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ABSTRACT

This thesis deals with the model accuracy for seismic designmersed tunnels, like
the proposed underwater artery in Thessaloniki, Greece.

The soil response to seismic waves is analysed in the fregugomain by means
of the domain transformation method and the finite elemernhate The seismic re-
sponse of an immersed tunnel and the damage in the gasksthaive been calculated
with a closed form solution, a Winkler-type model, and a fhlee-dimensional con-
tinuum model. The Winkler model and the continuum model a@iad in the time
domain.

Focus is especially given to the diverging results from thiaRklér model, commonly
used in seismic design, and the continuum model, which isidered to be more ac-
curate. Through comparative analyses it is shown that teegpted Winkler model
is not able to model retroaction from the tunnel to the soltlisTentails that the pre-
sented Winkler model is not suited for seismic design of amérsed tunnel with
non-uniform cross section.

Sensitivity analyses are performed to analyse the influefitke many parameters
which must be determined for a seismic design. It is shownttigastratification and
the soil parameters, together with the earthquake magnitnfiuence significantly on
the tunnel damage. On the other hand, the modelling of theeirs@a tunnel gasket
joints has very little influence on the calculated gaskeddwvétion. Finally, itis shown
that the critical direction of wave propagation is an anglagproximately45° to the
tunnel axis.
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RESUME

Dette afgangsprojekt omhandler modelusikkerheder vedbi@elvsdesign af seenke-
tunneler, med en saenketunnel i Thessaloniki i Greekenlamdcase.

Jordens respons som fglge af jordskeelvsbglger er anaydezkvensdomaene ved
hjeelp af domaenetransformationsmetoden og finite elemetddele. Responset af
saenketunnelen og skaderne i koblingerne mellem tunnedelierme er beregnet med
en lgsning pa sluttet form, en model af Winkler-typen samfubdh tredimensionel
kontinuummodel. Analyserne med de sidste to modeller faretidsdomaene.

Winkler-modellen anvendes ofte ved jordskaelvsdesign,snkentinuummodellen er
anset for at veere mere ngjagtig. De to modeller giver megskédiige resultater, og

arsagen til denne forskel er undersggt ngje. Gennem saingmemdle analyser er det
vist, at den opstillede Winkler-model ikke er i stand til abaellere tilbagekobling fra

tunnelen til jorden. Dette indebeerer at den opstillede Winknodel ikke er egnet til

at designe en saenketunnel med fleksible koblinger mod jezhisk

Ved design mod jordskaelv er der mange parametre der skalrbests. For at under-
sgge hvor ngjagtigt disse parametre bgr bestemmes er aet falfomhedsanalyser.
Det er vist at lagdelingen, jordens parametre samt jordaksestarrelse har stor ind-
flydelse pa den beregnede skade pa tunnelen. Pa den andbarsii¢ meget lille be-

tydning for skaden pa tunnelen, hvordan det vaelges at nevdedbblingerne mellem

tunnelelementerne. Endelig er det vist at den kritiske edblsesretning for jord-

skeelvsbglgen er en vinkel p& omtraat med tunnelens leengdeakse.
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CHAPTER

INTRODUCTION

In this chapter, a brief outline of the Thessaloniki immersennel project and the
present thesis project is given.

1.1 Thessaloniki immersed tunnel

Thessaloniki is the second-largest city in Greece with aifagjon around one million

inhabitants. The location of Thessaloniki is depicted igufe 1.1. Thessaloniki is
located in the Axios-Vardaris zone, adjacent to the Senkem@nian zone, which is
characterized as one of the most active seismotectoniszomirope. Several active
faults are present in the region. (Pitilakital. 2007, p134)

Thessalonik®

Figure 1.1: Location of Thessaloniki.

This project deals with the seismic design process of a m@pammersed tunnel,
planned as a 6-lane road toll-tunnel. The intended locatihown in Figure 1.2
on the following page. The principal objective of the prajiscto provide congestion
relief to the centre of Thessaloniki by the creation of anargcbund by-pass. The




Chapter 1. Introduction

heavily trafficked avenue on the seafront is to be pedesgdrupon the completion
of the tunnel project.

tre of Thessaloniki. The tunnel is depicted with a red dashed line. (Goegth E
2008)

The immersed tunnel will be abou2km in length and is placed on the seabed at a
water depth of arountbm. In both ends, the immersed tunnel is linked to cut & cover
tunnels. In Figure 1.3 a sketch of the immersed tunnel onébbed is shown.

L

(COWI 2008)

AR

Figure 1.3: Illustration of the Thessaloniki tunnel.




The thesis

1.2 The thesis

The focus in the present thesis is the accuracy of the pregeatculation models for
seismic design of immersed tunnels. While the Thessalomkiérsed tunnel is used
as case for the thesis project, a final design for the spedificel is not provided.

Effort is concentrated on the development and analysis efdfalculation models: the
domain transformation method and the finite element methoavave propagation,

and a closed form solution, a Winkler-type model, and a fuiéé-dimensional con-
tinuum model for the soil-structure interaction.

The thesis consists of three parts. In Part 1 the basis fathttss is formed, as the
general concepts of immersed tunnels and earthquakesesenped, and a basis of
design parameters is found.

In Part 2 the calculation methods are presented. The domaisformation method
and the finite element method have been derived and used fa-dimensional cal-
culation of the wave propagation from bedrock to the levehatimmersed tunnel.
Thereafter, the closed form solution is presented, foltbiwe the Winkler model and
the continuum model.

Part 3 encloses analyses and comparisons of the modelseasens for divergences
in the obtained results are discussed, and sensitivityseslare performed to clarify
the influence of various parameters on the tunnel damage.

Following the bibliography, appendices containing leygdh trivial derivations not
suited for the main thesis are gathered.

1.3 Demarcation

To maintain focus on the analysis of the accuracy of the tatiom models and to
provide a feasible workload, the demarcation of this theaselided many potential
phenomena. Some of these are:

» Gasket compression variations
Temperature variations will cause the length of the tunteinents to vary,
thereby changing the compression of the gasket joints legtwiee elements.
Furthermore, due to relaxation, the compression stredseigaskets will de-
crease in time. Both of these effects are disregarded.

» Cut & cover tunnels
The thesis purely deals with the immersed tunnel. The cut €ecdounnels
have not been regarded, nor have the connections betwenrttezsed tunnel
elements and the cut & cover tunnels been given any consiclesa

* S-waves
As it is discussed in Section 4.2 on page 19, only S-wavesegia@ded for the
calculations of the wave propagation.

* No permanent deformation
In the analyses, only transient earthquake motion is aedlyd hus any per-
manent deformation — which could steng.from a fault displacement directly




Chapter 1. Introduction

beneath the tunnel — is disregarded.

Damage related to the gasket joints

Only the deformation in the gaskets are defined as damage iarthlyses, as
it is discussed in Section 5.7. Thus, the stresses in thestwelaments are
not given any consideration. This is done sircg. Vrettoset al. (2007) and
Tonnesen (2008) state that the gaskets are normally theatgpots for seismic
analyses of immersed tunnels.

Linearization

Even though some rather harsh non-linear problems are @éhltall of the
models presented in this thesis are purely linear. This@seh in order to re-
duce computation time, and since it is deemed that only sstralihs will occur
in the dynamic analyses. Also, to utilise the frequency dapimear material
behaviour is a prerequisite. Where very non-linear behavgaccurring,e.g.
for the soil and for the gasket behaviour, sensitivity asasyare performed in
Part 3 to quantify the possible error.

Also, the use of linear material models entails that nomiieasile stresses will
occur in the soil. This is not compatible with the generalestisd behaviour of
(non-cohesive) soils. However, the soil pressures duegvtgrare not incorpo-
rated in the models, since the dynamic analysis only modslidlations around
the state of equilibrium. Thus, the real stresses will migsty vary between
more or less compression, making the linear material maatadsptable from
an engineering point of view.



CHAPTER

CONCLUSION

In the following, the conclusions of the thesis are sumneatiz

Part 1

In Part 1 the common basis for the thesis has been estahlished

The general concepts of immersed tunnels and earthquakesesented, and the de-
sign cross section has been established on the basis ofamiation by Anastasiadis
et al. (2001) and data from design reports by COWI (2007). An acagtar time
series from the 1995 Aegion earthquake has been used asigh@csmput, since a
seismic hazard analysis is outside the scope of this thesis.

Hysteretic and viscous damping have been applied in the is\caled the differences
between the mechanisms are discussed. Furthermore, thagide@hof the gasket
joints under tunnel axial and cross axial loading has beesgmted, and the lineariza-
tion has been discussed. Finally, the damage criterionéas thefined as the opening
and compression of the gasket joints, which are calculatdue following parts.

Part 2

In Part 2 the applied calculation models are presented.

The wave propagation from bedrock to the level at the tunaslbeen calculated in
the frequency domain with the domain transformation metudi the finite element
method, both of which are derived. It has been shown that tiweta produce identi-
cal results if the finite element method is discretized sigffitty. But since the domain
transformation method is based on an analytical solutigritore computational ef-
ficient and is used in general in the thesis.
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The gasket deformation has been calculated with threeréiffenethods. A closed
form solution is presented as a very simple way of estimatiegorder of magnitude
of the gasket deformation, based on the free-field soil respo

Subsequently a Winkler-type model has been establisheghenhe immersed tunnel
elements are equated with beams, and the soil-structweeaatton is modelled with
linear springs. The Winkler model has been solved in the tomaain by means of a
finite element code, which has been developed for this perpdke model is coded
in MATLAB , and the spring stiffness’s are determined WAhaQus andPLAXIS.

Finally, a full three-dimensional continuum model is preeel. The model is coded in
the commercial finite element codsBAQUS with use of user subroutines and solved
in the time domain. The postprocessing is done WIthTLAB.

Part 3

In Part 3 the analyses of the thesis are gathered.

The three different ways of calculating the gasket defoimnahave been held up
against each other. The three models yield very differesullte The closed form
solution provides nearly twice the deformation of the Werkinodel, which further-
more calculates deformations of more than 10 times the hefdon of the continuum
model.

It may in particular cause surprise that the Winkler model #re continuum model
differ with an order of magnitude. The continuum model isarelgd as the more
accurate model of the physical problem, while the Winkleddelas commonly used
for seismic design of immersed tunnels. Therefore thisrdeece has been analysed.

It has been shown that no crude errors have been made in thrganfdhe models,
and that the models yield very similar output if the tunnehisdelled with a uniform
cross section. However, the immersed tunnel has a nonfumifooss section, as it
consists of concrete tunnel elements which are connectisdubiber gaskets.

Through comparative analyses it has been found that thelgvimiodel fails to model
any retroaction from the tunnel to the soil, and this spegifaperty is shown to be
the single most significant effect on the gasket deformatinrthe continuum model
the gasket deformation increases dramatically if retioads obstructed. It has been
briefly outlined how retroaction could be implemented in Wimkler model, and it
is the conclusion that without this enhancement, the Winkiedel isnot suited for
modelling of structures with non-uniform cross sectiorghsas the immersed tunnel.

The deformation modes of the immersed tunnel have also besgsad, and it has
been found that with the chosen damage criterion, the ddm@eode is axial com-
pression and extension, illustrated in Figure 4.10a on @&geAlso, bending of the
tunnel provides some gasket deformation, but only appratein10% of the total de-

formation.

During design of the immersed tunnel subjected to earthejsalong ground motion,
many different parameters must be determined. To analygserhortance of the ac-
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curacy of these parameters, sensitivity analyses havedaggad out. The thickness,
wave velocity and damping parameters of the subsoil layave been analysed, to-
gether with the apparent velocity, angle of propagationdigplacement amplitude of
the earthquake. Finally, the gasket joint behaviour isyeseal.

The results from the sensitivity analyses indicate first famdmost, that the general
linearization is acceptable. The gasket behaviour is inggle very non-linear, but
it is shown that the gasket deformation is highly insensitivvariations in the gasket
stiffness. Thus, only little effort should be given to theeatenination of the gasket
stiffness for a final design. Furthermore, the general mogal behaviour of soil will
not influence significantly on the gasket deformation, ctti®a 10.3.

The sensitivity analyses further show, that the most ingrdnparameters to define are
those related to the ground conditions at the project sitee Stratification and the
wave speed may exert significant influence on the gasketrdafmn. The analyses
show that the eigenfrequency of the soil column influencesélults. Thus, it is not
possible to choose the stratification and the soil parameteithe safe side without
performing sensitivity analyses. Furthermore, the deiteaition of the correct design
earthquake obviously will exert significant influence onc¢h&ulated tunnel damage.

The influence of the apparent velocity — the observed prafageelocity of the earth-
quake wave front at the ground surface — is only moderaterdicgpto the sensitivity
analysis. For increasing apparent velocity the tunnel dgndecreases, and there-
fore the apparent velocity for a final design should be chasahe lowest reasonable
value. Additionally, it has been shown that the criticakdiion of wave propagation
is oblique to the tunnel with an angle of approximatéhy. Finally, it is shown that
the chosen damping parameters only have very little infla@mcthe tunnel damage.

It should be noted, that for normalized deformation, theicormm model, the Winkler
model, and, where applicable, the closed form solutionyigevery similar results
for most of the sensitivity analyses. Thus, even though tleklét model and the
closed form solution in general provide overly consenatigsults for the gasket de-
formation, these models can be used for some parametersasaly
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CHAPTER

| MMERSED TUNNELS

Tunnels are, in general, constructions used to pass undemswntains or water.

The construction techniques are many and count among dibeesl tunnels, cut &

cover tunnels, NATM tunnels, blasted tunnels and floatimpéls, each type of tunnel
having its specific strengths. The choice of tunnel type ddpea. on economy, the

geography of the project site, and the construction tim&hlessaloniki, an immersed
tunnel connected with cut & cover tunnels on shore is undsigde In the present
chapter, the immersed tunnel type will be described.

3.1 Construction techniques

An immersed tunnel consists of prefabricated tunnel eléspenade so that when
temporary bulkheads are applied in both ends, a tunnel elecad be floated to the
project site. There, the tunnel elements are, one by onesrkmlvinto an excavated
trench in the seabed. Finally, the trench are backfilledraddhe tunnel.

The construction methods of immersed tunnels are develiopie beginning of the

1900s in the USA. The cross sections were at that time tylpicatular and of steel.

In the 1930s rectangular cross sections of reinforced etamevere developed in Eu-
rope. (DGF 2005, p137)

3.1.1 Construction and transport

The tunnel elements are constructed on shore, and are lty@€400m to 180m in

length. A suitable area of the right size and connected \Wilptoject site with water-
ways has to be found. A veritable dry dock is built by dammimg ¢onstruction area,
as it can be seen in Figure 3.1 on the next page. With respaotdptimization based

11




Chapter 3. Immersed tunnels

on time and economy, the dry dock should be able to contgintaiome fraction, of
the tunnel elements.

Figure 3.1: The Conwy tunnel in Wales during construction (1988). The connectiamets
are fully constructed, and plugged with bulkheads. The completed insché&us-
nel elements in the dry dock can be seen in the lower left corner. (DG¥, 20
p140)

When the construction of a series of tunnel elements has&djsamporary bulkheads
are applied to the ends of the tunnel elements. The tunnelegits are now floated
off to the project site, either on barges or simply, if thertehelements have positive
buoyancy, with the help of tugboats, as it can be seen in EigLa.

Figure 3.2: Tug boats manoeuvring an immersed tunnel element. (ITA 1999)

3.1.2 Installation

When arrived at the project site, the tunnel elements araliedtone by one. The
tunnel element is ballasted with water until negative buayaexists, and the tun-

12




Installation

nel element is lowered into the excavated trench with thp bétranes mounted on
barges. The lowering process is illustrated in Figure 3.3.

Ballast concrete

Figure 3.3: Lowering of a immersed tunnel element. After Trelleborg (2007).

On one of the tunnel ends, a gasket is mounted. The purpobésajdsket is to seal
the connection between two adjacent tunnel elements, iegghie water tightness of
the structure. The gaskets used in the tender design in dlbedd are Gina gas-
ket profiles, manufactured by Trelleborg Bakker, The Ne#mels. (COWI 2007) In
Figure 3.4, a cross section and a mounted gasket are depicted

40

[E4

luswia|a 0] pPajunoN

220

(a) Cross section of Gina-profile type

JUBWIdJ® 1Xau Spsemo) passaidwo)

(b) G naﬂgak el ele-
ETS 180-220-SN ment. The bulkhead is installed
Figure 3.4: Gina gasket profile. (Trelleborg 2007)

The tunnel element is placed adjacent to the previouslaliest element (or the cut

coupling of the two tunnel elements are illustrated in FeyBI5.

The tunnel elements are pulled against each other, and sietgeompresses and
forms a reservoir between the bulkheads, cf. Figure 3.5t8a&5w When the reservoir
is emptied and filled with air at atmospheric pressure, trdrdstatic pressure at the
free end of the tunnel element under installation compeeise Gina gasket, as it is
shown in Figure 3.5d.

Finally, to ensure that the tunnel element stays on the sedladlast concrete is cast
in the tunnel element, as it is depicted in Figure 3.3.
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i

(a) The immersed tunnel element is pulled (b) A small reservoir is created (c) Between the

against the previously installed one bulkheads (ITA
1999)
_V_I
/
*
(d) Water is pumped out and the hydro- (e) The bulkheads are removed, and a
static pressure compresses the Gina secondary water seal is applied
profile

Figure 3.5: Coupling of immersed tunnel with Gina gasket. After Trelleborg (2007).

3.2 Advantages of immersed tunnels

Immersed tunnels should be considered whenever it is ndedrdss water. Typical,
the choice will stand between a bored tunnel, an immerseatketuor a bridge. Some
of the advantages of immersed tunnels are:

e Alignment
Since an immersed tunnel is placed on the seabed, its togthlevill be less
than the length of a bored tunnel, thus reducing costs.

¢ Cross section
Since the immersed tunnel elements are constructed on,shi@@ossible to
construct various cross sections. The cross section ofaaltionnel is normally
restricted to being circular.

e Ground conditions
While both a bridge and a bored tunnel requires relative goodrgl conditions,
it is possible to install an immersed tunnel in most typesodf scluding soft
alluvial materials. However, in relation to the topic foretipresent thesis it
should be noted that soft soil may amplify seismic wavesifggmtly.

e Land availability
Even though immersed tunnel construction requires muchesfizr the con-
struction dry dock, this could be located relative far frdma project site, making
it possible to construct an immersed tunnel in urban areas, &s Thessaloniki.

* Reclamation




Advantages of immersed tunnels

When spotting a site for the construction dock, opportusiteereshape river-
banks and coastlines as part of a tunnel construction scheaydoe observed.
For example, the specific tunnel construction costs maydweces if the project
is associated with a land reclamation scheme.
 Construction process

Compared to the boring of a tunnel or the construction of dda;j much of the
immersed tunnel work is done on shore, in the constructiak.d@his makes
the process easier to handle for the contractor, thus negldbe uncertainties
for construction time and budget.

(ITA 1999)

Even though many advantages for immersed tunnels exidintidehoice of construc-
tion will always depend on the specific project.







CHAPTER

EARTHQUAKES

The only load condition considered in the present thesisdsetrthquake on the im-
mersed tunnel. In this chapter, the basic nature of earlegus outlined, and the
affection of the strong ground motion of tunnels is desatibe

Allthough earthquakes are not very frequent in the regiothefworld were this uni-
versity is situated, they have throughout history causedd@struction of countless
cities on nearly every continent. Earthquakes are the leadtrstood of the natural
hazard and in early days were looked upon as supernatunatisevEhe totally unex-
pected — nearly instantaneous — devastation of a majorceeile has a unique psy-
chological impact which demands serious consideratiorobiesy. (Dowrick 1987)

The destructiveness of earthquakes is most recently riitest to the international
community with the great consequences of the major earkeqo& 12 May 2008
in the Sichuan province of China. The casualties count arai@d000, and five mil-
lion people are left homeless. In Figure 4.1 some of the dendag to the disaster is
shown.
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Figure 4.1: A bank building in Beichuan after the May 2008 Sichuan earthquake. (Goma
2008)

4.1 Plate tectonics

An earthquake is a spasm of ground shaking caused by a sueldase of energy in
the earth’s lithosphera.¢€. the crust plus part of the upper mantle). The underlying
causes of earthquakes are closely related to the globahieqirocesses, which are
continually producing mountain ranges and ocean trendhtée @arth’s surface. The
major tectonic plates are depicted in Figure 4.2. (Clougtef#ten 1975, pp522-525)
(Dowrick 1987, pp4-6)

Eurasian
plate

Juan de Fuca

Filipino Arabian  \

EQUATOR

Pacific
plate

Scotia plate

Figure 4.2: The major tectonic plates. The red arrows indicates the movement of ties.pla
(Commons 2006)

Almost all earthquakes occur at the interface between tatepl The movements of
the tectonic plates, shown in Figure 4.2 with arrows, aresediby convection in the
mantle, shown in Figure 4.3. Where plates spread from eaan,@hidge is formed,
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Wave types

and where plates overlap a subduction zone is formed, wherbdavier crust plate
subducts under the lighter. This is depicted in Figure 4.8ah be seen in Figure 4.2
that the ridges are mostly formed on the oceanic floor.

osphere

Spreading ridge
preacing
Subduction zone

Subduction zone

Outer core

Inner core

Figure 4.3: The parts of the earth with spreading ridges and subduction zones (&fiBr-
mons 2007).

If the movement of a plate is obstructed by the neighbourlatepthe friction energy
will be saved up, in some cases for decades or even centuniibthe energy is
released spasmodically as seismic deformation; an ealequThe rupture plane
is called afault, and can in some cases be observed directly on the grourateyrf
especially in larger shallower earthquakes. (Dowrick 19%) (Kramer 1996, p27)

4.2 Wave types

As the earthquake energy is released along the fault, iggates through the soil as a
number of waves, which have different characteristics. fdtere of these waves are
outlined in this section, which is based upon Andersen (2008-4). The four most
commonly observed waves, P-waves, S-waves, R-waves, araVes are shortly pre-
sented.

The P-wave is denoted thgimary wavesince it is the first wave to arrive at an ob-
servation point. The particle motion is pure dilatation,poessure. The P-wave is
illustrated in Figure 4.4a.

The S-wave is denoted tlsecondary wavsince it arrives after the P-wave, typically
having a phase velocity of half the P-wave velocity. Theiplrtmotion for the S-
wave happens as equivoluminal shear. The S-wave does neamippa fluid, since
no shear stress can be generated there. The S-wave is depidtgure 4.4b. A
S-wave consists of two different components, the SV-wavktha SH-wave. The V
and H abbreviates Vertical and Horizontal, and indicatesdihection of the particle
motion. The difference is illustrated in Figure 4.4b andur@4.5b. In the first of
these subfigures the SV-wave is shown, whereas the lattersstie L-wave which
acts like a SH-wave on the surface.

The P- and S-wave are jointly referred totasly wavessince they propagate through
space. In opposition to this stands theface wavesvhich count the R-waveRayleigh
wave and the L-wavel(ove wavg These are depicted in Figure 4.5 on the following
page. The Rayleigh wave moves the particles in ellipsedikgsbcean waves. How-
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Compressions Undisturbed medium
/ N 4 N
@ i
i
N 7 e ]
Rarefactions Wavelength

Undisturbed medium
7 N

(b)

l Wavelength !
Figure 4.4: Deformation produced by body waves: (a) P-wave, and (b) S\ewakie waves
propagate from left towards right. (Kramer 1996, p19)

ever, the particle motion is retrograde near the surfaceficfure 4.5. Opposing to

the P- and S-waves, the Rayleigh wave contains both preasdrehear components
in the displacement field. The particle motion is greaterhia tertical than in the

horizontal direction, which is not clearly indicated in kig 4.5.

The L-wave is, shortly explained, horizontally polarizduear waves (SH-waves)
which are bound to the surface like the R-wave, thus credtorizontal horizontal
movement of the earth during an earthquake.

Wavelength
T Undisturbed medium
7 N
(a)
Wavelength
e Undisturbed medium

o N

(b)

Figure 4.5: Deformation produced by surface waves: (a) Rayleigh wave, gricbfle Wave.
The waves propagate from left towards right. (Kramer 1996, p20)

The present analyses

In a dynamic model, all the above stated types of waves shioydnciple be mod-
elled and accounted for, as the earthquake motion propafrate the fault to the
project site. In Figure 4.6 on the next page the propagatidheoearthquake to the
Thessaloniki tunnel is sketched. In the present thesis Wenvé has been chosen to
focus only on SH-waves, to simplify the problem. It is deentteat the horizontal
component of the ground motion is the more dangerous andsthiginly caused by
S-waves, cf. Fardist al. (2005, p21). Furthermore, it is stated by (Poweal. 1996)
that S-waves are typically associated with peak partictelacations and velocities,
and the focus on SH-waves is widely usedy.by Anastasopoulost al.(2007). Since
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the waves are refracted as they reach the surface due tamdenyesoil stiffness, as it
is sketched in Figure 4.6, the horizontal polarization &ified.

Surface

Figure 4.6: Propagation of the earthquake waves to the tunnel.

Decreasing stiffness

In Figure 4.6 it is sketched that the waves firstly propagateugh the bedrock. This
is valid since it is assumed that a significant distance gxXstween the fault and
the project site. The damping in the alluvial soil is muchagee than the damping
in bedrock. Thus, all surface waves are disregarded, siniseassumed that they
are damped away before reaching the project site. On the bémel, surface wave
propagates two-dimensionally and body waves three-diioeally, which makes ge-
ometrical damping more significant for body waves than fofasie waves. Hence,
geometrical damping and material damping are contragicfoantities, the impact of
which should be analysed for a final design.

4.3 Determination of design earthquake

When determining the design earthquake many parametersbaustaluated, and
many tools are at hand. In this section, some of these areniszb

This analysis is typical a job for skilled seismologistst bue final determination
should be made in cooperation with the geotechnical andtsiial engineer, since the
deformation mode of the structure may influence on what isactierized as the more
dangerous earthquake motion.

4.3.1 Size of earthquake

When categorizing earthquakes with a single parameterjzbeofthe earthquake is
either characterized with the intensity or the magnitude.

Intensity

Intensity is a measure of the destructiveness of the eaalteqas evidenced by human
reaction and observed damage. This is in other words a givigjeceasure, dependent
on the eyes of the beholder. For historic earthquakes ghti®ionly measure available.
Several scales are available, including the Modified Mér&alale (MM), the Euro-
pean Macroseismic Scale (EMS) and the Japan Meteorolo§geaicy Scale (JMA).
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Common for the scales is the representation of the intemsity Roman numerals.
(PIANC 2001, pp129-130)

Magnitude

Magnitude is an instrumental measure of the size of an eaaitte It is related directly
to the energy released, which is independent of the placbsdroation. Again, sev-
eral scales are available, based on the amplitude of seisplogecords. The scales
include the Richter local magnitud&y, well known amongst laymen through the
nine o’clock news. The moment magnitudiy or surface magnituda/s are, how-
ever, preferred by seismologists. The scales do not significdiffer for magnitudes
up to 6. All magnitude scales have in common the representafi the magnitude
with Arabic numerals. The maximum recorded magnitude isuabay = 9.5 (e.g.
Chilean earthquake of 1960) (PIANC 2001, p130)

4.3.2 Seismic hazard analysis

To determine the design earthquake, a seismic hazard @edysbe carried out. The
seismic hazards are the physical phenomena associatedméthrthquake, which are
likely to produce adverse effects on human activities. Témeahds includéa. ground
failure and liquefaction, but mostly the ground motion igdi®s measure, since it is
correlated to the other hazards.

Both deterministic and probabilistic seismic hazard asety(DSHA and PSHA) can
be performed. In the DSHA, the nearby potential earthquakieces are examined,
and with the help of attenuation relationships or microzimma the potential size of

the earthquake at the project site is determined. The ststrearthquake is chosen,
and a design to resist this earthquake is performed.

For a PSHA, all nearby seismic sources are incorporatecideiign. The probabilis-
tic distributions of each sources earthquake potentiailrm@porated, and a design is
made based on a chosen reliability ing&x.e. the possibility that the design earth-
guake will be exceeded during a particular time period. Fothier references on
seismic hazard analyses see, for example, (Kramer 199&4pp183).

Liguefaction

Liguefaction is a most dangerous phenomenon, which islgtartlined in the follow-
ing. Under earthquake loading liquefaction can occur imgxeith loose cohesionless
soils. Also, liquefaction only occurs in saturated soild éimerefore is most commonly
observed near rivers, bays and other bodies of water (Kra®@s, p5). As the soill
deposit is sheared back and forth, the pore water presswreisgarapidly, even to
the level of the total stresses, thus eliminating the effecttresses. If this occurs, the
strength and the stiffness of the soil are lost altogethmethis condition large ground
movements can occur. The liquefaction condition ends whenpbre water over-
pressure has drained, thus restoring the effective sgefissome cases a drain path
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can evolve through the upper soil layers, spouting sand atdrwp as “volcanoes”.
(PIANC 2001, p9)

The mechanisms of liquefaction are schematically showrigargé 4.7. The damage
mode of liquefaction has not been examined in the presesistignce the subsoil in
the project area does not contain any cohesionless soilRalofe 5.1 on page 28.

Sand and Water Settlement

Spouting Sand Volcanoe
Ground Surface @F A Ground

%W e 'jﬁ Siittace

/ i
Before During/; After/
Earthquake Liquefaction Liquefaction

Particle 000
Sand particles Pore water pressure ~ Contacts between the
maintain contact increases and the particles are
with each other. contacts between recovered. Settlement
the sand particles may occur in relation to
are lost. the volume of water
drained from the lique-
fied deposit.

Figure 4.7: Mechanism of liquefaction. (PIANC 2001, p10)

4.3.3 Code spectra

Alternatively to seismic hazard analyses, the design gadake can be determined
with the use of a code. This is the most common approach to eisrais design
when dealing with ordinary structuresg.like multi-storey buildings. Typically, the
design seismic action will be given by a response spectruenshape and magnitude
of which are altered according to the ground conditions aajcaphical region. Two
examples of such code spectra are shown in Figure 4.8.

7 T T 0 1 2 3 U
0 02 04 06 08 1 12 2 3 T(s)

(a) Greek code (b) Eurocode

Figure 4.8: Examples of earthquake response spectra. The shown paranmetesed to ad-
just the spectra to the local seismic conditions. (EAK 2000, p18) (EN-1998
2003, p25)

The calculation of a response spectrum is done with a siregjeeg of freedom (SDOF)
system, which is subjected to an earthquake. For eachdi$taguency, the response
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spectrum value is the maximal response for the SDOF systéichvis tuned so that
the eigenfrequency is the distinct frequency. The concepiustrated in Figure 4.9,
where the SDOFs with varying eigenfrequencies are showmdasgt the input motion
and the response spectrum.

Spectral
acceleration

,” Natural period
’ ’ ’ ’ ' ’ of vibration

A

"_"*C | Input motion

Figure 4.9: The generation of a response spectrum. (Kramer 1996, p571)

Response spectra are directly applicable for the desigmmfentional buildings in
the frequency domain, but time series are not directly piedifrom the spectra. To
find appropriate time series, numerous time series must alysed, and the time
series with the best fit to the design response spectrumaébeuthosen. The motion
amplitude can be scaled to make a better fit. In a design EeE®s 1998-1 (2003)
recommends the use of a minimum of three different time segeordings. In this
thesis however, only a single time series has been use&, tia@pplication of more
time series is trivial.

4.3.4 The present thesis

In most cases the design earthquake is not for the structuggotechnical consulting
engineer to determine. Typically, the design earthquak@asided in the Special
Conditions of Contracte.g.in the form of a peak ground acceleration, velocity, and
displacement, or as a response spectrum.

In the present thesis no analysis has been made to find anpaigpeodesign earth-
guake, since the purpose of this thesis has been not to praviatksign for the im-
mersed tunnel but instead to evaluate the accuracy of thgrde®dels. In Section 5.5.1
the applied earthquake time series from Mg= 6.2 Aegion 1995 earthquake is pre-
sented. This has been chosen because it was at hand, and ttheeg®ographical
proximity of Thessaloniki and Aegion, shown in Figure 5.5page 33.

Further information on the detailed seismic environmeritloéssaloniki is provided
by e.g.Pitilakis et al. (2007) and Anastasiadét al. (2001).
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4.4 The influence of earthquakes on underground
structures

For a structure placed above the ground surface, the mogedaus earthquake mo-
tion parameter is normally the acceleration on the surfébe.acceleration is typically
converted to an applied force using D’Alembert’s princj@ad the seismic design of
the structure is verified (Nielsen 2004, p33).

Seismic design of underground structures is typically \different, since the iner-
tia of the surrounding soil is large relative to the inertfal® structure. This means
that the dominating parameter is the displacement in thegnding soil. This has
been verified by measurements made by Okambi@. (1973). Thus, the inertia of
the underground structure itself becomes of minor impagarnThe focus in under-
ground seismic design, therefore, is on the free-field dedbion of the ground and its
interaction with the structure, as recommended by (Hasbeah2001, p252).

4.5 Damage modes of tunnels

An immersed tunnel subjected to earthquake-induced stomgnd motion will de-
form in a number of modes at the very same time. In Figure 4hEOmost significant
of these modes are depicted. Figures 4.10a and 4.10b shopression in the axial
and the cross axial direction, respectively. Figure 4.1€uats bending of the tunnel,
which can be occur both horizontally and vertically, andurg4.10d shows shear
deformation of the cross section, denotedaaking

Tunnel during .
. Tunnel cross section
‘wave motion /

before wave motion
Tension Compxessmn
2525 b
55 passs
g R0
o326t v

g
&
Tunnel o
&
=
S
(a) Compression-extension (b) Compression of tunnel cross section

Positive
curvature

Tunnel During
/] I Wave Motion

AAAAARAAAL  Temeetn

‘Wave Motion

Negative Shear Wave Front

curvature “Bottom”™
(c) Longitudinal bending (d) Racking of tunnel section
Figure 4.10: Deformation modes of tunnels due to seismic waves. After Owen & Scholl
(1981).

For an immersed tunnel, the critical mode of earthquakededwibration is the lon-
gitudinal oscillations, according to Anastasopoutsl. (2007), since it may lead to
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decompression of the joint gaskets. This will jeopardizatiatertightness and, hence,
the safety of the tunnel. Therefore, focus in this thesisvsrgto the longitudinal de-
formation of the gaskets, occuring mostly from mode (a) giiFé 4.10, but also from
mode (c). Thus, potential deformation of the cross sectiotuimnel elements and
gaskets is disregarded.

In Section 5.7 on page 38 it is discussed how damage to theltisnmeasured in this
thesis.

4.6 Incoherence

For a structure such as a tunnel that extends over a considetstance, different
ground motions may occur beneath different parts of thecttra. This local spa-
tial variation of the ground motion is denot@ttoherencegand it may exert a very
important influence on the response of the structure (Kraré@6, p100).

The incoherence can be caused by a number of factors, threleidi are depicted in

Figure 4.11. Figure 4.11a show the wave-passage effectevemeinclined wavefront
causes the motion in locations 1, 2 and 3 to be shifted in thigure 4.11b show the
extended source effect, where multiple faults generatih@aake waves which will

reach the observation points at different times. Finatlg,effect of soil heterogeneity
is depicted in Figure 4.11c, where inhomogeneities in thecsmse reflection and
refraction of the waves, thus altering the displacemenisdations 1, 2 and 3.

1 2 3 1 2 3 1 2 3
Heterogeneity
Wefrom
Epicenter
Fault
A B Seismic source
(a) Wave-passage effect (b) Extended source (c) Soil heterogeneity

Figure 4.11: Incoherence. (Kramer 1996, p101)

In the present thesis, only the wave-passage effect is ssth@ @ause of incoherence.
While the two other effects could also have been incorponatdebut disproportionate
costs, this is omitted to simplify the analyses.

The propagation velocity of the earthquake is in principle velocity of the waves

in the bedrock, stated in Table 5.2 on page 29. Since the-tlireensional wave
propagation in the bedrock is not well accounted for, andesboth the velocity of P-
and S-waves will influence on the observed surface progaygaélocity, it is chosen

to use anapparent velocitywhich is based on empirical measurements. Typically,
apparent wave passage velocities range between 1 6@3007 according to Vrettos

et al.(2007). The apparent velocity is further discussed in adi5.2.
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CHAPTER

DESIGN BASIS

This chapter encloses the basic informations about thegojequired for the further
analyses.

For the analyses, a lot of parameters have to be determimesgeTincludé.a. the soll
parameters, soil stratigraphy, earthquake parametenglbas the physical geometry.

In a conventional static analysis, a characteristic vahaikl be determined.g.as

a five-percent quantile of the strength of a material. Afgpleation ofe.g.partial
safety factors, the provided design values should maketBat¢he design can be ver-
ified to be on thesafe side In a static analysis, it is mostly a trivial task to detergin
whether or not a parameter is determined on the safe sids, Advever, is not triv-
ial in general for a dynamic analysis, and in particular foe inalyses in the present
thesis. It ise.g.not easy offhand to say, whether an increase in the shefmestfin a
soil layer will increase of decrease the displacement irtuhael gaskets. This could
e.g.depend on which eigenmodes of the tunnel are excited.

Hence, as itis not fruitful to determine characteristic dedign values, in this chapter,
best estimates of the “correct” mean value are searched fereafter, in Part 3, the

sensitivity of some of the parameters is analy$edit is analysed how the damage to
the tunnel is affected by changes of a given parameter. $kigrie in order to examine

whether the determination of a given parameter should bengiveat consideration,

or if a reasonable estimate is sufficient for a final design.

5.1 Geometry of tunnel

The longitudinal section of the immersed tunnel is sketdhneligure 5.1. The im-
mersed tunnel consists of eight tunnel elements, each @ppately 153 m long (COWI
2007). The cross section is depicted in Figure 5.2 on thevatig page.
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West East
Upfill
A Existing seabed projile at centreline of tunn 10m
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B
10m

Figure 5.1: Longitudinal section of the tunnel. The letters indicate soil layers. After COW
(2007).

Shore side Existing seabed level Seaward side

Locking fill 1000mm filter layer
1000mm rock protection

750mm \gravel bed

34500mm
Figure 5.2: Typical cross section of the tunnel. After COWI (2007).

5.2 Geotechnical parameters

As indicated in Figure 5.1, the subsoil in the project areatzadivided into four dis-
tinct layers. The fill layer is disregarded. In this sectith soil parameters associated
with these layers are presented.

The four layers are listed in Table 5.1 together with the bugghts. The thickness of
the two topmost layers are indicated in Figure 5.1. The tiesk of the red clay, layer
C, is estimated to 10& to 150m. (COW!I 2007)

Table 5.1: The layers of Figure 5.1. (COWI 2007)

5]
m3

Layer Description Y [

A Loose sandy silty clay and silty clayey sand with 19
occasional gravel

B Medium dense silty clayey sand and firm sandy 21
silty clay with some gravel

C Firm red sandy silty clay with little gravel 21

D Bedrock -

In the microzonation report of Anastasiadisal. (2001) dynamic soil parameters is
presented. These include S- and P-wave velocities andyjtadtors for nine general
soil layers present in the vicinity of Thessaloniki. Thesfication and soil parameters
are achieved as the result of a large-scale geophysicalestdannical survey, where
a detailed geotechnical map has been made. The geotechaieatomprised 440
boreholes with more than 4000 soil samples and 171 CPTs.

The correlation between the layers in the present intengistiee layers of Anastasiadis
et al. (2001) is presented in Table 5.2 on the facing page. The caosgmahas been
made based on the geotechnical descriptions and bulk eensit
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C
A
B
C
D

Damping

Table 5.2: Quality factorsQg and velocities for P- and S-waves in the soil. The equivalent
layer is the layer name cf. Anastasiadtsal. (2001). The values in brackets specify
the expectation values. (Anastasiagligl. 2001, p2620)

Layer Equivalent layer cs[2] cp 2] Qs (-]
A B2 200-300 (250) 1800  20-25 (20)
B B1 300-400 (350) 1900  15-20 (20)
c E 350-700 (600) 2000  6-30 (30)
D G 1750-2200 (2000) 4500  180-200 (200)
5.3 Damping

In soil, energy is dissipated by various mechanisms. Duéeo high complexity,

these mechanisms can not be modelled explicitly. Therefan@e convenient math-
ematical formulation which lumps the various energy logsegther — a damping
mechanism — must be chosen. (Kramer 1996, p567) In thisosedtie damping

mechanisms used in this project are outlined.

5.3.1 Loss factor

A lot of different quantitative measures of damping existeTelation between three
common measures, the quality factqr,(preferred by seismologists), the damping
ratio, ¢, and the loss factor;, are given as
1
Q=—,

2 n=2¢ (5.1)

(Kramer 1996, p569).

In the following, the loss factom, will be used. For sail, the loss factor normally
ranges betweem=0.03 ton = 0.05. For the present project, the loss factors have been
determined from the quality factors in Table 5.2, and atedisn Figure 5.4. For the
tunnel, which is cast of concrete, a loss factomecf 0.01 is estimated. This is also
assumed to correspond to the gaskets. The sensitivity dbsisefactors are analysed
in Section 11.4.1.

5.3.2 Viscous damping

Viscous damping is commonly applied in structural dynamarsd models the be-
haviour of a dashpot. The damping is proportional to theaigipas it can be seen in
the equation of motion for a single-degree-of-freedom (&P§ystem, formulated in
the time domain

k-u+c-u+m-ii=f (5.2)

where a dot{ signifies differentiation with respect to time, and whére, m, f and
u are the stiffness, damping, and mass coefficients, the badlthe displacement,
respectively.

In the frequency domain, it is assumed that the displacemgm@riodic. This entails
that the displacement can be written as a linear combinatidrarmonic motions,

29




Chapter 5. Design Basis

each of which can be expressedias e'“!. Differentiation of this expression with
respect to timet, yields

u=e? u=iwe! =iou, i = —w? e = —w’u (5.3)

Insertion of these expressions into (5.2) provides

(k+iwc—w’mu=f (5.4)

which is the formulation of the equation of motion in the fuegcy domain. Now, itis
chosen to let the damping coefficient be proportionaplig the stiffness coefficient

c= Bk (5.5)

This may be clear for a SDOF system, but it could also be aghidiea multi-degree-
of-freedom (MDOF) system, where the formulation is a sgezaae of the Rayleigh
damping method. Rayleigh damping entails that the dampiatyixnis written as a
linear combination of both the stiffness and the mass nesric

Now, (5.4) may be written as

k(1 +iwp) -w?*mu=f (5.6)

This leads to the definition of viscous damping as a modificadif the stiffness

ki () =k +iwp) (5.7)

where the star®() indicates the modification to incorporate damping. Thavés the
equation of motion to be
(k@) —w*m)u=f (5.8)

Due to linearity, these equations, (5.7)-(5.8) can diydodl formulated as matrix equa-
tions, to account for the modelling of a MDOF system.

5.3.3 Hysteretic damping

The hysteretic damping model is formulated with the losgoiac

kipys (@) = k(1 +insign()) (5.9)
(Andersen 2006, p54)

This damping formulation has been quit widespread in usénlyndue to the very
simple formulation in the frequency domain. Hysteretic @arg is frequency inde-
pendent (only the sign function enters), which correspapuite well to the behaviour
of soil according to Andersen (2006, p54). Therefore, hesiedamping is in general
a better damping method for soil analysis than viscous dagnpi

It may, however, be shown that the hysteretic damping madabt causali.e. the
use of hysteretic damping may imply that the response appedore the loading is
applied. This effect is, however, insignificant for sma#iddactors, in the area of what
is normal for soils.
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5.3.4 Conversion

While the hysteretic damping, (5.9), is easily formulated applied in the frequency
domain, it can not be formulated in time domair. a formulation compatible with
(5.2) can not be made.

Therefore, in this thesis, hysteretic damping will be useditifie calculations in the
frequency domain, while viscous damping is applied to tHeutations in the time
domain. Conversion between the two damping formulationsishbe performed in a
way which yields the most equal output.

By comparison between (5.7) and (5.9), the relation is sebet
kﬁys =k, = insign(w) =iwp
n=lwlp (5.10)

This equation, (5.10), entails that in order to correlageous and hysteretic damping,

it is necessary to choose a frequency at which the dampirigowiequal. The fre-
quency dependence of the two damping mechanisms are s#étchigure 5.3a. The
conversion frequency should be chosen as the dominantenegof the system. The
dominant frequency is in the present thesis chosen as thddirgped eigenfrequency

of the stratumf = 1.09Hz. In Figure 5.3b it can be seen that this frequency dominates
the stratum response to the earthquake.

Damping
viscous,iwf

! hystereticin

P T

I
0 0.5 1

: 15
Conversion frequency @ % £, [Hz] 1.09
(a) Relation between viscous and hysteretic  (b) The dominant frequency in the response
damping. spectrum in the level of the tunnel. Ex-

cerpt from Figure 6.11.
Figure 5.3: Viscous and hysteretic damping.

The relation between the circular frequerw){,%i], and the frequency [s™!], both
used in Figure 5.3, is
w=2nf (5.11)

In Section 11.4.2 it is shown, how the use of either viscoubyateretic damping
affects the soil response.

5.4 Design cross section

The actual geometry, as described in Section 5.1 and ddpitteigure 5.1, does not
comply with the simple geometry needed for the domain t@nsition method de-
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scribed in Section 6.2. Thus, a simplification is needed. ifiegular layer interfaces
have been reduced to horizontal interfaces located in soga@ mepth, rounded off to
an integer value. Furthermore, the cross section at theleniddhe tunnel is analysed,
i.e.the water depth is around &) Finally, the dynamic parameters are taken as the
mean values given in Table 5.2. The design section is shoWwigime 5.4.

These assumptions are deemed as realistic for a simplelat&gcuin a real-world
consulting firm. In Chapter 11 it is analysed how the simgificns may change the
physics of the problem.

+0.0
Z
Water — Thessaloniki Bay ﬁ
A -13.0
Loose clay / sand cs=2502, 1 =0.05,y=19 %
B Medium dense sand / firm claycs =350 %, 7 =0.05, y = 21 % —23.0
; - m . _ _o1 KN
C Firm red clay €5 =6007g, 17=0.03, y =215 ~148.0

|

Figure 5.4: Sketch of design section for the domain transformation method. The buak d
sitiesy are stated in Table 5.1. The velocitieand loss factorg are based
upon Table 5.2 on page 29. The loss factors are determined as th®catialue
of the expectation value of the quality fact@<f. (5.1) on page 29.

For many ground conditions, the stiffness of the soil — ang thiso the shear wave
velocity — will increase with the depth, cf. Anastasopowbsal. (2007, p1070). This
could probably also apply for lay&r cf. Figure 5.4, but since the goal of the present
thesis is to analyse the presented calculation models artd poovide a final design
of the immersed tunnel, this is omitted for the sake of sinifyliand transparency.

For the dynamic calculations of the soil response, the wetet of Figure 5.4 has not
been incorporated in the model, since it will not affect tiyaamic behaviour of the
soil.

The S-wave velocities in Figure 5.4 should be altered toripo@te damping in ac-
cordance with (A.2) and (A.4) on page 130. For lagewith the gravitational accel-
eration set tg = 10 3, this is done as

W' =cs-p=118.75MPa
p=p - (1+isign(w)n) = (118.75+5.94i) MPa

5= ﬁ: (250.1+6.2)
0

(5.12)
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Input motion

where a sta(*) indicates that damping has been incorporated through timplex
representation.

5.5 Input motion

In this section, the input motion corresponding to the beklis outlined. In Chapter 6
it is described how the response on the surface and at thieofietie tunnel is calcu-
lated.

5.5.1 Time series

In Section 4.3 on page 21 the different methods of determgiaimappropriate design
earthquake are outlined. However, in the present thesigem gime series is simply
chosen, since the purpose of this thesis is not to providesgldor the immersed
tunnel but instead to evaluate the accuracy of the desigrls.othis generic approach
has made a specific determination of the design earthquak&leuhe scope of this
thesis.

An acceleration time series from thé; = 6.2 Aegion 1995 earthquake has been de-
livered by COWI (1995). This time series has been chosen sedawas at hand, and
due to the geographical proximity of Thessaloniki and Aag&hown in Figure 5.5.

@, Thessaloniki

@ Aegion

Figure 5.5: Location of Aegion.

The time series is the horizontal accelerations sampledateaof 10Hz in an out-
cropping bedrock. The acceleration time series is plotteBigure 5.6 on the next
page.

As described in Section 4.4, the important earthquake mqierameter for an un-
derground structure is the displacements. These are edwdyned through double
integration of Figure 5.6, and are plotted in Figure 5.7 anftilowing page. It may
be seen that the displacement time series does not end datltirgsdisplacement,
u = 0. Thus, a permanent displacement has occurred. This is mopatible with
frequency domain calculations, where the motion must begieal. Therefore the
displacement time series has been altered slightly, asitlisated in Figure 5.7.
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Figure 5.6: Acceleration time series. Measured earthquake record from the 18§65
event.
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Figure 5.7: Displacement series from 1995 Aegion event. Obtained through doubtgan
tion of Figure 5.6.

Some of the analyses in this thesis are performed in the éremyudomain. With a
Fourier transformation the displacement amplitude spettran be obtained from the

time series, Figure 5.7. It is plotted in Figure 5.8.

12

=
[=}

]

m
Ndata

Amplitude,A[
B (<2} o]

N

1.5 2 25 3
Frequency, [Hz]

Figure 5.8: Single-sided displacement amplitude spectrum, obtained through Foarier
formation of Figure 5.7. To obtain a smoother spectrum and a periodialsitpe
time series has been padded with additional zeroes, thus yielding a héglodr-r
tion of the Fourier transformation. This is further explained in Sectior?26.5.

0
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Apparent velocity

5.5.2 Apparent velocity

As it is outlined in Section 4.6, the incoherence of the eprétke motion is of very
significant importance for the imposed damage to the tunfleé apparent velocity
describes the velocity of the propagating wavefront, ampictlly fall in the range
between 100§ - 25007, cf. Section 4.6. For the analyses of the present thesis, the
apparent propagation velocity is set to 1390since this is the choice of Vrettes al.
(2007), which precise deals with the Thessaloniki immetsadel. In Section 12.1
the consequences of this choice are analysed through aiggnanalysis.

5.5.3 Direction of propagation

The wavefront is depicted in Figure 5.9. It propagates wlith apparent velocity,
and the direction of the propagation is defined with the afigleDue to the great
uncertainty associated with the determination of the desaythquake, including the
direction of propagation§ should be chosen so that the tunnel damage is maximized.

N Direction of propagation

Tunnel
s 1 ‘' ____®’ ¢ ‘0 _______JJ |

y Particle motion \\Wave front
Z X h

Figure 5.9: Definition of the direction anglé.

In the analyses in this thesis, as a point of reference tleetitin of propagation is set
to 6 = 45°. The reason for this is that an oblique direction contairth lannel axial
and cross axial particle motion, as it is illustrated in F&6.9. Thus, both compres-
sion/extension and longitudinal bending of the tunnel isiteted, corresponding to
Figure 4.10a and 4.10c on page 25.

In Section 12.2, the damage to the tunnel is calculated faeratirection angles, thus
showing the impact of the choice of angle.

5.6 Stiffness of gaskets

The gaskets joints, which couples the tunnel elementsb#xfighly non-linear be-
haviour when deformation in the axial as well in the crosskdtirection are applied.
In this section the behaviour is discussed, and linear apations are made.

5.6.1 Longitudinal stiffness

In the present thesis, the Gina gasket profiles has beenrchm$gpe ETS-180-220,
whichi.a. has been chosen for analysis for the Busan Geoje Fixed Li8kirth Korea
(Daewoo 2004). In the longitudinal (axial) direction, thenrlinear work curve of the
gasket is shown in Figure 5.10. The behaviour of the gaskeisglloading is of great
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importance when analysing the system, since the watentghtof the entire structure
is dependent on the compression of the gaskets.

2500

2% Fewst
2250 |—| Force of endless seal

------ Local contact pressure
2000 ’

1750 {——— ol ootk - / 7
1500 - - i / 6
1250 . SN : L / 5
1000 R e - / 4
750 e R / 3

Force [kN/M]

Contact pressure [N/mm?]

5§00 Jeretecn ] 2

250 : bk : ; ; .
0 - - - 0
0 20 40 60 80 100 120

Compression [mm]

Figure 5.10: Force/compression graph for Gina gasket, type ETS-180-220w@m2004)

Initial compression

As described in Section 3.1, the Gina gaskets are compressat) the installation
phase of the immersed tunnel elements. The initial comjeefsrce on the gaskets
is determined from the water depth of the tunnel centre, @pmrately d = 16 m cf.
Section 5.1, and the area of the cross sectigy; = 300.2m? cf. Appendix D. This
force is distributed on the total length of the circumfer@ntthe Gina gaskelg,ser =
84.4m cf. Appendix D, thus yielding a distributed force on the Ggasket Fiyit, Of
Finit = Ywater * 4 * Afull
Lgasket

10 5% .16 m -300.2m? (5.13)
a 84.4m
=569 KN

The compressive strain can then be read off Figure 5.10 tooajpately ¢inic =
96 mm.

Linear approximation

Although the behaviour of the Gina gaskets is highly noedin a linear approxima-
tion is needed since the present thesis only applies lineglyses, cf. Section 1.3.
A possible choice is to take the initial compression as thatpd reference, and de-
fine the stiffness of the Gina profiles as the tangent stiffieghis point, as shown
in Figure 5.11 on the next page. The change in the tangefrest#, however, is rela-
tively significant in this area. The consequences of the@pmration are analysed in
Section 13.1.
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Figure 5.11: Figure 5.10 modified with a line with an inclination 2 MN/m?.

0

5.6.2 Shear stiffness

The shear stiffness of the gaskets is the resistance againsterse and vertical de-
formation for the coupling between two adjacent tunnel eets. Two different cases
govern the shear behaviour of the gasket: for small sheaftadisments, the shear
stiffness of the coupling stems from the shear stiffneshi@f@ina profile itself. For
greater shear displacements, the stiffness of the couglérgs from shear keys of the
tunnel.

Gasket rubber

The shear stiffness of a Gina profile itself depends on thepcessive force on the
gasket. The higher the compressive force, the higher thar stiéfness. This is.a.
due to the expansion of the gasket cross section when loaglied. (Tonnesen 2008)

A simple approximation of the shear stiffness can be obthimeassuming that the
gasket is made of a homogeneous, isotropic and non-conifeessaterial. This

corresponds well to be behaviour of rubber. With these aptians, the shear stiffness
modulus,G, can be calculated based on a known Young’s modilasd Poisson’s

ratiov = 0.5 with e.g.(A.2) to

E E

G = = —

2(1+v) 3

(5.14)

Shear keys

If the shear displacements become sufficiently larger,of an order magnitude of
approximately mm (Tonnesen 2008), the shear keys of the tunnel elements fgecom
active. An illustrative sketch of these shear keys is predith Figure 5.12 on the
following page. It can be seen that the shear keys providstaese to shearing when
the shear allowance is exceeded, while still allowing degttions in the tunnel axial
direction.
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Shear allowance

L

Figure 5.12: Shear keys.

The magnitude of the shear stiffness of the shear keys araatt® be equal to the
one of concrete. How many shear keys there will be in the fimattire is unknown.

Linear approximation

Due to the Gina profile and the shear keys, the resulting workecof coupling be-
tween the two adjacent tunnel elements will look somethikg What is sketched
in Figure 5.13.

A Shear force

) )
T 7~ Shear displacement
Shear allowance

Figure 5.13: Work curve of Gina gasket under shear.

As it is easily seen, a linear approximation of Figure 5.18 wat be made with much
degree of realism intact. Therefore, it is simply definedde the first branch of the
work curve as the stiffness in the general analyiseghe shear stiffness of the gaskets
are calculated from the shear stiffness of the profile it$edfn (5.14). In Chapter 13
it is shown that the choice of gasket shear stiffness haslitgeyinfluence on the final
output of the models.

5.7 Damage criterion

The goal of the present analyses is to determine to whicmettie immersed tunnel
suffers damage from the strong ground motion generatedébgahthquake. To mea-
sure this damage several damage modes can be observed;risadeis Section 4.5.

It is deemed that the earthquake most potentially will deerihg joints between the
tunnel elements, as it is stated by Anastasopoetad. (2007). Thus, the main fo-
cus of this report will be on the damage mode where the gaskeses the initial
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compressive strain, hereby endangering the watertighwiethe tunnel. This loss of
compression is generated by relative displacement of tvyjecadt tunnel elements,
as sketched in Figure 5.14. If the initial compression ofghskets, 96hm accord-
ing to Section 5.6.1 on page 35, diminishes towards zerowttertightness of the
structure is lost.

B

) -,

Figure 5.14: Sketch of two tunnel element ends. For the right tunnel element, thendiedo
and undeformed (transparent) states are shown, with a considexabigér-
ated) relative displacement and rotation. The Gina gasket is not sfidwercol-
ors indicate which corners that are related, when calculating the gaaketge.

The deformation of the gaskets is, in the Winkler model areddbntinuum model,
calculated in the four corners of each gasket, since thermaxiand minimum dis-
placement will be in the corners. These corners are depictEdjure 5.14. Damage
to a gasket is defined as the absolute distance between tvahingitorners. As a
consequence of this definition of damage, other deformatiodes,e.g.racking de-
formation cf. Figure 4.10d, shear displacement of a gaské&trsile stresses in the
tunnel concrete, may not be analysed.

If the final design should show too much opening in the gagketslesign should be
altered. This coule.g.include a different gasket type, longitudinal displacetiays
or division of the tunnel into more elements. This would wallmore deformation,
limit the deformation or distribute the deformation, resipeely.
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PART I I

METHODS OF ANALYSES
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CHAPTER

WAVE PROPAGATION THROUGH SOIL

The input to the analysis of the immersed tunnel is a timeesesf strong ground
motion at different levels of the subsoil. As it is describedection 5.5.1, the dis-
placement time series from the earthquake records appfilysto the level of the
bedrock. In this chapter, it is outlined how the time-vagyisisplacements can be
calculated above the bedrock, including in the level at tima¢l and on the surface.

The steps of the calculation are illustrated in Figure 6.he Transformation of the
earthquake motion is performed in the frequency domain th@dransformation be-
tween the time and the frequency domain is obtained with iEptransformations.

The more demanding part of the calculation is to establighftbquency response
function, H(w), which couples the input and output spectra.

[Bedrock timeseri%s [Bedrock spectru@ Output spectrum
FFT H(w) IFFT

Figure 6.1: The calculation procedure from a time series at bedrock to an output ¢irnes s
at a chosen level. FFT stands for Fourier transformation with the FasigfFo
Transformation algorithm, and IFFT stands consequently for thedaveFT
algorithm. H(w) is the frequency response function.

In the present chapter, firstly, a generalized version ofcangtry is given. The geo-
metry is limited to astratum a horizontally layered soil. The geometry, and thus also
the computation, is entirely one-dimensional; the only efigion regarded being the
depth. Subsequently, two methods are presented: the satyitiaal Domain Trans-
formation Method DTM) and an application of thEinite Element MethodFEM).

The calculations in the frequency domain are performed Igutating the response
for many discrete frequencies, and constructing the fregueesponse function by
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use of the principle of superposition. This entails thaydimear material models can
be used, as itis also discussed in Section 1.3.

6.1 Generalized geometry

A soil, modelled as a stratum, subjected to a forced hor&dalisplacement at bedrock
level is analysed. Only vertically propagating SH-waves modelled, as it is dis-
cussed in Section 4.2,

A stratum with J soil layers is examined. A cartesian system of coordinatesra
serted in the top of the stratum, and below the stratum b&dsomodelled as a rigid
interface. A definition sketch of the observed domain is showFigure 6.2.

X1 2
X2/ | x3 z2
z .
Zi

Layer 1

Layer 2

Layer j

! LayerJ

Figure 6.2: General geometry used for the domain transformation and the finite ielenath-
ods. The planes illustrate the interfaces which separate the soil layers.

The reduction of a real, three-dimensional geometry to adimensional stratum
provides access to a very simple way of calculating the msmoin means of the
DTM, which analytical calculates the response; the only etics involved are the
discretization of the frequency range. If two- or three-eimsional wave propagation
were to be taken into consideration, only numerical methlsbasild be considered.

Constitutive model

The soil layers are modelled as homogeneous, isotrop&aiiniscoelastic materials.
The reasons for this are as follows:

¢ Homogeneity
Inside one layer the assumption of homogeneity should Ha&eal on the basis
of the dimensions of the soil particles and the wavelengtthefwave. Since
the wavelength is considered to be several orders of mafmlarger than the
particles, homogeneity is justified.

* Isotropy
In reality most alluvial soils will display slight orthotpic behaviour, but since
no detailed data are available (and most rarely are) thergsgn of isotropy
is adopted. This will have no effect in the present case esamty a vertically
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propagating SH-wave is analysed, which entails that thestiffness parameter
of importance is the horizontal shear stiffness.

* Linear viscoelasticity
Soil is in general a non-linear elasto-plastic material;, Imear elasticity is
adopted since the non-linear case presents too large a tatiopal workload.
In the most cases, the relatively small strains induced bye#rthquake makes
the linearization acceptable. According to Kratzig & Niemg1996), soil sub-
jected to shear strains upto= 10~* may be analysed as a viscoelastic material.

The prefixvisco- indicates that damping is applied to the material model.iovar

damping mechanisms are discussed in Section 5.3, accamiwhich the applied
damping mechanism for the present analyses should be étjstéamping, since the
analyses are carried out in the frequency domain.

6.2 The domain transformation method

In Appendix A, the DTM is derived. The method establishesradianalytical re-
lation between the harmonic varying displacement at bédaocl an arbitrary other
layer at a certain frequency, expressed in (A.22) as

Ul =0 w0, (6.1)

whereU{;0 andU,, are the displacements in thigh layer and the bedrock, respectively,
while H,’lo(a)) is the frequency dependent response function forjttielayer. The
calculated frequency response function is exact for theemmaterial model and soil
geometry.

With the DTM, the geometry given in Figure 5.4 on page 32 ibetated. For frequen-
cies ranging frond — 20 Hz, the frequency response function is depicted in Figure 6.3.
It can be observed that significant amplification, €&§1.09 Hz) = 43, is occurring at
several damped eigenmodes.

It should be noted that the frequency response function @@ptex number which
includes both the magnitude and the phase shift of the regpdtence, what is plotted
on the ordinate axis in Figure 6.3 is the amplitude of thedeetpy response function.

=
ON

[N
S.

DTM Freg. resp. function,H'| [-]

0 2 4 6 8 10 12 14 16 18 20
Frequency/ [Hz]

Figure 6.3: The amplitude of the frequency response functid!? for the top of the topmost
layer, calculated with the DTM. The geometry follows from Figure 5.4.
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6.3 The finite element method

As a verification of the applicability of the DTM, a finite elemt approach is made to
the same problem. The method is derived in Appendix B. Indstéa direct analytical
relation between the displacements in a chosen layer auerdnd the bedrock, as
in the DTM, the stratum is now discretized into a number of siEments, as it is
sketched in Figure 6.4.

N Surface
Soil element ‘_:'—>
&
- Layer interface
&— Node
Soil layer g
G
< Layer interface
&

Figure 6.4: The finite element method.

6.3.1 Elements

It is chosen to use second-order elements for the analysiglements whose de-
formations are described by a second-order polynomialoi®korder elements will
provide a much better approximation to soil deformation ttua propagating wave,
than will linear elements. As discussed by Semblat & Bra2§t00), much greater
accuracy may be obtained at a lower computational cost. fapesfunctions of a
second-order soil element are depicted in Figure 6.5.

< < <

O¢—>» Or—> Or—»
o [=) - o
o, o (%))
N N IV
\ ! \
o N o
(a) Mode 1 (b) Mode 2 (c) Mode 3

Figure 6.5: Shape functions for a second-order soil element. (Jensen & »aig@006)
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6.3.2 Frequency response

In Figure 6.6 the frequency response function is plottedtfersame frequency range
as Figure 6.3 on page 45. It can be seen that the two methodagable of producing
very similar output from the same input; only a minor diverge can be observed
aroundf = 20Hz. This is considered as a verification of the calculation eth

=
ON

0 2 4 6 8 10 12 14 16 18 20
Frequency, [Hz]

Figure 6.6: The amplitude of the frequency response functidfor the top of the topmost
layer, calculated with the FEM, with 10 elements in each soil layer. The gepme
follows from Figure 5.4.

FEM Frequency response functigif] [-]

6.3.3 Convergence

The frequency response function depicted in Figure 6.6 bas lbalculated with 10
elements in each soil layeire. a total of 30 elements. While the domain transfor-
mation method is exact for each frequency, the accuracyedfitite element method
depends on the discretization of the domain.

The convergence of the finite element method is plotted inr€ig.7 for six chosen

frequencies. It can be observed that the number of elemeetied to obtain conver-
gence raises together with the frequency. The reason fshiuuld be obvious, since
complexity of the soil deformation profile also raises tbgetwith the frequency, and
thus, more elements are needed to reproduce the defornmadide.
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Number of elements in each layer

Figure 6.7: Convergence of the frequency response for the finite element method
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In Figure 6.7, it can further be seen that with a discretiratif around 15 elements
per layer, the response to displacements forced Hz2&an be accurately calculated.
This relatively small number of elements needed, is due @oue of second-order
elements, which are able to reproduce the sinus-like sérd®tion, cf. Figure 6.9a,
well.

6.3.4 Choice of calculation method

As explained in the present and the preceding section, thé &Td FEM yields com-
parable results. The domain transformation method, howesveuch more computa-
tional efficient, since no excess discretization of the darsaneeded. Therefore, the
domain transformation method will be used henceforwartiimthesis.

6.4 Frequency response

The frequency response function varies down through tla¢ustr. For the top of the
layers the functions are plotted in Figure 6.8.

T E
LayerA, H'°|]
LayerB, H?O |]
LayerC, H% |1

Frequency response functidif| [-]

1 | | | |

| | | | |
0 2 4 6 8 10 12 14 16 18 20
Frequencyy [Hz]

Figure 6.8: The frequency response functiéhfor the top of the three layers in Figure 5.4.
The black line is identical to Figure 6.3.

Most noteworthy in Figure 6.8 is probably the suppressiothefresponse for the top
of layer C between frequencies from 6 td2. In this region the mode of the soil
makes the interface between layeandC experience very little displacemeng. a
node is formed. In Figure 6.9 on the next page the responamdirhe steps is plotted
for three frequencies, and it can be seen that for a frequen€y 6.7 Hz, there is very
little response at the interface between lag@ndC. Hence, what offhand could look
like a possible computational error, here does has physieahing.
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Figure 6.9: Response through soil for three frequencies. The harmonic moti@nerated by
a sine function, dependent on the amplitude and phase shift of the midgoice,
the response at bedrock= 138m, in () iISA-sin(6 + y) = 1-sin(0) = 0. The
horizontal lines illustrate the layer interfaces. An animated version of thecfig
provided on the attached DVD.

6.5 Earthquake response

The frequency response function, however, is only intergavhen compared to the
strong ground motion generated by an earthquake. FiguBegithers the earthquake
ground motion spectrum and the frequency response funétion Figure 5.8 and
Figure 6.3, respectively. It can be seen that the first eigelenof the stratum is
located outside the dominant frequencies of the earthqdegacement spectrum.
This indicates that only relatively little resonance witloir in the stratum.
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n Earthquake spectrum, Aegig
% 08 Frequency response functioh|
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Frequencyy [Hz]
Figure 6.10: Comparison between the graphs of Figure 5.8 and Figure 6.3. Theghave
been normalized with respect to the maximum value.

6.5.1 Frequency domain

The order of the calculation follows from Figure 6.1 on page &he response of
the soil to the earthquake motion is calculated in the fraguelomain according to
(6.1). The resulting output spectrum is depicted in Figuld ®n the following page,
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together with the similar spectrum for the mean tunnel lesel.85 m depth. It can
be seen that there are no significant differences on thergpect

70 -
Spectrum at surface
- — — — Spectrum in tunnel level ||

| |
0 0.5 1 1.5 2 2.5 3
Frequency/ [Hz]

Figure 6.11: Response spectra. The spectrum for the surface is obtained thraiiblioa-
tion of the two graphs of Figure 6.10.

6.5.2 Time domain

Through an inverse Fourier transformation the responsaertitne domain can be
calculated, cf. Figure 6.1. This is depicted in Figure 6.A%.in Figure 6.11, it can
be seen that there is no significant difference on the regpainthe surface and at the
level of the tunnel.
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Figure 6.12: Strong ground motion and response in upper layer in time domain. Theltunn
level is at4.85m depth.

It should be noted that even though the analysis of the waopagation has been
carried out in the frequency domain, it yields a result intthree domain which looks
very physical plausible. This could to some be a little sisipg, since the underly-
ing assumption for a frequency-domain analysis is that tb&éan is periodically —
something which definitely is not fulfilled in the presenteaas can clearly be seen
in Figure 6.12.

To obtain a reasonable level of accuracy, it is necessargddhe original time series
with zeroes, as it is shown in Figure 6.13b. This imitates @ogé& motion, which
could be be illustrated as in Figure 6.13c.
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Time domain

W

(a) Original time series (b) Time series padded with zeroes

(c) “Periodic” motion

Figure 6.13: Padding of the time signal with zeroes before the Fourier Transformetiob-
tain a "periodic” motion.

Four time series with different amount of padding are pbbite Figure 6.14, from
which the necessity of the padding should be obviously. lireufficient size of
padding is used, it can be observed that the output timesseiiidake values different
from zero,beforethe input time series begins, as it is clearly seen in Figutdlt
Furthermore, if no padding is applied (Figure 6.14a), itaspossible to calculate the
response after the earthquake time series has ended, bewausore information is
available. In the further analyses, a padding of sLB@s been applied, which yields
the output of Figure 6.12.
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Figure 6.14: The effect on the output time series of different paddings. The blaekdithe
input time series, the red line is the output time series.
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CHAPTER

CLOSED FORM SOLUTION

As a first-order estimate of the deformation of the tunnelpgke, closed-form solu-
tion is adopted. The great advantage of the closed-forntisnlis the minimal input.
This makes it very easy to obtain an estimate on the order ghinale of the struc-
ture’s anticipated deformation. This can be used for ind&sign considerations as
well as for design verification.

The closed form solution assumes that the deformation ofutheel is equal to the
so-calledree-fielddeformation. Free-field deformations are the ground sredused

by the earthquake, when the tunnel is disregardedall soil-structure interaction is
ignored. Whether the tunnel deformation is over- or undemneded depends on the
stiffness of the tunnel relative to the stiffness of the.shilashastet al. 2001, p262)

The free wave field is assumed to consist of the same amgditatiall locations,
differing only with a time shift. The input motion is not a térseries, but only the
maximal acceleration and velocity of the earthquake. Tkl be calculated at the
level of the tunnel, cf. Chapter 6.

7.1 Axial strain

It may be shown that the axial strai)y., due to a propagating S-wave with apparent
velocity Cg, may, as stated by Powet al. (1996), be calculated as

Us . as 3
Eaxial = — sin¢cos¢p + r— cos 7.1
axial Cs ¢ ¢ CSZ ¢ ( )
wherevgs andag are the peak particle velocity and acceleration, respalgtiv is the
half width of the tunnel angb is the angle of incidence of the wave with respect to the
tunnel axis.
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Chapter 7. Closed form solution

(7.1) is derived from the normal strain and the curvaturénefftee-field deformation,
given in Hashaslet al. (2001, 264). These are combined with simple beam theory to
obtain (7.1). The first term in (7.1) represents the peakl atiain due to soil strain

in the axial direction, while the second term is the axiaisis due to bending of the
tunnel.

7.2 Deformation at gaskets

While the axial strain computed by (7.1) assumes a uniformeliaross section, the
real tunnel consists of elements connected by gaskets. Asde approximation it

is assumed that the computed axial strain occurs simultsheover an entire beam
element. Furthermore, the tunnel is assumed to be infirstéfywhich should be fair

when the tunnel is compared to the gaskets. This means #hatréin over an entire
beam element can be lumped in the gaskets. Thus, the maxirabtlaformation at a

gasketAu, can be calculated from the element lengjtk 153 m

Au = Eaxial - le (7.2)

7.3 Input

The peak particle velocity and acceleration enters in (add should be calculated in
the level of the tunnel. The conversion from displacememtgetocities and accelera-
tions is performed in the frequency domain, since a doulflerdntiation of a discrete
time series in the time domain will generate much numerioéde) so that the output
will be contaminated severely.

Since the motion is assumed to be periodical, differentiatn the time domain is
simply performed by multiplying the signal withw, i.e. double differentiation is
obtained by multiplication with-w?. This is similar to the calculations performed
in Section 5.3.2 on page 29. The displacement spectrum d\theof the tunnel is
depicted in Figure 6.11 on page 50.

The time series for the velocity is plotted in Figure 7.1, &nel time series for the
acceleration is plotted in Figure 7.2.
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Figure 7.1: Velocity time series for the tunnel levely,, = —0.86 %, vmax = 0.67 1.
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Figure 7.2: Acceleration time series for the tunnel leve}y;, = —5.74 ;lzl Amax = 8.01 ;l;

The results from the closed form solution are calculatedttogy with the results from
the Winkler model and the continuum model in Chapter 10.
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CHAPTER

WINKLER MODEL

A widely used model, when analysing immersed tunnels staxeo earthquake load-
ing, is the Winkler model. This is usedg.by Vrettoset al.(2007) and Anastasopoulos
et al.(2007), and has been used for the design of several immemedls (Kiyomiya
1995, p469).

In the Winkler spring model, the soil is represented withejpendent springs inter-
acting with the tunnel which is considered as a beam (DowtR&7, p243). This is

illustrated in Figure 8.1, where the longitudinal, transeeand vertical springs are
shown. The Winkler model has been implemented in a FinitenEtg program coded
in MATLAB .

P

s

Tunnel beam

Gasket"fs(\
St
Tunnel beam %E
WA 1.
ﬁ T4

Figure 8.1: Sketch of the Winkler model. A gasket (red line) is showed in greater detail
Figure 8.11.

In the present application of the Winkler model, the tunieients are modelled with
beam finite elements with appropriate cross-sectionahpeters, while the Gina gas-
kets are modelled with multiple springs. The modelling aeddviour of the gaskets
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Chapter 8. Winkler model

are discussed further in Chapter 13.

The present application of a Winkler foundation for the bezas been performed
with simple spring finite elements. This entails that theriigtion of the springs
is discretized to a finite number, according to the degredseefilom for the tunnel
beams. It is also possible to formulate special finite eldmaich model a contin-
uum distribution of springs. The discretized and contirsifuindations are illustrated
in Figure 8.2.

S S SSS==S=s==S======
i i i 3 .».».><><,.>.>.>.>.><><><,.>.><|_

(a) Discrete distribution (b) Continuous distribution
Figure 8.2: Winkler foundation.

AAS

The simple discrete soil spring distribution has been chegee it is deemed that with
an appropriate discretization, the simple modelling wdldufficiently accurate. The
internal stress in the tunnel beam will be affected by therdiszation, but the stresses
are unimportant for the present analysis. The need for aropppte discretization
can be realised by a study of Figure 8.3, where it can be sehté discretization
should be determined with respect to the frequency and thagation velocity of the
earthquake. Convergence analyses have been carried oettinr$8.2.4 to ensure a
sufficient discretization.

(a) Sufficient discretization (b) Insufficient discretization

Figure 8.3: The Winkler model with discretized soil springs, subjected to (a) low feegqy
motion and (b) high frequency motion. The hatched lines at the bottomere th
input displacement field.

8.1 Model assumptions

The Winkler model is by no means an exact representationeopliysical problem.
Amongst the assumptions made are:

e The springs on the tunnel are totally decouplesl no retroaction is possible.

* The deformation of the tunnel is limited to that of a BerisElUler Beam,i.e.
no shear deformation is possible.

e The gaskets are approximated with linear springs.

» The propagation of the waves from bedrock to the tunnelssmgd to be one-
dimensional.

These assumptions will be analysed through this report bgns@f a continuum
model, which is described in Chapter 9.

Furthermore, both the Winkler and the continuum model igicted to some general
assumptions which are:
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» The analysis is entirely linear, as it is discussed in $ecti.3.
— The material models are all linear elastic
— The possible development of a gap between the soil and timeltisinot
analysed.
— The stiffness’s of the Gina gaskets are assumed to be linear.
» The influence of the pre-stressing of the tunnel, discugse&kction 10.4, is
neglected.

8.2 Modelling

The model has been codedMnTLAB on the basis of an existing linear FE program
for static analysis, by Steerdaét al. (2007). The program has been enhanced with
new finite elements and with the ability to perform dynamilcakations. The changes
in the program are described in Appendix C. The program fiteseaclosed on the
attached DVD. In Figure 8.4 a screen dump of the simple outpeitface is shown.

Figure 8.4: A screendump of th&1ATLAB model. The soil springs are illustrated with lines,
just like the tunnel beam elements. An animated version of the figure igpev
on the enclosed DVD.

In the present section, it is described, how stiffness’diefsoil springs and the gaskets
are determined. The material properties are describedapteh5.

8.2.1 Soil spring stiffness

The soil springs model the soil-structure interaction. Afinite soil spring stiffness,

k = oo, would imply that the tunnel was restricted to the free-fieformations of

the soil, while a zero soil spring stiffness= 0, would imply that no contact existed
between the soil and the tunnel.

The spring stiffness’s of the soil springs shown in Figurk &e calculated with the
Finite Element codd&BAQUS. A model has been built in the same way as explained
in Chapter 9, however, the tunnel has been modelled as alyaglg, since it is only
the stiffness of the soil which should be determined. Themi®gshown in Figure 8.5.
ABAQUS has been chosen for the analysis to make the results obtaittrethe Win-
kler model comparable to the results from thBAQUS continuum model.

The equivalent soil stiffness’s are determined by applyoagls to the appropriated
faces of the tunnel, in a static analysis. From the corredipgndeformation of the
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Chapter 8. Winkler model

(a) Cross section (b) Isometric view
Figure 8.5: The meshed domain for the soil spring calculations.

tunnel, the soil stiffness can be determined. Since theopedd analysis is entirely
linear, the work curve is straight. Thus, only a single lakflermation relation is
needed to determine the stiffness for a spring.

Transverse and vertical soil springs

The boundary conditions for the determination of the trense and vertical soil spring
stiffness’s areencastre(fully fixed) on the sides and the bottom, and no deformation
in the x-axial direction on the ends. The definition of the surfacenteology of the
model is given in Figure 8.6. These boundary conditionsdyéestate of plain strain

in the model.

End

Figure 8.6: Terminology definition for théABAQUS analysis.

The deformation modes are depicted in Figure 8.7 and theletédl soil stiffness’s
are given in Table 8.1 on page 62.

Since the transverse and vertical soil springs are detedriy plane strain analyses,
it is possible to verify the calculated stiffness’s dirgétl a two-dimensional analyses.
This has been done iRLAXIS, a commercial finite element code for soil and rock
analysis. A model equivalent to tieBAQUS continuum model has been established.
The domain, meshed with 15-node elements, is shown in Figu@@. Transverse
and vertical loads have been applied and the correspondifggrdation figures are
depicted in Figure 8.8b and 8.8c.

The stiffness’s calculated witABAQUS andPLAXIs are listed in Table 8.1, given as
spring stiffness’s per metre in the longitudinal tunnekdtion. It can be seen that
only minor differences between the calculated stiffnessist. These differences are




Transverse and vertical soil springs

(a) Horizontal load (b) Vertical load
Figure 8.7: Deformation modes for the transverse and vertical soil spring arsiyse
ABAQUS. The intensity (from blue to red) of the colour illustrates the magnitude
of the displacement.
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Figure 8.8: ThePLAXIS plain strain model for calculation of the transverse and the vertical
soil springs. The results are given in Table 8.1.
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purely due to differences in the discretization. Thus, thleldated soil stiffness’s are
verified. In the further calculations, the stiffness’s cddted withABAQUS are used,
since the Winkler model will be compared to the AQus continuum model.
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Chapter 8. Winkler model

Table 8.1: The calculated soil stiffness’s fromBAQUS andPLAXIS.

Direction  Spring stiffnes& [ -]
ABAQUS PLAXIs

Transverse 1.492-10° 1.477-10°
Vertical 2.668-10° 2.712-10°

Longitudinal soil springs

For the calculation of the longitudinal soil springs, theitbdary conditions are changed.
The objective is to model the deformation of an infinitelyddmnnel,i.e. a unit stiff-
ness per metre in the tunnel axial direction. The bottom hedides are still subjected
to encastre but on the ends, only deformation in thieaxial direction is allowed, cf.
Figure 8.6. These boundary conditions, together with a toathe tunnel end, intro-
duces a state of anti-plane strain in the doma#,only deformation in thec-axial
direction is present.

In Figure 8.9 the deformation mode is shown. It has been gdrtfiat no significant
displacements occur in the direction of theand z-axes. The soil spring stiffness is
calculated in the same way as the in-plane springs, from éfi@mhation due to an
applied load, t®.746-107 1.

Figure 8.9: The ABAQUS mesh and displacement for the longitudinal soil spring stiffness.

To verify the calculationg.g.an axisymmetric model could be build, in a program
which allows deformation with the azimuth angdle If the radiusrR in the model is
much greater than the widtiv of the tunnel, the curvature of the tunnel approaches
zero and an “infinite” tunnel is approximated. Thus, for grezlues of%, the ax-
isymmetric model provides a good approximation of the afdne strain problem.
The principles of the model are sketched in Figure 8.10. Theehhas not been
investigated further.

The calculated soil spring stiffness’s, which will be usedthe Winkler model, are
summarized in Table 8.2.
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Gasket stiffness

R>W w

Figure 8.10: A possible axisymmetric model to calculate the longitudinal stiffness.

Table 8.2: The calculated soil stiffness’s.

Direction Spring stiffnes& [ 1]
Horizontal 1.492-10°
Vertical 2.668-10°
Longitudinal 0.746-10°

8.2.2 Gasket stiffness

The gaskets are modelled with multiple springs, as it isifiated in Figure 8.11. A
single longitudinal spring models the axial stiffness, iwhivo shear springs model
the stiffness in the transverse and vertical direction.

Transverse shear sprinkask trans
Longitudinal spring kgask long

Vertical shear springkgask vert

Figure 8.11: Modelling of gasket. Excerpt from Figure 8.1.

The equivalent longitudinal spring stiffneskg,sklong, Can be found from the lin-

earized gasket stiffness chosen in Section 5.6.1 on pageh&sgasket circumference

is in Appendix D stated as 84, whereby the spring stiffness can be calculated to
kgask long = 24 M3 - 84.4m

8.1
=205-10°% ®-

The shear stiffness of the gaskets is discussed in Secta 3t follows from (5.14)
that the shear stiffnessigask trans @NdKgask vert are determined as

kgask,long
kgask,trans = kgask,vert = T (8. 2)

— 9 N
=0.68-10° X
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8.2.3 Damping

The damping of the tunnel and the gaskets is estimated tosafdesor ofny = 0.01,
according to Section 5.3.1. In the time domain, viscous dags applied. The
dominant frequency is set to the first eigenfrequency ofdile £= 1.09 Hz, according
to Figure 5.3b on page 31.

The relation between the element damping matrices andehegeeit stiffness matrices,
B, is found according to (5.10) and (5.11) on page 31 to

0.01 =27-1.09Hz- B
B=146-10"° (8.3)

In the same way, the damping for the soil springs are founds dhosen to use the
loss factor of the upper soil layens= 0.05, cf. Figure 5.4, which for viscous damping
approximates tg@ = 7.30-1073.

8.2.4 Discretization

The tunnel elements are discretized into a smaller numbénité element beams.
Since the soil springs are connected to the tunnel at the @nelsch beam element,
the number of beams also determines the discretizationeo$dii-structure interac-
tion. To determine the discretization needed, a converanalysis has been carried
out. The result is shown in Figure 8.12. On the ordinate desnormalized tunnel
damage, defined in Section 5.7, is plotted. It can be seerstfifitient accuracy is
obtained with around 20 beam elements per tunnel elemeithwias been used in
the analyses.

Normalized max. gasket deformation

088 | | | | | | |
0 10 20 30 40 50 60 70 80
Number of beam finite elements per tunnel element

Figure 8.12: Convergence of the Winkler model.

8.3 Input motion

The input strong motion is the earthquake time series calediwith the domain trans-
formation method which is accounted for in Section 6.2. Time tseries at the level of
the tunnel is depicted in Figure 6.12 on page 50. The cakdliine series is applied
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to the outer ends of the soil springs, shifted in time to madelincoherence of the
propagating wave, caused by the apparent velocity.

8.4 Output

The output of the analysis should be the damage of the gasketrding to Section 5.7.
Offhand, the output from the Winkler model is the displacatie the degrees of free-
dom,i.e. translations and rotations at the tunnel ends. Translatiohrotation of two
adjacent tunnel elements are sketched in Figure 5.14. @&hslation and rotation of
the tunnel ends can be transferred to the absolute thregndional location of the
gasket corners, from which the deformation in the gasketarsrcan be found.

Firstly, the three-dimensional coordinate of every copmnt (shown in Figure 5.14)
is calculated. Then, the gasket deformation can simply loeileded as the change in
the absolute distance between two matching corners. Alskdta tunnel end, with

the corner nodes and the degrees of freedom depicted, snpeelsin Figure 8.13.

L]
Figure 8.13: The degrees of freedom at the end of a tunnel elenfeigthe direction vector
to a corner node.

8.4.1 Translations

The translations from the degrees of freedamp, 1, andu;, are simply added to the
original coordinates of the corners.

8.4.2 Rotations

The rotational degrees of freedo#, 6, and6., yields an resulting displacement
of each of the corner nodes which should be taken into coratida. To calculate
this displacement, the direction vector of a corr&rjs introduced. It is depicted in
Figure 8.13. This vector is rotated according to the degoédseedom, thus calcu-
lating the new corner coordinate. The calculation of thation is described more
closely in Appendix E.
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CHAPTER

CONTINUUM MODEL

As an alternativ to the Winkler model, a full continuum mobas been established in
the commerciel FE programiBAQUS . In this chapter, the modelling is described.

The ABAQUS cAE-files and output databases are enclosed on the attached DVD.

9.1 Parts and meshes

The model is built of three parts: Tunnel elements, gaskedstae soil. Instances of
these parts are gathered in an assembly.

All parts of the model are built of continuum elements, of thyges C3D20R (brick)
and C3D15 (wedge). The brick elements are used for the majorop the domain,
and the wedge elements are used to fill minor regions. Theeglenare shown in
Figure 9.1. The elements are quadratic (second-order)eglesnwhich are suitable
for modelling of wave propagation, as it is also discussefdation 6.3.1 on page 46.

face 2 face 5

1 face 3

2 face 1
(a) Wedge element, type C3D15 (b) Brick element, type C3D20R

Figure 9.1: Elements used in th&BAQUS analysis. (Simulia 2007)

The most important assumptions made during the modelliigeo€ontinuum model
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Chapter 9. Continuum model

are stated in Section 8.1. The assumptions are common toitiideand the contin-
uum model.

9.1.1 Tunnel

The eight tunnel elements are all identical. A tunnel pastiswn in Figure 9.2

(a) Cross section view (b) Isometric view
Figure 9.2: The meshed tunnel element part.

9.1.2 Gaskets

The Gina gaskets connect the tunnel elements. A Gina gaakésgghown in Figure 9.3.
It should be noted that the mesh of the gasket is generatédtisartcit conforms well
to the mesh of the tunnel elements. This makes the assembly acourate, as it is
discussed in Section 9.4.

Figure 9.3: The meshed Gina gasket.

The gasket is modelled 0.20 deep, and the elements are provided with a material
orientation, to make the use an orthotropic material modssible.

The gaskets are modelled with ordinary continuum finite elets. It has also been in-
vestigated, if the special gasket elements providesEaQus would provided a better
modelling. These elements, however, entails a very realisbdelling of the gasket
behaviour, since they require the initial compression efdghaskets, obtained during
the tunnel installation phase, to be a part of the modelllgen if this would result

in a more accurate, non-linear, modelling, it would not espond with the modelling
of the Winkler model, thus introducing another possiblédaof divergence between




Soil

the models. These factors are already deemed to be plentyriber, as it is outlined
in Section 8.1.

9.1.3 Saoil

The soil is modelled as a single part, divided into the theseils. A hole to contain
the tunnel is included. The dredged trench is modelled, hadoarameters of the
backfilling are set equal to the parameters of ggitf. Table 5.2 on page 29, as no
better data for the backfilling exist. The order of magnittmtethe parameters of soil
A correspond well t@.g.soaked sand, cf. Andersen (2006, p3).

The soil part is shown in Figure 9.4

(a) Cross section view (b) Isometric view
Figure 9.4: The meshed soil part.

9.1.4 Discretization considerations

The mere name of the finite element method implies that aeatigation has to be
made. The accuracy of any finite element model is pinned tallbée of a suitable
meshing of the domain and to an accurate time integraticoristhgn.

Mesh coarsness

The coarsness of the mesh has been chosen as a balancingrbétwecalculation
time of the model and the accuracy of the obtained solution.

The size of the elements should be compared to the wave lefdgtie propagating
waves, which depends on the frequency of the waves and thagation velocity. The
slowest wave velocity is the S-wave velocity cf. Table 5.@r $oil layerC, which has
the largest elements and comprises the majority of the duorttee S-wave velocity is
6007 .

The frequency of the incident waves of importance is maxirduHz, cf. Figure 6.11
on page 50. Thus, the minimum wave lengtly, can be calculated as

m

6
Imin = Ts—sl =300m (9.1)

The longest side of an element in the meshed model is appabeiy838.5n. Thus, no
less than seven second-order elements are available arg/mhtae model to model
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each wave component. This is deemed to be sufficient to oataioper accuracy of
the calculation.

Time integration

When performing the time integration, the size of the time steould be given con-
siderations in order to obtain an accurate solution. The 8tep used for the analyses
is At =0.01s, which is equal to the sampling rate of the earthquake timese

The time integration is iIM\BAQUS performed with the dynamic, implicit scheme. The
method is called the Hilber-Hughes-Taylor operator, aedtiethod is unconditionally
stable for linear systems; meaning that there is no matheahmit on the size of the
time increment that can be used (Simulia 2007). Thus, theisalwill not “explode”
when the time step is increased.

The correspondence between the time step, the elementsitieeawave speed should
also be observed. K.g.the element size is too small when compared to the other
parameters, it might happen that a wave will pass througHeanent, without being
noticed by the element. The correlation is formulated inGloerant condition

cAt_
Pl

(Andersen 2006, 72) whereandh represent a characteristic set of wave propagation
speed and element size, afids theCourant number

C, C=1 (9.2)

It follows from (9.2) that if the greatest wave speed is aur= 2000, and the
time step isAr = 0.01s, the smallest element should be aro@ddn. This is obeyed
by the majority of the elements in the domain. The except®thée places where
the geometry directs a finer discretizatieng.in soil layer A which is only 3m in
thickness. In Section 9.6.3 it is analysed, how changesartithe step affects the
calculated displacements inside the domain.

Computation time

With the chosen discretization, a transient analysis ofithe15s of earthquake load-

ing and response takes about four hours to complete. Theuwatign is performed

on the Department of Civil Engineering’s computer clusé@d runs serial on a single
computational node. The programmed input files which execatcalculation on the
cluster are enclosed on the attached DVD.

9.2 Material modelling

In this section, the material data needed for the model isgoted. The continuum
elements are modelled with homogeneous, isotropic, linkeatic materials, as it is
also the assumption for the domain transformation methbé;wforms the input for
the Winkler model, cf. Section 6.1. The material data neddeduch materials for a
dynamic analysis are the Young’s modulEisPoisson’s ratior and the density. The
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exception is the Gina gaskets which are modelled with ortipit elements, making
it possible to control the behaviour of the gasket more ately.

9.2.1 Soil

The densities for the soil layers are given in Table 5.1 onep28 The Young’s
modulus and the Poisson'’s ratio can be found from the invetadonships of (A.2)
_ uBA+2up) v A
o A+p 20+ p)

(9.3)

(Andersen 2006, p8)

The Lamé constants andu can be determined from the P- and S-wave velocitjes
andcs, which are given in Table 5.2 on page 29. The relations afe4)(s reprinted

for convenience)
A+ 2u
(9.4)

>u=cs’p, A=cp®-p-2u
(St John & Zahrah 1987, p171)

The resulting soil data are presented in Table 9.1 on page 73.

9.2.2 Tunnel

The tunnel elements are cast of reinforced concrete. Thag/sunodulus for initial
compression, which is of the present interest, can be datechirom a deemed ulti-
mate strength of,; = 50MPa to Ey = 40GPa, according to DS411 (1999, p24). The
Poisson’s ratio is estimated to=0.15.

9.2.3 Gasket

The modelling of the Gina gasket is performed such that iteasponds well to the
Gina gaskets of the Winkler model, illustrated in Figurel8dh page 63. Thus, a
continuum equivalence to linear springs is desired. Whilg ey not be the most
accurate representation of the actual physical problesxg@mprehensible and should
behave similar to the Winkler model. The gasket modellinthefWinkler model and
the continuum model are depicted in Figure 9.5 on the folhgwiage.

The desired behaviour of the Gina profiles can be modelleld avitorthotropic mate-
rial, whose material stiffness matriR, is computed as

1/E1 —’V21/E2 —V31/E3 0 0 0
—Vlg/El l/Eg —V32/E3 0 0 0
—V13/E1 —V23/E2 1/E3 0 0 0
D= .
0 0 0 1/Gy2 0 0 (9:5)
0 0 0 0 1/Gi3 0
0 0 0 0 0 1/ngJ
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Transverse shear spring
Longitudinal spring
Vertical shear spring

’ z,BQ
.2
(a) Winkler model (b) Continuum model

Figure 9.5: Gasket modelling in the Winkler and the continuum model. Excerpts from
Figure 8.11 and Figure 9.3.

(Simulia 2007)

The constants appearing in (9.5) on the previous page carteenmined from the
desired behaviour of the gaskets. The indices are definetiebgdordinate system
in Figure 9.5, where it is also seen that the gasket shoulcebeupled between the
transverse, vertical and longitudinal deformation. Thiaécomplished by setting the
Poisson’s ratios; ; = 0. Thus, the material stiffness matrix is symmetric, whichiy
case always should hold by setting = vo1 E1/E, etc

The stiffness in the longitudinal directiofy, is determined on the basis of the gasket
stiffness found in (8.1) on page 63. The area of the gaskeigur€ 9.3 is 103.1&?
and the thickness is 02, thus yielding the equivalent computational stiffness as

5 _ 205 10°8.02m
1T T 103.12m2 (9.6)
=3.98-10° %

The transverse and vertical stiffnes#’s,andEs, respectively, are not important, since
the corresponding faces of the gaskets do not interact wighother faces, and the
Poisson’s ratios are set to zero. With the same argumertshiar stiffness in the
axial direction,G,3, is not important either.

The shear stiffness of the gaskets is treated in SectioB.5cording to (5.14), the
shear stiffness’s of the gaskets in the transverse andcakedirection,G1, and G;s,
respectively, can be determined as
Gz = Grg = 22
12 = LU13 — 3 (97)
=1.33-10° 5,

This calculation assumes Poisson’s ratie 0.5, which is true for a incompressible
material which is a good approximation for rubber. AboveisBon’s ratio was set
to zero, but this is only to make decoupling possiblé&®aQus. The two values of

Poisson’s ratio therefore are absolutely unrelated.

9.2.4 Damping

The damping mechanism is viscous damping, cf. Section 5h@. r&lation between
the element damping matrices and the element stiffnesso@stire determined simi-
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larly to (8.3) on page 64. The consequence of the applicafieiscous damping over
hysteretic damping is analysed in Section 11.4.2.

9.2.5 Summary

The material data are summarized in Table 9.1. The data afdbket are listed in
Section 9.2.3.

Table 9.1: Material data for théABAQUS model.

Material Density Young’s modulus Poisson’sratio Damping
o [%] E [Pa] v B[]

Soil layerA 1900 0.35-10° 0.49 7.30-1073

Soil layerB 2100 0.76-10° 0.48 7.30-1073

Soil layerC 2100 2.19-10° 0.45 4.38-1073

Reinforced Concrete 2500 40-10° 0.15 1.46-1073

9.3 Earthquake loading

The strong ground motion generated by the earthquake isedpipl the model as
forced displacements. Different ways of applying the dispments to the domain
can be chosen. Some of the methods are sketched in Figure 9.6.

(a) Uniform motion
LT T T TR
SESaeeamn
SE0aeaens

Seaeanean
SEaaasany

(c)DT™M (d) Transparent boundary conditions

O Node without prescribed displacements
@ Node with prescribed displacements
® Node with transparent boundary condition
— Prescribed displacements
(e) Legend
Figure 9.6: Possible boundary conditions for a cross section of the soil domairsifAptic-
ity, only transverse deformations are shown.
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In Figure 9.6a, the input time series is applied to all nodesh® outer surfaces.
However, it is known that this would prescribe incorrecefffeeld displacements on
the side, since the free-field deformations are calculaté&zhiapter 6.

Another possibility is shown in (b), where the earthqualspldicement time series is
applied only to the bottom surface. While this approach atriiiiy appear feasible, it
totally disregards the stiffness and the mass of the soflideithe modelled domain,
thus providing a too flexible model.

Therefore, the boundary conditions of (c) are applied toctetinuum model. On
the sides of the domain, the deformation is prescribed daugto the displacements
in the specific level, calculated with the domain transfdioramethod as described
in Section 6.2. Thus, the far-field displacements are piteseifully by the free-field
deformations, while the near-tunnel field are left to thetemmum model to calculate.

Another possible way of modelling the boundary conditiopgrapriate could be with
transparent boundary conditio@BCs), depicted in (d). TBCs do not prescribe any
motion as standard Dirichlet or Neumann conditioag (displacements or stresses,
respectively) but are formulated such that they absorb tiigaing energy of the
waves, thereby preventing reflection. TBCs are normallynfdated for waves in a
specific direction, but multi-directional formulationsvesbeen provided bg.g.Hig-
don (1992). However, TBCs do not provide full transmissiondomains with free
surfaces, as discussed by Anderseml. (2007, p47). To absorb the surface waves,
e.g.Rayleigh waves, Bamberget al. (1990) has suggested the use of buffer zones,
socalled “ears” which are applied to the model close to the urface and applies
fictitious damping.

Instead of TBCsinfinite elementgould be applied. This type of artificial boundary
conditions is directly available iIABAQUS , however not in theAE-interface, and are
only fully transmitting in a specific direction (Simulia 200 Yet another possibility
for the formulation of a wave-radiating domain could be apl@ption of the boundary
element (BE) method, which in its formulation have an inhémbility to radiate
waves. BEs could be coupled with FEs, as it is discussed.pyAndersenet al.
(2007, p54-56).

While the concept of transparent boundary conditions seemsnendable, the appli-
cation can be quite tortuous, especially if another formtathan infinite elements
should be implemented in thBAQUS code. However, the use of wave-transmitting
boundaries would be essentialéfg. the near-field was prescribed and the far-field
unknown, as it is the case for the wave motion fremg. pile driving. In the present
thesis, since the far-field displacements are prescribddtanear-field the area of
interest, the concept of (¢) has been employed.

The incoherence of the wave, due to the apparent velocagadsunted for with a time
shift for each node, dependent on the three-dimensiontalrdis from the node to the
wave front.

The automated generation of a specific time series for eatlesry boundary node
is not possible in the CAD-likAABAQUS CAE interface. Therefore, a user subroutine,
disp, has been implemented. The subroutine has been writtGfoRTRAN and is
enclosed on the attached DVD.
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Assembly

9.4 Assembly

The above mentioned parts are put together in an assembéggtiars of which is
shown in Figure 9.7.

Figure 9.7: The assembly.

9.4.1 Ties

The surfaces are connected with surface-to-suti@sgwhich share the nodes of ad-
jacent surfaces. This reduces the size of the system ngtatiminating the degrees
of freedom at the node of the slave surfaces.

This modelling has been used, since it is deemed that thdirbevio significant slip
between the tunnel and the soil, nor will there be any lomtyital shear displacement.
If this should be the case, a more appropriate modelling eanoktained by use of
surface-to-surface contact interactions. These are, Vveweon-linear in nature.

With the use of ties the same fundamental problem with nohtémsile stresses in the
soil, discussed in Section 1.3, arises. However, due togbi#lations around the state
of equilibrium, the use of ties in the present context isifiest.

9.4.2 Master and slave surfaces

To establish a tie between two surfaces, a master surfaca slade surface should be
defined. During the solving of the matrix system, the tiestbeclude the degrees of
freedom at the nodes of the slave surfaces. Instead, theategf freedom at nodes
on the master surface are used, thus reducing the size ofdtizes.

In general, two surfaces connected with ties can not be ¢éxgédo have nodes with
the very same coordinates. The link between a node on the alay master surface
is therefore computed for each slave node, such that eaeh stale connects with
the nodes of the master surface, which is nearer to the slagde. nThis is shown
in Figure 9.8 on the following page, where slave surface nodennects to node
402 on the master surface. If the projection point of the slavdenon the master
surface does not lie directly onto a master surface nodejébeces of freedom are
interpolated according to the shape function of the masidace. Hence, the degrees
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of freedom e.g. for slave surface nagare calculated from the degrees of freedom of
master surface nod@92, 203, 302 and303.

slave surface nodes

501
Figure 9.8: A tie constraint between slave nodes and a master surface. (Simulia 2007

In the special case of the tie between the tunnel and the Giskey it does not make
any difference, which surface is the master or the slaveedime meshed are identical.
However, in most cases the choice of master and slave sanfageires some consid-
eration. The slave surface mesh should, in general, be fiaer that of the master
surface; thus making sure that a connection will exist betwall nodes of the two

surfaces.

In the present model, the ties between the soil and the twelerlents are modelled
with the tunnel as slave surface. For the ties of the gasketgle tunnel elements,
the tunnel elements therefore are the master surfacesishesessary, since no node
can belong to two slave surfaces.

9.5 Output

The required output is specified in Section 5.7 on page 38. cbminuum model
serves the purpose of analysing the model assumptions ciedheo the Winkler
model. Therefore, the output of the continuum model shoegldrniade comparable
to the output of the Winkler model, described in Section 8.4.

9.5.1 Deformation at corners
Since the corners of the gaskets are nodes in the continuudelpibe displacements
can be extracted and the deformation at the corners canadatald directly.

9.5.2 Degrees of freedom equivalent to Winkler model

To compare the continuum model to the Winkler model when rekgis are mod-
elled, as it is done in Section 10.2.5, it is necessary to e tabequate the three-
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Translational DOF

dimensional displacement field froABAQUS to the Winkler model, as itis illustrated
in Figure 9.9.

Figure 9.9: Sketch of the problem: the conversion from the continuum model (righbeto
beam model (left). The arrows illustrate the degrees of freedom.

The reduction of the continuum model to six degrees of free¢(iDOF) in an equiv-
alent beam involves a lot of choices, and no perfect solugasts. Furthermore, all
internal modes of deformatioe,g.warping or racking (cf. Section 4.5), in the con-
tinuum model are disregarded.

Firstly, it is chosen to use the corner nodes and the quéshdlthey form as the basis
for the calculation, thus disregarding all other nodes. @dleulation is implemented
in the postprocessing program, codedaTLAB and enclosed on the attached DVD.

Translational DOF

The translational degrees of freedom are easily calcubsédle simple mean value of
the displacement for the four corners.

Rotational DOF

The rotational degrees of freedom can not be defined unamisgfuom the displace-
ment in the four corner, since only three nodes are necessagfine a plane in the
three-dimensional space. Since only small rotations asqnt, it is chosen to define
the rotation about an axis as the rotation of the directiartorebetween two centre
points, as it is sketched in Figure 9.10 on the next page ®radkation about the-
axis. In the depicted example, only the coordinates inxthelane are used for the
calculation off,,.
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\ertical axis

Corner node ZT<:
X

y

Figure 9.10: Rotational DOF from corner nodes.

9.6 Verification of models

In this section, the continuum model is used for verificatidrthe DTM. It is also
verified that the free-field waves applied in the Winkler momin be reproduced by
the continuum model. Finally, the size of the time step idyereal.

9.6.1 Boundary conditions

Firstly, it is verified that the applied boundary conditiptise time series calculated
with the DTM, is correct and corresponds to the material progs entered iIABAQUS.
This is tested by applying the earthquake motion to a laysoddiomain without the
tunnel, depicted in Figure 9.11.

Figure 9.11: The layered soil domain without tunnel. The dots show the nodes for vitnéch
timeseries is plotted in Figure 9.13.

The Aegion time series is applied to the soil domain in Figudd without any delay
due to apparent velocity. The displacements on the siddseafdmain are calculated
with DTM, using hysteretic damping.

A screen dump of the deformation is shown in Figure 9.12 omthe page, and two
time series are plotted in Figure 9.13. It should be notetl\they little difference
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exists between the displacement at the outer surface, vidifdrced, and the dis-
placement inside the domain, which is calculated in abadumss verifies both the
DTM and the continuum model.

Figure 9.12: The soil domain during the execution of the time series. Note that the defor-
mation is uniform over the cross section. An animated version of the figure
provided on the enclosed DVD.

Displacementy; [m]

Outer node
-0.15 Inner node 1

Il Il
0 5 ] 10 15
Time, t[s]

Figure 9.13: Displacement time series for the two nodes set off in Figure 9.11. fnmuit
DTM with hysteretic damping.

Boundaries calculated with viscous damping

Even though the time series plotted in Figure 9.13 seem tcebgalike, small dif-
ferences exist. This is more clearly seen at places with aggleleration. This effect
is due to the different damping models used for the calautatif the input forced
displacements and in the continuum model itself. While thexaa transformation
method uses hysteretic damping in the frequency domaintirtteedomain calcula-
tion in ABAQUS utilizes viscous, proportional damping. The differences farther
described in Section 5.3.

To illustrate the consequence of the use of different daghpiethods, new time se-
ries have been generated with the domain transformatiohadehow using viscous
damping, even though this damping method corresponds lelssothe behaviour of

soil. The corresponding time series for the two nodes shaviigure 9.11 are plotted
in Figure 9.14 on the following page.

To see the difference between Figure 9.13 and Figure 9.1¢ abearly, close-ups are
plotted in Figure 9.15 on the next page. Here it is clearlygkat if the same damping
model is used for the boundary conditions and for the contimmodel itself, a much
more accurate reproduction is possible. However, sincéeststic damping still is
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Figure 9.14: Displacement time series for the two nodes set off in Figure 9.11. fnput
DTM with viscous damping.

regarded a better model of the behaviour of soil, but simplyavailable in the time
domain, hysteretic damping will remain to be used for thewaltions with the DTM
henceforth.

0.1 0.1
0.09 — Outer node 0.09 — Outer node
Inner node — — —Inner node
— 0.08 __0.08
k=) g
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0.02 0.02
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5 55 6 6.5 5 55 6 6.5
Time, t[s] Time, t[s]
(a) Hysteretic damping in DTM (b) Viscous damping in DTM

Figure 9.15: Close-up of Figure 9.13 and Figure 9.14.

Furthermore, the same difference between the soil respatselated with hysteretic
and viscous damping has been observed in Section 11.4.2gm 18, as a clear
verification of the results presented in Figure 9.15 and dieation of the coding of
the continuum model.

Incompatible boundaries

It may not be obvious that significant difference could ekistween forced displace-
ments at the outer surface of the domain and the calculagpiadements inside the
domain. The importance of compatibility between the séiffisand mass of the model
and the forced displacements can however easily be iltestrag.by using the orig-
inal Aegion time series for all forced displacements, dyaas it is sketched in Fig-
ure 9.6a on page 73. A calculation with these boundary ciandjields the displace-
ments plotted in Figure 9.16. It is clearly seen that the imgatibility between the
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continuum model and the boundary conditions provides giiffarence between ex-
citation and response.

e
<3
0

(=]

—0.02
—0.04
—0.06

Displacementy;, [m]

Outer node
Inner node B

0 5 10 15
Time, t[s]

Figure 9.16: Displacement time series for the two nodes set off in Figure 9.11. hialt
boundary surfaces is the original earthquake time series, as skétdfigd
ure 9.6aj.e.the prescribed motion is incompatible with the soil in the domain.

9.6.2 Representation of free-field soil deformation

The Winkler model assumes that the wave propagation is onergional, meaning
that the response on a given point on the soil surface canlbelai@d directly from
the displacement time series in the bedrock directly belmpbint. This is illustrated
in Figure 9.17a. However, it seems reasonable that the wavesme cases could
propagate in two or three dimensions, making the calculaif¢he surface response
more complicated. The principle of multi-dimensional wgvepagation is sketched
in 9.17b.

(a) One-dimensional
Figure 9.17: Wave propagation.

To examine, how the model performs when an apparent velaipyesent, the cal-
culations of Figure 9.12 and Figure 9.13 are performed admihwith an apparent
velocity of 1500¢ . The angle of incidence, defined in Section 5.5.2, is settdhe
deformed soil body is depicted in Figure 9.18.

Similar to Section 9.6.1, the displacement time seriesatgud for two surface nodes.
It can be seen that the time series are very much alike, ef@etbie time shift, caused
by the apparent velocity. Some minor differences are ptebannot significant, and
could be due to the different damping models, discusseddtid®e9.6.1. This indi-
cates that for the present analysis, for a SH-waveshifted with aapparent velocity
in astratum the assumption of one-dimensional wave propagation s€#ms
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Figure 9.18: The deformed soil domain far= 6s. Apparent velocity: 150§, angle:0°. An
animated version of the figure is provided on the enclosed DVD.
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Figure 9.19: Displacement time series for the two nodes set off in Figure 9.11 whap-an
parent velocity of 150& is applied. The red line is the outer node corrected
for the time shift caused by apparent velocity. Input from DTM with hyette
damping.

9.6.3 Time step

The discretization of time should be sufficiently fine to eeghat all important waves
can be modelled, while still keeping computation time atasomable level, as it is
discussed in Section 9.1.4.

To quantify the importance of the time step, the analysiseatti®n 9.6.2 is performed
again, but with different time steps. As measure of the emade as consequence
of the discretization, the data plot of Figure 9.19 is usedtr€tion for the apparent
velocity has been made and the outer and inner node dispdatermre analysed, cor-
responding to the red and the blue line of Figure 9.19. Thepeational errore, for

a given time step is computed as the root-mean-square (RM& of the difference
between each data point.

\/27:1 (uouter,j - uinner,j)z
e=

n

(9.8)

wheren is the number of data points. For four different time steps,RMS error is
plotted in Figure 9.20.
No clear indications of a reduced RMS error for finer time stegn be observed. This

is interpreted as an indication that convergence with i@dpehe time step is already
obtained. This is supported by the minor size of the errger@gmately 2nm.
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Figure 9.20: Influence of time step in the continuum model of the soil domain.

Even though the time stepr = 0.01s provides the highest value of the error in
Figure 9.20, it is chosen for the further analyses none thg, Isince convergence
is obtained and since it provides a reasonable calculatio®, tf Section 9.1.4. Fur-
thermore, the sampling frequency of the input earthquake 8eries is 108z, cor-
responding to the chosen time step. Thus, every data potheimput time series is
used for the analysis. This would not be the case if time sijepster tham\r = 0.01s
were applied.
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CHAPTER

COMPARISON OF MODELS

In this chapter, the available models are held up against ether. The closed form
solution, the Winkler model and the continuum model are @iated, and the differ-
ences between them are quantified and analysed.

10.1 Initial results from design basis

Firstly, the damage to the tunnel is calculated with thedld##ferent methods pre-

sented in this thesis. The basis for the calculations is #rameters discussed and
presented in Chapter %a. an apparent velocity af500 % and an angle of propaga-
tion of 45°.

As it is described in Section 5.7, the focus of the analysi$ lvé on the opening
and compression of the gaskets. Therefore, the maximalmgpend compression of
all gaskets are calculated. This will be the important paans for a design of the
immersed tunnel.

It can however, when comparing models, to some extent beldemivig to deal with
maximal values, since the place of occurrence for the madxiedae may vary. There-
fore, to prepare for understanding of the model behaviotima series for a specific
gasket corner is also presented. The chosen corner isé@pidtigure 10.1 on the fol-
lowing page. It is the corner of the centre gasket with théaégyy andz-coordinate.

10.1.1 Closed form solution

For the closed form solution, the gasket deformation isvestiéd with the help of (7.1)
and (7.2) on page 54. The input motion data is given in Figuteaid Figure 7.2 on
page 55.
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ZT<x:
y

Figure 10.1: The gasket corner chosen for comparative output, emphasizedmittange
dot.

The upper value of the deformation of a gasket, is calculated with the maximum
absolute value of the velocity and acceleration. This istwyyaically will be applied
in a real-world initial estimate.

Au=1l,-—sin¢cosp+ r—coss(p
e 2
Cs Cg

.86 345m 8.013
=153m- S .sin45° - cos45° + . s 5 -cos° 45° (10.1)
1500 1 2 (1500
=47.2-10°m

Due to the very simple approximation of the tunnel, the dakewd gasket deformation
of 47mm does not correspond to any specific node. Likewise, sinceltsed form
solution assumes a simple harmonic motion, the calculadéolrmmhation is both the
opening and compression of the gasket.

10.1.2 Winkler model

The Winkler model is outlined in Chapter 8 and in the follogjithe results are given.

In Figure 10.2, the boundaries for the gasket deformatierdapicted as function of
time. Positive deformation is opening of the gasket; negateformation is compres-
sion of the gasket. The maximum calculated opening of a gaskeer is25.9mm,
while the maximum calculated compression of a gasket casne32.5 mm.

For the gasket corner shown in Figure 10.1, the deformatioe series is shown
in Figure 10.3 on the next page. The maximum opening and cessjmm of the corner
is 24.6mm and—30.6 mm, respectively.

10.1.3 Continuum model

The continuum model is presented in Chapter 9. The deforroethth is depicted in
Figure 10.4.

In Figure 10.5, the boundaries for the gasket deformatiendapicted as function
of time. The maximum calculated opening of a gasket cornerd&mm, while the
maximum calculated compression of a gasket cornegig3s mm.
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Figure 10.2: The Winkler model. Boundaries for the gasket corner deformation.
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Figure 10.3: The Winkler model. Deformation time series for the gasket corner in

Figure 10.1.

Figure 10.4: The deformed domain. An animated version of the figure is provideden th
enclosed DVD.

For the gasket corner shown in Figure 10.1, the deformatioe series is shown
in Figure 10.6 on the following page. The maximum opening esdpression of the
corner is2.25mm and—-2.11 mm, respectively.

10.1.4 Comparison

In Table 10.1 on the next page, the calculated deformatmrtbé standard parameters
are listed. Firstly, it is clearly seen that the three mogedtd very different results.
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Figure 10.5: The continuum model. Boundaries for the gasket corner deformation.
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Figure 10.6: The continuum model. Deformation time series for the gasket corner in
Figure 10.1.

The closed form solution provides nearly twice the deforomadf the Winkler model,
which furthermore calculates deformations of more thanirh@s the deformation of
the continuum model.

Table 10.1: The calculated gasket deformations. All deformations are in mm.
Max. gasket Max. gasket Max. opening Max. compression

Model . .

opening compression chosen corner chosen corner
Closed form solution 47.2 —47.2 47.2 —47.2
Winkler model 25.9 -32.5 24.6 -30.6
Continuum model 2.5 -2.4 2.3 -2.1

It should come as no surprise that the closed form solutioxiges the highest value
of the gasket deformation. With this method many assumgti@as been made, some
of them on the very safe side. For instance, when the inefttheosystem is con-
sidered, it may seem unreasonable on the safe side to usgttbme values of the
velocity and acceleration as input to the closed form soiutilo obtain a more accu-
rate estimate, it could be tried to deem “equivalent” valokthe input parameters;
and a; from Figure 7.1 and Figure 7.2 on page 55. Neither does it geasonable
to multiply the calculated maximal strain with the tunneidéh to obtain a deforma-
tion at the gasket, as it is stated in (7.2). However, it ispussible to deem a more
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accurate method without further calculations.

When the simple character of the closed form solution is coptated in relation
with the complex nature of the problem, it should not causersse that the results
differ from the more detailed calculations. In fact, thdeliénce from the closed form
solution to the Winkler model may seem minor.

In the further discussion and analysis, the primary focus vé on the difference
between the Winkler model and the continuum model. The meta&iléd modelling of
the continuum model could be expected to provide a diffeesult, but that the gasket
deformations differ with an order of magnitude may be charémed astounding.

10.2 The Winkler model vs. the continuum model

The great difference between the gasket deformations ledéécuwith the Winkler
model and the continuum model, shown in Table 10.1, is ardlys the following
section.

10.2.1 Crude errors

Firstly, it should be verified that no crude errors have beaderin the modelling. To
this end, the displacement time series in a single node atteg] to verify that the
displacements inside the models are comparable for thelgvinkodel and the con-
tinuum model. The selected node is located in the gaskeecshown in Figure 10.1.
In Figure 10.7, this gasket is depicted, and the selected ighown. The node is
located orSide 1of the gasket, defined as the the side with the laweoordinate.

Side 2,X > X1

Figure 10.7: Definitions of sides of the gaskets. The dot marks the node plotted in
Figure 10.8.

In Figure 10.8 on the next page, the displacements in theeds@f freedom of the
selected node are plotted for the Winkler and the continuwdeh It can be seen that
the displacements are very much alike. This entails thag¢éindquake displacements
of the Winkler model and the continuum model make the gasteter translate in
much the same way; with treame order of magnitudd& hus, it is rendered probable
that no crude errors related to the wave propagation to tieeithave been made in
the modelling.
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Chapter 10. Comparison of models

Furthermore, in Figure 10.8 the displacements in the \@rtiegree of freedom should
be observed. In the Winkler model, Figure 10.8a, no dispresgs occur, while mi-
nor displacements are present in the continuum model, Ei0i8b. This difference
is due to the wave propagation modelled with the continuundehoThe input dis-
placements does not have any vertical component (since wesid-is assumed), and
in the Winkler model this is directly transferred to the tehrwhile the waves in the
continuum model are propagated with respect to the threemsional domain.
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z, vertical
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z, vertical
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(b) The continuum model
Figure 10.8: Displacements in the degrees of freedom at the corner shown in Figuire 1

10.2.2 Three-dimensional wave propagation

In the Winkler model the wave propagation is assumed to belamensional, whereas
the waves in the continuum model have the ability to propatate-dimensionally.
The consequence of this is analysed in Section 9.6.2, whéseshown that in the
present case, this effect does not yield any significant itapae in the results.

10.2.3 Deformation in gasket

Apparently, the orders of magnitude of the displacementsespond well to each
other in the Winkler and the continuum model, but the defdiona in the gaskets
differ with an order of magnitude. Therefore, the deformaiin the gasket depicted
in Figure 10.1 and Figure 10.7 is analysed further.
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Transverse and vertical deformation

The deformation in the corner of the gasket has been plottegigure 10.3 and
Figure 10.6. When the deformations in the respective dwaestiare contemplated,
it can be seen that in both models, the deformation in thd diiection dominates
most heavily. Some transverse deformation is calculatédeircontinuum model, but
the total three-dimensional deformation depends almastisively on the axial defor-
mation. This was also to be expected, since deformationzepdicular to the tunnel
axis — due to the geometry — does not contribute very muchetahlange in distance
between the corner nodes.

Transverse and vertical deformation

In Figure 10.9, the transverse and vertical deformatiofdgire 10.3 and Figure 10.6
are plotted together. It can be seen that all though the ledzlidisplacements in no
way are the same, the orders of magnitude correspond wedlcio @her. Hence, the
major difference between the Winkler and the continuum rhagparently is to be
found in the axial deformation.

Transverse, Winkler
Vertical, Winkler

Transverse, Continuum |
Vertical, Continuum

Deformation,u [m]

1
0 5 10 15
Time, t[s]

Figure 10.9: Transverse and vertical gasket deformations of Figure 10.3 anale=id.6.

Translations and rotations in gasket centre

To examine which tunnel deformation mode causes the ax&degaleformation in
the two models, the gasket deformation is now expressedrmstef the degrees of
freedom for the tunnel beame. rotations and translations in the gasket centre. For
the Winkler model, the degrees of freedom are given as tleetdautput, while they
must be calculated for the continuum model. The probleméscéled in Figure 9.9
on page 77, and the calculation is outlined in Section 9.5.2.

The deformations are calculated as the difference in thatisments of the degrees
of freedom between side 1 and side 2 of the gasket, cf. Figui® The translational
degrees of freedom are plotted in Figure 10.10 on the nex,palgile the rotational
degrees of freedom are plotted in Figure 10.11 on page 9%thEaotational degrees
of freedom, the rotations are converted into displacemarnke tunnel axial direction.
Hence, the rotation about theaxis, socalledoll, is not plotted, since this does not
provide x-axial displacement.
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Figure 10.10: Translational deformation for the gasket centre.

By studies of Figure 10.10 and Figure 10.11, it is again shahthex-axial trans-
lational degree of freedom provides nearly all the deforomabf the gasket. This

is common to the two models. Furthermore, in both models ol&tion about the
vertical axis yields only approximately 10% of the axialal@fiation. Thus, only ax-

ial deformation andhot bending of the tunnel governs the gasket damage during the
present earthquake.

Gasket approximation

The Gina gasket in the Winkler model is represented withettsprings, as it is
sketched in Figure 8.11 on page 63. Hence, no rotation&hesi$ is present in the
Winkler model. Still, the bending deformation comprisesl@en10% of the gasket
deformation, whereby it can be concluded that the modetintpe Gina gasket with
a single spring should be sufficient, since a more sofisticatedelling solely will
increase the rotational stiffness.

10.2.4 Importance of retroaction

In the preceding, it has been shown that the major differdmeteeen the Winkler
model and the continuum model should be sought for in thd dei@rmations. One
of the major principal differences between the models i i soil springs in the
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Figure 10.11: Axial deformation due to rotations in the gasket centre.

Winkler model are decoupledle. . that the only connection between two adjacent
soil springs is the tunnel.

The two models are sketched in Figure 10.12, where it candretbat the only thing
which couples two adjacent springs is the shear stiffnesiseofunnel. This opposes
to the continuum model, where the soil elements around theeiare coupled, mak-
ing retroaction possible,e. waves can be reflected from the tunnel back to the soil
elements, and the soil-structure interaction is depenalethie adjacent strain state.

S SIS I

Figure 10.12: The Winkler model (topmost) and the continuum model. The gaskets are
coloured red, the tunnel black, and the soil grey. The blue dotted linesated
that no retroaction is possible in the Winkler model.
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This difference between the two model is not easy to eraglicitshould be clear
that the continuum model in this respect is the better estirnfithe physical prob-
lem. To incorporate retroaction in the Winkler model, a stément with appropriate
parameters could be connected to the tunnel, as it is skefohEigure 10.13. The
soil element should model the soil behaviour, and its patarseould include both
various stiffness’s, damping and mass. This should be alj}eavide a better model
representation. However, the determination of the soihel® parameters is far from
trivial, and it has not been investigated further in the préshesis.

E I X T
[

Figure 10.13: The Winkler model of Figure 10.12 fitted with a soil element to account

for retroaction. The input displacements should still be applied to the lower
springs. Only vertical soil springs are depicted.

Instead, the consequence of removing the retroaction lgbilssin the continuum
model has been analysed. This should illustrate the sens¢rofction modelling. In
the preceding, the deformations analysed are in the gaakdttherefore, the retroac-
tion possibility has been removed over the gaskets. Sineduhnel elements are
very stiff compared to the gaskets, it is also deemed thaefieet of removing the
retroaction possibility will be greatest there.

Separation planes

To take away the the possibility of retroaction, separasimihplanes have been imple-
mented in the continuum model in the gasket planes, as ieigls&d in Figure 10.14.
The elements in the separation planes are modelled witkiioess and mass, thus re-
moving all ability to transfer any force or displacement.nide, the continuum model
imitates the behaviour of the Winkler model, as it is sketcimeFigure 10.12. How-
ever, the element surfaces outlined with a green line inréig0.14 will be modelled
with a “free” surface, thus making the soil too flexible. Tkisould be remembered
when interpreting the results of the analysis.

IS EEEEEEEEN
Il EEEEEE
e ' ! ! r I 1 1 =

Figure 10.14:Insertion of a separation plane into the continuum model of Figure 1TH&.
blue soil elements have no stiffness or mass, and the green line indikates e
ments with a “free” surface.
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Spring planes

The deformed domain is depicted in Figure 10.15, where tharadion layers clearly
can be observed.

Figure 10.15: Deformed domain for an analysis with separation planes. An animatstbrer
of the figure is provided on the enclosed DVD.

The deformation for the chosen gasket corner (Figure 16 flpited in Figure 10.16.
It can be seen that the deformations have been dramatinaligdsed when compared
to Figure 10.6. The total deformation has been increasezippately 30 times, and
even more for the vertical deformation. Due to the “free’faces in the gasket cross
sections, the gasket deformation now is more than twiceef@rohation calculated in
the Winkler model.
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| |
0 5 10 15

Time, ¢ [s]
Figure 10.16: Deformation time series for the gasket corner in Figure 10.1. The cantin
model with separation planes. The maximum opening and compressioa of
corner is68.7 mm and—-68.2mm, respectively.

Spring planes

Apparently, the connection of the soil over the gaskets igeo§ high importance. To
further investigate the phenomenon, a different approacihmbdelling of the separa-
tion planes is made. In Figure 10.17 on the following pager thfferent modellings
are sketched. Subfigure (a) shows the modelling withoutraépa planes and (d)
illustrates the already performed analysis with no stéim the separation planes.

To analyse whether it is the normal stiffness or the shefinssis which is of im-
portance in the separation layers, (b) can be used as muaglalisregarding only the
shear stiffness. Furthermore, to investigate the impodanf the normal stiffness in
the tunnel-axial direction, the horizontal springs arettadiin (c).
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! !

I

(a) Continuum (b) Normal springs  (c) Vertical spring (d) No stiffness
Figure 10.17: Different ways of modelling the separation plane elements. The arrotsgle
the elements illustrate the stresses which can be applied to the elements.

The analysis of the two new separation plane models yietlseibults plotted in Figure 10.18.
In Figure 10.18b, the absence of shear stiffness in the aépaplane has increased

the total opening from@mm to 14mm. The vertical deformation has increased much
more, since very little stiffness in this direction is in t@del. As the axial spring in

the separation plane is removed, the deformation raisdwttetvel of the separation

plane without stiffness. This can be seen in Figure 10.18ticlwin every aspect is
nearly identical to Figure 10.16
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(a) Normal spring separation planes, cf. Figure 10.17b. The maximpening and compression of the
corner isl4.4mm and—4.5mm, respectively.

005
E
3
= 0
RS
g
5 005 _
© — — - Axial, x
o Transversey
-0.1f Vertical, z g
| |
0 5 10 15

Time, t[s]
(b) Vertical spring separation planes, cf. Figure 10.17c. Theimam opening and compression of the
corner is68.7mm and-68.2 mm, respectively.

Figure 10.18: Deformation time series for the gasket corner in Figure 10.1.

It is clearly seen that the more important property for theasation layer is the stiff-
ness in the tunnel-axialfaxial) direction. If the stiffness disappears, the malel’
ability to take retroaction into account disappear fullydahis increases the gasket
deformation dramatically.

On the basis of the performed analysis, it is deemed thatrésepce ofc-axial stiff-




Modelling without gaskets

ness in the soil next to the gaskets is the single most imporéason for the major
difference between the results from the Winkler and theinaotm model.

But still, the results with the modellings of Figure 10.1% arot very close to the
results obtain with the Winkler model. The reason for thishiat the introduction
of a “separation layer” also entails introduction of a “frs@rface, as it is discussed
in the above and depicted in Figure 10.14. NeverthelessdHemmed analysis very
significantly spots the importance of incorporating thegiuity of retroaction into
the calculation models.

10.2.5 Modelling without gaskets

Apparently, the presented Winkler model does not perforr wigh the immersed
tunnel of the present thesis, since it fails to model thelsingpst important factor in
the soil-structure interaction: the retroaction in theneiraxial direction.

However, Winkler models are widely applied. The major flavtha present applica-
tion is deemed to be the segmentation of the immersed tuneeihe cross section
is not uniform, since the very flexible gaskets separateuhpdl elements. Thus, the
minor errors are lumped in the gaskets, making the resukalvia.

To test the Winkler model’'s performance for a uniform crossti®n, the gaskets in
the models have been removed and replaced by concrete famitets, thus making
the immersed tunnel consist of only one single tunnel elém&he deformation in
the point shown in Figure 10.1 is still used for the calcwlatiand the time series are
shown in Figure 10.19 on the following page.

It can be seen that the deformation time series are very fikihe Winkler and the
continuum model if the gaskets are removed. Thus, the Winkiedel is a good
model for dynamic analysis of underground elongated sirast if the cross section
is uniform. The gaskets of the immersed tunnel makes the howeey conservative
in the gasket deformation calculations.

The similarity of the plots in Figure 10.19 also verifies thedual coding of both the
Winkler model and the continuum model.

Even though the Winkler model in this chapter has been showtetd results very
different from the continuum model with respect to the defation of the gaskets, the
model will still be used together with the continuum modethe following. This is
done in order to examine, whether the much simpler Winkledehoould be workable
for parameter studies.
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Figure 10.19: Deformation time series for the point in Figure 10.1. The gaskets al@cexp
by concrete finite elements.

10.3 Winkler soil springs

The determination of the soil springs in the Winkler modelescribed in Section 8.2.1.
The soil spring stiffness’s are determined on the basis @lastic model, thus mak-
ing the results comparable to the continuum model. If a @ifie material model was
applied €.g.to account for non-linear behaviour), if the stratificatiointhe project
site was different, or simply if the material stiffness pagsder should be determined
to something different, the soil spring stiffness’s coudalyv

To account for the influence of the magnitude of the soil gpstiffness’s, a sensi-

tivity analysis have been performed. The soil spring sti$isis have been scaled with
different common factors and the resultant maximal gasg&drchation has been cal-
culated. For stiffness scales from 0.1 to 10, the resultdtexd in Figure 10.20 on the

next page.

It can be seen that for moderate variations of the soil spstiftness’s,+50%, the
gasket deformation only varies with arourd5%. Thus, the soil spring stiffness’s
can be determined with some scatter without comprising taracy of the Winkler
model. However, if changes in the soil spring stiffness #hbe due to changes in the
general solil stiffness, and hence changes in the wave Weladhe soil, the free-field
soil response will change significantly cf. Section 11.3 age106.

100




Prestress in tunnel
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Figure 10.20: The frequency response function for other depths of |&er

In Figure 10.20 it can further be observed that the gaskerneftion decreases monotonous
with increasing soil spring stiffness. This was also to bgeeted, since an increasing

soil spring stiffness will make the tunnel follow the prabed displacements more
closely, and the deformation will decrease towards a mininspecified by the appar-

ent velocity.

10.4 Prestress in tunnel

As described in Section 5.6.1, the tunnel elements arerpesstd during the instal-
lation phase. The purpose of the prestress is to compresSitizegaskets, but the
induced stresses in the system could also affect the stffakthe tunnel elements, as
it is known from an ordinary beam-column problem. An axialhgessive stress will
reduce the bending stiffness against cross axial load.

The prestressing force cannot be neglected offhand, diecttal force is of magni-
tude 48 00@N, cf. (5.13). However, in the present chapter it is repegtskdbwn that
the axial compression of the immersed tunnel is far moreifségnt than bending.
Thus, it is deemed that prestress in the tunnel will haveigiédg influence on the
tunnel damage. To support is assumption, a sensitivityyaisahas been carried out.

The bending stiffness have been scaled by a varying facyoschling of the cross
sectional second moments of arég,and . In Figure 10.21 on the next page the
maximum deformation has been plotted for the referencesgaskner.

It can be seen that the gasket deformation is very inseesdivariations in the bend-
ing stiffness of the tunnel elements — only a slight decréasiee deformation occurs
from increasing bending stiffness. This can be explainethlmycharacteristics of the
system, which has also been verified in the above: 1) the d&fatmation is of much
greater importance than bending of the tunnel, and 2) sircgdsket stiffness is much
less than the tunnel stiffness — even if the the bendingssf of the tunnel is scaled —
the free-field soil displacements are lumped in the gaskets.
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Figure 10.21: Sensitivity of the tunnel element bending stiffness. Normalized defioman
the gasket corner in Figure 10.1.
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CHAPTER

SOIL PARAMETERS AND STRATIFICATION

In Chapter 5 the soil stratification and the soil parametarthie project are presented,
and in Section 6.5 the response at the level of the tunneldsiledéed by means of the
domain transformation method. In this chapter the seiitsitf the soil response with
respect to changes in the stratification and in the soil parars is analysed.

The purpose of the sensitivity analyses are to indicate, mmeh time and money
should be spend in the determination of the stratificatich soil parameters. If the
soil response is insensitive to changewig.the layer thickness, only minimal soil
investigation is needed. On the other hand, if great seitgiis present, it may be
favourable to invest time and money in detailed soil ingggtons.

11.1 Method of analysis

In the following analyses of this chapter, the sensitivigrgmeter is chosen as the
maximum absolute soil response from the time series at the ¢ the tunnel, cal-
culated with the domain transformation method. For theregfee response calcu-
lated with the parameters given in Chapter 5, this valugisnm cf. Figure 6.12 on
page 50. The data of the plots in this chapter have been niaadakith this value.
For comparison, the maximum absolute displacement of ttibcpeake time series is
95.5mm cf. Figure 5.7.

The choice of this sensitivity parameter is made becausaniéll correlated to the de-
formation in the gasket, which is the final design paramédte3ection 5.7 on page 38.
Therefore, there is no need to perform excessive calcuktio determine the final
gasket deformation for these sensitivity analyses. Theetadion has been verified in
Section 12.3, where it has been shown that because the nayddlsear, the gasket
deformations are directly proportional to the free-field smsponse.
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Even though the maximum absolute displacement may not beecpeepresentation
of a time series — since all other soil response data is nat fmethe sensitivity
analyses — it can be seen by comparisoe.gfFigure 6.12 on page 50 and Figure 10.5
on page 90 that the maximum gasket deformation occurs amthediate reaction to
the maximum soil response. Thus, the maximum absoluteatispient may with
good accuracy be used as indirect indication of the tunnabdg.

If the layer interfaces are not horizontal and the stratiicesimilar at the entire
project site, incoherence may arise cf. 4.11c on page 26s fjbe of incoherence
has not been analysed in the present thesis, as it is stafeection 4.6. Since the
analyses of the wave propagation is purely one-dimensiomaduld not make much
sense to make detailed studies with these methods, as trepsapagation will be
three-dimensional for varying stratification.

The exact sensitivities calculated will vary for differezgrthquakes with varying fre-
guency spectra. However, the following analyses shoul@mlegless provide clear
indications of the important factors.

11.2 Impact of layer depths

The stratification may not be very well determined in the @éeeubsoil, since deep
borings are very expensive.

In Figure 5.1 on page 28 the stratification for the longitadlisection is depicted. It
can be seen that the layer thicknesses vary over the tum8kdtion 5.4 it is shown
how mean thicknesses have been chosen as the design battie ftire domain.
Thus, the geographic variations are not included in thisigheln this section, the
consequences of different thicknesses for the soil lay&re been analysed.

11.2.1 Thickness of layer A
The maximum displacement at the level of the tunnel as fanaii the thickness of

layerA is plotted in Figure 11.1. Only minor sensitivity is presesihce it can be seen
that if e.g.the layer vanishes, the displacement amplitude increasasindl %.
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Figure 11.1: Influence of the thickness of layér.
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Thickness of layer B

11.2.2 Thickness of layer B

The sensitivity of the displacements with regard to thekihéss of layeB is plotted
in Figure 11.2. The deformation may be increased with up%o should the layer
vanish.
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Figure 11.2: Influence of the thickness of layér.

11.2.3 Distance to bedrock

In (COWI 2007) the thickness of lay€ris estimated td 00 — 150m as mentioned in
Section 5.2. Since the thickness of the lay.erthe distance to the bedrock, is not well
determined, the consequences of different thicknessdayferC has been analysed.
The result is plotted in Figure 11.3.
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Figure 11.3: Influence of the thickness of layéx.

It can be seen that rather large sensitivity is present. I8Hbe lower value of the
estimated intervall00 m, be the correct value of the layer thickness, the soil despla
ment is magnified witl20%. Even a magnification of approximate?9% is possible

if the correct value should B m.

In general, it can be concluded that the stratification isattier high importance for
the calculated displacements at the level of the tunnel. dea&world design pro-
cess, the exact stratification will never be known. Theefaare should be taken
when determining the stratification, and for a final desigrsg®&ity analyses like the
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above should be performed, and the design stratificatioseshfrom the maximum
displacement. Also, if the layer interfaces diverges sigaintly from being horizontal,
this must be taken into consideration.

11.3 Wave velocity

The wave velocity depends on the shear stiffness and thétylehshe soil, as given
by (A.4) on page 130. Therefore, the result for a sensitigityalysis of the wave
velocity also applies for the soil shear stiffness and thiedemsity.

The sensitivities for varying wave velocities are plottedrigure 11.4. Like it is
discussed for the layer thicknesses, it can be seen thae#igndwave velocity can
not be chosen on the safe side as an upper or lower value. igbpéar layer C the
wave velocity is significant, and magnifications of the disgiments may be as high
as30% for a30% increase in wave speed. For a final design, the expectedahter
of the wave velocities should be determined, and sensitasitalyses performed to
determine the maximum displacement.
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Figure 11.4: Influence of the wave velocity of the soil layers.
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Figure 11.4: Influence of the wave velocity of the soil layers (Continued).

11.4 Damping

The application of damping in the thesis is outlined in Sett.3. Here, the conse-
guences are analysed.

11.4.1 Sensitivity

The sensitivity of the soil response with respect to the fas®r of the soil layers is
plotted in Figure 11.5. Due to its greater thickness, lay& the only layer showing
a significant sensitivity. In general, it can be observed there damping generates
less soil response, as it would also be intuitively expectéawever, it may be seen
that the sensitivity of the the soil response is very litdgce only up t8% of the
displacement fades for moderately high damping ofGpi} = 0.1.
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Figure 11.5: Influence of the damping loss factgr

The effect of damping can also easily be seen in the frequesppnse function which
is plotted in Figure 11.6. Especially the response in thergigpdes is significantly
damped.
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Figure 11.6: Frequency response function for the stratum at the level of the tunnel.

11.4.2 Hysteretic damping and viscous damping

Both hysteretic damping and viscous damping have beenratetyin the domain

transformation method, and two time series at the level efttinnel have been cal-
culated in the frequency domain and plotted in Figure 11.Themext page. It can

be seen that very little difference exists between the twoplag mechanisms. This
was also the conclusion in Section 9.6.1, where the timesealculated with hys-
teretic damping has been applied to the continuum models®/bolution in the time

domain entails application of viscous damping. In factaim de seen that the plot of
Figure 11.7 is very similar to Figure 9.15 on page 80. Thisdats that the coding of
damping in the continuum model and the domain transformatiethod yields very

similar results, thus verifying the coding of both models.
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CHAPTER

THE EARTHQUAKE

In this chapter sensitivity analyses are performed for fhygagent velocity, the direc-
tion and the displacement amplitude of the earthquake.

The damage measure is for the continuum and the Winkler reaitelsen to the de-
formation of the gasket corner depicted in Figure 10.1. Thishosen instead of the
maximal deformation at all gasket corners, since a compaiisdeemed to be more
appropriate and understandable when a specific node is smdthe closed form

solution, only a single gasket deformation value exists.

12.1 Apparent velocity

Firstly, the sensitivity of the damage to the tunnel withpexst to the apparent velocity
is analysed. Different values of the apparent velocity lmen used for simulations in
the continuum model, and the maximum opening and comprres$ibe gasket corner
shown in Figure 10.1 has been plotted in Figure 12.1a. Eveugth the Winkler
model and the closed form solution in Chapter 10 has beenrshowe unreliable
for the immersed tunnel, calculations with the Winkler mlogled the closed form
solution have also been made, due to the simple formulatibims results are plotted
in Figure 12.1b. The ease of making parameter studies wigtWimkler model and
the closed form solution, which is coded by handMaTLAB , is the reason for the
additional data.

Even though the models in Figure 12.1 do not yield the samétses similar trend is
clearly shown. The similarity between the models is furtigtined in Figure 12.2 on
page 113, where the results of Figure 12.1 are plotted fothite® models together.

It can be seen that changes in apparent velocitys0h T yield changes in the gasket

deformation of around20%. Since the greater damage occurs for lower values of the
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Figure 12.1: Maximum deformation in gasket corner shown in Figure 10.1.

apparent velocity, the lowest reasonable value should && fas a final design.

It does seem very reasonable that the general trend is Bicgeapparent velocity
for decreasing damage of the tunnel, since the incoherganesdrom the apparent
velocity, and the incoherence is closely related to the dgnadithe tunnel, as it is dis-
cussed in Section 4.6. However, in a dynamic analyses idaoaimally be expected
that certain eigenmodes of the system would be excitated &ertain apparent ve-
locities. Thus, a decreasing tendency could be expectédpobue local amplification
would not be surprising to observe.

In Figure 12.2 however, the deformation is decreasing namaisly with increasing
apparent velocity. The reason for this must be found in teeutision of Section 4.4;
that the behaviour of an underground structures is not dat@éhby the inertia of the
structure. Hence, the most important seismic parametanfderground structures is
not the soil acceleration but the soil displacement, anéitenmodes of the immersed
tunnel become of minor importance.
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of 1500 2.
S

12.2 Direction

Similar to the previous section simulations have been pexd, now with varying
angle of direction. Since the system is double symmetrity, angles fromd = 0° to
0 =90° are used for the analysis. The definition of the angle is plexvin Figure 5.9
on page 35.

The gasket opening and compression as function of the afgi®pagation are de-
picted in Figure 12.3 for the continuum model, the Winklerd®lp and the closed form
solution. It is clearly seen that the maximal gasket defoianaoccur with a direction
angle of approximately5°. Thus, as it was deemed in Section 5.5.3, the critical angle
of approach is oblique, where both axial particle motiommssraxial particle motion
and an appropriate incoherence are present.

It should be noted that the calculated deformatiofns= 0 for 6 = 0. This is because
no incoherence is present when the wave propagates pecptrdp the tunnel.

As in the previous section, the trend in Figure 12.3 is vemyjlgir for all three models.
This is more evidently seen in Figure 12.4, where the deftoms has been normal-
ized. Thus, it is indicated that both the Winkler model anel ¢fosed form solution,
even though the absolute values of the calculated defasnsatre highly conserva-
tive, advantageous could be used for some parameter studies
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Figure 12.3: Maximum deformation in gasket corner shown in Figure 10.1.
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12.3 Earthquake amplitude

The model is fully linear, and therefore should the gaské&irdeations — together with
all other displacements and their derivatives — be dirqmthportional to a scaling of
the input displacements. This has been verified througtulzions in the Winkler
and the continuum model; the closed form solution is omisiade the proportionality
is very obvious seen from (7.1) on page 53. The displaceniaet geries has been
scaled with a varying factor, and the results are plottedguife 12.5.
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Figure 12.5: Normalized maximum deformation in gasket corner shown in Figure 10.1

It can be seen that a scaling of the input displacement timessgelds the very same
scaling of the gasket deformations, thus verifying thednitg of the models. In the
real world tunnel, this will only apply if the deformatioresé in the soil and structure
is in the range where linear behaviour can be approximated.
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CHAPTER

M ODELLING OF GASKET JOINTS

As it is discussed in Section 5.6, the modelling of the Ginskgés is not trivial. A
linear approximation has been made, all though the behaigohighly non-linear,
both in the longitudinal and in the transverse and vertigaiation.

As in Chapter 12, the continuum model and the Winkler modebused for the sensi-
tivity analyses. However, since the gasket behaviour ismotided in the closed form
solution, this is omitted.

13.1 Longitudinal stiffness

The axial (longitudinal) stiffness of the Gina gaskets gty non-linear, as presented
in Section 5.6.1. A linearization has been made based onakket compression
during the installation of the tunnel. As the gasket is cagsped or opened, the actual
stiffness will change rapidly. To give an indication of tmegact of the linearization,
a sensitivity analysis has been carried out.

The longitudinal gasket stiffness has been scaled withtarfaand in Figure 13.1 on
the following page the damage to the reference gasket carpéstted as function of
the factor, for both the Winkler model and the continuum mode

As in Chapter 12 it is seen that the trend seems quite sinalathe Winkler model
and the continuum model. In Figure 13.2 this is more evigesgkn as the normalized
gasket deformation is plotted. The general trend is a sligltrease in the gasket
deformation as the axial gasket stiffness is increased; wsuld also be expected
from a general static point of view. However, the change iy Vigtle, especially
for the continuum model which is regarded the better one.s Tricates that the
modelling of the axial gasket stiffness shouldt be given very deep consideration
when modelling the structure, since a variation in the re¢i$s does not affect the
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Figure 13.1: Maximum deformation in gasket corner shown in Figure 10.1.

gasket deformation significantly.

The results may be surprising, since itis documented in &hap that the axial defor-
mation is very highly affective on the gasket deformatiohe Teason that variations
of the axial gasket stiffness has very little effect on thekgd deformation is deemed
to be the great difference between the stiffness of the tuglrenents and the axial
gasket stiffness. The axial gasket stiffness make up ammagly%ﬁ)%6 =0.1%o of
the tunnel element stiffness. Since the tunnel is surrodifgesoil, the overall dis-
placements are governed by the soil motion and thus, it doesnake very much
difference if the gasket stiffness compriges0%. or 0.15%. of the tunnel stiffness —

the majority of the deformation is still lumped in the gasket
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Figure 13.2: Results from Figure 13.1 with deformation normalized for the initial lineariza
tion of the gasket stiffness.

13.2 Shear stiffness

The choice of an appropriate shear stiffness for the gaskig¢ussed in Section 5.6.2.
In this thesis, it has been chosen to use a shear stiffnebg @diht corresponding to
the shear stiffness of the rubber gasket itself, disreggrtlie shear keys of concrete.

As a sensitivity analysis, the gasket shear stiffness haes Iset to both zero and
equivalent to the shear stiffness of the concrete tunnetetts, in two different cal-
culations. The shear stiffness equivalent to concretedd s model the shear keys
in action as an upper value of the stiffness. For the contimmodel this corresponds
to shear modules af = 0Pa andG = 17.4-10° Pa, respectively. For comparison, the
reference shear modulus of the rubber gasket profi@4s1.3-10°Pa. The results
for the Winkler model and for the continuum model are depidgteFigure 13.3 and
Figure 13.4.

Itis clearly seen that the magnitude of the gasket sheémest$ does not influence sig-
nificantly on the gasket deformation. Thus, as for the axaaket stiffness, the cross
axial gasket stiffness should not be given significant atersitions when modelling
the immersed tunnel for a final design. The reason for thisiiearily deemed to be
the definition of damage in the present thesis, since trass\deformation does not
contribute significantly to the total gasket deformatiom.Figure 13.5 the maximum
transverse deformation is plotted. It can be seen that thedinction of a shear stiff-
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Figure 13.3: Maximum deformation in gasket corner shown in Figure 10.1.

ness like concretdoesdecrease the transverse gasket deformation significénthy,

1.1mm
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APPENDIX

DERIVATION OF THE DOMAIN
TRANSFORMATION METHOD

In this section the domain transformation method is derivesed upon (Andersen
2006). The bases for the method are outlined in Chapter 6thendoordinates and
layer indices used refer to Figure 6.2 on page 44.

A.1 Constitutive model

The material model is in Section 6.1 given as homogeneoospfEc and linear vis-
coelastic. The general constitutive model for a layer ohsueaterial is given by

J J
N 1(‘3&+6U1¢)

sl _qia s, je. —— _K
O =Ménbix+2p €y, €x=>5 o o

(A1)
(Byskov 2002, p96), where theat (") signifies the formulation in the frequency do-
main. For hysteretic damping to be applied, the Lamé cotsiaandu are expressed
in terms of Young's modulu&, Poisson’s ratiov, the circular frequencw and the
loss factom as

— /. isi ‘= L
A=2A"-(1+isign(w)n), S 1+v)(A-2v)
/ .. ! £ -
p=u - (1+isign@)n),  p'= 2(1+v)

(Andersen 2007)
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Appendix A. Derivation of the domain transformation method

A.2 Governing equation

The layers(j = 1...J) are one by one regarded as linear elastic, isotropic and homo
geneous media. The equations of motion for such media arthéogeneral three-
dimensional case thgavier equations

2 2., 2

A+ ) 0u; + " +pb; = ALl (A.3)
Woxiox, Foxox; P77 P52 ‘

where the conventions of index notation appliesis the displacement in the direction
of the coordinatey;, p is the mass density; is the body forces per unit mass ani
the time coordinate.

In (A.3) nearly all terms reduces to zero when the simplifieobfem is observed.
Since a vertically propagating SH-wave is considered, mtoa movement occurs,
ie. ué =0, with j and3 indicating thej"" layer and thexs-coordinate, respectively.
Furthermore, the system of coordinates is oriented suchitbavave motion is in the
x1-direction, providingu = 0.

The wave propagates in thg-direction. Thus, for a givers-coordinate the same
displacement occurs for ath andx, i.e.du! /d0x; = du! /dx, =0.

If these simplifications for the SH-wave are incorporated ifA.3) and body forces
are disregarded, the following one-dimensional wave égouatvhich governs the
wave propagation, is found.

ul(z,n) 1 0*ul(z,0)
0z? B (Cé)z ot

. : ; J
. z=x3, w(zn=ul(x0, c= K (A.4)
p]

where thez-coordinate is introduced together with the shear wavecityies.

A.3 Transformation into frequency domain

The governing equation (A.4) is formulated in the time dam{aidicated by the pres-
ence of the time coordinate). The relation between the tintefeequency domain
representation of the displacement is provided by the ga/Epurier transformation

. 17 .
uw (z, t):§ f U/ (z,w)e!* dw (A.5)
—00

The integral in (A.5) can be discretised to a complex Fowgeies; a sum aV discrete
harmonic waves with the frequeney, as:

. N 2 .
Wz, =Y Ulz)ert (A.6)

n=1
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Relation between the layers

Each term of (A.6),u{l(z, 1) = U,{(z) el“n! can be inserted into (A.4). The second-
order derivatives of the term are

Pulz,)  ULD 4,
o7 o2 (A.7)
?ul(z, 1)
ar?
and applied in (A.4) this yields

= (wn)2Ul(2) €' = —02 Ul (2) e

Ul (z) . 1 C
Oznz e‘“’"t:——( j)zw%Uf;(z)e””"t
C
S
U (2) 1o, iy
322 :—( j)zwnUn(z) =—(k)°U;(2) (A.8)
C
S

where the wave numbd:rf, = wn/cg is introduced. (A.8) represents the equation of
motion in the frequency domain for thd” frequency of thej™" layer.

A local z/-axis is applied for every layer, as shown in Figure 6.2 onep44. The
height of each layer is denotéd, and (A.8) is a constant-coefficient differential equa-
tion with the solution

Ul(z)) = Byl kn? 1.clehn@ =) (A.9)
whereB{; and C£ are integration constants.

Now the stresses can be found from the displacements thritwegbonstitutive re-
lation (A.1) on page 129. As indicated in Section A.2, onlg thartial derivative
0U] /0x; is different from zero, which simplifies (A.1) to

. 10
013=03 =4/ g (A.10)

By utilization of (A.9) andxs = z, and by introducing the stress amplituﬁ)é(zf) =
67,, (A.10) ends up to

P =ikhp! (B elkn?’ _ci eik]n(zj‘hj)) (A.11)

A.4 Relation between the layers

Two auxiliary matrice:s{, andA{, which gathers the strain and stresses, are now intro-
duced as

i uaeED] g B
Sl(z)) = PZ(zf) =Al(z)) CZ (A.12)
A{; is defined according to (A.9) and (A.11) as
. ikl 2/ ikl (21 ~hJ)
] ] _ e n 4 e n )
Anlz)= ikl etkn?’ —iki;ufe‘i"ft‘zj‘hj)‘ 19
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Appendix A. Derivation of the domain transformation method

Now, the relation between the strain and stresfﬁat the top and the bottom of a
layer can be found. Superscript 0 and 1 signifies the top attdrhoof the layer,
respectivelyj.e. the requested relation is betwesl} = 8/ (z/ = 0) ands’' = s/ (z/ =
hJ). Through evaluation of (A.12) the relation is found as

{A{;(zf =0)}_IS{,(zf =0)=

B)
J
n

:{Ail(zf—hf)} S/ (z/ = b))
. =1
=5/0=al° {A{}} s/! (A.14)

It is observed thaai{;O is found through simple multiplication of matrices orﬂbl, a
very fast operation for a computer, relative to inversioteoe matrices.

Continuity is now required in the interfaces between thestay In other words, it

is required that the displacement is identical in the istegfand that equilibrium is
fulfilled, i.e. S{,O = S{[Ll. This demand makes it possible to establish a simple relatio
between the top of the topmost lay&f and the bottom of the bottommost laysdf
through reiterated application of (A.14).

SI0 <Al A} i = Al Al 820 = Al fall A a2 s =
=AP AN A A A A ) (A15)
Thetransfer matrixT,, is then introduced, which reduces (A.15) to

-1 -1 -1
SO=TIS, T AI (AL} AT (A2 A Al (r.16)

A.5 Boundary conditions

The boundary conditions of the problem are: 1) No shear stagghe top of the
topmost layerp? = 0, and 2) An earthquake-induced displacement at the bottom of
the bottommost layer//! = U,.. The boundary conditions are introduced in (A.16)
which yields the equation

Un

Uy’
P] 1
n

10 10
Iy Ty
0

= |10 10
Ly T

(A.17)

Solving (A.17), the displacement at the top of the topmogti@an be found directly
as a function of the earthquake induced displacement.

10 10 T1120 2110 10 17 10 _ 410 T1120 T21{)
U =Tl - =15 U,=HYT, — HY=T}- 2 (A.18)
22 22

where the frequency response functidlp has been introduced. This may be com-
puted for each harmonic wave component in the earthqualkéramecording to (A.6).
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Solution for inner interfaces

A.6 Solution for inner interfaces

If the deformations and stresses in the interfaces betvegend is of interest, they can
be computed easily by a generalization of the transfer matyi For the top of the
ji IayerT{,0 can be defined analogous to (A.16) on the preceding page:

. . . . e : -1 _
si'=misl, o =al (Al A Al A Al (A9)

The stress amplitude can be found from (A.17):
0,13

0=0,T)0+P' 1)) = P}l = - 0 (A.20)
22

Hence, the displacements and stresses gathe&?,ﬁ gan be determined from known
values: o o
lelo le20
T21 T22

j0
uU;,

0
P}

s/0 = = (A.21)

Uy
pl

where the deformation at the top of tfi&layer, analogous to (A.18), can be expressed
explicitly as

JO 110
Ti, Ty,

(A.22)

22
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APPENDIX

DERIVATION OF THE FINITE ELEMENT
METHOD FOR WAVE PROPAGATION

In this appendix, the finite element method (FEM) for the frexacy response in a stra-
tum is derived. The method and its application is outline8éction 6.3. The method
has been implemented ildATLAB program, which is enclosed on the attached DVD.

This application of the FEM is performed in the frequency dam This differs from
the application of the FEM in the Winkler model, cf. Chaptem®ich is performed
in the time domain.

Inthe FEM, a system of matrices is established and solvee d@mping of the system
is, as stated in Section 6.3, applied as hysteretic dampinigh enters in the stiffness
matrix K. Thus, the equation of motion in the frequency domain is

(K- w?*M)U =F (B.2)

whereK andM are the stiffness and mass matrix, respectivBlgndF are the dis-
placement and load vector, respectively, and the circular frequency.

B.1 Geometry and topology

The general geometry of the problem is sketched in Figur@.@age 44. The geo-
metry is discretized with finite elements. Each soil layadigcretized into a chosen
number of soil elements, as it is depicted in Figure B.1 onrtbet page. As it is
sketched in this figure, only the vertical coordinatedetermines the node position.
The displacement in the nodes are measured on a horizootalicate.

The soil elements are connected in nodes, and both the elemed the nodes are
numbered ascending with tkeecoordinate. In each layer, the soil parameters and the
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Appendix B. Derivation of the finite element method for wave propagation

element sizes are identical, which entails that the elermextitices in each layer also
are identical.

-« Node 1 Surface

Element 1 BB Node 2 z
s Node 3
5 Node 4

)
Layer 1 Elemeiss B Node 5

& Node 6
Element 3 \_:\'—’ Node 7

Layer interface
Element 4 {3— Node 8

Layer 2 e Node 9

Element 5 ({5— Node 10
i Node 11

Layer interface

Layer 3 Element 6 (3— Node 12

Figure B.1: Sketch of geometry and topology for the FEM.

B.2 Element matrices

The element matrices for the soil elements are establisheldeobasis of the chosen
shape functions of the elements. As stated in Section 6t3slchosen to use second-
order elements for the analysis. The second-order shapgdna require a node in the
middle of the element, as it is shown in Figure B.1. The shapetfons are depicted
in Figure 6.5 on page 46.

B.2.1 Stiffness matrix

On the basis of the given shape functions, and taken thegshykthe problem (shear-
ing of a soil column with shear stiffnessand depthl.) into consideration, the stiff-
ness matrix for a soil element may be formulated as

G 7 -8 1
Ke = 3—[ -8 16 -8 (BZ)
‘11 -8 7

(Felippa 2004, p32-11), where it should be remembered@hatmodified to model
hysteretic damping.
B.2.2 Mass matrix

The mass matrix may be obtained in a number of ways, since act selution to
model a continuum distributed mass does not exist. The magsxrhas been com-
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Solution of the system

bined of two ways of treating the masslumpedmass matrix and aonsisteninass
matrix.

The lumped mass matrix, (B.3), is a simple diagonal matrixiclv models the mass
as if it where lumped entirely at the nodes of the soil elemdite division of the
mass in portions of/6, 1/6 and2/3 are obtained according to Simpson’s rule.

pl !
Memp=—10 (B.3)
0

e
6

S &~ O
-0 O

(Felippa 2004, p31-8)

The consistent mass matrix, (B.5) should in fact be calledstiffnessconsistent
mass matrix, since it is constructed by using the same shapidns, depicted in
Figure 6.5, as used for the construction of the stiffnessirmat

The consistent mass matrix is calculated as
L
Me,cons = ](; NT(x) p(x)N(x) dx (B.4)

(Nielsen 2004, p153), whei€is the shape function matriy, is the distributed mass,
andL is the element length. For the second-order soil elemesiyiblds

N EREE
Me cons = % 2 16 2 (B.5)
-1 2 4

(Felippa 2004, p31-8)

The goodness of the mass matrix chosen can be quantifiednms w&frits ability to
preserve linear and angular momentum, and by modellingiipesive behaviour of
a continuum. It can be shown that the better combinationeftimped and consistent
mass matrices is a simple linear combination,

_ Me,cons + Me,lmp

M, = . (B.6)

(Felippa 2004, p31-5) (Krenk 2001)

The element matrices, the stiffness as well as the masscestare assembled to the
global system matrices according to the topology.

B.3 Solution of the system

The solution of the system, (B.1), now follows easily. Faritl, a 'dynamic stiffness’
is introduced as
Kgyn = K- oM (B.7)

The earthquake enters into the system through forced displantsy; = i, at bedrock.
J is the total number of nodes. The force vectogonsists of zeroes. To account for
this, the system is rewritten, similar to what has been sdaweSection C.3, where
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further details can be found. The dynamic stiffness matrixdivided into four sub-
matrices

1---(J-D J
Kayn11 | Kayni2] -
Kgyn = < (B.8)
leyn,Zl ‘ Kdyn,22J -
and the solution to the system, the unknown displacen@ntfollows as
U =Kayn,11 (F—Kayn,12 ﬁ)_l (B.9)
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APPENDIX

ENHANCEMENTS TO FE WINKLER MODEL

The Winkler model, described in Chapter 8, has been cod&tiarLAB on the basis
of an existing linear FE program for static analysis, by Sailret al. (2007). The
program has been altered, so that a dynamic analysis witkdadisplacements can
be carried out. In this appendix, the necessary enhancsrttetite existing program
are described. What already was part of the progegithe global matrix assembler
and the element stiffness matrix for a beam element, is rsufrieed.

Equations of motion
The basic set of equations which has to be solved is the géshaltion of motion

Mii(¢) + Cu(¢) + Ku() = £(2) (C.2)

whereu signifies the displacement vector for the degrees of freeddmthe load
vector,M, C andK is the mass, damping and stiffness matrices, respectiaaly,
where a dot’) signifies differentiation with respect to time.

C.1 Damping and mass matrices

The damping,C, and massM, matrices are generated for each finite element and
assembled to the global matrices according to the topolodgie same way as the
element stiffness matrices.

Since the analysis is performed in the time domain, viscampng is applied cf.
Section 5.3.4. Hence, the damping matrix is calculated bye of (5.5)

Ce = PKe (C.2)

where the damping coefficiefitis given by (5.10) on page 31.
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Appendix C. Enhancements to FE Winkler model

The soil springs and the gaskets are modelled as masslesgefdie, their element
mass matrices are 12x12 zero-matrices. For the tunnel biegneets, the consistent
element mass matrix(e cons, Can be calculated from the shape functions, similar to
what has been done in Section B.2.2 with the help of (B.4).cOmsistent mass matrix
ends up to

100 o 0 0 0 % 0 0 0 0 0
13 11L 9 —13L
A L
0o 0o £ o FHFE o 0 0o F 0 B0
0 0 0 5 0 0 0 0 0 & 0 0
-11L L2 —13L -2
0 1(1)L 50 0 105 2)2 0 SL 20 O Tao (22
1 —
Myo=pr| @ 20 0 0 0 g 0 G 0 0 0 g5
econs i 2 o 0 0 0 1 0O 0 0 0 0
9 13L 13 —11L
0 0 % o0 B 0o o o ¥ o I o
0 0 0o § 0 0 0 0 0 3 0 0
13L -2 111 L2
A L AU S
0 T 0 0 0 ) 0 0 0 105

The lumped mass matriMe 1mp, is calculated by the “row-sum” method, where the
lumped mass matrix is formed by adding the off-diagonaliestin each row of the
consistent matrix to the diagonal entry, according to Ziewicz & Taylor (1989)

I
Mg imp = 1L diag [ 12 +l420 (C.3)
2

The lumped and consistent matrices are combined with (Bi®ege 137.

C.2 Time integration

The numerical integration of the equations of motion, (dslperformed with a New-
mark family algorithm. This family of algorithms is widelysed in structural dy-
namics. To ensure unconditional stability, the Crank-Mioo algorithm, which is a
special case of the Newmark algorithm with the Newmark patars(g,y) = (%, %),
has been employed. The time stepAis= 0.01s as for the continuum model cf.
Section 9.1.4. The Newmark family of algorithms has beenudwnted by e.g.
Nielsen (2007).
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Forced displacements

C.3 Forced displacements

Since the earthquake does not influence the system throtgimakioads, but through
forced displacements as described in Section 4.4, thedanabe load vectof(t) are
unknown at the degrees of freedom with forced displacemenstead, the forced
displacements are introduced into the set of equations,rdwriting (C.1) to

K1 KIZ] [ull [Cn Clzl [flll My, Mlzl [ﬁll [i’l]
— + B + o = C.4
[Km Ko | (02 Co1 Cp2 (2 My My |u fo (.4

where a bar") denotes a prescribed values. the known forced displacements, and
the known forces in the degrees of freedom without presdriigplacements. All of
these forces is zero in the present case.

The equations of (C.4) with prescribed forces can now beit@nrto

Kijjug + Gy + My = (1’1 — K20z — Crolip — M) (C.5)
Ka+Ca+Mu=f (C.6)

where tilde(") denotes reduced vectors and matrices, the definition ofwstiould
be clear from the rewriting of (C.5) to (C.6). The similariigtween (C.6) and the
basic equation of motion (C.1) should be noted. This formasilg implemented into
standard Newmark schemes.

C.4 Spring elements

Two new elements are introduced in the program: the soihgpeiement and the
gasket element. Both are built on the basis of the threesiina beam element,
simply by editing the generated element matrices. The alematrices of the beam
element are 12x12 matrices, since the beam element coofiktge translational and
three rotational degrees of freedom in each beam end. Tifirees8 matrix for the
spring element is changed to a new 12x12 matrix, with thengsiiffnesst in entries
1 and 7. Thus, only the axial translational degrees of freedmvide any stiffness.

kK 0 -+ 0 -k
0 0 0
Ke,spring = 0 . 0 0 () (C7)
-k 0 0 &k
(5x7) (5x5) 1

Similarly, the gasket element is constructed from the betement stiffness ma-
trix. Since the shearing stiffness enters, uncoupled witierodegrees of freedom,
the 12x12 matrix is constructed with the longitudinal sprstiffnessk; in entries 1
and 7, and the shear spring stiffndgsn entries 2, 3, 8 and 9. Thus, all translational
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degrees of freedom in the two element ends are coupled.
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Ke,spring =
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APPENDIX

CROSS SECTION DATA

In this appendix, the data for the cross section of the imetktgnnel is outlined. The
data is used throughout the thesig, in the Winkler model.

A typical cross section is presented in Figure 5.2 on pageF28the present thesis,
some simplifications of the geometry of the tunnel has beestrem@he cross section
used in the thesis is presented in Figure D.1.

600 % \ 1100
%4 A~

o o I I
ZL
==

y

1500 14800

34500
Figure D.1: Definition sketch of typical cross section of the tunnel. The dotted line artha

perimeter shows the location of the Gina gasket. The section is both hofizonta
and vertical symmetric about the centre of gravity. All measures in niter A
COWI (2007).
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Appendix D. Cross section data

D.1 Length of gasket

Around the perimeter of the cross section, the Gina gasket#ded. The total length
Lgasker Of the gasket is
Lgasket =84.4m

D.2 Area

The full areaAg,; and the solid area,iq of the cross section of the tunnel can be
calculated according to Figure D.1 to

A = 300.2m?
Asolig = 111.6m?

D.3 Second moment of area

The second moments of area around the centre of gravity bndaizd as

Iyy=15(345m-(8.7m)° -2-14.8m- (6.1m)° — 1.5m- (5.3m)°)
=1315m*
I;=%(8.7m-(34.5m)* -5.3m- (1.5m)°)
-2(4-6.1m-(14.8m)* + (8.75m)*-6.1m- 14.8m)
=12650m*
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APPENDIX

ROTATION MATRICES

To obtain results from the Winkler model, it is needed to t@t vector in space, as
itis described in Section 8.4.2. The rotation is obtaineithwansformation matrices.
The notation follows Figure 8.13 on page 65.

The direction vecto® is transformed into the rotated direction veckys; by multi-
plication with the transformation matric&s, R, andR,.

Prot=R;-R,-Ry- P (E.1)

It should be noted that the order of the matrix multiplicatan (E.1) in principle is
nottrivial. In general, it matters, which rotation is appliesfj but in the present case
the rotations are very small. In practical use, this makesottder of multiplication
unimportant.

The rotation matrices are teyg.Goldstein (1980, pp146-147) given as:

'cos(Hz) —sin(0;) 0]
R, sin(@;) cos@@;) O (E.2)
0 0 1‘
[ cos(@,) 0 sin(0,)
R, 0 1 0 (E.3)
L—sin(Oy) 0 cos(8y)
1 0 0
R, 0 cos(@y) —sin(@y) (E.4)
10 sin(@y) cos(fy) ]
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