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Abstract:

The next generation wireless systems, like
International Mobile Telecommunications-
Advanced (IMT-A), aim to provide high data
rates, requiring spectrum allocation in the
range of 100 MHz.

Nowadays, we have both a limited avail-
able spectrum and ine�cieny in its usage.
It will be impossible to allocate 100 MHz to
each operator in a same geographical area.
Therefore there is a need for new spectrum
access protocols to share the spectrum among
di�erent operators in a fair and e�cient way.

A game theory solution to spectrum sharing

is discussed in this thesis. We proposed a dy-

namic game model based on regret lerning test

to solve the spectrum sharing problem. We

show through realistic simulations that it is

possible to share the spectrum in a fair and

e�cient way.
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Chapter 1
Introduction

Wireless Communications are requiring additional spectrum to satisfy the con-
sumers demand for high data rate applications. At the same time, many of
these applications have increasing restrictions to spectrum access. The cur-
rently available unlicensed spectrum is reaching its limit. A support of Quality
of Service (QoS) is di�cult to provide because of the missing coordination be-
tween the di�erent radio systems operating in the same frequency band.

In the recent years there is a dramatic increase in the access to the limited
spectrum for mobile services and the number of mobile subscribers is expected
to exceed 5 billions by the end of 2015. A key to attract such a huge number
of users is to make them experiencing new multimedia services with a very high
bit rate. In fact, the currently available bit rates do not encourage for usage
of today's services like video downloading, as the video downloads take tens of
minutes, if not hours.

The International Mobile Telecoomunications-Advanced (IMT-A) systems
are expected to provide peak data-rates in the order of 1 Gbps in local area.
The new capabilities of these systems are envisaged to handle a wide range of
supported data rates according to economic and service demands in multiuser
environments [1]. Moreover, the new spectrum allocation for IMT-A decided by
the World Radio Conference (WRC) in 2007 is not su�cient to allocate such
wide bandwidth to several operators in the same geographical area like in �gure
1.1.



Figure 1.1: Cellular multi-operator environment [2]

Hence, a new approach is desired for Spectrum Allocation/Sharing among
several operators over a �exible bandwidth up to 100 MHz for next generation
IMT-A systems.

1.1 Problem de�nition

Problem: How to get an e�cient and fair utilization of radio spectrum between
di�erent operators ?

The next generation mobile systems will require a very high data rate, that
leads to the use of higher bandwidth. For example for IMT-A a peak rate of 1
Gbps is expected in local area that means a spectrum allocation more than 100
MHz with a spectral e�ciency of 10 bps/Hz. The spectral e�ciency may be
enhanced by the means of modern techniques such as OFDM and MIMO, but
at a certain point it will be impossible to enhance it any more. So despite of
high spectral e�ciency, the bandwidth that we need to achieve such high data
rate is still high.

Nowadays we have both a limited available spectrum and ine�ciency in its
usage. Although new spectrum bandwidth will be allocated for the next genera-
tion mobile communication system, it could not be enough. It will be impossible
to allocate 100 MHz bandwidth to every operator in the same geographical area.
A solution is likely to be �exible (Flexible Spectrum Usage)among di�erent op-
erators.

This type of solution could be not well accepted by operators because they
are scared of interference as well as of unfairness in spectrum allocation. They
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have also payed a lot of money for the licenses.

Therefore in our project we try to manage interference and to reach a fair
as well as e�cient spectrum sharing between several operators that share the
spectrum in the same geographical area. Our intent is to achieve these objec-
tives by the means of game theory.

We consider a situation where several operators coexist in the same geo-
graphical area and share the same spectrum. We start from the simplest sce-
nario with two base stations in the same area. Each base stations belong to a
di�erent operator, so each operators have only one base station.

We would like to analyze whether these operators can coexist and share
spectrum in an e�cient and fair manner.
Case study: spectrum sharing between two operators in the same geographical
area
Goal: to reach a fair and e�cient spectrum sharing through a game theory
oriented algorithm. Fairness and e�ciency are two contradictory objectives so
we need to �nd a suitable trade o�.

1.2 Original contributions

The project consists in de�ning a policy, i.e. a set of rules, taking into account
operators/users Quality of Service (QoS) requests as weel as a speci�c FSU al-
gorithm adopted. The policy has to be aware of the spectrum sensing, which
constitutes the �rst step for an e�cient sharing and �exible usage of the spec-
trum resource. Indeed di�erent operators have to use resources in a way that
services of other operators are not interfered.

Operators have to maximize spectral e�ciency in mobile network. In a
shared spectrum scenario the di�erent operators will be competing for spectrum.
We need analytical and simulation tools to obtain a good spectral e�ciency in
such scenario. One of the most promising approaches is to use game theory,
from the analytical point of view. Game theory can be de�ned as the study
of mathematical models of con�ict and cooperation between rational decision
makers [3]. It has not been a long time since game theory has been applied in
telecommunication �eld. Moreover, we are applying a theory recently used in
the last few years.

There is no direct signaling between operators. Therefore there is neither
need for new interfaces nor for tight synchronization.

Overlapping allocation: Instead of trying to make orthogonal allocations our
approach aims at maximizing spectral reuse and e�ciency.
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1.3 Report structure

The remaining part of the report is structured as follows:

• Technical background: introducing the spectrum sharing concept between
two operators in a local area and in details game theory that will be used.

• Game model chapter explains how the algorithm is designed and what are
the most important information we are using.

• Description of the simulation conditions, in which the choices made for
the implementation are justi�ed.

• Similation results and analysis showing the results obtained from the sim-
ulations and giving an interpretation of them.

• Conclusion summarising the work done in the project and the possible
future work.

The literature references are marked with square brackets for the whole re-
port, e.g [14]. Equations are denoted with brackets, taking into account the
chapter number and the position of the equation in the chapter, for example
(4.1) for the �rst equation of chapter four. Figures and Tables are numerated
in the same way and are always preceded respectively by the term Figure or
Table. The lists of references, �gures and tables are provided at the end of the
report.
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Chapter 2
Technical background

In this part we are going to introduce the main functions of cognitive radios and
then we will write about FSU and spectrum sharing techniques. The �gure 2.1
shows the hierarchy between each approaches.

Figure 2.1: Cognitive Networks (CN), Spectrum Sharing (SpS) and Flexible
Spectrum Usage (FSU)

2.1 Cognitive radio

Cognitive radio is a new approach to deal with the radio spectrum allocation.
This new approach attempts to e�ciently use the spectrum by identifying and
using under-utilized spectrum [4].

Several techniques are used in cognitive radio:

1. Spectrum sensing: the goal of this technique is to detect spectrum oppor-
tunities and then to share it without interference with other users. It is
the �rst step in cognitive radio to be available to sense spectrum detecting
used and unused spectrum.

2. Spectrum management: the goal of this technique is to allocate the best
available spectrum to satisfy user requirements in terms of Quality of



Service. Cognitive radio system should be able to decide which is the best
spectrum allocation after a spectrum analysis.

3. Spectrum mobility: it occurs when a cognitive radio user switches its
frequency of operation to use a better spectrum. Basically it de�nes the
possibility to use the spectrum dynamically by allowing the radio terminals
to operate in the best available frequency band. During the switching
process user should keep the same level of quality of service to satisfy his
requirements.

4. Spectrum sharing: the coexistence with licensed users and the wide range
of available spectrum are two of the main challenges. Spectrum sharing
mainly focuses on two parameters: fairness and e�ciency. Actually, it is
the main challenge of this thesis as we will see later.

To sum up cognitive radio technology is expected to improve spectrum access
through:

• increased spectrum e�ciency of licensed spectrum users

• opportunistic spectrum use of unlicensed band

2.2 Spectrum sharing

One of the most important thing for operator is the fairness. The spectrum
shares have to be fair between operator sharing the spectrum. Moreover, oper-
ators do not have a common goal and then do not cooperate with each other.

The main problen is to set some spectrum sharing rules which allow the
systems to share the spectrum in a fair and e�cient way.

E�ciency:

A resource allocation is e�cient if it is not possible to improve the performance
of a given system without degrading the performance of some other system [5].
Hence we can �nd many e�cient operating point where each of them represents
di�erent performance trade-o� among the di�erent operators.

We can measure e�ciency with spectral e�ciency. Indeed, spectral e�ciency
is a measure referring to the amount of information that can be transmitted over
a given bandwidth in a speci�c communication system.

In digital wireless networks, the system spectral e�ciency or area spectral
e�ciency is typically measured in bit/s

Hz . It is a measure of the quantity of users
or services that can be simultaneously supported by a limited radio frequency
bandwidth in a de�ned geographic area. It may for example be de�ned as
the maximum throughput, summed over all users in the system, divided by
the channel bandwidth. This measure is a�ected not only by the single user
transmission technique, but also by multiple access schemes and radio resource
management techniques utilized. It can be improved by dynamic radio resource
management.
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Spectrum e�ciency can also be de�ned as the optimized use of spectrum or
bandwidth so that the maximum amount of data can be transmitted with the
fewest transmission errors. In a cellular telephone network, spectrum e�ciency
equates to the maximum number of users per cell that can be accommodated
while maintaining an acceptable quality of service (QoS).

Fairness:

Fairness is related to the relative performance among the systems. It can
be achieved by optimizing a global utility function over the possible resource
allocations. Di�erent utilities represent di�erent fairness goals [5]. We will
de�ne fairness more deeply in part 4.2.1.

2.3 Flexible Spectrum Usage

Thanks to Flexible Spectrum Usage (FSU) devices are able to use spectrum in a
�exible manner by adapting their operation to the current situation by sensing
the environment or based on pre-de�ned regulatory policies that can vary in
time, place, and event-based. So far the main advocates of FSU have been new
companies trying to enter the market [6].

For us FSU deals with the use of the same frequency band by radio access
systems using the same radio access technology.

In the case where several operators are operating in the same geographical
area and in the same frequency band then we can address peaceful coexistence
in several ways:

• Time separation: systems transmit at di�erent times;

• Frequency separation: systems transmit at di�erent frequencies;

• Space separation: the distance between the transmit antennas of one sys-
tem and the receive antennas of another system is su�ciently high to
attenuate the interfering signal.

For example in �gure 2.2 di�erent operators use resources in a way that
services of other operators are not interfered. They can coexist on the frequency-
time domain at a certain position X (see in �gure 1.1) being able to use a pooled
spectrum, di�erently from current systems, where each operator is assigned a
�xed dedicated part of the spectrum [2].
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Figure 2.2: Allocation of resources to operators as experienced in position X in
�gure 1.1. The pink area is vacant for any operator in this position [2]

To enable FSU we need a ressource management function like a spectrum
control strategy. Mainly there are two approaches the centralized and the de-
centralized one.

2.3.1 Spectrum control strategies

Figure 2.3: Spectrum sharing

Centralized approach

In this approach each operator owns a certain part of the spectrum and decides
to share its resources to build a common spectrum pool. It is an agreement be-
tween operators. Then, the spectrum is allocated from the centralized spectrum
pool in a dynamic way to the di�erents operators.

8



Basically, a third entity controls the spectrum allocation and access proce-
dures. Each entity in the network asks based on its requirements an allocation
of the spectrum. Then the third entity considers all the requirements and is in
charge of the global allocation proccess.

Decentralized approach

In this case, there is no central entity present to control the spectrum man-
agement and no signaling between the operators. So, the decisions about man-
agement of the spectrum lie with each operator. The decentralized entities can
be fully autonomous and uncoordinated, or collaborative and distributed. In
the �rst there is no exchange of information between the operators, in the sec-
ond case operators form a group inside whitch they collaborate with each other
to identify the transmission opportunities and to coexist with other eventual
groups.

2.4 Physical Resource blocks

Downlink and uplink transmissions are organized into radio frames with 10ms
duration. Each radio frame is Tf = 10 ms long and consists of 20 slots of length
Tslot = 0.5 ms.

Physical resource blocks is the resource to share between operators. The
downlink transmission scheme is based on conventional OFDM using a cyclic
pre�x (see appendix C). We assume that the OFDM sub-carrier spacing is ∆f =
60kHz. The transmitted signal in each slot is described by a ressource grid (see
2.4) of NDL

RBN
RB
sc subcarriers and NDL

symb = 7 OFDM symbols. The NRB
sc =

12consecutive sub-carriers during one slot correspond to one downlink resource
block. In the frequency domain, the total number of resource blocks NDL

RB for
100 MHz system bandwidth is 125. Indeed, if we are using a bandwidth about
90MHz. One PRB is equal to 12 consecutives subcarriers where each one has a
bandiwdth of about 60kHz. Thus the number of PRBs is equal to:

90000(KHz)
12 ∗ 60(KHz)

=
90000
720

= 125 (2.1)

Hence, an operator can use a maximum of 125 PRBs.

Moreover, all physical downlink channels (shared data, multicast, broadcast)
are processed and mapped to symbols in the downlink resource blocks (resource
elements).
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Figure 2.4: Downlink ressource grid

The up-link sub-carrier spacing is ∆f = 60kHz. The NRB
sc = 12 consecutive

sub-carriers during one slot correspond to one uplink resource block. In the
frequency domain, the total number of resource blocks NRB

sc has the same range
as for the downlink transmission.

2.5 Technical background summary

The most important aspect of dynamic spectrum access is dynamic spectrum
sharing. It is in charge of e�cient and fair spectrum allocation. The key com-
ponent of network users equipped with cognitive radio is their cognitive intelli-
gence. It enables users to learn from the past (spectrum usage, communication
parameters, spectrum sensed and users' allocation) and then to make a smart
spectrum allocation. Game theory is one of the approaches used to study the
players' behavior (cooperative or sel�sh) and their in�uence on the others.

10



Chapter 3
Game Theory overview

3.1 Game theory approaches

3.1.1 Why game theory ?

Before e�cient dynamic spectrum sharing can be achieved, network users' intel-
ligent behaviors and interactions have to be thoroughly studied and analyzed.
Game theory studies con�ict and cooperation among intelligent rational deci-
sion makers, which is an excellent match in nature to dynamic spectrum sharing
problems. The importance of studying dynamic spectrum sharing in a game the-
oretical framework is multifold.

First, by modeling dynamic spectrum sharing among operators as games,
the network users' behaviors and actions can be analyzed in a formalized game
structure, by which the theoretical achievements in game theory can be fully
utilized.

Second, game theory equips us with various optimality criteria for the spec-
trum sharing problem. Thus game theory provides us well de�ned equilibrium
criteria to measure game optimality under various game settings (operators sce-
narios in our context).

Third, non-cooperative game theory, one of the most important game theo-
ries, enables us to derive e�cient distributed approaches for dynamic spectrum
sharing using only local information. Such approaches become highly desirable
when centralized control is not available or �exible self-organized approaches
are necessary. [7]

3.1.2 What is game theory ?

Game theory is a discipline aiming at modeling situations in which actors have
to make decisions that have mutual, possibly con�icting, consequences.
It has been used primarily in economics, in order to model competition between
companies but also in politics and biology. Telecommunications is one of the



new �elds in which it has been studied recently. [8]

In this part, we are going �rstly to explain game theory and secondly how
situations can be modelled by making use of game theory. Then we will apply
game theory to our case-study.

3.2 Classi�cation of games

In the wireless networking context we de�ne players as the users or network
operators controlling their devices. Moreover we assume that they are rational
and they act according to their strategies. The strategy of a player can be a
single move or a set of moves during the game as we will see later. Players try
to get the maximum from their utilities in order to maximize their outcomes.

3.2.1 Cooperative and non-cooperative game

We can de�ne a cooperative game as a game where groups of players may enforce
cooperative behavior. In cooperative games competition is between coalitions of
players. In a cooperative game, players bargain with each other before the game
is played. If an agreement is reached, players act according to the agreement
reached, otherwise players act in a non-cooperative way. Cooperative games
require additional signaling between the decision makers and this is one of the
main challenges in telecommunication.

On the contrary, in a non-cooperative game competition is between individ-
ual players who have potentially con�icting interests.

3.2.2 Static and dynamic game

In a static game players choose their actions simultaneously without knowing
anything about the actions of the other players. In some problems like the Mul-
tiple Access Game (see �gure 3.4) it is a reasonable assumption.

In most of the games however the players have a sequential interaction. It
means that an action from one player happens before or after an action of the
other player. So, the second player knows the previous action from the �rst
player. He can adapt his own action to get the best response to the action of
the other player. These kind of games are called dynamics in game theory. We
can represent them in an strategic form 3.2.3 and in an extensive form (see in
3.2.3). It depends of which visualization we prefer.

3.2.3 Representation of games

Remind that in game theory we assume that players controlling the devices
are rational. So, they try to maximize their bene�t. There are two graphical
representation to formalize games: extensive and strategic.

12



Extensive form

Sequential game are most of the time represented in extensive form as trees (see
�gure 3.1). It provides information about the players, payo�s, strategies, and
the order of moves. Each node represents an action to choose for a player. The
initial node called root represents the �rst move of the game. The payo�s are
speci�ed at the terminal node.

Figure 3.1: Example of extensive form [9]

In the �gure 3.1, there are two players. Player 1 (P1) starts and chooses
between action A and W. Then, player 2 (p2) chooses A or W. Let us suppose
that player 1 chooses A and player 2 chooses W. Player 1 gets (1-C) and Player
2 gets 0.

Strategic form

The strategic form of a game G is de�ned as: G = (N ;S;U) [9]. Where:

• N is the set of players : p1, ..., pi.

• S is the set of strategies

• U is the set of payo� functions.

A dynamic game is more naturally represented by extensive form. However,
as we are in a decentralized approach (see chapter 2.3.1) players act without
knowing the actions of the others. Therefore it is better to represent the game in
strategic form. That is why we will focus only on this graphical representation.

3.2.4 Pure and mixed strategies

Each player can choose between several actions that we call strategies. If one
of these actions has a probability of one to be choosen and all the other actions
have a probability of zero then it is a pure strategy.

In general and in reality, a player has to choose between di�erents pure strate-
gies with di�erents probabilities. These strategies are called mixed strategies in
game theory because players choose a probability distribution over several ac-
tions. The player will randomly select a pure strategy based on the distribution
instead of choosing a particular pure strategy deterministically.

Let us explain with the payo� matrix in 3.1:

13



Player 2

Player 1
A B

A (2,2) (3,2)
B (0,3) (1,2)

Table 3.1: Payo� matrix

Player 1 chooses a row and receives the �rst payo�. Player 2 chooses a
column and receives the second payo�. Let us focus e.g on player 1. If player
1 chooses to play A with a probability 1 then A is a pure strategy. If player
A chooses to play randomly (�ipping a coin and play based on the result for
example) then it is a mixed strategy.

3.2.5 Complete and incomplete information

A game with complete information is de�ned as a game where each player knows
the game G = (N ;S;U), the set of players N , the set of strategies S and the
set of utility functions U . On the contrary, the players may have incomplete
information. It means they have some assumptions about the outcomes of other
players and hence they may try to solve the game on these basis.

Strategies are based on information so they are really di�erent in the case
of a game with complete information compared to a game with incomplete
information.

3.2.6 Perfect and imperfect information

Perfect information: each player knows the identity of the other players and,
for each of them, the payo� resulting from each strategy. We refer to a game
with perfect information, if the players have a perfect knowledge of all previous
moves in the game at any moment they have to make a new move. On the
contrary if players do not know exactly the previous moves like in simultaneous
game then it is a game with imperfect information.

3.3 Single Stage Game (SSG)

In game theory we talk about a Single Stage Game (SSG) when we assume there
is only one time step (one move) to choose an action. So, players choose only
one time a strategy.
Basically, in wireless communications one Single Stage Game consists of three
main phases:
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Figure 3.2: Example of Single Stage Game [10]

1. At the beginning the players choose theirs actions and they ask for resource
allocation times and duration. This step is instantaneous.

2. Competitive medium access of the allocation process. Each player has
asked something but maybe there are some collisions between allocations
demanded or the spectrum is already used by an other player. Hence,
there will be most of the time a di�erence between demanded and observed
allocations. This step is the one that consumes the most time of the SSG

3. Finaly each players calculates its outcome. We can de�ne the outcome as
the di�erence between what was expected and what has been got [10].

3.3.1 Static forwarder's dilemma game

In this part we are going to explain game theory by using the Forwarder's
Dilemma in a static game with a single stage.

Figure 3.3: Diagram forwarder dilemma

As we have said before in 3.2.2, in a static game players are playing sil-
mutaneously. In the forwarder dilemma they can choose between two actions:
forward (F) the packet of the other player or drop it (D). These two actions
are the strategies of the player. Which strategy is the best for them ? Let us
represent the strategicform in a more convenient approach. We can represent
the game by the matrix 3.2.
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Player 2

Player 1
F D

F (1-C,1-C) (-C,1)
D (1,-C) (0,0)

Table 3.2: Forward static

In this matrix, p1 represents the row player and p2 the column player. As
we can see, each cell of the matrix corresponds to a possible combination of
the strategies of the players and each pair of values represent respectively the
payo�s of players p1 and p2

• Reward for packet reaching the destination: 1

• Cost of packet forwarding: C (0 < C � 1)

Moreover this is a nonzerosum game because the players can mutually in-
crease their outcomes by cooperating. Indeed, if both players forward they will
achieve an outcome that is better for both of them than a mutual dropping. In
the contrary, in zero-sum game the total outcome to all players in the game, for
every combination of strategies, is always equal to zero.

3.3.2 Iterated dominance

After we have expressed the game in a strategic form we need to solve it. It
means to be able to predict the strategy of each player considering the informa-
tion from the game. We still assume players are rationnal and want to get the
best payo� from their strategies.

One of the simplest way is to base the game on strict dominance as shown
in [11].

Strategy s
′

i of player i is said to be stricly dominated by his strategy si if:

ui(s
′

i, s−i) < ui(si, s−i) ∀s−i ∈ S−i (3.1)

Where:

• −i de�nes all the players, i excepted.

• Si is the pure strategy space of player i.

• ui is the utility function that quanti�es the outcome for player i given the
strategy pro�le s

Let us apply to game 3.2. From the point of view of player p1, the D strategy
dominates the F strategy. It means that a rational player p1 will never play the
�rst row of the matrix. We have the same reasoning from the point of view of
player p2. D strategy is still better than F strategy. It means a rational player
p2 will never play the �rst column of the matrix. Then, the solution of the game
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is (D,D) and the outcome is (0,0).

As we can see here, we did not get the best solution. Indeed, the pair (F, F)
would be better for both players than (D,D). This problem is due to the lack
of trust between the players. As we will see later we can add to the game an
agreement (trust) between the players and then we will get the best solution.

We cannot use iterated strict dominance techniques to solve every game like
the joint packet forwarding game 3.4.

Figure 3.4: Joint packet forwarding game

Now imagine we have two devices. They still have to drop or to forward the
package. However they have to decide silmutaneously before the source sends it.

Player 2

Player 1
F D

F (1-C,1-C) (-C,0)
D (0,0) (0,0)

Table 3.3: Joint packet forwarding game

We have not strategy stricly dominating another one. So, we have to de�ne
another requirement: weak dominance [11]

Strategy s
′

i of player i is said to be stricly dominated by his strategy si if:

ui(s
′

i, s−i) < ui(si, s−i) ∀s−i ∈ S−i (3.2)

From the point of view of player p2 strategy D is weakly dominated by the
strategy F. So, based on iterated weak dominance the solution is the pair (F,F).

Iterated elimination techniques are not working every time to solve a game
problem. However they are useful to reduce the size of the matrix. Then it is
fastest to �nd the best strategy.

3.3.3 Nash equilibrium

For example, let us see the Mutiple Access Game represented in the diagram
3.5 and strategic form 3.4:
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Figure 3.5: Diagram multiple access

Player 2

Player 1
W A

W (0,0) (0,1-C)
A (1-C,0) (-C,-C)

Table 3.4: Multiple Access game

As we can see, player 1 (p1) and player 2 (p2) have two di�erents strategies:
access (A) the channel or wait (W). However in the case where both players are
transmitting then we will have a collision.

As no strategy is dominated in this game we can not apply previous techniques
to solve the problem. So, we are going to de�ne what we call the best response.
If p1 is transmitting the best response (the best payo�) for p2 is to wait. Same
thing if p2 starts to play.

As shown in [11] ,the best response bri(s−i) of player i to the pro�le of
strategies s−i is a strategy si such that:

bri(s−i) = arg maxui(si, s−i) where si ∈ Si (3.3)

So, if two strategies are mutual best responses to each other, then no rational
player would have a reason to deviate from the given strategy pro�le. In the
Multiple Access Game, two strategy pro�les exist with the above property: (W,
A) and (A, W). To identify such strategy pro�les in general, Nash introduced
the concept of Nash equilibrium [12]. We can formally de�ne the concept of
Nash equilibrium (NE) as follows:

The pure strategy pro�le s∗ constitutes a Nash equilibrium if, for each player
i:

ui(s∗i , s
∗
−i) ≥ ui(si, s

∗
−i),∀si ∈ Si (3.4)

In a Nash Equilibrium no player can increase its utility by deviating unilat-
erally. Moreover, a Nash equilibrium is a strategy pro�le comprised of mutual
best response of the players

If we apply Nash equilibrium in 3.4 we will �nd two pure strategies (W, A)
and (A,W). So, how to choose between several Nash equilibria ?
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3.3.4 Pareto optimality

There exist one method for identifying the desired Nash equilibrium point in
a game. We have to compare strategy pro�les using the concept of Pareto-
optimality. To introduce this concept, let us �rst de�ne Pareto-superiority:

The strategy pro�le s is Pareto-superior to the strategy pro�le s′ if for any
player i ∈ N [11]:

ui(si, s−i) > ui(s
′

i, s
′

−i) (3.5)

with strict inequality for at least one player.

In other words, the strategy pro�le s is Pareto-superior to the strategy pro-
�le s′ , if the payo� of a player i can be increased by changing from s′ to s
without decreasing the payo� of other players. The strategy pro�le s′ is de�ned
as Pareto-inferior to the strategy pro�le s.

The strategy pro�le spo is Pareto-optimal (or Pareto-e�cient) if there exists
no other strategy pro�le that is Pareto-superior to spo. In other words a strat-
egy pro�le is Pareto-optimal if it is not possible to increase the payo� of any
player without decreasing the payo� of another player

An SSG outcome is called Pareto-optimal or pareto e�cient if neither player
can gain higher utility without decreasing the utility of at least one other player.

Using the concept of Pareto-optimality, we can eliminate the Nash equilib-
ria that can be improved by changing to a more e�cient (i.e. Pareto-superior)
strategy pro�le. The game can have several Pareto-optimal strategy pro�les and
the set of these pro�les is called the Paretofrontier. It is important to stress that
a Pareto-optimal strategy pro�le is not necessarily a Nash equilibrium. We can
now use the concept of Pareto-optimality to study the e�ciency of pure-strategy
Nash equilibria in our running examples [9].

• In the Forwarder's Dilemma game 3.2, the Nash equilibrium (D, D) is
not Pareto-optimal. The strategy pro�les (F,F), (F, D) and (D, F) are
Pareto-optimal, but not Nash equilibria.

• In the Joint Packet Forwarding game 3.3, both strategy pro�les (F, F)
and (D, D) are Nash equilibria, but only (F,F) is Pareto-optimal.

• In the Multiple Access Game 3.4, both pure-strategy pro�les (A, W) and
(W, A) are Nash equilibria and Pareto optimal.

3.4 Multi Stage Game (MSG)

Basically Multi Stage Game (MSG) represents several Single Stage Game re-
peated. The players interact several times and each interaction is called a stage.
MSG can be regarded as in�nite only if after each period the players believe
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that the game will continue for an additional period.

So far, we have assumed that the players interact only one time and we
modeled this interaction in a static game with the help of the strategic form.
In this section, we assume that the players interact several times and hence
we model their interaction using a repeated game. Repeated games are a sub-
set of dynamic games and can be expressed in both strategic and extensive form.

In this game players take into account the instantaneous stage but also the
e�ects of their decisions on the utilities of future stages; but they put higher
weight to the present utility than the potential utilities in the next stages. A
known approach is to use a discounting factor θ, 0 < θ < 1.

If θ is near to 1 it implies that future utilities are considered similar to the
utility of the current stage. Thus, player should cooperate to reach on a long
term a high utility. On the contrary, if θ is near to 0 it means that player should
focus on the present utility and then it results in a uncooperative defection. So,
that players completely neglect potential future utilities [10].

Now, we are going to use the Forwarder's dilemma (3.3) in a repeated game.
We assume the following information:

• move mi(t): decision in one interaction of player i at stage t

• initial move: the �rst move with no history

• strategy: de�nes how to choose the next move, given the previous moves

• history h(t): the ordered set of moves in previous stages

• all past moves are common knowledge at each stage t

We can formally write the history h(t) as follows:

h(t) = (m1(t); ....;mi(t)); ....; (m1(0); ....;mi(0)) (3.6)

For example, at the beginning of the third stage of the Repeated Forwarder's
Dilemma, if both players have always been defective then the history will be
h(2) = (D;D); (D;D). The strategy si de�nes a move for player i in the next
stage (t+ 1) for a given history h(t) of the game.

mi(t+ 1) = si(h(t)) (3.7)

The payo� in the repeated game might change as well. In repeated games,
the users typically want to maximize their payo� for the whole duration T of
the game. Hence, they maximize:

ui =
T∑

t=0

ui(t, s) (3.8)

where ui(t; s) denotes the stage payo�, the payo� player i receives in stage
t.
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In some cases, the objective of the players in the repeated game can be to
maximize their payo�s only for the next stage (i.e., as if they played a static
game). We refer to these games as myopic games as the players are short-sighted
optimizers. If the players maximize their total payo� during the game, we call it
a long-sighted game. Recall that we refer to a �nite-horizon game if the number
of stages T is �nite. Otherwise, we refer to an in�nite-horizon game ([9] and
[11]).

In the game theory literature, in�nite-horizon games with discounting are
used to model a �nite-horizon game in which the players are not aware of the
duration of the game. Clearly, this is often the case in strategic interactions, in
particular in networking operations. In order to model the unpredictable end
of the game, one decreases the value of future stage payo�s.

3.4.1 Static strategies

There are two basics static strategies [4]:

• The cooperation strategy (COOP)

• The defection strategy (DEF)

In COOP, player will always cooperate. On contrary, in DEF player will
have a defection behavior every time. Theses strategies are independent of the
opponent's in�uence on the player's utility. So static strategies are the contin-
uous applications of one behavior. Note that COOP strategy is better if both
operators are cooperating.

3.4.2 Dynamic strategies

One of the most important class of strategies in repeated games is the class of
trigger strategies [10]. They consist of strategies where a new behavior starts as
soon as a new condition is detected. We are going to introduce two examples
of trigger strategies:

Figure 3.6: Strategies [10]

• Tit-for-tat. Start cooperating. After each round play what your opponent
played last round

• Grim. Start cooperating. If the opponent defect for one round, defect
forever.
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The main di�erence between these approaches is how long the player will
keep the punishment. In Tit for Tat, player will use defect strategy until his
opponents want to come back into cooperative strategy. In Grim, one defection
will result in a punishment forever. Even in non-cooperative game the fear of
future punishment can lead to cooperative behavior [4].

Player should use TFT. Because of a potential punishment it motivates the
others players to cooperate. Moreover, in a non-cooperative environment is
more adaptive than GRIM.

3.5 Reputation in a decentralized system

One of the strongest assumption in game theory is players are rational. It means
they want to maximize their bene�t. In our simulation we assume that players
want to be fair and respect the policies. So, what is going to happen if one
player does not agree with the rules and want to be sel�sh ? Others players
should punish him for its unfair behavior.

A player who plays the same game repeatedly may try to develop a stategy
based on reputation. The idea is that if the player always plays in the same way,
his opponents will expect him to play that way in the future and will adjust
their own play accordingly [13]. It means they have to know the di�erence
between fair and unfair behavior. In a decentralized system we do not know
anything about other players like requirements, PRBs used. We are in a game
with incomplete information. However we can have some information from
interference level. So, we can de�ne unfair behavior when a user is using more
than 80% of the spectrum.

Basically if the reputation of a player B is too bad, A can punish him by
using more PRBs or all the spectrum in order to interfer on B and to decrease
his PRBs quality.

Most prominent games are history - 1 games (players consider only the previ-
ous stage). In a reputation system we have to take into account all the previous
stages. Of course the last stages are more important than the old ones. If a
player has been fair for a long time and he is starting to be unfair we have to
be careful and be ready to punish him.

System based on reputation are a part of cognitive radio. There is a learning
part and a strategy from historical behavior.

3.6 Game theory limitations

Above, we have presented why game theory is important for our case study. So
far, we have made some assumptions about players, game and payo� function.
We are going to discuss more deeply about these assumptions.

In wireless networks, the users do not interact with each other on such a
�ne-granularity basis as forwarding one packet or accessing the channel once.
Moreover operators program their devices and base stations to follow a protocol.
So we can assume on a long term that these devices are like rational players in
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our scenario. They do not change after each stage their strategies. [9]

Another problem is how to model payo� function. We have only spoken
about a packet to transmit in our previous example. We did not speak for ex-
ample about the bene�ts and costs in energy or pricing to get an access to the
spectrum. As we will see later in our application we model payo� function as
the throughput and later on spectral e�ciency with a utility function.

3.7 Game in incomplete information

One of the strongest assumption most of the time used in game theory is to
assume we are in complete and perfect information. It means that each player
is aware on his in�uence over the strategies and behavior of the other players.
Is it true in wireless network ? In a centralized architecture we can assume this
kind of information. However in a decentralized architecture we cannot do that.
As we will see later we have some information about the environment but we do
not know everything about the other players. Now, we are going to introduce
uncoupled game to use game theory with incomplete and imperfect information.

3.7.1 Uncoupled game

In this section we are going to discuss about uncoupled game and then we will
see an example.

A learning rule is uncoupled if a player does not condition his strategy on
the opponent's payo�s [14]. It is radically uncoupled if a player does not condi-
tion his strategy on the opponent's actions or payo�s. We demonstrate a family
of simple, radically uncoupled learning rules whose period-by-period behavior
comes arbitrarily close to Nash equilibrium behavior in any �nite two-persons
game. [15]

3.7.2 Regret testing

Regret testing does not depend on observation of the opponent's pattern of play
or even on knowledge of the opponent's existence; it depends only on summary
statistics of a player's own realized payo�s. In this sense it is similar in spirit
to reinforcement and aspiration learning. Response rules that depend only on
a player's own payo�s are said to be radically uncoupled.

For example we consider an individual living alone ([15] and [14]). This
player has m possible actions. Each action is written on tickets that are stored
in a hat. Each hat contains hm tickets. So, the hat is generating probability
distributions over actions. Every probability distribution that is expressible in
integer multiples of 1/h is represented by exactly one hat. The larger is h, the
more closely can any given distribution be approximated by one of these hats.
A day consist of s period and we assume s large.
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• Step 1 : For each period the player takes a ticket into the current hat and
he has to do the action written on the ticket. Then he puts back the ticket
into the hat.

• Step 2 : At random times this routine is interrupted by telephone calls.
During a call he chooses randomly an action instead of taking a ticket into
the hat.

• Step 3: For each action he has done the player receives a payo�. At the
end of the day t he calculates the average payo� called bt. This payo� is
the result of actions whenever he was not on the phone. Let us called bj,t
the average payo� whenever he was on the phone. So for each action j he
compares both average payo�.

• Step 4: If the di�erence rj,t = bj,t − bt > 0 where 0 is his tolerance level
he chooses a new hat. Each hat has the same probability (positive) to be
choosen. If rj,t < 0 he plays again the next day with the same hat t+ 1

The previous protocol is called in game theory a regret testing rule. bj,t = is
a statical estimate of the payo� on day t, what the player would have received
if he had played the action j all the day. rj,t is the regret estimation from not
having play the action when player was on the phone. As we are in a game
with incomplete information player does not know anything about opponent's
actions. So, the regret cannot be directly evaluated.

The logic is simple: if one of the payo�-averages bj,t during the experimental
periods is signi�cantly larger than the average payo� in the non-experimental
periods, the player becomes dissatis�ed and chooses a new strategy, i.e., a new
hat from the shelf. Otherwise, out of inertia, he sticks with his current strategy.
[16]

The main point with regret testing is inertia. Without any particular rea-
son to change, players keep the same strategy as before. So, while information
are collected (learning process) the strategy does not change. Player changes
his strategy only if a signi�cant improvement is possible. In other words the
alternative payo�s should signi�cantly exceed the current average payo�.

As we will see later in part 4 we will use the regret part in one of ours
algorithm 4.2.6 to solve the game.
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Chapter 4
Game de�nition

4.1 Game overview

Case study: Spectrum sharing between two operators in the same geographical
area.
Goals: reach a fair and e�cient spectrum sharing through a game theory based
algorithm.

4.1.1 Assumptions

• Intra-system FSU: same RAT, same frequency band shared by di�erent
operators.

• Horizontal sharing: all operators have the equal right access to the spec-
trum.

• Fractional load: each operator is requiring a fraction of the full bandwidth.

• No RAN sharing: every eNB is owned by a di�erent operator.

• Decentralized architecture: there is not a central entity and there is no
signaling between the operators.

• Policy: operators have to agree on the same set of rules (number of PRBs
per user, spectrum load limit).

• Operators are cooperative. They do not try to be sel�sh.

PHY layer assumptions:

• Access scheme : Downlink OFDMA, Uplink SC- FDMA (or DFTS-OFDMA).

• Duplexing: TDD (downlink/uplink).

• Frequency reuse factor: one ( all cells in the network use the same fre-
quency band, in other words we have a non-orthogonal spectrum allocation
among operators).



• Synchronization : yes.

In our work we have often referred to an operator as an eNB because we assumed
that each eNB is owned by a di�erent operator.

4.1.2 Game formulation

The allocation process can be de�ne as a game as follows.
The players are the eNBs, users do not participate in the allocation process thus
they are not considered players in the game.
The possible actions are the di�erent possible amount of PRBs that the player
decides to give to each served user.
Formally:

G = M,A, ui (4.1)

where M is the set of player, in our case M = 1, 2 or M = 1, 2, 3, 4. A is the
set of action for player i and ui is the utility function, de�ned later.
The outcome of the game is to assign a certain amount of PRBs to each operator.
Each stage of our game lasts two frames. Therefore it is a multi-stage game.
Moreover it is also a dynamic game with incomplete information, as we are
going to explain.

4.1.3 Dynamic game

As we have seen in 3.2.2, in a dynamic game players don't make their decision
simultaneously.
Therefore in our case one player starts with his own allocation and the other has
to make his decision on top of the previous one's move. Thus the previous one's
action in�uenced the actual player decision by the means of the interference,
because, as explained later in 4.2.2, a player cannot choose every PRBs, but
only the available ones. Furthermore to not play does not mean wasting the
opportunity to allocate some PRBs in the actual frame: it means only that for
the actual stage the "non" player keeps his previous allocation. The �owchart
for the dynamic game is shown in �gure 4.1.
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Figure 4.1: Dynamic game

After two frames both the operators make their decisions then a stage is
ended.
With this approach we �rstly allocate the interference free PRBs and after
we will have some overlapping allocation and thus some PRBs shared between
di�erent operators.
In appendix B we explain why we have choosen to use a dynamic game instead
of a static game.

4.1.4 Incomplete information game

As discussed in 4.1.1 we are in a decentralized approach. Therefore there is not
any central entity and there is no signaling between operators. Thus a player
cannot state how many PRBs the others have currently allocated. The player
cannot guess neither from the interference vector the others' allocation. Thus we
have no information on the other's moves (allocation) as well as on the other's
payo�. This kind of games are also de�ned as incomplete information games.

4.1.5 Utility function

A very important step in the de�nition of a game is to shape an appropriate
utility function.
We look for a de�nition of a utility function such that a eNB can maximize
a global utility (as the network total throughput) by only trying to maximize
his own utility. We want as well that this utility function leads to a fair and
e�cient situation. To incorporate the e�ciency, the utility function of each eNB
is de�ned such that the eNB can reach the maximum throughput spending the
minimum amount of PRBs.
Indeed we observe that it is not true that using more PRBs an eNB can always
increase his own throughput. Certainly at the beginning increasing the number
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of used PRBs we can see a huge throughput improvement because the eNB is
using the interference free PRBs. But at a certain point the eNBs begin to
interfere too much each other and increasing the number of PRBs they would
have the same or even a worse throughput.
Based on the previous consideration the utility function is of the form given in
the equation 4.2:

Utility =
(f1)g

f2
(4.2)

Function f1 quanti�es the eNB's actual total sum throughput. The total
sum throughput is de�ned as the sum of users' throughput.

Function f2 is the total amount of PRBs used by the eNB in the current
frame. The total amount of PRBs is simply computed as the number of PRBs
per user multiply by the actual operator's number of users.

Coe�cient g is a weighting factor. This weighting factor is important in
order to achieve a complete spectrum exploitation and a higher throughput in
a two-players game. By the means of simulation results we �xed this weighting
factor to 2.
Therefore the numerator of the utility function is intended to increase the eNB's
throughput. The denominator induces some bene�t to being nice to other users
as well as it increases the spectral e�ciency. Indeed reducing the spectrum
exploitation we will reduce the interference to the others. For that reason it
is intended to contribute to the fairness in the network as well as to the total
spectral e�ciency.

4.2 Algorithm

In this section we present our algorithm that, by the means of game theory,
achieves a fair and e�cient spectral allocation. We will present as well some
algorithms used in our work as reference cases in order to show how a game
theoretic approach adds some improvement to these basic algorithms.
Before we discuss these algorithms we need to de�ne some general concepts.

4.2.1 Fairness

One of our goals is to have a spectrum shared in a fair way. In this section we
are going to discuss about the di�culty to de�ne what we call fairness in our
case.

Spectrum load used per operators:

Firstly, we can de�ne the fairness as the spectrum load used by each operators
(table 4.1). Let us imagine the scenario 4.1.

As we can see operator A and B have exactly the same number of PRBs used
(same spectrum load used). However, the number of PRBs per user is really
di�erent from an operator to another one. In a FSU scenario this case is unfair.
Operator B has more users than operator A so it should have an higher total
number of PRBs.
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Operator Number of users PRBs per user PRBs used
A 5 12 60
B 10 6 60

Table 4.1: Fairness: spectrum load used

The number of PRBs per user:

We can also de�ne fairness as the number of PRBs per user (table 4.2). It
means each operator should have the same amount of PRBs per user. Let us
imagine the scenario 4.2.

Operator Number of users PRBs per user PRBs used
A 5 12 60
B 10 12 120

Table 4.2: Fairness: PRBs per user

In our example A is using less than 50% of the spectrum (5 ∗ 12 = 60 PRBs
and 50% of 125 = 62.5) and B is using the 96% of the spectrum (10 ∗ 12 =
120 PRBs and 96% of 125 = 120). Is it normal that an operator uses more
spectrum than another one? If we assume they have paid for the same frequency
bandwidth this scenario is unfair.

Ratio:

We can also de�ne the fairness as the ratio between the number of PRBs
per user and the number of users (table 4.3). Then a game will be fair if both
operators have the same ratio to the end.

Operator Number of users PRBs per user PRBs used Ratio
A 6 9 54 9

6 = 1.5
B 8 12 96 12

8 = 1.5

Table 4.3: Fairness: ratio (PRBs per user/ Number of users)

The decentralized problem:

In a centralized case, we are able to calculate each stage the ratio, the number
of PRBs per user or the spectrum load used for both operators and then we can
base our strategies on these information. However, from our problem de�nition
we focus on a decentralized system, so operator A does not know anything about
the allocation of operator B. It does not know if it can increase or decrease its
requirements to respect the fairness. Moreover we want to reach fairness on a
long term and not on frame basis.
Therefore we de�ne fair a situation where the operator with more users is using
more PRBs than the operator with less users on a frame basis. Moreover on
a long term basis they should have on average the same number of PRBs per
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user. Thus, if they have on average the same number of users then they should
have the same average of spectrum load used (see table 4.4).

Operator Average number of users Average PRBs per user Average PRBs used
A 7.3 9.2 67.16
B 7.1 9.7 68.87

Table 4.4: Fairness in a decentralized system

So, we can check the average numbers of PRBs per user and the average
spectrum load used to see if our approach is fair for both operators.

4.2.2 Available PRBs

We de�ne the available PRBs as the PRBs in which the sensed interference is
under a certain threshold. An operator can allocate all or part of the available
PRBs (i.e. it cannot allocate more than 100 PRBs because of the spectrum
limit, as shown in �gure 4.2), but cannot use the non available PRBs. Moreover
this threshold is the same for all the operators.

SINR problem

Our �rst idea to select the possible available PRBs for each operator was to
base this selection on the SINR values.
In doing this we realized that in order to have an SINR value for each PRBs
each operator has to allocate it, otherwise we will have no information about
its quality. It is true that an eNB can send a dummy signal in order to test the
PRB quality before to allocate it, but this solution is not e�cient at all. In fact
we will waste the spectrum only to know its quality.
Another solution would be to de�ne the available PRBs from the SINR received
by the previous allocation process. In other words the PRBs that we can allo-
cate, are a subset of the previous ones. In particular they are the ones over a
de�ned SINR threshold. But in such a way selection after selection the number
of allocated PRBs decreases drastically.
This lead us to move for the interference.

Interference

First of all we can start stating that in our systems there is no intra-cell inter-
ference because we allocate the PRBs orthogonally within a single cell. In fact
we are using OFDMA as access techniques. Moreover we are using TDD, as
duplexing scheme, with perfect synchronization thus we have neither intra-cell
interference between the uplink and the downlink.
Therefore all the received interference comes from neighboring cells in the same
frequency band. It is the so called inter-cell interference.

Our problem is at this point to de�ne who should sense the interference all
over the spectrum.
We could make users sense it but then we would have several di�erent inter-
ference vectors. In fact users can sense the interference from their perspective
that is highly dependent on their position. Then in downlink channel it is not
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Figure 4.2: PRBs available
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true that if a PRB is interference free for one user it will be interference free for
another one. The �gure can help us to explain this concept.

Figure 4.3: Downlink

As we can see in �gure 4.3, in dowlink case the interference sensed by UE 2
is not the same as the one sensed by UE 1, because they are in di�erent position
with respect to the interfering eNB (operator B).
Therefore these di�erent sensed interference vectors should be sent to their serv-
ing eNB (operator A). Operator A should do a sort of average or even something
smarter to have a single interference value for each PRBs. This approach can
be also power wasting for a user equipment.
However it is not the aim of our project to de�ne some smart algorithms to use
the interference vectors sensed by users.
Thus we decide to make the eNB sense all the spectrum and de�ne the inter-
ference vector that we will use to state the total amount of available PRBs per
eNB. In this case this sensed interference is generally valid for every users in the
uplink channel.

Figure 4.4: Uplink

In fact, as we can see in �gure 4.4, the interference in the uplink case is
received at the eNB. Therefore if the eNB senses interference in a certain PRB,
this PRB is interfered whatever user will use it to transmit his information sig-
nal to the eNB.
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In conclusion for the previous reasons we choose to sense the uplink channel
and according to this choice all our simulation results are referred to the uplink
case.
However once de�ned an appropriate interference vector, our algorithms can be
run as well for the downlink case.

4.2.3 Protocol de�nition

In this section we discuss the general protocol we are using. Our game theory
based algorithm as well as all the other discussed algorithms are the core section
of this general protocol.
First of all a new game starts whenever the number of users change for one or
both the operators.
At the beginning of each stage the actual player is supposed to have as an input
his own number of users and a vector stating the interference per PRBs. As
explained before, this interference is the sensed interference on the uplink chan-
nel coming from the previous frames allocation. Moreover it is still consistent
because the opponent is keeping the previous allocation.
In what follows we de�ne the steps of our main protocol.
Protocol steps:

1. The player has to determine if it is his turn to play. For each frame
we make only one eNB "playing", therefore only one eNB can change his
allocation and the others can only keep the same allocation of the previous
frame. The following frame they will switch their roles and so on until the
end of the game.

2. The player has to determine how many PRBs are available on the basis
of the interference vector. An appropriate threshold is de�ned in order
to allow overlapping allocation and maximize the spectral exploitation.
All the PRBs below this threshold can be allocated by the actual player.
However also if there are many PRBs available not all of them will be
used. In fact we de�ne as a part of our policy a spectral load limit in
order to provide fairness: each eNB can use only the 80% of the spectrum
as a maximum. Therefore whenever the actual number of available PRBs
exceeds the 80% limit (there are more then 100 PRBs) it will be set to
100. In particular they will be the best 100 PRBs in term of interference.

3. At this point we de�ne the number of PRBs per user. Here our algorithm
is proposed and later we will discuss it in details. We proposed also other
solutions in order to have some reference cases. Also if there are some
di�erences between these algorithms and our proposed one they are all
based on a same policy: the number of PRBs per user can't be less than
5 or more than 12. Again this policy is set in order to provide fairness
between operators.

4. Once computed how many PRBs per user each operator has, the algorithm
provides to the simulator the currently allocated PRBs for the actual
eNB, computed as the number of PRBs per user multiplied by the actual
operator's number of users. These PRBs are chosen within the available
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ones. In particular we will choose the PRBs as the best ones in terms of
interference. As well the algorithm will provide the allocation vector for
each user that belongs to the eNB. This part could be improved: so far we
do not improve the users allocation process. (i.e. giving the interference
free PRBs to the users in the worst condition).

The �ow chart 4.5 can synthesize the previously described general protocol.

Figure 4.5: Flow chart: Protocol
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Algorithm description:

Our goal is to design an algorithm that achieves a fair and e�cient alloca-
tion. In order to obtain an e�cient allocation the spectrum rule must be �exible.
Therefore we do not want to assign a �xed amount of PRBs to each operator
frame by frame: we want to dynamically change this amount of PRBs according
with the actual needs of the operator.

Our idea is simple: if at a certain time one operator has more users than
another it is better to give to this operator more resources. Thus when he will
have less requirements it will be his turn to be kind to the other and let the
other using more resources. Therefore our algorithm provides as an output the
number of PRBs per user for each cell in each frame. Then the total amount
of PRBs allocated to each operator in each frame is simply computed as the
number of PRBs per user multiplies by the actual operator's number of users.
This allocation must be fair, in the sense previously de�ned, and e�cient.

The beginning:

The simulator starts running our algorithms from the second frame. Therefore
in the �rst frame we have a blind allocation in order to have a starting point.
This allocation is neither fair nor e�cient.
As previously discussed the algorithm is initialised with the knowledge of the
number of users for the eNB of interest as well as with the interference vector.

4.2.4 Algorithm TMax

First, we worked on a basic algorithm to get another reference case. The basic
idea of Tmax is to take as much an operator can get respecting our policies:
spectrum load limit, number of PRBs per user and interference threshold.

Basically TMax will set the number of PRBs per user to:

Number of PRBs per user =
⌊
number of available PRBs

number of users

⌋
(4.3)

As discussed in 4.2.2 the number of available PRBs is the number of PRBs
below the interference threshold. Sometimes when the number of PRBs available
is low and/or when the requirements are high we cannot allocate a minimum
of 5 PRBs per user. So, to solve this problem we drop some users until we can
allocate the minumum of PRBs per user. (see �owchart 4.6)

4.2.5 Fair Policies Based Algorithm (FPBA)

Each iteration of the algorithm can be summarised as follows:

Step 1: Inizialization

Set the starting number of PRBs per user.
This step is only for the �rst two frames: in the second frame the �rst player
will set this starting value as well the second player will set it in the third frame.

1. Start with allocating 6 PRBs per user whatever amount of users the eNB
has.
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Figure 4.6: Flow chart: TMax
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Explanation: this policy is set in order to respect our idea to give more
to the eNB with more requirements. In fact if a eNB has more users it
will have more allocated PRBs (i.e. 60 PRBs if it has 10 users against 30
PRBs if it has 5 users).

2. It can be possible that the actual player does not have enough PRBs over
the interference threshold. In this case the eNB cannot set the number of
PRBs per user to the previously discussed value. Therefore it will set the
number of PRBs per user to:

Number of PRBs per user =
⌊
number of available PRBs

number of users

⌋
(4.4)

As discussed in 4.2.2 the number of available PRBs is the number of PRBs
below the interference threshold.

(a) Check if the number of PRBs per user is under the limit of 5 PRBs
per user. If it is true, then set to 5 the number of PRBs per user and
drop a user.
Explanation: This rule is set in order to provide at least 5 PRBs to
every user.

Step 2: Increase step by step

From the 3rd frame add two PRBs to the previous number of PRBs per user,
whenever you can.

Explanation: this slow increment gives the possibility to the other to incre-
ment as well. So it is a rule set to provide some kind of fairness. In this way, in
fact, we avoid that a greedy eNB takes as much spectrum as he can, drastically
reducing the opponent's available PRBs, also if it has less users than the other.
Anyway it is still true that the eNB with more users will be faster than the
other getting more PRBs.

1. It can be possible that the actual player does not have enough PRBs below
the interference threshold. In this case the eNB cannot give to each user
the previous value of PRBs per user plus two new PRBs. Therefore it will
try to add only one more PRBs. If there are not still enough PRBs the
eNB will set the number of PRBs per user to the result of the equation
4.4.

2. Check if the number of PRBs per user is under the limit of 5 PRBs per
user. If it is true, then set to 5 the number of PRBs per user and drop a
user.
Explanation: once again this rule is set in order to provide at least 5 PRBs
to every users
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Figure 4.7: Fair Policies Based Algorithm (FPBA)
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On one hand it is e�cent after some frames when we reach an equilibrium
in spectrum load used. It is also fair because each operator has the same op-
portunities in term of number PRBs available. On another hand during the
increasing part not all the spectrum is used.

4.2.6 Game Theory Based Algorithm (GTBA)

In this one we try to achieve the fairness setting some policies and e�ciency by
the means of game theory. Each iteration of the algorithm can be summarised
as follows:

Step 1: Initialization

See FPBA 4.2.5

Step 2: Learning part

From the 3rd till 9th frame add two PRBs to the previous number of PRBs
per user, whenever you can. Explanation: see FPBA 4.2.5

Step 3: Revision process

From the 10th frame until the end of the game check out the payo� obtained
for each of the previous frames. If the actual payo� is lower than the maximum
obtained payo�, change your strategy and choose the number of PRBs chosen
in the stage where the maximum payo� is obtained. Moreover do not take into
account the �rst two stages of the game.
Explanation: this is the most important step and it is justi�ed by the means of
our game theory approach. Therefore we will explain it in details in the next
section. Moreover we do not take into account the �rst two stages of the game
(starting evaluating from the 6th frame) because the realized payo� in the �rst
two stages are not so reliable, in fact it is too few time that our algorithm is
running.

In 4.8 you can see a �ow chart that synthesizes the previously described
algorithm.
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Figure 4.8: Game Theory Based Algorithm (GTBA)

Theoretical validation

As explained in 4.1.4 we are in a incomplete information game. This can lead to
situation in which it is impossible to reach a Nash equilibrium (stated in [17]).
Starting from this negative result, we tried to �nd some possible learning rules
that lead to Nash equilibrium from an out-of-equilibrium condition.
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In [8] is stated that a way to overcome this problem can be to leave the normal
rational approach and begin with a sort of random search, trying to use the so
called regret testing.
Regret testing is quite useful for us because, as we explained in 3.7.2, it is a
method that depends only on a player's realized payo�s and requires no obser-
vation of the opponent or even knowledge of the opponent's existence.

Now we are going to explain how we are using this approach matching up
the formal regret testing to GTBA. Then by the means of a practical example
we will show how it leads to a Nash equilibrium, emphasizing its complete lack
of dependence on the actions or payo�s of the opponent.

First of all our players are supposed to be rational, this means that at each
stage of the game, they choose the best responses according to the actual model.
Furthermore, they do not update after every stage, but only after a substantial
amount of stages. With an appropriate choice of parameters, it can be shown
that the realized behaviors in such a method reach Nash equilibrium almost
every time. Moreover our method leads also to a fair and e�cient equilibrium.

As previously de�ned, GTBA will try di�erent possible allocations from the
2nd until the 9th frame: in regret testing this is the so called experimental pe-
riod. Every time the player chooses the number of PRBs to allocate he receives
a payo�. But he does not know the opponent's actions or payo�s. At the end
of this period he will make a decision. This decision is based only on his own
observed payo� and it is taken in order to maximize his own utility function.
Although this approach is a little bit di�erent from the so called regret testing
rule the basic ideas are the same.Indeed a key element of regret testing is the
random component that leads to a change in strategy. This random component
permits a wide search among di�erent possible actions.

In GTBA this random search is implemented in the following way. As pre-
viously discussed the starting number of allocated PRBs per each eNB depends
solely on the number of users it has (that can be assumed a number uniformly
distributed between 5 and 10). Nevertheless the increasing factor is 2 or 1 PRBs
depending on the available PRBs in the actual frame. Therefore di�erent pos-
sible allocation are tried within the 1st and the 10th frames. However it is not a
random deviation from one strategy it is more a succession of search episodes.

Another key element of regret testing is inertia: if there is no particular
reason to change, player continues as before. As well the inertia (see chapter
3.7.2) is present in GTBA: there is no change of actions if this cannot bring an
improvement. In fact, a change happens only if the alternative payo� exceeds
the current one.

To allow a better understanding of these concepts we can show GTBA in
actions by the means of real data obtained from a simulation (table 4.5). As
stated in 4.2.3 GTBA is run from the second frame. In this frame the �rst player
will make his own decision based on the number of users he currently has.

For example (table 4.5) he chooses to allocate 48 PRBs because he has 8
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users. For this frame the second player simply keeps his previous allocation
that comes from the blindly allocated �rst frame. In the third frame the second
player will make his own decision on the top of the opponent's previous move.
Therefore it should be possible that he has not enough PRBs available to set the
number of PRBs per user to 6. However as we can see this is not the case: he
chooses to allocate 42 PRBs, therefore he has 7 users. Now they try to increment
their allocated PRBs by step of one or two, depending on the available PRBs. In
the 10th frame the �rst player makes his decision on the basis of his previously
observed payo�. In the 11th frame the second player gives his response to the
�rst player's action.

Allocated
PRBs 1

48 48 64 64 80 80 88 88 80 80 80 80 80

Allocated
PRBs 2

71 42 42 56 56 70 70 77 77 70 70 70 70

Table 4.5: Example of a game

In table 4.6 we show the same game from the �rst players perspective.

Frame number Throughput (e+008) PRBs Payo� (e+015)
2 1,7940 48 0,6705
3 2,1663 48 0,9776
4 2,4726 64 0,9552
5 3,1639 64 1,1564
6 3,5005 80 1,5317
7 3,0419 80 1,1566
8 3,4672 88 1,3661
9 3,0529 88 1,0591
10 3,1832 80 1,2666
11 3,0419 80 1,1566
12 3,3387 80 1,3934

Table 4.6: Strategic information example 1st player

The �rst player chooses to allocate 80 PRBs because his payo� is greater
than the others considered. As we can see in table 4.6, after a transitory it
gets an higher throughput than with the 88 PRBs allocation. Therefore this
allocation is more e�cient.

Now we show the game from the second player perspective (table 4.7).
As we can see in table 4.7, he chooses to allocate 70 PRBs because his payo�

is greater than the others considered (remember we don't consider the payo�s
from the beginning). He is the second player so he makes his move on the top
of the other's move. Now we will show that also if he does not know the other's
move he chose the best response (table 4.8).
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Frame number Throughput (e+008) PRBs Payo� (e+015)
2 3,7531 71 0,6705
3 2,0780 42 0,9776
4 2,3322 42 0,9552
5 2,6871 56 1,1564
6 2,4726 56 1,5317
7 3,4658 70 1,1566
8 2,9250 70 1,3661
9 3,4662 77 1,0591
10 3,3251 77 1,2666
11 3,4658 70 1,1566
12 3,1958 70 1,3934

Table 4.7: Strategic information example 2nd player

56 70 77
80 (1.09 , 1.53) (1.15, 1.71) - NE (1.26, 1.43)
88 (1.36, 1.22) (1.05, 1.56)

Table 4.8: Game in strategic form

As we can see in table 4.8, once the �rst player chooses to allocate 80 PRBs
the best response for the second player is to allocate 70 PRBs.
The equilibrium we reach is also fair (according to our de�nition of fairness).

Limitations:

1. The �rst limit of this method is represented by the dependency of players'
search episodes. We are in a dynamic game therefore searches are con-
nected via the history of play.
As we can see in table 4.8 the case (88,63) is not investigate. Moreover if
at a certain point of the game one player allocated too many PRBs it can
be possible that the other cannot increase anymore his allocated PRBs
because of the received interference. Thus there is no guarantee that the
joint strategy space will be searched systematically and maybe a more
e�cient and fair equilibrium should be �nd.

2. A second limit is that we are in an incomplete information game. Therefore
even when the players �nd an equilibrium, they do not know it. This is
because they are unaware of the opponent's payo�, hence they can move
away from the equilibrium.

4.2.7 Fair Limit on Average (FLoA)

The basic idea of this algorithm is to have something really fair. So, we set a
limit called fair limit in number of PRBs used/ allocated. It means each player

43



is going to increase or decrease its requirements to reach this limit on average
and on long term.

Figure 4.9: Fair Limit on Average (FLoA)
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1. Set the fair limit, for example 75 PRBs.

2. From requirements (number of users), the number of PRBs available cal-
culate the number of PRBs per user. It means increase or decrease the
previous number of PRBs per user.

The main problem with this algorithm is that not stable at all. Instead of
an equilibrium in the number of PRBs used we have what we call yo-yo e�ect!
Indeed when we are close to the fair limit each operator is going to increase and
next frame to decrease its requirements to respect the fair limit. To conlude
this algorithm takes into account only the fair problem. It is not e�cient at all.

4.2.8 Algorithm NoFSU

The basic idea is to give all the spectrum to each operator. They will use a lot of
PRBs even if the number of users is low or interferences are high. The problem
with this algorithm is we have a lot of overlapping and then a lot of interfer-
ence between operators. Thus the throughput per cell and users is not so good.
This algorithm is one of our references because is not using FSU. Indeed, our
goal is to show FSU is better in spectral e�ciency as we will see in the chapter 5.

Number of PRBs per user =
⌊
number maximum of PRBs

number of users

⌋
(4.5)

Where the number maximum of PRBs is equal to 125 as we have seen in
chapter 2.4
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Chapter 5
Simulation and Results

5.1 Simulation

To study the fairness and the e�ciency of our proposed algorithms we used a
simulator deployed at Aalborg University and approved by Nokia-Siemens Net-
works, Aalborg
We integrate our algorithms in the simulator adding �exibility to the basic
scheduling version that does not provide any FSU scheme. Therefore our ref-
erence cases are the blind random scheduling in frequency domain provided by
the simulator in full load mode as well as the �xed spectrum assignment policy.

5.1.1 Scenario

Our simulations are run in an indoor scenario in particular in an o�ce scenario
that follows the A1 type speci�cation suggested in [18].

As we can see from �gure 5.1 a cell is composed by ten rooms. The eNBs
are placed in the middle of each cell, precisely in the corridor and each eNB
belongs to a di�erent operator. This is an optimal location for the eNBs and it
corresponds to the planned deployment case.
We run the simulations in the case of two as well as four eNBs. Moreover we
are in a single �oor scenario.
Figure 5.1 is an example of a four eNBs o�ce scenario.



Figure 5.1: O�ce scenario topography

• Scenario: indoor o�ce

• Number of operators: 2 or 4

• rooms per cell: 10x2 (2 operators) 5x2 (4 operators)

• cell coverage: 100x25 meters (2 operators) 50x25 meters (4 operators)

• Number of users per cell: from a minimum of 5 users up to 10 users

Layout

In the simulator the layout is very �exible. We can choose the number and
the position of walls, eNBs and UEs.
The SINR depends a lot on the topography and on the eNBs and UEs deploy-
ment.

Figure 5.2: In�uence of the position on SINR

As shown in �gure 5.2 the SINR at eNB 1 and eNB 2 will not be the same.
That is why we set the UEs position randomly and we run a lot of time the
simulation in order to obtain a realistic SINR distribution. So, we use the
following parameters in our simulations:

• Layouts: 30. Random number and position of walls, doors, eNBs; a layout
lasts 30 selects.
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• Selects: 30. Random number and position of UEs; a select lasts 50 frames.

• Frames: 50.

Figure 5.3: Flowchart simulator
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As shown in �gure 5.3 once the basic layout is generated, eNBs and UEs
will be generated. Moreover during each select the users, eNBs and the radio
conditions remain constant. Only the PRBs allocation is changed by the means
of the FSU algorithm.

UEs and eNB

Users are connected to the eNB in the same cell coverage and they are �xed,
they change position only after 50 frames. Each eNB serves from a minimum of
5 users up to a maximum of 10 users.

The eNB's characteristics are:

• trasmission power: from 27 dBm to 30 dBm

• antenna: omni-directional, 3 dBi gain

• height: randomly choosen between 1 and 2.5 meters

The UE's characteristics are:

• trasmission power: from -30 dBm to 24 dBm

• antenna: omni-directional, 0 dBi gain

• height: randomly choosen between 1 and 2.5 meters

Channel model

The simulator models the indoor path-loss according to the A-1 type proposed
in [18].
We have both a LOS and a NLOS case. The LOS is corridor-to-corridor and
NLOS case is corridor-to-room. In the NLOS case we have a basic path-loss
calculation for users in the rooms adjacent to the corridor where the eNB is
situated. For users in rooms further away from the corridor a wall-penetration
losses is applied.

The following equations summarize the discussed model.

• LOS: PL = 18.7 log10 (d[m]) + 46.8 + 20 log10 (fc[Ghz])/5)

• NLOS: PL = 36.8 log10 (d[m]) + 43.8 + 20 log10 (fc[Ghz])/5)

• NLOS with walls penetration factor:
PL = 20 log10 (d[m]) + 46.4 + 20 log10 (fc[Ghz])/5) + nw × Lw[dB]
where nw is the number of walls between the eNB and the UE and Lw is
the wall penetration loss factor.

The shadow fading correlation between eNB and users is also computed. It
is applied a log-normal model with a standard deviation of 3 for the LOS case,
4 or 6 for the NLOS case depending on the number of walls between users and
eNB.
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5.1.2 Simulation parameters

Other simulation parameters are:

• Frequency reuse factor: one (all cells in the network use the same frequency
band, in other words we have a non-orthogonal spectrum allocation among
operators)

• Synchronization : perfect

• Tra�c load: fractional (each operator is requiring a fraction of the full
bandwidth)

• Systems Bandwidth: 100 Mhz

• Frequency: 3.5 GHz

• Layouts: 30

• Selects: 30

• Frames: 50 (2 operators), 100 (4 operators)

5.1.3 Performance metrics

To evaluate our algorithm performance we will use several kinds of plot: the
average cell load, the mean cell throughput, the CDF of the cell throughput and
of the user's throughput, the outage user's throughput.

The average cell load plot is particularly important to evaluate the fairness.
In fact it states the average allocated number of PRBs per cell, per frames over
all the simulations. In particular it provides this result as a percentage of the
used PRBs over the total number of PRBs.

The mean cell throughput provides a mean of the total throughput achieved
by the eNB frame by frame.

The outage user's throughput is de�ned as the 5th percentile of the CDF of
the user's throughput. In other words it is the minimum throughput achieved
by the 95% of the users, so it represents in a certain way the throughput achieved
by the user in the worst conditions.

5.1.4 Interference threshold

An important parameter in our simulation is the interference threshold.
We run di�erent simulations in order to set this parameter and we chose the
interference threshold: 10−11. In fact from �gure 5.4 we can see that when we
share too much (interference threshold set to 10−10) the mean cell throughput
as well as the outage user's throughput drastically fall down.
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Figure 5.4: Threshold 10−11vs10−10

5.2 Results analysis

In this section we present the improvements we can have by using game theory,
comparing our GTBA algorithm with several others.

• Fair Policies Based Algorithm (FPBA): FPBA is an algorithm that applies
all our spectrum policies (such as to set a starting number of PRBs per
user and increase by one or two PRBs per frame until you have enough
available PRBs). In other words it is the GTBA without the so called
revision process. See also section4.2.5.

• Game theory based Algorithm (GTBA): this algorithm behaves as FPBA
until the 10th frame. From this frame the players will make a decision
about how many PRBs should allocate. Moreover, this decision is taken
on the basis of each player's observed utility function. This is what we
call the revision process as explained in section 4.2.6.

• TMax: Tmax algorithm is an algorithm that allows the operators to get as
much spectrum as they can get, respecting only our policies on spectrum
load and on maximum and minimum numbers of PRBs per user. See also
section 4.2.4

• No Flexible Spectrum Usage Algorithm (NoFSU): no �exible spectrum
usage algorithm with full load is a basic algorithm already implemented
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in the simulator. In this algorithm all the spectrum is exploited by both
the eNBs. See also section 4.2.8.

• Fixed Spectrum Allocation Algorithm (FAS): we code this algorithm to
have another reference case. It consists in assigning to each operator a
�xed part of the spectrum (the 50% in the two players case and the 25%
in the four players case).

First of all we show the improvement achieved by the means of game theory,
comparing the GTBA with the FPBA and TMax. Then we will compare the
GTBA with the reference case (NoFSU algorithm) and with the �xed allocation
case (FAA). Finally we will discuss some results for the four players case.

5.2.1 GTBA vs FPBA

Here we make a comparison between the Game Theory Based Algorithm and
the Fair Policies Based Algorithm. The �gure 5.5 shows the minimum through-
put achieved by the 95% of the users for both the GTBA and FPBA.

Figure 5.5: Outage user's throughput: GTBA vs FPBA

As we can see in �gure 5.5 by using the utility function and the so called
revision process we greatly increase the outage user's throughput. As discussed
before, after the 10th frame, players will make their decisions about how many
PRBs to allocate. Most of the times, this decision leads them to decrease the
number of allocated PRBs (as we can see in �gure 5.7). Therefore after the 10th

frame the outage user's performance signi�cantly improves with respect to the
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FPBA.

We can also show that, by the means of the utility function, a player will
make a fair and e�cient decision.

Figure 5.6: Mean cell throughput: GTBA vs FPBA

As we can see in �gure 5.6 a eNB reaches almost the same throughput as in
FPBA, but it is maximizing the spectral e�ciency, using less PRBs to achieve
almost the same result (�gure 5.7).

From the plot 5.7 we can see also the fairness of our algorithms that lead to
a situation where in average the eNBs use almost the same amount of PRBs.
Figure 5.7 shows as well that after the 12th frame an equilibrium is reached
in the GTBA. In fact players do not change anymore their actions, in other
words they keep frame by frame their chosen number of allocated PRBs. As we
explained, in this equilibrium point the spectral e�ciency is higher than in the
equilibrium point reached by the FPBA.
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Figure 5.7: Average cell load: GTBA vs FPBA

5.2.2 GTBA vs Tmax

In this section we compare the performance of GTBA and the Tmax algorithm.
As explained in section 4.2.4, the Tmax algorithm is an algorithm that allows
the operators to get as much spectrum as they can get respecting only our
spectrum policies (such as the maximum spectrum load). Once again the cell
throughput achieved by the GTBA is similar to the one achieved by the Tmax
algorithm (�gures 5.10 and 5.9), but we are using less PRBs, as we can see from
�gure 5.8. So we gain in spectral e�ciency.

54



Figure 5.8: Average cell load: : GTBA vs Tmax

Figure 5.9: CDF of cell throughput: GTBA vs Tmax
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Figure 5.10: Mean cell throughput: GTBA vs Tmax

Moreover the CDF of users' throughput is similar too (�gure 5.11), but the
outage user's throughput is higher in our case (�gure 5.12), because sharing less
PRBs the operators interefere less each other.

Figure 5.11: CDF of user's throughput: GTBA vs Tmax
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Figure 5.12: Outage user's throughput: GTBA vs Tmax

5.2.3 GTBA vs NoFSU

Here we compare GTBA to the reference case (NoFSU algorithm) in which all
the spectrum is exploited by both the eNBs.

In �gure 5.13 and 5.14 we have illustrated that both the mean cell throughput
and the outage user's throughput are signi�cantly improved by GTBA. This is
a con�rmation to our idea that it is good to share the spectrum but not over
a certain point (as shown in 5.1.4). In fact after a certain point having more
PRBs an eNB does not improve anymore its throughput because it gets highly
interfered PRBs.
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Figure 5.13: Outage user's throughput:GTBA vs NoFSU

Figure 5.14: Mean cell throughput: GTBA vs NoFSU

From the �gure 5.14 we can see how GTBA leads always to an higher mean
cell throughput. Moreover using less PRBs we improve the spectral e�ciency
as well.

However as illustrated in �gure 5.15 from the CDF of user's throughput we
can state that without any FSU algorithm the 8% of users reach a throughput
higher than 80 Mbps against the 4% obtained in our algorithm. This is because
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the full load algorithm gives to every users the total amount of PRBs divided by
the actual number of users. In our case we set some policies (i.e. the maximum
number of PRBs per user sets to 12) to achieve the fairness goal that prevents
us to reach the same results.

In conclusion using the utility function we have a big improvement in term of
mean cell throughput and outage user's throughput, but in order to have a fair
situation we pay in term of maximum throughput achieved by users. However
GTBA leads also to a more fair situation between users, in fact we reduce the
throughput gap between the users in the best situation and the outage user, as
we can see from �gure 5.15.

Figure 5.15: CDF of user throughput: GTBA vs NoFSU

Figure 5.16: CDF of cell throughput: GTBA vs NoFSU
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5.2.4 GTBA vs the Fixed Spectrum Allocation case

In this paragraph we compare the GTBA to the FSA case.

Figure 5.17: Mean cell throughput: GTBA vs FSA

Figure 5.18: CDF of cell throughput: GTBA vs FSA

It is interesting to compare �gure 5.17 and �gure 5.18. Figure 5.17 shows
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that with the GTBA the mean cell throughput is still better than in the FSA
case, moreover through �gure 5.18 we can illustrate the �exibility of the GTBA.
In fact in the FSA algorithm the cell throughput does not change too much. On
the contrary in the GTBA we have a big variation because the cell throughput
depends on the actual number of served users, for example in the 19% of the
cases the cell throughput is above 400 Mbps.

Figure 5.19: CDF of user's throughput: GTBA vs FSA

It can be seen in �gure 5.19 that over a certain point also the user's through-
put is better. In fact the percentage of users whose throughput is over 50 Mbps
is 38% in the GTBA against the 28% reached by the FSA algorithm.

From �gure 5.20 we can see that adding the �exibility we paid a lot in term
of outage user's throughput. In fact the throughput achieved by the outage
user with the GTBA is less than in the �xed spectrum allocation case. This is
because in the �xed spectrum allocation users do not experience interference at
all, due to the orthogonal allocation.
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Figure 5.20: Outage user's throughput:GTBA vs FSA

5.2.5 The four players case

In this paragraph we are going to show the results obtained in the four players
case.

Increasing the number of operators we obtained a bigger improvement than
the one obtained in the two players case. As we can see in �gure 5.21 the
mean cell throughput is much higher for both our FPBA and TMax algorithms
compared to the results obtained with the �xed spectrum allocation (FSA algo-
rithm) and without any �exible spectrum usage algorithms (NoFSU algorithm).
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Figure 5.21: Mean cell throughput: the four players case

Figure 5.22 illustrates that in the four players case we can reach a better
throughput for the outage user, too. In fact as we showed we reach and overcome
the throughput achieved in the �xed allocation case.

Figure 5.22: Outage user's throughput: the four players case

Figure 5.23 and �gure 5.24 show that FPBA and Tmax algorithm lead to an
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higher throughput both for the users and the total cell throughput compared
with the ones achieved by a �xed spectral allocation and without the use of any
�exible spectrum algorithm. In fact we can see from �gure 5.23 that in the 30%
of the cases the cell throughput is higher than 310 Mbps throughout FPBA and
Tmax algorithm, against the 240 Mbps reached in the 30% of the cases without
any FSU algorithm and the 170 Mbps reached by the FSA algorithm.

Figure 5.23: CDF of cell throughput: the four players case

Figure 5.24: CDF of user's throughput: the four players case
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Chapter 6
Conclusion and future works

In this chapter, the general conclusion that can be drawn from the project is
presented. Moreover, several ideas for future works are proposed.

6.1 What we have done

In this work we have investigated the design of spectrum sharing algorithms for
IMT-A networks in a cooperative scenario with two or four operators. Three
di�erents algorithms for the spectrum allocation were proposed: take as much
as it is possible respecting our policy (TMax), take as much as you can increas-
ing frame by frame in order to add the fairness (FPBA) and no-regret learning
based algorithm to maximize the spectral e�ciency (GTBA).

We showed that all the proposed spectrum sharing algorithms converge to a
stable equilibrium although in a decentralized system operators do not have any
information about the others. Moreover they require no information exchange
to work.

Our simulation results have shown that the average achievable throughput
is higher for the GTBA, in addition it uses less PRBs than the others reaching
an higher spectral e�ciency.
TMax is also e�cient, but it is not fair at all: in fact the �rst player can take all
the spectrum preventing the others to do the same because of the interference
limit.
Through a slow increment we reach a fair equilibrim in FPBA.
We showed that our regret learning approach (GTBA) adds the e�ciency to
the FPBA. Thus by the means of our game theorectic approach it is possible to
share the spectrum in a fair and e�cient way.

Through game theory we also improve the outage user's throughput in com-
parison with the result obtained without any FSU and for both the algorithms
TMax algorithm and FPBA.



6.2 Future works

In a centralized system with all the information available it could be a complex
optimization problem to share the spectrum in the best e�cient and fair way.

We have assumed UL/DL fully synchronized in our approach to model a
dynamic game. We could extend the problem to unsynchronized case and study
the e�ect of a static approach.

Users' equipments have been assumed �xed at each simulation loop. More-
over the number of users is changing for each operators in the same time. We
could study the case where the number of users is changing independently from
an operator to another one. Then we should have a problem with the GTBA.
Indeed, in this case both operators reach an equilibrium in term of allocated
PRBs and then the number of users of one operator is changing. This one is
going to start again the algorithm and the other one to allocate the same spec-
trum. So it would not know when it has to start again the algorithm and leave
the equilibrium.

Finally we have assumed that players are cooperative and thus we did not
simulate the case where an operator is sel�sh. We could include this behav-
ior and play with the reputation and then how to choose credible punishment
methods to make a sel�sh operator becoming cooperative.
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Appendix A
Glossary

A.1 Abbreviations

DL: Down link
FDD: Frequency Division Duplexing
FSU: Flexible Spectrum Usage
HeNB: Home enhanced Node B
IMT-A: International Mobile Telecommunications
ITU: International Telecommunication Union
NE: Nash Equilibrium
OFDMA: Orthogonal Frequency Division Multiple Access
PRB: Physical Resource Block
QoS: Quality of Service
RF: Radio Frequency
RRM: Radio Resource Management
SC-FDMA: Single Carrier FDMA
SINR: Signal to Interference plus Noise Ratio
TDD: Time Division Duplexing
UL: Up Link
WLAN: Wireless local Area Network

A.2 De�nitions

Average Achieved Cell Load: represents the actual number of PRBs utilized
by the eHNBs.

Fractional load: each operator is requiring a fraction of the full bandwidth.

Full load: each operator is requiring the full bandwidth.

Mean Cell Throughput: it is the total throughput achieved by the eHNB
during one frame after the FSU algorithm is stabilized.



PRBs: it is the smallest units of spectrum sharing. In our game PRBs are
the ressource to allocate to each operators.

User Outage Throughput: de�ned at the 5th percentile of the CDF of user
throughput. This gives the minimum throughput achieved by the 95% of the
users.
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Appendix B
Why are we using dynamic game

instead of static game ?

As we have seen in chapter 3 we are using a dynamic approach to solve the
problem of spectrum sharing. In this section we are going to explain the reason
of this choice.

B.1 Static allocation example: TMax

The diagrams B.1, B.2 and B.3 represent an allocation in a static game. As
we can see, all the spectrum is not always used (blue color). Remenber what
we have talked about in chapter 3.2.2. In static game players choose their
actions silmutaneously. Their strategies are based on their requirements and
the number of PRBs available which depends on the interference level and the
threshold. It means each operator has to choose which PRBs to allocate from an
interference vector calculated before the other play turn. Then, both operator
are going to sense a spectrum opportunity (free PRBs with no interference for
example). As they sort the interference vector from the best one to the worse
one, this PRBs will be one of the best for both operator. Next stage they are
going to allocate some users. After the stage , each operator is going to sense
interference in the PRBs allocated because they are both using it. So, in the
next allocation process they will leave this PRBs and the PRBs will have again
a good interference level.



Figure B.1: Allocation static: frame number 1 & 2

Figure B.2: Allocation static: frame number 3 & 4

Figure B.3: Allocation static: frame number 5 & 6

As we can see with a static game the allocation of the spectrum is not stable
and all the spectrum is not used. Now we are going to compare with a dynamic
game.

B.2 Dynamic allocation example: TMax

The diagrams B.4, B.5 and B.5 represent an allocation in a dynamic game. As
we have seen in 3.2.2, in a dynamic game players don't make their decision
simultaneously. Therefore in our case one player starts with his own allocation
and the other has to make his decision on top of the previous one's move. Thus
the previous one's action in�uenced the actual player decision by the means
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of the interference, because, as explained later in 4.2.2, a player cannot choose
every PRBs, but only the available ones. Furthermore to not play does not mean
wasting the opportunity to allocate some PRBs in the actual frame: it means
only that for the actual stage the "non" player keeps his previous allocation.

The following allocation example use these parameters:

Operators Number of users
A 8
B 6

Table B.1: Operator parameter

Figure B.4: Allocation dynamic: frame number 1 & 2

Figure B.5: Allocation dynamic: frame number 3 & 4

And then we reach an equilibrium in frame 5 and 6. It means operators will
always use the same number of PRBs and the same allocation until the number
of users change.
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Figure B.6: Allocation dynamic: frame number 5 & 6
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Appendix C
OFDM and OFDMA

Orthogonal Frequency Division Multiple Access (OFDMA) is a multiple access
technique that uses Orthogonal Frequency Division Multiplexing (OFDM) in
order to provide multiple access to the radio resource.
OFDMA techniques is built on OFDM, thus we �rst take a look on how OFDM
works in order to explain this radio access technique. OFDM is a modulation
technique that allows to modulate a data stream instead of over a single wide
band carrier, over multiple narrow band sub-carriers (�g. ).

Figure C.1: OFDM sub-carriers

As showed in �gure C.1 there is no band guard between sub-carriers. This is
possible because they are orthogonal, in other words the peak of one sub-carrier
correspond to the null of the adjacent ones.
Thanks to the orthogonal sub-carriers OFDM reach an high spectral e�ciency.
Moreover it is possible to use di�erent modulation and coding techniques in
each sub-carrier. This allows to use more robust modulations only on a subset
of interfered as well as faded sub-carriers, once again increasing the spectral
e�ciency.

OFDM allows only one user on the channel. In other words at a certain time
all the sub-carriers are given to one users. To hold multiple users, a strictly
OFDM based system must use a multiple access technique such as the Time
Division Multiple Access (TDMA).



OFDMA realize the multiple access by exploiting the orthogonallity among
sub-carriers.
The multiple access, in fact, is provided by assigning at a certain time a sub-
channel to every user. A sub-channel is a group of contiguous as well as non
contiguous sub-carriers.
This kind of multiple access is very �exible because, as the OFDM, it o�ers the
possibility to change the modulation and coding technique for each sub carrier
as well as for each sub channel, thus for each user.

Figure C.2: OFDM/TDMA and OFDMA
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