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In the simple cases, the reactance is close to zero and so can be neglected and the impedance is
considered as a pure resistance. If not, signal re�ection occurs because of the imperfections in the cable
which cause impedance mismatch. This re�ection can be measured with the re�ection coe�cient:

Γ =
RL − RS

RL + RS

Impedance discontinuities involve a degradation of the signal quality (attenuation, distortion...).
The following graph displays the variation of power lost in the generator according to the variation
of the load resistance. The ideal matched load resistance is determined when the power lost in the
generator is equal to the power transferred to load. This matched resistance involves a maximization
of the power transferred.

Figure D.2: Powers versus load resistance

Many radio frequency systems tend to use a 50Ω reference impedance.



Appendix E

Resonant frequency in PIFA antennas

In Planar Inverted F Antennas (PIFA), the resonant frequency is a�ected by the ratio L1
L2 (see the

structure of a PIFA antenna in Figure E.1). In [28] it can be seen that the more the ratio increases,
the higher the drop in the ratio W

L1 will be, and so the PIFA resonance frequency is proportional to
the current distribution e�ective length.

Figure E.1: Structure of PIFA Antenna

If the width of the shortcircuit plate and the length of the antenna's plate are equal i.e. W
L1 = 1,

then it results in an antenna of λ
4 . The resonance frequency of the antenna can be expressed by

fr1 = c
4∗(L2+H)

where

L2 + H = λ
4
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The extreme case happens when W=0. This case can be represented by an in�nitesimal short
circuit pin. The expression can be expressed by

fr2 = c
4∗(L1+L2+H)

where

L1 + L2 + H =λ
4

When 0 < W < L1

fr = c
4∗(L1+L2+H−W )

Finally, when 0 < W
L1

< 1 the resonance frequency can be approximated with a linear interpolation
operation where

fr = R ∗ fr1 + (1 − R) ∗ fr2 for L1
L2

≤ 1

and

fr = Rk ∗ fr1 + (1 − Rk) ∗ fr2 for L1
L2 > 1

where

R = W
L1

and k = L1
L2
.

Figure [E.2] shows how changes the frequency vs L2 in the di�erent cases that have been shown in
this appendix. The constant values that have been used for this study are L1 = 80 mm, H = 5 mm
and W = 50 mm.

As it is also shown in Figure [E.2] the resonance frequency is always growing when the size of L2

also increases.
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Figure E.2: Comparison of Frequency vs L2 when di�erent W are used



Appendix F

Antenna Matching

One of the biggest problems when designing an antenna is to match its impedance to the transmission
line, but not in the sense of designing the matching circuit but instead if it can be really matched. This
means that ideally all impedances can be matched but in reality, to match the antenna, capacitors and
inductors will be used and these components have some physical limitations which also limits their
real (commercial) values. This commercial values can be seen in Table F.1.

Capacitor Inductor

Maximum 1 mF 39 mH
Minimum 0.5 pF 1 nH

Table F.1: Surface mount commercial capacitors and inductors

To do the matching a simple matching L-network has been used [29]. This kind of matching network
has two con�gurations shown in Figures F.1 and F.2, which also show that both elements used for the
impedance matching are only reactive components (inductors and capacitors) and consequently there
will be no losses ideally.

De�nitions:
ZL its the impedance to be matched (the load impedance)
RL its the real part of the load impedance (resistance)
XL its the imaginary part of the load impedance (reactance)
Z0 its the characteristic impedance of the transmission line

Figure F.1: First case of Matching L-network

103



APPENDIX F. ANTENNA MATCHING 104

Figure F.2: Second case of Matching L-network

There are two possible con�gurations for this matching network, depending on the value of the load
impedance [29]. In both cases is wanted the load impedance to equal Z0 if it is looked from before the
matching network.

If RL> Z0 the network looks like in Figure F.1, and solving the impedance equation, B and X can
be found as:

B =
XL ±

√
RL

Z0
(R2

L + X2
L − Z0RL)

R2
L + X2

L

X =
1
B

+
XLZ0

RL
− Z0

BRL

If B is positive, the element in parallel is a capacitor. If B is negative, it is an inductor. If X is
positive, the element in series is an inductor. If X is negative, it is a capacitor [29].

If RL< Z0 the network looks like in Figure F.2 and now B and X can be found as:

B = ± 1
Z0

√
Z0 − RL

RL

X = ±
√

RL (Z0 − RL) − XL

If B is positive, the element in parallel is a capacitor. If B is negative, it is an inductor. If X is
positive, the element in series is an inductor. If X is negative, it is a capacitor [29].

From these equations and di�erent cases the values of B and X can be calculated and from these
two, the values of the capacitors and inductors can be found as:

if B or X are capacitors, then: B or X = 1
jwC

if B or X are inductors, then: B or X = jwL



Appendix G

Design and Simulation of di�erent

antennas

Next, it will be shown all the main results of the antennas that are presented in Chapter 4. Further,
it can be seen some extra simulations with lumped elements.
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Figure G.1:
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Figure G.2:
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Figure G.3:
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Figure G.4:
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Figure G.5:
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Figure G.6:
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Figure G.7:




