress due to bending about the weak axis (z-axis) [Pa] 

 Eσ  is the Euler stress [Pa] 

 'α  is a factor depending on the type of structure and reduced slenderness [-] 
[DNV No. 30.1 2004] 

By decomposition of the interaction formula into three terms similar to the procedure for DS412, the 
usage ratios are obtained as shown in Figure 201. 
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Figure 201: Usage ratio of interaction formula according to [DNV No. 30.1 2004] 

Similar to the case for DS412, the interaction formula in DNV estimates the axial force to be the 
governing parameter for buckling. The usage of all three terms is a bit higher, since the material 
safety factors are higher in DNV compared to those of DS412. Furthermore, the bending usage terms 
increase more rapidly as the spanning length increases. This is because DNV does not specify any 
upper limit for the moment enhancement factors as in DS412.  

Figure 202 shows the total buckling resistance according to [DNV No. 30.1 2004]. 
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Figure 202: Buckling resistance for beam-column according to [DNV No. 30.1 2004]. 

It is seen from Figure 202 that the reduced capacity limit, 0.8η = , according to DNV result in a 

significant decrease in the maximum spanning length due to buckling. It predicts that the maximum 
allowable spanning length is 10mL < . Since only limited access to the structural codes of DNV has 

been available, some parameters may have been misinterpreted, as the results do not seems to 
comply with the results from DS412.    

5.4.3 LOCAL BUCKLING 

The verification against local buckling analysis has been made according to [DNV-OS-F101] as 
described in Chapter 2.2 (Buckling). The computations that evaluate the pipeline resistance against 
local buckling can be found in [DVD/Buckling/localbuckling.m]. Figure 203 shows the usage ratio 
when considering local buckling. 
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Figure 203: Local buckling according to [DNV-OS-F101] 

Figure 203 shows that local buckling is not critical for spanning lengths [10m;20m]L∈ . It is seen 

that the usage ratio for local buckling increases with the spanning length as the stresses in the pipe-
wall are increased due to increased bending. The increase in usage ratio as a result of increasing 
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spanning length is however considered to be small. It is concluded that local buckling is not 
governing for the maximum allowable spanning length. 

5.4.4 EVALUATION 

When comparing the buckling analysis according to DNV and DS412, the higher safety margin and 
the reduced usage factor of DNV provides a significantly lower maximum spanning length for the 
pipeline free-span. The results according to DS412 seem to be in best agreement with the estimated 
maximum allowable spanning length 13mL =  for a pipeline under similar conditions of the project 

pipeline [LIC-engineering 2005]. 

Regardless of the incoherent results, the global buckling analysis has shown that ULS is much more 
critical for the pipeline than FLS when considering the maximum allowable free-span. This is 
concluded since the buckling analysis in ULS predicts an approximate maximum spanning length of  

14mL =  whereas the fatigue analysis in FLS predicts an approximate maximum spanning length of 

27 mL = which is calculated in Chapter 5.2 (Parametric Study for Regular Waves). 

It is also concluded that local buckling is not a problem for the pipeline free-span.  
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potential interaction between two neighbouring free-spans. A 
parametric study of the governing parameters has been made 
considering the dynamic behaviour and fatigue of the 
neighbouring free-spans. It is a relatively new requirement 
that multi-span analysis has to be performed when 
neighbouring free-spans are detected. The objective for this 
part of the project is therefore also to outline some guidance 
to verification of a multi-span.
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6.1 MULTI-SPAN ANALYSES 

In the recent years, more focus has been given to the potential interaction between pipeline free-
spans that are located near each other. In this project a multi-span analysis is performed in a force 
model in the Abaqus Model, which is similar to the procedure of the single-span analysis. It is 
noticed that [DNV-RP-F105] only provides procedures for multi-span analysis using a response 
model. So it is part of this project to outline some guidance rules for making multi-span analysis in a 
force model.  

The multi-span analysis has been made with primary focus on Fatigue Limit State (FLS). The main 
purpose of this analysis is to determine an approximate length between two free-spans where 
interaction between the two spans no longer has a significant impact on the damage of the individual 
free-span. This will give an indication of when it will be sufficient to analyse neighbouring free-
spans as individual single-spans. 

A parametric study has been made in FLS of the parameters that are considered to have the greatest 
influence on the damage of pipeline. The considered parameters are the phase angle between the 
loads upon the neighbouring free-spans, the length of the mid-support, the friction-angle of the soil 
and the gap ratio. By comparing the results from the multi-span analysis with those of the single-
span analysis, the consequence of interaction between two free-spans is evaluated. 

In Ultimate Limit State (ULS), buckling analysis of the pipeline multi-span has been left out. Instead 
focus has been made on the stability of the soil bank acting as a mid-support between the two 
neighbouring free-spans. It is noticed that the ULS analyses do not refer to the same reference model 
as the analyses made in FLS. 

6.1.1 REFERENCE MODEL  (FLS)  

In this section, the reference model for the multi-span analyses made in FLS is defined. The 
corresponding model files can be found in [DVD/Multispan/multispan_case1.inp; 
multispan_case2.inp]. The multi-span pipeline is assumed to consist of two neighbouring free-spans 
that are separated by a mid-support. Figure 204 shows the design conditions and assumptions made 
in the reference model for the multi-span pipeline. 
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Figure 204: Reference model for multi-span in FLS. 

The reference model in the multi-span analysis is compared to that of the single-span analysis with a 
spanning length equal to 1 25mL = . In contrast to the reference model for the single-span, the gap 

ratio is / 1.0e D =  in the reference model for the multi-span. This difference has to be considered 
when comparing the results for the single-span and multi-span. The rest of the design conditions and 
assumptions are identical. From the single-span analysis, the assumption of no gap is known to be 
highly conservative since the wave load affecting the pipeline free-span will be overestimated, 
because the state of small gap will be of short duration as the gap increases rapidly due to scour. 

The static and dynamic loads are determined similarly to the case for the single-span analysis with a 
gap ratio / 1.0e D = . 

The hydrodynamic loads upon the neighbouring free-spans are assumed to act in opposite phase, i.e 
at a phase angle 180θ = ° . The following sections will clarify that this occurs together with one of 
the lowest eigenmodes of the multi-span pipeline, thus resulting in an upper bound solution to the 
damage. Another aspect, which will be discussed, is the physical fact that such a large phase angle 
cannot occur during the severe sea states when considering impact from 2D waves. 

The damage ratio for lateral and vertical excitation is computed by the normal stresses in mid-
section A-A in section point 5 (SP5) and section point 7 (SP7), respectively. 

6.1.1.1. Definition and Eigenmodes of Basic Cases 

The analyses are considered in two distinct cases, where the length of the mid-support and the side-
spans are variable and constant, respectively. The cases are shown in Table 61. 
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Case 1[m]L  2[m]L  3[m]L  

Case 1 – Symmetric free-spans 25 5-20 25 
Case 2 – Asymmetric frees-spans 25 5-20 12.5 

It is worthwhile to study the eigenmodes of the basic cases. For case 1 and 2 with 2 5mL = , the four 

lowest eigenmodes of the multi-span are shown in Figure 205 and Figure 206, respectively. 

1Mode 1: 0.55Hzf =

2Mode 2: 1.36Hzf =

3Mode 3: 1.50Hzf =

4Mode 4: 1.94Hzf =

y

xz

 
Figure 205: The four lowest eigenmodes for case 1 and 2 5mL = . 

1Mode 1: 0.98Hzf =

3Mode 3: 3.05Hzf =

2Mode 2: 1.72Hzf =

4Mode 4: 5.01Hzf =

y

xz

 
Figure 206: The four lowest eigenmodes for case 2 and 2 5mL = . 

For both cases, the lowest eigenfrequencies in lateral and vertical direction are obtained when the 
neighbouring free-spans vibrate in perfect opposite phase. This is shown in the upper-left and upper-

Table 61: Basic cases for the multi-span analyses.  
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right part, respectively, of Figure 205 and Figure 206. Thus, the largest stress response in section A-
A is expected when the loads on the free-spans are applied in perfect opposite phase. 

In case 2, it is observed that the mode shapes of the widest free-span are similar to the mode shapes 
of a single-span. Eigenmodes 3-4 for case 2 are not considered to be critical for the pipeline since the 
corresponding frequencies are much higher than the load frequencies. Thus, these are not considered 
further. 

6.1.2 EFFECT OF PHASE ANGLE 

In this section, the effect of the phase angle upon the multi-span pipeline is investigated. First, 
physically valid values of the phase angle are discussed. Then, a fatigue analysis is performed for 
varying phase angles. 

6.1.2.1. Physically Valid Phase Angles 

In this section, a brief discussion has been made of the physically valid values of the phase angle 
between the wave loads upon the neighbouring free-spans of the multi-span pipeline. The discussion 
is limited to treat impact from 2D waves, since that of 3D waves has been considered too complex in 
practice. 

In order to obtain a nonzero phase angle between the loads on the free-spans, the 2D wave front 
must attack the pipeline at a nonzero attack angle. This will reduce the perpendicular velocity against 
the pipeline and cause velocity variations along the free-spans. Figure 207 shows a plane sketch 
from above of the multi-span pipeline and the wave fronts.  
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Figure 207: Plane view from above of multi-span pipeline and wave fronts of 2D waves. 

An expression for the phase angle will be derived by trigonometric considerations of Figure 207. 
The phase angle between the wave loads of the two neighbouring free-spans can be formulated as 

 360AC

wave

L
L

θ = ⋅ °  (6.1.1) 
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where 
 θ  is the phase angle [deg] 
 ACL  is the distance between the wave front and the centre of the first side-span [m] 

 waveL  is the wave length [m] 

The distance ACL  can be formulated as a function of the attack angle as   

 ( )( )1 3 2sin 0.5 sin , [0 ;90 [AC ABL L L L Lφ φ φ= ⋅ = ⋅ + + ⋅ ∈ ° °  (6.1.2) 
where 
 φ  is the attack angle [deg] 

 ABL  is the distance between the centres of the side-spans [m] 

By combination of (6.1.1) and (6.1.2), the phase angle θ can be described as 

 
( )( )1 3 20.5 sin

360 , [0 ;90 [
wave

L L L
L

φ
θ φ

⋅ + + ⋅
= ⋅ ° ∈ ° °  (6.1.3) 

Figure 208 shows the maximum phase angle that can be obtained for case 1 with 2 20mL = and 

wave lengths that correspond to sea states 1-5. The wave lengths have been calculated by 5th order 
Stokes theory and include the effect of steady current cU , as shown in Chapter 1.1 (Design 

Conditions). 
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Figure 208: Phase angle as function of wave angle for case 1 and 2 20mL = . 

It may be seen from Figure 208 that in order to achieve a considerable phase angle for sea states 3-5, 
which cause most damage, the attack angle must be large. Furthermore, for case 1 and sea states 3-5, 
the maximum phase angle is 180θ < ° . This entails that a 2D wave will not be able to excite the free-
spans in perfect opposite phase, i.e. 180θ = ° . 
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When increasing the attack angle, the velocity perpendicular to the pipe will decrease. This can be 
described as 

 
cos

0 for 90
res

res

U U
U

φ
φ

= ⋅

→ → °
 (6.1.4) 

Conservatively, the reduction of the velocity according to (6.1.4) has been neglected in the following 
multi-span analysis based on the objective to obtain an upper bound solution to the impact of the 
pipeline.  

In conclusion, it is highly conservative to calculate the damage of the pipeline multi-span by 
assuming that the wave load from a 2D wave affects the two neighbouring free-spans in perfect 
opposite phase. 

6.1.2.2. Fatigue Analysis 

In this section, the damage in case 1 with 2 5mL =  is considered for varying phase angles 

{ }0 ;90 ;180θ ∈ ° ° ° , where 0θ = °  indicates that the loads are applied in phase. Figure 209 and 

Figure 210  show the damage ratio for lateral and vertical excitation, respectively. 
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Figure 209:  Damage caused by lateral excitation for varying phase angles 

{ }0 ;90 ;180θ ∈ ° ° ° in loads affecting case 1 with 2 5mL = . 
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Figure 210: Damage caused by vertical excitation for varying phase angles { }0 ;90 ;180θ ∈ ° ° °  

in loads affecting case 1 with 2 5mL = . 

It may be seen from Figure 209 that the damage caused by lateral excitation increases significantly 
when the load is applied out of phase. The damage in Figure 209 reaches a maximum at 180θ = ° , 
i.e. when the lowest eigenmode is excited according to Figure 205. It is seen that the damage for 
lateral excitation exceeds the allowable damage limit 0.1limD =  when 90θ = ° and 180θ = ° . 

From Figure 210 it may be seen that the damage caused by vertical excitation reaches a maximum at 
90θ = ° . The damage caused by vertical excitation of the multi-span is much lower than the damage 

caused by lateral excitation since the multi-span pipeline does not reach the range of vortex lock-in 
and the magnitude of the cross-flow forces is lower than the in-line forces. As a result of this, the 
analysis of damage caused by vertical excitation is not considered further. 

Figure 209 and Figure 210 show larger damage for the single-span compared to the multi-span 
affected by loads in phase. The frequency of the mode 2 is higher than the frequency of the single-
span which decreases the dynamic amplification of the dynamic load. So the neighbouring free-pans 
work in advantage for the pipeline when they are excited in phase. 

6.1.3 EFFECT OF LENGTH OF MID-SUPPORT 

In this section, the effect of the length of the mid-support upon the eigenfrequencies and damage of 
the multi-span pipeline is investigated. The length of the mid-support is considered in the range 

[ ]2 5m;20mL ∈ for both cases 1 and 2.  

6.1.3.1. Frequency Analysis 

Figure 211 shows the four lowest eigenfrequencies for cases 1 and 2, respectively. In addition, the 
two lowest eigenfrequencies of a single-span are shown with the dashed line. The single-span 
corresponds to analysing the free-spans individually as single-spans. 
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Figure 211: Eigenfrequencies for case 1. The dashed lines represent the lowest eigenfrequencies 
for a single-span. 
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Figure 212: Eigenfrequencies for case 2. The dashed lines represent the lowest eigenfrequencies 
for a single-span. 

For case 1, it is seen from Figure 211 that the eigenfrequencies of the multi-span differ from those of 
the single-span when the length of the mid-support decreases. The lowest lateral and vertical 
eigenfrequency begin to decrease at 2 15mL <  and 2 10mL < , respectively. The lowest 

eigenfrequency in lateral direction decreases to about half the frequency of the single-span for 

2 5mL = . The higher stiffness of the vertical soil spring prevent the same amount of deviation in the 

vertical eigenfrequencies.  

For case 2, it is seen from Figure 212 that neither the lateral nor the vertical eigenfrequency of the 
multi-span deviate significantly from the corresponding eigenfrequencies for a single-span.  

In conclusion, the frequency analysis of case 1 indicates that interaction occurs when the length of 
the mid-support is less than 15 m, given the present assumptions. The results for case 2 indicate that 
when one of the free-spans is considerably smaller than the other, interaction decreases. 
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6.1.3.2. Fatigue Analysis 

The damage ratio caused by lateral excitation is shown in Figure 213 and Figure 214 for case 1 and 
2, respectively. The damage for lateral excitation for a single-span is shown for comparison. 
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Figure 213: Damage for lateral excitation in case 1. 
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Figure 214: Damage for lateral excitation in case 2. 

Figure 10 shows that in case 1, the damage increases when the length of the mid-support  is 

2 15mL ≤ . Furthermore, the maximum allowable damage ratio 0.1limD =  is exceeded for 2 5mL = . 

Figure 214 show that in case 2, the damage also increases for 2 15mL ≤ , but the damage does not 

reach the allowable damage ratio. The damage for lateral excitation that is calculated in case 2 is 
significantly lower than that of case 1.  

It can be concluded that the length of the mid-support and the ratio between the lengths of the 
neighbouring free-spans are important parameters for the presence of interaction between the free-
spans.  
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6.1.4 EFFECT OF FRICTION ANGLE OF SOIL 

In this section, the effect of the friction angle of the soil upon the eigenfrequencies and damage of 
the multi-span pipeline is investigated for case 1. The friction angle is considered in the range  

[25 ;35 ]ϕ∈ ° ° .  

6.1.4.1. Frequency Analysis 

The lowest lateral and vertical eigenfrequencies of the multi-span pipeline for varying friction angles 
of the soil are shown in Figure 215, respectively. The frequency of a corresponding single-span with 

30ϕ = °  is shown for comparison by the dashed line.  
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Figure 215: The lowest lateral and vertical eigenfrequency for case 1 and different angles of 
friction [25 ;35 ]ϕ∈ ° ° . 

Figure 215 shows that neither the lateral nor the vertical eigenfrequency of the multi-span change 
significantly for different friction angles of the soil.  

A decrease in the friction angle of the soil results in some decrease in the lateral eigenfrequency, 
whereas the vertical frequency of the multi-span is almost unaffected. The latter observation may be 
explained by the fact that the first part of the vertical spring curve does not change significantly 
when changing the angle of friction according to Chapter 4.1 (Soil Springs). 

In conclusion, for friction angles in the range of [25 ;35 ]ϕ∈ ° ° , interaction occurs for 2 15mL ≤ . 

6.1.4.2. Fatigue Analysis 

The damage ratio caused by lateral excitation for varying friction angles of the soil is shown in 
Figure 216. 
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Figure 216: Damage caused by lateral excitation for varying friction angles in case 1. 

Figure 216 shows that the damage ratio for the multi-span increases rapidly for decreasing angles 
when the length of the mid-support is short. Furthermore, compared to the single-span, the damage 
for the multi-span is considerably more dependent on the friction angle of the soil as the two 
neighbouring free-spans begin to interact. The strength of the mid-support has great influence on the 
structural system of the multi-span and as the friction angle decreases, so does the strength of the 
mid-support, especially when 2L  becomes smaller than 10m. 

6.1.5 EFFECT OF GAP RATIO 

In this final section, the effect of the gap ratio upon the eigenfrequencies and damage of the multi-
span pipeline is investigated for case 1. The gap ratio is considered in the range { }/ 0;1e D = . 

6.1.5.1. Frequency Analysis 

Figure 217 shows the variation of the lowest lateral and vertical frequency, respectively, for a multi-
span with no gap. The frequency of a corresponding single-span with no gap is shown for 
comparison by the dashed line.  
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Figure 217: Eigenfrequency for case 1 with gap ratio / 0e D = . 

The eigenfrequencies shown in Figure 217 indicate that interaction occurs for 2 15mL < . The 

eigenfrequencies are smaller compared to those of the multi-span reference model, but this has not 
resulted in interaction for longer mid-supports. Thus, the length of 2L  for initial interaction does not 

seem to depend directly upon the gap ratio. 

6.1.5.2. Fatigue Analysis 

The damage caused by lateral excitation for varying gap ratios is shown in Figure 218. 
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Figure 218: Damage for case 1 for varying gap ratios. 

It is seen from Figure 218 that the damage due to interaction increases significantly when the gap 
ratio decreases. As the dynamic loads are increased and applied out of phase, the load frequency has 
become closer to the eigenfrequency of the multi-span. The combination of these factors result in 
increased damage. Figure 218 also indicates that interaction occurs for lengths of the mid-support 

2 15mL < . 
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6.1.6 REFERENCE MODEL (ULS) 

In this section the reference model for the ULS analyses is defined. The design conditions and 
assumptions are shown in Figure 219. 
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Figure 219: Reference model for multi-span in ULS. 

The definitions of spanning lengths are identical to those defined in FLS which are shown in Table 
61. The design conditions and assumptions made for the two neighbouring spans are identical to 
those made for a single-span in Chapter 5.4 (Buckling Analyses). The design loads acting on the 
system must therefore also be identical to those determined in Chapter 5.4 (Buckling Analyses). 

6.1.7 FAILURE OF MID-SUPPORT 

Failure of the mid-support happens as the length 2L  becomes so small that the forces from waves 

and current acting on the free-spans are able to pull the pipe through the soil bank that acts as mid-
support. This will connect the two neighbouring free-spans to a single-span which will have a 
devastating effect on the pipeline. In the basic cases that are analysed in this project, failure of the 
mid-support will create a single-span with a spanning length that is above the maximum spanning 
length of both ultimate and fatigue limit state and will ultimately lead to failure of the pipeline. 

6.1.7.1. Design Procedure 

The analysis of failure is made as a static analysis. The length of the mid-support 2L  is decreased 

until failure of the mid-support is observed. This is done for the case of symmetrical and 
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asymmetrical multi-spans. Figure 219 shows the multi-span where the mid-support fails or restrain 
the pipeline.    

2Case1, 10mL = 2Case1, 5m - Failing mid-supportL =
y

xz

2Case 2, 10mL = 2Case 2, 5m - Failing mid-supportL =

 
Figure 220: Deformed multi-span pipeline. Left) Restraining mid-support for case 1 and 2, 
respectively. Right) Failing mid-support for case 1 and 2, respectively. 

Analysis has shown that the mid-support fails at 2 9mL ≈ for both case 1 and case 2, respectively. 

Surprisingly, the minimum length of the mid-support in case 2 is not longer than the minimum 
length found in case 1. The soil elements predict failure in case 2 as the pipeline is pulled through 
the soil from one side (the widest free-span). In case 1, the soil elements predict failure as the 
pipeline is pulled through the soil from both sides which apparently is not particularly worse than 
case 2. Frome these analyses it is concluded that the minimum length of the mid-support in case 1 
and case 2 should be 2 10mL ≥ . 

6.1.8 EVALUATION 

This evaluation partly serves to sum up the findings in the analyses of the project pipeline and partly 
to outline some guidelines for multi-span analyses in general. 

Analyses in FLS 

Frequency analysis shows that interaction between two neighbouring free-spans decrease the 
eigenfrequencies compared to the eigenfrequency of a single-span. Interaction has been shown to be 
most significant when the neighbouring free-spans have identical lengths and the length of the mid-
support decreases. For neighbouring free-spans with spanning lengths of 25 m or less, frequency 
analysis has shown that interaction begins when the length of the mid-support becomes less than 15 
m. 
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The lowest eigenmode of an interacting multi-span is obtained when the two neighbouring free-
spans oscillate out of phase. If one of the neighbouring free-spans is reduced to half its length which 
creates an asymmetrical multi-span, the eigenmode where the free-spans oscillate in phase is 
suppressed. 

In the analyses, the hydrodynamic forces from waves and current have been conservatively assumed 
to act out of phase in order to excite the lowest eigenmodes. The assumption is not physically valid 
for the severe sea states since the forces are also assumed to originate from two-dimensional waves. 
Since an upper bound of the damage has been sought, this has been ignored.   

The multi-span pipeline does not experience vortex lock-in. Thus, damage due to vertical excitation 
is not critical. This means that the conclusions made in this project only concerns pipeline multi-
spans without significant vortex lock-in. 

The fatigue analysis has shown that the interaction between the two neighbouring free-spans 
increases the damage of the pipeline. The damage effect of interaction is largest for a symmetrical 
multi-span and for decreasing lengths of the mid-support. Similar to the frequency analysis, the 
fatigue analysis for neighbouring free-spans of L=25 m or less show that the damage starts to 
increase as the length of the mid-support becomes less than 15 m.  

Parametric study has shown that a mid-support length of 15 m is sufficient to avoid significant effect 
of interaction for / [0;1]e D∈  and [25 ;35 ]ϕ∈ ° ° . However, it has been shown that when interaction 

between the neighbouring free-spans is present, the gap ratio and friction angle has great effect on 
the consequences of interaction concerning fatigue damage. The fatigue analysis show that the 
acceptable damage ratio of lim 0.1D =  is reached for a mid-support length of approximately 10 m and 

neighbouring free-spans of 25 m but this result is highly dependent on the assumption made for 
/e D  and ϕ .  

Analyses in ULS 

The failure analysis of the mid-support has shown that a minimum mid-support length of 10 m is 
required to avoid failure of the mid-support between two neighbouring free-spans of 25 m. The same 
minimum length is required for the asymmetrical multi-span with spanning length of 25 m and 12.5 
m. The forces that act upon the widest free-span pull the pipeline through the soil of the mid-support 
from one side whereas two equally-sized free-spans pull the pipeline through the soil of the mid-
support from both sides. The two situations seem to happen at almost the same length of the mid-
support where the latter is the most critical case. 

To complete the analysis in ULS, buckling analysis should be performed for the multi-span. This has 
been left out in this project. The buckling analysis for a multi-span can be made similar to the design 
procedure for the single-span described in Chapter 2.2 (Buckling). It is noticed that interaction 
between two neighbouring free-span can reduce the critical buckling length which is another reason 
to avoid interacting free-spans.   
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Guidelines to Multi-span Analyses 

This section serves to outline some guidelines to a general verification procedure for multi-span 
analysis in FLS using a force model similar to that of the Abaqus Model in this project. The 
verification procedure is composed of three steps: 

• Step 1) Frequency analysis is performed to determine if the distance between the 
neighbouring free-spans is above the length required for the neighbouring free-spans to 
interact. If no interaction is present, the free-spans can be regarded as individual single-
spans. If interaction is present, continue to step 2. 

 
• Step 2) Fatigue analysis of the pipeline is performed as an upper bound solution assuming 

the hydrodynamic forces act out of phase on the two neighbouring free-spans. If the multi-
span is in the range of vortex lock-in, this should be taken into account in the hydrodynamic 
force model. 

 
• Step 3) If the damage ratio that is determined in step 2 is not critical, restoration of the free-

spans is planned. This could be rock-dumping from ships which prevents scour to cause 
free-span at the same location of the pipeline in the future. If critical damage ratio is 
exceeded, it may be considered either to perform more detailed computations or to plan 
damage inspection of the pipeline. The damage inspections will determine whether the 
pipeline should be repaired before the free-span is covered.  

It is noticed that the risk of scour increasing the spanning lengths or decreasing the length of the 
mid-support should always be evaluated when determining the geometrical condition for the multi-
span analysis. The risk of increasing spanning lengths due to scour is highly dependent on the 
weather conditions and the time between observation of a free-span until restoration.  

A complete evaluation of a multi-span pipeline should be based upon ULS analyses that include a 
failure analysis of the mid-support and buckling analysis of the pipeline, in addition to FLS analyses. 
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A AXIAL FORCE 

This section serves to clarify the various axial force contributions that affect the pipeline free-span. 
The use of conventional beam theory requires that the pipeline is homogeneous. In reality, however, 
the axial restraining of the pipeline and the presence of internal and external pressure due to the 
inner and surrounding fluid, respectively, renders the pipeline as a composite beam.  

The composite beam is composed of a pipe-wall and internal fluid, as illustrated in Figure 221. In 
this context, the fact that the pipe-wall is a composite of steel and concrete is without relevance. In 
the pipe-wall, axial stresses exist due to temperature changes and installation. In addition, tractions 
that act perpendicularly upon the pipe-wall along the pipe section exist due to the internal and 
external pressure. In the internal fluid, compressive axial forces exist due to the internal pressure.  

Composite pipeline Homogeneous pipeline

Pipe-wall
Internal 
fluid

total
xF

 
Figure 221: Composite and homogeneous pipeline, respectively. 

In order to abandon the composite description and instead treat the pipeline as homogenous, the 
external axial force of the homogeneous pipeline should have the following contributions 

 total install temp pressure poisson non linear
x x x x x xF F F F F F −= + + + +  (A.1) 

where 
 total

xF  is the total axial force in the homogenous pipeline [N] 

 install
xF  is the initial axial force in the pipe-wall due to installation (lay-tension) [N] 

  temp
xF  is the axial force in the pipe-wall due to temperature [N] 

 pressure
xF  is the axial force in the homogenous pipeline due to pressure [N] 

 poisson
xF  is the axial force in the homogenous pipeline due to the Poisson effect [N] 

 non linear
xF −  is the axial force due to large deformations [N] 

[Braestrup et al. 2005, p105] 
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In this project, lay-tension from installation has been omitted because tension will be in favour for 
the pipeline free-span. The axial force contribution due to large deformations is implicit in the 
numerical model. The axial force due to installation and large deformations is not explored further in 
this section. 

A.1 TEMPERATURE 

The external axial force due to temperature arises from combined axial restraining and temperature 
change in the pipe-wall. All materials change volume when they are exposed to temperature 
changes. When the pipeline is exposed to rising temperature as the pipeline goes from the water-
filled state to the functional state, the steel in the pipe-wall expands. The axial expansion for a part of 
the pipeline is shown in Figure 222. 

0L LΔ

 
Figure 222: Expansion of a part of a pipeline. 

The expansion is assumed to be proportional to the temperature and is written as  

 0L T LαΔ = ⋅ Δ ⋅  (A.2) 
where 
 LΔ  is the change in length [m] 
 0L  is the initial length [m] 

 α  is the expansion coefficient [1/°C] 
 TΔ  is the change in temperature [°C] 
[Gottfredsen & Nielsen 1997, p160] 

The axial strain due to temperature expansion of the pipeline may be formulated as 

 
0

temp
x

L
L

ε Δ
=  (A.3) 

where 
 temp

xε  is the axial strain due to temperature, defined as positive in tension [-] 

By use of (A.2) and (A.3), the initial length is eliminated from the formulation of axial strain due to 
temperature expansion 

 temp
x Tε α= ⋅Δ  (A.4) 

The axial strain due to normal stresses can be described by Hooke’s law as 

 1el
x x

steelE
ε σ=  (A.5) 

where 
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 el
xε  is the axial strain due to axial stresses [-] 

 xσ  is the normal stress [Pa] 

 steelE  is Young’s modulus for steel [Pa] 

When assuming that the pipeline is axially restrained so temperature expansion is prevented, the 
total axial strain must be zero. This can be formulated as 

 0temp el
x x xε ε ε= + =  (A.6) 

 where 
 xε  is the total axial strain [-] 

 el
xε  is the axial strain due to normal stress [-] 

Implementation of (A.4) and (A.5) into (A.6) provides the following normal stress due to prevention 
of temperature expansion 

 x steelE Tσ α= − ⋅ ⋅ Δ  (A.7) 

It is seen from (A.7) that the pipeline will experience additional normal stress as the temperature 
rises. The axial force due to temperature expansion can now be determined as 

 
temp

x x s

steel s

F A
E T A

σ
α

=

= − ⋅ ⋅ Δ ⋅
 (A.8) 

[DNV-RP-F105 2006, p31] 

A.2 PRESSURE  

The axial force due to pressure arises from combined axial restraining and presence of internal and 
external pressure. It has been the object of some confusion in the past when the design stresses for 
pipeline or risers were to be determined. In this section, the pressure-induced axial force is described 
with general reference to [C. P. Sparks 1984, pp46-54].  

According to DNV, the pressure-induced axial force is claimed to be 

 pressure
x i i e eF p A p A= − +  (A.9) 

[DNV-RP-F105 2006, p31] 

In order to explain (A.9), it has been found favourable to distinguish between the axial force in the 
pipe-wall and the axial force induced by the fluid inside and outside the pipeline. This distinction  
has been made by introducing an effective axial force which is explained in the following.  
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A.2.1 Effective Axial Force 

To explain the principle of effective axial force, the pipeline free-span is regarded as a composite 
column. In order to determine the global behaviour of a composite column, it is necessary to 
consider: 

1.  The total axial force that acts in the column section 
2.  The total bending stiffness (assuming elastic material) 

In the absence of external pressure, the pipeline corresponds to a composite column of pipe and 
fluid. The effective axial force is determined as the sum of forces acting in the pipe-wall and fluid 
column, respectively  

 , 0eff tw
x x i i iF F p A p= − ⋅ ≥  (A.10) 

where 
 eff

xF  is the effective axial force in the pipeline [N]  

 tw
xF  is the axial force in the pipe-wall (true wall) [N] 

 ip  is the internal pressure [Pa] 

 iA  is the internal cross section area of the pipe [m2] 
[C. P. Sparks 1984, p48] 

When external pressure is present, the compressive force in the suppressed fluid column has to be 
deducted from the force acting in the pipeline section. This leads to the general formulation of 
effective axial force in the pipeline 

 

( ) , 0eff tw
x x i i e e e

tw
x i i e e

tw pressure
x x

F F p A p A p

F p A p A

F F

= − ⋅ − − ⋅ ≥

= − ⋅ + ⋅

= +

 (A.11) 

where  
 eff

xF  is the effective axial force in the pipeline [N] 

 ep  is the external pressure [Pa] 

 eA  is the external cross section area of the pipe [m2] 
[C. P. Sparks 1984, p48] 

Figure 223 illustrates the principle of determining the effective axial force in the pipeline.  
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Pipe wall Internal fluid column Displaced fluid column

twF

ip iA⋅ ep eA⋅effF

Effective axial force
efF

 
Figure 223: Illustration of effective axial force in pipeline. Big and small arrows indicate forces 
and stresses, respectively. 

To avoid any confusion, it is noticed that the effective axial force defined in (A.11) is identical to the 

total axial force defined in (A.1) since the true-wall force tw
xF  is the sum of all forces acting in the 

pipe-wall  

 tw install temp poisson non linear
x x x x xF F F F F −= + + +  (A.12) 

It is also noticed that the stiffness of the pipeline is governed only by the pipe-wall as the fluid 
columns has zero contribution to the total bending stiffness of the pipeline. 

A.2.2 Buckling Example Due to Pressure 

The hypothesis that effective axial force determines the global behaviour of the pipeline has been 
investigated by buckling experiments of two fluid-filled pipelines [C. P. Sparks 1984, p50]. Figure 
224 shows the principle of the experiments. The two columns were identical except that the fluid in 
column 1 was subjected to internal pressure. In the pipe-ends, an external compressive force was 
applied axially upon the entire cross-section and the lateral displacements were constrained. 

ip

F

L

F

F

L

F

Column 1 Column 2

 
Figure 224: Principle of buckling tests of fluid-filled pipelines of length L  with and without 
internal pressure ip , respectively.  
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Measurements showed that buckling occurred in both pipes when the external force reached the 
Euler force 

 
2

2E
EIF F

L
π

= =  (A.13) 

where  
 F is the applied force in the pipe-ends, defined as positive in compression [N] 
 FE is the Euler axial force load, defined as positive in compression [N] 
 EI is the bending stiffness of the pipe [Nm2] 
 L is the length of the pipe [m] 

This may be explained by the fact that the two columns experience an identical effective axial force 
that is equal to the same applied force. However, the axial forces in the pipe-wall and the inner fluid-
columns are distributed differently in the two cases. In column 2, the external load is carried entirely 
by the pipe-wall while in column 1, the same external load is carried by both the pipe-wall and the 
fluid. Thus, internal pressure can induce global buckling of a pipeline. 

A.3 POISSON EFFECT 

The external axial force due to the Poisson effect arises from combined axial restraining, the Poisson 
effect and the presence of external and internal pressure. It may be explained in the following way: 
The tractions that act upon the pipe-wall due to internal and external pressure will tend to strain the 
cross-section in radial direction. Since this is prevented due to the Poisson effect and axial 
restraining, an axial reaction force arises. This is known as a plane strain state.  

The axial force due to the Poisson effect can be determined by force equilibrium of a infinitesimal 
part of the pipe-wall as shown in Figure 225.  

r
dθ

2
dθ

i ep p p= −

2F

1F

2
dθ

1F

 
Figure 225: Infinitesimal part of the pipe-wall where r is the radius, dθ  is an infinitisimal 
change of angle, 1F  is the hoop force and 2F is the axial force. 

By demanding vertical equilibrium of the forces affecting the infinitesimal part of the pipe-wall and 
assuming a thin-walled section, the hoop force 1F  can be determined as 
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i e
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 (A.14) 

where  
 p is the difference in internal and external pressure [Pa] 
 r is the radius of the pipe-section [m] 
 dθ  is an infinitesimal change of angle 
 F1 is the hoop force [N] 

The axial reaction force can be determined as 

 2 1
1
2

F F pDν ν= ⋅ =  (A.15) 

where  
 F2 is the axial reaction force [N] 

In order to get the total force contribution from the Poisson effect along the entire pipe section, 2F  is 

multiplied with the circumference of the pipe section. The total force contribution from the Poisson 
effect is found as 

 
( )

( )

2

2

1
2

1
2
2

poisson
x

i e

i e

F D F

D pD

D p p

p p A

π

π ν

π ν

ν

= ⋅

=

= −

= −

 (A.16) 

[DNV-RP-F105 2006, p31] 

A.4 TOTAL AXIAL FORCE 

Neglecting contributions due to installation and large deformations of the pipe, the total axial force 
can be written as 

 
2 ( )

total temp pressure poisson
x x x x

steel s i i e e i e

F F F F
E T A p A p A p p Aα ν

= + +

= − ⋅ ⋅ Δ ⋅ − + + −
 (A.17) 
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B RAYLEIGH DAMPING 

The global damping is implemented in the numerical models by Rayleigh’s damping model which 
assumes that the damping matrix can be written as a linear combination of the mass and stiffness 
matrix as 

 0 1a a= +C M K  (B.1) 
where 
 C  is the damping matrix [-] 
 M  is the mass matrix [-] 
 K  is the stiffness matrix [-]  
 0 1,a a  are the Rayleigh coefficients [-] 
[Nielsen 2004, p100] 

When modal decoupling is assumed, the relation between the Rayleigh coefficients and the damping 
ratios can be written as  

 ( )2
0 1

1 , 1,2,...,
2i i

i

a a i nζ ω
ω

= + =  (B.2) 

Where 
 iς  is the ith damping ratio [-] 

 iω  is the ith circular eigenfrequency [rad/s] 
 i is the mode number [-] 
 n is the number of degrees of freedom [-] 
[Nielsen 2004, p100] 

By use of (B.2), the Rayleigh coefficients can be calibrated perfectly for two eigenmodes by 

 
( )

2 1
0 11 2

2 2
1 22 1

2 1

2
1 1

a
a

ω ω
ζωω
ζω ω ω ω

−⎡ ⎤
⎡ ⎤ ⎡ ⎤⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥−−⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

 (B.3) 

[Nielsen 2004, p100] 

By assuming 1 2 globalζ ζ ζ= = , the Rayleigh coefficients may be determined. The remaining modes 

will also experience damping but the damping ratio for these modes will not be equal to globalζ . This 

is however considered to be a fair damping model as the dynamic behaviour of the free-span pipeline 
is dominated by the first two eigenmodes. 
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C BUCKLING EIGENVALUE 

PROBLEM 

In Abaqus, the global buckling problem is solved by determining loads for which the global stiffness 
matrix becomes singular. The buckling load can be found by determining the non-trivial solution for 
the following system of linear equations 

 0 0nm m =K v  (C.1) 
  where 
 0

nmK  is the global tangent stiffness matrix when the load is applied 

 mv  is the non-trivial generalised displacement vector 
 ,m n  denote the degrees of freedom [-] 
[Dassault Systèmes 2007, Section 6.2.3] 

This can be formulated as an eigenvalue problem by introducing a loading pattern nQ determining 

the load which is scaled by load multipliers. The eigenvalue buckling problem is defined as 

 ( )0 0nm nm m
i ivλ Δ+ =K K  (C.2) 

where 
 0

nmK  is the global stiffness matrix in the base state incl. effects of pre-loads 

 nm
ΔK  is the differential initial stress and load stiffness matrix due to the loading pattern nQ  

 iλ  is the ith load multiplier 

   m
iv  is the ith normalised buckling mode, normalised so the maximum displacement is 1.0 

[Dassault Systèmes 2007, Section 6.2.3] 

It is noticed that the value of the loading pattern nQ  is not important since it is scaled by the load 

multiplier iλ  that is found in the eigenvalue problem. For ease, nQ  may be set to 1.0. 
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D ELEMENT MATRICES IN MATLAB 

MODEL 

In this appendix, the element stiffness and mass matrices of the elements in the Matlab Model are 
given. The elements are based upon the theory of plane, straight Bernoulli-Euler beams. For 
convenience, the element matrices are presented for a beam whose axial axis is parallel with the 
global axial coordinate. 

D.1 ELEMENT STIFFNESS MATRICES 

In the Matlab Model, four element stiffness matrices are used. For the mid-span and side-span, the 
element stiffness matrices for a regular beam and beam upon Winkler foundation are used, 
respectively. In the case of large rotations, the presence of a tensile or compressive initial axial load 
of large magnitude may considerably increase or reduce the stiffness of the element, respectively. In 
this case, the element stiffness matrices are adjusted. An overview of the equations numbers and 
function calls of the element stiffness matrices are shown in Table 62 and the element stiffness 
matrices are given below.  

Free-span Side-span Effect of 
initial axial 

load 
Equation 
number 

Function 
call 

Equation 
number 

Function  
call 

No (D.1)  Beam2e(..) (D.3) Beam2w(..) 
Yes (D.2) Beam2g(..) (D.4) Beam2wg (..) ** 

D.1.1 Regular Beam 

The element stiffness matrix of a regular beam is 

   

 

3

2

3 2 3

2 2

12

6 4

612 12

6 62 4

0 sym.

0

0 0
0 0

0 0

EA
L

EI
L
EI EI

LLe
beam EA EA

L L
EIEI EI

L L L
EI EIEI EI

L LL L

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥−
⎢ ⎥

− −⎢ ⎥
⎢ ⎥−⎣ ⎦

K  (D.1) 

Table 62: Overview of equation numbers and function calls  for element stiffness matrices that 
are used for the mid-span or side-span, and with or without the effect of an initial axial load.  
All functions are pre-defined in the CALFEM toolbo, except the one that is marked with **. 
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where 
 e

beamK  is the element stiffness matrix of a regular beam 
 EA is the element axial stiffness [N] 
 EI is the element bending stiffness [Nm2] 
 L is the element length [m] 
[Department of Mechanics and Materials 1999, Sect. 5.6-3; Nielsen 2004, p153] 

D.1.2 Beam With Effect of Initial Axial Load 

The element stiffness matrix of a beam with the effect of an initial axial load is 
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2

612 12
5 2 5
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2 4 2 3

0 sym.
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⎢ ⎥
⎢ ⎥=
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⎢ ⎥

− −⎢ ⎥
⎢ ⎥−⎣ ⎦

K  (D.2) 

where 
 2

e
beamK  is the element stiffness matrix of the beam with the effect of an initial axial load 

 jφ  is the jth interpolation function 

[Department of Mechanics and Materials 1999, Sect. 5.6-16] 

The interpolation functions are determined by  

 

( )

( )

2 2

1 2 2
1

22 2

1 2
1

3 1 2 4 1 2 5 1 2

0 : cot , , ,
2 2 12 1

0 : coth , , ,
2 2 12 1

1 3 1 3, ,
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c L c L c LN c
L N L

EIc L c L c LN c
L

πφ φ ρ
φ

ρ
ππφ φ ρ

φ

φ φ φ φ φ φ φ φ φ

⎛ ⎞< = = =⎜ ⎟ ⋅ −⎝ ⎠
= −

⎛ ⎞> = = − = −⎜ ⎟ ⋅ −⎝ ⎠

= + = − + =

 

where 
 N is the initial axial load, defined as positive in tension [N] 
 c is a coefficient [1/m] 
 ρ is the negative ratio of the axial load and the Euler load [-] 
[Department of Mechanics and Materials 1999, Sect. 5.6-16] 

D.1.3 Beam Upon Winkler Foundation 

The element stiffness matrix of a beam upon Winkler foundation is 
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 (D.3) 

where 
 e

beam winkler−K  is the element stiffness matrix of a beam upon Winkler foundation 

 e
winklerK  is the element stiffness matrix of the Winkler foundation 

 aκ  is the linear spring stiffness in axial direction [N/m2] 

 tκ  is the linear spring stiffness in transversal direction [N/m2] 
[Department of Mechanics and Materials 1999, Sect. 5.6-12] 

D.1.4 Beam With Effect of Initial Axial Load Upon Winkler Foundation 

The element stiffness matrix of a beam with the effect of an initial axial load where the beam is 
placed upon a Winkler foundation is 

 2 2
e e e
beam winkler beam winkler− = +K K K  (D.4) 

where 
 e

winkler axial−K  is the element stiffness matrix of a beam upon Winkler foundation with axial load 

D.2 ELEMENT MASS MATRIX 

For all of the elements, the consistent element mass matrix is used  
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M  (D.5) 

where 
 eM  is the consistent element mass matrix of the beam 
 m is the mass per unit length [kg/m] 
[Department of Mechanics and Materials 1999, Sect. 5.6-21; Nielsen 2004, p153] 
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E IRREGULAR SEA STATES 

This appendix contains data sheets for the irregular sea states 1-5 that have been generated in 
WaveLab2. The variance spectrum shows the generated wave data compared to a standard 
JONSWAP spectrum. The diagrams of wave height distribution shows the generated wave height 
distribution compared to a Rayleigh distribution. The flow velocity history and acceleration history 
are evaluated at half an outer pipe diameter above the seabed. The sea states are modelled for 3.0 
hours and the actual durations are given in Chapter 1.1 (Design Conditions). 
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E.1 IRREGULAR SEA STATE 1 

Variance Spectrum
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E.2 IRREGULAR SEA STATE 2 

Variance Spectrum
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E.3 IRREGULAR SEA STATE 3 

Variance Spectrum
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E.4 IRREGULAR SEA STATE 4 

Variance Spectrum
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E.5 IRREGULAR SEA STATE 5 

Variance Spectrum
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F EMPIRICAL PARAMETERS OF 

WAKE MODELS 

Wake I 
Model 

Wake II Model Wake II Extended Model 

Regular waves Regular waves Irregular waves Force 
coefficients 

Regular and 
irregular 

waves with 
and without 

current 

Without 
Current 

With 
current 

Without 
Current 

With 
current 

Without 
Current 

With 
current 

AC  0.25 - 0.20 0.48 0.20 0.45 

MC  2.5 - 5.0 2.9 4.0 2.92 

DSC  1.1 0.55 1.1 0.53 

LSC  0.8 0.26 3.72 0.26 3.58 

Dα  0.38 0.57 0.38 0.55 

Dβ  1.0 

Dγ  -0.016 

Dδ  4.0 

Lα  9.8 8.5 9.8 4.4 6.6 5.3 6.6 

Lβ  0.65 0.95 0.65 0.15 0.95 1.15 0.05 

Lγ  -1.0 -0.95 -1.0 -0.95 -0.75 -0.95 -0.75 

Lδ  1.2 1.45 1.2 1.45 1.46 1.35 1.46 

References 
[Lambrakos 
et al. 1987, 

p128*] 

[Soedigdo et 
al. 1998, 

p446, p456-
458] 

[Sabag 
et al. 
2000, 

p1305] 

[Aristodemo et al. 2006, p7] 
[Aristodemo et al. 2007, p6] 

 

Table 63: Empirical coefficients for forces and start-up effect of the Wake Models. All 
coefficients are dimensionless. They are defined in the project and may differ in appearance 
from the original references.  Compiled upon literature study of the indicated references. 
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[Aristodemo et al. 2007, p6] 

 

Table 64: Empirical coefficients for forces and wake effect of the Wake Models. All coefficients 
are defined in the project and may differ in appearance from the original references. Compiled 
upon literature study of the indicated references. 
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