
M o d e l a c c u r a c y i n a s e i s m i c 
d e s i g n o f i mm  e r s e d t u n n e l

Master’s Thesis, 2008 
J a k o b  H a u s g a a r d  L y n g s

Master of Science in Civil  and Structural Engineering
T h e  S c h o o l  o f  C i v i l  E n g i n e e r i n g ,  A a l b o r g  U n i v e r s i t y

x
y z





Model accuracy in aseismic design
of immersed tunnel

MASTER’ S THESIS

THE SCHOOL OFCIVIL ENGINEERING

MASTER OFSCIENCE IN CIVIL AND STRUCTURAL ENGINEERING

AALBORG UNIVERSITY, 2008

Jakob Hausgaard Lyngs





PREFACE

This master’s thesis is prepared at the Master of Science Programme in Civil and
Structural Engineering at Aalborg University, Denmark. The thesis is the outcome of
a long candidate project on the 3rd and 4th semester. The subject for the project period
is Design and Analysis of Advanced/Special Structures.

The thesis consists of the following parts:

• Main thesis
• Appendices. The appendices are located in the back of the main thesis.
• DVD with developed programs, data files, animations, and a pdf-version of the

thesis with working hyperlinks. The DVD is found in the back of the thesis.

The thesis project has been supervised by Associate Professor Lars Andersen, whose
invaluable inspiration and tutoring have been greatly appreciated. Furthermore, the
thesis work has been inspired by the real-world immersed tunnel design experience
and knowledge of Senior Project Manager Michael Tonnesen, COWI, and R&D Man-
ager Carsten S. Sørensen, COWI. I would like to thank them for their highly appreci-
ated guidance.

The thesis may also be found on the websitefinalthesis.hausgaard-lyngs.dk.

Aalborg, 11th June 2008 Jakob Hausgaard Lyngs

i

finalthesis.hausgaard-lyngs.dk




ABSTRACT

This thesis deals with the model accuracy for seismic designof immersed tunnels, like
the proposed underwater artery in Thessaloniki, Greece.

The soil response to seismic waves is analysed in the frequency domain by means
of the domain transformation method and the finite element method. The seismic re-
sponse of an immersed tunnel and the damage in the gasket joints have been calculated
with a closed form solution, a Winkler-type model, and a fullthree-dimensional con-
tinuum model. The Winkler model and the continuum model are applied in the time
domain.

Focus is especially given to the diverging results from the Winkler model, commonly
used in seismic design, and the continuum model, which is considered to be more ac-
curate. Through comparative analyses it is shown that the presented Winkler model
is not able to model retroaction from the tunnel to the soil. This entails that the pre-
sented Winkler model is not suited for seismic design of an immersed tunnel with
non-uniform cross section.

Sensitivity analyses are performed to analyse the influenceof the many parameters
which must be determined for a seismic design. It is shown that the stratification and
the soil parameters, together with the earthquake magnitude, influence significantly on
the tunnel damage. On the other hand, the modelling of the immersed tunnel gasket
joints has very little influence on the calculated gasket deformation. Finally, it is shown
that the critical direction of wave propagation is an angle of approximately45◦ to the
tunnel axis.
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RESUMÉ

Dette afgangsprojekt omhandler modelusikkerheder ved jordskælvsdesign af sænke-
tunneler, med en sænketunnel i Thessaloniki i Grækenland som case.

Jordens respons som følge af jordskælvsbølger er analyseret i frekvensdomæne ved
hjælp af domænetransformationsmetoden og finite element metoden. Responset af
sænketunnelen og skaderne i koblingerne mellem tunnelelementerne er beregnet med
en løsning på sluttet form, en model af Winkler-typen samt enfuld tredimensionel
kontinuummodel. Analyserne med de sidste to modeller foregår i tidsdomæne.

Winkler-modellen anvendes ofte ved jordskælvsdesign, mens kontinuummodellen er
anset for at være mere nøjagtig. De to modeller giver meget forskellige resultater, og
årsagen til denne forskel er undersøgt nøje. Gennem sammenlignende analyser er det
vist, at den opstillede Winkler-model ikke er i stand til at modellere tilbagekobling fra
tunnelen til jorden. Dette indebærer at den opstillede Winkler-model ikke er egnet til
at designe en sænketunnel med fleksible koblinger mod jordskælv.

Ved design mod jordskælv er der mange parametre der skal bestemmes. For at under-
søge hvor nøjagtigt disse parametre bør bestemmes er der udført følsomhedsanalyser.
Det er vist at lagdelingen, jordens parametre samt jordskælvets størrelse har stor ind-
flydelse på den beregnede skade på tunnelen. På den anden sidehar det meget lille be-
tydning for skaden på tunnelen, hvordan det vælges at modellere koblingerne mellem
tunnelelementerne. Endelig er det vist at den kritiske udbredelsesretning for jord-
skælvsbølgen er en vinkel på omtrent45◦ med tunnelens længdeakse.
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1
I NTRODUCTION

In this chapter, a brief outline of the Thessaloniki immersed tunnel project and the
present thesis project is given.

1.1 Thessaloniki immersed tunnel

Thessaloniki is the second-largest city in Greece with a population around one million
inhabitants. The location of Thessaloniki is depicted in Figure 1.1. Thessaloniki is
located in the Axios-Vardaris zone, adjacent to the Servomakedonian zone, which is
characterized as one of the most active seismotectonic zones in Europe. Several active
faults are present in the region. (Pitilakiset al.2007, p134)

Thessaloniki

Figure 1.1: Location of Thessaloniki.

This project deals with the seismic design process of a proposed immersed tunnel,
planned as a 6-lane road toll-tunnel. The intended locationis shown in Figure 1.2
on the following page. The principal objective of the project is to provide congestion
relief to the centre of Thessaloniki by the creation of an underground by-pass. The
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Chapter 1. Introduction

heavily trafficked avenue on the seafront is to be pedestrianised upon the completion
of the tunnel project.

Figure 1.2: The location of the immersed tunnel in the Thermaikos Gulf outside the city cen-
tre of Thessaloniki. The tunnel is depicted with a red dashed line. (Google Earth
2008)

The immersed tunnel will be about1.2km in length and is placed on the seabed at a
water depth of around10m. In both ends, the immersed tunnel is linked to cut & cover
tunnels. In Figure 1.3 a sketch of the immersed tunnel on the seabed is shown.

Figure 1.3: Illustration of the Thessaloniki tunnel. (COWI 2008)

2



The thesis

1.2 The thesis

The focus in the present thesis is the accuracy of the presented calculation models for
seismic design of immersed tunnels. While the Thessaloniki immersed tunnel is used
as case for the thesis project, a final design for the specific tunnel is not provided.
Effort is concentrated on the development and analysis of five calculation models: the
domain transformation method and the finite element method for wave propagation,
and a closed form solution, a Winkler-type model, and a full three-dimensional con-
tinuum model for the soil-structure interaction.

The thesis consists of three parts. In Part 1 the basis for thethesis is formed, as the
general concepts of immersed tunnels and earthquakes are presented, and a basis of
design parameters is found.

In Part 2 the calculation methods are presented. The domain transformation method
and the finite element method have been derived and used for a one-dimensional cal-
culation of the wave propagation from bedrock to the level atthe immersed tunnel.
Thereafter, the closed form solution is presented, followed by the Winkler model and
the continuum model.

Part 3 encloses analyses and comparisons of the models. The reasons for divergences
in the obtained results are discussed, and sensitivity analyses are performed to clarify
the influence of various parameters on the tunnel damage.

Following the bibliography, appendices containing lengthy or trivial derivations not
suited for the main thesis are gathered.

1.3 Demarcation

To maintain focus on the analysis of the accuracy of the calculation models and to
provide a feasible workload, the demarcation of this thesishas elided many potential
phenomena. Some of these are:

• Gasket compression variations
Temperature variations will cause the length of the tunnel elements to vary,
thereby changing the compression of the gasket joints between the elements.
Furthermore, due to relaxation, the compression stress in the gaskets will de-
crease in time. Both of these effects are disregarded.

• Cut & cover tunnels
The thesis purely deals with the immersed tunnel. The cut & cover tunnels
have not been regarded, nor have the connections between theimmersed tunnel
elements and the cut & cover tunnels been given any considerations.

• S-waves
As it is discussed in Section 4.2 on page 19, only S-waves are regarded for the
calculations of the wave propagation.

• No permanent deformation
In the analyses, only transient earthquake motion is analysed. Thus any per-
manent deformation – which could steme.g.from a fault displacement directly

3



Chapter 1. Introduction

beneath the tunnel – is disregarded.

• Damage related to the gasket joints
Only the deformation in the gaskets are defined as damage in the analyses, as
it is discussed in Section 5.7. Thus, the stresses in the tunnel elements are
not given any consideration. This is done sincee.g.Vrettoset al. (2007) and
Tonnesen (2008) state that the gaskets are normally the critical spots for seismic
analyses of immersed tunnels.

• Linearization
Even though some rather harsh non-linear problems are dealtwith, all of the
models presented in this thesis are purely linear. This is chosen in order to re-
duce computation time, and since it is deemed that only smallstrains will occur
in the dynamic analyses. Also, to utilise the frequency domain, linear material
behaviour is a prerequisite. Where very non-linear behaviour is occurring,e.g.
for the soil and for the gasket behaviour, sensitivity analyses are performed in
Part 3 to quantify the possible error.

Also, the use of linear material models entails that nominaltensile stresses will
occur in the soil. This is not compatible with the general observed behaviour of
(non-cohesive) soils. However, the soil pressures due to gravity are not incorpo-
rated in the models, since the dynamic analysis only models oscillations around
the state of equilibrium. Thus, the real stresses will most likely vary between
more or less compression, making the linear material modelsacceptable from
an engineering point of view.

4
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2
CONCLUSION

In the following, the conclusions of the thesis are summarized.

Part 1

In Part 1 the common basis for the thesis has been established.

The general concepts of immersed tunnels and earthquakes are presented, and the de-
sign cross section has been established on the basis of microzonation by Anastasiadis
et al. (2001) and data from design reports by COWI (2007). An acceleration time
series from the 1995 Aegion earthquake has been used as the seismic input, since a
seismic hazard analysis is outside the scope of this thesis.

Hysteretic and viscous damping have been applied in the models, and the differences
between the mechanisms are discussed. Furthermore, the behaviour of the gasket
joints under tunnel axial and cross axial loading has been presented, and the lineariza-
tion has been discussed. Finally, the damage criterion has been defined as the opening
and compression of the gasket joints, which are calculated in the following parts.

Part 2

In Part 2 the applied calculation models are presented.

The wave propagation from bedrock to the level at the tunnel has been calculated in
the frequency domain with the domain transformation methodand the finite element
method, both of which are derived. It has been shown that the models produce identi-
cal results if the finite element method is discretized sufficiently. But since the domain
transformation method is based on an analytical solution itis more computational ef-
ficient and is used in general in the thesis.
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Chapter 2. Conclusion

The gasket deformation has been calculated with three different methods. A closed
form solution is presented as a very simple way of estimatingthe order of magnitude
of the gasket deformation, based on the free-field soil response.

Subsequently a Winkler-type model has been established, where the immersed tunnel
elements are equated with beams, and the soil-structure interaction is modelled with
linear springs. The Winkler model has been solved in the timedomain by means of a
finite element code, which has been developed for this purpose. The model is coded
in MATLAB , and the spring stiffness’s are determined withABAQUS andPLAXIS.

Finally, a full three-dimensional continuum model is presented. The model is coded in
the commercial finite element codeABAQUS with use of user subroutines and solved
in the time domain. The postprocessing is done withMATLAB.

Part 3

In Part 3 the analyses of the thesis are gathered.

The three different ways of calculating the gasket deformation have been held up
against each other. The three models yield very different results. The closed form
solution provides nearly twice the deformation of the Winkler model, which further-
more calculates deformations of more than 10 times the deformation of the continuum
model.

It may in particular cause surprise that the Winkler model and the continuum model
differ with an order of magnitude. The continuum model is regarded as the more
accurate model of the physical problem, while the Winkler model is commonly used
for seismic design of immersed tunnels. Therefore this divergence has been analysed.

It has been shown that no crude errors have been made in the coding of the models,
and that the models yield very similar output if the tunnel ismodelled with a uniform
cross section. However, the immersed tunnel has a non-uniform cross section, as it
consists of concrete tunnel elements which are connected with rubber gaskets.

Through comparative analyses it has been found that the Winkler model fails to model
any retroaction from the tunnel to the soil, and this specificproperty is shown to be
the single most significant effect on the gasket deformation. In the continuum model
the gasket deformation increases dramatically if retroaction is obstructed. It has been
briefly outlined how retroaction could be implemented in theWinkler model, and it
is the conclusion that without this enhancement, the Winkler model isnot suited for
modelling of structures with non-uniform cross section, such as the immersed tunnel.

The deformation modes of the immersed tunnel have also been analysed, and it has
been found that with the chosen damage criterion, the dominating mode is axial com-
pression and extension, illustrated in Figure 4.10a on page25. Also, bending of the
tunnel provides some gasket deformation, but only approximately10% of the total de-
formation.

During design of the immersed tunnel subjected to earthquake strong ground motion,
many different parameters must be determined. To analyse the importance of the ac-
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Part 3

curacy of these parameters, sensitivity analyses have beencarried out. The thickness,
wave velocity and damping parameters of the subsoil layers have been analysed, to-
gether with the apparent velocity, angle of propagation anddisplacement amplitude of
the earthquake. Finally, the gasket joint behaviour is analysed.

The results from the sensitivity analyses indicate first andforemost, that the general
linearization is acceptable. The gasket behaviour is in principle very non-linear, but
it is shown that the gasket deformation is highly insensitive to variations in the gasket
stiffness. Thus, only little effort should be given to the determination of the gasket
stiffness for a final design. Furthermore, the general non-linear behaviour of soil will
not influence significantly on the gasket deformation, cf. Section 10.3.

The sensitivity analyses further show, that the most important parameters to define are
those related to the ground conditions at the project site. The stratification and the
wave speed may exert significant influence on the gasket deformation. The analyses
show that the eigenfrequency of the soil column influences the results. Thus, it is not
possible to choose the stratification and the soil parameters on the safe side without
performing sensitivity analyses. Furthermore, the determination of the correct design
earthquake obviously will exert significant influence on thecalculated tunnel damage.

The influence of the apparent velocity – the observed propagation velocity of the earth-
quake wave front at the ground surface – is only moderate according to the sensitivity
analysis. For increasing apparent velocity the tunnel damage decreases, and there-
fore the apparent velocity for a final design should be chosenas the lowest reasonable
value. Additionally, it has been shown that the critical direction of wave propagation
is oblique to the tunnel with an angle of approximately45◦. Finally, it is shown that
the chosen damping parameters only have very little influence on the tunnel damage.

It should be noted, that for normalized deformation, the continuum model, the Winkler
model, and, where applicable, the closed form solution, provide very similar results
for most of the sensitivity analyses. Thus, even though the Winkler model and the
closed form solution in general provide overly conservative results for the gasket de-
formation, these models can be used for some parameter analyses.

7
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3
I MMERSED TUNNELS

Tunnels are, in general, constructions used to pass under soil, mountains or water.
The construction techniques are many and count among othersbored tunnels, cut &
cover tunnels, NATM tunnels, blasted tunnels and floating tunnels, each type of tunnel
having its specific strengths. The choice of tunnel type dependsi.a. on economy, the
geography of the project site, and the construction time. InThessaloniki, an immersed
tunnel connected with cut & cover tunnels on shore is under design. In the present
chapter, the immersed tunnel type will be described.

3.1 Construction techniques

An immersed tunnel consists of prefabricated tunnel elements, made so that when
temporary bulkheads are applied in both ends, a tunnel element can be floated to the
project site. There, the tunnel elements are, one by one, lowered into an excavated
trench in the seabed. Finally, the trench are backfilled around the tunnel.

The construction methods of immersed tunnels are developedin the beginning of the
1900s in the USA. The cross sections were at that time typically circular and of steel.
In the 1930s rectangular cross sections of reinforced concrete were developed in Eu-
rope. (DGF 2005, p137)

3.1.1 Construction and transport

The tunnel elements are constructed on shore, and are typically of 100m to 180m in
length. A suitable area of the right size and connected with the project site with water-
ways has to be found. A veritable dry dock is built by damming the construction area,
as it can be seen in Figure 3.1 on the next page. With respect toan optimization based
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Chapter 3. Immersed tunnels

on time and economy, the dry dock should be able to contain all, or some fraction, of
the tunnel elements.

Figure 3.1: The Conwy tunnel in Wales during construction (1988). The connection tunnels
are fully constructed, and plugged with bulkheads. The completed immersed tun-
nel elements in the dry dock can be seen in the lower left corner. (DGF 2005,
p140)

When the construction of a series of tunnel elements has finished, temporary bulkheads
are applied to the ends of the tunnel elements. The tunnel elements are now floated
off to the project site, either on barges or simply, if the tunnel elements have positive
buoyancy, with the help of tugboats, as it can be seen in Figure 3.2.

Figure 3.2: Tug boats manoeuvring an immersed tunnel element. (ITA 1999)

3.1.2 Installation

When arrived at the project site, the tunnel elements are installed one by one. The
tunnel element is ballasted with water until negative buoyancy exists, and the tun-

12



Installation

nel element is lowered into the excavated trench with the help of cranes mounted on
barges. The lowering process is illustrated in Figure 3.3.

Ballast concrete

Figure 3.3: Lowering of a immersed tunnel element. After Trelleborg (2007).

On one of the tunnel ends, a gasket is mounted. The purpose of this gasket is to seal
the connection between two adjacent tunnel elements, ensuring the water tightness of
the structure. The gaskets used in the tender design in Thessaloniki areGina gas-
ket profiles, manufactured by Trelleborg Bakker, The Netherlands. (COWI 2007) In
Figure 3.4, a cross section and a mounted gasket are depicted.

M
ounted

to
elem

ent

C
om

pressed
tow

ards
nextelem

ent

(a) Cross section of Gina-profile type
ETS 180-220-SN

(b) Gina gasket mounted to a tunnel ele-
ment. The bulkhead is installed

Figure 3.4: Gina gasket profile. (Trelleborg 2007)

The tunnel element is placed adjacent to the previously installed element (or the cut
& cover tunnel in Thessaloniki, if it is the first element to beplaced). The steps in the
coupling of the two tunnel elements are illustrated in Figure 3.5.

The tunnel elements are pulled against each other, and the gasket compresses and
forms a reservoir between the bulkheads, cf. Figure 3.5b and3.5c. When the reservoir
is emptied and filled with air at atmospheric pressure, the hydrostatic pressure at the
free end of the tunnel element under installation compresses the Gina gasket, as it is
shown in Figure 3.5d.

Finally, to ensure that the tunnel element stays on the seabed, ballast concrete is cast
in the tunnel element, as it is depicted in Figure 3.3.
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Chapter 3. Immersed tunnels

(a) The immersed tunnel element is pulled
against the previously installed one

(b) A small reservoir is created (c) Between the
bulkheads (ITA
1999)

(d) Water is pumped out and the hydro-
static pressure compresses the Gina
profile

(e)The bulkheads are removed, and a
secondary water seal is applied

Figure 3.5: Coupling of immersed tunnel with Gina gasket. After Trelleborg (2007).

3.2 Advantages of immersed tunnels

Immersed tunnels should be considered whenever it is neededto cross water. Typical,
the choice will stand between a bored tunnel, an immersed tunnel, or a bridge. Some
of the advantages of immersed tunnels are:

• Alignment
Since an immersed tunnel is placed on the seabed, its total length will be less
than the length of a bored tunnel, thus reducing costs.

• Cross section
Since the immersed tunnel elements are constructed on shore, it is possible to
construct various cross sections. The cross section of a bored tunnel is normally
restricted to being circular.

• Ground conditions
While both a bridge and a bored tunnel requires relative good ground conditions,
it is possible to install an immersed tunnel in most types of soil, including soft
alluvial materials. However, in relation to the topic for the present thesis it
should be noted that soft soil may amplify seismic waves significantly.

• Land availability
Even though immersed tunnel construction requires much space for the con-
struction dry dock, this could be located relative far from the project site, making
it possible to construct an immersed tunnel in urban areas, such as Thessaloniki.

• Reclamation
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Advantages of immersed tunnels

When spotting a site for the construction dock, opportunities to reshape river-
banks and coastlines as part of a tunnel construction schememay be observed.
For example, the specific tunnel construction costs may be reduced if the project
is associated with a land reclamation scheme.

• Construction process
Compared to the boring of a tunnel or the construction of a bridge, much of the
immersed tunnel work is done on shore, in the construction dock. This makes
the process easier to handle for the contractor, thus reducing the uncertainties
for construction time and budget.

(ITA 1999)

Even though many advantages for immersed tunnels exist, thefinal choice of construc-
tion will always depend on the specific project.
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4
EARTHQUAKES

The only load condition considered in the present thesis is the earthquake on the im-
mersed tunnel. In this chapter, the basic nature of earthquakes is outlined, and the
affection of the strong ground motion of tunnels is described.

Allthough earthquakes are not very frequent in the region ofthe world were this uni-
versity is situated, they have throughout history caused the destruction of countless
cities on nearly every continent. Earthquakes are the leastunderstood of the natural
hazard and in early days were looked upon as supernatural events. The totally unex-
pected – nearly instantaneous – devastation of a major earthquake has a unique psy-
chological impact which demands serious consideration by society. (Dowrick 1987)

The destructiveness of earthquakes is most recently illustrated to the international
community with the great consequences of the major earthquake of 12 May 2008
in the Sichuan province of China. The casualties count around 70 000, and five mil-
lion people are left homeless. In Figure 4.1 some of the damage due to the disaster is
shown.
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Chapter 4. Earthquakes

Figure 4.1: A bank building in Beichuan after the May 2008 Sichuan earthquake. (Commons
2008)

4.1 Plate tectonics

An earthquake is a spasm of ground shaking caused by a sudden release of energy in
the earth’s lithosphere (i.e. the crust plus part of the upper mantle). The underlying
causes of earthquakes are closely related to the global tectonic processes, which are
continually producing mountain ranges and ocean trenches at the earth’s surface. The
major tectonic plates are depicted in Figure 4.2. (Clough & Penzien 1975, pp522-525)
(Dowrick 1987, pp4-6)

Figure 4.2: The major tectonic plates. The red arrows indicates the movement of the plates.
(Commons 2006)

Almost all earthquakes occur at the interface between two plates. The movements of
the tectonic plates, shown in Figure 4.2 with arrows, are caused by convection in the
mantle, shown in Figure 4.3. Where plates spread from each other, a ridge is formed,
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Wave types

and where plates overlap a subduction zone is formed, where the heavier crust plate
subducts under the lighter. This is depicted in Figure 4.3. It can be seen in Figure 4.2
that the ridges are mostly formed on the oceanic floor.

Outer core

Asthenosphere

Inner core

Spreading ridge

Mantle

Lithosphere
Subduction zoneSubduction zone

Figure 4.3: The parts of the earth with spreading ridges and subduction zones. After(Com-
mons 2007).

If the movement of a plate is obstructed by the neighbouring plate, the friction energy
will be saved up, in some cases for decades or even centuries,until the energy is
released spasmodically as seismic deformation; an earthquake. The rupture plane
is called afault, and can in some cases be observed directly on the ground surface,
especially in larger shallower earthquakes. (Dowrick 1987, p5) (Kramer 1996, p27)

4.2 Wave types

As the earthquake energy is released along the fault, it propagates through the soil as a
number of waves, which have different characteristics. Thenature of these waves are
outlined in this section, which is based upon Andersen (2006, pp2-4). The four most
commonly observed waves, P-waves, S-waves, R-waves, and L-waves are shortly pre-
sented.

The P-wave is denoted theprimary wavesince it is the first wave to arrive at an ob-
servation point. The particle motion is pure dilatation, orpressure. The P-wave is
illustrated in Figure 4.4a.

The S-wave is denoted thesecondary wavesince it arrives after the P-wave, typically
having a phase velocity of half the P-wave velocity. The particle motion for the S-
wave happens as equivoluminal shear. The S-wave does not appear in a fluid, since
no shear stress can be generated there. The S-wave is depicted in Figure 4.4b. A
S-wave consists of two different components, the SV-wave and the SH-wave. The V
and H abbreviates Vertical and Horizontal, and indicates the direction of the particle
motion. The difference is illustrated in Figure 4.4b and Figure 4.5b. In the first of
these subfigures the SV-wave is shown, whereas the latter shows the L-wave which
acts like a SH-wave on the surface.

The P- and S-wave are jointly referred to asbody waves, since they propagate through
space. In opposition to this stands thesurface waves, which count the R-wave (Rayleigh
wave) and the L-wave (Love wave). These are depicted in Figure 4.5 on the following
page. The Rayleigh wave moves the particles in ellipses justlike ocean waves. How-
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Chapter 4. Earthquakes

Figure 4.4: Deformation produced by body waves: (a) P-wave, and (b) SV-wave. The waves
propagate from left towards right. (Kramer 1996, p19)

ever, the particle motion is retrograde near the surface, cf. Figure 4.5. Opposing to
the P- and S-waves, the Rayleigh wave contains both pressureand shear components
in the displacement field. The particle motion is greater in the vertical than in the
horizontal direction, which is not clearly indicated in Figure 4.5.

The L-wave is, shortly explained, horizontally polarized shear waves (SH-waves)
which are bound to the surface like the R-wave, thus creatinghorizontal horizontal
movement of the earth during an earthquake.

Figure 4.5: Deformation produced by surface waves: (a) Rayleigh wave, and (b) Love Wave.
The waves propagate from left towards right. (Kramer 1996, p20)

The present analyses

In a dynamic model, all the above stated types of waves shouldin principle be mod-
elled and accounted for, as the earthquake motion propagates from the fault to the
project site. In Figure 4.6 on the next page the propagation of the earthquake to the
Thessaloniki tunnel is sketched. In the present thesis however, it has been chosen to
focus only on SH-waves, to simplify the problem. It is deemedthat the horizontal
component of the ground motion is the more dangerous and thisis mainly caused by
S-waves, cf. Fardiset al. (2005, p21). Furthermore, it is stated by (Poweret al.1996)
that S-waves are typically associated with peak particle accelerations and velocities,
and the focus on SH-waves is widely used,e.g.by Anastasopouloset al.(2007). Since
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Determination of design earthquake

the waves are refracted as they reach the surface due to decreasing soil stiffness, as it
is sketched in Figure 4.6, the horizontal polarization is justified.

Decreasing stiffness

Bedrock Fault

Surface

Figure 4.6: Propagation of the earthquake waves to the tunnel.

In Figure 4.6 it is sketched that the waves firstly propagate through the bedrock. This
is valid since it is assumed that a significant distance exists between the fault and
the project site. The damping in the alluvial soil is much greater than the damping
in bedrock. Thus, all surface waves are disregarded, since it is assumed that they
are damped away before reaching the project site. On the other hand, surface wave
propagates two-dimensionally and body waves three-dimensionally, which makes ge-
ometrical damping more significant for body waves than for surface waves. Hence,
geometrical damping and material damping are contradictory quantities, the impact of
which should be analysed for a final design.

4.3 Determination of design earthquake

When determining the design earthquake many parameters mustbe evaluated, and
many tools are at hand. In this section, some of these are presented.

This analysis is typical a job for skilled seismologists, but the final determination
should be made in cooperation with the geotechnical and structural engineer, since the
deformation mode of the structure may influence on what is characterized as the more
dangerous earthquake motion.

4.3.1 Size of earthquake

When categorizing earthquakes with a single parameter, the size of the earthquake is
either characterized with the intensity or the magnitude.

Intensity

Intensity is a measure of the destructiveness of the earthquake, as evidenced by human
reaction and observed damage. This is in other words a subjective measure, dependent
on the eyes of the beholder. For historic earthquakes, this is the only measure available.
Several scales are available, including the Modified Mercalli Scale (MM), the Euro-
pean Macroseismic Scale (EMS) and the Japan MeteorologicalAgency Scale (JMA).
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Common for the scales is the representation of the intensitywith Roman numerals.
(PIANC 2001, pp129-130)

Magnitude

Magnitude is an instrumental measure of the size of an earthquake. It is related directly
to the energy released, which is independent of the place of observation. Again, sev-
eral scales are available, based on the amplitude of seismograph records. The scales
include the Richter local magnitudeML, well known amongst laymen through the
nine o’clock news. The moment magnitudeMW or surface magnitudeMS are, how-
ever, preferred by seismologists. The scales do not significantly differ for magnitudes
up to 6. All magnitude scales have in common the representation of the magnitude
with Arabic numerals. The maximum recorded magnitude is about MW = 9.5 (e.g.
Chilean earthquake of 1960) (PIANC 2001, p130)

4.3.2 Seismic hazard analysis

To determine the design earthquake, a seismic hazard analysis can be carried out. The
seismic hazards are the physical phenomena associated withan earthquake, which are
likely to produce adverse effects on human activities. The hazards includei.a. ground
failure and liquefaction, but mostly the ground motion is used as measure, since it is
correlated to the other hazards.

Both deterministic and probabilistic seismic hazard analyses (DSHA and PSHA) can
be performed. In the DSHA, the nearby potential earthquake sources are examined,
and with the help of attenuation relationships or microzonation, the potential size of
the earthquake at the project site is determined. The strongest earthquake is chosen,
and a design to resist this earthquake is performed.

For a PSHA, all nearby seismic sources are incorporated in the design. The probabilis-
tic distributions of each sources earthquake potential areincorporated, and a design is
made based on a chosen reliability indexβ, i.e. the possibility that the design earth-
quake will be exceeded during a particular time period. For further references on
seismic hazard analyses see, for example, (Kramer 1996, pp114-118).

Liquefaction

Liquefaction is a most dangerous phenomenon, which is shortly outlined in the follow-
ing. Under earthquake loading liquefaction can occur in areas with loose cohesionless
soils. Also, liquefaction only occurs in saturated soil, and therefore is most commonly
observed near rivers, bays and other bodies of water (Kramer1996, p5). As the soil
deposit is sheared back and forth, the pore water pressure may rise rapidly, even to
the level of the total stresses, thus eliminating the effective stresses. If this occurs, the
strength and the stiffness of the soil are lost altogether. In this condition large ground
movements can occur. The liquefaction condition ends when the pore water over-
pressure has drained, thus restoring the effective stresses. In some cases a drain path
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can evolve through the upper soil layers, spouting sand and water up as “volcanoes”.
(PIANC 2001, p9)

The mechanisms of liquefaction are schematically shown in Figure 4.7. The damage
mode of liquefaction has not been examined in the present thesis, since the subsoil in
the project area does not contain any cohesionless soils, cf. Table 5.1 on page 28.

Figure 4.7: Mechanism of liquefaction. (PIANC 2001, p10)

4.3.3 Code spectra

Alternatively to seismic hazard analyses, the design earthquake can be determined
with the use of a code. This is the most common approach to an aseismic design
when dealing with ordinary structurese.g. like multi-storey buildings. Typically, the
design seismic action will be given by a response spectrum, the shape and magnitude
of which are altered according to the ground conditions and geographical region. Two
examples of such code spectra are shown in Figure 4.8.
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Figure 4.8: Examples of earthquake response spectra. The shown parameters are used to ad-
just the spectra to the local seismic conditions. (EAK 2000, p18) (EN 1998-1
2003, p25)

The calculation of a response spectrum is done with a single degree of freedom (SDOF)
system, which is subjected to an earthquake. For each distinct frequency, the response
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spectrum value is the maximal response for the SDOF system, which is tuned so that
the eigenfrequency is the distinct frequency. The concept is illustrated in Figure 4.9,
where the SDOFs with varying eigenfrequencies are shown between the input motion
and the response spectrum.

Figure 4.9: The generation of a response spectrum. (Kramer 1996, p571)

Response spectra are directly applicable for the design of conventional buildings in
the frequency domain, but time series are not directly provided from the spectra. To
find appropriate time series, numerous time series must be analysed, and the time
series with the best fit to the design response spectrum should be chosen. The motion
amplitude can be scaled to make a better fit. In a design process, EN 1998-1 (2003)
recommends the use of a minimum of three different time series recordings. In this
thesis however, only a single time series has been used, since the application of more
time series is trivial.

4.3.4 The present thesis

In most cases the design earthquake is not for the structuralor geotechnical consulting
engineer to determine. Typically, the design earthquake isprovided in the Special
Conditions of Contract,e.g. in the form of a peak ground acceleration, velocity, and
displacement, or as a response spectrum.

In the present thesis no analysis has been made to find an appropriate design earth-
quake, since the purpose of this thesis has been not to provide a design for the im-
mersed tunnel but instead to evaluate the accuracy of the design models. In Section 5.5.1
the applied earthquake time series from theMs = 6.2 Aegion 1995 earthquake is pre-
sented. This has been chosen because it was at hand, and due tothe geographical
proximity of Thessaloniki and Aegion, shown in Figure 5.5 onpage 33.

Further information on the detailed seismic environment ofThessaloniki is provided
by e.g.Pitilakis et al. (2007) and Anastasiadiset al. (2001).
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4.4 The influence of earthquakes on underground
structures

For a structure placed above the ground surface, the most dangerous earthquake mo-
tion parameter is normally the acceleration on the surface.The acceleration is typically
converted to an applied force using D’Alembert’s principle, and the seismic design of
the structure is verified (Nielsen 2004, p33).

Seismic design of underground structures is typically verydifferent, since the iner-
tia of the surrounding soil is large relative to the inertia of the structure. This means
that the dominating parameter is the displacement in the surrounding soil. This has
been verified by measurements made by Okamotoet al. (1973). Thus, the inertia of
the underground structure itself becomes of minor importance. The focus in under-
ground seismic design, therefore, is on the free-field deformation of the ground and its
interaction with the structure, as recommended by (Hashashet al.2001, p252).

4.5 Damage modes of tunnels

An immersed tunnel subjected to earthquake-induced strongground motion will de-
form in a number of modes at the very same time. In Figure 4.10,the most significant
of these modes are depicted. Figures 4.10a and 4.10b show compression in the axial
and the cross axial direction, respectively. Figure 4.10c depicts bending of the tunnel,
which can be occur both horizontally and vertically, and Figure 4.10d shows shear
deformation of the cross section, denoted asracking.

(a) Compression-extension (b) Compression of tunnel cross section

(c) Longitudinal bending (d) Racking of tunnel section

Figure 4.10: Deformation modes of tunnels due to seismic waves. After Owen & Scholl
(1981).

For an immersed tunnel, the critical mode of earthquake induced vibration is the lon-
gitudinal oscillations, according to Anastasopouloset al. (2007), since it may lead to
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decompression of the joint gaskets. This will jeopardize the watertightness and, hence,
the safety of the tunnel. Therefore, focus in this thesis is given to the longitudinal de-
formation of the gaskets, occuring mostly from mode (a) of Figure 4.10, but also from
mode (c). Thus, potential deformation of the cross section of tunnel elements and
gaskets is disregarded.

In Section 5.7 on page 38 it is discussed how damage to the tunnel is measured in this
thesis.

4.6 Incoherence

For a structure such as a tunnel that extends over a considerable distance, different
ground motions may occur beneath different parts of the structure. This local spa-
tial variation of the ground motion is denotedincoherence, and it may exert a very
important influence on the response of the structure (Kramer1996, p100).

The incoherence can be caused by a number of factors, three ofwhich are depicted in
Figure 4.11. Figure 4.11a show the wave-passage effect, where an inclined wavefront
causes the motion in locations 1, 2 and 3 to be shifted in time.Figure 4.11b show the
extended source effect, where multiple faults generate earthquake waves which will
reach the observation points at different times. Finally, the effect of soil heterogeneity
is depicted in Figure 4.11c, where inhomogeneities in the soil cause reflection and
refraction of the waves, thus altering the displacements inlocations 1, 2 and 3.

(a) Wave-passage effect (b) Extended source (c) Soil heterogeneity

Figure 4.11: Incoherence. (Kramer 1996, p101)

In the present thesis, only the wave-passage effect is used as the cause of incoherence.
While the two other effects could also have been incorporatedwithout disproportionate
costs, this is omitted to simplify the analyses.

The propagation velocity of the earthquake is in principle the velocity of the waves
in the bedrock, stated in Table 5.2 on page 29. Since the three-dimensional wave
propagation in the bedrock is not well accounted for, and since both the velocity of P-
and S-waves will influence on the observed surface propagation velocity, it is chosen
to use anapparent velocitywhich is based on empirical measurements. Typically,
apparent wave passage velocities range between 1000m

s
- 2500m

s
according to Vrettos

et al. (2007). The apparent velocity is further discussed in Section 5.5.2.
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5
DESIGN BASIS

This chapter encloses the basic informations about the projects required for the further
analyses.

For the analyses, a lot of parameters have to be determined. These includei.a. the soil
parameters, soil stratigraphy, earthquake parameters, aswell as the physical geometry.

In a conventional static analysis, a characteristic value should be determined,e.g.as
a five-percent quantile of the strength of a material. After application ofe.g.partial
safety factors, the provided design values should make surethat the design can be ver-
ified to be on thesafe side. In a static analysis, it is mostly a trivial task to determine,
whether or not a parameter is determined on the safe side. This, however, is not triv-
ial in general for a dynamic analysis, and in particular for the analyses in the present
thesis. It ise.g.not easy offhand to say, whether an increase in the shear stiffness in a
soil layer will increase of decrease the displacement in thetunnel gaskets. This could
e.g.depend on which eigenmodes of the tunnel are excited.

Hence, as it is not fruitful to determine characteristic anddesign values, in this chapter,
best estimates of the “correct” mean value are searched for.Thereafter, in Part 3, the
sensitivity of some of the parameters is analysed,i.e. it is analysed how the damage to
the tunnel is affected by changes of a given parameter. This is done in order to examine
whether the determination of a given parameter should be given great consideration,
or if a reasonable estimate is sufficient for a final design.

5.1 Geometry of tunnel

The longitudinal section of the immersed tunnel is sketchedin Figure 5.1. The im-
mersed tunnel consists of eight tunnel elements, each approximately153m long (COWI
2007). The cross section is depicted in Figure 5.2 on the following page.
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West East

Existing seabed profile at centreline of tunnel

Upfill

A

B

C

D

10 m

3 m

10 m

Figure 5.1: Longitudinal section of the tunnel. The letters indicate soil layers. After COWI
(2007).

Seaward sideShore side Existing seabed level

Dredged trench
Locking fill

1
2750mm gravel bed

1000mm filter layer
1000mm rock protection

34500mm

8700mm

Figure 5.2: Typical cross section of the tunnel. After COWI (2007).

5.2 Geotechnical parameters

As indicated in Figure 5.1, the subsoil in the project area can be divided into four dis-
tinct layers. The fill layer is disregarded. In this section,the soil parameters associated
with these layers are presented.

The four layers are listed in Table 5.1 together with the bulkweights. The thickness of
the two topmost layers are indicated in Figure 5.1. The thickness of the red clay, layer
C, is estimated to 100m to 150m. (COWI 2007)

Table 5.1: The layers of Figure 5.1. (COWI 2007)

Layer Description γ
[

kN
m3

]

A Loose sandy silty clay and silty clayey sand with
occasional gravel

19

B Medium dense silty clayey sand and firm sandy
silty clay with some gravel

21

C Firm red sandy silty clay with little gravel 21
D Bedrock -

In the microzonation report of Anastasiadiset al. (2001) dynamic soil parameters is
presented. These include S- and P-wave velocities and quality factors for nine general
soil layers present in the vicinity of Thessaloniki. The stratification and soil parameters
are achieved as the result of a large-scale geophysical and geotechnical survey, where
a detailed geotechnical map has been made. The geotechnicaldata comprised 440
boreholes with more than 4000 soil samples and 171 CPTs.

The correlation between the layers in the present interest and the layers of Anastasiadis
et al. (2001) is presented in Table 5.2 on the facing page. The comparison has been
made based on the geotechnical descriptions and bulk densities.
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Table 5.2: Quality factorsQS and velocitiesc for P- and S-waves in the soil. The equivalent
layer is the layer name cf. Anastasiadiset al. (2001). The values in brackets specify
the expectation values. (Anastasiadiset al.2001, p2620)

Layer Equivalent layer cS

[

m
s

]

cP

[

m
s

]

QS [−]

A B2 200–300 (250) 1800 20-25 (20)
B B1 300–400 (350) 1900 15-20 (20)
C E 350–700 (600) 2000 6-30 (30)
D G 1750–2200 (2000) 4500 180-200 (200)

5.3 Damping

In soil, energy is dissipated by various mechanisms. Due to their high complexity,
these mechanisms can not be modelled explicitly. Therefore, some convenient math-
ematical formulation which lumps the various energy lossestogether – a damping
mechanism – must be chosen. (Kramer 1996, p567) In this section, the damping
mechanisms used in this project are outlined.

5.3.1 Loss factor

A lot of different quantitative measures of damping exist. The relation between three
common measures, the quality factor,Q (preferred by seismologists), the damping
ratio,ξ, and the loss factor,η, are given as

Q =
1

2ξ
, η= 2ξ (5.1)

(Kramer 1996, p569).

In the following, the loss factor,η, will be used. For soil, the loss factor normally
ranges betweenη= 0.03 to η= 0.05. For the present project, the loss factors have been
determined from the quality factors in Table 5.2, and are listed in Figure 5.4. For the
tunnel, which is cast of concrete, a loss factor ofη = 0.01 is estimated. This is also
assumed to correspond to the gaskets. The sensitivity of theloss factors are analysed
in Section 11.4.1.

5.3.2 Viscous damping

Viscous damping is commonly applied in structural dynamics, and models the be-
haviour of a dashpot. The damping is proportional to the velocity, as it can be seen in
the equation of motion for a single-degree-of-freedom (SDOF) system, formulated in
the time domain

k ·u + c · u̇ +m · ü = f (5.2)

where a dot (̇) signifies differentiation with respect to time, and wherek, c, m, f and
u are the stiffness, damping, and mass coefficients, the load,and the displacement,
respectively.

In the frequency domain, it is assumed that the displacementis periodic. This entails
that the displacement can be written as a linear combinationof harmonic motions,
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each of which can be expressed asu = eiωt . Differentiation of this expression with
respect to time,t , yields

u = eiωt , u̇ = iωeiωt
= iωu, ü =−ω2 eiωt

=−ω2u (5.3)

Insertion of these expressions into (5.2) provides

(k + iωc −ω2m)u = f (5.4)

which is the formulation of the equation of motion in the frequency domain. Now, it is
chosen to let the damping coefficient be proportional byβ to the stiffness coefficient

c =βk (5.5)

This may be clear for a SDOF system, but it could also be applied for a multi-degree-
of-freedom (MDOF) system, where the formulation is a special case of the Rayleigh
damping method. Rayleigh damping entails that the damping matrix is written as a
linear combination of both the stiffness and the mass matrices.

Now, (5.4) may be written as

(k(1+ iωβ)−ω2m)u = f (5.6)

This leads to the definition of viscous damping as a modification of the stiffness

k∗
vis(ω) = k(1+ iωβ) (5.7)

where the star (∗) indicates the modification to incorporate damping. This leaves the
equation of motion to be

(k∗
vis(ω)−ω2m)u = f (5.8)

Due to linearity, these equations, (5.7)-(5.8) can directly be formulated as matrix equa-
tions, to account for the modelling of a MDOF system.

5.3.3 Hysteretic damping

The hysteretic damping model is formulated with the loss factor.

k∗
hys(ω) = k(1+ iηsign(ω)) (5.9)

(Andersen 2006, p54)

This damping formulation has been quit widespread in use, mainly due to the very
simple formulation in the frequency domain. Hysteretic damping is frequency inde-
pendent (only the sign function enters), which correspondsquite well to the behaviour
of soil according to Andersen (2006, p54). Therefore, hysteretic damping is in general
a better damping method for soil analysis than viscous damping.

It may, however, be shown that the hysteretic damping model is not causal,i.e. the
use of hysteretic damping may imply that the response appears before the loading is
applied. This effect is, however, insignificant for small loss factors, in the area of what
is normal for soils.
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5.3.4 Conversion

While the hysteretic damping, (5.9), is easily formulated and applied in the frequency
domain, it can not be formulated in time domain;i.e. a formulation compatible with
(5.2) can not be made.

Therefore, in this thesis, hysteretic damping will be used for the calculations in the
frequency domain, while viscous damping is applied to the calculations in the time
domain. Conversion between the two damping formulations should be performed in a
way which yields the most equal output.

By comparison between (5.7) and (5.9), the relation is seen to be

k∗
hys = k∗

vis ⇒ iηsign(ω) = iωβ

η= |ω|β (5.10)

This equation, (5.10), entails that in order to correlate viscous and hysteretic damping,
it is necessary to choose a frequency at which the damping will be equal. The fre-
quency dependence of the two damping mechanisms are sketched in Figure 5.3a. The
conversion frequency should be chosen as the dominant frequency of the system. The
dominant frequency is in the present thesis chosen as the first damped eigenfrequency
of the stratum,f = 1.09Hz. In Figure 5.3b it can be seen that this frequency dominates
the stratum response to the earthquake.

Damping

ω
[

rad
s

]

hysteretic,iη

viscous,iωβ

Conversion frequency

(a) Relation between viscous and hysteretic
damping.

0 0.5 1 1.5

f , [Hz]
1.09

(b) The dominant frequency in the response
spectrum in the level of the tunnel. Ex-
cerpt from Figure 6.11.

Figure 5.3: Viscous and hysteretic damping.

The relation between the circular frequency,ω
[

rad
s

]

, and the frequency,f
[

s−1
]

, both
used in Figure 5.3, is

ω= 2π f (5.11)

In Section 11.4.2 it is shown, how the use of either viscous orhysteretic damping
affects the soil response.

5.4 Design cross section

The actual geometry, as described in Section 5.1 and depicted in Figure 5.1, does not
comply with the simple geometry needed for the domain transformation method de-
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scribed in Section 6.2. Thus, a simplification is needed. Theirregular layer interfaces
have been reduced to horizontal interfaces located in some mean depth, rounded off to
an integer value. Furthermore, the cross section at the middle of the tunnel is analysed,
i.e. the water depth is around 10m. Finally, the dynamic parameters are taken as the
mean values given in Table 5.2. The design section is shown inFigure 5.4.

These assumptions are deemed as realistic for a simple calculation in a real-world
consulting firm. In Chapter 11 it is analysed how the simplifications may change the
physics of the problem.

z

+0.0

−10.0

−13.0

−23.0

−148.0

Water — Thessaloniki Bay

A Loose clay / sand cS = 250 m
s , η= 0.05, γ= 19 kN

m3

B Medium dense sand / firm claycS = 350 m
s , η= 0.05, γ= 21 kN

m3

C Firm red clay cS = 600 m
s , η= 0.03, γ= 21 kN

m3

Figure 5.4: Sketch of design section for the domain transformation method. The bulk den-
sitiesγ are stated in Table 5.1. The velocitiesc and loss factorsη are based
upon Table 5.2 on page 29. The loss factors are determined as the reciprocal value
of the expectation value of the quality factorsQ cf. (5.1) on page 29.

For many ground conditions, the stiffness of the soil – and thus also the shear wave
velocity – will increase with the depth, cf. Anastasopouloset al. (2007, p1070). This
could probably also apply for layerC cf. Figure 5.4, but since the goal of the present
thesis is to analyse the presented calculation models and not to provide a final design
of the immersed tunnel, this is omitted for the sake of simplicity and transparency.

For the dynamic calculations of the soil response, the waterlevel of Figure 5.4 has not
been incorporated in the model, since it will not affect the dynamic behaviour of the
soil.

The S-wave velocities in Figure 5.4 should be altered to incorporate damping in ac-
cordance with (A.2) and (A.4) on page 130. For layerA, with the gravitational accel-
eration set tog = 10 m

s2 , this is done as

µ′
= c2

S ·ρ = 118.75MPa

µ=µ′
·
(

1+ i sign(ω)η
)

= (118.75+5.94i)MPa

c∗S =

√

µ

ρ
= (250.1+6.2i) m

s

(5.12)
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where a star(∗) indicates that damping has been incorporated through the complex
representation.

5.5 Input motion

In this section, the input motion corresponding to the bedrock is outlined. In Chapter 6
it is described how the response on the surface and at the level of the tunnel is calcu-
lated.

5.5.1 Time series

In Section 4.3 on page 21 the different methods of determining an appropriate design
earthquake are outlined. However, in the present thesis a given time series is simply
chosen, since the purpose of this thesis is not to provide a design for the immersed
tunnel but instead to evaluate the accuracy of the design models. This generic approach
has made a specific determination of the design earthquake outside the scope of this
thesis.

An acceleration time series from theMs = 6.2 Aegion 1995 earthquake has been de-
livered by COWI (1995). This time series has been chosen because it was at hand, and
due to the geographical proximity of Thessaloniki and Aegion, shown in Figure 5.5.

Aegion

Thessaloniki

Figure 5.5: Location of Aegion.

The time series is the horizontal accelerations sampled at arate of 100Hz in an out-
cropping bedrock. The acceleration time series is plotted in Figure 5.6 on the next
page.

As described in Section 4.4, the important earthquake motion parameter for an un-
derground structure is the displacements. These are easilyobtained through double
integration of Figure 5.6, and are plotted in Figure 5.7 on the following page. It may
be seen that the displacement time series does not end at the starting displacement,
u = 0. Thus, a permanent displacement has occurred. This is not compatible with
frequency domain calculations, where the motion must be periodical. Therefore the
displacement time series has been altered slightly, as it isindicated in Figure 5.7.
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Figure 5.6: Acceleration time series. Measured earthquake record from the 1995 Aegion
event.
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Figure 5.7: Displacement series from 1995 Aegion event. Obtained through double integra-
tion of Figure 5.6.

Some of the analyses in this thesis are performed in the frequency domain. With a
Fourier transformation the displacement amplitude spectrum can be obtained from the
time series, Figure 5.7. It is plotted in Figure 5.8.
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Figure 5.8: Single-sided displacement amplitude spectrum, obtained through Fouriertrans-
formation of Figure 5.7. To obtain a smoother spectrum and a periodic signal, the
time series has been padded with additional zeroes, thus yielding a higher resolu-
tion of the Fourier transformation. This is further explained in Section 6.5.2.
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5.5.2 Apparent velocity

As it is outlined in Section 4.6, the incoherence of the earthquake motion is of very
significant importance for the imposed damage to the tunnel.The apparent velocity
describes the velocity of the propagating wavefront, and typically fall in the range
between 1000m

s
- 2500m

s
, cf. Section 4.6. For the analyses of the present thesis, the

apparent propagation velocity is set to 1500m
s

, since this is the choice of Vrettoset al.
(2007), which precise deals with the Thessaloniki immersedtunnel. In Section 12.1
the consequences of this choice are analysed through a sensitivity analysis.

5.5.3 Direction of propagation

The wavefront is depicted in Figure 5.9. It propagates with the apparent velocity,
and the direction of the propagation is defined with the angleθ. Due to the great
uncertainty associated with the determination of the design earthquake, including the
direction of propagation,θ should be chosen so that the tunnel damage is maximized.

Direction of propagation

θ

Wave frontParticle motion

Tunnel

x

y

z

Figure 5.9: Definition of the direction angleθ.

In the analyses in this thesis, as a point of reference the direction of propagation is set
to θ = 45◦. The reason for this is that an oblique direction contains both tunnel axial
and cross axial particle motion, as it is illustrated in Figure 5.9. Thus, both compres-
sion/extension and longitudinal bending of the tunnel is excitated, corresponding to
Figure 4.10a and 4.10c on page 25.

In Section 12.2, the damage to the tunnel is calculated for other direction angles, thus
showing the impact of the choice of angle.

5.6 Stiffness of gaskets

The gaskets joints, which couples the tunnel elements, exhibit highly non-linear be-
haviour when deformation in the axial as well in the cross axial direction are applied.
In this section the behaviour is discussed, and linear approximations are made.

5.6.1 Longitudinal stiffness

In the present thesis, the Gina gasket profiles has been chosen to type ETS-180-220,
which i.a. has been chosen for analysis for the Busan Geoje Fixed Link inSouth Korea
(Daewoo 2004). In the longitudinal (axial) direction, the non-linear work curve of the
gasket is shown in Figure 5.10. The behaviour of the gaskets during loading is of great
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importance when analysing the system, since the watertightness of the entire structure
is dependent on the compression of the gaskets.

Figure 5.10: Force/compression graph for Gina gasket, type ETS-180-220. (Daewoo 2004)

Initial compression

As described in Section 3.1, the Gina gaskets are compressedduring the installation
phase of the immersed tunnel elements. The initial compressive force on the gaskets
is determined from the water depth of the tunnel centre, approximatelyd = 16m cf.
Section 5.1, and the area of the cross section,Afull = 300.2m2 cf. Appendix D. This
force is distributed on the total length of the circumference of the Gina gasket,Lgasket =

84.4m cf. Appendix D, thus yielding a distributed force on the Ginagasket,Finit, of

Finit =
γwater ·d · Afull

Lgasket

=
10 kN

m3 ·16m ·300.2m2

84.4m

= 569 kN
m

(5.13)

The compressive strain can then be read off Figure 5.10 to approximately εinit =

96mm.

Linear approximation

Although the behaviour of the Gina gaskets is highly non-linear, a linear approxima-
tion is needed since the present thesis only applies linear analyses, cf. Section 1.3.
A possible choice is to take the initial compression as the point of reference, and de-
fine the stiffness of the Gina profiles as the tangent stiffness in this point, as shown
in Figure 5.11 on the next page. The change in the tangent stiffness, however, is rela-
tively significant in this area. The consequences of the approximation are analysed in
Section 13.1.
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Figure 5.11: Figure 5.10 modified with a line with an inclination of24MN/m2.

5.6.2 Shear stiffness

The shear stiffness of the gaskets is the resistance againsttransverse and vertical de-
formation for the coupling between two adjacent tunnel elements. Two different cases
govern the shear behaviour of the gasket: for small shear displacements, the shear
stiffness of the coupling stems from the shear stiffness of the Gina profile itself. For
greater shear displacements, the stiffness of the couplingstems from shear keys of the
tunnel.

Gasket rubber

The shear stiffness of a Gina profile itself depends on the compressive force on the
gasket. The higher the compressive force, the higher the shear stiffness. This isi.a.
due to the expansion of the gasket cross section when load is applied. (Tonnesen 2008)

A simple approximation of the shear stiffness can be obtained by assuming that the
gasket is made of a homogeneous, isotropic and non-compressible material. This
corresponds well to be behaviour of rubber. With these assumptions, the shear stiffness
modulus,G, can be calculated based on a known Young’s modulusE and Poisson’s
ratioν= 0.5 with e.g.(A.2) to

G =
E

2(1+ν)
=

E

3
(5.14)

Shear keys

If the shear displacements become sufficiently larger,i.e. of an order magnitude of
approximately 5mm (Tonnesen 2008), the shear keys of the tunnel elements become
active. An illustrative sketch of these shear keys is provided in Figure 5.12 on the
following page. It can be seen that the shear keys provide resistance to shearing when
the shear allowance is exceeded, while still allowing deformations in the tunnel axial
direction.
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Shear allowance

Figure 5.12: Shear keys.

The magnitude of the shear stiffness of the shear keys are deemed to be equal to the
one of concrete. How many shear keys there will be in the final structure is unknown.

Linear approximation

Due to the Gina profile and the shear keys, the resulting work curve of coupling be-
tween the two adjacent tunnel elements will look something like what is sketched
in Figure 5.13.

Shear allowance
Shear displacement

Shear force

Figure 5.13: Work curve of Gina gasket under shear.

As it is easily seen, a linear approximation of Figure 5.13 can not be made with much
degree of realism intact. Therefore, it is simply defined to use the first branch of the
work curve as the stiffness in the general analyses,i.e. the shear stiffness of the gaskets
are calculated from the shear stiffness of the profile itself, from (5.14). In Chapter 13
it is shown that the choice of gasket shear stiffness has verylittle influence on the final
output of the models.

5.7 Damage criterion

The goal of the present analyses is to determine to which extent the immersed tunnel
suffers damage from the strong ground motion generated by the earthquake. To mea-
sure this damage several damage modes can be observed, as described in Section 4.5.

It is deemed that the earthquake most potentially will damage the joints between the
tunnel elements, as it is stated by Anastasopouloset al. (2007). Thus, the main fo-
cus of this report will be on the damage mode where the gasketslooses the initial
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compressive strain, hereby endangering the watertightness of the tunnel. This loss of
compression is generated by relative displacement of two adjacent tunnel elements,
as sketched in Figure 5.14. If the initial compression of thegaskets, 96mm accord-
ing to Section 5.6.1 on page 35, diminishes towards zero, thewatertightness of the
structure is lost.

Figure 5.14: Sketch of two tunnel element ends. For the right tunnel element, the deformed
and undeformed (transparent) states are shown, with a considerable (exagger-
ated) relative displacement and rotation. The Gina gasket is not shown.The col-
ors indicate which corners that are related, when calculating the gasket damage.

The deformation of the gaskets is, in the Winkler model and the continuum model,
calculated in the four corners of each gasket, since the maximum and minimum dis-
placement will be in the corners. These corners are depictedin Figure 5.14. Damage
to a gasket is defined as the absolute distance between two matching corners. As a
consequence of this definition of damage, other deformationmodes,e.g.racking de-
formation cf. Figure 4.10d, shear displacement of a gasket or tensile stresses in the
tunnel concrete, may not be analysed.

If the final design should show too much opening in the gasketsthe design should be
altered. This coulde.g.include a different gasket type, longitudinal displacement keys
or division of the tunnel into more elements. This would allow more deformation,
limit the deformation or distribute the deformation, respectively.
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WAVE PROPAGATION THROUGH SOIL

The input to the analysis of the immersed tunnel is a time series of strong ground
motion at different levels of the subsoil. As it is describedin Section 5.5.1, the dis-
placement time series from the earthquake records applies only to the level of the
bedrock. In this chapter, it is outlined how the time-varying displacements can be
calculated above the bedrock, including in the level at the tunnel and on the surface.

The steps of the calculation are illustrated in Figure 6.1. The transformation of the
earthquake motion is performed in the frequency domain, andthe transformation be-
tween the time and the frequency domain is obtained with Fourier transformations.
The more demanding part of the calculation is to establish the frequency response
function,H(ω), which couples the input and output spectra.

Bedrock timeseries
 

FFT
Bedrock spectrum

H(ω)

Output spectrum

 

 IFFT
Output timeseries

Figure 6.1: The calculation procedure from a time series at bedrock to an output time series
at a chosen level. FFT stands for Fourier transformation with the Fast Fourier
Transformation algorithm, and IFFT stands consequently for the Inverse FFT
algorithm.H(ω) is the frequency response function.

In the present chapter, firstly, a generalized version of a geometry is given. The geo-
metry is limited to astratum, a horizontally layered soil. The geometry, and thus also
the computation, is entirely one-dimensional; the only dimension regarded being the
depth. Subsequently, two methods are presented: the semi-analyticalDomain Trans-
formation Method(DTM) and an application of theFinite Element Method(FEM).

The calculations in the frequency domain are performed by calculating the response
for many discrete frequencies, and constructing the frequency response function by
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use of the principle of superposition. This entails that only linear material models can
be used, as it is also discussed in Section 1.3.

6.1 Generalized geometry

A soil, modelled as a stratum, subjected to a forced horizontal displacement at bedrock
level is analysed. Only vertically propagating SH-waves are modelled, as it is dis-
cussed in Section 4.2.

A stratum with J soil layers is examined. A cartesian system of coordinates are in-
serted in the top of the stratum, and below the stratum bedrock is modelled as a rigid
interface. A definition sketch of the observed domain is shown in Figure 6.2.

Layer 1

Layer 2

Layer j

Layer J

x1

x2

z1

z2

z j

z J

x3

z

Figure 6.2: General geometry used for the domain transformation and the finite element meth-
ods. The planes illustrate the interfaces which separate the soil layers.

The reduction of a real, three-dimensional geometry to a one-dimensional stratum
provides access to a very simple way of calculating the response, in means of the
DTM, which analytical calculates the response; the only numerics involved are the
discretization of the frequency range. If two- or three-dimensional wave propagation
were to be taken into consideration, only numerical methodsshould be considered.

Constitutive model

The soil layers are modelled as homogeneous, isotropic, linear viscoelastic materials.
The reasons for this are as follows:

• Homogeneity
Inside one layer the assumption of homogeneity should be evaluated on the basis
of the dimensions of the soil particles and the wavelength ofthe wave. Since
the wavelength is considered to be several orders of magnitude larger than the
particles, homogeneity is justified.

• Isotropy
In reality most alluvial soils will display slight orthotropic behaviour, but since
no detailed data are available (and most rarely are) the assumption of isotropy
is adopted. This will have no effect in the present case, since only a vertically
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propagating SH-wave is analysed, which entails that the only stiffness parameter
of importance is the horizontal shear stiffness.

• Linear viscoelasticity
Soil is in general a non-linear elasto-plastic material, but linear elasticity is
adopted since the non-linear case presents too large a computational workload.
In the most cases, the relatively small strains induced by the earthquake makes
the linearization acceptable. According to Krätzig & Niemann (1996), soil sub-
jected to shear strains up toγ= 10−4 may be analysed as a viscoelastic material.

The prefixvisco- indicates that damping is applied to the material model. Various
damping mechanisms are discussed in Section 5.3, accordingto which the applied
damping mechanism for the present analyses should be hysteretic damping, since the
analyses are carried out in the frequency domain.

6.2 The domain transformation method

In Appendix A, the DTM is derived. The method establishes a direct analytical re-
lation between the harmonic varying displacement at bedrock and an arbitrary other
layer at a certain frequency, expressed in (A.22) as

U
j 0

n = H
j 0
n (ω) ·Ūn (6.1)

whereU
j 0

n andŪn are the displacements in thej ’th layer and the bedrock, respectively,
while H

j 0
n (ω) is the frequency dependent response function for thej ’th layer. The

calculated frequency response function is exact for the chosen material model and soil
geometry.

With the DTM, the geometry given in Figure 5.4 on page 32 is elaborated. For frequen-
cies ranging from0−20Hz, the frequency response function is depicted in Figure 6.3.
It can be observed that significant amplification, e.g.H(1.09Hz) = 43, is occurring at
several damped eigenmodes.

It should be noted that the frequency response function is a complex number which
includes both the magnitude and the phase shift of the response. Hence, what is plotted
on the ordinate axis in Figure 6.3 is the amplitude of the frequency response function.
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Figure 6.3: The amplitude of the frequency response functionH10 for the top of the topmost
layer, calculated with the DTM. The geometry follows from Figure 5.4.
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6.3 The finite element method

As a verification of the applicability of the DTM, a finite element approach is made to
the same problem. The method is derived in Appendix B. In stead of a direct analytical
relation between the displacements in a chosen layer interface and the bedrock, as
in the DTM, the stratum is now discretized into a number of soil elements, as it is
sketched in Figure 6.4.

Layer interface

Layer interface

Surface

Soil layer

...
...

...
...

Soil element

z

Node

Figure 6.4: The finite element method.

6.3.1 Elements

It is chosen to use second-order elements for the analysis,i.e. elements whose de-
formations are described by a second-order polynomial. Second-order elements will
provide a much better approximation to soil deformation dueto a propagating wave,
than will linear elements. As discussed by Semblat & Broist (2000), much greater
accuracy may be obtained at a lower computational cost. The shape functions of a
second-order soil element are depicted in Figure 6.5.

(a) Mode 1 (b) Mode 2 (c) Mode 3

Figure 6.5: Shape functions for a second-order soil element. (Jensen & Jørgensen 2006)
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Frequency response

6.3.2 Frequency response

In Figure 6.6 the frequency response function is plotted forthe same frequency range
as Figure 6.3 on page 45. It can be seen that the two methods arecapable of producing
very similar output from the same input; only a minor divergence can be observed
aroundf = 20Hz. This is considered as a verification of the calculation methods.
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Figure 6.6: The amplitude of the frequency response functionH for the top of the topmost
layer, calculated with the FEM, with 10 elements in each soil layer. The geometry
follows from Figure 5.4.

6.3.3 Convergence

The frequency response function depicted in Figure 6.6 has been calculated with 10
elements in each soil layer,i.e. a total of 30 elements. While the domain transfor-
mation method is exact for each frequency, the accuracy of the finite element method
depends on the discretization of the domain.

The convergence of the finite element method is plotted in Figure 6.7 for six chosen
frequencies. It can be observed that the number of elements needed to obtain conver-
gence raises together with the frequency. The reason for this should be obvious, since
complexity of the soil deformation profile also raises together with the frequency, and
thus, more elements are needed to reproduce the deformationmode.
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Figure 6.7: Convergence of the frequency response for the finite element method.
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Chapter 6. Wave propagation through soil

In Figure 6.7, it can further be seen that with a discretization of around 15 elements
per layer, the response to displacements forced at 20Hz can be accurately calculated.
This relatively small number of elements needed, is due to the use of second-order
elements, which are able to reproduce the sinus-like soil deformation, cf. Figure 6.9a,
well.

6.3.4 Choice of calculation method

As explained in the present and the preceding section, the DTM and FEM yields com-
parable results. The domain transformation method, however, is much more computa-
tional efficient, since no excess discretization of the domain is needed. Therefore, the
domain transformation method will be used henceforward in this thesis.

6.4 Frequency response

The frequency response function varies down through the stratum. For the top of the
layers the functions are plotted in Figure 6.8.
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Figure 6.8: The frequency response functionH for the top of the three layers in Figure 5.4.
The black line is identical to Figure 6.3.

Most noteworthy in Figure 6.8 is probably the suppression ofthe response for the top
of layer C between frequencies from 6 to 9Hz. In this region the mode of the soil
makes the interface between layerB andC experience very little displacement,i.e. a
node is formed. In Figure 6.9 on the next page the response at two time steps is plotted
for three frequencies, and it can be seen that for a frequencyof f = 6.7Hz, there is very
little response at the interface between layerB andC. Hence, what offhand could look
like a possible computational error, here does has physicalmeaning.
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Figure 6.9: Response through soil for three frequencies. The harmonic motion is generated by
a sine function, dependent on the amplitude and phase shift of the motion.Hence,
the response at bedrock,z = 138m, in (a) is A · sin(θ+ψ) = 1 · sin(0) = 0. The
horizontal lines illustrate the layer interfaces. An animated version of the figure is
provided on the attached DVD.

6.5 Earthquake response

The frequency response function, however, is only interesting when compared to the
strong ground motion generated by an earthquake. Figure 6.10 gathers the earthquake
ground motion spectrum and the frequency response functionfrom Figure 5.8 and
Figure 6.3, respectively. It can be seen that the first eigenmode of the stratum is
located outside the dominant frequencies of the earthquakedisplacement spectrum.
This indicates that only relatively little resonance will occur in the stratum.
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Figure 6.10: Comparison between the graphs of Figure 5.8 and Figure 6.3. The graphs have
been normalized with respect to the maximum value.

6.5.1 Frequency domain

The order of the calculation follows from Figure 6.1 on page 43. The response of
the soil to the earthquake motion is calculated in the frequency domain according to
(6.1). The resulting output spectrum is depicted in Figure 6.11 on the following page,
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Chapter 6. Wave propagation through soil

together with the similar spectrum for the mean tunnel level, at 4.85 m depth. It can
be seen that there are no significant differences on the spectra.
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Figure 6.11: Response spectra. The spectrum for the surface is obtained through multiplica-
tion of the two graphs of Figure 6.10.

6.5.2 Time domain

Through an inverse Fourier transformation the response in the time domain can be
calculated, cf. Figure 6.1. This is depicted in Figure 6.12.As in Figure 6.11, it can
be seen that there is no significant difference on the response at the surface and at the
level of the tunnel.
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Figure 6.12: Strong ground motion and response in upper layer in time domain. The tunnel
level is at4.85m depth.

It should be noted that even though the analysis of the wave propagation has been
carried out in the frequency domain, it yields a result in thetime domain which looks
very physical plausible. This could to some be a little surprising, since the underly-
ing assumption for a frequency-domain analysis is that the motion is periodically –
something which definitely is not fulfilled in the present case, as can clearly be seen
in Figure 6.12.

To obtain a reasonable level of accuracy, it is necessary to pad the original time series
with zeroes, as it is shown in Figure 6.13b. This imitates a periodic motion, which
could be be illustrated as in Figure 6.13c.
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Time domain

(a) Original time series (b) Time series padded with zeroes

(c) “Periodic” motion

Figure 6.13: Padding of the time signal with zeroes before the Fourier Transformationto ob-
tain a ”periodic” motion.

Four time series with different amount of padding are plotted in Figure 6.14, from
which the necessity of the padding should be obviously. If aninsufficient size of
padding is used, it can be observed that the output time series will take values different
from zero,beforethe input time series begins, as it is clearly seen in Figure 6.14b.
Furthermore, if no padding is applied (Figure 6.14a), it is not possible to calculate the
response after the earthquake time series has ended, because no more information is
available. In the further analyses, a padding of 150s has been applied, which yields
the output of Figure 6.12.
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Figure 6.14: The effect on the output time series of different paddings. The black line is the
input time series, the red line is the output time series.
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7
CLOSED FORM SOLUTION

As a first-order estimate of the deformation of the tunnel, a simple, closed-form solu-
tion is adopted. The great advantage of the closed-form solution is the minimal input.
This makes it very easy to obtain an estimate on the order of magnitude of the struc-
ture’s anticipated deformation. This can be used for initial design considerations as
well as for design verification.

The closed form solution assumes that the deformation of thetunnel is equal to the
so-calledfree-fielddeformation. Free-field deformations are the ground strains caused
by the earthquake, when the tunnel is disregarded,i.e. all soil-structure interaction is
ignored. Whether the tunnel deformation is over- or underestimated depends on the
stiffness of the tunnel relative to the stiffness of the soil. (Hashashet al.2001, p262)

The free wave field is assumed to consist of the same amplitudes at all locations,
differing only with a time shift. The input motion is not a time series, but only the
maximal acceleration and velocity of the earthquake. This should be calculated at the
level of the tunnel, cf. Chapter 6.

7.1 Axial strain

It may be shown that the axial strain,εaxial, due to a propagating S-wave with apparent
velocityCS , may, as stated by Poweret al. (1996), be calculated as

εaxial =
vS

CS
sinφcosφ+ r

aS

CS
2

cos3φ (7.1)

wherevS andaS are the peak particle velocity and acceleration, respectively, r is the
half width of the tunnel andφ is the angle of incidence of the wave with respect to the
tunnel axis.
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Chapter 7. Closed form solution

(7.1) is derived from the normal strain and the curvature of the free-field deformation,
given in Hashashet al. (2001, 264). These are combined with simple beam theory to
obtain (7.1). The first term in (7.1) represents the peak axial strain due to soil strain
in the axial direction, while the second term is the axial strains due to bending of the
tunnel.

7.2 Deformation at gaskets

While the axial strain computed by (7.1) assumes a uniform tunnel cross section, the
real tunnel consists of elements connected by gaskets. As a crude approximation it
is assumed that the computed axial strain occurs simultaneously over an entire beam
element. Furthermore, the tunnel is assumed to be infinitelystiff, which should be fair
when the tunnel is compared to the gaskets. This means that the strain over an entire
beam element can be lumped in the gaskets. Thus, the maximal axial deformation at a
gasket,∆u, can be calculated from the element lengthle = 153m

∆u = εaxial · le (7.2)

7.3 Input

The peak particle velocity and acceleration enters in (7.1), and should be calculated in
the level of the tunnel. The conversion from displacements to velocities and accelera-
tions is performed in the frequency domain, since a double differentiation of a discrete
time series in the time domain will generate much numerical noise, so that the output
will be contaminated severely.

Since the motion is assumed to be periodical, differentiation in the time domain is
simply performed by multiplying the signal withiω, i.e. double differentiation is
obtained by multiplication with−ω2. This is similar to the calculations performed
in Section 5.3.2 on page 29. The displacement spectrum at thelevel of the tunnel is
depicted in Figure 6.11 on page 50.

The time series for the velocity is plotted in Figure 7.1, andthe time series for the
acceleration is plotted in Figure 7.2.
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Figure 7.1: Velocity time series for the tunnel level.vmin =−0.86 m
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Figure 7.2: Acceleration time series for the tunnel level.amin =−5.74 m
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The results from the closed form solution are calculated together with the results from
the Winkler model and the continuum model in Chapter 10.
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8
W INKLER MODEL

A widely used model, when analysing immersed tunnels subjected to earthquake load-
ing, is the Winkler model. This is usede.g.by Vrettoset al.(2007) and Anastasopoulos
et al.(2007), and has been used for the design of several immersed tunnels (Kiyomiya
1995, p469).

In the Winkler spring model, the soil is represented with independent springs inter-
acting with the tunnel which is considered as a beam (Dowrick1987, p243). This is
illustrated in Figure 8.1, where the longitudinal, transverse and vertical springs are
shown. The Winkler model has been implemented in a Finite Element program coded
in MATLAB .

x

y

z

Gasket

Tunnel beam

Tunnel beam

Figure 8.1: Sketch of the Winkler model. A gasket (red line) is showed in greater detailin
Figure 8.11.

In the present application of the Winkler model, the tunnel elements are modelled with
beam finite elements with appropriate cross-sectional parameters, while the Gina gas-
kets are modelled with multiple springs. The modelling and behaviour of the gaskets
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Chapter 8. Winkler model

are discussed further in Chapter 13.

The present application of a Winkler foundation for the beamhas been performed
with simple spring finite elements. This entails that the distribution of the springs
is discretized to a finite number, according to the degrees offreedom for the tunnel
beams. It is also possible to formulate special finite elements which model a contin-
uum distribution of springs. The discretized and continuous fundations are illustrated
in Figure 8.2.

(a) Discrete distribution (b) Continuous distribution

Figure 8.2: Winkler foundation.

The simple discrete soil spring distribution has been chosen since it is deemed that with
an appropriate discretization, the simple modelling will be sufficiently accurate. The
internal stress in the tunnel beam will be affected by the discretization, but the stresses
are unimportant for the present analysis. The need for an appropriate discretization
can be realised by a study of Figure 8.3, where it can be seen that the discretization
should be determined with respect to the frequency and the propagation velocity of the
earthquake. Convergence analyses have been carried out in Section 8.2.4 to ensure a
sufficient discretization.

(a) Sufficient discretization (b) Insufficient discretization

Figure 8.3: The Winkler model with discretized soil springs, subjected to (a) low frequency
motion and (b) high frequency motion. The hatched lines at the bottom are the
input displacement field.

8.1 Model assumptions

The Winkler model is by no means an exact representation of the physical problem.
Amongst the assumptions made are:

• The springs on the tunnel are totally decoupled,i.e.no retroaction is possible.
• The deformation of the tunnel is limited to that of a Bernoulli-Euler Beam,i.e.

no shear deformation is possible.
• The gaskets are approximated with linear springs.
• The propagation of the waves from bedrock to the tunnel is assumed to be one-

dimensional.

These assumptions will be analysed through this report by means of a continuum
model, which is described in Chapter 9.

Furthermore, both the Winkler and the continuum model is restricted to some general
assumptions which are:
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• The analysis is entirely linear, as it is discussed in Section 1.3.
– The material models are all linear elastic
– The possible development of a gap between the soil and the tunnel is not

analysed.
– The stiffness’s of the Gina gaskets are assumed to be linear.

• The influence of the pre-stressing of the tunnel, discussedin Section 10.4, is
neglected.

8.2 Modelling

The model has been coded inMATLAB on the basis of an existing linear FE program
for static analysis, by Stærdahlet al. (2007). The program has been enhanced with
new finite elements and with the ability to perform dynamic calculations. The changes
in the program are described in Appendix C. The program files are enclosed on the
attached DVD. In Figure 8.4 a screen dump of the simple outputinterface is shown.
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Figure 8.4: A screendump of theMATLAB model. The soil springs are illustrated with lines,
just like the tunnel beam elements. An animated version of the figure is provided
on the enclosed DVD.

In the present section, it is described, how stiffness’s of the soil springs and the gaskets
are determined. The material properties are described in Chapter 5.

8.2.1 Soil spring stiffness

The soil springs model the soil-structure interaction. An infinite soil spring stiffness,
k = ∞, would imply that the tunnel was restricted to the free-fielddeformations of
the soil, while a zero soil spring stiffness,k = 0, would imply that no contact existed
between the soil and the tunnel.

The spring stiffness’s of the soil springs shown in Figure 8.1 are calculated with the
Finite Element codeABAQUS. A model has been built in the same way as explained
in Chapter 9, however, the tunnel has been modelled as a rigidbody, since it is only
the stiffness of the soil which should be determined. The mesh is shown in Figure 8.5.
ABAQUS has been chosen for the analysis to make the results obtainedwith the Win-
kler model comparable to the results from theABAQUS continuum model.

The equivalent soil stiffness’s are determined by applyingloads to the appropriated
faces of the tunnel, in a static analysis. From the corresponding deformation of the
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Chapter 8. Winkler model

(a) Cross section (b) Isometric view

Figure 8.5: The meshed domain for the soil spring calculations.

tunnel, the soil stiffness can be determined. Since the performed analysis is entirely
linear, the work curve is straight. Thus, only a single load-deformation relation is
needed to determine the stiffness for a spring.

Transverse and vertical soil springs

The boundary conditions for the determination of the transverse and vertical soil spring
stiffness’s are:encastre(fully fixed) on the sides and the bottom, and no deformation
in the x-axial direction on the ends. The definition of the surface terminology of the
model is given in Figure 8.6. These boundary conditions yield a state of plain strain
in the model.

Side

Side

Bottom

End

End

x

y

z

Figure 8.6: Terminology definition for theABAQUS analysis.

The deformation modes are depicted in Figure 8.7 and the calculated soil stiffness’s
are given in Table 8.1 on page 62.

Since the transverse and vertical soil springs are determined by plane strain analyses,
it is possible to verify the calculated stiffness’s directly in a two-dimensional analyses.
This has been done inPLAXIS, a commercial finite element code for soil and rock
analysis. A model equivalent to theABAQUS continuum model has been established.
The domain, meshed with 15-node elements, is shown in Figure8.8a. Transverse
and vertical loads have been applied and the corresponding deformation figures are
depicted in Figure 8.8b and 8.8c.

The stiffness’s calculated withABAQUS andPLAXIS are listed in Table 8.1, given as
spring stiffness’s per metre in the longitudinal tunnel direction. It can be seen that
only minor differences between the calculated stiffness’sexist. These differences are
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Transverse and vertical soil springs

(a) Horizontal load (b) Vertical load

Figure 8.7: Deformation modes for the transverse and vertical soil spring analyses in
ABAQUS. The intensity (from blue to red) of the colour illustrates the magnitude
of the displacement.

(a) Cross section

A

A

A
A

A
A

(b) Transverse spring determination

A

A

AA

A
A

(c) Vertical spring determination

Figure 8.8: ThePLAXIS plain strain model for calculation of the transverse and the vertical
soil springs. The results are given in Table 8.1.

purely due to differences in the discretization. Thus, the calculated soil stiffness’s are
verified. In the further calculations, the stiffness’s calculated withABAQUS are used,
since the Winkler model will be compared to theABAQUS continuum model.
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Chapter 8. Winkler model

Table 8.1: The calculated soil stiffness’s fromABAQUS andPLAXIS.

Direction Spring stiffnessk
[

N
m·m

]

ABAQUS PLAXIS

Transverse 1.492 ·109 1.477 ·109

Vertical 2.668 ·109 2.712 ·109

Longitudinal soil springs

For the calculation of the longitudinal soil springs, the boundary conditions are changed.
The objective is to model the deformation of an infinitely long tunnel,i.e. a unit stiff-
ness per metre in the tunnel axial direction. The bottom and the sides are still subjected
to encastre, but on the ends, only deformation in thex-axial direction is allowed, cf.
Figure 8.6. These boundary conditions, together with a loadon the tunnel end, intro-
duces a state of anti-plane strain in the domain,i.e. only deformation in thex-axial
direction is present.

In Figure 8.9 the deformation mode is shown. It has been verified that no significant
displacements occur in the direction of they- andz-axes. The soil spring stiffness is
calculated in the same way as the in-plane springs, from the deformation due to an
applied load, to0.746 ·109 N

m·m
.

Figure 8.9: TheABAQUS mesh and displacement for the longitudinal soil spring stiffness.

To verify the calculation,e.g.an axisymmetric model could be build, in a program
which allows deformation with the azimuth angleθ. If the radiusR in the model is
much greater than the widthW of the tunnel, the curvature of the tunnel approaches
zero and an “infinite” tunnel is approximated. Thus, for great values of R

W
, the ax-

isymmetric model provides a good approximation of the anti-plane strain problem.
The principles of the model are sketched in Figure 8.10. The model has not been
investigated further.

The calculated soil spring stiffness’s, which will be used for the Winkler model, are
summarized in Table 8.2.
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Gasket stiffness

WR ≫W

Figure 8.10: A possible axisymmetric model to calculate the longitudinal stiffness.

Table 8.2: The calculated soil stiffness’s.

Direction Spring stiffnessk
[

N
m·m

]

Horizontal 1.492 ·109

Vertical 2.668 ·109

Longitudinal 0.746 ·109

8.2.2 Gasket stiffness

The gaskets are modelled with multiple springs, as it is illustrated in Figure 8.11. A
single longitudinal spring models the axial stiffness, while two shear springs model
the stiffness in the transverse and vertical direction.

x

y

z

Tunnel beam

Tunnel beam
Transverse shear spring,kgask,trans

Longitudinal spring,kgask,long

Vertical shear spring,kgask,vert

Figure 8.11: Modelling of gasket. Excerpt from Figure 8.1.

The equivalent longitudinal spring stiffness,kgask,long, can be found from the lin-
earized gasket stiffness chosen in Section 5.6.1 on page 35.The gasket circumference
is in Appendix D stated as 84.4m, whereby the spring stiffness can be calculated to

kgask,long = 24 MN
m2 ·84.4m

= 2.05 ·109 N
m

(8.1)

The shear stiffness of the gaskets is discussed in Section 5.6.2. It follows from (5.14)
that the shear stiffness’skgask,trans andkgask,vert are determined as

kgask,trans = kgask,vert =
kgask,long

3

= 0.68 ·109 N
m

(8.2)
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8.2.3 Damping

The damping of the tunnel and the gaskets is estimated to a loss factor ofη = 0.01,
according to Section 5.3.1. In the time domain, viscous damping is applied. The
dominant frequency is set to the first eigenfrequency of the soil, f = 1.09Hz, according
to Figure 5.3b on page 31.

The relation between the element damping matrices and the element stiffness matrices,
β, is found according to (5.10) and (5.11) on page 31 to

0.01 = 2π ·1.09Hz ·β

β= 1.46 ·10−3 (8.3)

In the same way, the damping for the soil springs are found. Itis chosen to use the
loss factor of the upper soil layers,η= 0.05, cf. Figure 5.4, which for viscous damping
approximates toβ= 7.30 ·10−3.

8.2.4 Discretization

The tunnel elements are discretized into a smaller number offinite element beams.
Since the soil springs are connected to the tunnel at the endsof each beam element,
the number of beams also determines the discretization of the soil-structure interac-
tion. To determine the discretization needed, a convergence analysis has been carried
out. The result is shown in Figure 8.12. On the ordinate axis the normalized tunnel
damage, defined in Section 5.7, is plotted. It can be seen thatsufficient accuracy is
obtained with around 20 beam elements per tunnel element, which has been used in
the analyses.
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Figure 8.12: Convergence of the Winkler model.

8.3 Input motion

The input strong motion is the earthquake time series calculated with the domain trans-
formation method which is accounted for in Section 6.2. The time series at the level of
the tunnel is depicted in Figure 6.12 on page 50. The calculated time series is applied
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to the outer ends of the soil springs, shifted in time to modelthe incoherence of the
propagating wave, caused by the apparent velocity.

8.4 Output

The output of the analysis should be the damage of the gaskets, according to Section 5.7.
Offhand, the output from the Winkler model is the displacement in the degrees of free-
dom, i.e. translations and rotations at the tunnel ends. Translationand rotation of two
adjacent tunnel elements are sketched in Figure 5.14. The translation and rotation of
the tunnel ends can be transferred to the absolute three-dimensional location of the
gasket corners, from which the deformation in the gasket corners can be found.

Firstly, the three-dimensional coordinate of every cornerpoint (shown in Figure 5.14)
is calculated. Then, the gasket deformation can simply be calculated as the change in
the absolute distance between two matching corners. A sketch of a tunnel end, with
the corner nodes and the degrees of freedom depicted, is presented in Figure 8.13.

ux ,θx

uy ,θy

uz ,θz~P
Centre axis

Figure 8.13: The degrees of freedom at the end of a tunnel element.~P is the direction vector
to a corner node.

8.4.1 Translations

The translations from the degrees of freedom,ux , uy anduz , are simply added to the
original coordinates of the corners.

8.4.2 Rotations

The rotational degrees of freedom,θx , θy andθz , yields an resulting displacement
of each of the corner nodes which should be taken into consideration. To calculate
this displacement, the direction vector of a corner,~P , is introduced. It is depicted in
Figure 8.13. This vector is rotated according to the degreesof freedom, thus calcu-
lating the new corner coordinate. The calculation of the rotation is described more
closely in Appendix E.
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9
CONTINUUM MODEL

As an alternativ to the Winkler model, a full continuum modelhas been established in
the commerciel FE programABAQUS . In this chapter, the modelling is described.

TheABAQUS CAE-files and output databases are enclosed on the attached DVD.

9.1 Parts and meshes

The model is built of three parts: Tunnel elements, gaskets and the soil. Instances of
these parts are gathered in an assembly.

All parts of the model are built of continuum elements, of thetypes C3D20R (brick)
and C3D15 (wedge). The brick elements are used for the major part of the domain,
and the wedge elements are used to fill minor regions. The elements are shown in
Figure 9.1. The elements are quadratic (second-order) elements, which are suitable
for modelling of wave propagation, as it is also discussed inSection 6.3.1 on page 46.
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Figure 9.1: Elements used in theABAQUS analysis. (Simulia 2007)

The most important assumptions made during the modelling ofthe continuum model
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Chapter 9. Continuum model

are stated in Section 8.1. The assumptions are common to the Winkler and the contin-
uum model.

9.1.1 Tunnel

The eight tunnel elements are all identical. A tunnel part isshown in Figure 9.2

(a) Cross section view (b) Isometric view

Figure 9.2: The meshed tunnel element part.

9.1.2 Gaskets

The Gina gaskets connect the tunnel elements. A Gina gasket part is shown in Figure 9.3.
It should be noted that the mesh of the gasket is generated such that it conforms well
to the mesh of the tunnel elements. This makes the assembly more accurate, as it is
discussed in Section 9.4.

Figure 9.3: The meshed Gina gasket.

The gasket is modelled 0.20m deep, and the elements are provided with a material
orientation, to make the use an orthotropic material model possible.

The gaskets are modelled with ordinary continuum finite elements. It has also been in-
vestigated, if the special gasket elements provided inABAQUS would provided a better
modelling. These elements, however, entails a very realistic modelling of the gasket
behaviour, since they require the initial compression of the gaskets, obtained during
the tunnel installation phase, to be a part of the modelling.Even if this would result
in a more accurate, non-linear, modelling, it would not correspond with the modelling
of the Winkler model, thus introducing another possible factor of divergence between
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the models. These factors are already deemed to be plenty in number, as it is outlined
in Section 8.1.

9.1.3 Soil

The soil is modelled as a single part, divided into the three layers. A hole to contain
the tunnel is included. The dredged trench is modelled, and the parameters of the
backfilling are set equal to the parameters of soilA, cf. Table 5.2 on page 29, as no
better data for the backfilling exist. The order of magnitudefor the parameters of soil
A correspond well toe.g.soaked sand, cf. Andersen (2006, p3).

The soil part is shown in Figure 9.4

(a) Cross section view (b) Isometric view

Figure 9.4: The meshed soil part.

9.1.4 Discretization considerations

The mere name of the finite element method implies that a discretization has to be
made. The accuracy of any finite element model is pinned to thechoice of a suitable
meshing of the domain and to an accurate time integration algorithm.

Mesh coarsness

The coarsness of the mesh has been chosen as a balancing between the calculation
time of the model and the accuracy of the obtained solution.

The size of the elements should be compared to the wave lengthof the propagating
waves, which depends on the frequency of the waves and the propagation velocity. The
slowest wave velocity is the S-wave velocity cf. Table 5.2. For soil layerC, which has
the largest elements and comprises the majority of the domain, the S-wave velocity is
600m

s
.

The frequency of the incident waves of importance is maximum2.0 Hz, cf. Figure 6.11
on page 50. Thus, the minimum wave lengthlmin can be calculated as

lmin =
600 m

s

2.0s−1
= 300m (9.1)

The longest side of an element in the meshed model is approximately 38.5m. Thus, no
less than seven second-order elements are available anywhere in the model to model
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each wave component. This is deemed to be sufficient to obtaina proper accuracy of
the calculation.

Time integration

When performing the time integration, the size of the time step should be given con-
siderations in order to obtain an accurate solution. The time step used for the analyses
is ∆t = 0.01s, which is equal to the sampling rate of the earthquake time series.

The time integration is inABAQUS performed with the dynamic, implicit scheme. The
method is called the Hilber-Hughes-Taylor operator, and the method is unconditionally
stable for linear systems; meaning that there is no mathematical limit on the size of the
time increment that can be used (Simulia 2007). Thus, the solution will not “explode”
when the time step is increased.

The correspondence between the time step, the element size and the wave speed should
also be observed. Ife.g. the element size is too small when compared to the other
parameters, it might happen that a wave will pass through an element, without being
noticed by the element. The correlation is formulated in theCourant condition

c ∆t

h
=C , C ≤ 1 (9.2)

(Andersen 2006, 72) wherec andh represent a characteristic set of wave propagation
speed and element size, andC is theCourant number.

It follows from (9.2) that if the greatest wave speed is around c = 2000 m
s

, and the
time step is∆t = 0.01s, the smallest element should be around20m. This is obeyed
by the majority of the elements in the domain. The exception is the places where
the geometry directs a finer discretization,e.g. in soil layerA which is only 3m in
thickness. In Section 9.6.3 it is analysed, how changes in the time step affects the
calculated displacements inside the domain.

Computation time

With the chosen discretization, a transient analysis of thefirst 15s of earthquake load-
ing and response takes about four hours to complete. The computation is performed
on the Department of Civil Engineering’s computer cluster,and runs serial on a single
computational node. The programmed input files which executes a calculation on the
cluster are enclosed on the attached DVD.

9.2 Material modelling

In this section, the material data needed for the model is presented. The continuum
elements are modelled with homogeneous, isotropic, linearelastic materials, as it is
also the assumption for the domain transformation method, which forms the input for
the Winkler model, cf. Section 6.1. The material data neededfor such materials for a
dynamic analysis are the Young’s modulusE , Poisson’s ratioν and the densityρ. The
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exception is the Gina gaskets which are modelled with orthotropic elements, making
it possible to control the behaviour of the gasket more accurately.

9.2.1 Soil

The densities for the soil layers are given in Table 5.1 on page 28. The Young’s
modulus and the Poisson’s ratio can be found from the inverserelationships of (A.2)

E =
µ(3λ+2µ)

λ+µ
, ν=

λ

2(λ+µ)
(9.3)

(Andersen 2006, p8)

The Lamé constantsλ andµ can be determined from the P- and S-wave velocitiescP

andcS , which are given in Table 5.2 on page 29. The relations are: ((A.4) is reprinted
for convenience)

cP =

√

λ+2µ

ρ
, cS =

√

µ

ρ

⇒µ= cS
2
·ρ , λ= cP

2
·ρ−2µ

(9.4)

(St John & Zahrah 1987, p171)

The resulting soil data are presented in Table 9.1 on page 73.

9.2.2 Tunnel

The tunnel elements are cast of reinforced concrete. The Young’s modulus for initial
compression, which is of the present interest, can be determined from a deemed ulti-
mate strength offck = 50MPa to E0 = 40GPa, according to DS411 (1999, p24). The
Poisson’s ratio is estimated toν= 0.15.

9.2.3 Gasket

The modelling of the Gina gasket is performed such that it corresponds well to the
Gina gaskets of the Winkler model, illustrated in Figure 8.11 on page 63. Thus, a
continuum equivalence to linear springs is desired. While this may not be the most
accurate representation of the actual physical problem, itis comprehensible and should
behave similar to the Winkler model. The gasket modelling ofthe Winkler model and
the continuum model are depicted in Figure 9.5 on the following page.

The desired behaviour of the Gina profiles can be modelled with an orthotropic mate-
rial, whose material stiffness matrix,D, is computed as

D =





















1/E1 −ν21/E2 −ν31/E3 0 0 0

−ν12/E1 1/E2 −ν32/E3 0 0 0

−ν13/E1 −ν23/E2 1/E3 0 0 0

0 0 0 1/G12 0 0

0 0 0 0 1/G13 0

0 0 0 0 0 1/G23





















(9.5)
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Transverse shear spring
Longitudinal spring

Vertical shear spring

(a) Winkler model

x,1

y ,2

z,3

(b) Continuum model

Figure 9.5: Gasket modelling in the Winkler and the continuum model. Excerpts from
Figure 8.11 and Figure 9.3.

(Simulia 2007)

The constants appearing in (9.5) on the previous page can be determined from the
desired behaviour of the gaskets. The indices are defined by the coordinate system
in Figure 9.5, where it is also seen that the gasket should be decoupled between the
transverse, vertical and longitudinal deformation. This is accomplished by setting the
Poisson’s ratiosνi j = 0. Thus, the material stiffness matrix is symmetric, which inany
case always should hold by settingν12 = ν21E1/E2 etc.

The stiffness in the longitudinal direction,E1, is determined on the basis of the gasket
stiffness found in (8.1) on page 63. The area of the gasket in Figure 9.3 is 103.12m2

and the thickness is 0.2m, thus yielding the equivalent computational stiffness as

E1 =
2.05 ·109 N

m
·0.2m

103.12m2

= 3.98 ·106 N
m2

(9.6)

The transverse and vertical stiffness’s,E2 andE3, respectively, are not important, since
the corresponding faces of the gaskets do not interact with any other faces, and the
Poisson’s ratios are set to zero. With the same arguments, the shear stiffness in the
axial direction,G23, is not important either.

The shear stiffness of the gaskets is treated in Section 5.6.2. According to (5.14), the
shear stiffness’s of the gaskets in the transverse and vertical direction,G12 andG13,
respectively, can be determined as

G12 =G13 =
E1

3

= 1.33 ·106 N
m2

(9.7)

This calculation assumes Poisson’s ratioν = 0.5, which is true for a incompressible
material which is a good approximation for rubber. Above, Poisson’s ratio was set
to zero, but this is only to make decoupling possible inABAQUS. The two values of
Poisson’s ratio therefore are absolutely unrelated.

9.2.4 Damping

The damping mechanism is viscous damping, cf. Section 5.3. The relation between
the element damping matrices and the element stiffness matrices are determined simi-
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larly to (8.3) on page 64. The consequence of the applicationof viscous damping over
hysteretic damping is analysed in Section 11.4.2.

9.2.5 Summary

The material data are summarized in Table 9.1. The data of thegasket are listed in
Section 9.2.3.

Table 9.1: Material data for theABAQUS model.

Material Density Young’s modulus Poisson’s ratio Damping

ρ
[

kg

m3

]

E [Pa] ν [-] β [-]

Soil layerA 1900 0.35 ·109 0.49 7.30 ·10−3

Soil layerB 2100 0.76 ·109 0.48 7.30 ·10−3

Soil layerC 2100 2.19 ·109 0.45 4.38 ·10−3

Reinforced Concrete 2500 40 ·109 0.15 1.46 ·10−3

9.3 Earthquake loading

The strong ground motion generated by the earthquake is applied in the model as
forced displacements. Different ways of applying the displacements to the domain
can be chosen. Some of the methods are sketched in Figure 9.6.

(a) Uniform motion (b) Free sides

(c) DTM (d) Transparent boundary conditions

Node without prescribed displacements
Node with prescribed displacements

Prescribed displacements
Node with transparent boundary condition

(e)Legend

Figure 9.6: Possible boundary conditions for a cross section of the soil domain. Forsimplic-
ity, only transverse deformations are shown.
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In Figure 9.6a, the input time series is applied to all nodes on the outer surfaces.
However, it is known that this would prescribe incorrect free-field displacements on
the side, since the free-field deformations are calculated in Chapter 6.

Another possibility is shown in (b), where the earthquake displacement time series is
applied only to the bottom surface. While this approach at first may appear feasible, it
totally disregards the stiffness and the mass of the soil outside the modelled domain,
thus providing a too flexible model.

Therefore, the boundary conditions of (c) are applied to thecontinuum model. On
the sides of the domain, the deformation is prescribed according to the displacements
in the specific level, calculated with the domain transformation method as described
in Section 6.2. Thus, the far-field displacements are prescribed fully by the free-field
deformations, while the near-tunnel field are left to the continuum model to calculate.

Another possible way of modelling the boundary conditions appropriate could be with
transparent boundary conditions(TBCs), depicted in (d). TBCs do not prescribe any
motion as standard Dirichlet or Neumann conditions (e.g.displacements or stresses,
respectively) but are formulated such that they absorb the outgoing energy of the
waves, thereby preventing reflection. TBCs are normally formulated for waves in a
specific direction, but multi-directional formulations have been provided bye.g.Hig-
don (1992). However, TBCs do not provide full transmission for domains with free
surfaces, as discussed by Andersenet al. (2007, p47). To absorb the surface waves,
e.g.Rayleigh waves, Bambergeret al. (1990) has suggested the use of buffer zones,
socalled “ears” which are applied to the model close to the free surface and applies
fictitious damping.

Instead of TBCs,infinite elementscould be applied. This type of artificial boundary
conditions is directly available inABAQUS , however not in theCAE-interface, and are
only fully transmitting in a specific direction (Simulia 2007). Yet another possibility
for the formulation of a wave-radiating domain could be an application of the boundary
element (BE) method, which in its formulation have an inherent ability to radiate
waves. BEs could be coupled with FEs, as it is discussed bye.g. Andersenet al.
(2007, p54-56).

While the concept of transparent boundary conditions seems commendable, the appli-
cation can be quite tortuous, especially if another formulation than infinite elements
should be implemented in theABAQUS code. However, the use of wave-transmitting
boundaries would be essential ife.g. the near-field was prescribed and the far-field
unknown, as it is the case for the wave motion frome.g.pile driving. In the present
thesis, since the far-field displacements are prescribed and the near-field the area of
interest, the concept of (c) has been employed.

The incoherence of the wave, due to the apparent velocity, isaccounted for with a time
shift for each node, dependent on the three-dimensional distance from the node to the
wave front.

The automated generation of a specific time series for each and every boundary node
is not possible in the CAD-likeABAQUS CAE interface. Therefore, a user subroutine,
disp, has been implemented. The subroutine has been written inFORTRAN and is
enclosed on the attached DVD.

74

disp


Assembly

9.4 Assembly

The above mentioned parts are put together in an assembly, a section of which is
shown in Figure 9.7.

Z
Y

X

Figure 9.7: The assembly.

9.4.1 Ties

The surfaces are connected with surface-to-surfaceties, which share the nodes of ad-
jacent surfaces. This reduces the size of the system matrices, eliminating the degrees
of freedom at the node of the slave surfaces.

This modelling has been used, since it is deemed that there will be no significant slip
between the tunnel and the soil, nor will there be any longitudinal shear displacement.
If this should be the case, a more appropriate modelling can be obtained by use of
surface-to-surface contact interactions. These are, however, non-linear in nature.

With the use of ties the same fundamental problem with nominal tensile stresses in the
soil, discussed in Section 1.3, arises. However, due to the oscillations around the state
of equilibrium, the use of ties in the present context is justified.

9.4.2 Master and slave surfaces

To establish a tie between two surfaces, a master surface anda slave surface should be
defined. During the solving of the matrix system, the ties then exclude the degrees of
freedom at the nodes of the slave surfaces. Instead, the degrees of freedom at nodes
on the master surface are used, thus reducing the size of the matrices.

In general, two surfaces connected with ties can not be expected to have nodes with
the very same coordinates. The link between a node on the slave and master surface
is therefore computed for each slave node, such that each slave node connects with
the nodes of the master surface, which is nearer to the slave node. This is shown
in Figure 9.8 on the following page, where slave surface nodec connects to node
402 on the master surface. If the projection point of the slave node on the master
surface does not lie directly onto a master surface node, thedegrees of freedom are
interpolated according to the shape function of the master surface. Hence, the degrees
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of freedom e.g. for slave surface nodea are calculated from the degrees of freedom of
master surface nodes202, 203, 302 and303.

b

c

a

104

203

204

304

404

504

102

502

103

503

403

402

101
201 301

401

501

202 302

303

slave surface nodes

Figure 9.8: A tie constraint between slave nodes and a master surface. (Simulia 2007)

In the special case of the tie between the tunnel and the Gina gasket, it does not make
any difference, which surface is the master or the slave, since the meshed are identical.
However, in most cases the choice of master and slave surfaces requires some consid-
eration. The slave surface mesh should, in general, be finer than that of the master
surface; thus making sure that a connection will exist between all nodes of the two
surfaces.

In the present model, the ties between the soil and the tunnelelements are modelled
with the tunnel as slave surface. For the ties of the gaskets and the tunnel elements,
the tunnel elements therefore are the master surfaces. Thisis necessary, since no node
can belong to two slave surfaces.

9.5 Output

The required output is specified in Section 5.7 on page 38. Thecontinuum model
serves the purpose of analysing the model assumptions connected to the Winkler
model. Therefore, the output of the continuum model should be made comparable
to the output of the Winkler model, described in Section 8.4.

9.5.1 Deformation at corners

Since the corners of the gaskets are nodes in the continuum model, the displacements
can be extracted and the deformation at the corners can be calculated directly.

9.5.2 Degrees of freedom equivalent to Winkler model

To compare the continuum model to the Winkler model when no gaskets are mod-
elled, as it is done in Section 10.2.5, it is necessary to be able to equate the three-
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dimensional displacement field fromABAQUS to the Winkler model, as it is illustrated
in Figure 9.9.

Figure 9.9: Sketch of the problem: the conversion from the continuum model (right) tothe
beam model (left). The arrows illustrate the degrees of freedom.

The reduction of the continuum model to six degrees of freedom (DOF) in an equiv-
alent beam involves a lot of choices, and no perfect solutionexists. Furthermore, all
internal modes of deformation,e.g.warping or racking (cf. Section 4.5), in the con-
tinuum model are disregarded.

Firstly, it is chosen to use the corner nodes and the quadrilateral they form as the basis
for the calculation, thus disregarding all other nodes. Thecalculation is implemented
in the postprocessing program, coded inMATLAB and enclosed on the attached DVD.

Translational DOF

The translational degrees of freedom are easily calculatedas the simple mean value of
the displacement for the four corners.

Rotational DOF

The rotational degrees of freedom can not be defined unambiguous from the displace-
ment in the four corner, since only three nodes are necessaryto define a plane in the
three-dimensional space. Since only small rotations are present, it is chosen to define
the rotation about an axis as the rotation of the direction vector between two centre
points, as it is sketched in Figure 9.10 on the next page for the rotation about they-
axis. In the depicted example, only the coordinates in thex z-plane are used for the
calculation ofθy .
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Centre point

Centre point

Vertical axis

θy

Corner node
x

y

z

Figure 9.10: Rotational DOF from corner nodes.

9.6 Verification of models

In this section, the continuum model is used for verificationof the DTM. It is also
verified that the free-field waves applied in the Winkler model can be reproduced by
the continuum model. Finally, the size of the time step is analysed.

9.6.1 Boundary conditions

Firstly, it is verified that the applied boundary conditions, the time series calculated
with the DTM, is correct and corresponds to the material properties entered inABAQUS.
This is tested by applying the earthquake motion to a layeredsoil domain without the
tunnel, depicted in Figure 9.11.

Figure 9.11: The layered soil domain without tunnel. The dots show the nodes for whichthe
timeseries is plotted in Figure 9.13.

The Aegion time series is applied to the soil domain in Figure9.11 without any delay
due to apparent velocity. The displacements on the sides of the domain are calculated
with DTM, using hysteretic damping.

A screen dump of the deformation is shown in Figure 9.12 on thenext page, and two
time series are plotted in Figure 9.13. It should be noted that very little difference
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exists between the displacement at the outer surface, whichis forced, and the dis-
placement inside the domain, which is calculated in abaqus.This verifies both the
DTM and the continuum model.

Figure 9.12: The soil domain during the execution of the time series. Note that the defor-
mation is uniform over the cross section. An animated version of the figureis
provided on the enclosed DVD.
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Figure 9.13: Displacement time series for the two nodes set off in Figure 9.11. Inputfrom
DTM with hysteretic damping.

Boundaries calculated with viscous damping

Even though the time series plotted in Figure 9.13 seem to be very alike, small dif-
ferences exist. This is more clearly seen at places with highacceleration. This effect
is due to the different damping models used for the calculation of the input forced
displacements and in the continuum model itself. While the domain transformation
method uses hysteretic damping in the frequency domain, thetime domain calcula-
tion in ABAQUS utilizes viscous, proportional damping. The differences are further
described in Section 5.3.

To illustrate the consequence of the use of different damping methods, new time se-
ries have been generated with the domain transformation method, now using viscous
damping, even though this damping method corresponds less well to the behaviour of
soil. The corresponding time series for the two nodes shown in Figure 9.11 are plotted
in Figure 9.14 on the following page.

To see the difference between Figure 9.13 and Figure 9.14 more clearly, close-ups are
plotted in Figure 9.15 on the next page. Here it is clearly seen that if the same damping
model is used for the boundary conditions and for the continuum model itself, a much
more accurate reproduction is possible. However, since hysteretic damping still is
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Figure 9.14: Displacement time series for the two nodes set off in Figure 9.11. Inputfrom
DTM with viscous damping.

regarded a better model of the behaviour of soil, but simply not available in the time
domain, hysteretic damping will remain to be used for the calculations with the DTM
henceforth.
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(a) Hysteretic damping in DTM
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(b) Viscous damping in DTM

Figure 9.15: Close-up of Figure 9.13 and Figure 9.14.

Furthermore, the same difference between the soil responsecalculated with hysteretic
and viscous damping has been observed in Section 11.4.2 on page 108, as a clear
verification of the results presented in Figure 9.15 and a verification of the coding of
the continuum model.

Incompatible boundaries

It may not be obvious that significant difference could existbetween forced displace-
ments at the outer surface of the domain and the calculated displacements inside the
domain. The importance of compatibility between the stiffness and mass of the model
and the forced displacements can however easily be illustrated,e.g.by using the orig-
inal Aegion time series for all forced displacements, exactly as it is sketched in Fig-
ure 9.6a on page 73. A calculation with these boundary condition yields the displace-
ments plotted in Figure 9.16. It is clearly seen that the incompatibility between the
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continuum model and the boundary conditions provides greatdifference between ex-
citation and response.
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Figure 9.16: Displacement time series for the two nodes set off in Figure 9.11. Inputat all
boundary surfaces is the original earthquake time series, as sketchedin Fig-
ure 9.6a,i.e. the prescribed motion is incompatible with the soil in the domain.

9.6.2 Representation of free-field soil deformation

The Winkler model assumes that the wave propagation is one-dimensional, meaning
that the response on a given point on the soil surface can be calculated directly from
the displacement time series in the bedrock directly below the point. This is illustrated
in Figure 9.17a. However, it seems reasonable that the wavesin some cases could
propagate in two or three dimensions, making the calculation of the surface response
more complicated. The principle of multi-dimensional wavepropagation is sketched
in 9.17b.

(a) One-dimensional (b) Multi-dimensional

Figure 9.17: Wave propagation.

To examine, how the model performs when an apparent velocityis present, the cal-
culations of Figure 9.12 and Figure 9.13 are performed again, but with an apparent
velocity of 1500m

s
. The angle of incidence, defined in Section 5.5.2, is set to0◦. The

deformed soil body is depicted in Figure 9.18.

Similar to Section 9.6.1, the displacement time series is plotted for two surface nodes.
It can be seen that the time series are very much alike, exceptfor the time shift, caused
by the apparent velocity. Some minor differences are present, but not significant, and
could be due to the different damping models, discussed in Section 9.6.1. This indi-
cates that for the present analysis,i.e. for a SH-waveshifted with aapparent velocity
in astratum, the assumption of one-dimensional wave propagation seemsOK.
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Figure 9.18: The deformed soil domain fort = 6s. Apparent velocity: 1500ms , angle:0◦. An
animated version of the figure is provided on the enclosed DVD.
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Figure 9.19: Displacement time series for the two nodes set off in Figure 9.11 when anap-
parent velocity of 1500ms is applied. The red line is the outer node corrected
for the time shift caused by apparent velocity. Input from DTM with hysteretic
damping.

9.6.3 Time step

The discretization of time should be sufficiently fine to ensure that all important waves
can be modelled, while still keeping computation time at a reasonable level, as it is
discussed in Section 9.1.4.

To quantify the importance of the time step, the analysis of Section 9.6.2 is performed
again, but with different time steps. As measure of the errormade as consequence
of the discretization, the data plot of Figure 9.19 is used. Correction for the apparent
velocity has been made and the outer and inner node displacements are analysed, cor-
responding to the red and the blue line of Figure 9.19. The computational error,e, for
a given time step is computed as the root-mean-square (RMS) value of the difference
between each data point.

e =

√

∑n
j=1

(uouter, j −uinner, j )2

n
(9.8)

wheren is the number of data points. For four different time steps, the RMS error is
plotted in Figure 9.20.

No clear indications of a reduced RMS error for finer time steps can be observed. This
is interpreted as an indication that convergence with respect to the time step is already
obtained. This is supported by the minor size of the error, approximately 2mm.
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Figure 9.20: Influence of time step in the continuum model of the soil domain.

Even though the time step∆t = 0.01s provides the highest value of the error in
Figure 9.20, it is chosen for the further analyses none the less, since convergence
is obtained and since it provides a reasonable calculation time, cf Section 9.1.4. Fur-
thermore, the sampling frequency of the input earthquake time series is 100Hz, cor-
responding to the chosen time step. Thus, every data point inthe input time series is
used for the analysis. This would not be the case if time stepsgreater than∆t = 0.01s

were applied.
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10
COMPARISON OF MODELS

In this chapter, the available models are held up against each other. The closed form
solution, the Winkler model and the continuum model are elaborated, and the differ-
ences between them are quantified and analysed.

10.1 Initial results from design basis

Firstly, the damage to the tunnel is calculated with the three different methods pre-
sented in this thesis. The basis for the calculations is the parameters discussed and
presented in Chapter 5;i.a. an apparent velocity of1500 m

s
and an angle of propaga-

tion of 45◦.

As it is described in Section 5.7, the focus of the analysis will be on the opening
and compression of the gaskets. Therefore, the maximal opening and compression of
all gaskets are calculated. This will be the important parameters for a design of the
immersed tunnel.

It can however, when comparing models, to some extent be bewildering to deal with
maximal values, since the place of occurrence for the maximal value may vary. There-
fore, to prepare for understanding of the model behaviour, atime series for a specific
gasket corner is also presented. The chosen corner is depicted in Figure 10.1 on the fol-
lowing page. It is the corner of the centre gasket with the highesty andz-coordinate.

10.1.1 Closed form solution

For the closed form solution, the gasket deformation is estimated with the help of (7.1)
and (7.2) on page 54. The input motion data is given in Figure 7.1 and Figure 7.2 on
page 55.
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x

y

z

Figure 10.1: The gasket corner chosen for comparative output, emphasized with an orange
dot.

The upper value of the deformation of a gasket,∆u, is calculated with the maximum
absolute value of the velocity and acceleration. This is what typically will be applied
in a real-world initial estimate.

∆u = le ·
vS

CS
sinφcosφ+ r

aS

CS
2

cos3φ

= 153m ·
0.86 m

s

1500 m
s

· sin45◦ ·cos45◦+
34.5m

2
·

8.01 m
s2

(1500 m
s

)2
·cos3 45◦

= 47.2 ·10−3 m

(10.1)

Due to the very simple approximation of the tunnel, the calculated gasket deformation
of 47mm does not correspond to any specific node. Likewise, since theclosed form
solution assumes a simple harmonic motion, the calculated deformation is both the
opening and compression of the gasket.

10.1.2 Winkler model

The Winkler model is outlined in Chapter 8 and in the following, the results are given.

In Figure 10.2, the boundaries for the gasket deformation are depicted as function of
time. Positive deformation is opening of the gasket; negative deformation is compres-
sion of the gasket. The maximum calculated opening of a gasket corner is25.9mm,
while the maximum calculated compression of a gasket corneris −32.5mm.

For the gasket corner shown in Figure 10.1, the deformation time series is shown
in Figure 10.3 on the next page. The maximum opening and compression of the corner
is 24.6mm and−30.6mm, respectively.

10.1.3 Continuum model

The continuum model is presented in Chapter 9. The deformed domain is depicted in
Figure 10.4.

In Figure 10.5, the boundaries for the gasket deformation are depicted as function
of time. The maximum calculated opening of a gasket corner is2.49mm, while the
maximum calculated compression of a gasket corner is−2.35mm.
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Figure 10.2: The Winkler model. Boundaries for the gasket corner deformation.

0 5 10 15
−0.03

−0.02

−0.01

0

0.01

0.02

 

 

Time, t [s]

D
ef

or
m

at
io

n,
∆

u
[m

]

Total
Axial, x
Transverse,y
Vertical, z

Figure 10.3: The Winkler model. Deformation time series for the gasket corner in
Figure 10.1.

Figure 10.4: The deformed domain. An animated version of the figure is provided on the
enclosed DVD.

For the gasket corner shown in Figure 10.1, the deformation time series is shown
in Figure 10.6 on the following page. The maximum opening andcompression of the
corner is2.25mm and−2.11mm, respectively.

10.1.4 Comparison

In Table 10.1 on the next page, the calculated deformations for the standard parameters
are listed. Firstly, it is clearly seen that the three modelsyield very different results.
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Figure 10.5: The continuum model. Boundaries for the gasket corner deformation.
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Figure 10.6: The continuum model. Deformation time series for the gasket corner in
Figure 10.1.

The closed form solution provides nearly twice the deformation of the Winkler model,
which furthermore calculates deformations of more than 10 times the deformation of
the continuum model.

Table 10.1:The calculated gasket deformations. All deformations are in mm.

Model
Max. gasket Max. gasket Max. opening Max. compression

opening compression chosen corner chosen corner

Closed form solution 47.2 −47.2 47.2 −47.2

Winkler model 25.9 −32.5 24.6 −30.6

Continuum model 2.5 −2.4 2.3 −2.1

It should come as no surprise that the closed form solution provides the highest value
of the gasket deformation. With this method many assumptions has been made, some
of them on the very safe side. For instance, when the inertia of the system is con-
sidered, it may seem unreasonable on the safe side to use the extreme values of the
velocity and acceleration as input to the closed form solution. To obtain a more accu-
rate estimate, it could be tried to deem “equivalent” valuesof the input parametersvs

andas from Figure 7.1 and Figure 7.2 on page 55. Neither does it seemreasonable
to multiply the calculated maximal strain with the tunnel length to obtain a deforma-
tion at the gasket, as it is stated in (7.2). However, it is notpossible to deem a more
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The Winkler model vs. the continuum model

accurate method without further calculations.

When the simple character of the closed form solution is contemplated in relation
with the complex nature of the problem, it should not cause surprise that the results
differ from the more detailed calculations. In fact, the difference from the closed form
solution to the Winkler model may seem minor.

In the further discussion and analysis, the primary focus will be on the difference
between the Winkler model and the continuum model. The more detailed modelling of
the continuum model could be expected to provide a differentresult, but that the gasket
deformations differ with an order of magnitude may be characterized astounding.

10.2 The Winkler model vs. the continuum model

The great difference between the gasket deformations calculated with the Winkler
model and the continuum model, shown in Table 10.1, is analysed in the following
section.

10.2.1 Crude errors

Firstly, it should be verified that no crude errors have been made in the modelling. To
this end, the displacement time series in a single node are plotted, to verify that the
displacements inside the models are comparable for the Winkler model and the con-
tinuum model. The selected node is located in the gasket corner shown in Figure 10.1.
In Figure 10.7, this gasket is depicted, and the selected node is shown. The node is
located onSide 1of the gasket, defined as the the side with the lowerx-coordinate.

x

y

z

Side 1,x1

Side 2,x2 > x1

Figure 10.7: Definitions of sides of the gaskets. The dot marks the node plotted in
Figure 10.8.

In Figure 10.8 on the next page, the displacements in the degrees of freedom of the
selected node are plotted for the Winkler and the continuum model. It can be seen that
the displacements are very much alike. This entails that theearthquake displacements
of the Winkler model and the continuum model make the gasket corner translate in
much the same way; with thesame order of magnitude. Thus, it is rendered probable
that no crude errors related to the wave propagation to the tunnel have been made in
the modelling.
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Chapter 10. Comparison of models

Furthermore, in Figure 10.8 the displacements in the vertical degree of freedom should
be observed. In the Winkler model, Figure 10.8a, no displacements occur, while mi-
nor displacements are present in the continuum model, Figure 10.8b. This difference
is due to the wave propagation modelled with the continuum model. The input dis-
placements does not have any vertical component (since a SH-wave is assumed), and
in the Winkler model this is directly transferred to the tunnel, while the waves in the
continuum model are propagated with respect to the three-dimensional domain.
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(a) Winkler model
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Figure 10.8: Displacements in the degrees of freedom at the corner shown in Figure 10.1.

10.2.2 Three-dimensional wave propagation

In the Winkler model the wave propagation is assumed to be one-dimensional, whereas
the waves in the continuum model have the ability to propagate three-dimensionally.
The consequence of this is analysed in Section 9.6.2, where it is shown that in the
present case, this effect does not yield any significant importance in the results.

10.2.3 Deformation in gasket

Apparently, the orders of magnitude of the displacements correspond well to each
other in the Winkler and the continuum model, but the deformations in the gaskets
differ with an order of magnitude. Therefore, the deformation in the gasket depicted
in Figure 10.1 and Figure 10.7 is analysed further.
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Transverse and vertical deformation

The deformation in the corner of the gasket has been plotted in Figure 10.3 and
Figure 10.6. When the deformations in the respective directions are contemplated,
it can be seen that in both models, the deformation in the axial direction dominates
most heavily. Some transverse deformation is calculated inthe continuum model, but
the total three-dimensional deformation depends almost exclusively on the axial defor-
mation. This was also to be expected, since deformations perpendicular to the tunnel
axis – due to the geometry – does not contribute very much to the change in distance
between the corner nodes.

Transverse and vertical deformation

In Figure 10.9, the transverse and vertical deformations ofFigure 10.3 and Figure 10.6
are plotted together. It can be seen that all though the calculated displacements in no
way are the same, the orders of magnitude correspond well to each other. Hence, the
major difference between the Winkler and the continuum model apparently is to be
found in the axial deformation.
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Figure 10.9: Transverse and vertical gasket deformations of Figure 10.3 and Figure 10.6.

Translations and rotations in gasket centre

To examine which tunnel deformation mode causes the axial gasket deformation in
the two models, the gasket deformation is now expressed in terms of the degrees of
freedom for the tunnel beam,i.e. rotations and translations in the gasket centre. For
the Winkler model, the degrees of freedom are given as the direct output, while they
must be calculated for the continuum model. The problem is sketched in Figure 9.9
on page 77, and the calculation is outlined in Section 9.5.2.

The deformations are calculated as the difference in the displacements of the degrees
of freedom between side 1 and side 2 of the gasket, cf. Figure 10.7. The translational
degrees of freedom are plotted in Figure 10.10 on the next page, while the rotational
degrees of freedom are plotted in Figure 10.11 on page 95. Forthe rotational degrees
of freedom, the rotations are converted into displacementsin the tunnel axial direction.
Hence, the rotation about thex-axis, socalledroll , is not plotted, since this does not
providex-axial displacement.
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Figure 10.10:Translational deformation for the gasket centre.

By studies of Figure 10.10 and Figure 10.11, it is again seen that thex-axial trans-
lational degree of freedom provides nearly all the deformation of the gasket. This
is common to the two models. Furthermore, in both models the rotation about the
vertical axis yields only approximately 10% of the axial deformation. Thus, only ax-
ial deformation andnot bending of the tunnel governs the gasket damage during the
present earthquake.

Gasket approximation

The Gina gasket in the Winkler model is represented with three springs, as it is
sketched in Figure 8.11 on page 63. Hence, no rotational stiffness is present in the
Winkler model. Still, the bending deformation comprises under 10% of the gasket
deformation, whereby it can be concluded that the modellingof the Gina gasket with
a single spring should be sufficient, since a more sofisticated modelling solely will
increase the rotational stiffness.

10.2.4 Importance of retroaction

In the preceding, it has been shown that the major differencebetween the Winkler
model and the continuum model should be sought for in the axial deformations. One
of the major principal differences between the models is that the soil springs in the
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(a) Winkler model
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Figure 10.11:Axial deformation due to rotations in the gasket centre.

Winkler model are decoupled,i.e. . that the only connection between two adjacent
soil springs is the tunnel.

The two models are sketched in Figure 10.12, where it can be seen that the only thing
which couples two adjacent springs is the shear stiffness ofthe tunnel. This opposes
to the continuum model, where the soil elements around the tunnel are coupled, mak-
ing retroaction possible,i.e. waves can be reflected from the tunnel back to the soil
elements, and the soil-structure interaction is dependenton the adjacent strain state.

Figure 10.12:The Winkler model (topmost) and the continuum model. The gaskets are
coloured red, the tunnel black, and the soil grey. The blue dotted lines indicate
that no retroaction is possible in the Winkler model.
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This difference between the two model is not easy to eradicate. It should be clear
that the continuum model in this respect is the better estimate of the physical prob-
lem. To incorporate retroaction in the Winkler model, a soilelement with appropriate
parameters could be connected to the tunnel, as it is sketched in Figure 10.13. The
soil element should model the soil behaviour, and its parameters could include both
various stiffness’s, damping and mass. This should be able to provide a better model
representation. However, the determination of the soil element parameters is far from
trivial, and it has not been investigated further in the present thesis.

Figure 10.13:The Winkler model of Figure 10.12 fitted with a soil element to account
for retroaction. The input displacements should still be applied to the lower
springs. Only vertical soil springs are depicted.

Instead, the consequence of removing the retroaction possibility in the continuum
model has been analysed. This should illustrate the sense ofretroaction modelling. In
the preceding, the deformations analysed are in the gasketsand therefore, the retroac-
tion possibility has been removed over the gaskets. Since the tunnel elements are
very stiff compared to the gaskets, it is also deemed that theeffect of removing the
retroaction possibility will be greatest there.

Separation planes

To take away the the possibility of retroaction, separationsoil planes have been imple-
mented in the continuum model in the gasket planes, as it is sketched in Figure 10.14.
The elements in the separation planes are modelled without stiffness and mass, thus re-
moving all ability to transfer any force or displacement. Hence, the continuum model
imitates the behaviour of the Winkler model, as it is sketched in Figure 10.12. How-
ever, the element surfaces outlined with a green line in Figure 10.14 will be modelled
with a “free” surface, thus making the soil too flexible. Thisshould be remembered
when interpreting the results of the analysis.

Figure 10.14: Insertion of a separation plane into the continuum model of Figure 10.12.The
blue soil elements have no stiffness or mass, and the green line indicates ele-
ments with a “free” surface.
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Spring planes

The deformed domain is depicted in Figure 10.15, where the separation layers clearly
can be observed.

Figure 10.15:Deformed domain for an analysis with separation planes. An animated version
of the figure is provided on the enclosed DVD.

The deformation for the chosen gasket corner (Figure 10.1) is plotted in Figure 10.16.
It can be seen that the deformations have been dramatically increased when compared
to Figure 10.6. The total deformation has been increased approximately 30 times, and
even more for the vertical deformation. Due to the “free” surfaces in the gasket cross
sections, the gasket deformation now is more than twice the deformation calculated in
the Winkler model.
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Figure 10.16:Deformation time series for the gasket corner in Figure 10.1. The continuum
model with separation planes. The maximum opening and compression ofthe
corner is68.7mm and−68.2mm, respectively.

Spring planes

Apparently, the connection of the soil over the gaskets is ofvery high importance. To
further investigate the phenomenon, a different approach for modelling of the separa-
tion planes is made. In Figure 10.17 on the following page, four different modellings
are sketched. Subfigure (a) shows the modelling without separation planes and (d)
illustrates the already performed analysis with no stiffness in the separation planes.

To analyse whether it is the normal stiffness or the shear stiffness which is of im-
portance in the separation layers, (b) can be used as modelling, disregarding only the
shear stiffness. Furthermore, to investigate the importance of the normal stiffness in
the tunnel-axial direction, the horizontal springs are omitted in (c).
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(a) Continuum (b) Normal springs (c) Vertical spring (d) No stiffness

Figure 10.17:Different ways of modelling the separation plane elements. The arrows outside
the elements illustrate the stresses which can be applied to the elements.

The analysis of the two new separation plane models yields the results plotted in Figure 10.18.
In Figure 10.18b, the absence of shear stiffness in the separation plane has increased
the total opening from2mm to 14mm. The vertical deformation has increased much
more, since very little stiffness in this direction is in themodel. As the axial spring in
the separation plane is removed, the deformation raises to the level of the separation
plane without stiffness. This can be seen in Figure 10.18b, which in every aspect is
nearly identical to Figure 10.16
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(a) Normal spring separation planes, cf. Figure 10.17b. The maximum opening and compression of the
corner is14.4mm and−4.5mm, respectively.
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(b) Vertical spring separation planes, cf. Figure 10.17c. The maximum opening and compression of the
corner is68.7mm and−68.2mm, respectively.

Figure 10.18:Deformation time series for the gasket corner in Figure 10.1.

It is clearly seen that the more important property for the separation layer is the stiff-
ness in the tunnel-axial (x-axial) direction. If the stiffness disappears, the model’s
ability to take retroaction into account disappear fully, and this increases the gasket
deformation dramatically.

On the basis of the performed analysis, it is deemed that the presence ofx-axial stiff-
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ness in the soil next to the gaskets is the single most important reason for the major
difference between the results from the Winkler and the continuum model.

But still, the results with the modellings of Figure 10.17 are not very close to the
results obtain with the Winkler model. The reason for this isthat the introduction
of a “separation layer” also entails introduction of a “free” surface, as it is discussed
in the above and depicted in Figure 10.14. Nevertheless the performed analysis very
significantly spots the importance of incorporating the possibility of retroaction into
the calculation models.

10.2.5 Modelling without gaskets

Apparently, the presented Winkler model does not perform well with the immersed
tunnel of the present thesis, since it fails to model the single most important factor in
the soil-structure interaction: the retroaction in the tunnel-axial direction.

However, Winkler models are widely applied. The major flaw inthe present applica-
tion is deemed to be the segmentation of the immersed tunnel;i.e. the cross section
is not uniform, since the very flexible gaskets separate the tunnel elements. Thus, the
minor errors are lumped in the gaskets, making the result unusable.

To test the Winkler model’s performance for a uniform cross section, the gaskets in
the models have been removed and replaced by concrete finite elements, thus making
the immersed tunnel consist of only one single tunnel element. The deformation in
the point shown in Figure 10.1 is still used for the calculation, and the time series are
shown in Figure 10.19 on the following page.

It can be seen that the deformation time series are very alikefor the Winkler and the
continuum model if the gaskets are removed. Thus, the Winkler model is a good
model for dynamic analysis of underground elongated structures, if the cross section
is uniform. The gaskets of the immersed tunnel makes the model overly conservative
in the gasket deformation calculations.

The similarity of the plots in Figure 10.19 also verifies the model coding of both the
Winkler model and the continuum model.

Even though the Winkler model in this chapter has been shown to yield results very
different from the continuum model with respect to the deformation of the gaskets, the
model will still be used together with the continuum model inthe following. This is
done in order to examine, whether the much simpler Winkler model could be workable
for parameter studies.
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(a) Winkler model
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(b) Continuum model

Figure 10.19:Deformation time series for the point in Figure 10.1. The gaskets are replaced
by concrete finite elements.

10.3 Winkler soil springs

The determination of the soil springs in the Winkler model isdescribed in Section 8.2.1.
The soil spring stiffness’s are determined on the basis of anelastic model, thus mak-
ing the results comparable to the continuum model. If a different material model was
applied (e.g. to account for non-linear behaviour), if the stratificationof the project
site was different, or simply if the material stiffness parameter should be determined
to something different, the soil spring stiffness’s could vary.

To account for the influence of the magnitude of the soil spring stiffness’s, a sensi-
tivity analysis have been performed. The soil spring stiffness’s have been scaled with
different common factors and the resultant maximal gasket deformation has been cal-
culated. For stiffness scales from 0.1 to 10, the result is plotted in Figure 10.20 on the
next page.

It can be seen that for moderate variations of the soil springstiffness’s,±50%, the
gasket deformation only varies with around±15%. Thus, the soil spring stiffness’s
can be determined with some scatter without comprising the accuracy of the Winkler
model. However, if changes in the soil spring stiffness should be due to changes in the
general soil stiffness, and hence changes in the wave velocity in the soil, the free-field
soil response will change significantly cf. Section 11.3 on page 106.
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Figure 10.20:The frequency response function for other depths of layerC.

In Figure 10.20 it can further be observed that the gasket deformation decreases monotonous
with increasing soil spring stiffness. This was also to be expected, since an increasing
soil spring stiffness will make the tunnel follow the prescribed displacements more
closely, and the deformation will decrease towards a minimum specified by the appar-
ent velocity.

10.4 Prestress in tunnel

As described in Section 5.6.1, the tunnel elements are prestressed during the instal-
lation phase. The purpose of the prestress is to compress theGina gaskets, but the
induced stresses in the system could also affect the stiffness of the tunnel elements, as
it is known from an ordinary beam-column problem. An axial compressive stress will
reduce the bending stiffness against cross axial load.

The prestressing force cannot be neglected offhand, since the total force is of magni-
tude 48 000kN, cf. (5.13). However, in the present chapter it is repeatedly shown that
the axial compression of the immersed tunnel is far more significant than bending.
Thus, it is deemed that prestress in the tunnel will have negligible influence on the
tunnel damage. To support is assumption, a sensitivity analysis has been carried out.

The bending stiffness have been scaled by a varying factor, by scaling of the cross
sectional second moments of area,Iy and Iz . In Figure 10.21 on the next page the
maximum deformation has been plotted for the reference gasket corner.

It can be seen that the gasket deformation is very insensitive to variations in the bend-
ing stiffness of the tunnel elements – only a slight decreasein the deformation occurs
from increasing bending stiffness. This can be explained bytwo characteristics of the
system, which has also been verified in the above: 1) the axialdeformation is of much
greater importance than bending of the tunnel, and 2) since the gasket stiffness is much
less than the tunnel stiffness – even if the the bending stiffness of the tunnel is scaled –
the free-field soil displacements are lumped in the gaskets.
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Figure 10.21:Sensitivity of the tunnel element bending stiffness. Normalized deformation in
the gasket corner in Figure 10.1.
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11
SOIL PARAMETERS AND STRATIFICATION

In Chapter 5 the soil stratification and the soil parameters for the project are presented,
and in Section 6.5 the response at the level of the tunnel is calculated by means of the
domain transformation method. In this chapter the sensitivity of the soil response with
respect to changes in the stratification and in the soil parameters is analysed.

The purpose of the sensitivity analyses are to indicate, howmuch time and money
should be spend in the determination of the stratification and soil parameters. If the
soil response is insensitive to changes ine.g. the layer thickness, only minimal soil
investigation is needed. On the other hand, if great sensitivity is present, it may be
favourable to invest time and money in detailed soil investigations.

11.1 Method of analysis

In the following analyses of this chapter, the sensitivity parameter is chosen as the
maximum absolute soil response from the time series at the level of the tunnel, cal-
culated with the domain transformation method. For the reference response calcu-
lated with the parameters given in Chapter 5, this value is175mm cf. Figure 6.12 on
page 50. The data of the plots in this chapter have been normalized with this value.
For comparison, the maximum absolute displacement of the earthquake time series is
95.5mm cf. Figure 5.7.

The choice of this sensitivity parameter is made because it is well correlated to the de-
formation in the gasket, which is the final design parameter cf. Section 5.7 on page 38.
Therefore, there is no need to perform excessive calculations to determine the final
gasket deformation for these sensitivity analyses. The correlation has been verified in
Section 12.3, where it has been shown that because the modelsare linear, the gasket
deformations are directly proportional to the free-field soil response.
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Chapter 11. Soil parameters and stratification

Even though the maximum absolute displacement may not be a perfect representation
of a time series – since all other soil response data is not used for the sensitivity
analyses – it can be seen by comparison ofe.g.Figure 6.12 on page 50 and Figure 10.5
on page 90 that the maximum gasket deformation occurs as the immediate reaction to
the maximum soil response. Thus, the maximum absolute displacement may with
good accuracy be used as indirect indication of the tunnel damage.

If the layer interfaces are not horizontal and the stratification similar at the entire
project site, incoherence may arise cf. 4.11c on page 26. This type of incoherence
has not been analysed in the present thesis, as it is stated inSection 4.6. Since the
analyses of the wave propagation is purely one-dimensionalit would not make much
sense to make detailed studies with these methods, as the wave propagation will be
three-dimensional for varying stratification.

The exact sensitivities calculated will vary for differentearthquakes with varying fre-
quency spectra. However, the following analyses should nevertheless provide clear
indications of the important factors.

11.2 Impact of layer depths

The stratification may not be very well determined in the deeper subsoil, since deep
borings are very expensive.

In Figure 5.1 on page 28 the stratification for the longitudinal section is depicted. It
can be seen that the layer thicknesses vary over the tunnel. In Section 5.4 it is shown
how mean thicknesses have been chosen as the design basis forthe entire domain.
Thus, the geographic variations are not included in this thesis. In this section, the
consequences of different thicknesses for the soil layers have been analysed.

11.2.1 Thickness of layer A

The maximum displacement at the level of the tunnel as function of the thickness of
layerA is plotted in Figure 11.1. Only minor sensitivity is present, since it can be seen
that if e.g.the layer vanishes, the displacement amplitude increases by around1%.
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Figure 11.1: Influence of the thickness of layerA.
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Thickness of layer B

11.2.2 Thickness of layer B

The sensitivity of the displacements with regard to the thickness of layerB is plotted
in Figure 11.2. The deformation may be increased with up to7%, should the layer
vanish.
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Figure 11.2: Influence of the thickness of layerB.

11.2.3 Distance to bedrock

In (COWI 2007) the thickness of layerC is estimated to100−150m as mentioned in
Section 5.2. Since the thickness of the layer,i.e. the distance to the bedrock, is not well
determined, the consequences of different thicknesses forlayerC has been analysed.
The result is plotted in Figure 11.3.
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Figure 11.3: Influence of the thickness of layerC.

It can be seen that rather large sensitivity is present. Should the lower value of the
estimated interval,100m, be the correct value of the layer thickness, the soil displace-
ment is magnified with20%. Even a magnification of approximately30% is possible
if the correct value should be80m.

In general, it can be concluded that the stratification is of rather high importance for
the calculated displacements at the level of the tunnel. In areal-world design pro-
cess, the exact stratification will never be known. Therefore, care should be taken
when determining the stratification, and for a final design sensitivity analyses like the
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above should be performed, and the design stratification chosen from the maximum
displacement. Also, if the layer interfaces diverges significantly from being horizontal,
this must be taken into consideration.

11.3 Wave velocity

The wave velocity depends on the shear stiffness and the density of the soil, as given
by (A.4) on page 130. Therefore, the result for a sensitivityanalysis of the wave
velocity also applies for the soil shear stiffness and the soil density.

The sensitivities for varying wave velocities are plotted in Figure 11.4. Like it is
discussed for the layer thicknesses, it can be seen that the design wave velocity can
not be chosen on the safe side as an upper or lower value. Especially for layer C the
wave velocity is significant, and magnifications of the displacements may be as high
as30% for a 30% increase in wave speed. For a final design, the expected interval
of the wave velocities should be determined, and sensitivity analyses performed to
determine the maximum displacement.
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Figure 11.4: Influence of the wave velocity of the soil layers.
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Figure 11.4: Influence of the wave velocity of the soil layers (Continued).

11.4 Damping

The application of damping in the thesis is outlined in Section 5.3. Here, the conse-
quences are analysed.

11.4.1 Sensitivity

The sensitivity of the soil response with respect to the lossfactor of the soil layers is
plotted in Figure 11.5. Due to its greater thickness, layerC is the only layer showing
a significant sensitivity. In general, it can be observed that more damping generates
less soil response, as it would also be intuitively expected. However, it may be seen
that the sensitivity of the the soil response is very little,since only up to3% of the
displacement fades for moderately high damping of soilC, η= 0.1.
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Figure 11.5: Influence of the damping loss factorη.

The effect of damping can also easily be seen in the frequencyresponse function which
is plotted in Figure 11.6. Especially the response in the eigenmodes is significantly
damped.
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Chapter 11. Soil parameters and stratification

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
10

0

10
1

10
2

10
3

 

 
η= 0
η= 0.01
η= 0.02
η= 0.03
η= 0.04

Frequency,f Hz

F
re

qu
en

cy
re

sp
on

se
,

H
[-

]

Figure 11.6: Frequency response function for the stratum at the level of the tunnel.

11.4.2 Hysteretic damping and viscous damping

Both hysteretic damping and viscous damping have been integrated in the domain
transformation method, and two time series at the level of the tunnel have been cal-
culated in the frequency domain and plotted in Figure 11.7 onthe next page. It can
be seen that very little difference exists between the two damping mechanisms. This
was also the conclusion in Section 9.6.1, where the time series calculated with hys-
teretic damping has been applied to the continuum model, whose solution in the time
domain entails application of viscous damping. In fact, it can be seen that the plot of
Figure 11.7 is very similar to Figure 9.15 on page 80. This indicates that the coding of
damping in the continuum model and the domain transformation method yields very
similar results, thus verifying the coding of both models.
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Figure 11.7: The soil response at the level of the tunnel. Viscous damping has been calibrated
for the hysteretic damping at a frequency of1.09Hz.
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12
THE EARTHQUAKE

In this chapter sensitivity analyses are performed for the apparent velocity, the direc-
tion and the displacement amplitude of the earthquake.

The damage measure is for the continuum and the Winkler models chosen to the de-
formation of the gasket corner depicted in Figure 10.1. Thisis chosen instead of the
maximal deformation at all gasket corners, since a comparison is deemed to be more
appropriate and understandable when a specific node is used.For the closed form
solution, only a single gasket deformation value exists.

12.1 Apparent velocity

Firstly, the sensitivity of the damage to the tunnel with respect to the apparent velocity
is analysed. Different values of the apparent velocity havebeen used for simulations in
the continuum model, and the maximum opening and compression of the gasket corner
shown in Figure 10.1 has been plotted in Figure 12.1a. Even though the Winkler
model and the closed form solution in Chapter 10 has been shown to be unreliable
for the immersed tunnel, calculations with the Winkler model and the closed form
solution have also been made, due to the simple formulations. The results are plotted
in Figure 12.1b. The ease of making parameter studies with the Winkler model and
the closed form solution, which is coded by hand inMATLAB , is the reason for the
additional data.

Even though the models in Figure 12.1 do not yield the same results, a similar trend is
clearly shown. The similarity between the models is furtheroutlined in Figure 12.2 on
page 113, where the results of Figure 12.1 are plotted for thethree models together.

It can be seen that changes in apparent velocity of±500 m
s

yield changes in the gasket
deformation of around∓20%. Since the greater damage occurs for lower values of the
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Figure 12.1: Maximum deformation in gasket corner shown in Figure 10.1.

apparent velocity, the lowest reasonable value should be used for a final design.

It does seem very reasonable that the general trend is increasing apparent velocity
for decreasing damage of the tunnel, since the incoherence stems from the apparent
velocity, and the incoherence is closely related to the damage of the tunnel, as it is dis-
cussed in Section 4.6. However, in a dynamic analyses it could normally be expected
that certain eigenmodes of the system would be excitated from certain apparent ve-
locities. Thus, a decreasing tendency could be expected, but some local amplification
would not be surprising to observe.

In Figure 12.2 however, the deformation is decreasing monotonously with increasing
apparent velocity. The reason for this must be found in the discussion of Section 4.4;
that the behaviour of an underground structures is not dominated by the inertia of the
structure. Hence, the most important seismic parameter forunderground structures is
not the soil acceleration but the soil displacement, and theeigenmodes of the immersed
tunnel become of minor importance.
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(a) Gasket opening
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(b) Gasket compression

Figure 12.2: Results from Figure 12.1 with deformation normalized for an apparent velocity
of 1500 m

s .

12.2 Direction

Similar to the previous section simulations have been performed, now with varying
angle of direction. Since the system is double symmetric, only angles fromθ = 0◦ to
θ = 90◦ are used for the analysis. The definition of the angle is provided in Figure 5.9
on page 35.

The gasket opening and compression as function of the angle of propagation are de-
picted in Figure 12.3 for the continuum model, the Winkler model, and the closed form
solution. It is clearly seen that the maximal gasket deformation occur with a direction
angle of approximately45◦. Thus, as it was deemed in Section 5.5.3, the critical angle
of approach is oblique, where both axial particle motion, cross axial particle motion
and an appropriate incoherence are present.

It should be noted that the calculated deformation is∆u = 0 for θ = 0. This is because
no incoherence is present when the wave propagates perpendicular to the tunnel.

As in the previous section, the trend in Figure 12.3 is very similar for all three models.
This is more evidently seen in Figure 12.4, where the deformations has been normal-
ized. Thus, it is indicated that both the Winkler model and the closed form solution,
even though the absolute values of the calculated deformations are highly conserva-
tive, advantageous could be used for some parameter studies.
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Figure 12.3: Maximum deformation in gasket corner shown in Figure 10.1.
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Figure 12.4: Results from Figure 12.3 with deformation normalized for an angle of45◦.
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12.3 Earthquake amplitude

The model is fully linear, and therefore should the gasket deformations – together with
all other displacements and their derivatives – be directlyproportional to a scaling of
the input displacements. This has been verified through calculations in the Winkler
and the continuum model; the closed form solution is omittedsince the proportionality
is very obvious seen from (7.1) on page 53. The displacement time series has been
scaled with a varying factor, and the results are plotted in Figure 12.5.
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Figure 12.5: Normalized maximum deformation in gasket corner shown in Figure 10.1.

It can be seen that a scaling of the input displacement time series yields the very same
scaling of the gasket deformations, thus verifying the linearity of the models. In the
real world tunnel, this will only apply if the deformation state in the soil and structure
is in the range where linear behaviour can be approximated.
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13
M ODELLING OF GASKET JOINTS

As it is discussed in Section 5.6, the modelling of the Gina gaskets is not trivial. A
linear approximation has been made, all though the behaviour is highly non-linear,
both in the longitudinal and in the transverse and vertical direction.

As in Chapter 12, the continuum model and the Winkler model are used for the sensi-
tivity analyses. However, since the gasket behaviour is notincluded in the closed form
solution, this is omitted.

13.1 Longitudinal stiffness

The axial (longitudinal) stiffness of the Gina gaskets is highly non-linear, as presented
in Section 5.6.1. A linearization has been made based on the gasket compression
during the installation of the tunnel. As the gasket is compressed or opened, the actual
stiffness will change rapidly. To give an indication of the impact of the linearization,
a sensitivity analysis has been carried out.

The longitudinal gasket stiffness has been scaled with a factor, and in Figure 13.1 on
the following page the damage to the reference gasket corneris plotted as function of
the factor, for both the Winkler model and the continuum model.

As in Chapter 12 it is seen that the trend seems quite similar for the Winkler model
and the continuum model. In Figure 13.2 this is more evidently seen as the normalized
gasket deformation is plotted. The general trend is a slightdecrease in the gasket
deformation as the axial gasket stiffness is increased, as it would also be expected
from a general static point of view. However, the change is very little, especially
for the continuum model which is regarded the better one. This indicates that the
modelling of the axial gasket stiffness shouldnot be given very deep consideration
when modelling the structure, since a variation in the stiffness does not affect the
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Figure 13.1: Maximum deformation in gasket corner shown in Figure 10.1.

gasket deformation significantly.

The results may be surprising, since it is documented in Chapter 10 that the axial defor-
mation is very highly affective on the gasket deformation. The reason that variations
of the axial gasket stiffness has very little effect on the gasket deformation is deemed
to be the great difference between the stiffness of the tunnel elements and the axial
gasket stiffness. The axial gasket stiffness make up approximately 3.98·106

40·109 = 0.1‰ of
the tunnel element stiffness. Since the tunnel is surrounded by soil, the overall dis-
placements are governed by the soil motion and thus, it does not make very much
difference if the gasket stiffness comprises0.10‰ or 0.15‰ of the tunnel stiffness –
the majority of the deformation is still lumped in the gasket.

118



Shear stiffness

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
0.95

1

1.05

 

 

Factor on axial stiffness[-]

N
or

m
al

iz
ed

de
fo

rm
at

io
n Continuum

Winkler

(a) Gasket opening

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
0.95

1

1.05

 

 

Factor on axial stiffness[-]

N
or

m
al

iz
ed

de
fo

rm
at

io
n Continuum

Winkler

(b) Gasket compression

Figure 13.2: Results from Figure 13.1 with deformation normalized for the initial lineariza-
tion of the gasket stiffness.

13.2 Shear stiffness

The choice of an appropriate shear stiffness for the gasket is discussed in Section 5.6.2.
In this thesis, it has been chosen to use a shear stiffness of the joint corresponding to
the shear stiffness of the rubber gasket itself, disregarding the shear keys of concrete.

As a sensitivity analysis, the gasket shear stiffness have been set to both zero and
equivalent to the shear stiffness of the concrete tunnel elements, in two different cal-
culations. The shear stiffness equivalent to concrete is used to model the shear keys
in action as an upper value of the stiffness. For the continuum model this corresponds
to shear modules ofG = 0Pa andG = 17.4 ·109 Pa, respectively. For comparison, the
reference shear modulus of the rubber gasket profile isG = 1.3 · 106 Pa. The results
for the Winkler model and for the continuum model are depicted in Figure 13.3 and
Figure 13.4.

It is clearly seen that the magnitude of the gasket shear stiffness does not influence sig-
nificantly on the gasket deformation. Thus, as for the axial gasket stiffness, the cross
axial gasket stiffness should not be given significant considerations when modelling
the immersed tunnel for a final design. The reason for this is primarily deemed to be
the definition of damage in the present thesis, since transverse deformation does not
contribute significantly to the total gasket deformation. In Figure 13.5 the maximum
transverse deformation is plotted. It can be seen that the introduction of a shear stiff-
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Figure 13.3: Maximum deformation in gasket corner shown in Figure 10.1.

ness like concretedoesdecrease the transverse gasket deformation significantly,from
1.1mm to 0.06mm, but this does not influence significantly on the final deformation.
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Figure 13.4: Results from Figure 13.3 with deformation normalized for the rubber shear stiff-
ness.
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Figure 13.5: Maximum transverse deformation in gasket corner shown in Figure 10.1, for the
continuum model.
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A
DERIVATION OF THE DOMAIN

TRANSFORMATION METHOD

In this section the domain transformation method is derived, based upon (Andersen
2006). The bases for the method are outlined in Chapter 6, andthe coordinates and
layer indices used refer to Figure 6.2 on page 44.

A.1 Constitutive model

The material model is in Section 6.1 given as homogeneous, isotropic and linear vis-
coelastic. The general constitutive model for a layer of such material is given by

σ̂
j

i k
=λ j ǫ̂l lδi k +2µ j ǫ̂i k , ǫ̂

j

i k
=

1

2

(

∂U
j

i

∂xk
+
∂U

j

k

∂xi

)

(A.1)

(Byskov 2002, p96), where thehat (̂ ) signifies the formulation in the frequency do-
main. For hysteretic damping to be applied, the Lamé constantsλ andµ are expressed
in terms of Young’s modulusE , Poisson’s ratioν, the circular frequencyω and the
loss factorη as

λ=λ′
·
(

1+ isign(ω)η
)

, λ′
=

νE

(1+ν)(1−2ν)

µ=µ′
·
(

1+ isign(ω)η
)

, µ′
=

E

2(1+ν)

(A.2)

(Andersen 2007)
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Appendix A. Derivation of the domain transformation method

A.2 Governing equation

The layers( j = 1. . . J) are one by one regarded as linear elastic, isotropic and homo-
geneous media. The equations of motion for such media are forthe general three-
dimensional case theNavier equations

(λ+µ)
∂2u j

∂xi∂x j
+µ

∂2ui

∂x j∂x j
+ρbi = ρ

∂2ui

∂t 2
(A.3)

where the conventions of index notation applies,ui is the displacement in the direction
of the coordinatexi , ρ is the mass density,bi is the body forces per unit mass andt is
the time coordinate.

In (A.3) nearly all terms reduces to zero when the simplified problem is observed.
Since a vertically propagating SH-wave is considered, no vertical movement occurs,
i.e. u

j
3 = 0, with j and3 indicating thej th layer and thex3-coordinate, respectively.

Furthermore, the system of coordinates is oriented such that the wave motion is in the
x1-direction, providingu

j
2 = 0.

The wave propagates in thex3-direction. Thus, for a givenx3-coordinate the same
displacement occurs for allx1 andx2, i.e.∂u

j

i
/∂x1 = ∂u

j

i
/∂x2 = 0.

If these simplifications for the SH-wave are incorporated into (A.3) and body forces
are disregarded, the following one-dimensional wave equation, which governs the
wave propagation, is found.

∂2u j (z, t )

∂z2
=

1

(c
j

S
)2

∂2u j (z, t )

∂t 2
, z = x3, u j (z, t ) = u

j
1(x3, t ), c

j

S
=

√

µ j

ρ j
(A.4)

where thez-coordinate is introduced together with the shear wave velocity cS .

A.3 Transformation into frequency domain

The governing equation (A.4) is formulated in the time domain (indicated by the pres-
ence of the time coordinate). The relation between the time and frequency domain
representation of the displacement is provided by the inverse Fourier transformation

u j (z, t ) =
1

2π

∞
∫

−∞

U j (z,ω)eiωt dω (A.5)

The integral in (A.5) can be discretised to a complex Fourierseries; a sum ofN discrete
harmonic waves with the frequencyωn as:

u j (z, t ) ≈
N
∑

n=1

U
j

n(z)eiωn t (A.6)
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Relation between the layers

Each term of (A.6),u j
n(z, t ) = U

j
n(z)eiωn t , can be inserted into (A.4). The second-

order derivatives of the term are

∂2u
j
n(z, t )

∂z2
=

∂2U
j

n(z)

∂z2
eiωn t

∂2u
j
n(z, t )

∂t 2
= (iωn)2U

j
n(z)eiωn t

=−ω2
nU

j
n(z)eiωn t

(A.7)

and applied in (A.4) this yields

∂2U
j

n(z)

∂z2
eiωn t

=−
1

(c
j

S
)2
ω2

nU
j

n(z)eiωn t

∂2U
j

n(z)

∂z2
=−

1

(c
j

S
)2
ω2

nU
j

n(z) =−(k
j
n)2U

j
n(z) (A.8)

where the wave numberk
j
n = ωn/c

j

S
is introduced. (A.8) represents the equation of

motion in the frequency domain for thenth frequency of thej th layer.

A local z j -axis is applied for every layer, as shown in Figure 6.2 on page 44. The
height of each layer is denotedh j , and (A.8) is a constant-coefficient differential equa-
tion with the solution

U
j

n(z j ) = B
j
n eik

j
n z j

+C
j
n e− ik

j
n (z j −h j ) (A.9)

whereB
j
n andC

j
n are integration constants.

Now the stresses can be found from the displacements throughthe constitutive re-
lation (A.1) on page 129. As indicated in Section A.2, only the partial derivative
∂U

j
1 /∂x3 is different from zero, which simplifies (A.1) to

σ̂
j
13 = σ̂

j
31 =µ j

∂U
j

1

∂x3
(A.10)

By utilization of (A.9) andx3 = z, and by introducing the stress amplitudeP
j
n(z j ) =

σ̂
j
13, (A.10) ends up to

P
j
n(z j ) = ik

j
nµ

j
(

B
j
n eik

j
n z j

−C
j
n eik

j
n (z j −h j )

)

(A.11)

A.4 Relation between the layers

Two auxiliary matricesS j
n andA

j
n which gathers the strain and stresses, are now intro-

duced as

S
j
n(z j ) =

[

U
j

n(z j )

P
j
n(z j )

]

= A
j
n(z j )

[

B
j
n

C
j
n

]

(A.12)

A
j
n is defined according to (A.9) and (A.11) as

A
j
n(z j ) =

[

eik
j
n z j

e− ik
j
n (z j −h j )

ik
j
nµ

j eik
j
n z j

− ik
j
nµ

j e− ik
j
n (z j −h j )

]

(A.13)
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Appendix A. Derivation of the domain transformation method

Now, the relation between the strain and stressesS
j
n at the top and the bottom of a

layer can be found. Superscript 0 and 1 signifies the top and bottom of the layer,
respectively,i.e. the requested relation is betweenS

j 0
n = S

j
n(z j = 0) andS

j 1
n = S

j
n(z j =

h j ). Through evaluation of (A.12) the relation is found as

{

A
j
n(z j

= 0)
}−1

S
j
n(z j

= 0) =

[

B
j
n

C
j
n

]

=

{

A
j
n(z j

= h j )
}−1

S
j
n(z j

= h j )

⇒ S
j 0
n = A

j 0
n

{

A
j 1
n

}−1
S

j 1
n (A.14)

It is observed thatS j 0
n is found through simple multiplication of matrices ontoS

j 1
n , a

very fast operation for a computer, relative to inversion oflarge matrices.

Continuity is now required in the interfaces between the layers. In other words, it
is required that the displacement is identical in the interface and that equilibrium is
fulfilled, i.e. S

j 0
n = S

j−1,1
n . This demand makes it possible to establish a simple relation

between the top of the topmost layerS
10
n and the bottom of the bottommost layerS

J1
n

through reiterated application of (A.14).
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· · ·A
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A
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S
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n (A.15)

Thetransfer matrixTn is then introduced, which reduces (A.15) to

S
10
n = T

10
n S

J1
n , T

10
n = A

10
n

{

A
11
n

}−1
A

20
n

{

A
21
n

}−1
· · ·A

J0
n

{

A
J1
n

}−1
(A.16)

A.5 Boundary conditions

The boundary conditions of the problem are: 1) No shear stress at the top of the
topmost layer,P 10

n = 0, and 2) An earthquake-induced displacement at the bottom of
the bottommost layer,U J1

n = Ūn . The boundary conditions are introduced in (A.16)
which yields the equation

[

U 10
n

0

]

=

[

T 10
11 T 10

12

T 10
21 T 10

22

][

Ūn

P J1
n

]

(A.17)

Solving (A.17), the displacement at the top of the topmost layer can be found directly
as a function of the earthquake induced displacement.

U 10
n =

(

T 10
11 −

T 10
12 T 10

21

T 10
22

)

Ūn = H 10
n Ūn , H 10

n = T 10
11 −

T 10
12 T 10

21

T 10
22

(A.18)

where the frequency response functionHn has been introduced. This may be com-
puted for each harmonic wave component in the earthquake spectra according to (A.6).
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Solution for inner interfaces

A.6 Solution for inner interfaces

If the deformations and stresses in the interfaces between layers is of interest, they can
be computed easily by a generalization of the transfer matrix Tn . For the top of the
j th layerT

j 0
n can be defined analogous to (A.16) on the preceding page:

S
j 0
n = T

j 0
n S

J1
n , T

j 0
n = A

j 0
n

{

A
j 1
n

}−1
A

j+1,0
n

{

A
j+1,1
n

}−1
· · ·A

J0
n

{

A
J1
n

}−1
(A.19)

The stress amplitude can be found from (A.17):

0 = ŪnT 10
21 +P J1

n T 10
22 ⇒ P J1

n =−
ŪnT 10

21

T 10
22

(A.20)

Hence, the displacements and stresses gathered inS
j 0
n can be determined from known

values:

S
j 0
n =

[

U
j 0

n

P
j 0
n

]

=

[

T
j 0

11 T
j 0

12

T
j 0

21 T
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22
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[

Ūn

P J1
n

]

(A.21)

where the deformation at the top of thej th layer, analogous to (A.18), can be expressed
explicitly as

U
j 0

n =

(

T
j 0

11 −
T

j 0
12 T 10

21

T 10
22

)

Ūn = H
j 0
n Ūn , H

j 0
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j 0
11 −

T
j 0

12 T 10
21

T 10
22

(A.22)

133





A
P

P
E

N
D

I
X

B
DERIVATION OF THE FINITE ELEMENT

METHOD FOR WAVE PROPAGATION

In this appendix, the finite element method (FEM) for the frequency response in a stra-
tum is derived. The method and its application is outlined inSection 6.3. The method
has been implemented in aMATLAB program, which is enclosed on the attached DVD.

This application of the FEM is performed in the frequency domain. This differs from
the application of the FEM in the Winkler model, cf. Chapter 8, which is performed
in the time domain.

In the FEM, a system of matrices is established and solved. The damping of the system
is, as stated in Section 6.3, applied as hysteretic damping,which enters in the stiffness
matrix K. Thus, the equation of motion in the frequency domain is

(

K−ω2
M

)

U = F (B.1)

whereK andM are the stiffness and mass matrix, respectively,U andF are the dis-
placement and load vector, respectively, andω is the circular frequency.

B.1 Geometry and topology

The general geometry of the problem is sketched in Figure 6.2on page 44. The geo-
metry is discretized with finite elements. Each soil layer isdiscretized into a chosen
number of soil elements, as it is depicted in Figure B.1 on thenext page. As it is
sketched in this figure, only the vertical coordinate,z, determines the node position.
The displacement in the nodes are measured on a horizontal coordinate.

The soil elements are connected in nodes, and both the elements and the nodes are
numbered ascending with thez-coordinate. In each layer, the soil parameters and the
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Appendix B. Derivation of the finite element method for wave propagation

element sizes are identical, which entails that the elementmatrices in each layer also
are identical.

Layer interface

Layer interface

Surface

Layer 1

Layer 2

Layer 3

...
...

...
...

Element 1

Element 2

Element 3

Element 4

Element 5

Element 6

z

Node 1

Node 2
Node 3

Node 4
Node 5

Node 6
Node 7

Node 8

Node 9

Node 10

Node 11

Node 12

Figure B.1: Sketch of geometry and topology for the FEM.

B.2 Element matrices

The element matrices for the soil elements are established on the basis of the chosen
shape functions of the elements. As stated in Section 6.3.1,it is chosen to use second-
order elements for the analysis. The second-order shape functions require a node in the
middle of the element, as it is shown in Figure B.1. The shape functions are depicted
in Figure 6.5 on page 46.

B.2.1 Stiffness matrix

On the basis of the given shape functions, and taken the physics of the problem (shear-
ing of a soil column with shear stiffnessG and depthle) into consideration, the stiff-
ness matrix for a soil element may be formulated as

Ke =
G

3 le







7 −8 1

−8 16 −8

1 −8 7





 (B.2)

(Felippa 2004, p32-11), where it should be remembered thatG is modified to model
hysteretic damping.

B.2.2 Mass matrix

The mass matrix may be obtained in a number of ways, since an exact solution to
model a continuum distributed mass does not exist. The mass matrix has been com-
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Solution of the system

bined of two ways of treating the mass: alumpedmass matrix and aconsistentmass
matrix.

The lumped mass matrix, (B.3), is a simple diagonal matrix, which models the mass
as if it where lumped entirely at the nodes of the soil element. The division of the
mass in portions of1/6, 1/6 and2/3 are obtained according to Simpson’s rule.

Me,lmp =
ρ le

6







1 0 0

0 4 0

0 0 1





 (B.3)

(Felippa 2004, p31-8)

The consistent mass matrix, (B.5) should in fact be called the stiffness-consistent
mass matrix, since it is constructed by using the same shape functions, depicted in
Figure 6.5, as used for the construction of the stiffness matrix.

The consistent mass matrix is calculated as

Me,cons =

∫L

0
N

T (x)µ(x)N(x)dx (B.4)

(Nielsen 2004, p153), whereN is the shape function matrix,µ is the distributed mass,
andL is the element length. For the second-order soil element this yields

Me,cons =
ρ le

30







4 2 −1

2 16 2

−1 2 4





 (B.5)

(Felippa 2004, p31-8)

The goodness of the mass matrix chosen can be quantified in terms of its ability to
preserve linear and angular momentum, and by modelling the dispersive behaviour of
a continuum. It can be shown that the better combination of the lumped and consistent
mass matrices is a simple linear combination,

Me =
Me,cons +Me,lmp

2
(B.6)

(Felippa 2004, p31-5) (Krenk 2001)

The element matrices, the stiffness as well as the mass matrices, are assembled to the
global system matrices according to the topology.

B.3 Solution of the system

The solution of the system, (B.1), now follows easily. For clarity, a ’dynamic stiffness’
is introduced as

Kdyn = K−ω2
M (B.7)

The earthquake enters into the system through forced displacements,u J = ū, at bedrock.
J is the total number of nodes. The force vector,F consists of zeroes. To account for
this, the system is rewritten, similar to what has been showed in Section C.3, where
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Appendix B. Derivation of the finite element method for wave propagation

further details can be found. The dynamic stiffness matrix are divided into four sub-
matrices

Kdyn =

1 · · · (J −1) J













Kdyn,11 Kdyn,12 1
···(J

−
1

)

Kdyn,21 Kdyn,22 J

(B.8)

and the solution to the system, the unknown displacementsU1, follows as

U1 = Kdyn,11

(

F−Kdyn,12 · ū
)−1 (B.9)
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ENHANCEMENTS TO FE W INKLER MODEL

The Winkler model, described in Chapter 8, has been coded inMATLAB on the basis
of an existing linear FE program for static analysis, by Stærdahl et al. (2007). The
program has been altered, so that a dynamic analysis with forced displacements can
be carried out. In this appendix, the necessary enhancements to the existing program
are described. What already was part of the program,e.g.the global matrix assembler
and the element stiffness matrix for a beam element, is not described.

Equations of motion

The basic set of equations which has to be solved is the globalequation of motion

Mü(t )+Cu̇(t )+Ku(t ) = f(t ) (C.1)

whereu signifies the displacement vector for the degrees of freedom, f is the load
vector, M, C and K is the mass, damping and stiffness matrices, respectively,and
where a dot(̇ ) signifies differentiation with respect to time.

C.1 Damping and mass matrices

The damping,C, and mass,M, matrices are generated for each finite element and
assembled to the global matrices according to the topology in the same way as the
element stiffness matrices.

Since the analysis is performed in the time domain, viscous damping is applied cf.
Section 5.3.4. Hence, the damping matrix is calculated by the use of (5.5)

Ce =βKe (C.2)

where the damping coefficientβ is given by (5.10) on page 31.
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Appendix C. Enhancements to FE Winkler model

The soil springs and the gaskets are modelled as massless. Therefore, their element
mass matrices are 12x12 zero-matrices. For the tunnel beam elements, the consistent
element mass matrix,Me,cons, can be calculated from the shape functions, similar to
what has been done in Section B.2.2 with the help of (B.4). Theconsistent mass matrix
ends up to

Me,cons =µL
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The lumped mass matrix,Me,lmp, is calculated by the “row-sum” method, where the
lumped mass matrix is formed by adding the off-diagonal entries in each row of the
consistent matrix to the diagonal entry, according to Zienkiewicz & Taylor (1989)

Me,lmp =µL diag
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(C.3)

The lumped and consistent matrices are combined with (B.6) on page 137.

C.2 Time integration

The numerical integration of the equations of motion, (C.1), is performed with a New-
mark family algorithm. This family of algorithms is widely used in structural dy-
namics. To ensure unconditional stability, the Crank-Nicolson algorithm, which is a
special case of the Newmark algorithm with the Newmark parameters(β,γ) = ( 1

4
, 1

2
),

has been employed. The time step is∆t = 0.01s as for the continuum model cf.
Section 9.1.4. The Newmark family of algorithms has been documented by e.g.
Nielsen (2007).
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Forced displacements

C.3 Forced displacements

Since the earthquake does not influence the system through external loads, but through
forced displacements as described in Section 4.4, the forces in the load vectorf(t ) are
unknown at the degrees of freedom with forced displacement.In stead, the forced
displacements are introduced into the set of equations, thus rewriting (C.1) to

[

K11 K12

K21 K22

][

u1

ū2

]

+

[

C11 C12

C21 C22

][

u̇1

˙̄u2

]

+

[

M11 M12

M21 M22

][

ü1

¨̄u2

]

=

[

f̄1

f2

]

(C.4)

where a bar(̄ ) denotes a prescribed value,i.e. the known forced displacements, and
the known forces in the degrees of freedom without prescribed displacements. All of
these forces is zero in the present case.

The equations of (C.4) with prescribed forces can now be rewritten to

K11u1 +C11u̇1 +M11ü1 =
(

f̄1 −K12ū2 −C12
˙̄u2 −M12

¨̄u2

)

(C.5)

K̃ũ+ C̃ ˙̃u+M̃ ¨̃u = f̃ (C.6)

where tilde(̃ ) denotes reduced vectors and matrices, the definition of which should
be clear from the rewriting of (C.5) to (C.6). The similaritybetween (C.6) and the
basic equation of motion (C.1) should be noted. This form is easily implemented into
standard Newmark schemes.

C.4 Spring elements

Two new elements are introduced in the program: the soil spring element and the
gasket element. Both are built on the basis of the three-dimension beam element,
simply by editing the generated element matrices. The element matrices of the beam
element are 12x12 matrices, since the beam element consistsof three translational and
three rotational degrees of freedom in each beam end. The stiffness matrix for the
spring element is changed to a new 12x12 matrix, with the spring stiffnessk in entries
1 and 7. Thus, only the axial translational degrees of freedom provide any stiffness.

Ke,spring =
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...
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0
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
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(C.7)

Similarly, the gasket element is constructed from the beam element stiffness ma-
trix. Since the shearing stiffness enters, uncoupled with other degrees of freedom,
the 12x12 matrix is constructed with the longitudinal spring stiffnesskl in entries 1
and 7, and the shear spring stiffnessks in entries 2, 3, 8 and 9. Thus, all translational
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Appendix C. Enhancements to FE Winkler model

degrees of freedom in the two element ends are coupled.

Ke,spring =

































kl

ks

ks

0
(3x3)

−kl

−ks

−ks

0
(3x3)

0
(3x3)

0
(3x3)

0
(3x3)

0
(3x3)

−kl

−ks

−ks

0
(3x3)

kl

ks

ks

0
(3x3)

0
(3x3)

0
(3x3)

0
(3x3)

0
(3x3)

































(C.8)

142



A
P

P
E

N
D

I
X

D
CROSS SECTION DATA

In this appendix, the data for the cross section of the immersed tunnel is outlined. The
data is used throughout the thesis,i.a. in the Winkler model.

A typical cross section is presented in Figure 5.2 on page 28.For the present thesis,
some simplifications of the geometry of the tunnel has been made. The cross section
used in the thesis is presented in Figure D.1.

53006100

14800

1100600

1500

34500

8700

y

z

Figure D.1: Definition sketch of typical cross section of the tunnel. The dotted line around the
perimeter shows the location of the Gina gasket. The section is both horizontal
and vertical symmetric about the centre of gravity. All measures in mm. After
COWI (2007).
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Appendix D. Cross section data

D.1 Length of gasket

Around the perimeter of the cross section, the Gina gasket islocated. The total length
Lgasket of the gasket is

Lgasket = 84.4m

D.2 Area

The full areaAfull and the solid areaAsolid of the cross section of the tunnel can be
calculated according to Figure D.1 to

Afull = 300.2m2

Asolid = 111.6m2

D.3 Second moment of area

The second moments of area around the centre of gravity are calculated as

Iy y =
1

12

(

34.5m · (8.7m)3
−2 ·14.8m · (6.1m)3

−1.5m · (5.3m)3
)

= 1315m4

Izz =
1

12

(

8.7m · (34.5m)3
−5.3m · (1.5m)3

)

−2
(

1
12

·6.1m · (14.8m)3
+ (8.75m)2

·6.1m ·14.8m
)

= 12650m4
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ROTATION MATRICES

To obtain results from the Winkler model, it is needed to rotate a vector in space, as
it is described in Section 8.4.2. The rotation is obtained with transformation matrices.
The notation follows Figure 8.13 on page 65.

The direction vector~P is transformed into the rotated direction vector~Prot by multi-
plication with the transformation matricesRz , Ry andRx .

~Prot = Rz ·Ry ·Rx ·~P (E.1)

It should be noted that the order of the matrix multiplications in (E.1) in principle is
not trivial. In general, it matters, which rotation is applied first, but in the present case
the rotations are very small. In practical use, this makes the order of multiplication
unimportant.

The rotation matrices are bye.g.Goldstein (1980, pp146-147) given as:

Rz =







cos(θz ) −sin(θz ) 0

sin(θz ) cos(θz ) 0

0 0 1





 (E.2)

Ry =







cos(θy ) 0 sin(θy )

0 1 0

−sin(θy ) 0 cos(θy )





 (E.3)

Rx =







1 0 0

0 cos(θx ) −sin(θx )

0 sin(θx ) cos(θx )






(E.4)
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