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Abstract

This report investigates the application of texture flow for direct estimation of local

three-dimensional structure of a rigid textured surface moving relative to a fixed per-

spective camera. Texture flow is defined here as a spatiotemporal gradient, based on

the estimation of local image texture densities and its derivatives. A major part of

the work deals primarily with computational experiments. A simulation framework

was developed for exact simulation of local surface and image texture density. An

experimental setup was also built and experimentation with a digital camera and a

movable textured surface was attempted.

The conclusion is two-fold: (1) In the computational experiments, it was indeed found

possible to directly estimate local surface orientation and depth using the estimated

texture flow derivatives. Sometimes also for velocities (ego-motion). (2) The camera

experiments need further work. The estimation of texture density in real digital im-

ages is difficult and the methods chosen for texel segmentation showed to be highly

sensitive to the lighting conditions.
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Preface

This report is my Master’s Thesis. It deals with a specific problem within the gen-
eral area of 3D computer vision. This problem seeks to estimate three-dimensional
shape and structure using the “texture density” in two-dimensional digital image se-
quences.

A project website has been created to support this written report:

http://hardbytes.web.surftown.dk/textureflow/

The projects present a new method for estimating surface shape using monocular
view only – known in the report as the “primary method”1. The primary method is
a combination of methods from shape from texture and structure from motion. The
report is written toward students and scientists at my own level of education and
experience.

With an emphasis on texture and texture density, the project investigates the primary
method by applying two kinds of experimentation: 1) synthetic computational exper-
iments, and 2) non-synthetic camera experiments.

Overview

The report consists of a total of five chapters. Each chapter has its own primary area
of focus.

Chapter 1 is an introduction to the problem area and the primary method. The no-
tions of texture and texture density are introduced and discussed. The chapter
also takes a look at some previous work in the area of shape from texture.

Chapter 2 takes a detailed look at the the primary method. It introduces and derives
the basic formalisms behind it and discusses shortly, how one is supposed to
make sense of it all. A short chapter which primary agenda is is to prepare the
reader for the next two chapters.

1Other names would be suitable in more general settings; for instance, “the texture density method”
or “the texture flow method” etc.

xxi
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Preface

Chapter 3 focuses on much of the work carried out in relevance to the computa-
tional experiments. It introduces the structure and data flow of a mathematical
framework built using the Mathematica computer algebra system. The concept
of abstract texture density is also introduced. At the end the chapter presents
the actual results from the experiments.

Chapter 4 presents the methods applied in the camera experiments. The exper-
imental setup built for the camera experiments is introduced and challenges
faced in the texture analysis of real digital images are also discussed. A possible
method for estimating image texture density in synthetic texture is presented.

Chapter 5 This chapter concludes the report and summarizes the major results
achieved in this work. Some final remarks are made on the possible limitations
of the primary method.
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1. Introduction

This chapter is a gentle introduction into the problem area of this report. Section
1.1 takes a look at the problem at hand and introduces new method for estimating
3D structure from a 2D image sequence. Section 1.2 introduces some fundamental
concepts and cites some related previous work from the computer vision literature –
both classic and modern. Section 1.3 describes the formal project methodology, it
argues how experimentation is used and presents the goals for the project.

1.1. Subject and Motivation

It seems remarkable how easy it can be to navigate in a public building where you
have never set foot before. You know by experience that most public buildings are
equipped with some type of navigation-aid in the form of signs. Finding room A332
is not really a problem if a map is available in the lobby and corridors and rooms are
marked accordingly. Of course you can make mistakes, you can have a bad day, or
the signs can be wrong. But generally humans are good at quickly interpreting and
understanding a new unknown environment.

The ability of humans beings to quickly interpret, understand, and use their immedi-
ate environment is a very sophisticated and highly useful “active sensing” ability. This
ability is made possible by many different senses of the human body, for instance,
vision, hearing, smell, touch, locomotion and also memory. Human vision is especially
important in this context since this is the sense which makes visual perception possi-
ble. An automated system, say a robot, would be quite useful could it mimic visual
perception – and thus the goal becomes automated visual perception, also known as
computational vision, which is the general topic of this report.

A functional automated visual perception system would very useful for many situa-
tions where decisions can be made on the basis of visual inspection. A simple example
is visual inspection of products on a conveyor belt in a factory. In such an industrial
setting one has a chance to control many aspects of the visual scene, even down to
the lighting. Automated industrial visual inspection is thus perhaps a more realistic
goal (though not a trivial one) and some solutions already exist today.

Another example is automated navigation where the ability to automatically construct
a 3D model of the surroundings becomes very important. This problem is considerably
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1. Introduction

more complex than inspection in a controlled setting. In the last few years though,
many advances have been made and the research have matured, even to the point of
commercialization. Today it seem possible that autonomous vehicles could be part of
the near future.

In a way they already are. The DARPA1 Urban Challenge 2007 took place in November
2007 at a closed air force base in California, United States. It was a professional
autonomous vehicle contest among eleven teams. The goal was to finish a 96 kilometer
long urban area course, using nothing but on board visual and/or range sensors, and
real time computer processing of the surrounding environment.

The 2 million dollar prize winner was the Tartan Racing team from the Carnegie Mel-
lon University, Pennsylvania, United States. Their vehicle, the “Boss”, were able to,
fully autonomously, complete the full course in a little over 4 hours at an average
speed of 23 km/h [22]. This is just one example of what could be considered the
“peak” of current research in computer vision. Traffic safety is a concern which car
manufacturing companies hope can be improved by equipping cars with “smart” capa-
bilities. On board computer systems might be able to react faster than humans when
needed, or, if necessary, be able to drive the car if the driver, for instance, suddenly
looses consciousness.

The overall goal of this report is not to address any specific end usage. Instead it deals
with solving a specific computer scientific problem which is crucial to the implemen-
tation of automated visual perception systems. This report presents a new method
for solving the problem of deriving, from a 2D image sequence, the 3D structure of
surfaces of 3D objects within the imaged scene. Such information are cues believed
to be crucial to humans for correct interpretation of 3D space. The formalisms behind
this primary method were originally published by Arnspang [2] in 1991. Since then,
many sophisticated and useful methods for estimating 3D world structure from 2D
images such as velocities and shape, have appeared.

The primary method is yet another method for doing just that, but the main formalism
behind it, a geometric relationship between image and surface texture densities, seems
to have been overlooked in work published since then. What Arnspang showed in
1991, and what the results of this report show, is that texture density has the potential
for being a useful texture gradient. Extracting this gradient is not easy though and
Section 1.2 will have more to say about this.

Chapter 3 and 4 will each introduce, explain, and present results from computational
and real camera experiments of moving textures. The goal with such experiments is
to see whether or not the primary method is useful or not, and where further work
should be focused.

1Defense Advanced Research Projects Agency.
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1.1.1. The Problem

At least two areas of research are directly related to the primary method: Structure
from motion and shape from texture. Structure from motion seeks to estimate 3D
structure including surface-shape but also translational velocities and the rotational
velocity of 3D points, lines, curves, and/or entire surfaces. To say anything about
velocity the concept of motion is necessary and thus a sequence of digital images is
needed. The sampling interval of the sequence should generally be short enough,
such that the apparent movement of objects cover the span of only a few pixels in
each frame.

The problem of shape from texture is very much related to structure from motion and
it is natural to combine methods from both problems. But there are also some major
differences. Shape from texture seeks to determine only surface shape (no velocities)
relying only on a single image (as opposed to an image sequence) of a static 3D scene
which includes one or more textured surfaces.

The basic idea behind shape from texture, is to take advantage of the visual distortion
in the geometry of the texture when observed in a perspective image. This particular
form of distortion is also known as projective distortion. Given that the distortion
in the image of the texture is due to actual perspective projection, i.e. that some
projective distortion is not mimicked by the texture itself (or even canceled), it can
be assumed that the variation of distortion, the concept of a texture gradient, is what
provides direct information about the shape of the underlying textured surface.

Texture is a complex concept not easily defined. In this context “texture” is informally
defined to be some kind of visual pattern that lies on the surface of some object.
This pattern is said to consist of smaller texture elements or “texels”. A more formal
definition would distinguish between surface texture and image texture (this definition
will be formally introduced in Section 1.2). A surface texture is the texture on the
surface – with no distortion. The image texture is the image of the surface texture
with projective distortion.

Figure 1.1 2 shows a textured surface, or perhaps just a surface texture with some form
of distortion. How to know? The important fact remains: We humans perceptually
recognize that the image texture seems to be “painted” on an underlying smoothly
curved surface. A question also remains: How are we able to interpret shape from
distortions of texture elements? In this case the only elements are black circles. What
cues do the human brain extract from Figure 1.1 and how does it process these cues
and gain the sensation of an underlying surface?

Such questions are very often discussed, not only in a purely computer scientific set-
ting, but also within the fields of experimental psychology – in particular the field of
psychophysics. The work by Gibson [6] is probably the earliest work which argues

2Reprinted from [19], with permission from Elsevier Limited.
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Figure 1.1.: A texture with distortion which gives the perception of a smooth curved
surface.

that perception of space is comparable to the perception of visual surfaces. He also
argued that the sensation of space (or shape) are due to the impressions3 of surface
and edge.

Gibson believed that humans visually senses shape and space due to an automatic
“reading” of the variations of texture, when seen from different angles. The measures
of variation, though usally only formally defined, are generally known as texture gra-
dients. One definition of a texture gradient is the texture density, which is also used
in the primary method. Texture density is (informally) defined as the number of
texels per surface area. Again, according to Gibson, texture density is an important
visual cue for perception of depth. The concept of texture and texture density will be
revisited in Section 1.2.

1.1.2. A Solution

A more detailed explanation of the primary method will be postponed until Chapter
2. Instead this chapter will introduce the basic fundamentals and assumptions used
in it. Section 1.2 will elaborate on the concepts of texture, texture density, and shape
from texture as well as refer to some important previous work.

3Psychological concepts such as “sensation” and “impressions” shall remain undefined here.
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Figure 1.2.: A simple model of perspective projection – the pinhole camera-model.

The primary method is defined using a simple model of perspective projection – the
pinhole camera model. Figure 1.2 shows this model in three dimensions. This model
simplifies the relationships between world coordinates (on the surface) and image co-
ordinates (on the image plane). Two coordinate systems are used: A camera reference
(X , Y, Z)-system (with origin in O = [0, 0,0]T ) and an image reference (x , y)-system
(with origin in o = [0,0]T ). Coordinates of the image reference system can always
be represented relative to O by setting the third Z-component to f , the focal length of
the camera (for instance o= [0,0, f ]T ).

The pinhole camera-model (or pinhole-model) offers a simplified look at the physical
image acquisition process. It only contains the geometrical aspects of image formation
– which is why it is sometimes known as geometric image formation.

A simple geometric relationship between coordinates in the camera reference system
and the image reference system is derived using the concept of similar triangles:

f X + x Z = 0, f Y + yZ = 0 (1.1)

which leads to the relations

x =− f
X

Z
, y =− f

Y

Z
(1.2)
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To just partially explain the physical process of image formation, concepts from ra-
diometry are needed. Radiometry is the essential part of image formation concerned
with the relation among the amounts of light energy emitted form light sources, re-
flected from surfaces, and registered by sensors (for instance a CCD sensor in a digital
camera).

In the pinhole-model, rays of light are represented as lines in space and there is
no concept of light energy involved (all light goes through a very small hole – a
pinhole). To incorporate such physical quantities, one can use the simplest model of
optical image formation, known as the thin lens model. Two important concepts from
radiometry used in the thin lens model, are the image irradiance and scene radiance.
Image irradiance is the power of the light, per unit area and at each point p of the
image plane. The scene radiance is the power of the light, per unit area, emitted by
each point P on the surface (see, for instance, Trucco and Verri [20]).

The pinhole-model, as it is used in the current context, actually incorporates some
of these concepts. Two small unit areas, dS and dI , are shown in Figure 1.2 on the
surface and the image plane, respectively. The idea comes from radiometry where
both scene radiance and image irradiance are localized to unit area dS and dI , re-
spectively. These unit areas are considered locally planar and they have a normal
vector N = [−P,−Q, 1]T . P and Q are gradient space components and they define the
orientation of the local plane of each surface point P (or the entire surface should it
be a plane).

The primary method takes advantage of a fundamental geometric relationship be-
tween these two unit areas. This relationship is the ratio dS/dI and it can be derived
using the concept of solid angles i.e. angles in three dimensions (Chapter 2 shows the
full derivation).

Figure 1.3 shows another view of the pinhole-model with some more detail. The
symbol Ω defines the angle between the normal vector and the line-of-sight4 and
β is the angle between the line-of-sight and the optical axis5. By using these two
fundamental angles, the following ratio between dS and dI can be defined:

dI cosβ
�

f
cosβ

�2 =
dS cosΩ
�

Z
cosβ

�2 ⇔
dS

dI
=

cosβ

cosΩ

�

Z

f

�2

As mentioned earlier, the primary method is based on a relationship between surface
and image texture densities. Surface texture density µS ∈ R is the number εS ∈ N of
texels on the surface per area dS: µS = εS/dS. Image texture density µI ∈ R is the
number εI ∈ N of texels in the image per area dI : µI = εI/dI .

4The line between P and p.
5The Z-axis.
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Figure 1.3.: Some important sizes and angles needed in the definition of the primary
method.

A fundamental assumption about texture densities is made in the primary method
(and also in other methods). If a point P in a locally planar area dS on surface Φ
projects to a point p in a locally planar area dI on image plane Γ, one can assume
that the two texel cardinalities εS and εI are equal: εS = εI = σ.

It is not hard to imagine circumstances where this assumption could be wrong, due
to focusing errors, errors in the digital image acquisition, or simply dirt on the front
lens. But the assumption does make sense in general. If the focus is correct and the
texels themselves are visible and distinguishable in the image and on the surface it is
a viable assumption.

Based on this assumption, it is now possible to formulate a relation between texture
densities:

σ

dI
=
σ

dS

dS

dI
⇔ µI = µS

dS

dI
= µS

Z2

f

p

P2+Q2+ 1

P x +Q y + f
(1.3)
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Equation 1.3 is derived using dot vector products in the pinhole model geometry.
Related to this equation is also the Image Irradiance Equation: E = kL, where E is
image irradiance, L is surface radiance, and k is a constant which depends only on
current camera parameters (see Horn [8] Chapter 10). One motivation behind the
primary method was to derive an equation which relates texture densities µS and µI

instead of photometric densities E and L. Equation 1.3 is such a relation and it is
known as the “Texture Density Equation”. Importantly, this texture density equation
contains P, Q, and Z; none of which are directly6 present in the image irradiance
equation.

It is possible to be a bit more formal about the texture densities which in fact are
functions. Equation 1.3 can be rewritten as a relation between functions:

dS

dI
=
µI(x(t), y(t), t)
µS(m, n)

= τ(x , y, P,Q, Z) =
Z2

f

p

P2+Q2+ 1

P x +Q y + f
(1.4)

Here m and n are surface coordinates, which means that they define locations on a
surface, regardless of the orientation of the surface itself. It makes sense to define the
surface texture density to be a function µS : R2 7→ R.

Note that µS is independent of time t. This is an important fact, and it does limit the
range of situations with moving surfaces. For instance, the rotational velocities P ′ and
Q′ are 0. Such details are revisited later in Chapter 2.

In the computational experiments in chapter 3 things have been simplified such that
(m, n) ∈ Z2 and µS : Z2 7→ R. The function τ(x , y, P,Q, Z) is also important and
chapter 2 will have more to say about it.

Figure 1.4.: An optical C(x) = {x(t), y(t), t} curve in space.

6It is possible to introduce a reflectance model: E = kπR(P,Q). But the image irradiance equation is
not directly “born” with 3d structure variables present.
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The primary method combines the cues from both texture and motion. As seen in
Figure 1.3 a surface point P has a velocity vector vP = [U , V, W]T . Figure 1.4 shows
a curve C(x) = {x(t), y(t), t} in space. It represents the “image” of a single surface
“patch” over time. If an object moves over the span of a few images, it is fair to
assume that groups of pixels (surface patches) with the same color moves with the
object. The optical curve C follows such a surface patch trough (x , y, t)-space. The
idea is also shown to the left in Figure 1.4 where four images at time t from 0 to 3
depict the movement of a group of black pixels.

By taking the total time derivative of the image texture density µI(x(t), y(t), t) along
the optical curve C , using the texture density equation, it is possible to formulate
nonlinear constraint equations which includes the variables for translational veloci-
ties (U ,V ,W ), rotational velocities (P ′,Q′), surface orientation (P,Q), and depth Z
(such equations are called “Texture Flow Equations”). Extraction of 3D structure us-
ing the primary method boils down to at least three subproblems which poses some
fundamental algorithmic challenges: 1) Counting texels, 2) estimating derivatives in
(x , y, t)-space and 3) solving the constraint equations. Chapter 3 and 4 will each have
more say about how such challenges were attempted solved.

The concept of texture density and its time derivative along a space curve is very
much related to optical flow and the problem of estimating it. Just as optical flow is a
2d vector field defining the velocity of image intensities, the primary method seeks to
determine “velocities” of image texture densities - a 3d vector field. One major differ-
ence is that optical flow is not directly born with an analytical relationship between
image and surface densities and what comes closest is the very general image irradi-
ance equation mentioned earlier (E = kL). On the other hand the primary method is
explicitly born with an analytical counterpart: The texture density equation (Equation
1.3).

Due to such similarities with the optical flow; Arnspang referred to the current method
of determining spatiotemporal texture density measurements as “Texture Flow”. In the
meantime though, that exact term has received an entirely different meaning in more
recent literature. Subsection 1.2.1 will have more to say about this new definition of
texture flow.

This section took an introductory look at the problem and a proposed solution. The
next section will present a short look at of some of the related fundamentals and some
previous work.

1.2. Some Fundamentals and Previous Work

This section will introduce the reader to some fundamental concepts and while doing
that, some previous work will be cited and some of it, if relevant, will be discussed

9
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shortly. The concept of texture and texture density has not been explained to any full
extent yet. Subsection 1.2.1 and 1.2.2 will do just that.

After this, Subsection 1.2.3 will take a brief look at shape from texture and cite some
important previous work. Important in this context is more modern research related
to shape from texture in general. A good example is the promising work by Loh
[12].

1.2.1. Texture

It seems that is has been difficult to define the concept of optical texture in any general
way. Though many have tried, it usually is enough to define texture in the context it
is used. Texture is abundant in nature and they generally seem to consist of smaller
elements, texture elements, or texels. These texels are seemingly repeated in a some
form of structural pattern which is not always possible to define in any general way.

Bricks Camouflage Fabric Fur Grass

Leaves Pebbles Tyre Water Wood

Figure 1.5.: Some examples of natural and man-made textures.

The images in Figure 1.5 represents some examples of texture; both natural texture
(fur, grass, leaves, pebbles, water, wood) and artificial texture (bricks, camouflage,
tyre) are shown. The difference between the two is seen in the way the texels are
repeated. Natural textures are generally random, whereas artificial textures are often
deterministic or periodic.

The field of texture analysis deals primarily with recognizing/classifying textured im-
age regions using various measures of texture description. When seeking to extract
certain information about a texture, at least three principle approaches can be used:
Statistical, structural, and spectral. Any such measures of texture contents will be
introduced in later chapters when and if applicable.

It seems crucial to find a useful definition of texture. Tuceryan and Jain [21] makes a
compelling argument on the difficulty that exists in defining texture. They also come
with a few examples on texture definitions created by various researchers. Generally

10



1.2. Some Fundamentals and Previous Work

such definition incorporate various discriptors such as smoothness, coarseness, and
regularity.

One useful definition of texture (and texels) could be the following definition (bor-
rowed from Trucco and Verri [20]):

Texture and texel : A surface texture is created by the regular repetition of an ele-
ment or pattern, called surface texel, on a surface. An image texture is the image
of a surface texture, itself a repetition of image texels, the shape of which is dis-
torted by the projection across the image. The idea of distinguishing between a
surface and an in image texture was mentioned shortly in Subsection 1.1.1.

Such concepts need further explanation:

Surface texture : A surface texture exists only on a surface and it’s most conformal
view is when the surface is a plane. In this work a surface texture is not self-
occluding which in the simplest case means that no texel cover parts of other
texels. Each texel is perfectly visible and adjacent to other texels. This simplify-
ing assumption makes the computational and camera experiments easier.

Image texture : Even if the surface texture is not self-occluding, the physical fea-
tures of the surface could have that effect that texels seen in the image, are
partially or fully occluded by other texels. This can be avoided in the experi-
ments by limiting the surfaces to planes.

A crucial part of what we call texture is the apparent continuation of a spatial pattern
in nature: The cats fur, a zebra’s stripes, the leaves on a tree; all extremely difficult to
quantify. In more recent research this visual phenomenon has become known as tex-
ture flow. This more modern concept of texture flow is very important to problems like
texture description, segmentation, and synthesis (creation of artificial textures).

Though methods from these areas are of considerable importance to the extraction of
information from texture, this new definition of texture flow seems to be very different
from the definitions of the same term “texture flow”, used in the primary method,
as mentioned in Subsection 1.1.2. Though this is not attempt of an etymological
discussion it seems prudent to take a look at the new use of texture flow.

The work by Ben-Shahar et al. [3] describe texture flow as a two-dimensional struc-
ture:

Informally, texture flows are defined by their orientation content – a dense
visual percept characterized by local parallelism and slowly varying dom-
inant local orientation (almost everywhere). This class of patterns is com-
mon in both natural and man-made objects and, for centuries, it’s been
used by artists as a tool to convey both the shape and shading of smoothly
varying surfaces and their discontinuities [3].

11
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Ben-Shahar et al. formally define texture flow as an orientation function or a vector
field, among others. In any case the work represent one way to mathematically ad-
dress the complexity of texture flow, and it focuses on two main phenomenons: local
parallelism and slowly varying dominant local orientation. In another related work,
Tai et al. [18] are successful in estimating the texture flow, and as an example they
synthesize a zebra’s stripes in a natural image. Tai et al. define texture flow infor-
mally:

Texture flow estimation is often targeted towards images of textured 3D
surfaces in natural scene, where texture flow arises due to the geomet-
ric variation of non-planar surfaces or imaging under perspective. It is
assumed that the underlying texture has some repeating structure that is
varying in the image (i.e. distorted) in terms of scale and orientation. We
called this distortion texture flow [18].

These informal descriptions lead to 2d vector field representations of texture flow,
which are then used to either describe or synthesize textures, or both. The original
meaning, as presented by Arnspang [2] is very different. Just as optical flow is a
2d vector field, the texture flow is a 3d vector field representing, for each (x , y, t)-
point p, the gradient ∇(µI) = [

∂ µI

∂ x
, ∂ µI

∂ y
, ∂ µI

∂ t
]T . This does not correspond with the

new understanding of texture flow, and it is only fair that this report use the original
definition of texture flow as applied in the primary method.

1.2.2. Texture Density

As mentioned earlier, Gibson argued that the perception of space, i.e. scene depth,
was due to a increase of the density in texture elements. This concept has been used,
for instance, in paintings for many years and thus it was a well known fact before
Gibson wrote about it in the 1950’s.

Figure 1.6 shows the the painting “Paris Street; Rainy Day” from 1877, painted by
French impressionist painter Gustave Caillebotte (1848-1894). This is an example
of the use of perspective concepts such as foreshortening and scaling in paintings.
Objects in the foreground are slightly out of focus. In the mid-distance objects are
sharpest (the carriage and some pedestrians) while object far away are painted very
indistinct. This is also a good example on the use of texture density for the depiction
of natural scenes.

What Gibson [7, 6] suggested, other than already mentioned, was that texels are
uniformly distributed, in the sense that each unit area on a surface in the world con-
tains close to the same number of texels. Such an assumption does not seem realistic
when looking at natural texture; as mentioned earlier the texture density has a gra-
dient. Gibson, also aware of this, proposed that humans perceive the orientation of
naturally textured surfaces from a combination of concepts of sameness and difference
which correspond to uniform density and the gradient of texture, respectively. When
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Figure 1.6.: 1877 painting “Paris Street; Rainy Day” by Gustave Caillebotte. The paint-
ing shows a scene from Paris in late 19th century (image is in the public
domain).

applying such assumptions today, it is said that one uses the “Gibsonian approach”
[1].

No depth Perceptual depth

Figure 1.7.: An example of perceptual depth. Relative to each other the two images
show how the perception of depth arises when foreshortening and scaling
is applied (see text).

The graphic to the left in Figure 1.7 shows a conformal grid with no apparent depth
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information (uniform density). The graphic to the right contains depth information
due to how the grid-boxes are smaller and thus the density per. image area has
increased. The foreshortening effect on the grid in the foreground results from the
projective distortion that the right graphic contains. This creates the illusion of a
ground plane and this can also be considered a cue for depth perception.

Perspective projection has two major effects on the resulting image. The first one is
the foreshortening effect seen in Figure 1.7. This distortion depends on the angle
between the (local) surface normal vector and the optical axis (the Z-axis). The
other distortion is scaling and it depends on the distance between the surface and the
image plane, i.e. depth. Increasing depth makes objects appear smaller. These effect
are seen in Figure 1.7 (right graphic) where the “ground plane” grid-boxes are both
foreshortened (angles between orthogonal lines are distorted) and scaled (grid-boxes
get smaller with increasing depth).

Another form of projection, orthographic, does not include the scaling distortion.
This projection is used in, for instance, technical drawings and it can be seen as the
perspective projection of points very far away, such that world points are projected
parallel to the optical axis.

But how to measure texture density? How to represent it mathematically, perhaps as
a function with domain and codomain? Kanatani and Chou [11] made and attempt
in a formal definition of texture density ρ(x , y) with delta-function-like singularities.
The value of ρ(x , y), which describes the amount of texture (σ) divided by the area it
occupies (dS), is∞ as texture elements (the exact area of 1 texture element at (x , y)
is larger than dS) and 0 at features such as dots and lines. The treatment ends up in
a rigorous mathematical definition of dot and line texture densities as functionals.

This work (the experiments in particular) will not attempt such an elaborate treat-
ment of texture density. Texture density is in its most basic form a binary image
operator. The foreground of the binary image corresponds to texels and the counting
is done purely by connected-component-analysis using either 4- or 8-connectedness7.
An even more simple approach, though perhaps naive in but the most simple synthetic
textures, would be to create histograms by counting pixels of a certain grayscale in-
tensity or color in a window.

Figure 1.8 shows an example of how texture density measures are to be interpreted.
The image to the left in Figure 1.8 is a synthetic dot texture, 256 × 256 pixels in size.
It is an image of a plane with gradient space parameters P = 1 and Q = −1, which
means that the plane is “tilted” 45◦ angle with both the X - and Y -axis. The plane
is made out of dots (441 of them) with the same distance to each other. But due to
the orientation of the plane and perspective projection, the density of the dots in the
image varies – it has a gradient.

7This can, for instance, easily be applied using the bwlabel()-function in the image processing toolkit
in Matlab.
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Synthetic dot texture Dot density plot

Figure 1.8.: Example of texture density measures on an image with dots (see text).

The right image of Figure 1.8 shows the result of applying a neighborhood operation
to a binary version of the left image. This operation counts the number of connected
components in a neighborhood of size 32 × 32 pixels, using 8-connectedness. White
corresponds to the lowest density and black the highest density, which corresponds
nicely with the left image.

1.2.3. Shape from Texture

Much have been said already about the shape from texture problem and its goals.
Most approaches deals primarily with an analysis of the image texels or assumes some
distribution of them.

Usually when dealing with texture as a source of information at least three basic
assumptions can be made about that texture: homogeneity, stationarity, and isotropy.
Homogeneity means even distribution of texels. The term refers to the location of
texels, without considering the rotation of each texel. Stationarity means that texels
differ by translation but not a rotation. Isotropy refers to the distribution of edge
segments over all orientations in each texel. An isotropic texture is a texture with
almost circular texels. An example of a highly non-isotropic texture would be a texture
with line-segments as texels.

Important classic work in shape from texture and related problems, is those by Stevens
[17, 16, 15], Witkin [23], Aloimonos [1], Kanatani and Chou [11], and Gaarding
[5, 4], among others. Examples of more modern work which shows promising results
are Loh [12], Loh and Hartley [13], and Loh and Kovesi [14].
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Witkin’s [23] and Steven’s [16] work are important when compared to the primary
method and its reliance on finding texels and counting them. Aloimonos [1] com-
ments on their findings. A general algorithm for finding and counting texels in natural
color textures, has yet to be developed.

Witkin’s [23] proposed a statistical approach without assuming spatial homogene-
ity. Isotropy was expected and he was able to estimate surface orientation using
orthographic projection. Witkin had two arguments on why not to continue with the
Gibsonian approach: 1) is was unsure whether or not the uniform density assumption
could be used as a basis for general surface structure extraction, and 2) that even if
that were possible, the method (algorithm) would need to known about the texels,
and finding texels in textures is not at all obvious.

Steven’s [16] talks about the kind of information that one can expect to extract from
texture gradients, and whether or not one is able to determine what exactly has been
extracted. He found that texture density depends on both scaling and foreshortening,
and because of this non-linear dependence he concluded that texture density is not a
good measure for computing surface orientation.

Aloimonos [1] comments on both of these two works and argues how the uniform
density assumption is useful after all. Texture density is also used and the approach
is to partially separate the foreshortening and distance effects. The uniform density
assumption is generalized to another form which is said to capture a very large subset
of natural and man-made textures. Instead of finding texels, referred to as “strong
segmentation”, he is able to use the edges of the texels (“weak segmentation”). The
work is primarily based on an approximation of perspective projection, known as
paraspective projection.

This work by Aloimonos is interesting because he is able to estimate surface orien-
tation by estimating texture density and minimizing for P and Q using a constraint
for uniform density assumption. It is important to note that the method does not
exactly find and count texels. Instead it assumes that texels edges can be detected
and that the sum of the lengths of these edges is uniformly distributed. The results
using paraspective projection are slightly more accurate than those using perspective
projection.

Fast forwarding to our time we have Loh’s work [12]. The work presents algorithms
for different scenarios. One for homogeneous and stationary texture using ortho-
graphic projection, and another algorithm which is more general and does not make
any assumptions about the texture (also published in [13]). Part of the work is spec-
tral based, i.e. is makes assumptions and extract image information by using features
from the fourier amplitude spectrum. The more general algorithm focuses on inde-
pendent texels and searches for the affine transformation between a “frontal” texel
and the rest. The results seems promising.

16



1.3. Project Methodology

This section took a look at some important fundamentals and previous work. The
next section will shortly explain how and why the experiments were carried out as
they were. The goals of the project will also be presented.

1.3. Project Methodology

It seem like a good idea to give a brief explanation on how the work was carried out
and what tools were used, though much of this will also be evident from Chapters 3
and 4.

The main goal of this project is to investigate whether or not the formalisms presented
by Arnspang [2] can be used for the purpose for which they were published in 1991.
More explicit goals are specified within the problem domains of the two kinds of
experiments.

This project applies two methods of experimentation: 1) Computational experiments
and 2) camera experiments. It turned out, as the project progressed, that the ma-
jority of the time (close to 80%) used, had been spent on designing, testing, and
debugging the computational experiments. These experiments were carried out using
Wolfram’s Mathematica 6 – an advanced symbolic computer algebra system (CAS).
It allows more expressive freedom in the computations than, for instance, MATLAB
does. It should be noted that MATLAB does also have symbolic manipulation capa-
bilities borrowed from Maple. But this functionality was not discovered until work in
Mathematica had begun.

The camera experiments had a much broader application focus than the computa-
tional experiments. Instead of “only” proving the formalisms behind the primary
method computationally, the camera experiments sought to extract 3D surface struc-
ture from real image sequences. The camera experiments involved much different
aspects of computer vision engineering than the computational experiments did. It
required the design and manufacturing of a physical installation (the “experimental
setup”) which makes it possible to create actual image sequences of a moving plane
textured surface using a real digital camera.

1.3.1. Computational Experimentation

The main idea was to create a computational “framework”, based on the mathemat-
ical assumptions in the primary method. Using the built-in numerical optimization
features of Mathematica, as it is shown in Chapter 3, it is indeed possible to solve for
the six variables P, Q, Z , U , V , W (though it seems that certain numerical singularities
do occur). All experiments were carried out using simulated plane surfaces.

The goals of the computational experiments:
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1. Introduction

• Build a mathematical framework in Mathematica which computationally proves
that the formalisms behind the primary method are correct.

• Simulate perspective projection of surface points on a plane surface, for a subset
of plane orientations, depths, and velocities.

• Simulate synthetic surface and image texture density using the formalisms in the
primary method.

• Estimate first partial derivatives of the image texture density.

• Build and solve constraint equations, for single and multiple image points, for
the variables U , V , W , P, Q, Z .

With these goals successfully achieved, it will have been computationally proven that
the formalism behind the primary method indeed are correct. This could be seen as
important groundwork for further research into the mathematical formalism behind
the primary method.

1.3.2. Camera Experimentations

The camera experiments, with their much broader focus, introduced certain difficul-
ties from day 1. As Chapter 4 will describe in detail, mistakes were made when
designing and building the experimental setup. Due to such setbacks the camera
experiments where simplified considerably. For instance, the textured surface was
frontal only (P = 0 and Q = 0). The line-of-travel of the surface was also toward the
camera only, and set to be the actual Z-axis (U = 0, V = 0, and W 6= 0). This means
that the camera experiments can only model situations which involves frontal planes
traveling in a direct line toward the camera, parallel to the Z-axis.

The implementation of digital image processing algorithms (for instance, connected
component analysis) was carried out in MATLAB, due to its strengths in digital image
processing.

The goals of the camera experiments:

• Design and build an experimental setup that makes it possible, by using a digital
camera, to create image sequences of a movable plane textured surface. It
should be possible to change the texture, orientation, and line-of-travel of the
plane surface.

• Create one or more image sequences using the experimental setup and a digital
camera. Do this for a frontal plane surface with a line-of-travel toward the
camera, parallel to or on the Z-axis.

• Implement functionality for estimating texture density in simple known textures
with separable texels (connected component search techniques).
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1.3. Project Methodology

• Build and solve constraint equations, for single and multiple image points, for
the variables U , V , W , P, Q, Z .

Should the goals be met, it would imply that the formalisms of texture flow as a cue
for direct extraction of 3D structure, can indeed be applied to a real planar surface,
traveling in a direct line toward the camera (parallel to the Z-axis), with known tex-
ture.

Later steps for estimating image texture density and eventually the partial derivatives
(the texture flow), turned out to be unsuccessful. See Chapter 4 for further conclu-
sions.
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2. The Primary Method

This chapter will explain in details the formalisms behind the primary method – a new
method for automatic estimation of surface structure and velocity. Subsection 1.1.2 in
Chapter 1 explained the basic ideas. This chapter goes into further detail about some
of the underlying assumptions and theory. Section 2.1 derives the Texture Density
Equation and Section 2.2 does the same for a set of Texture Flow Equations.

2.1. The Texture Density Equation

Chapter 1 introduced the primary method, but only in overall detail. This Section will
derive the ratio between the two “image patches” dS and dI using the pinhole model
and solid angles. Finally the Texture Density Equation will be derived.

2.1.1. Solid Angles

This subsection will take a look into the basics of solids angles. Solid angles are a
concept of angles in three dimensions and are measured in steradians.

In two dimensions, the central angle θ in radians, subtended at the center of a circle
with radius r, is related to the arc length s it cuts out (subtends) on the circle’s circum-
ference: θ = s/r. In three dimensions, the solid angle Ω in steradians, subtended at
the center of a sphere with radius r, is related to the spherical cap area A it cuts out
(subtends) on the sphere’s surface: Ω = A/r2. Figure 2.1 shows the relation between
angles in 2d and solid angles in 3d.

Confusion can arise when using the words subtended and subtends. A central (or
solid) angle subtends a spherical arc (or cap), and thus a spherical arc (or cap) is
subtended on a circumference (or surface) by a central (or solid) angle. On the other
hand, one can also say that a spherical arc (or cap) subtends a central (or solid) angle.
Thus a central (or solid) angle is subtended, by a spherical arc (or cap), at a single
point known as the angle’s vertex; usually defined as the center of a circle (or sphere)
with radius r. Distinguishing between the two methods of description is usually not
necessary and both are used interchangeably in this report.

The measure of steradian in a solid angle at a sphere’s center, corresponds exactly to
the measure of the subtended spherical cap area at unit distance from the sphere’s
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2. The Primary Method

Figure 2.1.: Figure shows the relation between 2d angles measured in radians, and
3d solid angles measured in steradians.

center. For instance, consider a sphere with a radius of 1 meter. A solid angle of 1
steradian, at the center of the sphere, subtends exactly 1 square meter of the sphere’s
surface. A solid angle of 3.7 steradian would subtend exactly 3.7 square meter.

Back in two dimension, we also know that an angle of 2π radians corresponds to
the entire circle (since the full circumference has an arch length of 2πr). Since the
surface of a sphere is equal to 4πr2, a solid angle of 4π steradians subtends the entire
surface of a sphere.

A central angle subtends a spherical arc on the circle’s circumference. The part of
the circle “covered” by the angle is known as a circular sector. The corresponding
geometric shape in solid angles is a right circular cone with the apex at the center of
the sphere. The perimeter of the base of the cone intersects with the sphere’s surface.
The geometry involved is seen depicted with considerable detail in Figure 2.2.

Solid angles are useful in the context of the simple imaging geometry used in the
pinhole model. A measure of solid angle is a measure of how large and object appears
to be at a certain distance. It is possible, for instance, that a nearby small object is
subtended by the same solid angle as a larger object far away. Solid angles are used
here to model the size of perceived area of an objects surface, which might be at at an
angle to the direction of line–of–sight.

2.1.2. Derivation

This subsection will derive the ratio dS/dI using solid angles. This relation between
dI and dS is rather trivial and can be derived using both the thin lens model and the
pinhole model. The pinhole model is used here.
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2.1. The Texture Density Equation

Figure 2.2.: Figure shows most of the geometry related to the use of solid angles in
this report.

Figure 2.2 shows the geometry in the solid angle cone. The graphic to the left shows
the general situation involving a sphere of radius r. It is important to understand that
the area Abase of the base of the cone, which in Figure 2.2 equates to Abase = a2π,
is not identical to the area Acap of the spherical cap (which equates to Acap = 2πrh,
where h = r · b−a

b
= r · [1 − a

b
]). The graphic to the right in Figure 2.2 views the

cone orthogonal to the line-of-sight. The graphic also shows a circle tangent to the
sphere surface and is thus at distance r to the center (origin). This circle has area
Atangent = b2π.

The circle with area Apatch (which is also tangent to the sphere) corresponds to an
image patch, or what in Chapter 1 was referred to as a “unit area”. It is rotated at an
angleΩ between its surface normal N and the line-of-sight. The area Atangent is a “fore-
shortened” version of Apatch, and can thus be expressed as Atangent = Apatch · cosΩ =
b2π (the cosine can here be considered a scaling factor).

Importantly, we now know that

b =
1
p
π

·
p

Apatch · cosΩ

and we also know that a = r sinθ and tanθ = b
r
. One can now derive Acap expressed
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using Apatch and cosΩ by further use of simple geometry:

a

b
=

r

b
sinθ =

r

b
sin
�

arctan
�

b

r

��

=

r

r2

r2+ b2 =

È

r2π

r2π+ Apatch · cosΩ

And, since we know that Acap = 2πrh= 2πr2(1− a
b
), we can now express the spherical

cap area Acap as

Acap = 2πr2

 

1−

È

r2π

r2π+ Apatch · cosΩ

!

(2.1)

The general expression of Acap has now been derived and there would be no problem
in continuing with it. In the computer vision literature though, a solid angle S; as a
ratio between surface area and squared distance; is often defined as S = Atangent/r

2,
and not as S = Acap/r

2.

This is not quite as forbidden as it might look at first. All the involved quantities
are consequences of the physical image acquisition process. When surface area is
considered as a radiometric quantity, it is an infinitesimally small area – it is almost
zero. Any actual difference between the areas Acap and Atangent can thus be considered
negligible, and stating Atangent u Acap becomes allowed. From this point on, this text
will use Atangent = Apatch cosΩ as the model of “perceived area”.

Figure 2.3 shows the pinhole model including two solid angles. A fundamental as-
sumption, which is valid in perspective projection, is that these two solid angles are
equal, which would mean that the two cone bases at unit distance from O are equal
in size.

This equality can be written as:

dI cosβ

(rimage)
2 =

dS cosΩ

(rsur f ace)
2 ⇔

dI cosβ
�

f
cosβ

�2 =
dS cosΩ
�

Z
cosβ

�2

where rimage and rsur f ace represents the distance from O to point p and P, respec-
tively.

And thus we have the ratio1 dS/dI as also shown earlier en Chapter 1:

dS

dI
=

cosβ

cosΩ

�

Z

f

�2

(2.2)

The point p is also a vector: p = [−x ,−y, f ]T , expressed in the camera reference
system (O = [0,0, 0]T ). Using p and another vector, e = [0, 0,1]T , as shown in

1The same ratio would naturally have resulted if the “perceived area” had been modeled using the
area Acap as defined in Equation2.1.
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2.1. The Texture Density Equation

Figure 2.3.: The pinhole model with the solid angles created by the perspective pro-
jection geometry.

Figure 2.3, one can rewrite the cosines of the two angles Ω and β in Equation 2.2
using dot products:

cosΩ =
pT N

‖p‖‖N‖
, cosβ =

pT e

‖p‖‖e‖
and the ratio dS/dI thus equates to:

dS

dI
=

Z2

f

�

‖N‖
f

pT e

pT N

�

=
Z2

f

p

P2+Q2+ 1

P x +Q y + f
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which leads us to the Texture Density Equation in its most basic form:

σ

dI
=
σ

dS

dS

dI
⇔ µI = µS

dS

dI
⇔ µI = µS

Z2

f

p

P2+Q2+ 1

P x +Q y + f
(2.3)

Equation 1.4 in Chapter 1 introduced the involved quantities as functions. One of
these, the image texture density function µI , is used in Section 2.2 to derive two Texture
Flow Equations:

µI(x(t), y(t), t) = µS(m, n) ·τ(x , y, P,Q, Z)

where

τ(x , y, P,Q, Z) =
Z2

f

p

P2+Q2+ 1

P x +Q y + f

The function τ is interesting and it seems highly relevant for the purpose at hand. It
involves both depth (Z) as well as orientation (P and Q) and image position (x and
y). It seems only natural to exploit this expression even further. This will happen in
the next section which will derive a set of texture flow equations.

2.2. The Texture Flow Equations

As this section will show, the problem with surface shape and velocity estimation
can be solved by solving for the appropriate variables in a set of Texture Flow Equa-
tions. This section will derive such equations by taking the total time derivative, of
µI(x(t), y(t), t) over an optic curve C in (x , y, t)-space.

2.2.1. Optic and Density Curves

Consider a sequence of images. Perhaps it is due to a moving surface. It might be
a translating surface, a rotating surface, or a deforming surface. Or perhaps a static
surface with a time varying surface texture density (for example, cast shadows of
waving leaves).

Consider a point P on this surface, with spatial velocity VP = [U , V, W]T . Point P will
be at distance Z , and the image patch at P has the normal vector N = [−P,−Q, 1]T

(see Figure 1.3).

Consider also that point P projects to image point p and the light intensity (irradiance)
in the images E(x(t), y(t), t) can be measured in the image sequence. In the problem
of optical flow, one seeks to derive the image motion of all points p: vp = [u, v]T =
[d x/d t, d y/d t]T .
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2.2. The Texture Flow Equations

The assumption is that the image intensity at a certain image patch remains constant
at “small” variations in x , y , and t ([9, 10]):

E(x , y, t) = E(x +δx , y +δ y, t +δt)

One can now derive a Motion Constraint Equation using a first order Taylor expansion
or by assuming that the image intensity is conserved and using the chain rule for
differention:

dE(x(t), y(t), t)
d t

= 0⇔
∂ E

∂ x

d x

d t
+
∂ E

∂ y

d y

d t
+
∂ E

∂ t
= Exu+ Ey v+ Et = 0

The motion constraint equation describes a line in (u, v)-space and further constraints
are needed to to solve for both u and v, uniquely specifying a point one that line. One
classic example is Horn and Schunck’s [9] smoothing constraint, which assumes that
the image motion field varies smoothly almost everywhere in the image.

It can be difficult to imagine a function in three variables. Consider, for instance, the
density in a cloud, where the function d(x , y, z) defines the cloud density at a certain
place in the cloud. The same analogy can be used for image intensity E(x , y, t) and
image texture density µI(x , y, t).

In Chapter 1 the notion of an optic curve was introduced. In optical flow estimation
the assumption was that the local image intensity E(x , y, t) remains close to constant,
even if there is motion in the overall image. It is not hard to imagine that a moving
neighborhood of image points (or perhaps just a single point in the limit), with the
same image intensity, “carves out” a three-dimensional curve C = {x(t), y(t), t} in
(x , y, t)-space. It is this curve which is known here as an optic curve. The image
intensity E(x , y, t) can be considered as a bundle of such curves in (x , y, t)-space.

Returning to the image sequence and the texture densities, the image texture density
µI(x , y, t) can also be considered as such a curve. Instead of calling it an optic curve
though, a more accurate description would perhaps be a “density” curve. Such a
density curve models the response of a high-level spatiotemporal image texel counting
operator or filter, in (x , y, t)-space. Also, contrary to image intensity, one cannot in
general expect the local measure of texture density in an image neighborhood to be
constant.

One can thus state the following general truth about image texture density:

µI(x , y, t) 6= µI(x +δx , y +δ y, t +δt).

which means that
d

d t
µI(x(t), y(t), t) 6= 0
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Degenerate cases, contrary to this general rule, can of course exist. For instance, con-
sider a frontal plane surface (P = 0, Q = 0) moving parallel to the camera (W = 0).
No movement occurs on the Z-axis, hence no depth variations occur. The frontal
plane surface has a homogeneous surface texture which means that it has the same
surface texture density everywhere (uniform texture density). Since the plane is ex-
actly frontal, the image texture density is also uniform over space and time.

Image texture density is naturally dependent on scale, and since scale itself is de-
pendent on variations in depth – of which there is none at the moment – it would
be possible for such density curves in (x , y, t)-space to, have the same image texture
density value from end to end. But in general we cannot expect scale to be constant,
as well as we cannot expect all surface textures to be homogeneous.

Now that the concept of optic and density curves has been defined, the next subsection
will move on to deriving a set of texture flow equations.

2.2.2. Derivation

The texture flow equation seen in Equation 2.3 can be rewritten as the following:

µI f (P x +Q y + f )−µS Z2
p

P2+Q2+ 1= 0 (2.4)

This expression states that a certain combination of surface and image texture density,
orientation, and depth, at on specific image point, equates to 0. In regards to this
and later expressions, it should be noted that all quantities, except f , naturally are
directly (or indirectly) functions of time t: x ≡ x(t), y ≡ y(t), P ≡ P(t), P ′ ≡ P ′(t),
Q ≡Q(t), Q′ ≡Q′(t), Z ≡ Z(x(t), y(t)), U ≡ U(t), V ≡ V (t), and W ≡W (t).

It is important to note that Equation 2.4 defines a local relation in the image (at
point (x , y)). To have something to say about other important time-dependent quan-
tities (as, for instance, the translational velocity [U , V, W]T and the rotational ve-
locity P ′ and Q′), it would be natural to take the total time derivative of function
µI(x(t), y(t), t). This is said to be done over an optic curve C = {x(t), y(t), t} which
exists in (x , y, t)-space.

This is a natural consequence of the nature of function µI . As mentioned earlier, the
image texture density, measured locally in each image in a sequence of images, is
modeled as a density curve C in (x , y, t)-space. Taking the derivative along this den-
sity curve, we arrive at useful expressions which involves the needed partial deriva-
tives to model the spatiotemporal 3D gradient, understood here as as texture flow.

The total time derivative of µI(x(t), y(t), t) is derived using the chain rule:

µ′ I(x(t), y(t), t) = µI xu+µI y v+µI t
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2.2. The Texture Flow Equations

where µI x , µI y , and µI t are the partial derivatives of µI in x , y , and t, respectively.

The surface texture density µS is always considered a constant. Thus µ′S = 0. Complex
surfaces on non-rigid surfaces, e.g. the surface of water, with time dependent surface
texture density, can thus not be modeled. Also, for reasons of simplification, the two
rotational velocities are, at the moment, both considered to be zero: P ′ = 0 and
Q′ = 0.

When knowing this, taking the time derivative of the left-hand expression in Equation
2.4 results in the following:

[µI xu+µI y v+µI t] f (P x +Q y + f ) +µI f (Pu+Qv)− 2µS ZW
p

P2+Q2+ 1= 0

where u = d x/d t, v = d y/d t, and W = dZ/d t. Later on, two other velocities are
also used: U = dX/d t, and V = dY /d t.

The surface texture density µS is now substituted with the expression in 2.3 and
the first Texture Flow Equation for a translating texture with constant surface texture
density (fixed texture) appears:

�

µI xu+µI y v+µI t − 2µI

1

Z
W )
�

× (P x + Q y + f ) + (Pu + Qv)µI = 0 (2.5a)

When P ′ 6= 0 and Q′ 6= 0, the differentiation and substitution results in a second
and sligtly different Texture Flow Equation for a surface with constant surface texture
density (fixed texture):

�

µI xu+µI y v+µI t − 2µI

1

Z
W )
�

× (P x +Q y + f )

+µI

�

Pu+Qv+ P ′x +Q′ y −
(PP ′QQ′)(P x +Q y + f )

(P2+Q2+ 1)

�

= 0 (2.5b)

Equation 2.5a considers P ′, and Q′ to be zero. This is not the case with Equation 2.5b
which includes those quantities. Of course when setting P ′, and Q′ to zero in Equation
2.5b, you end up with Equation 2.5a.

In Chapter 1 the surface texture density was defined as a function µS ≡ µS(m, n),
where m and n are surface parameters2. This corresponds to fixed or constant surface
texture density, because the function is defined as being independent of time and thus
µ′S = 0.

The two texture flow equations in Equation 2.5a and 2.5b involves u and v. It is pos-
sible to find other more useful expressions of these two optic flow quantities. Consider

2We will meet these two parameters again in Chapter 3, where they are used explicitly in the compu-
tational experiments.

29



2. The Primary Method

the relations in the pinhole model, between space coordinates ([X , Y, Z]T ) and image
coordinates ([x , y]T ):

f X + x Z = 0, f Y + yZ = 0

By taking the time derivative of both left-hand expressions we get the following:

f U + uZ + xW = 0, f V + vZ + yW = 0

We now have a useful expression of the two optic flow velocities u and v:

[u, v]T =
�

−
f U + xW

Z
,−

f V + yW

Z

�T

By substituting these expressions for u and v in Equation 2.5a and 2.5b, we obtain
the “direct” versions of the two texture flow equations:

�

µI x( f U + xW ) +µI y( f V + yW )−µI t Z + 2µIW
�

× (P x +Q y + f ) +µI
�

P( f U + xW ) +Q( f V + yW )
�

= 0 (2.6a)

�

µI x( f U + xW ) +µI y( f V + yW )−µI t Z + 2µIW
�

× (P x +Q y + f )

+µI

�

P( f U + xW ) +Q( f V + yW )− Z P ′x − ZQ′ y

+ Z
(PP ′QQ′)(P x +Q y + f )

(P2+Q2+ 1)

�

= 0 (2.6b)

Equation 2.6a is a nonlinear equation in U , V , W , P, Q, and Z . Equation 2.6b also
involves P ′ and Q′ and is thus a more general equation. Of course when setting P ′,
and Q′ to zero in Equation 2.6b, you end up with Equation 2.6a. The reason for
having two different forms of the same equation, is due to the specific interest in
experimenting with the more simplified situation – where no rotational velocities are
involved.

The two equations could turn out to be useful for estimating the following quantities
at image point (x , y):

• Surface orientation (P and Q)

• Surface depth (Z)

• Surface translational velocity (U , V , W )

• Surface rotational velocity (P ′ and Q′)
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2.2. The Texture Flow Equations

The idea is that, at image point (x , y); for the correct values of surface orientation,
translational and rotational velocities, the first derivatives in x , y , and t of the image
texture density; these equations should equal zero. Some numerical test trials were
used to computationally prove that these equations do indeed equal zero (at order of
magnitude from -12 to -6) when given the correct values.

Much of the numerical stability though, rests on the exactness of the derivatives es-
timated. Derivative estimation was done by minimizing a linear system of taylor
polynomials in three variables of order n≥ 9. Appendix A shows several results from
these trials.

To solve such equations, when the exactness of the derivatives is good enough, one
turns to methods of numerical minimization. This report will not deal with the specific
methods involved in such algorithms, and all the experiments utilize the existing built-
in minimization functions of the Mathematica computer algebra system.

This section took a look at the concept of optic and density curves and derived a
number of texture flow equations. Equations 2.5a and 2.5b involve the quantities
of optic flow, u and v. It has not been determined whether or not one might be
able to use these equations for optical flow estimation. Perhaps such a question can
be answered with further work. No experiments have been carried out with these
equations.

The other set of texture flow equations, the more “direct” versions seen in Equations
2.6a and 2.6b, does not involve optic flow quantities, but instead involves the image
point coordinates x and y , translational velocities [U , V, W]T , and also, for Equation
2.6b, rotational velocities P ′ and Q′.

To ease the notation later on, the left hand expressions of Equation 2.6a and 2.6b will
be known as constraint equations Φ and ΦR, respectively.

Thus we have that:

Φ(U , V, W, P,Q, Z) = 0 (see Equation 2.6a)

ΦR(U , V, W, P,Q, Z , P ′,Q′) = 0 (see Equation 2.6b)

The experimentations were done using only constraint equation Φ. No incorporation
of rotation using constraint equation ΦR has been attempted.

The next chapter, Chapter 3, will present the methods and results from the computa-
tional experiments. It introduces a simple but fundamental mathematical structure in
the form of the some formal definitions. It elaborates further on how exactly the com-
putational framework is able to use the formalisms from this chapter for minimizing
the constraint equation Φ.
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3. Computational Experiments

This chapter is concerned with the methods used and the results achieved in the
computational experiments. These are experiments in a purely synthetic form –
computer simulations. They involve only the abstract mathematical concepts; for
instance, the pinhole model geometry, point sampling, data flow, and numerical
texture densities. Section 3.1 introduces a necessary mathematical structure using
set theoretic definitions. Section 3.2 gives an overview of the data flow the numerical
simulations. Section 3.3 presents the method used to estimate the partial derivatives
of the image texture density. Section 3.4 presents the experimental results in the
form of a numerical example.

3.1. Formal Structure

The computational experiments are computer simulations made using Wolfram’s Math-
ematica1 – a computer algebra system. Mathematica has strengths in symbolic ma-
nipulation of mathematical expressions, support of anonymous functions applied to
large lists, numerical minimization, regression, and data visualization etc. Another
particularly strong application, MATLAB2 by Mathworks, is later used in the camera
experiments in Chapter 4 for digital image processing tasks covering, among others,
color segmentation and connected-component analysis (for real texture density estima-
tion).

A set of Mathematica scripts constitutes the implementation of the computer simu-
lations. These scripts are part of a larger simulation “framework”. This section will
explain the general functionality of this framework: What is simulated, and how it is
simulated. No examples of code will be given. An underlying mathematical structure
is later defined, using set theoretic notation. Such details are crucial for understand-
ing and simulating the formalisms of Chapter 2. When the mathematical foundations
has been explained, section 3.2 is ready to take a look at the actual data flow of the
simulations.

The goal from the beginning of the design and implementation were to simulate the
process of taking images of a moving rigid surface in space using a fixed perspective

1Version 6 was used. Mathematica’s website http://www.wolfram.com.
2Version 7.x was used. http://www.mathworks.com.
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3. Computational Experiments

camera. The camera is modeled using the pinhole model; which means that there
is no simulation of focus or other physical details – the camera has infinite focus.
Points on the surface in space are simply projected onto an image plane, at specific
time intervals, creating a series of images. The projection is done by applying the
camera/image coordinate conversion equations (the relations seen in Equation 1.1 in
Chapter 1).

This simple form of simulation is known (in this report) as point sampling. The process
of point sampling consists of three subtasks: (1) Sampling of the necessary discrete
time steps, (2) sampling of surface points at a subset of the estimated time steps, and
(3) sampling of image points at the same subset of time steps. To sample (create) 1
surface point, it requires the calculation of a set of abstract numerical surface texture
densities, the same for each image point. This point sampling process is the founda-
tion of all the results achieved computationally and Section 3.2 will have more say
about the related data flow details.

When the simulation is done, i.e. when the point sampling process is complete, an-
other process begins. This is the minimization process. It sets up the final constraint
system and, by user intervention, solves this system, using either constraint equation
Φ or ΦR. More details about the important minimization process is postponed until
Section 3.2.

The use of the word “user” simply refers to the fact that the simulation has reached a
stage where some form of interaction with the simulation is needed – a user needs to
choose certain parameters for the simulation to continue. Certainly this interaction
could also have been scripted.

3.1.1. Notation

The subsections ahead make formal definitions, using set theoretic notation. The set
of natural numbers N contains the zero element. So does N0. But N+ does not. The
symbol N is only used when the ambiguity is not important. With other sets, where
non negativity has meaning, a superscript “+” is used for positive numbers, a super-
script “∗” for nonnegative numbers, and a superscript “−” for negative numbers. A
subscript “0” is added for nonpositive numbers.

For example, for the set of of integers Z:

Z= {. . . ,−2,−1,0, 1,2, . . . }
Z+ = N+ = {1,2, . . . }
Z∗ = N0 = {0, 1,2, . . . }
Z− = {. . . ,−2,−1}
Z−0 = {. . . ,−2,−1,0}
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3.1. Formal Structure

Figure 3.1.: The general situation. A rigid surface S moves in space and the camera
with focal length f is fixed. A surface point Pi, j projects to image point
pi, j (see text).

The next couple of subsections will define a fundamental mathematical structure.
The text uses non-bold non-capital letters for scalars and functions (i, j, µ); non-bold
capital letters for surfaces, sets, families of sets, and also, when no ambiguity can arise,
scalars (F , G, H); bold non-capital letters for vectors (a, b); and bold capital letters for
matrices (M, U). Calligraphic letters (A , S ) are not used.

3.1.2. Surface, Frames, and Surface Points

A rigid surface (two-dimensional manifold) S moves in space, and the camera is fixed
in space at origin O with focus length f ∈ R+. At time t i = (i − 1)∆t, where t i ∈ R∗,
∆t ∈ R+, and i, d ∈ N+ with 1 ≤ i ≤ d, k surface points Pi, j = [X i, j, Yi, j, Zi, j]T projects
to k image points pi, j = [x i, j, yi, j]T , where j, k ∈ N+ and 1 ≤ j ≤ k (see Figure 3.1).
The symbol j will be known later on as a point index, used for iteration and unique
indexing of all k surface and image points.

The symbol i, is the integer time index. At the beginning of time, at t1 = 0, the time
index is i = 1 and the clock is exactly zero (see Figure 3.2). At time t1, nothing
which is time dependent have yet had any effect on the simulation. The first time that
happens, is at time t2 =∆t.

The k surface points Pi, j, which exist on surface S, are used to represent a subset of the
entire surface S (which by formality can be considered to have infinite extent) at time
t i. This subset of surface S is represented as a cloud of k surface points Pi, j. Methods
for defining surface S, and the extent, and resolution of the surface point cloud, will
be explained in a later subsection.
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3. Computational Experiments

Figure 3.2.: Figure shows how the concept of time is defined and used. Note espe-
cially that time begins at t1 = 0 and ends at td = (d − 1)∆t. The reason
for beginning at i = 1 is a detail inherited from MATLAB and Mathemat-
ica, where all lists are 1-indexed and not 0-indexed as is the case with
other programming languages such as C, C++, and Java.

A frame is a set Fi which contains the k surface points (a 3D point cloud) at time t:
Fi = {Pi,1,Pi,2, . . . ,Pi,k}. A family of sets G, containing the d frames, is also defined:
G = {F1, F2, . . . , Fd}.

3.1.3. Surface Velocity, Rotation, and Simplifications

For each surface point Pi, j, two other vectors are defined: (1) a surface normal vector
Ni, j = [−Pi, j,−Q i, j, 1]T , and (2) a translational velocity vector V j = [U j, Vj, Wj]T . As a
first simplification, these velocity vectors are defined to be constant velocities.

The second simplification, is to define the surface S as a plane, with normal vector
Ni = [−Pi,−Q i, 1]T . This means that all Ni, j are all equal to Ni. A third simplification
is related to the translational velocities. Since the surface S is rigid, all the velocity
vectors V j are equal to one (global) surface velocity vector V= [U , V, W]T .

Simulation of the plane surface S is done using simple vector parameterization. A
set of 2 three-dimensional vectors ai = [ai,X , ai,Y , ai,Z]T and bi = [bi,X , bi,Y , bi,Z]T ,
referred to here is the surface basis (a,b)i, is used for defining the exact orientation of
plane surface S at time t i.

At this point we know that a plane surface S translates with linear velocity V. To
further simplify the notation and simulation, the concept of rotational velocity, repre-
sented by P ′ and Q′, is excluded from these mathematical definitions. The translational
velocities of plane surface S are thus zero (P ′ = 0 and Q′ = 0). All normal vectors Ni

are now equal to one global surface normal vector N, which of course is independent
of the time index i.

The same goes for the surface basis – all (a,b)i are now equal to one unique surface
basis (a,b) (ai = a = [aX , aY , aZ]T and bi = b = [bX , bY , bZ]T , for all i = 1, 2, . . . , d).
Surface S does thus not rotate over time, it only translates with velocity V.
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3.1. Formal Structure

The cross product Nbasis = a× b is the non-normalized normal vector of surface S:

Nbasis = a× b=







aX

aY

aZ
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The Nbasis normal vector is not used here. Instead it is is expressed by vector N using
the surface gradients P and Q:

N=
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The vector N has its direction toward the camera, and because of this, the surface S
can be said to have a front side and a back side, where the front side faces toward the
camera. The surface basis (a, b) thus defines the exact orientation of the surface S at
time t1. And without rotating this surface basis, the surface S does not rotate and it
thus defines the same surface orientation at all times t i.

3.1.4. Surface Point Sampling

The k surface points Pi, j ∈ Fi, which represent a subset (or sampling) of surface S
at time t i, are created using the surface basis (a, b), and a set J of k surface index
coordinates (m,n) j ∈ Z2: J = {(m, n)1, (m, n)2, . . . , (m, n)k}. The exact values of all k
surface index coordinates (m, n)k are defined using a global surface resolution constant
r ∈ N+.

For a surface resolution constant r, the definition of set J = Jr can be written as

Jr = {(−r,−r)1, (−r, 1− r)2, . . . , (−r, 0)r+1, . . . , (−r, r − 1)2r , (−r, r)2r+1,

(1− r,−r)1+(2r+1), . . . , (1− r, 0)(r+1)+(2r+1), . . . , (1− r, r)2(2r+1), . . . ,

(0,−r)1+r(2r+1), . . . , (0, 0)(r+1)+r(2r+1), . . . , (0, r)(1+r)(2r+1), . . . ,

(r − 1,−r)1+(2r−1)(2r+1), . . . , (r − 1,0)(r+1)+(2r−1)(2r+1), . . . , (r − 1, r)2r(2r+1),

(r,−r)1+(2r)(2r+1), . . . , (r, 0)(r+1)+2r(2r+1), . . . , (r, r)(2r+1)(2r+1)}

For example, with r = 2 (see Figure 3.4):

J2 = {(−2,−2)1, (−2,−1)2, (−2,0)3, (−2,1)4, (−2, 2)5,

(−1,−2)6, (−1,−1)7, (−1, 0)8, (−1, 1)9, (−1, 2)10,

(0,−2)11, (0,−1)12, (0,0)13, (0,1)14, (0, 2)15,

(1,−2)16, (1,−1)17, (1,0)18, (1,1)19, (1, 2)20,

(2,−2)21, (2,−1)22, (2,0)23, (2,1)24, (2, 2)25}
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3. Computational Experiments

Figure 3.3.: Figure shows the general situation with a point grid of k = (2r + 1)2

points. The surface resolution constant is used for defining the exact
resolution of the surface point sampling. The value for j, the point index,
is based in the following column-major conversion equation: j = 1+ r +
(1+ 2r)(r +m) + n.

The use of the surface resolution constant r is better understood when imagining a
two-dimensional square point grid of size 2r + 1× 2r + 1. Such a general point grid
is depicted in Figure 3.3. At each point in this grid, an index coordinate (m, n) j is
defined, where j is a point index for that specific point. Index coordinate m iterates
over columns and n over rows. Each point index j is thus iterated in column major
form, from the lower left point (−r,−r)1, through the center point (0, 0)(r+1)+r(2r+1),
and to the upper right point (r, r)k, where k = (2r + 1)2.

All the concepts visited so far; surface index coordinates (m, n) j, a surface basis (a,b),
a set J with surface index coordinates (m, n) j, a surface resolution constant r, and a
point index j; are important formalisms used in the process of surface point sampling.
The point index j is an implementation detail inherited from the Mathematica scripts,
and its primary use is only as a unique numerical identifier for surface (and later
image) point. It will be important when section 3.2 takes a look at the actual data
flow. For more information see figure text in Figure 3.3.

Figure 3.5 shows an even larger point grid, now with r = 10. There are a total
of k = (2 ·10+ 1)2 = 441 points in this grid. Since the surface resolution constant
r defines the resolution of the surface point sampling process; i.e., the number of
surface points sampled at time t i, it is important that it is not too large, but also not
too small. All experiments, both in this chapter and the next, are carried out with
the surface resolution constant set to r = 10. This values turned out to be a fine
compromise between numerical exactness and computational complexity.

The points in these point grids are not surface points. The surface resolution constant
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3.1. Formal Structure

Figure 3.4.: Figure shows an example of the point grid with surface resolution con-
stant K = 2.

Figure 3.5.: Figure shows an example of the point grid with surface resolution con-
stant r = 10. The grid has a total of (2 ·10+ 1)2 = 441 points. This is the
exact surface resolution used in all the results presented in this chapter
and in Chapter 4.
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3. Computational Experiments

Figure 3.6.: Figure shows how the surface basis (a,b) is parameterized and used for
surface point sampling, with resolution r = 10. A surface point Pi, j at
time t i exists at each linear combination of surface basis (a,b) (see text).

r only defines the resolution of the surface point sampling. To talk about surface
points Pi, j at time t i, we need to add information about surface S and its orientation.
This is done using the surface basis (a,b), mentioned earlier. The plane surface S and
the point cloud of surface points Pi, j at time t i, are a result of a parameterization of
the surface basis (a,b).

Figure 3.6 shows how such a parameterization works. The resolution of the param-
eterization is determined by the resolution constant r, which has the value r = 10.
All surface points Pi, j at time t i are defined (sampled) at each point formed by linear
combinations of the surface basis (a,b). The surface index coordinates m j and n j are
used as coordinates into this parameterization.

The benefit of using this method of surface point sampling is that (1) the resolution
of the sampling is determined exactly by the resolution constant r, and (2) the use
of the linear combinations of the surface basis (a,b) naturally defines both the extent
of the sampling on the plane surface S, and (3) it defines a center surface point P1,c,
with surface index coordinate (0, 0)c, where c = (r + 1) + r(2r + 1). A third vector,
a surface origin vector OS, defines the location of this center point at the beginning of
time – at time index t1.

It is now finally possible to give the mathematical relation between surface basis
(a,b), time index i, and the surface index coordinates m j and n j. The surface point
sampling, the simulation of surface points, is done by using the following vector equa-
tion:

Pi, j = OS +m ja+ n jb+ t iV (3.1)
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3.1. Formal Structure

3.1.5. Numerical Surface Texture Density

In the computational experiments, the surface texture density is defined purely as a
numerical concept. Each surface point Pi, j has a set DS, j of h surface texture density
values µS j,l , where h, l ∈ N+ with 1≤ l ≤ h, mapped to it:

DS, j = {µS j,1,µS j,2, . . . ,µS j,h}= {T1(m j, n j), T2(m j, n j), . . . , Th(m j, n j)}

Each function T j defines a surface texture density value µS j,l at one specific point on
the surface, independent of time index i. These functions are only dependent of the
surface index coordinates m j and n j. Also, the symbol l, is known here as the texture
density index.

3.1.6. Images and Image Points

An image taken by the camera is a set Ii of k image points pi, j = [x i, j, yi, j, f ]T : Ii =
{pi,1,pi,2, . . . ,pi,k}. The camera takes a series of d images. A family of sets H contains
these images: H = {I0, I1, . . . , Id}.

3.1.7. Numerical Image Texture Density

Each image point pi, j, also has a set DI ,i, j of h image texture density values µIi, j,l ,
mapped to it:

DI ,i, j = {µIi, j,1,µIi, j,2, . . . ,µIi, j,h}= {τi, j T1(m j, n j),τi, j T2(m j, n j), . . . ,τi, j Th(m j, n j)}

The function τi, j ≡ τi, j(x i, j, yi, j, P,Q, Zi, j)≡ τi, j(pi, j,N, Zi, j) equates to:

τi, j =
dS

dI
=

Zi, j
2

f

p

P2+Q2+ 1

P x i, j +Q yi, j + f
(3.2)

Here dS
dI

is the ratio between the area of the surface patch at surface point Pi, j, and the
area of the image patch at image point pi, j.

3.1.8. Summing up

This section has made many definitions and it has also explained in depth, how the
plane surface S is “mapped” onto a surface basis parameterization. A considerable
effort was put into explaining the surface resolution constant r, which explicitly has
been set to r = 10. Such detail are considered important for understanding how the
simulation works, and it is believed that such an understanding gives the reader the
necessary tools to fully understand the results of this entire work.
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3. Computational Experiments

3.2. Overview of Data Flow

This section will give a brief overview of the data flow involved in the computer
simulations. This section will also comments shortly, throughout the text, on certain
geometrical details related to the data flow. The data flow is important since it can
explain, without too much detail, how the involved parameters and data is used.

The intent with this section is to support the later results from the constraint mini-
mization. The more one understands the data flow behind the results, the more one
is likely to understand those results, and be able to critically comment on them.

The level of rigor is minimized though. For instance, the data flow does not cover
the algorithms used and how such are programmed. In this section, the examples of
data flow, seek to explain, in general, what the data represents, and why and when it
exists.

The main focus in the data flow examples, is the point sampling process. As explained
in Section 3.1, the point sampling process consists of three subtasks:

1. Sampling of the necessary time steps.

2. Sampling of surface points at a subset of the sampled time steps.

3. Sampling of image points at the same subset of time steps.

Subsection 3.2.1 to 3.2.3 will each explain the data flow of these subtasks.

The subtasks mentioned above are purely simulation tasks. When the simulation is
done, some form of data structure has been created. This data structure is known here
as the “work array”, since it is actually nothing more than a large multi-dimensional
array or list.

The work array will contain all sampled surface and image point coordinates, all sam-
pled surface and image texture densities. It will also contain a truth-table with all
known geometrical values related to the surface S. These are the normal vector N
and the surface velocity vector V.

When the work-array has been created, the minimization process can begin. It also
involves three subtasks:

1. Estimate image texture density derivatives for all user-selected image points in
one image.

2. Construct a constraint system, using constraint equation Φ or ΦR, image texture
density derivatives, and a list of user-selected unknowns.

3. Minimize this created system.
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3.2. Overview of Data Flow

Figure 3.7.: The computational experiments are made possible by two main pro-
cesses: (1) The point sampling process and (2) the minimization process.
Certain global variables need to be defined for the point sampling process
to work. The work array is needed by the minimization process as well
as other things. In the end, a possible constraint solution is returned –
which is the very goal with the primary method.
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Subsection 3.2.4 will provide a brief overview of the data flow involved in the mini-
mization process.

Figure 3.7 shows a flow chart of the two main processes and the related data and
its flow. The figure introduces the concept of error in the form of noise. Numerical
errors could have been simulated and used in the minimization process. Due to time
constraints the experiments have been made without the simulation of error.

3.2.1. Sampling of Time Steps

The list of d time steps, contains, at index i, the actual time t i = (d − 1)∆t. The time
interval ∆t is an important global symbol, and at this stage it needs to been already
explicitly defined.

Two other global quantities are also defined at this stage: (1) The resolution constant
r = 10, and (2) the surface basis (a,b), which defines two orthogonal vectors with
the same magnitude.

The actual number of time steps, the symbol d, which also later (at least formally)
defines the number of frames and images, is not defined explicitly. Imagine that the
surface has a constant velocity component W , such that it moves toward the lens;
toward O. At some point in time, if the value of d allowed it, the surface would
collide with the X Y -plane, and cross over to the other “half-space” on the positive
Z-axis. Surface points would now effectively be behind the lens, inside the camera –
which would make no sense.

All experiments have been made with W > 0. This means that the surface always
moves toward the camera somehow. Because of this, the four corner surface points,
with surface indexes (−10,−10)1, (−10,10)21, (10,−10)421, and (10, 10)441, needs
to be sampled to see for what value of i, one of these four corner points is first at
Z = 0. See Figure 3.8. This particular value of i, referred to as iCOLLI DE, is used
to determine the actual number of discrete time steps: d = iCOLLI DE − 1. Thus time
stops just a single time step of ∆t, before one of the surface corners collides with the
X Y -plane.

The time step list can get very large. The simulation is a “one-shot” point sampling
process, and it can take some time to sample all points at all times. Because of this,
the actual point sampling is only done on a subset of the time steps. Because of this, it
is important that d ≥ 3 to give adequate “room” for the subset, which is also the case
in all the experiments.

This subset is defined by two parameters: (1) An integer iPADDING and (2) an integer
iTOI (Time-Of-Interest), where 0 ≤ iPADDING ≤ d and iTOI − iPADDING < iTOI < iTOI +
iPADDING. See Figure 3.9. The index iTOI defines where in the time step list the subset
is centered. The actual time of this time index is tTOI .
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Figure 3.8.: Since W > 0 in all experiments, a time-to-collision analysis is used to
estimate the limit of time itself. It makes no sense to sample surface
points at times when they would exist in the “half-space” of the positive
Z-axis (see text).

Figure 3.9.: A general example that shows how a subset of the full time step list is
defined using two parameters: iPADDING and iTOI (see text).
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Figure 3.10.: Surface points Pi, j are sampled from surface index coordinates (m, n) j.
The sampling can be seen as a mapping from Z2 to R4; – the (X , Y, Z , t)-
space. The surface point sampling is done using Equation 3.1.

In the experiments, the time-of-interest index iTOI , is simply the middle time index
(iTOI = (d + 1)/2) or, if d is even, the lower median (iTOI = d/2). The odd quantity
1+ 2iPADDING defines the number of time steps, where surface and image point are
actually sampled.

In the experiments iPADDING = 3. This number ensures that enough images, i.e. seven
images, are eventually processed, for numerical estimation of the partial derivatives
of image texture density.

3.2.2. Sampling of Surface Points

When iPADDING and iTOI has been defined, it is now possible to generate a subset of the
family of sets G, which contains all frames Fi for i = 1, . . . , d – which each contains
surface points for that specific time step.

The sampling of surface points is done by using Equation 3.1. The time index i iterates
for each of the 1+ 2iPADDING active time steps (actual time index values determined
by iTOI). In each of these “time-iterations”, the point index j iterates from 1 to k =
(2r + 1)2, where each of these “point-iterations” corresponds to one surface point in
one frame Fi at time t i.

Since we know that k = (2 ·10+ 1)2 = 441 and iPADDING = 3, the full iteration count is
441×(1+2×3) = 3087. For each of these approximate 3000 high-level tasks, it is also
necessary to evaluate the h surface texture density functions T1, . . . , Th, mentioned in
Subsection 3.1.5.

Figure 3.10 shows the general idea of the data flow involved in sampling surface
points. Each surface index coordinate (m, n) j can be mapped directly to one surface
point Pi, j. All surface point indexes, which exists in Z2, are are mapped to unique
(surface) points in R4; – the (X , Y, Z , t)-space.
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Figure 3.11.: A single surface index coordinate (m, n) j maps to a single surface point
Pi, j. For each surface point Pi, j a set of h surface texture density values
µS j,l = Tl(m j, n j) is calculated. The functions Tl are abstract density
functions which can be used as a “model” for the texture density on the
surface, at specific surface index coordinates (m, n) j (see text).

For each surface point, a set of h surface texture density values Tl(m j, n j) = µS j,l , for
l = 1, . . . , h, is calculated. See Figure 3.11.

In the experiments the number h of surface texture density functions is h = 6. This
means that for each of the exactly 3087 point samplings in R4, 6 function evaluations
are needed. This corresponds to a total of 3087× 6 = 18522 surface texture density
function evaluations.

3.2.3. Sampling of Image Points

When all the 3087 image points in R4 have been sampled, it is now possible to gen-
erate a subset of the family of sets F , which contains all images Ii for i = 1, . . . , d –
which each contains all image points for that specific time step.

The image points are sampled using the projective relations between camera and image
coordinates. These relations were shown in Chapter 1 (Equation 1.2) on page 5, but
are shown again for convenience (now with adequate subscripts):

x i, j =− f
X i, j

Zi, j
, yi, j =− f

Yi, j

Zi, j
(3.3)

Figure 3.12 depicts the general idea behind the data flow in the image point sampling
procedure. Since there is a 1-to-1 correspondence between all surface and image
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Figure 3.12.: The image point sampling process is generally as mapping from R4 to
R3; – the (x , y, t)-space or image space. This mapping is done using
Equation 3.3 (see text).

points, a total of 3087 image points are also sampled, which gives a sum total of
2× 3087= 6174.

The image points sampling procedure is similar to the surface point sampling proce-
dure. Again the time index i is iterated over the 1+ 2iPADDING active time indexes.
For each of these iterations the point index is iterated from 1 to 441. At each (i, j)-
iteration, an image point pi, j is sampled using the two equations in Equation 3.3.

For each image point, a set of h image texture density values µIi, j,l = τi, j Tl(m j, n j) =
τi, jµS j,l , for l = 1, . . . , h, is calculated. See Figure 3.13.

The computational experiments only involve image texture densities µIi, j,l . These are
scaled versions of the “projected” surface texture density µS j,l . And they are scaled
with exactly the correct ratio between the corresponding surface and image patches,
and this ratio is τi, j =

dS
dI

.

The Texture Density Equation τi, j, as defined in Equation 3.2, is an important expres-
sion which, by involving surface and image parameters, equates the necessary ratio
dS
dI

. See also Figure 3.14.
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Figure 3.13.: For each image point, a set of h image texture density values µIi, j,l =
τi, j Tl(m j, n j) = τi, jµS j,l , is calculated. These image texture densities are
scaled surface texture densities. The scaling is done using the Texture
Density Function τi, j, as defined in Equation 3.2 (see text).

Figure 3.14.: The Texture Density Function τi, j equals the ratio between the areas
of the surface and image patches dS and dI . This ratio is dS

dI
. This is

an important formalism used in the synthesis. The dS and dI are never
really defined in the computational experiments. Only the ratio between
them is; determined by local geometrical measures such as surface point
distance Zi, j, image coordinates (x i, j,yi, j), and the normal vector N (see
text).
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Figure 3.15.: A visualization done using Mathematica. The four graphics show how
perspective projection is to be understood geometrically. The situation
depicts a plane surface with normal vector [1, 0,1]T (P = −1, Q = 0)
(see text).

Figure 3.15 gives some examples of the graphical visualization capabilities of Math-
ematica. The graphics shows four examples of the actual geometry involved in the
image sampling process – which of course is simply a perspective projection simula-
tion of mapping 3D surface points to 2D image points using a focal length f .

The situation depicted involves a plane surface, approximated by 441 surface points
which are coplanar and equidistant in the plane. The plane has normal vector N =
[1, 0,1]T , which means that P = −1 and Q = 0. The grays lines depict the rays of
light and the dot in the center of the coordinate system is the camera origin O.

The focal length is small compared to the size of the surface point cloud (which is de-
termined by the magnitude of the surface basis (a,b)). This has the effect of also mak-
ing the actual image point cloud relatively small in extent. The graphics in Figure 3.15
“zooms” in on the visualization, up to the point where the projected image points are
visible. They were created using the coordinates estimated in the surface and image
point sampling process and by using the Mathematica function “Graphics3D[]”.

The image points forms a coplanar point cloud at Z = f , parallel with the X Y -plane
– usually referred to as the image plane. Depending on the orientation of the plane
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Figure 3.16.: The first subtask in the minimization process deals with estimating
derivatives. Before this subtask can be begin though, a user needs to
select kWORK image points at time tTOI . For each of these image points,
h image texture density derivatives needs to be estimated (see text).

surface, the projected image points forms a quadrilateral3 region of points on the
image plane. When the plane is frontal, i.e. P = 0 and Q = 0, they form a square
region.

In the current situation in Figure 3.15, due to the scaling effect of perspective projec-
tion, the surface points farthest away from the camera projects closer4 together on the
image plane. The image points thus form an isosceles trapezoid5 and not a square.

3.2.4. Brief Overview of the Minimization Process

This subsection will take a brief look at data flow involved in the minimization proce-
dure. This will give an overview of how exactly the image texture density derivatives
and the constraint equations Φ and Φr , are used to create a constraint system.

To avoid the use of too many subscripts some notational abuse seems like a good idea
from this point on. The image texture density derivatives in x , y and t, are known as
µx i, j,l , µyi, j,l , and µt i, j,l , respectively.

The minimization process needs a list of user specified points. The total amount of
points that the user specifies is kWORK – it is a work set of points, all chosen from the
work array mentioned in the beginning of this section. The point index j has up to
this point been an index used for iteration. In the minimization process the different

3A quadrilateral is a polygon with four sides and four vertices.
4An example of the difference in image point density, was shown in Subsection 1.2.2 on page 12.
5A quadrilateral with two opposite sides parallel and two other sides of equal length.
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Figure 3.17.: When the all the h× kWORK derivative estimations are done, where each
of those also involves finding three partial derivatives in x , y , and t,
the minimization process continues with building a constraint systems
using constraint equations Φ. This system contains a total of h× kWORK

equations. The next step is to solve this system (see text).

indexes, from 1 to 441, are now used as unique identifiers for the points selected by
the user.

The minimization process begins when the user has selected a set of kWORK points
at time tTOI , and the first that happens is an estimation of the image texture density
derivatives. Figure 3.16 shows in general where we are in the process. The estima-
tion is done in (x , y, t)-space and the estimation of derivatives is done for each user
specified image point. There are h image texture densities defined for each of these
image points, and this results in h× kWORK derivative estimates. Each of these gives
an estimate for µx i, j,l , µyi, j,l , and µt i, j,l , for each image point.

When the derivatives have all been estimated, the constraint system is built. Figure
3.17 shows the general idea, using constraint equation Φ. The unknowns of the
constraint equation are also user specified but this has no effect on the size of the
system. The system always has h× kWORK equations.

One important thing in the primary method is of course it reliance on the extraction
of image texture density, and also the fact that more than one density measure can
be extracted at any given location in the image. Such considerations are not neces-
sary in the computational experiments. They deal with the synthesis and asks what
it really involves to robustly minimize the constraint system. It appears that more
than one density measure per image point is indeed necessary for the system to be
solvable. Section 3.4 has more to say about this, when actual results of minimization
are shown.
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3.3. Estimating Partial Derivatives

The computational experiments are fully synthetic. They involve a full algebraic rep-
resentation of surface texture density in the form of the functions T1, . . . , Th. Image
texture density is represented as the same functions, but scaled with the Texture Den-
sity Equation (or Function) τi, j.

Expressing the algebraic derivatives of these function would probably be possible.
But when looking further than pure synthetic simulations, i.e. toward the camera
experiments which involve only real intensity-based image texture density measures,
algebraic expressions of the partial derivatives cannot be found. A multi-variable
fitting would perhaps be possible, but the effort was considered unnecessary.

The derivatives are instead estimated by finding the numerical linear least square
solution to a system of Taylor polynomials6 Γp(x , y, t) of arbitrary order p.

3.3.1. The Numerical Differentiation Scheme in General

We are seeking to find numerical estimates of the image texture density function µI

which is a function in both time (t) and space (x , y). The estimation is based on the
points the user selects at the beginning of the minimization process.

As an example, let us consider just one of these selected image points7: p0 = [x0, y0, t0]T .
Beyond this single image point, a total of 7× 441− 1 = 3086 points also exists: p1,
. . . , p3086.

This is quite a large number of points to consider. Instead we define a spherical neigh-
borhood with radius R, with p0 at the center of this sphere. The points considered,
will be the points with a distance below or equal to R, from p0. These points, other
than p0, will be known here equivalently as just pk, or as the points p1, . . . , pk.

The differences on all three axes, from point p0 to all other image points p1, . . . , pk,
are always known by simple coordinate analysis. The differences on the x-, y-, and
t-axis, from point p0 to point pk are ∆xk = xk− x0, ∆yk = yk− y0, and ∆tk = tk− t0,
respectively. See also Figure 3.18.

Given that the points pk are near p0, Taylor’s theorem states that the function value
µI(xk, yk, tk)≡ µI(xk, yk, tk)≡ µI(pk) can be approximated by the Taylor polynomial
Γp(xk, yk, tk) ≡ Γp(pk) of arbitrary order p. Such polynomials involve the 1st to p’th
order partial derivatives.

6The use of the Γ-symbol should not be confused with the actual Gamma function – an extension of
the factorial function to real and complex numbers.

7The subsets i and j are implicitly defined at all such points, but currently they are not important.
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Figure 3.18.: An example with a current point p0 and three other points p1, p2, and
p3. The differences on each of the three axes can be determined by
simple coordinate analysis. This results in a set of differences, ∆xk,
∆yk, ∆tk for k = 1, . . . , 3. These differences are used to construct a
linear system that, when minimized, gives estimates for the three first
partial derivatives of µI .

The function values are already known by definition of the surface density functions
T1, . . . , Th. This means that, for each point pk, an equality between Γp(pk) and µI(pk)
can be created, using the differences ∆xk, ∆yk, and ∆tk from point p0 to point pk.

When done for all points pk, the result is a linear system which can be attempted
solved for the first partial derivatives µIx(p0), µI y(p0), and µIt(p0) (or minimized in
a least square sense).

The unknowns of this system will be the first partial derivatives µIx , µI y , and µIt ,
as well as higher order derivatives when p > 1. In the experiments p is at least 9,
which includes ninth-order partial derivatives. It turned out that the least square
minimization method in Mathematica made better estimates of the first derivatives,
when higher order derivatives were included.

The linear system with arbitrary order p, for image point p0, is in general constructed
as follows:











Γp(p1)
Γp(p2)

...
Γp(pk)











·



















µIx(p0)
µI y(p0)
µIt(p0)

...
Higher order
derivatives



















=











µI(p1)
µI(p2)

...
µI(pk)











Note that the remainder terms of the polynomial Γp are not used and are all consid-
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ered zero. Using it it would require knowledge of function values between p0 and the
pk points, which is not available. The current usage of Taylor polynomials could be
seen as a effort in modeling the image texture density flow with p→∞, i.e. with Tay-
lor series, which are the limits of Taylor polynomials where the remainder is exactly
zero. But of course p is finite and always positive.

The next subsection will take a look at Taylor polynomials in three variables of arbi-
trary order p.

3.3.2. Taylor’s Theorem in Three Variables of Arbitrary Order

It took quite an effort finding a working definition of Taylor polynomials in three
variables. Many multi-variable definitions of Taylor’s theorem use multi-index notation
which can be difficult to read. Such notation will not be used here.

Readable notation was eventually found on page 277 in Schaum’s Outline of Advanced
Calculus [24]. It gives a two-variable definition of Taylor’s theorem of arbitrary order.
The notation is easily expanded to three variables.

Taylor’s theorem (without remainder terms) for function µI(x , y, t) of arbitrary order
p at point p0 using differences ∆xk, ∆yk, and ∆tk to point pk, is defined as:

µI(x0+∆xk, y0+∆yk, t0+∆tk)u Γp(x0+∆xk, y0+∆yk, t0+∆tk) (3.4a)

which is equivalent to the shorter notation:

µI(pk)u Γp(pk)

The Taylor polynomial Γp at point p0 (the p’th order approximation at point pk) are
defined recursively. Polynomial Γ0 is a special case:

Γ0(pk) = µI(p0)

and for p > 0:

Γp(pk) = Γp−1(pk) +
1

p!

�

∆xk

∂

∂ x
+∆yk

∂

∂ y
+∆tk

∂

∂ t

�p

µI(p0) (3.4b)

Naturally xk = x0 + ∆xk, yk = y0 + ∆yk, and tk = t0 + ∆tk, and the differences
∆xk, ∆yk, and ∆tk thus appear in Equation 3.4b as independent quantities. For
readability, this is important since these differences can be considered as the actual
system parameters.

One expands
�

∆xk
∂

∂ x
+∆yk

∂

∂ y
+∆tk

∂

∂ t

�n
by using the trinomial theorem which gives
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the power of trinomial sums:

(a+ b+ c)p =
∑

s1+s2+s3=p

p!

s1! s2! s3!
as1 bs2

cs3 (3.5)

where s1, s2, s3 are non-negative integers. The summation is taken over all si such
that

∑3
i=1 si = n for each sum iteration. This means that the sum will only contain

terms for which the three iterators s1, s2, s3 sum to 3. Note that, in this definition,
quantities of the form 00 are defined and equal 1.

The notation use ∂

∂ x
, ∂

∂ y
, and ∂

∂ t
. When multiplied, they equate partial derivatives.

For instance:

f (x)
�

∂

∂ x

�2

=
∂ 2

∂ x2 = fx x = f (2)

f (x)
�

∂

∂ x

�n

=
∂ n

∂ xn = f (2)

f (x , y)
∂

∂ x

∂

∂ y
= f (x , y)

∂ 2

∂ x∂ y
= fx y = f (x , y)

∂ 2

∂ y∂ x
= f y x = f (1,1)

Notice that second and higher order crossed partial derivatives are always considered
equal: fx y = f y x , fx y t = ft y x . It is usually assumed, for p times continuously differen-
tiable functions, that it does not matter in what order of variable the differentiation is
done. Caution should be advised though, with functions like the image texture density
µI .

In efforts of actual implementation on digital images, the differentiability of this func-
tion is never certain since it originates from a discrete image operator.

3.3.3. An Example of Full Taylor Expansion

As an example, Γ3(pk) can be expanded. The expression will recursively contain
Γ0(pk), Γ1(pk), and Γ2(pk). Rather trivial cases are Γ0(pk) = µI(p0) and Γ1(pk) =
Γ0(pk) +∆xkµIx(p0) +∆ykµI y(p0) +∆tkµIt(p0).

For Γ2(pk) we have (all derivatives at point p0):

Γ2(pk) = Γ1(pk) +
1

2

�

∆xk

∂

∂ x
+∆yk

∂

∂ y
+∆tk

∂

∂ t

�2

µI(p0)

= Γ1(pk) +
1

2
∆xk

2µIx x +∆xk∆ykµIx y +
1

2
∆yk

2µI y y

+∆xk∆tkµIx t +∆yk∆tkµI y t +
1

2
∆tk

2µIt t
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For P3 we have (all derivatives at point p0):

Γ3(pk) = Γ2(pk) +
1

3!

�

∆xk

∂

∂ x
+∆yk

∂

∂ y
+∆tk

∂

∂ t

�3

µI(p0)

= Γ2(pk) +
1

6
∆xk

3µIx x x +
1

2
∆xk

2∆ykµIx x y +
1

2
∆xk∆yk

2µI y y x

+
1

6
∆yk

3µI y y y +
1

2
∆xk

2∆tkµIx x t +∆x∆yk∆tkµIx y t +
1

2
∆yk

2∆tkµI y y t

+
1

2
∆xk∆tk

2µIx t t +
1

2
∆yk∆tk

2µI y t t +
1

6
∆tk

3µIt t t

3.3.4. An Example of a Linear Three-Variable Taylor System

For clarity is seem like a good idea to also give an example of a linear system of Taylor
polynomials Γp – which could be called a linear tree-variable “Taylor system”.

The matrix equation for this Taylor system using Γp is:

Gpxp = bp (3.6)

For simplicity and space restrictions the system is built using Γ2. The matrix G2 looks
like this:

G2 =













∆x1 ∆y1 ∆t1
1
2
∆x1

2 ∆x1∆y1
1
2
∆y1

2 ∆x1∆t1 ∆y1∆t1
1
2
∆t1

2

∆x2 ∆y2 ∆t2
1
2
∆x2

2 ∆x2∆y2
1
2
∆y2

2 ∆x2∆t2 ∆y2∆t2
1
2
∆t2

2

...
...

...
...

...
...

...
...

...
∆xk ∆yk ∆tk

1
2
∆xk

2 ∆xk∆yk
1
2
∆yk

2 ∆xk∆tk ∆yk∆tk
1
2
∆tk

2













Notice that the single Γ0 term is missing – it is subtracted in b2.

And the vectors x2 and b2:

x2 =



















µIx(p0)
µI y(p0)
µIt(p0)

...
see higher order
derivatives above



















, b2 =











µI(p1)−µI(p0)
µI(p2)−µI(p0)

...
µI(pk)−µI(p0)











3.3.5. Solving the Taylor System

When the point sampling process is done the minimization process begin. As input
to this process, a list of image points are needed. A value for order p is also defined.
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For each of all these selected image points, the matrix equation Gpxp = bp is created.
The rows of matrix Gp are based on the k neighborhood points which lies within in a
distance of R from the current user selected images point.

Mathematica support least squares minimization using function LeastSquares[].

This function seeks to find the x∗p which minimizes




Gpx
∗
p − bp







2
.

When such a solution x∗p has been found, the three first elements, µIx , µI y , and µIt ,
are used as the partial derivative estimates. These estimates, and the actual value
of µI , are hereafter inserted into constraint equation Φ (this is done once for the
total of h different models of image texture density). When the derivatives has been
estimated for all user selected points and for all image texture densities defined, a
final non-linear constraint system is constructed and attempted solved (or minimized
in a non-linear least square sense).

This section took a detailed look into the work required for numerically estimating
derivative. The methods seems very stable as the results in the next section will also
show.

The order p is very important. Appendix B shows some graphics of some constraint
trials with different order p. These trials are created by simulating all known values
for P, Q, Z , U , V , and W and inserting these into constraint equation Φ for all image
points at time tTOI . The derivatives are hereafter estimated with a specific order p and
also inserted into constraint equation Φ for all image points at time tTOI . The exact
constraint value should thus be zero at all image points. It is evident from Appendix
B, that with higher order p, the constraint trial gets closer to zero.

3.4. An Example with Results

The goal of this section is to present some concrete results using the context of a
numerical example. It will for the first time involve physical quantities with SI units.
A single situation, calibrated in space and time, involves several variables to defined.
Such a single situation is presented in this section and it means that a number of
variables will be explicitly defined. It concludes by solving a constraint system built
using constraint equation Φ. Appendix B will show further results from this example
and another with different surface parameters.

3.4.1. Global Setup Parameters

A number of variables, which could be called global, have already been defined
throughout the text in this chapter. This section briefly combines these definition
into a single place, and also makes explicit definitions of other global variables. All
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the parameters defined for surface basis, translational velocity, and time index, sur-
face, and image point sampling etc.; are all identical to the calibrated quantities used
in the camera experiments in Chapter 4. The example shown here, is just the synthetic
version of the single example of a camera experiment used in Chapter 4. Figure 3.19
shows the general situation.

Figure 3.19.: The general situation. A square frontal plane surface translates toward
the camera with velocity vector V. The square surface had dimension
19.5 cm. The surface points on the surface, are formed on a grid with
square cells of dimension 0.975 cm. The movement follows the Z-axis.
There is no movement in the X - and Y -axis (see text).

In the following some numerical definitions will be made. These are physical quan-
tities with units. Since the experiments involve the concept of moving surfaces, the
scale of distances and length are very important. A good scale of such measures
appears to be units in centimeters in 10−2 m or cm. Time is measured/given in cen-
tiseconds i.e. 10−2 s or cs.

The resolution constant is r = 10. This logically implies that the number of surface
points and image points at any time t i is k = 441. The global symbol d defines the
number of frames Fi and images Ii. It was explained in Subsection 3.2.1 that this
quantity is determined by a time-to-collision analysis with the origin O. This was only
necessary if W > 0, which is exactly the case in this example since V = [0, 0, W],
where W = ∆Z

∆t
, with∆Z > 0. The plane thus translates toward the camera in a direct
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line following the Z-axis; there is no movement in the X - and Y -axis. This is also the
case with the camera experiments. Also, the camera focal length is set to f = 5 cm.

Variable Value Description
r 10 Surface resolution constant.
k (2r + 1)2 = 441 Number of points in frame Fi and image Ii.
iPADDING 3 Time index padding for active subset.
dAC T IV E 1+ 2iPADDING = 7 Number of active time indexes.
f 5 cm Camera focal length.

Table 3.1.: Parameter Group A – Global Setup.

The simulation is only done for a subset of all times; from time index i = iTOI−iPADDING

to time index i = iTOI + iPADDING. In this example iPADDING = 3. Determining iTOI is
not possible before d is defined. And the definition of d is independent on the surface
basis (a,b) (which defines N), and the velocity W = ∆Z

∆t
m/s. Table 3.1 summarizes

the definitions given so far into one group of parameters: Group A – Global Setup.

3.4.2. Surface Parameters

The surface basis (a,b) defines the orientation of plane surface S and the coplanar
distance between the surface points Pi, j at time t i. In this example, as well as in the
camera experiments, the plane is frontal with N = [0, 0,1], i.e. P = 0, and Q = 0.
For surface S to be frontal, the Z-component of vectors a and b must be zero. Thus
the surface basis (a,b) is a set of vectors, spanning a vector space in the (X , Y )-plane
only.

The size of this basis, i.e. the length of the two vectors a and b, is determined using
calibration parameters of a plane surface in space. In the camera experiments, in
Chapter 4, a physical plate with a certain dimension is used. On this plate, a piece
square of textured cardboard is attached, with a specific dimension of 19.5 cm.

This piece of cardboard can be considered as the subset of the plane surface S, on
which surface points Pi, j are defined, at time t i. The surface points are coplanar and
equidistant in their plane. The surface basis is defined such that exactly 44l surface
points form a rectangular grid on the piece of cardboard. Obviously this grid is the
result of the surface point sampling procedure. The square grid cells of this grid have
the dimension 19.5p

441−1
cm = 0.975 cm. This length is exactly the length of the X -

component in a (Y -component is 0) and the Y -component b (X -component is 0) (see
also Figure 3.19).

The plane surface S has a certain origin in space; its location at time t1. This surface
origin is defined by the surface origin vector OS = [X0, Y0, Z0]T . The surface origin
vector OS defines the location (in space) of this center point, and it is parallel with the
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Variable Value Description
a [0.9750 cm, 0.0000 cm, 0.0000 cm]T Surface basis vector.
b [0.0000 cm, 0.9750 cm, 0.0000 cm]T Surface basis vector.
N [0,0, 1], thus P = 0 and Q = 0 Surface normal vector.
OS [X0, Y0, Z0]T = [0, 0,−74.704 cm]T Surface origin vector.

Table 3.2.: Parameter Group B – Surface location and orientation.

Z − axis. The Z-axis also intersect the surface at its center surface point (at surface
index coordinate (0, 0)221) and OS thus also lies on the Z-axis. The exact calibrated
value is a result from choice: OS = [0,0,−74.704 cm]T . The frontal plane surface S
is thus at a distance of exactly 74.704 cm from the camera.

Table 3.2 summarizes the parameters presented in this subsection: Parameter Group
B – Surface location and orientation.

3.4.3. Time and Velocity Parameters

The distance ∆Z , traveled on the Z-axis per time interval ∆t, was explicitly chosen
when doing the camera experiment example. The exact quantity is ∆Z = 0.5 cm.

The definition of the time interval ∆t is a results of a numerical calibration. At first,
a realistic guess is made on its value. The point sampling procedure at time tTOI

is hereafter repeated, using all the parameters defined so far, combined with other
parameters defined later. On each repeat, the time interval ∆t is manually adjusted,
until the scale of time is comparable to the scale of image point coordinates at time
tTOI .

Without this calibration, the estimated image texture density derivatives contain er-
rors of such magnitude that the final constraint minimization fails. The numerical
cause to this, lies with the linear least square minimization used for estimating deriva-
tives.

The time interval was calibrated to ∆t = 0.075 10−2s. The surface velocity compo-
nent in the Z-axis is thus W = ∆Z

∆t
= 0.5 10−2 m

0.075 10−2 s
= 6.667 m/s.

Knowing the size and orientation of the surface basis and the velocity W , makes it is
possible to estimate the total number of time indexes d. The time-collision-analysis is
simple because the surface is frontal. The surface point used for analysis is the center
point with surface index coordinate (0,0)221.

Equation 3.1 on page 40 defines a vector equation for space coordinates. We are
interested in Z > 0. The following equation, the third component of point vector
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Pd,221, is solved for d:

Z0+ t iW = 0⇔
Z0+ (d − 1)∆tW = 0⇔

−74.704 10−2 m+ (d − 1) · 0.075 10−2 s · 6.667 m/s= 0⇔
d = b150.408c= 150

Using the floor function, makes sure that d remains integer and that Z > 0. This
means that a total of d = 150 time indexes can be defined before collision with
camera origin O occurs. The middle number of these is number 75, which should
the value of dTOI . Instead dTOI = 11, simply because only a maximum of exactly 21
images were created in the corresponding camera experiment. Finally, the exact time
at time index dTOI is tTOI = (d − 1)∆t = (11− 1) · 0.075 10−2 s= 0.75 10−2 s.

Variable Value Description
∆t 0.075 10−2 s Time interval.
∆X 0 cm X -axis distance interval.
∆Y 0 cm Y -axis distance interval.
∆Z 0.5 cm Z-axis distance interval.
V [U , V, W]T Surface velocity vector.
U 0 m/s X -axis velocity component.
V 0 m/s Y -axis velocity component.
W 0.5

0.075
m/s= 6.667 m/s Z-axis velocity component.

d 149 Total number of time indexes.
iTOI 11 Time-Of-Interest index.
tTOI (d − 1)∆t = 0.75 10−2 s Time-Of-Interest time.
R 0.25 cm Derivative estimation (x , y, t)-radius.

Table 3.3.: Parameter Group C – Time and velocity.

Table 3.3 summarizes the parameters presented in this subsection: Parameter Group
C – Time and velocity.

3.4.4. Surface Texture Density Functions

The surface texture density is modeled using h= 6 functions Tl(m, n). These functions
are defined in Table 3.4: Parameter Group D – Surface texture density functions.

The nature of these functions is basically a result of trial and error. This set of six
functions appears to give a functional model of texture density – i.e. a synthetic model
which makes it possible to minimize the constraint system in the end and estimate the
3D surface structure. The results presented in this report, were carried using all these
functions and only these functions.
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Variable Value
T1(m, n) m
T2(m, n) n
T3(m, n) m+ n
T4(m, n) cos n
T5(m, n) cos m
T6(m, n) cos m+ cos n

Table 3.4.: Parameter Group D – Surface texture density functions.

Figure 3.20 shows the six surface texture density functions T1, . . . , T6, in the form of 2-
dimensional density plots. Certainly these six functions are infinitely and continuously
differentiable.

Though it certainly would be possible, no algebraic expressions of the corresponding
image texture density functions will be given. Such expression will be dependent on
a large number of variables and since these explicit expressions were never used, it
would serve no purpose showing them here.

3.4.5. Parameters for Partial Derivative Estimation

The radius R used in the derivative estimation method, was also a manually calibrated
quantity. It was calibrated to 0.25 cm. The order used is p = 12.

Variable Value Description
R 0.25 cm Derivative estimation (x , y, t)-radius.
p 12 Chosen order of Taylor System

Table 3.5.: Parameter Group E – Derivative Estimation.

For clarity these two parameters are listed are also defined in Table 3.5: Parameter
Group E – Derivative Estimation.

3.4.6. User Specified Image Points

The many variable definitions up until now has been absolutely necessary for the
sake of clarity. In the simulation run of the computational experiment example, we
have now just finished with the point sampling procedure. The next procedure, the
minimization procedure, needs a list of kWORK image points to continue.

Of course there is the question: Why even bother with selecting more than one point?
The reason is related to the final goal, minimization of a constraint system. A first
result of considerable importance, is the fact that the solvability of the system is not
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Figure 3.20.: Density plot of the h = 6 surface texture density functions Tl , for l =
1, . . . , 6.

Variable Value (m, n) j
p11,136 [−0.2664,−0.0666]T (−4,−1)136

p11,209 [−0.0666, 0.5995]T (−1, 9)209

p11,221 [0.0000,0.0000]T (0,0)221

p11,356 [0.4663,−0.5995]T (7,−9)356

Table 3.6.: Parameter Group F – User selected image points.

good when only one image point is used. On the other hand, when two or more image
points are used, the solvability seems almost guaranteed (for variables P, Q, and Z).

A set of kWORK = 4 points are chosen. Figure 3.21 shows a GUI created with Math-
ematica. This GUI makes it possible, rather comfortably, to choose a set of image
points. To the left in the GUI the current set of image points are shown (the image Ii

for i = iTOI which is image G11). The larger dots are the ones which have been se-
lected for further analysis. To the right in the GUI, the truth-table is shown. For each
of the four image points shown selected, the truth table shows (1) the correspond-
ing point iterator index j, (2) the corresponding surface index coordinate (m, n), (3)
the image x-coordinate, (4) the image y-coordinate, (5) the corresponding space X -
coordinate, (6) the corresponding space Y -coordinate, (7) the corresponding space
Z-coordinate (depth), (8) the corresponding X -axis surface gradient P, and (9) the
corresponding Y -axis surface gradient Q.
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Figure 3.21.: Version 6 of Mathematica has advanced capabilities for creating dynamic
content such as GUIs. This dynamic GUI makes it possible to choose a
number of image points for further consideration in the minimization
process. To the left of the image points chosen, the truth-table for the
image points is shown. This truth table contains much of the infor-
mation which one seeks to estimate using constraint minimization (see
text).

Variable Value (m, n) j
P11,136 [−3.7143,−0.9286,−69.7040]T (−4,−1)136

P11,209 [−0.9286, 8.3571,−96.7040]T (−1,9)209

P11,221 [0.0000,0.0000,−69.7040]T (0, 0)221

P11,356 [6.5000,−8.3571,−69.7040]T (7,−9)356

Table 3.7.: Parameter Group G – Corresponding surface points.

The image points selected in Figure 3.21 are the points p11,136, p11,209, p11,221, and
p11,356. Their coordinates and corresponding surface index coordinate are shown in
Table 3.6: Parameter Group F – User selected image points.

The coordinates of the corresponding surface points P11,136, P11,209, P11,221, and P11,356

are shown in Table 3.7: Parameter Group G – Corresponding surface points.

For completeness the numerical values for the estimated partial derivatives of the
image texture density in all of the 4 selected points, are also shown in Table 3.8:
Parameter Group H – Image texture density derivatives.
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Table 3.8.: Parameter Group H – Image texture density derivatives.

3.4.7. Minimization Results in General

The remaining subsections of this section will each present a certain minimization
situation and result. These different situations are based on different choices of image
points (out of the set of four already defined) and on the choices of unknowns.

Some methods for solving or minimizing non-linear system, requires an initial point
for every variable solved for. Since it was never a goal in this work to make a thorough
investigation into the exact numerical behavior of these constraint systems, the initial
point is simply set to zero in all minimization attempts and for all variables.

Subsection 3.4.8 focuses on single point minimization. These are situations where
only one specific image point is used for building the constraint system. All 6 texture
density models/functions are still used. Such constraint systems will thus contain 6
different equations, all based on constraint equation Φ.

Subsection 3.4.9 focuses on multiple point minimization. This refers to minimiza-
tion attempts using more than just one image point to build the constraint system.
The number of points used in this example is the exact number of user selected im-
age points: kWORK = 4. The number of equations in the constraint system is thus
h · kWORK = 6 · 4= 24.
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3.4.8. Single Point Minimization

The constraint system can be built using one or more image points. In each case it
will create a non-linear system of h= 6 equations, each corresponding to the different
model/function of image texture density.

The minimization was done for each of the four already chosen image points. This
subsection will show a small subset of the results from these minimization situations.
The difference of situation lies in the choice of number of variables. There are a total
of six unknowns in the constraint equation Φ. These are P, Q, Z , U , V , W . There are
6 situations with one variable, 15 with two, 20 with three, 15 with four, 6 with five,
and 1 situation with all six variables. In total there are 63 combinations of these six
unknown.

The results for all 63 combinations, for two of the selected image points, can be found
in Appendix B. Tables B.1 to B.6 show the full numerical results achieved when using
different methods of minimization. This subsection will show a few minimization
results and some 2D and 3D plots which should convey clearly, the characteristics of
the different situations of minimization, when attempted using local and/or global
search techniques.

Figures 3.22 to 3.25 show the two-dimensional plots resulting when attempting sin-
gle point, single variable, minimization. Plots are shown for all four image points
originally selected, and for all six variables.

The thin lines in the plots corresponds to the equations in the constraint system. For a
single point, for a single variable; there exists h= 6 of such lines in the corresponding
constraint system. The thick curve is the squared norm-2 of the system. The black
point is the correct known value, taken from the truth-table.

The minimum of these curves is a global minimum and noticeably this minimum is
correct in all plots, within errors of ±10−2. Though the plots are only for one single
variable in one single image point, this is still an important step in the right direction.
The reader is encouraged to compare these plots with tables of parameters presented
earlier in this section.

Remember, for instance, that the current scene depth is Z = −69.704 cm and the
current velocity on the Z-axis is W = −6.667 m/s. The minimization at all four
image points, for Z and W , is likely to be very acceptable. This is indeed also the
case, which can seen in Tables B.1 and B.4 for image points p11,336 and p11,359.

Figure 3.26 shows a 3D plot of the two-variable case for P and Q, for image point
p11,136. The planes in the image corresponds to the 6 equations in the constraint sys-
tem. The surface thus naturally corresponds to the squared norm-2 of the constraint
system.
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Figure 3.22.: Plots for single point minimization for P, Q, and Z . The two columns
show plots for image points p11,136 and p11,209.
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Figure 3.23.: Plots for single point minimization for U , V , and W . The two columns
show plots for image points p11,136 and p11,209.
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Figure 3.24.: Plots for single point minimization for P, Q, and Z . The two columns
show plots for image points p11,221 and p11,359.

70



3.4. An Example with Results

Figure 3.25.: Plots for single point minimization for U , V , and W . The two columns
show plots for image points p11,221 and p11,359.
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Figure 3.26.: 3D plot for single point, two-variable, minimization; for variables P and
Q, for image point p11,136.
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Figure 3.27.: 3D plot for single point, two-variable, minimization; for variables Z and
W , for image point p11,136.

An important result is witnesses here. For certain situations, with two or perhaps
several variables, the constraint equations form planes which intersect in one line.
This corresponds to an unfortunate effect for the squared 2-norm surface. As can be
seen, the surface forms one large folded “piece of paper”. The “fold” is the infinite line
which intersect with the correct solution. The initial point used in the minimization
thus becomes very important. It was set to zero in all minimization attempts.

For variables P and Q, which both equals zero in this example, the minimization does
converge at exactly this minimum, which is no surprise since the initial point is zero
for both variables.

Figure 3.27 show another 3D plot for variables Z and W , the only two non-zero vari-
ables in the current example. This plot also forms a global fold on an infinite line with
the correct solution. As can be seen in Table B.1, local search techniques were not
successful in solving correctly for an Z and W . Tables B.2 and B.3 show that global
search techniques were also not successful. This is probably due to the fact the initial
point for local search, is far from the correct solution.

This subsection took a look at single point minimization. Important results were pre-
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sented. Especially the importance of the initial point of local minimization. Further
minimization results are shown in Appendix B. The bold values in the tables, corre-
spond to values which are close to the true values (within an error of ±10−2).

3.4.9. Multiple Point Minimization

This subsection will briefly show some numerical results and some 3D graphical plots
created from a few examples of multiple point minimization attempts, using all 4
image points.

When minimizing using more than one image point the choice of variables is different
than for one point minimization. The question is not only limited to what variables
to solve for. One must also consider the expected surface characteristics solved, for in
each image points.

As an example, consider estimating surface orientation and depth for a rigid translat-
ing non-rotating non-frontal plane surface. This would certainly include the variables
P, Q, and Z . The other tree variables, U , V , and W would be considered known. The
two surface gradient variables, P and Q, can now both be considered surface global;
i.e. they are the same for all 4 image points. In such a case, only the variables P
and Q would be used in the constraint system. On the other hand, the scene depth is
surface local; i.e. it is different for each image point. The constraint system thus also
contains the variables Z1, Z2, Z3, and Z4, each corresponding to one of the 4 image
points.

For different non-planar surfaces, P and Q are surface local parameters. The constraint
system will thus contain the variables P1, P2, P3, P4, Q1, Q2, Q3, and Q4. Including
the variables for depth.

Do to the inherent complexity in choosing for variables and their surface characteris-
tics, some simplifications will be necessary. Tables B.7 to B.9 show the results from the
63 combinations of the multiple point minimization, when considering, in each case,
all six variables to be surface global. These are the only multiple point minimization
results which involve the variables for velocity, i.e. U , V , W .

The remaining results for multiple point minimization will only involve variables P,
Q, and Z . Two further minimization examples are shown: (1) with P and Q as surface
global and Z as surface local, and (2) with all three variables as surface local.

Tables 3.9 and 3.9 show the mentioned minimization results. The minimization is
correct for all the variables.

The remaining parts of this subsection will present a few 3D plots which should give
a better understanding of what actually happens when more image points are used to
build the the constraint system.
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Table 3.9.: Numerical results of multiple point minimization using all four image
points (P and Q as surface global and Z as surface local).

Table 3.10.: Numerical results of multiple point minimization using all four image
points (all three variables as surface local).

Figure 3.28.: Multiple point minimization; all four image points; for P and Q as sur-
face global variables (see text).

Figure 3.29.: Multiple point minimization; only two of the four image points; for Z1
and Z2 as surface local variables (see text).
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Figure 3.28 is a 3D plot for a special minimization attempt with only variables: P
and Q, but using all four image points. The graphic to the left show how 24 planes
intersect in a single point. This point is the correct value for P and Q, namely (0,0).
The graphic to right shows the squared 2-norm surface which seems to have a global
minimum.

Thus it seems, that by adding several image points, the constraint system becomes
easier to minimize. Global minimums seems to form – which is quite positive.

Figure 3.29 show a 3D plot for a different minimization attempt. Here, only two
image points are used: (1) p11,136 and (2) p11,209) and we only solve for Z1 and
Z2 (surface local minimization). Again a global minimum seems to form, even with
surface local minimization using only image points. Appendix B shows further results
for multiple point minimization, using the numerical context of this example.

This chapter turned out to be a longer chapter, including details from the simulation
itself, the data flow, estimation of partial derivatives, and a full numerical example
with some some important results.

The next chapter will introduce the methods applied and the results achieved in the
camera experiments. That chapter is not nearly as long as this one, due to the fact that
the computational experiment did receive greater attention throughout the project
period. The majority of the time was put into designing, testing, and debugging the
computational experiments.

The time was well spent, it seems. It actually is possible to solve for 3D structure
in many circumstances – especially if multiple point minimization is used. Naturally
the next step is the camera experiments and the broader application focus that they
have.
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This chapter is concerned with the camera experiments. It takes a first look at the
experimental setup in Section 4.1. Section 4.2 explains how textures were synthesized
and analyzed. Especially how image texture density was attempted estimated in
image sequences of a textured surface. Certain difficulties with segmentation of
texels in real camera images did turn to be quite problematic for the end goal.

By the time of writing, no estimates of 3D surface structure has been achieved in
the camera experiments. The problems faced in the segmentation part, turned out
to be detrimental to the final goal and the time schedule. Section 4.3 will have final
comments on this.

4.1. The Experimental Setup

The camera experiments are much different than the computational experiments.
They involve a physical experimental setup, a real digital camera, and a real textured
(plane) surface.

When considering that the end goal was not achieved, this chapter will direct its focus
on the image processing methods applied and the problems faced. Before that, this
section will take a look at the experimental setup and briefly mention some possible
sources for error.

A brief account on the building process will be given in Subsection 4.1.1. Later,
Subsection 4.1.2 presents an overview of the geometry and the different parts of the
setup.

4.1.1. The Building Process and Likely Sources of Error

The building process involved different kinds of considerations and methods. Over a
time span of several months the experimental setup was designed, built, measured,
and calibrated. And calibrated again. Applying knowledge and material from the
mechanics engineering department; tools such as rulers, calipers, tape measure, etc.;
the setup slowly its took form.
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4.1. The Experimental Setup

The photographs in Figure 4.1 show the experimental setup from different views. As
can be probably be gleaned from these images, much of the work in building the
setup consisted of taking measurements. Lots of measurements. Almost all of these
measurements were made with precisions down to a scale of 500 µm.

The manual caliper used, was equipped with a vernier scale which allowed measure-
ments to be made down to a scale of 10 µm. When possible, such precision was
attempted.

At the time, when the design and preliminary assembly stage was set to begin, many
of the results from computational experiments had already been achieved. The path
was clear to continue with the camera experiments. The process began with designs
consisting of crude hand-drawn schematics. Communications with the mechanics
engineering department (MED) was initiated and raw material was selected.

It was at this point that some mistakes were made. The precision requirements were
simply not specific enough. This resulted in the use, by the MED, of assembly methods
which made later calibrations very difficult. For instance, welding was used. The
heating will inevitably change the topology of the metal surfaces enjoined, especially
at scales of ±10 µm.

Also, the choice of some of the material were later determined to be a possible source
of calibration error. The iron metal-frame, used as a motion-track, was produced pri-
marily for industrial use, i.e. with much lower precision requirements than needed
in computer vision experimental setups. The experimental setup was attempted cali-
brated, with these sources of errors in mind.

The camera experiments also implied the existence of actual textured surfaces. From
the beginning the surface was simplified to a plane. A plastic plate of approximate
dimensions 40 mm× 40 mm, considered to be acceptably planar, was chosen as the
corresponding surface.

Since surface orientation is especially important to the primary method, a way of
adjusting the orientation of the plastic plate was needed. A camera ball-head became
the method of choice. The ball-head, originally intended to calibrate the orientation
of cameras, was believed to meet the precision requirements.

The calibration of the camera ball-head showed to be very difficult due to its freedom
of movement. Calibration was attempted, with the plastic plate removed, by attaching
a small class 2 battery-driven laser pointer on the ball-head, having the laser beam
acting as the “normal vector” to the plate. A preliminary idea was to create a small
subset of the surface gradient space (P,Q) on a wall adjacent to the setup. When
the laser beam was pointed to a coordinate in this subspace, the orientation could be
considered calibrated.

It was later determined that the laser pointer itself was impossible to calibrate. It was
not professional equipment and the source of error was probably similar to that of
the iron metal frame. Having exhausted both options and time, it was at this stage
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decided that the camera experiments would only show results achieved with a frontal
plane, moving toward the camera in a straight line following the Z-axis.

Different kinds of textures were synthesized in Mathematica. By using its symbolic
graphical programming languages, this showed to be almost unbelievably easy. For
simplicity reasons, it was decided that the textures had to consist of independent
texels, easily separable. Two types of textures were created: (1) A texture consisting
of small colored circles, and (2) a texture consisting of short colored line segments
of various rotations. Both were printed on standard white cardboard paper with
unknown specularity.

Eventually the first type of texture, the one with circles, was discarded. It was found
difficult to separate texels by color only. The idea of making a texture consisting of line
segments was based on the hypothesis that, by combining color and line orientation,
the texel separation and counting would be easier.

This hypothesis showed to be very true on a synthetic image with colored lines. But,
as later sections will describe, this form of texture eventually turned to suffer from
the same problems as the circle-textures: difficulties with color separation.

A single experiment, using a single line-segment texture, and a single image sequence
was carried out. The numerical context used in this experiment, is identical to the
one defined and used in the numerical example in Section 3.4.

Section 4.2 and 4.3 will both have more to say about the methods in this single
experiment and the results achieved.

4.1.2. Geometry and Parts

Figure 4.2 gives an overview of the experimental setup and its parts. The setup is fully
manual; everything is moved by hand. The texture-plate is attached on a camera ball
head, which again is attached to an L-shaped movable metal arm – the surface-arm.
The surface-arm is fully detachable and slides on an iron-frame –the motion-track.

The motion track acts at the line-of-travel for the surface. In the single experiment,
this line-of-travel is parallel with the line-of-sight in the camera. The motion-track
rest on a large metal block – the center-block. When originally designed, the intent
was to have a motion-track with two freedoms of movement: yaw and pitch. The idea
was to have the motion track centered on some form of pivoting mechanism which
allowed these two forms forms of rotation.

An existing mechanism, originally intended for other precision work, was proposed by
the MED to shorten the time spent on construction. This mechanism was used as the
center-block. Using this quite heavy mechanism, a yaw rotation can be applied to the
motion track by turning a handle. On the other hand, the effort required to change
this mechanism into different positions of pitch-rotation, did eventually turn out to be
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Figure 4.2.: A diagram which should give an overview of the geometry and different
parts of the experimental setup. As expected the camera is at the origin.
The focal length and the image plane is somewhere close to the origin,
naturally inside the camera. It was found impossible to calibrate for con-
cept of a camera origin and a focal length distance to an image plane.
The camera was simply calibrated to be as close to the origin as possible
(see text).
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be counter productive. Great force needs to applied using a hammer or similar tool.
Thus only yaw rotation is possible. A yaw rotation corresponds to V 6= 0.

The camera, a Leica Digilux 2, is mounted on a standard camera-tripod. This tripod
rest on a table surface. The tripod is not fastened to this table surface, which makes
possible final adjustments before imaging begins. The tables are standard office tables
with wooden surfaces.

Using this setup, is is possible to create image sequences of a moving plane textured
surface. This is done by attaching a texture to the texture-plate (textures can be
attached and removed using velcro). The motion-track is adjusted to the wanted line-
of-travel. In the current experiment, imaging was done manually by first moving the
surface-arm 5 mm and then taking and image; moving and taking an image; repeated
21 times until 10 cm had been covered on the motion track.

The digital Leica camera used, has many different options for controlling the imaging.
The ISO setting used was ISO100. Settings for shutter speed and aperture were con-
trolled automatic by the camera (known as “programmed automatic exposure mode”).
Auto focus was used and the exposure metering method was set to multi-field metering.
Different settings for white balance was used and tested for. Eventually the manual
setting for white balance was used. Standard white paper was used for manual cali-
bration.

4.2. Texture Synthesis and Analysis

This section will present the methods used for texture synthesis and analysis. Subsec-
tion 4.2.1 takes a brief look at the texture and the methods used to create them. The
analysis covers (1) texel segmentation and (2) texel counting. Methods and problem
related to texel segmentation is presented in Subsection 4.2.2. Subsection 4.2.3 does
the same for texel counting.

4.2.1. Texture Synthesis

It was determined that the best textures would be simple textures consisting of sepa-
rable texel-groups divided into separable groups or subgroups of texels. Each of these
groups thus corresponds to the different surface texture densities.

A texel-group is simply a subset of all the texels in one texture. The texels of a single
texel-group will need to have some form of similarity in either color or shape. Two
texels belonging to two different groups will need to have some form of dissimilarity
in either color or shape. texel-groups can have subgroups of texels. The same simi-
larity/dissimilarity rules applies recursively. No texel covers part of another texel. A
minimum distance between all texels was enforced in the synthesis.
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It was decided that a texture would need to have at least 6 separable groups with
texels. This number was inherited directly from the computational experiment where
h = 6 surface texture density functions are used to numerically model the texture
density on the surface.

Two textures were created:

1. A circle-texture with 6 texel-groups. Each texel-group contains 300 circles with
a diameter of 1 mm. There are a total of 6 texel-groups; each with circles of
different color. These 6 colors are: red, green, blue, cyan, magenta, and yellow.
No subgroups are defined. A global minimum distance was set to 0.5 mm.

2. A line-texture with 4 texel-groups, where each group consists of yet again 2 sub-
groups. Each texel-group contains 500 line segments with a length of 2 mm.
There are a total of 4 texel-groups; each with line segments of different color.
These 4 colors are: black, red, green, and blue. The 2 subgroups with the color
black, each has 250 line segments with an orientation of (1) −90◦ and (2) 0◦.
The 2 subgroups of the 3 other texel-groups has orientation (1) −45◦ and (2)
+45◦. A global minimum distance was set to 0.25 mm (see text below).

The definitions above requires further elaboration. Both textures were synthesized
such that all texels would fit on a piece of 19.5 cm×19.5 cm cardboard paper. Figure
4.3 shows two synthetic prints of the two textures. These prints are similar to the
cardboard-prints used in the experiments.

The circles in the circle-texture were placed by sampling the coordinates of the circle
centers using a pseudo-random number generator (SRG) (the mersenne twister was
used). The SRG would generate a center coordinate within coordinate limits. The
coordinate generated was hereafter checked for collision with other already placed
circles, taking in considerations such as radius and minimum distance.

A “bad-candidate” is a generated center-coordinate which collides with an existing
circle. The probability for this to happen is naturally higher in the later stages of the
synthesis, were more circles had been successfully placed. A bad-candidate limit of
10000 was used. If this limit was reached, the circle placement was aborted. This
only happened when too many circles, too large a radius, and/or to large a minimum
distance was used. And since pseudo-random number generation was used, a second
run sometimes turned out to be successful for all circles.

The line-texture was synthesized using the same techniques. A circle-texture is also
created. But instead of colored circles, line segments are places such that their center
point is a circle center and their length is equal to the circle diameter.
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4.2. Texture Synthesis and Analysis

4.2.2. Texel Segmentation

The texel segmentation is crucial for later stages that counts actual textures using
connected-component analysis. This concept was visited briefly already in Chapter
1 where an example of synthetic density in an image was given (Figure 1.8 on page
1.8).

The segmentation in the camera experiments was attempted by using simple non-
uniform color quantization. MATLAB has facilities which converts an RGB-image to
an indexed-image with colormap. The colormap contains only the colors wanted from
the original RGB-image. Dithering was not used.

A subset of RGB colors are used. For instance, to create the circle-texture, six colors
were used: red, green, blue, cyan, magenta, and yellow. These are the quantization-
colors for the circle-texture. For the line-texture there are: black, red, green, and
blue.

Non-uniform color quantization works by partitioning the RGB-space into non-uniform
volumes with the quantization colors as the center colors. The size of the volumes is
such that all original colors in the original RGB-image, are mapped to a quantization
color.

This method appeared at first to be quite a strong formalism for segmentation based
on color only, and it obviously worked on the synthetic versions of both textures (the
original raster graphics). But it did eventually turn out to be quite sensitive to the
lighting used when the image sequence was created.

The experiments were created in a room with quite a complex lighting situation.
Large glass-openings exists which gives passage to the hall-lighting outside the room.
And the room itself has low-energy lighting in the form of a single halogen-lamp in
the ceiling. Darkening of the room was very early in the project deemed unnecessary.
This was a certain mistake since quite complex lightning situations do occur.

It now seems as a good idea to a look at the actual images created using these tex-
tures. Figure 4.4 show image number 11 in an image sequence created using the
circle texture. The white balance in the Leica camera was set to an automatic mode
best suited for halogen lighting. An extra light source was also used for this particular
sequence (a lamp with a standard 60 W incandescent light bulb). This light-source
was tilted down onto the texture plate, from above the camera. This created a com-
plex lighting situation, with two lighting sources. Also, this complex lighting situation
did not correspond to the white balance chosen in the camera.

To the left in Figure 4.4 the full image is seen (original dimensions are 2560× 1920
pixels). The image to the right shows a close-up of the textured area of the texture-
plate. The complex lighting situations is apparent in the close-up when looking at the
yellow circles. The ones at the top of the texture seems to be almost specular. At least
the color saturation seems stronger than in the lower parts of the texture.
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4.2. Texture Synthesis and Analysis

This effect is combination of the unfortunate placement of the incandescent light
source and the fact that the coloring substance applied to the cardboard paper by
the color laser printer used, seems to have a specular surface when the yellow hue is
produced.

Non-uniform color quantization using the 6 colors mentioned for the circle-texture
(combined with white for the background) was applied to the textured part of the
sequence-image shown in Figure 4.4.

Figure 4.5 shows the quantization results. The left image show a close-up of the
synthetic version of the line-texture. The middle image shows a close-up of a prepro-
cessed1 version of sequence-image 11. The image to the right shows the quantized
version of the same area. These image give a good example on the status of the seg-
mentation. The magenta circles are mostly read, and the cyan circles contains blue
pixels. This is certainly a step in the right direction, but further work is needed to
segment the circles in circle-texture.

These inconsistencies with colors turned out to be quite problematic for later steps
involving the counting of texels. The actual number of texels in a certain image patch
dI should be a cue leading to surface orientation alone. But this number is apparently
not invariant to lighting conditions. The fact that light sources has an effect on the
image texture density will most certainly be a problem which cannot be easily ignored
in later work.

Figure 4.6 shows sequence-image 11 from a sequence crated using the line-texture.
The sequence was created under more simple lighting conditions. Only the halogen
lighting source in the ceiling was used and the white balance was calibrated manually
using the surface of white paper as reference-white. The hue of the entire image seems
cooler (more blue) than for the sequence-image for the circle-texture in Figure 4.4.

Again we turn to non-uniform color quantization. Figure 4.7 show the results of
attempting to quantize a preprocessed version of the sequence-image shown in Fig-
ure 4.6. The colors used were black, red, green, and blue (and white for the back-
ground).

Again the left image show a close-up of the synthetic line-texture, middle image a
close-up of the sequence-image shown in Figure 4.6, and the right image show the
quantized version, resulting from using the 5 colors mentioned earlier.

Comparing the synthetic to the sequence-image (left compared to middle) it is evident
that the color conditions have changed completely. The segmentation is evidently
even worse than with the circle texture.

These examples have shown that segmentation based on color only, is perhaps not
as strong an invariant as first assumed. At least not when the experimental lighting

1A contrast enhancement and a standard median filter with a neighborhood of size 3×3 was applied
to all sequence-images.
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4.2. Texture Synthesis and Analysis

conditions could not be controlled any further. In later experiments the room used
for the experiments will need be darkened and forms of controlled lighting will need
to be applied.

4.2.3. Texel Counting

Since the actual texel segmentation showed to be unsuccessful with real camera im-
ages no image texture density estimates have been produced, and thus no minimiza-
tion attempts can occur.

In the event that texel segmentation should become successful, the addition of the
methods of this subsection should make true image texture density estimates possi-
ble.

This subsection will present the methods used and results achieved when seeking to
estimate texture density using the synthetic version of the line-texture.

The texel cardinality measures were done using hough transform analysis for finding
lines in images. The midpoint of these lines is used as an indicator for a texel. These
texel indicators are counted using a fixed and distinct neighborhood operation.

Remember that the line-texture consists of a total of 8 subgroup, each containing
line-segments with different color and different orientation. Since the target image is
fully synthetic, the color quantization works with no problem; it is able to correctly
segment the image into binary images containing black, red, green, and blue line-
segments.

The remaining part of this subsection will deal only with the red lines. This image
still contains two subgroups of texels: (1) red lines with a −45◦ orientation and (2)
red lines with a +45◦ orientation. The goal is yet again to segment the binary image
with red lines into two images containing lines with the different orientation.

These two images are further processed such that only the midpoint of each line is
a foreground pixel (a pixel with the value 1 in a binary image). These two images
are used for the texel cardinality estimation, using the midpoint of the lines as a texel
indicator.

The hough transform maps foreground pixels in a binary image to curves in a (θ ,ρ)-
space or hough-space. This space is usually referred to as the hough accumulator –
especially when a resolution is applied to the hough-space. The resolution for θ and
ρ where both set to increments of 0.25.

The hough transform can be used to find collinear points in an image. The goal here is
to find all the points in the image, which forms line-segments with orientations ±45◦.
To do so, the hough accumulator is filtered such that it only contains the theta-bands
at or close to ±45◦. Every other accumulator cell is set to zero.
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Figure 4.8.: An example of a filtered hough accumulator. The marked theta-bands
represents the subspace used to find the lines with orientation −45◦ and
+45◦. Note that the full hough accumulator is shown here.

Figure 4.8 shows an example of a filtered hough accumulator. The full hough accu-
mulator is shown. The marked bands at ±45◦ indicates the only preserved cells in the
full hough accumulator.

All the cells preserved are used to make an inverse hough transform, to find the set
of (x , y) coordinates in the image, which corresponds to points forming lines with
orientation ±45◦.

Figure 4.9 shows the results achieved with this orientation-based segmentation using
a filtered hough transform. The results seems promising. In the left image, all the
lines with a −45◦ orientation have been marked with a thick red dot. The same
happens in the left image for lines with a +45◦ orientation.

These thick red dots are the texel indicators; the midpoint of each line-segment. The
final step is now to apply a distinct neighborhood analysis on the two images contain-
ing the texel indicators. In each neighborhood a connected component analysis capa-
ble of counting groups of connected pixels was applied (8-connectivity was used).

The results are seen in Figure 4.10 using a neighborhood of size 64× 64 pixels. The
images show the density plots for the texel group containing red line-segments (com-
pare with the left image in Figure 4.3). The set of texel indicators have been super-
imposed onto the density plots. In the gray scale density plots, black is a minimum
count, and white is a maximum count.
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4.3. Results and Conclusive Remarks

The camera experiments have not been able to show results for 3D structure esti-
mation. This was primarily due segmentation difficulties and problems with light
conditions in the experimental environment.

The following series of problems were observed in the process:

• Calibration of the experimental setup showed to be extremely difficult. The as-
sembly methods applied and material used has inevitably introduced errors into
the system. But, due to the segmentation difficulties, is has not been possible
to test for these error by seeking to minimize a constraint system. It is possible
that, when actual texture density can be measured, these error will still have a
detrimental effect on the goal at hand.

• The experimental environment was probably unsuitable for these kinds of ex-
periments. The room used has several glass openings which easily introduces
other light-sources; for instance hall-lighting. This light could apparently not be
switched off manually. Darkening of the room was deemed unnecessary due to
the belief that texture analysis is insensitive to light conditions in general. This
proved to be wrong.

• Light conditions are very important indeed. Of course this is obvious when color
is used as a dissimilarity measure for segmentation of texels. It is plausible that,
with further work, the texel segmentation could be based purely on texel shape
instead of color.

The following results were achieved:

• The hough transform was successfully applied to a synthetic (binary) texture
containing line segments with different orientations. By filtering the hough
transform, the foreground pixels, corresponding to line segments close to a par-
ticular orientation, could be identified. Using these image points, a list of actual
line segments; including the two endpoints, θ , and ρ; could be generated.

• By searching through this list of line segments, the correct line segments are
identified, the midpoints is found, and texel indicators are thus available.

• The texel indicators can be used directly for image texture density estimations,
using a distinct neighborhood operation and 8-connected component analysis.

The problems faced and the mistakes made throughout the experiments are certainly
also results not easily ignored. There is much to learn here. Especially, that for color
based texel segmentation to work, the lighting conditions must be calibrated as much
as possible.
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One final remark is related to what one expects to know about the system. In these
experiments, the nature of the texture was always expected to be known. The algo-
rithms applied, use special knowledge about the texture (does it have lines, does it
have circles, what colors to expect).

This is important when seeking to generalize the problem to arbitrary textures. This
was evidently never the goal with this work. If this is attempted, then certainly more
advanced measures of texture density estimation needs to be developed. Also, it is not
known, if the concept of texture density can be usefully generalized to all surfaces,
which we would, under most circumstances, still refer to as textured.

This chapter took a brief look at some of the work applied in the camera experiments.
Results with 3D structure estimation would certainly have been positive. But the
problems faced in the camera experiments only makes the final goal inconclusive –
not impossible.
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5. Summary and Conclusions

This chapter is a summary of this report. Section 5.1 presents all the concrete results.
Section 5.2 takes a look at the possibilities for future work and concludes this report
with some final remarks. A short summary is also present in the abstract in the
beginning of the report on page v.

5.1. Concrete Results

This section will present a list of concrete results achieved in this work. These results
will be presented in two brief subsections: Subsection 5.1.1 will present the results
achieved in the computational experiments. Subsection 5.1.2 will do the same for the
result achieved in the camera experiments.

5.1.1. Results – Computational Experiments

In general the work carried out in the computational experiments, proves (computa-
tionally) that the formalisms behind the primary methods are correct.

This is apparently the first work which have shown, computationally, that the concept
of texture flow can be useful for direct estimation/extraction of 3D structure.

• Synthetic constraint systems can be built and solved using both local and global
minimization techniques.

• The solvability of the constraint system is certainly sensitive to the number of
variables, the number of image points, and the surface characteristics expected
for each image point.

• Using a local search with an initial points set to zero in all unknowns, did show
to be counter productive for some situations, especially when only a single image
point is used to create the constraint system.

• Using two or more image points, the constraint system seems to become much
easier to minimize. A global minimum seems to occur at the correct (synthetic)
values.
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• When considering all variables to be surface local, the number of unknowns
are increased and the solvability will in general decrease. Adding more image
points to the constraint system seems to yet again increase the solvability.

5.1.2. Results – Camera Experiments

The camera experiments faced certain problems with the experimental setup and the
methods chosen for texel segmentation was very sensitive to the lighting conditions
and the general camera setup.

The main goal of estimating 3D structure in an image sequence created with a digital
camera was not reached. The results are currently inconclusive.

• A result was achieved in the sense that a lesson was learned about the sensitivity
of texture analysis to the lighting conditions. The sensitivity is high.

• A possible method for estimating image texture density in textures containing
line segments was developed. Results were shown to be successful on synthetic
texture.

Later parts of Chapter 4 has further conclusions on the results achieved and the prob-
lems faced.

5.2. Future Work and Final Reflections

Future work on the primary method for direct estimation of 3D surface shape and
velocity using texture flow is certainly possible. This is perhaps a very large under-
statement. This work opens up for a new and large research potential in all areas
related to monocular 3D surface reconstruction, using texture density cues from im-
age sequences of textured surfaces.

5.2.1. Limitations of the Primary Method

It seems plausible, that the primary methods, with its reliance on texture density, is a
strong method for direct estimation of 3D structure. But it is not necessarily a strength
that the method relies so heavily on a texture feature. Texture is a very complex
image feature, and texture density is certainly no less complex. It is plausible that
the primary method is only applicable for situations where the surfaces has known
texture.

Since the method relies on the concept of texture density and the possibilities for es-
timating it, further work into the exact definition and extraction of texture density
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should be highly encouraged. Texture has been addressed in the general areas of ad-
vanced image analysis. Research into this field takes much use of advanced stochastic
methods to define, synthesize, and analyze textures from the real world. Perhaps the
primary method could, somehow, benefit from such fields of research.

Texture density is in general, quite a simple concept. It is an image features which
is expected to exists in all textures. But the simplicity breaks down when seeking to
generalize over all textures. What to count? What is a texel?

Most importantly, for the primary method to work, the definition of texture density
should probably not be vague and simple. In any regard, it seems absolutely crucial
that such a concept receives new attention.

This brief chapter took a look at the major results achieved in this work. This chapter
concludes the report.
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A. Computational Experiments –
Constraint Trials

This appendix chapter shows some three-dimensional plots of the constraint trials.
The constraint trials are numerical tests made using constraint equation Φ. The
primary intention with these trials was to test the usefulness of the partial derivatives
estimated for different values of order p. The 3D plots shows very clearly that the
derivatives estimated becomes increasingly exact and useful, for increasing order p.

A.1. Remarks

The 3D plots in this appendix show how the constraint equation Φ behaves if all
known values for P, Q, Z , U V , W , and focal length f , at all image points (x , y),
are inserted into it. This also involves the surface texture density and the scaled
image texture density (using τi, j). The results shown here are from trial runs using
T6(m, n) = cos m+cos n, which is the most complex function used to model the surface
texture density.

For the formalisms behind the primary method to be correct, when inserting these
values into constraint equation Φ, it should equal zero or very close to it. The 3D
plots shows that, for increasing order p, constraint equation Φ does behave exactly
like that. It equates very close the zero when p > 9 for all image points.

The plots shows trial runs for p = 1, 3, 6, 9, and 12. The minimization results shown
in other chapters use p = 12. All other variables are identical to the ones defined in
the numerical example in Section 3.4. The surfaces shown, could be called constraint
surfaces. These surfaces are depicted in the (x , y)-space.

A.2. Graphics
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Figure A.1.: Constraint surface for p = 1.

Figure A.2.: Constraint surface for p = 3.
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Figure A.3.: Constraint surface for p = 6.

Figure A.4.: Constraint surface for p = 9.
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Figure A.5.: Constraint surface for p = 12.
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B. Computational Experiments –
Minimization Results

This appendix chapter show the results achieved in the computational experiments.

B.1. Remarks

The sole purpose of this appendix chapter is to show results from the computational
experiments. The results are presented in page-size tables and 3D plots. The last
column in all tables contains the residual of the minimization, i.e. the value to which
the particular constraint system was minimized (in the least squares sense i.e. the
sum of squares).

Take special notice of the the fact that different methods were used for minimiza-
tion. Mathematica can apply local minimum search methods, e.g. newton’s method,
conjugate gradient, levenberg marquardt, and others. These methods are chosen auto-
matically by Mathematica and the results achieved this way, do not convey the type
of local search method used. Mathematica was trusted in being able to automatically
choose the best method.

Sometimes local search methods are not good enough. What we really want to find
are global minimums. Mathematica also has facilities for global minimization tech-
niques, including simulated annealing and random search. Results are also shown for
both of these methods. These global techniques were adjusted specifically for the
different situations. See the individual table captions.

Table B.1 to B.3 show the single point minimization results achieved when using
image point p11,136 defined in the numerical example in Section 3.4. Table B.4 to B.6
does the same for image point p11,359. The results in bold, are results which were
within the correct value, with an error of ±10−2.

See Section 3.4 for more information and comments related to the individual re-
sults.

B.2. Tables
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Table B.1.: Single point results in p11,136 from numerical example in Section 3.4. Au-
tomatic local search method used.
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Table B.2.: Single point results in p11,136 from numerical example in Section 3.4. Sim-
ulated annealing used as global search method.
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Table B.3.: Single point results in p11,136 from numerical example in Section 3.4. Ran-
dom search used as global search method.
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Table B.4.: Single point results in p11,359 from numerical example in Section 3.4. Au-
tomatic local search method used.
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Table B.5.: Single point results in p11,359 from numerical example in Section 3.4. Sim-
ulated annealing used as global search method.
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Table B.6.: Single point results in p11,359 from numerical example in Section 3.4. Ran-
dom search used as global search method.
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Table B.7.: Mutiple point results using all 4 image points defined in the numerical
example in Section 3.4. Automatic local search method used. All variables
considered surface-global.
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Table B.8.: Mutiple point results using all 4 image points defined in the numerical ex-
ample in Section 3.4. Simulated annealing used as global search method.
All variables considered surface-global.
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Table B.9.: Mutiple point results using all 4 image points defined in the numerical
example in Section 3.4. Random search used as global search method. All
variables considered surface-global.
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