
Power Consumption in DFTs
for OFDM Systems

MASTER THESIS

APPLIED SIGNAL PROCESSING
AND IMPLEMENTATION (ASPI)

Group 1042
Peter August Simonsen

Jes Toft Kristensen

Institute for Electronic Systems
Fredrik Bajers Vej 7B
Telefon 96 35 98 36
Fax 98 15 36 62
http://www.esn.aau.dk

Title:
Power Consumption in DFTs
for OFDM Systems

Project period:
P10, fall semester 2008

Project group:
ASPI 08gr1042

Members:
Peter August Simonsen
peter@augusts.dk

Jes Toft Kristensen
jes@buskefjomp.dk

Supervisors:
Anders B. Olsen
Jesper M. Kristensen

Copies: 6

Pages in report: 106

Appendices: 1 CD

Printed June 3, 2008

Abstract:

This Master Thesis of “Applied Signal Process-
ing and Implementation” specialization at Aalborg
University is an investigation of FFT algorithms in
OFDM receivers and the algorithms power usage on
customizable platforms.
The project focuses on mobile applications and co-
operative radios, wherein only a part of the received
frequency spectrum is needed. This can be ex-
ploited by special FFT algorithms to yield a lower
operations count and intuitively a lower power con-
sumption. However, what is not reflected in the op-
erations count is the power-consumption of the con-
trolling HW/SW. This thesis seeks to investigate the
possibilities and tradeoffs, with regards to power
usage, when computing a subset of the frequency
spectrum, as opposed to the full spectrum.
Initially, the concept of cooperative radio and a sig-
nal model for OFDM is defined. Afterwards, two
Fourier transform algorithms - a full Split-Radix
FFT and an FFT algorithm computing only a subset
of the spectrum (SFFT) - are examined and mapped
to a Cyclone III FPGA architecture. Next, the
power performance of each implementation is ex-
amined and an investigation into possible improve-
ments is performed. In conclusion the algorithms
are compared to a performance measure of com-
putational complexity traditionally used to theoreti-
cally evaluate FFT algorithms.
The test results shows that the SFFT is not feasible
with regards to power usage, without further im-
provements. These improvements include, among
others, an enhanced power-off mechanism when
subsystems are not in use. If a power-off state is
introduced it is predicted that the SFFT becomes
feasible and that computational complexity corre-
sponds to the power usage for this implementation.

peter@ augusts.dk
jes@ buskefjomp.dk

ii

Institut for Elektroniske Systemer
Fredrik Bajers Vej 7B
Telefon 96 35 98 36
Fax 98 15 36 62
http://www.esn.aau.dk

Titel:
Power Consumption in DFTs
for OFDM Systems

Projekt periode:
P10, forårssemester 2008

Projekt gruppe:
ASPI 08gr1042

Medlemmer:
Peter August Simonsen

peter@augusts.dk

Jes Toft Kristensen
jes@buskefjomp.dk

Vejledere:
Anders B. Olsen
Jesper M. Kristensen

Kopier: 6

Sider i rapport: 106

Antal bilag: 1 CD

Printet June 3, 2008

Synopsis:

Dette master-projekt på “Applied Signal Processing
and Implementation” specialet ved Aalborg univer-
sitet er en undersøgelse af FFT algoritmer til OFDM
modtagere og disse algoritmers energiforbrug på
konfigurerbare platforme.
Projektet fokuserer på mobile kommunikation og
kooperativ radio, hvor kun en del af det modtagne
frekvensspektrum er nødvendigt at demodulere i
modtageren. Dette kan udnyttes i specielle FFT al-
goritmer til at give en lavere beregningskomplek-
sitet og intuitivt deraf et lavere effektforbrug. Men i
beregningskompleksiteten er effektforbruget af det
styrende HW/SW ikke inkluderet. Dette projekt un-
dersøger de muligheder og afvejninger, mht. ef-
fektforbrug, når kun en del af frekvens-spektret
beregnes, i modsætning til at beregne det fulde
frekvensspektrum.
Til at begynde med introduceres kooperativ radio
som koncept og en signalmodel for OFDM op-
stilles. Bagefter udforskes to FFT algoritmer - en
Split-Radix FFT der beregner det fulde spektrum
og en FFT algoritme der kun beregner en del af
spektret (SFFT) - og disse implementeres på en Cy-
clone III FPGA arkitektur. Herefter udforskes hver
implementations effektforbrug og mulige effekt-
mæssige forbedringer undersøges. Afslutningsvist
testes testes algoritmerne og resultaterne sammen-
lignes med beregningskompleksiteten, der tradi-
tionelt bruges til at evaluere FFT algoritmer.
Testresultaterne viser at SFFT algoritmen ikke er
hensigtsmæssig mht. effektforbrug uden yderligere
forbedringer. Disse forbedringer er blandt andet en
forbedret power-off mekanisme, når undersystemer
ikke er i brug. Hvis et power-off stadie introduc-
eres, viser beregninger, at SFFT algoritmen bliver
mere effektiv end Split-Radix FFT algoritmen og
at beregningskompleksitet korrelerer med effektfor-
bruget for denne implementation.

peter@augusts.dk
jes@buskefjomp.dk

iv

Preface

This report is documentation for the master thesis project in Applied Signal Processing and
Implementation (ASPI) concerning “Power Consumption in DFTs for OFDM Systems” at the
Institute of Electronic Systems at Aalborg University (AAU). The report is prepared by group
08gr1042 and spans from February 1st to June 4th, 2008. The project is supervised by Anders
Brødløs Olsen and Jesper Michael Kristensen, both from Center for Software Defined Radio
(CSDR) at AAU.

The report is divided into three parts. These parts correspond to the project phases of analysis,
design or mapping, and evaluation of achieved results. The bibliography is found on page xiv
with references to the bibliography in square brackets as in [08gr1042, 2008]. The cited source
[08gr1042, 2008] is the accompanying CD attached to the inside of the report cover. This CD
contains the code and test material produced during the project period and an electronic copy of
this report in pdf.

Peter August Simonsen Jes Toft Kristensen

Contents

Titlepage i

Titlepage (Danish) iii

Preface v

List of Figures x

List of Tables xii

Notation xiii

Nomenclature xiv

Bibliography xv

1 Introduction 1
1.1 Cooperative Radio and Multiuser OFDM . 1
1.2 Project Purpose and Objectives . 2
1.3 Problem Specification . 3
1.4 DFT Algorithms . 3
1.5 Implementation Prerequisites and Constraints 4
1.6 Project Methodology . 4

1.6.1 Analysis . 5
1.6.2 Architecture Mapping . 6
1.6.3 Evaluation . 7

I Analysis 9

2 Application Analysis 11
2.1 System Model . 11

vi CONTENTS

2.1.1 Orthogonal Frequencies . 11
2.1.2 An OFDM Downlink System . 12

2.2 Subcarrier Allocation Schemes . 15
2.3 System Specification . 15

3 Fourier Transform Algorithms 19
3.1 Algorithm Selection . 19
3.2 Discrete Fourier Transform . 20
3.3 Split-Radix FFT Algorithm . 20

3.3.1 SRFFT Derivation . 21
3.3.2 Datapath Derivation . 22
3.3.3 Graphical Example . 22

3.4 Sørensen FFT . 23
3.4.1 SFFT Derivation . 23
3.4.2 Graphical Example . 25

3.5 Complexity Analysis . 25
3.5.1 DFT Complexity . 25
3.5.2 Split-Radix FFT Complexity . 26
3.5.3 Sørensen FFT Complexity . 26
3.5.4 Comparison . 27

4 Architecture Analysis 31
4.1 The Cyclone III FPGA . 31
4.2 The Cyclone III Starter Kit . 33
4.3 Quartus II software tools and design flow . 34

4.3.1 Compilation Flow . 34
4.3.2 Verification Flow . 35

5 Power Estimation and Measurement 37
5.1 Power Simulations . 37

5.1.1 Power models . 38
5.2 Power Measurements . 41
5.3 Power Performance Measure . 42

II Algorithm Mapping 45

6 General Mapping 47
6.1 Environment Description . 47

6.1.1 RAM . 47
6.2 General Control Strategy . 50
6.3 Number Representation . 50

6.3.1 Integer Word Length . 51
6.3.2 Fractional Word Length . 53

CONTENTS vii

6.4 Arithmetic Operations . 55
6.5 Summary . 57

7 Split-Radix FFT Mapping 59
7.1 Tasks . 59
7.2 Datapath . 60

7.2.1 L-Butterfly . 60
7.2.2 Two-Point Butterflies . 62

7.3 Control Path . 63
7.3.1 General Control Path . 64
7.3.2 Address Generators . 64

7.4 Clock Domains Generation . 67
7.5 Summary . 67

7.5.1 Hardware Utilization . 68

8 Sørensen FFT Mapping 71
8.1 Tasks . 71
8.2 Datapath . 72
8.3 Control Path . 76
8.4 Clock Adjustment . 79
8.5 Summary . 79

8.5.1 Hardware Utilization . 79

III Evaluation 85

9 Test 87
9.1 Split Radix FFT . 87

9.1.1 Functional Verification . 87
9.1.2 Power Simulations . 88
9.1.3 Power Measurements . 89
9.1.4 Discussion . 91

9.2 Sørensen FFT . 92
9.2.1 Functional Verification . 92
9.2.2 Power Simulations . 94
9.2.3 Power Measurements . 95
9.2.4 Discussion . 95

9.3 Summary . 97

10 Design Space Exploration 99
10.1 Basis for Analysis . 99
10.2 Simulation Summary . 100
10.3 Performance by Hierarchy . 100
10.4 Examination of the SFFT Implementation . 102

viii CONTENTS

10.5 Summary . 104

11 Conclusion 105

CONTENTS ix

List of Figures

1.1 Multiuser Cooperative Radio Scenario . 1
1.2 Subcarrier allocation example for multiuser OFDM system. 2
1.3 Project Methodology Overview . 4
1.4 A3 model . 5
1.5 FSMD structure for design mapping . 6
1.6 Abstraction model for algorithm mapping . 7

2.1 OFDM Downlink System Model . 12
2.2 Subcarrier allocation principles . 16
2.3 Principal test system . 16

3.1 L-butterfly example . 23
3.2 32 point SRFFT example . 24
3.3 SFFT example . 26
3.4 Comparison of complexities . 27
3.5 Comparison of complexities, simple additions 28
3.6 Comparison of complexities, simple multiplications 29

4.1 Structural Cyclone III floorplan . 31
4.2 Structure of a logic element . 32
4.3 Overview of the Cyclone III Starter Kit board 33
4.4 Quartus II compilation flow . 35

5.1 Power Simulations Setup . 38
5.2 Sources of dynamic power consumption. 39
5.3 Power Measurements Setup . 42

6.1 General interface between FFT and OFDM demodulation system 48
6.2 Structure of data RAM block . 49
6.3 Sum of uniform random variables . 54
6.4 Example of multiplication and truncation . 55

x LIST OF FIGURES

6.5 VHDL code for truncation after multiplication 57

7.1 32 point SRFFT structure. 60
7.2 Tasks for SRFFT . 61
7.3 Implementation of L-shaped butterfly for SRFFT 62
7.4 2-point butterfly implementation . 63
7.5 SRFFT controlling state machine . 65
7.6 L-butterfly address generator implementation 66
7.7 Structure of 2-point butterfly address generator implementation 67
7.8 Overview of SRFFT system . 68

8.1 Tasks for SFFT . 72
8.2 SFFT in conjunction with system interfaces. 73
8.3 SFFT Flowgraph A . 74
8.4 SFFT Flowgraph B . 74
8.5 SFFT recombination datapath . 76
8.6 SFFT controlling state machine . 77
8.7 Upper and lower control path of the SFFT . 78
8.8 SFFT upper control state machine . 81
8.9 SFFT lower control state machine . 82
8.10 Example state machine state in VHDL code, with bit reversal 83

9.1 Simulated and implemented SFFT output . 93
9.2 Simulated and implemented SFFT output for upper constellation point. 94
9.3 Simulated and implemented SFFT output for lower constellation point. 95
9.4 Results of measurements and simulations of SRFFT and SFFT power consumption 97

10.1 Power consumption for FFT algorithms assuming zero idle power 101

LIST OF FIGURES xi

List of Tables

2.1 System constraints for FFT size and timing performance. 17

4.1 Cyclone III device specifications . 33

6.1 Maximum achieved values in the SRFFT . 51

7.1 Hardware utilization in the SRFFT system . 68

8.1 SFFT datapath comparisons . 75
8.2 Cycle count for simulation of SFFT . 79
8.3 Hardware utilization in the SFFT system . 80

9.1 Power simulation results, full clock . 89
9.2 Power simulation results, reduced clock . 89
9.3 Power measurement results for SRFFT, full clock 90
9.4 Power measurement results for SRFFT, reduced clock 90
9.5 Simulation and measurement results summary. 91
9.6 Mean and variances for the SFFT simulation and implementation 92
9.7 Simulation results for SFFT. 96
9.8 Measurement results for SFFT . 96

10.1 Power analysis summary . 100
10.2 Power analysis by hierarchy . 102
10.3 SFFT power usage by hierarchy and multiplicity 103
10.4 SFFT datapath power usage . 103

xii LIST OF TABLES

Notation

The notation used throughout this report is documented below.

Symbol Association
s Mathematical variables in italics
10101001b A binary number, representing the integer 169
¯̄A The matrix A
b The vector b
{x}y x modulus y
dae The expression of a ceiled
bac The expression of a floored
µ(x) The mean of x
F [a] The discrete Fourier transform of a
˜statement The binary negated statement
[08gr1042, 2008, p. 42] Bibliographic reference to index [08gr1042, 2008] page 42

LIST OF TABLES xiii

Nomenclature

BS Base Station, page 1

cdf Cumulative Distribution Function,
page 53

DFT Discrete Fourier Transform, page 20

FFT Fast Fourier Transform, page 3

FPGA Field Programmable Gate Array,
page 4

FSM Finite State Machine, page 6

FSMD Finite State Machine with Datapath,
page 6

HDL Hardware Description Language,
page 34

ISI InterSymbol Interference, page 13

LAB Logic Array Block, page 32

LE Logic Element, page 32

LSB Least Significant Bit, page 56

MAC Multiply and ACcumulate, page 72

MS Mobile Station, page 1

OFDM Orthogonal Frequency-Division Mul-
tiplexing, page 2

pdf Probability Density Function, page 52

PLL Phase Locked Loop, page 31

SFFT Sørensen FFT, page 23

SQNR Signal to Quantization Noise Ratio,
page 87

Twiddle Factor , page 20

xiv LIST OF TABLES

Bibliography

The Project Group 08gr1042, June 2008. Addi-
tional materials for the project can be found
on the accompanying CD.

AAU. JADE Project Deliverable: D3.1.1. Aal-
borg University, 2004.

Agilent. Agilent 34401A Multimeter -
Product Overview. Agilent Tech-
nologies, 2007. get from: http:
//cp.literature.agilent.com/
litweb/pdf/5968-0162EN.pdf.

Altera. An OFDM FFT Kernel for WiMAX
- Application note 452. Altera Cor-
poration, 1.0 edition, 2007a. get
from: http://www.altera.com/
literature/an/an452.pdf.

Altera. Cyclone III FPGA Starter Kit User
Guide. Altera Corporation, 1.0.0 edition,
2007b.

Altera. Nios II Processor Reference Hand-
book. Altera Corporation, 2008a. get
from: http://www.altera.com/
literature/hb/nios2/n2cpu_
nii5v1.pdf.

Altera. Cyclone III Device Handbook. Altera
Corporation, 2007c.

Altera. Quartus II Version 7.2 Handbook,. Al-
tera Corporation, 7.2.0 edition, 2007d.

Altera. Quartus II Device Support Release
Notes. Altera Corporation, 2008b. get
from: http://www.altera.com/
literature/rn/rn_qts_72sp2_
dev_support.pdf.

Altera. FPGA Power Management and Model-
ing Techniques. Altera Corporation, 1.0 edi-
tion, 2007e.

Jeffrey G. Andrews. Fundamentals of WiMAX.
Prentice Hall, 2007. ISBN 0-13-222552-2.

Abdellatif Bellaouar and Mohammed I. El-
masry. Low-Power Digital VLSI Design.
Kluwer Academic Publishers, 1st edition,
1995. ISBN 0-7923-9587-5.

David M. Bradley and Ramesh. C. Gupta.
On the Distribution of the Sum of n Non-
Identically Distributed Uniform Random
Variables. Department of Mathematics and
Statistics, University of Maine, Orono, ME,
2007. URL citeseer.ist.psu.edu/
449216.html.

Suvra Sekhar Das. Techniques to Enhance
Spectral Efficiency of OFDM Wireless Sys-
tems. Center for TeleInFrastruktur (CTIF),
September 2007. ISBN 87-92078-07-9.

P. Duhamel and H. Hollmann. ’Split Radix’
FFT Algorithm. IEEE, 1 edition, 1983. Elec-
tronics Letters, 5th January 1984, Vol. 20,
No. 1.

Pierre Duhamel. Implementation of ”Split-
Radix” FFT Algorithms for Complex, Real
and Real-Symmetric Data. IEEE, 1986.
IEEE Transactions on acoustics, speech and
signal processing, vol. ASSP-34, No. 2,
April 1986.

Daniel D. Gajski. Principles of Digital Design.
Prentice Hall, 1997. ISBN 0-13-242397-9.

BIBLIOGRAPHY xv

http://cp.literature.agilent.com/litweb/pdf/5968-0162EN.pdf
http://cp.literature.agilent.com/litweb/pdf/5968-0162EN.pdf
http://cp.literature.agilent.com/litweb/pdf/5968-0162EN.pdf
http://www.altera.com/literature/an/an452.pdf
http://www.altera.com/literature/an/an452.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf
http://www.altera.com/literature/rn/rn_qts_72sp2_dev_support.pdf
http://www.altera.com/literature/rn/rn_qts_72sp2_dev_support.pdf
http://www.altera.com/literature/rn/rn_qts_72sp2_dev_support.pdf
citeseer.ist.psu.edu/449216.html
citeseer.ist.psu.edu/449216.html

Steven G. Johnson and Matteo Frigo. A mod-
ified split-radix FFT with fewer arithmetic
operations. IEEE, 1st edition, 2007. IEEE
Trans. Signal Processing 55 (1), 11-119.

Youngok Kim and Jaekwon Kim. Low Com-
plexity FFT Schemes for Multicarrier De-
modulation in OFDMA Systems. IEICE, 1st
edition, 2007. IEICE Transactions on Com-
munication, November 2007, Vol. E90-B,
No. 11, pp. 3290-3293.

E. Lawrey. Multiuser OFDM. ISSPA, 1st edi-
tion, 1999. Proc. IEEE International Sym-
biosum on Signal Processing and its Appli-
cations, August 1999, Vol. 2, pp. 761-764.

John D. Markel. FFT Pruning. IEEE, 1971.
IEEE Transactions on Audio and Electroa-
coustics, Vol. AU-19, No. 4, December
1971.

Yannick Le Moullec. DSP Design
Methodology. AAU, 2007. Lecture
notes for mm1 of course in DSP De-
sign Methodology, ASPI8-4 http:
//kom.aau.dk/~ylm/aspi8-4/
aspi8-4-part1-2007.pdf.

Charles D. Murphy. Low-Complexity FFT
Structures for OFDM Trancievers. IEEE,
2002. IEEE transactions on communication,
vol.50, no. 12, December 2002, pp. 1878-
1881.

Erik L. Oberstar. Fixed-Point Representation &
Fractional Math. Oberstar Consulting, 1.2
edition, 2007.

Alan V. Oppenheim and Ronald W. Schafer.
Discrete-Time Signal Processing. Prentice-
Hall Inc., 2nd edition, 1998.

Henrik Schulze and Christian Lüders. The-
ory and Applications of OFDM and CDMA.
John Wiley & Sons, Ltd., 2005. ISBN 0-470-
85069-8.

K. Sam Shanmugan and A. M. Breipohl.
Random Signals, Detection, Estimation and
Data Analysis. Wiley and Sons, 1st edition,
1988. ISBN 0-471-81555-1.

David P. Skinner. Pruning the Decimation in-
Time FFT Algorithm. IEEE, 1976. IEEE
transactions on acoustics, speech and signal
processing, April 1976, pp. 193-194.

A. N. Skodras and A. G. Constantinides.
Efficient computation of the split-radix
FFT. IEEE, 1 edition, 1992. IEEE
PROCEEDINGS-F, Vol. 139, No. 1,
FEBRUARY 1992.

Henrik V. Sørensen and C. Sidney Burrus. Effi-
cient Computation of DFT with Only a Sub-
set of Input or Output Points. IEEE, 1st edi-
tion, 1993. IEEE Transactions on Signal Pro-
cessing, Vol 41. No 3, March 1993.

John F. Wakerly. Digital Design, Principles
and Practices. Prentice Hall, 3rd edition,
2001. ISBN 0-13-090772-3.

xvi BIBLIOGRAPHY

http://kom.aau.dk/~ylm/aspi8-4/aspi8-4-part1-2007.pdf
http://kom.aau.dk/~ylm/aspi8-4/aspi8-4-part1-2007.pdf
http://kom.aau.dk/~ylm/aspi8-4/aspi8-4-part1-2007.pdf

Chapter 1
Introduction

In the introduction the purpose, objectives and methodology of the project is presented. First,
an informal introduction to multiuser OFDM is given along with the motivation for examining
FFT algorithms and FPGA implementations of these in a power consumption context. Next,
fundamental project delimitations are introduced regarding FFT algorithms for examination and
FPGA platform for implementation are presented. Further discussions of these delimitations are
carried out in the analysis part of the report. Finally, the project methodology and report structure
is presented.

1.1 Cooperative Radio and Multiuser OFDM

Figure 1.1 shows a wireless communication scenario, where multiple users, or mobile stations
(MS), are communicating with a base station (BS) and each other.

MS

BS

MS

MS

Figure 1.1: Multiuser Cooperative Radio Scenario. The communication path may be either di-
rectly from base station to mobile station or data can be relayed through other mobile
stations to get to the destination.

1

The inter MS communication may both be data exchanged between the local MSs, or data
from the base station relayed through one MS to the destination. If for instance the direct channel
from BS to destination MS cannot accommodate the required bandwidth. Such a system requires
some cooperation between devices and a method for dividing the channel between BS and MS
links.

In Orthogonal Frequency-Division Multiplexing (OFDM) the spectrum or channel is divided
into a set of mutually orthogonal subcarriers, which are used to modulate the data to be trans-
mitted. In Multiuser OFDM the subcarriers may be assigned to different communication paths
as exemplified in figure 1.2, where the spectrum are divided into blocks of subcarriers for each
path.

|S|2

f
Spectrum

Figure 1.2: Example of subcarrier allocation for each communication path, where each color is
assigned to a different path.

In OFDM the Discrete Fourier Transform (DFT) and it’s inverse counterpart plays a sig-
nificant role, as it is used to modulate data symbols onto the subcarriers in the transmitter and
demodulate the data at the receiver. A more elaborate analysis of an OFDM system and the DFT
function herein is presented in chapter 2.

1.2 Project Purpose and Objectives

In this project, focus is turned to the DFT block of the OFDM receiver used to demodulate the
system subcarriers. A range of low complexity Fast Fourier Transform algorithms have been
developed to reduce to number of computations when calculating the DFT, both for calculation
of all subcarrier transforms and for calculation of only a subset of the subcarrier transforms,
which is relevant when only the data designated for one MS is of interest.

Classic evaluation methods of Fourier transform algorithms intended for OFDM systems are
based on number of additions and multiplications spent calculating the actual transform [Murphy,
2002]. While this measure gives a theoretic indication of which algorithm is optimal in a given
situation, the measure based on needed calculation only, does not take into account the control
structures needed to manage and ensure timing of input and output data for the calculation units
in an implementation of the algorithms.

When turning focus to implementations of algorithms, the cost function changes from count-
ing calculations to a combination of algorithm execution time, hardware area utilization (e.g.
logic units in FPGAs, memory usage), and power consumption:

2 Chapter: 1 Introduction

Cost = Power × Area × Time (1.1)

Since keeping power consumption as low as possible is key in battery powered mobile de-
vices, the purpose of this project is to evaluate different DFT schemes for OFDM or Cooperative
Radios with regards to power consumption in FPGA implementations. Requirements for the
DFT is taken from the WiMAX standard, to set constraints on calculation time which is based on
a standard targeted at mobile devices.

The goal of applying a power consumption measure to FPGA implementations of Fourier
transform algorithms is to investigate how the theoretical measure of computational complexity
compares to performance achievements of actual implementations. Evaluating the performance
of these implementations, across a variable number of needed subcarriers and using a power mea-
sure, will show in which situation it is advantageous to use each of the investigated algorithms.

The results of these implementation evaluations are finally compared with the computational
complexity measure to determine if each of the investigated algorithms have more or less rele-
vance in actual implementations than their computational complexity suggest.

1.3 Problem Specification

How well does the performance measure of computational complexity compare to power
consumption in FPGA implementations of DFT algorithms for multiuser OFDM?

1.4 DFT Algorithms

For this project two Fast Fourier Transform (FFT) algorithms are chosen for comparison. The
algorithms considered in this project are:

• Split-Radix Fast Fourier Transform (SRFFT):
One approach is to calculate the full transform, regardless of how many subcarriers,

that are of interest. Several algorithm exist which can perform this task. The radix-2
FFT is a recursive decomposition into two DFTs of N/2 length, the radix-4 makes use
of decompositions into four N/4 DFT, and the Split-Radix FFT employs decomposition
into one N/2 and two N/4 DFTs. The SRFFT has proven to feature one of the lowest
computational complexities of the mentioned algorithms [Duhamel and Hollmann, 1983]
and is therefore chosen for investigation in this project.

• "Sørensen" Fast Fourier Transform (SFFT):
As mentioned above, one user may only need to receive the data sent using a subset

of the available subcarriers. Therefore methods calculating only a subset of the FFT have
been developed, where the SFFT [Sørensen and Burrus, 1993] reduces the number of cal-
culations by only calculating decomposition into a set of small FFTs and then recombining
the results for only the subset of subcarrier that are of interest.

Each of the investigated algorithms are elaborated in sections 3.3 and 3.4

Section: 1.3 Problem Specification 3

1.5 Implementation Prerequisites and Constraints

The DFT algorithms are examined when implemented on a Field Programmable Gate Array
(FPGA) platform . The configurability of FPGAs allows for faster development of systems com-
bining predeveloped building blocks, like a DFT, to compose a system fitting the application in
question. With FPGA families emerging developed for low power consumption (e.g. Altera Cy-
clone III) FPGAs become applicable in battery powered mobile devices. Therefore, an FPGA
platform is used to evaluate the power consumption of the examined DFT algorithms.

The selected platform is the Altera Cyclone III Starter Kit. This selection is based on the
toolchain, support in the form of the Quartus II and associated software, and knowledge available
at Aalborg University.

Using a development kit allows for focusing on the mapping of algorithms onto the archi-
tecture, and evaluating and comparing these implementations. This focus comes at the cost of
reduced possibilities for dimensioning the system to fit the requirements and may introduce some
unnecessary overhead for the design to fit the hardware. Still, the development board provides a
well defined platform for comparison of the algorithms and the resources saved from not design-
ing the platform can be used to focus on answering the problem specification stated in section
1.3.

1.6 Project Methodology

The purpose of the design methodology is to supply a structured approach to the analysis, design
and evaluation of results obtained in the project. Therefore, the following structure of analy-
sis, design and evaluation also reflects the structure of this report. The project methodology is
depicted in figure 1.3.

Application Analysis Algorithm Analysis Architecture Analysis Power Estimation

System Specification Models & Benchmarks System Constraints Test Specification

Datapath

System Simulations

Address Generator

Map Alg.→ FPGA

System Measurements

System Performance

Architecture Mapping

Evaluation

Analysis

Controller

Figure 1.3: Project Methodology overview. For each part of the project - Analysis, Mapping and
Evaluation - tasks and results are depicted. Architecture Mapping and Evaluation
are repeated for each algorithm.

4 Chapter: 1 Introduction

1.6.1 Analysis

The project analysis makes use of the three domains of the A3 model [Moullec, 2007], Applica-
tion, Algorithm, and Architecture, shown in figure 1.4, to divide the system analysis into three
main parts:

Application

Algorithm

Architecture

Requirements
SFFT

OFDM

Demodulation

Iterate

Cyclone III FPGA

SRFFT

Figure 1.4: A3 model for project.

• Application:
In the application domain, an analytical OFDM model is presented to determine the context
in which, the FFT implementations are to function. Based on this system model, the func-
tional requirements of the FFT block, and specifications and constraints of a test system
for validation is determined.

• Algorithm:
In the algorithms domain, the two Fourier transform algorithms used to solve the specified
task of the OFDM FFT block are analyzed. The analysis focus on derivation of the struc-
ture of computations and computational complexity of each algorithm. The computational
complexity measure of each algorithm is evaluated in same test cases as are defined for
power analysis of the implementations for comparison and evaluation. Furthermore, each
algorithm is modelled in C where an outline of a datapath and control structure for the
following mapping is designed.

• Architecture:
In the architecture domain, the FPGA hardware used to implement the investigated FFT
algorithms are analyzed. The characteristics of the FPGA development kit of choice, i.e.

Section: 1.6 Project Methodology 5

available hardware and system limitations, are examined. Next the development tools and
methods available for the platform are described, as are the possibilities for simulating and
measuring the power consumption of each algorithm implementation.

1.6.2 Architecture Mapping

The system design in this project is concerned with mapping each of the algorithms onto the
FPGA architecture. The mapping is done using a datapath and control structure approach, as
shown in figure 1.5. This mapping method is based on the Finite State Machine with Datapath
(FSMD) approach to digital design presented in [Gajski, 1997, page 320-322].

FSM

Address Generator Memory

Datapath

Status

Control

Input

Figure 1.5: General structure model for design mapping of algorithms using a finite state ma-
chine for controlling an address generator and datapath.

Each mapping design consists of a datapath, where the algorithm calculation units are con-
tained. The control structure consists of a Finite State Machine (FSM) , which is used to setup
the datapath to do the relevant operations on the data, and an address generator, used to retrieve
data from memory.

This approach differs slightly from [Gajski, 1997, page 320-322] since program counters
keeping track of algorithm progress and the logic used to generate addresses for memory access
are extracted from the datapath and handled explicitly in the project. This additional partitioning
of the datapath is done in order be able to design the calculation units of the data path separately
and next design memory handling units to fit these calculation units.

When partitioning the design in the algorithm part II, the design is divided into three domains
and shown in figure 1.6 on the facing page; environment, control and data domains.

The environment domain contains peripherals and interfaces to the implemented algorithms.
As the algorithms only perform the FFT task in the OFDM demodulation, see figure 2.1 on
page 12, the environment domain provides a convenient representation of the surrounding system
and requirements which are somewhat common to the data and control domains. In effect, the
environment domain thus contains the memory part of figure 1.5 and system clock domains. The
data domain contains the datapaths of the mapped algorithm and the control domain contains the
FSM controller and address generators for memory access.

6 Chapter: 1 Introduction

Environment

Control Data

Figure 1.6: The abstraction model used to describe algorithm mapping. The model contains
the three domains: environment, control path and datapath. These domains and
their interfaces are used as a basis for describing the mapping from mathematical
algorithm to FPGA implementation.

1.6.3 Evaluation

The final part of the project is concerned with verifying the functionality of the implemented
algorithms and evaluating the systems with regards to the power performance measure setup in
the analysis. This evaluation is carried out using both the available power analysis tool pro-
vided by the FPGA manufacturer and by measurements of the FPGA power consumption in a
set of test scenarios that ultimately allows for comparing the obtained results with the theoretical
performance derived from algorithm computational complexity.

This comparison is used to answer the problem specification stated in section 1.3, and to
evaluate the coherence between algorithm computational complexity and power consumption.

Section: 1.6 Project Methodology 7

Part I

Analysis
This part moves the problem specification previously defined through the application level.

This includes a closer examination of the system model, examination of the Fourier transform
algorithms and the FPGA, both functional and power-wise

Initially the concept of OFDM is introduced and the system is specified. Afterwards two FFT
algorithms are examined mathematically and finally compared complexity-wise. Chapter 4 in-
troduces the FPGA platform and associated tools while chapter 5 presents a power performance
simulation and measurement.

Contents

2 Application Analysis 11
2.1 System Model . 11
2.2 Subcarrier Allocation Schemes . 15
2.3 System Specification . 15

3 Fourier Transform Algorithms 19
3.1 Algorithm Selection . 19
3.2 Discrete Fourier Transform . 20
3.3 Split-Radix FFT Algorithm . 20
3.4 Sørensen FFT . 23
3.5 Complexity Analysis . 25

4 Architecture Analysis 31
4.1 The Cyclone III FPGA . 31
4.2 The Cyclone III Starter Kit . 33
4.3 Quartus II software tools and design flow 34

5 Power Estimation and Measurement 37
5.1 Power Simulations . 37
5.2 Power Measurements . 41
5.3 Power Performance Measure . 42

Chapter 2
Application Analysis

The application analysis presents the system model which is an OFDM downlink transmission
scheme, that can be used in cooperative radios. Based on this model a test system is specified to
enable testing the functionality of the proposed DFT algorithms.

2.1 System Model

This section is a general introduction to the OFDM downlink scenario considered in this project.
First the concept of orthogonal frequencies is explained, followed by how this principle is used
to communicate data symbols from a base station through a wireless channel to a mobile station,
where only a subset of the subcarriers is of interest. The main sources on which the following
presentation of OFDM is based are [Schulze and Lüders, 2005, sec. 4.1] and [AAU, 2004, chap.
2].

2.1.1 Orthogonal Frequencies

Orthogonal Frequency Division Multiplexing (OFDM) is a framework for multicarrier transmis-
sion where several data symbols are transmitted at the same time by modulation with orthogonal
subcarriers. In a system with N subcarriers, the baseband signal for one OFDM symbol period
(Tu) may be written as:

s(t) =
N/2−1∑
n=−N/2

Xne
j 2πnt
Tu , 0 ≤ t ≤ Tu (2.1)

where Xn is the n’th data symbol. In the frequency domain the signal has the form of:

S(ω) =
1√
Tu

N/2−1∑
n=−N/2

Xnδ(ω − n

Tu
) (2.2)

The OFDM symbol duration (Tu) being an integer m n multiple of each subcarrier duration,
Tc · n = Tu, is the key to orthogonality between the subcarriers. This orthogonality may be

11

proven by calculating the cross correlation between two subcarriers, which possess the properties
of spacing and time duration mentioned above. The values of the data symbols Xn may be left
out of this calculation since they are constant over the entire symbol interval.∫ Tu

0
(ej

2πn1t
Tu)∗ · (ej

2πn2t
Tu) dt (2.3)

=
∫ Tu

0
ej

(2πn2−n1)t
Tu dt (2.4)

= δ(n2 − n1) (2.5)

Equation (2.5) show that two subcarriers only correlate if n1 and n2 are equal, i.e. are located at
the same frequency.

2.1.2 An OFDM Downlink System

Figure 2.1 shows the structure of an OFDM downlink system.

Modulator0

Modulator1

ModulatorK

Allocation

Subcarrier

IFFT

Demodulatork

Information

Subcarrier

A
d

d
C

yclic
P

refix

P
arallel↔

S
erial

R/F

R/F

Channel

User0

User1

UserK

Mapping

Subcarrier

Subcarrier
DemappingUserk

Base Station

Mobile Stationk

FFT

R
em

.
C

yclic
P

refix

S
erial↔

P
arallel

Figure 2.1: System model of general OFDM downlink. The red marked FFT block of the mobile
station is to be implemented and evaluated.

Base Station

At the Base Station, data symbols are distributed across the subcarriers assigned to each user. The
mapped data symbols are next mixed onto the assigned subcarriers by use of an inverse Fourier
transform. This produces a signal of the same length as the FFT, which has the form of equation
(2.1).

12 Chapter: 2 Application Analysis

In the next part of the system, the output of the IFFT block is extended by a cyclic prefix:

{
s(t+ Tu − Tg) 0 ≤ t < Tg

s′(t) = s(t− Tg) Tg < t < Ts
0 Otherwise

(2.6)

Tg is the length of the cyclic prefix, which must have the following property:

δδt + τmax < Tg (2.7)

where δt is the maximum time synchronization offset between BS and MS and τmax is the max-
imum delay spread of the wireless channel. By adding this cyclic prefix it is ensured that the MS
always is able to receive a sample of length Tu, which does not feature Intersymbol Interference
(ISI) caused by the reception of multiple reflections of s′ at the MS.

Finally, the signals for each Ts interval are concatenated and modulated onto a carrier sinu-
soid with frequency fc to form the BS output signal, o(t):

o(t) =
S−1∑
s=0

s′(t− sTs) · e2πfct (2.8)

where S is the number of Ts symbol intervals to be transmitted.

Wireless Channel

Passing the signal, o(t), through a wireless channel is analogue to passing the signal through a
FIR filter, which models the fading and reflecting of the signal which is experienced from BS to
MS. Such a filter hu,s(t) for a specific user u and OFDM symbol period s may be written as:

hu,s(t) =
L−1∑
l=0

hu,l[s]δ(t− τl), where sTs < t < (s+ 1)Ts (2.9)

where l is one of the L multipaths received at the MS. hu,l[s] is the complex gain of the l’th
multipath of the u’th user for OFDM symbol interval s.

In addition to the filtering characteristics of the multipath fading channel, the received signal
at the MS will feature a noise contribution, v(t). At the u’th mobile station, the received signal,
r(t) is thus:

r(t) = <
{

(s′(t) ∗ hu,s(t))ej2πfct
}

+ v(t), where sTs < t < (s+ 1)Ts (2.10)

Mobile Station

The first task at the receiver is to down convert r(t) from the carrier frequency band to base-
band. Since perfect synchronization of time and system clock frequency cannot be assumed, the
received baseband signal becomes:

r′(t) = (s′(t− δt) ∗ hu,s(t))ejδωt + v′(t), where sTs < t < (s+ 1)Ts (2.11)

Section: 2.1 System Model 13

where δt is the time synchronization mismatch between BS and MS and δω is the system fre-
quency mismatch.

Next the cyclic prefix is removed from each Ts long signal block, to get a received version of
s(t) for the s’th symbol, denoted ys(t):

ys(t) = r′(t′ + Tg − sTs), where 0 < t < Ts − Tg (2.12)

= (s′(t− δt + Tg − sTs) ∗ hu,s(t))ejδωt + v′s(t) (2.13)

Here it becomes clear that if the cyclic prefix duration, Tg, satisfies the requirement of Equa-
tion (2.7), removing the cyclic prefix will effectively remove any intersymbol interference intro-
duced from both time synchronization mismatch between BS and MS, and channel delay spread,
since these effects will be constrained to the first Tg part of each Ts interval.

Next, to extract the data intended for MSk, ys(t) is correlated with each of the Mk the sub-
carrier frequencies assigned to user k:

Ys[m] =
1√
Tu

∫ Tu

0
ys(t)e−j(ωm+δω)t dt, where ≤ m ≤Mk − 1 (2.14)

Equation (2.14) is recognized as the Fourier transform of ys(t) evaluated in a single subcarrier
frequency, ωm + δω. To uncover the components of Ys[m] we start be evaluating the Fourier
transform of ys(t), which may be written as:

Ys(ω) = F [ys(t)ξ(t)] (2.15)

= F
[(

(s′s(t− δt + Tg − sTs) ∗ hu,s(t))ejδωt + v′s(t)
)
ξ(t)

]
(2.16)

≈ F
[(

(ss(t− δt) ∗ hu,s(t))ejδωt + v′s(t)
)
ξ(t)

]
(2.17)

= e−jωδtF [ss(t) ∗ hu,s(t)] ∗ δ(ω − δω) ∗ Ξ(ω) + F
[
v′s(t)

] ∗ Ξ(ω) (2.18)

where the term ejωδt is the constant phase shift introduced by the time synchronization mismatch,
ξ(t) is a rectangular window of length Tu with corresponding Fourier transform Ξ(ω):

Ξ(ω) = Tu · ejπωTu · sinc(ωTu) (2.19)

Equation (2.18) may be rewritten to:

Ys(ω) = e−jω(δt+πTu) ·
[
. . . (2.20)

. . .

N/2−1∑
k=−N/2

Xs[k]Hu,s[
k

Tu
]sinc

(
Tu(ω − k

Tu
− δω)

)
+Ns(ω)

]

where Ns(ω) = F [v′s(t)] ∗ Ξ(ω).
Since Ys[m] = Ys(ωm) and ωm ∈ Tu

n |0 ≤ n ≤ N − 1 we get:

Ys[m] = e−jωm(δt+πTu)Xu,s[m]Hu,s[m] +Ns[m]; δω = 0; (2.21)

14 Chapter: 2 Application Analysis

where Xu,s[m] is the m’th symbol for user u in OFDM symbol interval s, located at ωm,
Hu,s[m] = Hu,s(ωm) and Ns[m] = Ns(ωm). Finally, we include the constant phase shift,
e−jωm(δt+πTu), in the channel gain coefficient, Hu,s[m], to get H ′u,s[m]:

H ′u,s[m] = e−jωm(δt+πTu)Hu,s[m] (2.22)

since terms will be estimated together, when estimating the equalization factor, Zu,s[m], used to
produce a estimate of Xu,s[m]:

X̂u,s[m] = Zu,s[m]Hu,s[m]Xu,s[m] + Zu,s[m]Ns[m] (2.23)

This concludes the analytical system model, presenting the process of modulating and transmit-
ting a symbol from the base station to estimation of a symbol at the mobile station.

2.2 Subcarrier Allocation Schemes

The task of allocating subcarriers for multiple users in OFDM systems to maximize spectrum
utilization is an entire field of study of it’s own. The topic of subcarrier allocation is not discussed
in detail here, but the principal structures of subcarrier locations are described in order to outline
the possible conditions under which the DFT is utilized.

Three basic structures of subcarrier allocations exist (Kim and Kim [2007] and Lawrey
[1999]), which are shown in figure 2.2 on the following page and described below:

• Clustered Subcarrier Allocation (CSA):
With CSA the subcarriers are allocated as a set on consecutive subcarriers are assigned to
each user. This allocation may be static for the entire BS-MS link period or a frequency
hopping sequence may be used to increase the mean performance of the link, by avoiding
static location of the allocated subcarriers in a spectrum null.

• Comb Spread Subcarrier Allocation (CSSA):
Another way of avoiding subcarrier locations in a spectrum null is to allocate the subcarri-
ers in a comb structure, where the subcarriers are spread over the entire spectrum.

• Adaptive Subcarrier Allocation (ASA):
Finally, ASA uses spectrum sensing to determine the locations in the spectrum to place the
subcarriers to maximize throughput. This way each user will always be assigned the best
channel available, thus increasing the overall system performance.

2.3 System Specification

In order to focus on the implementation challenges and performance achievements of the OFDM
downlink FFT block, marked with red color in figure 2.1, the following delimitations are intro-
duced in the test system used for validating the proposed implementations:

Section: 2.2 Subcarrier Allocation Schemes 15

User m User m User m

f f fCSA ASACSSA

|S|2|S|2|S|2

Figure 2.2: Subcarrier allocation principles. CSA allocates subcarriers for a user as a block of
consecutive subcarriers. CSSA spreads the allocated subcarriers evenly across the
spectrum. ASA allocates the subcarriers adaptively to maximize channel throughput,
thus no structure of subcarrier locations are assumed.

• Ideal RF transmission and channel

The RF carrier modulation and demodulation and channel effects applied to a signal
transmitted through a wireless channel are not included in the test system, since the FFT
block does not process the received signal to neutralize the transmission effects.

• Ideal synchronization between BS and MS

An extension of ideal transmission between BS and MS is the assumption of ideal
synchronization in time and frequency. Time synchronization eliminates the need for the
test system to include handling the addition and removal of cyclic prefixes, and frequency
synchronization, or system clock matching, preserves the orthogonality between subcarri-
ers.

• Data symbols to be transmitted are QPSK modulated

The test system input is randomly generated QPSK symbols with amplitude ||Xn||2 =
1. The system input is only used for validation of the results calculated by the FFT block,
thus there need not be an elaborate coding and decoding of payload data.

Input RAM Output RAM
FFT core

Start Done

Figure 2.3: Principal blocks of test system. The system consists of a FFT core, RAM for input
and output data, a signal starting calculation of the FFT and a signal for indicating
when calculation has finished.

The system to be implemented on a FPGA platform is shown in figure 2.3. This test system
consists:

16 Chapter: 2 Application Analysis

• Memory containing a test vector with MatLAB simulations of a mobile station FFT block
input frame and a second vector containing subcarrier locations. When the FFT is calcu-
lated, the results are placed in the same memory as the input.

• FFT core for demodulating the necessary subcarriers.

• Control signals for indication of input data ready (start) and result (output data) ready
(done).

Finally, a set of global system constraints are taken from the WiMax standard [Das, 2007,
table 2.3] to define the basic system structure with regards to length of the full FFT length and
the OFDM symbol duration. These constraints are then used define the system parameters for
completion time and number of subcarriers to be demodulated. These constants are shown in
table 2.1.

Parameter System Constraint WiMAX standard range
Frame duration [ms] 2 min. 2
Full FFT length 1024 128 - 2048
FFT Time [ms] 0.5 0.1
Number of subcarriers 1 - 250 -

Table 2.1: System constraints for FFT size and timing performance.

Initially, the system constraints was set using the WiMAX frame duration as the basis for
choosing a maximum FFT completion time. As seen in the table, this approach is erroneous,
since the actual OFDM symbol duration in WiMAX is approximately 0.1 ms [Andrews, 2007,
table 2.3]. Still, the system constraints for FFT completion time and a second constraint of one
symbol per 2 ms allows for better margins to investigate and expose the effects of clock frequency
and idle time on system power consumption in the test and design space exploration chapters 9
and 10.

Furthermore the number of subcarriers to be demodulated has been limited to a maximum of
250. This limit has been set since some subcarriers will be reserved for pilot channel and since
it is unlikely that one user, accessing the system, will be assigned all system subcarriers. Thus a
system able to demodulate all subcarriers at once would be over dimensioned.

With an overview of a generic OFDM system and the specification of the functional perfor-
mance of the FFT block investigated, the next chapter examines the FFT algorithms of interest
to establish a basis for the mapping of these algorithms onto the FPGA architecture.

Section: 2.3 System Specification 17

Chapter 3
Fourier Transform Algorithms

This chapter serves as an introduction to the selection of FFT algorithms and subsequent analysis
of each algorithm. The chapter starts with a discussion of the algorithm selection and continues
with the derivation of each algorithm. At last the computational complexities of the algorithms
is compared.

3.1 Algorithm Selection

The literature on optimized FFT computation focuses heavily on computational complexity and
not directly on power usage. Thus to select candidate algorithms, the computational complexity
is used as comparison parameter, as a means to exploit the existing literature.

The algorithm with lowest computational complexity for full length FFT computation, as of
this writing, is the work proposed in [Johnson and Frigo, 2007]. This is based on the split-radix
FFT proposed in [Duhamel and Hollmann, 1983]. Unfortunately the work presented in [Johnson
and Frigo, 2007] uses a recursive formulation with different behavior depending on recursion
levels, which is unsuited for hardware implementation compared to the formulation in [Duhamel
and Hollmann, 1983] which has a more straightforward formulation. Instead the original algo-
rithm as presented in [Duhamel and Hollmann, 1983] and [Skodras and Constantinides, 1992]
is selected, as this algorithm presents a simple structure and is deemed representative for a fast
full-length FFT. Thus a basic split-radix FFT is selected for the full-length FFT.

For computing individual output points of an FFT, three different approaches are considered.
These are the direct computation via implementation of the Fourier transform integral [Oppen-
heim and Schafer, 1998, p. 561], computation via Transform Decomposition as in [Sørensen and
Burrus, 1993] and the pruning schemes presented in [Markel, 1971] and [Skinner, 1976].

The pruning schemes presented by Markel and Skinner is based on the radix-2 FFT algo-
rithms and reduces the computational complexity by examining the needed input/output points
and determine the resulting data dependencies, which results in knowledge of which butterflies
not to compute.

19

The transform decomposition divides the FFT transform into several smaller transforms, each
of lower complexity, and then recombines the result to compute the needed output points.

Of the pruning and transform decomposition schemes, the transform decomposition is se-
lected as it is the most flexible with regards to frequency placement of the output points. The
pruning method looses efficiency in this regard as placement of output points could produce data
dependencies in the radix-2 FFT where all the butterflies are needed, thus loosing the advantage
of the pruning method. Furthermore the transform decomposition is shown in [Sørensen and
Burrus, 1993, Fig. 12] to have a generally lower computational complexity.

Examining the computational complexity of the direct computation versus the transform de-
composition the direct computation is only feasible for a low number of needed output points.
Thus the transform decomposition, or Sørensen FFT (SFFT), is selected as non-full-length FFT
algorithm.

In conclusion the split-radix FFT presented in [Duhamel and Hollmann, 1983] and the transform
decomposition presented in [Sørensen and Burrus, 1993] is selected for further investigation and
implementation. Next a general introduction to the Fourier transform and the selected algorithms
will be analyzed.

3.2 Discrete Fourier Transform

The Discrete Fourier Transform (DFT) is presented in [Oppenheim and Schafer, 1998, p. 561]
and is shown below for completeness

X[k] =
N−1∑
n=0

x[n] · exp
(−2πj · n · k

N

)
(3.1)

X[k] =
N−1∑
n=0

x[n] · Tn·kN , T ba = exp
(−2πj · a

b

)

Where T ba is known as the “Twiddle Factor” . The time domain input data x[n] is of length
n = 0 . . . N−1 and is transformed via (3.1) to the frequency domain signalX[k], k = 0 . . . N−1,
where k represents frequency-indexes.

The following split-radix FFT computes the entire range of k whereas the Sørensen FFT only
computes a subset of k called l. The computed subset l has the property l ∈ k and L is the total
number of indexes of k found.

3.3 Split-Radix FFT Algorithm

This chapter presents the Split-Radix FFT implementation used for testing against the Sørensen
FFT algorithm. First, the analytical algorithm of the Split-Radix calculation of a DFT is pre-
sented.

20 Chapter: 3 Fourier Transform Algorithms

3.3.1 SRFFT Derivation

The derivation is started by examining (3.1) and splitting the summation into even and odd parts

X[k] =
N/2−1∑
n=0

x[2n] · T 2nk
N +

N/2−1∑
n=0

x[2n+ 1] · T (2n+1)k
N , (3.2)

k = 0 . . . N − 1

changing the indexes to reflect xe and xo for x even and odd, and noticing the double angular
velocity and thus periodicity in N/2 of the even parts, the equation can be rewritten as

X[k] =
N/2−1∑
n=0

(xe[n] + xe[n+N/2])TnkN/2 + T kN

N/2−1∑
n=0

xo[n] · TnkN/2 (3.3)

which has saved N/2 multiplications in the even part.

The odd part sequence is pre-multiplied by T kN , which can be remedied by decomposing the
odd parts into an even and odd sequence again. It thus becomes a general radix-4 decomposition
with k = 0 . . . N/4− 1, as is shown below.

X[k] =
N/4−1∑
n=0

x[n]TnkN +
N/2−1∑
n=N/4

x[n]TnkN +
3N/4−1∑
n=N/2

x[n]TnkN +
N−1∑

n=3N/4

x[n]TnkN (3.4)

m

X[k] =
N/4−1∑
n=0

x[n]TnkN + T
Nk/4
N︸ ︷︷ ︸
−j

N/4−1∑
n=0

x[n+N/4]TnkN . . .

. . . +T
Nk/2
N︸ ︷︷ ︸
−1

N/4−1∑
n=0

x[n+N/2]TnkN + T
3Nk/4
N︸ ︷︷ ︸
j

N/4−1∑
n=0

x[n+ 3N/4]TnkN (3.5)

To extract the even and odd parts of xo of (3.3), the radix-4 decomposition is examined for parts
X[4k + 1] and X[4k + 3] and noting that Tn(4k+1)

N = TnN · TnkN/4

X[4k + 1] =
N/4−1∑
n=0

(
x[n]− x[n+N/2] . . .

. . . −jx[n+N/4] + jx[n+ 3N/4]
)
TnNT

nk
N/4 (3.6)

X[4k + 3] =
N/4−1∑
n=0

(
x[n]− x[n+N/2] . . .

. . . +jx[n+N/4]− jx[n+ 3N/4]
)
T 3n
N TnkN/4 (3.7)

Section: 3.3 Split-Radix FFT Algorithm 21

With the even part from (3.3) is written as

X[2k] =
N/2−1∑
n=0

(xe[n] + xe[n+N/2])TnkN/2 (3.8)

Where equations (3.6) to (3.8) are recognized as yet more DFT-transforms.
This decomposition can thus be repeated on each sequence until a 2-point DFT is performed.

Let m = 1 . . .M signify the decomposition stage, where M is the maximum number of decom-
positions.

The two-point DFT is a trivial butterfly as shown below

X[0] = x[0]T 0
2 + x[1]T 0

2 = x[0] + x[1] (3.9)

X[1] = x[0]T 0
2 + x[1]T 1

2 = x[0]− x[1] (3.10)

Thus by combining (3.6) - (3.10) the split-radix FFT can be performed.

3.3.2 Datapath Derivation

The odd indexes of the SRFFT equations, given in the previous section, can be reorganized for
better data access by exploiting common operations. Grouping terms by real and imaginary
pre-multiplication-factors and removing the factors from the DFT decomposition, the equations
becomes

xm[4k + 1] =
N/4−1∑
n=0

[
(xm−1[n]− xm−1[n+N/2]) . . .

. . . −j(xm−1[n+N/4]− xm−1[n+ 3N/4])
]
TmnN (3.11)

xm[4k + 3] =
N/4−1∑
n=0

[
(xm−1[n]− xm−1[n+N/2]) . . .

. . . +j(xm−1[n+N/4]− xm−1[n+ 3N/4])
]
T 3mn
N (3.12)

xm[2k] =
N/2−1∑
n=0

(xm−1[n] + xm−1[n+N/2]) (3.13)

where the additional m multiplication in the twiddle factors is from the recursive decomposition.
A datapath capable of performing this operation is shown in figure 3.1 on the next page.

3.3.3 Graphical Example

A graphical example of a 32 point SRFFT is shown in figure 3.2 on page 24. Notice the bit
reversed output and the multiplication of the twiddle factors in the lower part of the L-butterfly.
The decopmosition structure of the SRFFT is shown as blocks.

22 Chapter: 3 Fourier Transform Algorithms

xm[4k + 3]

xm[4k + 1]

xm[4k + 2]

xm[4k + 0]

j

xm−1[n + 0]

xm−1[n + N/4]

xm−1[n + N/2]

xm−1[n + 3N/4]

(a)

A

B

C

D
D · (A − B)

C · (A + B)
(b)

T 3mn
N

T mn
N

Figure 3.1: a) Example of an L-shaped datapath performing one step in the SRFFT. b) Example
of used butterfly which is performing addition, multpilication and subtraction.

3.4 Sørensen FFT

The algorithm presented in [Sørensen and Burrus, 1993] is also known as the “Transform De-
composition”, but will henceforth be referred to as the “Sørensen FFT” (SFFT) .

The improvements presented in the SFFT is that of splitting the DFT equation (3.1) of page
20 into a reusable part and a part which is distinct for each k to be computed. With this it is
possible to compute the reusable part once and finish the calculation for each needed k.

3.4.1 SFFT Derivation

To derive a reusable part in (3.1), it is necessary to avoid the data dependency on k in the twiddle
factors. This is achieved by changing the divisor of the twiddle factors, N in Tn·kN , to a smaller
value P . This will introduce periodicity in the complex exponential in Tn·kP , P < N, n =
0 . . . N − 1 thus providing a reusable partition.

Equation (3.1) can be split into two sums of length P and Q.

Q = N/P (3.14)

n = Q · n1 + n2, (3.15)

n1 = 0 . . . P − 1, n2 = 0 . . . Q− 1 (3.16)

X[k] =
Q−1∑
n2=0

P−1∑
n1=0

x[n1 ·Q+ n2] · T (n1·Q+n2)·k
N (3.17)

Section: 3.4 Sørensen FFT 23

Figure 3.2: Example of a 32 point SRFFT, modified from [Duhamel, 1986, p. 286]

where P becomes the length of each sub-sequence and Q becomes the number of these sub-
sequences. The exponential T (n1·Q+n2)·k

N can be written as Tn1·Q·k
N · Tn2k

N which allows for
further splitting of the sequences, as n1 and n2 are the terms on which the summations depend.

X[k] =
Q−1∑
n2=0

[
P−1∑
n1=0

x[n1 ·Q+ n2] · Tn1·Q·k
N

]
· Tn2·k

N (3.18)

It is seen that k is still present in both sequences. This is remedied by substituting Q = N/P ,
(3.14), into the innermost sequence twiddle factor of (3.18) which produces Tn1·Q·k

N = Tn1·1·k
P ,

24 Chapter: 3 Fourier Transform Algorithms

and usning the periodicity of k in P . This yields

X[k] =
Q−1∑
n2=0

[
P−1∑
n1=0

x[n1 ·Q+ n2] · Tn1·1·k
P

]
· Tn2·k

N (3.19)

xn2 [n1] = x[n1 ·Q+ n2]

X[k] =
Q−1∑
n2=0

[
P−1∑
n1=0

xn2 [n1] · Tn1·{k}p

]
︸ ︷︷ ︸
Xn2 [r]=

PP−1
n1

xn2 [n1]T
n1·r
p

·Tn2·k
N (3.20)

r = 0 . . . P − 1, r = {k}p
where {k}p is k modulus p.

The innermost sequence is recognized as a length P DFT, as the values of k always can be
mapped to a value of r via the modulus function. This is shown below (3.20) as function Xn2 [r].

The derivation thus shows that (3.20) consists of Q numbers of DFTs where selected r = {k}P
indices are subsequently multiplied by a twiddle factor and summed. Efficient computation of
the DFTs can be performed by the use of any FFT algorithm which works for length P . The
split-radix FFT of section 3.3 on page 20 is used as it is to be implemented for this project, and
has the one of the lowest computational complexities for any power-of-two FFT-algorithm, see
chapter 3.3 on page 20.

3.4.2 Graphical Example

An example of the SFFT transform for N = 16, P = 8 and k = [3, 10] is given in figure 3.3
on the next page. As Q = 2 the selected samples in the “Transformed” column is selected by
n1 ·Q+ n2 which yields indexes 3 and 3 + 8 for n2 = [0, 1] and k = 3. For k = 10 the indexes
becomes 4 and 10.

The selected indices, one from each sub-DFT, are then multiplied by Tn2·k
N as in (3.20).

Where n2 signifies which sub-DFT the sample is originating from.

3.5 Complexity Analysis

Having examined the theoretical derivation of each algorithm, their respective computational are
examined here to provide the basis for later comparison with the power performance.

The complexity analysis is also used in specifications of test-scenarios and in the case of the
Sørensen FFT, to select optimal operating criteria.

3.5.1 DFT Complexity

The amount of calculations needed to compute L output samples with the DFT is found in (3.1)
to be L · N complex multiplications and L · (N − 1) additions. The DFT is included here for
completeness.

Section: 3.5 Complexity Analysis 25

0 + 0j
1 + 1j
2 + 2j
3 + 3j
4 + 4j
5 + 5j
6 + 6j
7 + 7j
8 + 8j
9 + 9j

10 + 10j
11 + 11j
12 + 12j
13 + 13j
14 + 14j
15 + 15j

0 + 0j
2 + 2j
4 + 4j
6 + 6j
8 + 8j

3 + 3j

13 + 13j
15 + 15j

10 + 10j
12 + 12j
14 + 14j

1 + 1j

5 + 5j
7 + 7j
9 + 9j

11 + 11j

−27.3 + 11.3j
−16 + 0j

−11.3− 4.7j

−16 + 0j

−8− 8j

56 + 56j

−8− 8j

0− 16j
11.3− 27.3j

64 + 64j
−27.3 + 11.3j

−11.3− 4.7

−4.7− 11.3j

11.3− 27.3j

−4.7− 11.3j

0− 16j

Input data Reordered Transformed Recombined

−4.7− 11.3j

−20 + 4j

T 1·10
16

T 0·3
16

T 1·3
16

T 0·10
16

FF
T,

n
2

=
1

FF
T,

n
2

=
0

Figure 3.3: SFFT example, where N = 16, P = 8⇒ Q = 2 and k = [3, 10]. See section 3.4.2
on the previous page for full explanation.

3.5.2 Split-Radix FFT Complexity

The number of L-butterflies and two-point butterflies are calculated in [Skodras and Constan-
tinides, 1992, p. 57 eq (10) and in section 8.2 p. 59]. For N = 1024 there will be 10 recursive
stages, yielding 1593 L-butterflies and 341 two-point butterflies.

It can be seen from figure 3.1 on page 23 that each L-butterfly uses two complex multipli-
cations, which yields 4 simple multiplications and 2 simple additions/subtractions per complex
multiplication, and six complex additions/subtractions, which yields two simple additions/sub-
tractions per complex addition/subtraction. The two-point-butterflies uses two complex addition-
s/subtractions.

A MatLAB script which calculates the number of L-butterflies and two-point-butterflies for
power-of-two values of N can be found on the accompanying CD [08gr1042, 2008, tools/mat-
lab/SRFFToperations.m].

3.5.3 Sørensen FFT Complexity

The complexity of the Sørensen FFT depends on the chosen subdivision factor P , as this defines
Qwhich is the number of sub-FFTs performed. For these sub-FFTs the split-radix FFT algorithm
is used, making the Sørensen FFT dependent on the complexity of the split-radix FFT, with the

26 Chapter: 3 Fourier Transform Algorithms

added computations in the recombination step. Calculation of the complexity yields

ncomplexadd/sub = Q · (nlength(P)SRFFT) + (Q− 1) · L (3.21)

ncomplexmult = Q · (nlength(P)SRFFT) +Q · L (3.22)

(3.23)

3.5.4 Comparison

A calculation of the complexities for the DFT, SRFFT and SFFT algorithms are shown in fig-
ure 3.4, for simple additions and multiplications. The first axis shows the number of computed
points L.

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

3

x 10
4

L

S
im

pl
e

A
dd

iti
on

s

DFT
SRFFT
SFFT Best

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2
x 10

4

L

S
im

pl
e

M
ul

tip
lic

at
io

ns

DFT
SRFFT
SFFT Best

Figure 3.4: Comparison of complexities. FFT length is 1024 and the first axis shows the number
of computed points. The optimal setting for the SFFT is selected for each number of
computed points.

It is seen that the SRFFT is constant for all L, as it computes all points. The DFT quickly
becomes infeasible for L > 8 while the SFFT performs better than the SRFFT up to L < 400.
The SFFT has different performance characteristics depending on the selected subdivision factor

Section: 3.5 Complexity Analysis 27

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

3

x 10
4

L

S
im

pl
e

A
dd

iti
on

s

SRFFT
SFFT P=2
SFFT P=4
SFFT P=8
SFFT P=16
SFFT P=32
SFFT P=64
SFFT P=128
SFFT P=256
SFFT P=512

Figure 3.5: Comparison of complexities, simple additions. FFT length is 1024 and the second
axis shows the number of computed points.

P and the resulting Q. Figure 3.5 and figure 3.6 on the next page shows the elaborated partition
for additions and multiplications where the performance for the SFFT for different values of P
is presented.

For later implementation of the SFFT a value of P = 32 and Q = 32 is selected. This is
done to evaluate if complexity analysis is a fitting benchmark compared to power usage. With
this selection the point where the SRFFT becomes more efficient than the SFFT is placed at
L = 50 . . . 100 according to figures 3.5 and 3.5.

A different value of P could be selected if power efficiency is the only goal, but it is also of
interest to examine if the SFFT becomes worser than the SRFFT. With the selection of P = 32
the initial problem can be evaluated while the SFFT should still outperform the SRFFT for low
values of L.

28 Chapter: 3 Fourier Transform Algorithms

0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

L

S
im

pl
e

M
ul

tip
lic

at
io

ns

SRFFT
SFFT P=2
SFFT P=4
SFFT P=8
SFFT P=16
SFFT P=32
SFFT P=64
SFFT P=128
SFFT P=256
SFFT P=512

Figure 3.6: Comparison of complexities, simple multiplications. FFT length is 1024 and the
second axis shows the number of computed points.

Section: 3.5 Complexity Analysis 29

Chapter 4
Architecture Analysis

The purpose of the architecture analysis is to establish an overview of the available hardware
and development tools used for mapping the FFT algorithms onto the FPGA architecture. In the
first section the Cyclone III FPGA device is analyzed followed by a discussion of the Starter Kit
development board used in the project. Finally, the Quartus software tools used in the algorithm
mapping is presented and the resulting design flow using these tools is examined.

4.1 The Cyclone III FPGA

The general structure of a Cyclone III device is shown in figure 4.1. The FPGA core consists
of programmable logical elements with memory and dedicated multiplier elements distributed
across the device. Along the sides of the device are I/O interfaces to the device pins for external
connections and in each corner is a Phase Locked Loop (PLL) for to be used for clock generation
and management.

Logic Elements

Embedded Multipliers

Embedded Memory

I/O and memory interfaces

PLL

Figure 4.1: Cyclone III floorplan showing the structural components of the FPGA device [Al-
tera, 2007c, page 1-4].

31

The integral part of the FPGA architecture is the programmable Logic Element (LE) which
is discussed in further detail in the remainder of this section. The components of a single LE is
shown in figure 4.2.

Row, Column,

And Direct Link

Routing

data 1

data 2

data 3

data 4

labclr1

labclr2

Chip-Wide

Reset

(DEV_CLRn)

labclk1

labclk2

labclkena1

labclkena2

LE Carry-In

LAB-Wide

Synchronous

Load

LAB-Wide

Synchronous

Clear

Row, Column,

And Direct Link

Routing

Local

Routing

Register Chain

Output

Register Bypass

Programmable

Register

Register Chain

Routing from

previous LE

LE Carry-Out

Register Feedback

Synchronous

Load and

Clear Logic

Carry

Chain
Look-Up Table

(LUT)

Asynchronous

Clear Logic

Clock &

Clock Enable

Select

D Q

ENA
CLRN

Figure 4.2: Structure of a Cyclone III logic element, from [Altera, 2007c, page 2-2].

Each LE has four data inputs and a carry in bit, used to access a look-up table. The output of
this loop-up is a carry out signal and a signal used to set or reset the LE programmable register,
which may be configured as either a D, T, JK or SR flip-flop. Based on the input from the LUT,
the configuration of the register, and the signals generated from the clock selection and enable
circuit, an output is produced. Both outputs from the LUT and Register may drive the LE outputs
accessing the FPGA signal routing networks.

The LEs are ordered in columns of 16 in a Logic Array Block (LAB) . Within one LAB
Carry-Out and Register Chain Outputs may be passed on from one LE to the next in the LAB
without spending the FPGA general routing resources.

Combining the LEs enables construction of digital logic circuits, which again can be used to
implement systems of higher abstraction. The LEs in the LABs thus provides the building blocks
for construction adders, multipliers etc. See [Wakerly, 2001, chapters 5 to 10] for further infor-
mation on this topic.

32 Chapter: 4 Architecture Analysis

4.2 The Cyclone III Starter Kit

The Cyclone III Starter Kit is the platform used for evaluating the implementation of FFT algo-
rithms on a FPGA architecture. An overview of the development board is shown in figure 4.3. In
this section the board features of special interest to this project are examined.

1-Mbyte SSRAM (U5)

DC Power
Input (J2)

Power Switch (SW1)

16-Mbyte
Parallel
Flash (U6)

USB
Connector
(J3)

Flash LED

USB
UART (U8)

JTAG Header (J4)

32-Mbyte
DDR SDRAM (U4)

Reconfigure
and Reset

Push Buttons

50-MHz
System Clock

User LEDs

User Push Button Switches

HSMC
Connector (J1)

Cyclone III Device (U1)

Configuration Done LED

Sense Resistor for FPGA
Core Power Measurement (JP6)

Sense Resistor
for Shared I/O
Power (JP3)

Figure 4.3: Overview of the Cyclone III Starter Kit board, from [Altera, 2007b, page 2-1].

The Cyclone III device itself (EP3C25F324C8) is from the middle of the range specification
wise. A summary of the specifications is found in table 4.1.

Feature Specification Device family range Approx. Requirement
Logic Elements 24,624 5,136 - 119,088 3,033
Memory [kBits] 504 414 - 3,888 102.4
Multipliers (18x18) 66 23 - 288 3

Table 4.1: Cyclone III device specifications, specification range for device family and approxi-
mate requirements for full 1024 point FFT.

The approximated system requirements in table 4.1 are based on compilation tests conducted
in [Altera, 2007a, table 4], where a full 1024 point FFT core for an OFDM downlink has been

Section: 4.2 The Cyclone III Starter Kit 33

implemented on a Cyclone II device, which is the predecessor of the device used in chosen
system. As seen from the table, even the smallest Cyclone III family device should be able to
accommodate the requirements for a 1024 point FFT. Thus, there should be no HW resource
shortages of the device available in the starter kit even though the transform recombination part
of the SFFT probably will increase HW resource requirements.

Besides the FPGA device, the kit features an USB link for programming the FPGA using the
USB-blaster setup provided with the Altera Quartus II software kit. This setup also allows for
including virtual probes in the design and record signal activities in design nodes for functional
verification. This is performed through the SignalTap interface in the Quartus II software.

Finally, 4 pushbuttons and 4 LED circuits are connected to user configurable I/O pins on the
FPGA, allowing for user input and status output to and from the implemented system. Additional
features such as DDR/flash memory and JTAG pinout are not utilized in the project.

4.3 Quartus II software tools and design flow

In order to map the FFT algorithms onto the FPGA, the Quartus II design software is used. The
overall flow from design entry to device program along with the system verification flow is shown
in figure 4.4.

4.3.1 Compilation Flow

The left part of figure 4.4 shows the compilation flow from design entry to device programming
files.

Design Entry The design software allows for several possible methods of design entry. These
types of design entries may be gathered in three principal groups:

• Hardware Description Language (HDL) entries
Systems modelled using Verilog or VHDL may be used directly as design entry.

• Altera design files
Predeveloped hardware functions in a Altera specific HDL may be adjusted to fit systems
requirements for data types and function latency. The interconnection of the system design
entities is specified in block design files as diagrams.

• Third party netlists
EDIF and VQM netlists from third party development tools. This possibility for design
entry is not utilized in the project.

Analysis and Synthesis The first part of system compilation is Analysis and Synthesis. This
process optimizes and compiles the various design entries into one system netlist describing the
setup of hardware resources and their interconnection.

34 Chapter: 4 Architecture Analysis

AHDL /
Diagrams

EDIF/VQM
Netlists

HDL

Analysis &
Synthesis

Post Synth.
Netlist

Fitter

Post Fit
Netlist

Test Signal
Vectors

Timing
Simulator

Func. Netlist
Generation

Functional
Simulator

Output Signal
Vectors

Signal
Activities

Output Signal
Vectors

Programming
Files

Assembler Timing
Analyser

Compilation Flow Verification Flow

Figure 4.4: Quatus II compilation flow from design entry to device program [Altera, 2007d, page
2-4] and verification flow, including functional and timing simulations.

Fitter The fitter conducts the actual allocation of FPGA hardware resources, based on the
generated netlist from the analysis and synthesis process and a model of the device. This results
in a netlist describing the contents of figure 4.1 on page 31, specifying the setup of logic elements,
multipliers, memory block, I/O pins and interconnection buses.

Assembler The final stage of the compilation generates the programming file from the fitter
netlist. This is the final files to be loaded onto the device.

Timing analysis The compilation process includes a final timing analysis to verify, that the
propagation delay of signals between the allocated device entities will not effect the functionality
of the system.

4.3.2 Verification Flow

The verification flow shown on the right in figure 4.4 consists of two types of simulations.

Section: 4.3 Quartus II software tools and design flow 35

Functional Simulation The functional simulation allows for principal verification of the de-
signed system functionality. Based on a set of input signal vectors and the post synthesis netlist,
vectors containing output signals are generated for comparison with expected results.

Timing Simulation The timing simulation is based on the same input signal vectors as the
functional simulation, but makes use of the post fit netlist to simulate the timing of signals in
the design as well as functional results. The results of this simulation is thus more elaborate and
precise. Besides the output signal vectors for verification of the design a signal activity file is
generated. For each internal signal of the design a probability of a signal change in each clock
cycle as well as a static probability of the signal value is recorded. These signal activities a an
integral part of the input for the power simulations, discussed in the next chapter.

With this overview of the available hardware and tools for mapping the FFT algorithms, the
next step is to investigate the modelling and measurement of power consumption of the FPGA
architecture. This analysis is conducted in the next chapter.

36 Chapter: 4 Architecture Analysis

Chapter 5
Power Estimation and Measurement

In order to evaluate the DFT algorithms based on a power consumption performance measure,
the available tools for simulation and measurement of system power consumption when using the
Altera Quartus tools in connection with the Cyclone III starter kit are examined. The following
sections present the functionality of the Powerplay simulator, the method used for measuring
power and how power will be used to evaluate the algorithms.

5.1 Power Simulations

The following introduction to the Powerplay tool is based on an white paper on power modelling
[Altera, 2007e] and the tool user manual [Altera, 2007d, chapter 10]. These materials give an
introduction to the principles of the power modelling used in the Powerplay tool to simulate the
power consumption of a FPGA design. The choice of the Powerplay tool for simulating system
power consumption is based on the assumption, that the manufacturer of the FPGA device (and
power estimation tool) has access to the most reliable device modelling data, in order to supply
a reliable power estimate.

The flow for power simulation using Powerplay is shown in figure 5.1. As seen in the figure,
the power analysis is based on the structure of the system implementation, described in the fitter
output, and signal activities, derived from timing simulations of the system. The structure of
these analysis input are described in more detail in chapter 4 on page 31. The data, that are key
to the power analysis from each input source, are:

• Fitter results
The fitter results is the map of the design onto the chip, describing which physical device
resources are active in the design and how they are connected.

• Simulation results
Based on the timing simulation toggle rates for each signal in the implementation are
calculated and used in the power analysis. Toggle rates are measured as signal transitions
per second and thus describe the signal activity.

37

Power
EstimatesAnalysis

Power

Fitter
Results

Signal
Activities

Environment
Settings

Figure 5.1: Flow of Power Simulations using Altera Powerplay. The power analysis is based on
the fitter and assembler output, describing the physical structure of the system, and
signal activities derived from functional simulation results.

• Environmental settings
The environmental settings contain information on device operating conditions, including
supply voltages, ambient temperature, and cooling aid characteristics, used by the analyzer
to estimate the device temperature and how well thermal energy is routed away from the
device.

The simulation output report contains the power consumption simulated at different abstrac-
tion levels, ranging from total device power consumption down to power consumed by each
design entity defined. At each abstraction level both the static and dynamic power consumption
is recorded for each entity.

The current drawn from the 1.2 V power supply, which is consumed by the device internal
logic (VCCINT) and the PLL circuits (VCCD) on the chip, is what is possible to measure on
the development board, and thus of primary interest for comparison of the simulations with the
performed measurements in section 9.1 for the SRFFT and section 9.2 for the SFFT.

The detailed evaluation of the system design is discussed in the design space exploration
section 10. In this section, power simulation reports, where power consumption is reported for
each design block in the project hierarchy is accounted for, is used to determine where to turn
focus when further optimizing the design.

5.1.1 Power models

The Powerplay tool divide the power consumption into two fundamental types of power con-
sumption; dynamic and static power consumption. In this section the structure and contents of
these models are described and the key points to managing system power consumption that may
be derived from these models are discussed.

The dynamic power consumption includes power consumed due to circuit switching in the
system. The general dynamic power estimation model used in the simulator is [Altera, 2007e,

38 Chapter: 5 Power Estimation and Measurement

page 2]:

Pdyn =
[

1
2
· C · V 2 +Qsc · V

]
· f · a (5.1)

where dynamic power, Pdyn [W], consumed by a device entity, is a function of load capacitance,
C, supply voltage, V , short circuit current when switching, Qsc, system frequency, f , and signal
activity, a, measured as a probability of a signal change in a cycle.

The output load capacitance, C shown in figure 5.2(a), of a design entity is determined from
the wire network of the entity output, where properties such as wire length, thickness, and dis-
tance to neighboring wires are included. Each time a signal changes level, this parasitic capac-
itance is charged or discharged. In Powerplay, the dynamic power consumed due to the capaci-
tance of the dedicated routing network, which interconnect device entities, is reported separately
as routing power, whereas the parasitic capacitance in signal connections within a logic element,
multiplier of memory block is included in the design entity dynamic power consumption.

The short circuit charge, Qsc, occurs when signals are switched from low to high or vice
versa. The principle is shown in figure 5.2(b), where a switch consisting of two transistor, will
experience a short circuit of the supply, when both transistors are open for a short time during
switching. This is due to switch not being instantaneous and the transistors cannot be assumed
perfectly matched.

V

vo=

vo=

Design Entity

C

vo

(a)

vovi

V

Qsc

(b)

Figure 5.2: Sources of dynamic power consumption.
(a) Each time an entity switches output level, a parasitic capacitance, C, need to be
charged (red) or discharged (blue) to change the level of the signal wire network.
(b) When the input signal, vi, is switched, there is a charge, Qsc, from V to ground
during the time period in which the transistors are switching to change the level of
vo.

Where C and Qsq are device specific and therefore usually predetermined variables. V is the
supply voltage, f is the system frequency and a is the signal activity. V , f and partly a are set
by the designer. As seen in equation (5.1) both V and f should be kept as low as possible to
minimize the dynamic power consumption.

The signal activities, a, are partly determined by the system input signals and the algo-
rithm structure. Still, managing the system by deactivating clocks subsystems when they are

Section: 5.1 Power Simulations 39

not needed, in order to make certain that the subsystem logic is not toggled, will decrease signal
activities and thus system dynamic power consumption.

The voltage supply, V , occurs at a power of two. Therefore, managing the supply voltage
can have significant impact on system power consumption. However, lowering the supply voltage
will increase the propagation delay of signals, due to capacitances, and thus lower the frequency
at which the functionality of the design can be maintained.

System clock frequency, f will be dictated by requirements to completion time. If the al-
gorithm to be mapped onto the architecture features inherent concurrency, the data path may be
expanded to perform more calculations at once. This way the algorithm completion time is short-
ened and the system clock frequency may be lowered. However, the expansion of the data path
will increase the device area utilization and add signal nodes to the design and thus add instances
of equation (5.1) to the sum that constitutes the total dynamic power consumption.

The FPGA consumes energy regardless of signal activity. This static power consumption is a
result of leakage currents in the device, and is mainly dependent on device area utilization and
temperature. There are different approaches to modelling the static power consumption. Al-
tera [2007e] outlines a model in which the static power consumption is an exponential function
dependent on device temperature:

Pstatic = A · eB·Tj + C (5.2)

where Tj is the junction temperature or the temperature of the actual electronic device, and
A, B and C are device specific constants. Another approach to expressing the static power
consumption is to divide Pstatic into power dissipated from leakage and power dissipated due to
a constant input value to a logic unit [Bellaouar and Elmasry, 1995, page 130-132]:

Pstatic = Pleak + Pst (5.3)

Pleak occurs due to parasitic diodes in the gate junctions resulting in a current Id from supply
to ground. Thus Pleak may be expressed as the sum of leakage power dissipated in each junction:

Pleak =
∑
i

Idi · V (5.4)

The second component of the static power consumption is a result of the transistors of the gate
logic being held in a sub-threshold state where vi in figure 5.2(a) is less than the threshold voltage
VT for either transistor. Thus the mean drain source current IDSmean for the two transistors of
the switch results in the following static power dissipation:

Pst =
∑
i

IDSmeani · V (5.5)

The magnitude of these leakage and sub-threshold currents are highly temperature dependent
and give rise to the exponential relationship between junction temperature in equation (5.2).

The discussion of the models used to estimate the system dynamic and static power consump-
tion above may be summarized into the following generic guidelines for keeping system power
consumption down:

40 Chapter: 5 Power Estimation and Measurement

1. Switch off subsystems when inactive

2. Minimize area utilization

3. Reduce clock frequency

4. Reduce supply voltage

5. Keep device temperature low

Point 1 of switching off inactive subsystems is directly applicable in the system design.
It is clear that points 2-3 may be conflicting tasks, since, as mentioned above, reduction of

clock frequency may be obtained by exploiting algorithm concurrency and utilizing more device
area. The optimal solution to this problem would require several iterations over possible solutions
to find the optimal tradeoff.

To find the optimal voltage supply (point 4), a further investigation into the supply voltage
versus maximum clock frequency relationship would need to be conducted for the specific device
or device family. With the hardware available it is, however, not possible to change the supply
voltages, thus for the specific system obtained in this project, the voltage is not a variable that
may be changed to optimize power consumption.

Point 5 of reducing device temperature may be accomplished by applying passive (e.g. a
heat sink) or active (e.g. a fan) cooling to the device to lead thermal energy away from the
device. No further investigation into this subject will be conducted in order to keep focus on the
project purpose of investigating power consumption in connection with mapping algorithms onto
a FPGA architecture.

5.2 Power Measurements

A set of measurements are conducted to evaluate the Powerplay simulation results in comparison
with actual system performance. The Cyclone III starter kit board allows for measuring the
currents drawn from each of the voltage supplies, connected to the FPGA, by measuring voltage
across a sense resistor, Rs, placed in series with each supply. The voltage supply of interest is the
1.2 V supply, feeding the internal logic, VCCINT . This supply also feeds the digital part of the
FPGA internal PLLs, VCCD, so the simulated power consumed by this part of the chip must be
included in the algorithm power consumption estimate to enable comparison between simulated
and measured results.

Figure 5.3 shows the setup used for measuring the voltage drop across the sense resistor in
the 1.2 V voltage supply circuit. The measurement setup consists of a DC voltmeter, connected
to jumper JP6, and an oscilloscope probing the voltage driving the LED1 diode. This diode is
toggled by the system to enable measurement of calculation completion time.

A DC-multimeter [Agilent, 2007] is used to measure the mean voltage drop across Rs. In
order to get precise power estimates this approach requires the system to be able to be put in a
constant idle state or constant active state, in order for no state changes to appear during mea-
surements. To be able to acquire timing information from the calculation progress the external
diode, LED1, is turned on, only when the system is in idle state. When the algorithm finishes

Section: 5.2 Power Measurements 41

Voltage
Supply

Oscilloscope

DC
Voltmeter

8.88

JP6

1.2V

+

- Rs 0.01Ω

VCCINT

VCCD

FPGA

LED1Cyclone III Starter Board

Figure 5.3: Setup for measuring power consumed by the FPGA core. A voltmeter measures the
voltage drop across a 0.01Ω sense resistor, Rs, in the voltage supply circuitry.

the controller state machine passes through the idle state before calculating the next FFT. This
results in a short pulse at LED1 and enables measuring the completion time for the algorithm
under test.

Preliminary tests measuring the voltage across Rs with a differential probe and a oscillo-
scope where conducted to enable tracking of the power consumption changes through the calcu-
lation period. However, the results experienced relatively high noise, which hindered identifying
changes in voltage across the sense resistor with changing system states. To reduce the noise
level averaging the measurements is needed, which is the reason for using the voltmeter instead.
A set of measurement records which exemplify this issue is found on the accompanying CD
[08gr1042, 2008, testresults/differential/diff3.csv] The signal standard deviation of the example
measurement record is 1.3 mV, and it will be clear in chapter 9 the changes in voltage across Rs
is to be measured the a few hundred µV. Therefore an averaging of the measurements is needed
and since the DC-voltmeter offers this feature directly along with a satisfying precision of± 0.03
% of the reading ± 30µV [Agilent, 2007].

The test setup described above is used for all measurements conducted in chapter 9. A list
of equipment used for the measurements is found on the CD [08gr1042, 2008, testresults/equip-
ment.txt].

5.3 Power Performance Measure

In order to compare the results obtained from each algorithm test, a performance measure based
on power need to be defined. Power, generally, is a measure of energy consumed per time unit
(unit is

[
W = J

s

]
). The total energy, ET , consumed by a system over a time interval, T , is thus:

ET =
∫ T

0
P (t)dt (5.6)

42 Chapter: 5 Power Estimation and Measurement

where P (t) is the instantaneous power at time t, and the mean system power over the interval is

Pmean =
1
T
ET (5.7)

As mentioned in section 5.2, the Cyclone III board allows for measuring the voltage, VRs , across
a sense resistor, Rs, thus determining the current drawn from the 1.2 V supply, I(t). The mean
power thus becomes:

Pmean =
1
T

∫ T

0
Vsupply · I(t)dt

=
1
T

∫ T

0
Vsupply · VRs(t)

Rs
dt (5.8)

Since measuring VRs(t) as a time series is not feasible, as described in section 5.2, the integral
is solved and split into two intervals, one of length tactive, which is associated with the mean
voltage measured over Rs when the system is kept active, and one of length (T − tactive), which
is associated with the mean voltage measured when the system is idle:

Pmean =
1
Ts

(
tactive · Vsupply · VRs_active

Rs
+ (Ts − tactive) · Vsupply · VRs_idle

Rs

)
(5.9)

where T is replaced with Ts, the OFDM symbol duration described in the system model, section
2.1, and set to 2 ms in the system specification in section 2.3. Equation (5.9) will be used when
evaluating and comparing the implemented DFT algorithms in chapter 9 to determine which
algorithm uses the least power when implemented.

Section: 5.3 Power Performance Measure 43

Part II

Algorithm Mapping
This part concerns the implementation of the selected algorithms on the Cyclone III platform.

Initially an introductory chapter describes the abstraction scheme and the general properties
of the system. Afterwards the split-radix and Sørensen FFTs are mapped onto the FPGA. Tests
and further design-space exploration are performed in the following part.

Contents

6 General Mapping 47
6.1 Environment Description . 47
6.2 General Control Strategy . 50
6.3 Number Representation . 50
6.4 Arithmetic Operations . 55
6.5 Summary . 57

7 Split-Radix FFT Mapping 59
7.1 Tasks . 59
7.2 Datapath . 60
7.3 Control Path . 63
7.4 Clock Domains Generation . 67
7.5 Summary . 67

8 Sørensen FFT Mapping 71
8.1 Tasks . 71
8.2 Datapath . 72
8.3 Control Path . 76
8.4 Clock Adjustment . 79
8.5 Summary . 79

Chapter 6
General Mapping

The mapping of the selected FFT algorithms to the FPGA platform is introduced in this chapter.
The description is based on the abstraction-model introduced in figure 1.6 on page 7. Subse-
quently the different general decisions regarding the implementation is taken. These include
topics as general control strategy, number representation and management and definition of the
interfaces to the external components.

The following chapters describe the implementation of the specific FFT algorithms.

6.1 Environment Description

In the OFDM demodulation system shown in figure 2.1 on page 12 the data for the FFT are
supplied by the entity removing the cyclic prefix. The Fourier transformed data is then moved to
the subcarrier demapping. To provide easy access and emulate the FFT as part of a larger system,
this data transfer is defined to happen in RAM blocks, as shown in figure 6.1 on the next page.
These RAM blocks contains input and output data for the SRFFT. RAM # 2 and RAM # 3 are
only present in the case of the SFFT and the indices of l which are to be computed and the results
of the SFFT calculations.

6.1.1 RAM # 1

The interface between the system and the SRFFT is seen in figure 6.1 as RAM # 1, which is
designed in this section. This RAM must hold 1024 real and imaginary values produced from
the block which removes the cyclic prefix. After FFT processing the transformed data is placed
in RAM # 1 to be accessed by the subcarrier demapping block. For the SFFT the RAM is also
needed to contain initial data and the temporarily transformed data.

Requirements

Due to requirements from the L-butterfly in the SRFFT, explained in the coming section 7.2.1 on
page 60, the RAM must be able to read and write 4 real and 4 complex values pr. clock cycle.

47

RAM # 1

Subcarrier
Demapping

Prefix
Cyclic

Remove

RAM # 2 RAM # 3

FFT

Interface

Figure 6.1: Interface definition for the FFT. RAM # 1 receives the time-data from the received
signal. In case of the SRFFT the FFT is performed in place and the green connec-
tions exists, whereas the SFFT places results in RAM # 2 and the blue connections
exists. The blue connections are needed as the SFFT recombination cannot be done
in place. RAM # 3 contains the indices of l which must computed. The FFT block is
colored red to show placement in figure 2.1 on page 12.

This stems from the nature of the L-butterfly which takes 4 real and imaginary input values pr.
cycle and produces 4 real and imaginary output.

As the available RAM in the design tool is only able to produce 2 values per cycle (two-port
RAM), another solution must be produced.

Design Choices

Initially it is decided to keep real and imaginary values in separate RAM blocks. The alternatives
are to store the values interlaced or imaginary values sequentially after real values. These possi-
bilities are disregarded as this would introduce additional multiplexers on the RAM output and
encumber the addressing, compared to direct addressing of real and imaginary values in different
blocks.

Defining the RAM as one or two blocks in the design makes no difference in the final im-
plementation, as the memory of the FPGA are subdivided into blocks of 512 × 18 bit during
compilation [Altera, 2007c, p. 4-1, table 4-1].

The problem of producing 4 values pr. clock cycle with two-port RAM can be solved by ei-
ther subdividing the address space or make the RAM block run at a higher clock rate relative to
the base.

Subdivision of the address space is not feasible for the current problem as the SRFFT accesses
memory in an irregular fashion due to the L-butterfly. Instead it is decided to use a faster clock
domain for the RAM blocks. This is possible as the datapath does not need to run at the same

48 Chapter: 6 General Mapping

clock as the RAM. As long as the data is ready and in synchronization with the datapath clock
the solution is feasible.

As the real or imaginary RAM block must read and write 4 values pr. cycle while using
two-port RAM, the RAM clock cycle is set to be four times faster than the datapath clock. This
allows for two cycles of reading and two cycles of writing thus fulfilling the requirements.

Implementation

The structure of the RAM# 1 is shown in figure 6.2. The actual RAM block is dual port, which
means that 2 addresses can be accessed in one clock cycle for either read or write operations.

Buffer #0

Buffer #1

Buffer #2

Buffer #3

Output Data

Read Adrs.

Write Adrs. M
U

X
M

U
X

M
U

X

#3
#2

#1
#0

Input Data

Controller

Enable
Data Ready

Addr0
Addr1
iData0
iData1
RdEn
WrEn

oData1

oData0

RAM

Clocks

Figure 6.2: Implementation structure of RAM#1. For overview, RAM block and data in- and
output for imaginary data has been left out.

As mentioned in the previous section one operation on the RAM include read and write of 4
complex data samples which is done in 4 RAM clock cycles, 0-3, in the following way:

• Cycle 0: Read address #0 and #2.
The controller generates a read enable signal for the RAM block and set the address mul-
tiplexer to channel read addresses #0 and #2 through to the address input of the RAM
block.

• Cycle 1: Read address #1 and #3.
The controller generates a read enable signal for the RAM block and set the address multi-
plexer to channel read addresses #1 and #3 through to the address input of the RAM block.

Section: 6.1 Environment Description 49

On the RAM block output data from address #0 and #2 are ready and latched in output
buffers #0 and #2.

• Cycle 2: Write input #0 and #2.
The controller generates a write enable signal for the RAM block and sets up the address
and data multiplexers to channel through address and data #0 and #2, respectively. On the
RAM block output data from address #1 and #3 are ready from the previous cycle and
latched in output buffers #1 and #3.

• Cycle 3: Write input #1 and #3.
The controller generates a write enable signal for the RAM block and sets up the address
and data multiplexers to channel through address and data #1 and #3, respectively.

The controller uses an enable input signal to determine is data is valid for a read and write
operation and to generate a data ready output signal for the designated datapath. Furthermore,
the fast system clock is used to drive the controller, RAM block and buffers, and the slow data
path clock is used for synchronization.

6.2 General Control Strategy

The execution of the algorithms can either be controlled by dedicated logic or by software run-
ning on a NIOS-II softcore processor.

The NIOS-II softcore processor is a processing unit implemented in dedicated logic which reads
and executes instructions from RAM on the FPGA board. Several different configurations of
the NIOS-II processor are supplied from Altera, each with different complexity [Altera, 2008a,
section I.1].

The alternative is to implement a state machine in dedicated logic. This solution forgoes the
flexibility in reconfigurability of software but instead offers a very simple implementation.

For this project the solution with state machines in dedicated logic is selected. This is the most
power-efficient possibility as the implementation is kept simple and with no overhead compared
to the softcore processor.

In situations requiring counters and decisions there exists the possibility of writing sequential
code in VHDL or constructing the control flow directly from logic. No design-possibilities is thus
precluded.

6.3 Number Representation

The data format and wordlength (number of bits) used for the representation can be completely
customized in the FPGA implementation, but the higher the number of bits and thus precision,
the higher the power usage for each arithmetic operation. On the other hand, a signal demod-
ulation must be performed after the FFTs, so number precision and introduced noise cannot be

50 Chapter: 6 General Mapping

disregarded.

The FPGA can synthesize IEEE floating point arithmetic operators, but these introduce an opera-
tional overhead and uses a large FPGA area and thus resulting power. Instead an implementation
using fixed point is used as this is more power efficient due to simpler implementation. The
drawback is the introduction of a limited dynamic range and noise in the calculations due to trun-
cation. Both of these effects will be discussed next.

Initially it is seen that both negative and positive numbers are needed in the FFTs, so the twos
complement number representation is selected. As numbers greater than 1.0 must be represented
a QI.F number format is used . The I represents the number of bits used for the integer part,
while the F represents the number of bits assigned to the fractional [Oberstar, 2007]. A positive
fractional number is written as

x =
I−1∑
i=0

2i +
F∑
f=1

2−f (6.1)

and the negative counterpart is constructed by taking the twos complement. The maximal nega-
tive number cannot be constructed using (6.1), but is instead constructed as 10. . . 0b.

The highest resolution/increment for a QI.F number is thus 1
2F

while the dynamic range of a
QI.F number x is

[−(2)I ≤ x ≤ 2I − 1
2F

]
which needs I + F + 1 bits due to the sign bit. This

means that a number representation using 3 bits for the integer part and 4 bits for the fractional
part would be a Q3.4 number with a total length of 8 bits due to the sign bit.

6.3.1 Integer Word Length

In determination of the integer word length, it is of interest to determine the highest possible
value which can be attained in the algorithm. An initial test of the maximum values attained in
the SRFFT has been performed in the C implementation. The results are shown in table 6.1. It is
seen that the maximum value is 0.8536 which would lead to the offhand choice of reserving no
bits for representing integers.

Attribute Value
Mean 0.7671
Variance 0.0034
Maximum 0.8536

Table 6.1: Maximum achieved values in the SRFFT. The test has been performed 300 times with
different seed values to the randomly generated input data.

While this is a valid choice for the system under the current constraint of ideal channel and
thus no noise, this cannot be assumed for the environment in which the system is to function. In

Section: 6.3 Number Representation 51

that case describing the algorithm input as a uniformly distributed random variable in the interval
[−1; 1] would be more appropriate.

The worst case scenario is in the SRFFT is then where calculation of output at index 0 equals
the addition of 1024 numbers all of value 1. See section 3.3.3 on page 22 for graphical example
of this addition.

As it is wasteful to use log2(1024) = 10 bits for storing an integer, as will be shown later,
the input is defined as a stochastic process and the possible distribution of the sum is examined.

Assume the input data an uniformly distributed random variable with range equivalent to the
possible input data. Adding this random variable N times and examining the resulting Probabil-
ity Density Function (pdf) shows the probability of generating an overflow, compared to the bit
sizes used to store the integer. It is thus possible to select an acceptable chance for overflow with
regards to the integer word length.

Define Z =
∑N

n=1Xn where Xn is an uniformly distributed random variable in the range
[−a : a] with zero-mean and Z is the resulting random variable. The pdf fz(x) of the sum of
random variables can be determined from the known pdfs of Xn by calculating the characteristic
function (6.2) and performing the conjugate inverse Fourier transform the to get (6.3)

ΨZ(ω) = E [exp(jωZ)] =
∫ ∞
−∞

fz(x) · exp(jωx) dx (6.2)

fZ(x) =
1

2π

∫ ∞
−∞

ΨZ(ω) exp(−jωx) dω (6.3)

[Shanmugan and Breipohl, 1988, p. 39-40]. It is possible to solve the problem by convolving the
variables Xn, but this solution is not investigated in this project.

Writing the characteristic function ΨZ(ω) for Z and assuming X1...N independent produces

ΨZ(ω) = E

[
exp

(
jω ·

N∑
n=1

Xn

)]
=

N∏
n=1

E [exp (jωXn)] =
N∏
n=1

ΨXn(ω) (6.4)

The characteristic function for Xn is found by inserting the definition of the uniform pdf [Shan-
mugan and Breipohl, 1988, p. 43] into (6.2) and using the Euler equality of e

jz−e−jz
2j = sin(z)

fXn(x) =
{

1
b−a , for a ≤ x ≤ b
0 , otherwise

(6.5)

ΨXn(ω) =
∫ b

a

1
b− a exp(jωx) dx =

[
1

jω(b− a)
exp(jωx)

]b
a

(6.6)

ΨXn(ω) =
1
ω

ejωb − ejωa
j(b− a)

(6.7)

ΨXn(ω) = =
1
ω
· sin(ω), a = −1, b = 1 (6.8)

Determining fZ(x) is done by using (6.3), (6.4) and (6.8).

fZ(x) =
1

2π

∫ ∞
−∞

[∏
N

sin(ω)
ω

]
· exp(−jωx) dω (6.9)

52 Chapter: 6 General Mapping

that has a solution which is beyond the scope of this project. The integral is solved in [Bradley
and Gupta, 2007, p. 11] which produces the equation

fZ(x) =
1

(N − 1)!(2 · a)N

N∑
k=0

(−1)k
(
N

k

)
· (x+ (N − 2k)a)N−1

+ (6.10)

where (y)N−1
+ is defined in [Bradley and Gupta, 2007, p. 8] to be

(y)N−1
x =

1 · yN−1 , for y > 0
1
2 · yN−1 , for y = 0
0 , for y < 0

(6.11)

and define a = b and with zero mean. The last definition is due to different definitions of the
uniform distribution.

Thus the pdf for Z as a sum of uniform random variables is determined. The result for dif-
ferent N is plotted in figure 6.3 on the next page as pdf and Cumulative Distribution Function
(cdf) . It is seen that the maximum possible value of the pdf expands as more and more summa-
tions are performed. This corresponds well to the expected result with increasing, but unlikely,
maximum value.

Determining the required integer range is done by examining the value of the cdf at points
−2I , I = 1 . . . (max). This is half the probability that an overflow at the integer representation
by I will occur.

Unfortunately the binomial distribution
(
N
k

)
implementation in MatLAB gives inaccurate re-

sults for N > 40 in the project tests. Thus the pdf and cdf for N > 40 cannot be numerically
determined based on (6.10). The exact solution to this problem is deemed outside the scope of
this project and assumptions are used instead.

Examining figure 6.3 it is seen that the tendency for the values of the cdf (lower figure) is to ap-
proach the numerical extremes with increasing N . As the exact values of the cdf for N = 1024
are not determined, a value of I = 4 is deemed reasonable by the project group. This yields a
dynamic range of approximately ±24 = ±16. The value of 4 bits as representative of the integer
part is selected on the basis of low chance of overflow while keeping the number of bits as low
as possible.

6.3.2 Fractional Word Length

Examining the FPGA platform it is seen that memory cells are able to operate in ranges of
(1, 2, 48, 9, 16, 18, 32, 36) bits [Altera, 2007c, p. 4-1]. Of these the 16- and 18-bit operations are
selected by the project group as relevant, the lower bit numbers would leave to few fractional
bits, with an integer length of I = 4, while the higher bit numbers would spend too much power.

The embedded multipliers either performs two 9 × 9 or one 18 × 18 bit multiplications. In
keeping with the design of the FPGA, the 18× 18 operation is selected, as this gives the highest
precision and is natively supported by the platform [Altera, 2007c, p. 5-5].

Section: 6.3 Number Representation 53

−15 −10 −5 0 5 10 15
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

x

pd
f Z

(x
)

N = 1
N = 2
N = 5
N = 10
N = 40

−15 −10 −5 0 5 10 15

0

0.2

0.4

0.6

0.8

1

x

cd
f Z

(x
)

N = 1
N = 2
N = 5
N = 10
N = 40

Figure 6.3: The sum of uniform random variableZ =
∑N

n=1Xn shown as pdf (upper figure) and
cdf (lower figure). The x-axis represents the FFT output while the y-axis represents
probability.

Accounting for the sign bit and selection of integer part yields a Q4.13 number format wherein
thirteen bits are assigned to the fraction. This results in a number resolution of R = 1

2F
=

122.1 ·10−6, which is the lowest number and increment the chosen number format can represent.
As the output are QPSK with values of (±1± j) · 1√

(2)
, the maximum attainable SNR is

SNRdb = 20 · log10

(|X|
|(1 + j) ·R|

)
= 115.3 dB (6.12)

Definition of the number format could also be performed by examining the requirements for
numerical precision in the fractional representation, which could yield a different result than the
one defined here.

54 Chapter: 6 General Mapping

This approach requires definition of the maximum allowed introduced noise in the FFT,
which is typically set in conjunction with the overall system design. As this project does not
cover a complete OFDM receiver system and corresponding definition of noise requirements,
this approach is disregarded. The examination of achieved precision is thus left for later discus-
sion.

It must also be noted that a lower number of bits in the numerical representation would yield
a lower power usage. This possible optimization is also left for later examination.

6.4 Arithmetic Operations

Common for both algorithms is the arithmetic operations of addition, subtraction and multiplica-
tion. These operations and the effects on precision is discussed next.

The operation of addition and subtraction in twos complement is trivial and without loss of pre-
cision, as long as no overflow occurs. This should be ensured by the data format of Q4.13 and
the investigations performed in the previous section.

Multiplication with binary numbers produces a result of double word length. This is imprac-
tical with a datapath that is used repetitively in the algorithm and would produce a very long
word-representation. Instead the result can be truncated to the original number representation as
shown in figure 6.4.

s bdac bc ad X X

s a ds·b

ss bdadbcac

c(1)

(2)

(3)

Q3.3

Q6.6

Q3.3

Trunc
Q6.6

(2)

Q3.3

(3)

Q3.3

Q3.3

(1)

Figure 6.4: Multiplication and truncation where a, b, c and d are binary variables. Bits marked
with red are discarded and introduces an error.

Section: 6.4 Arithmetic Operations 55

Part (1) of figure 6.4 shows two example Q3.3 words. The “s” represents sign bits and the
Least Significant Bit (LSB) is to the far right. This example is for Q3.3 representations but is
equally true for Q4.13.

Multiplying the two numbers yields part (2) which is double precision (Q6.6). The multipli-
cation for the example can be calculated as multiplication of integers

= (a · 23 + b · 22) · (c · 22 + d · 20) (6.13)

= ac · 22+3 + bc · 22+2 + ad · 23+0 + bd · 22+0 (6.14)

= ac · 25 + bc · 24 + ad · 23 + bd · 22 (6.15)

The result is a double-length representation which must be truncated to the original format, part
(3), to retain the original data precision. This is done by right shifting with the number of bits
representing the fraction

=
ac · 25 + bc · 24 + ad · 23 + bd · 22

2F=3
(6.16)

= ac · 22 + bc · 21 + ad · 20 + bd · 2−1 (6.17)

and discarding numbers with representation 2(F<0) as marked with red.

From part (3) of figure 6.4 it is seen that the uppermost integer bits and the lowermost frac-
tional bits are discarded. The integer bits does not constitute a loss of precision, as long as the
multiplication does not produce an overflow. Truncating the fractional bits introduces a variable
noise in the result, due to lack of representation. This noise approaches 3

4LSB in the worst case
as the sum of the discarded bits. The actual noise introduced in the multiplication and subsequent
truncation depends on the actual numbers.

An example with the Q3.3 numbers from figure 6.4 is the multiplication of 1.5 with 0.625.
These are represented by integers in part (1) by 23+22 = 12 and 22+20 = 5 where {a, b, c, d} =
1. Multiplying and shifting yields ⌊

12 · 5
2(F=3)

⌋
= b7.5c = 7 (6.18)

Converting the result, 7, to the Q3.3 representation yields 2−1 + 2−2 + 2−3 = 0.875 whereas the
correct result is 1.5 · 0.625 = 0.9375. The value of 0.5 which is truncated away in (6.18) is the
value of bd in part (3) which yields the inaccurate result.

Relating this to the chosen number representation of Q4.13 it is seen that each multiplication
approximately introduces a maximum noise of 3

4R = 91.6 · 10−6 per multiplication.

The operation of truncation after multiplication in the design, is performed by a clocked VHDL
block shown in figure 6.5 on the next page. This block is designed for accepting Q4.13 ·Q4.13 =
Q8.26 which is a 36 bit word with two sign bits. The input is moved to the correct output at the
rising clock edge and is ready for processing by the next design entry. All multiplications on the
FPGA is performed in this manner.

56 Chapter: 6 General Mapping

1 LIBRARY i e e e ;
2 USE i e e e . s t d _ l o g i c _ 1 1 6 4 . a l l ;
3

4 ENTITY shi f tDown13 IS
5 PORT (
6 c l o c k : IN s t d _ l o g i c ;
7 i n p u t : IN BIT_VECTOR(35 downto 0) ;
8 o u t p u t : OUT BIT_VECTOR(17 downto 0)
9) ;

10 END shi f tDown13 ;
11

12 ARCHITECTURE BEHAVIOR OF shi f tDown13 IS
13

14 BEGIN
15 p i c k e r : PROCESS(c l o c k)
16 BEGIN
17 IF (r i s i n g _ e d g e (c l o c k)) THEN
18 −− grab a s i g n b i t
19 o u t p u t (17) < = i n p u t (34) ;
20 −− grab t h e lower QI i n t e g e r b i t s
21 o u t p u t (16 downto 13) < = i n p u t (29 downto 26) ;
22 −− grab t h e QF f r a c t i o n a l b i t s
23 o u t p u t (12 downto 0) < = i n p u t (25 downto 13) ;
24 ELSE
25

26 END IF ;
27 END PROCESS p i c k e r ;
28 END BEHAVIOR;

Figure 6.5: VHDL code for truncation after multiplication. The truncation is done by wire
rerouting instead of a shift-register. This VHDL block is placed after multipliers
as shown between stage (b) and (c) in figure 6.4 on page 55.

6.5 Summary

The preceding three sections have defined basis for the overall structure of the FFT systems to be
designed in the following chapters. The system environment has been designed in terms of the
common RAM#1 block which interfaces the systems data paths enabling four sample read and
write in each datapath clock cycle. Furthermore, a general approach for controller design based
on finite state machine is chosen over the NIOS-II soft processor.

Finally, a discussion of the system data format was conducted leading to a choice of a Q4.13
fixed point number representation, based on a tradeoff between reducing the risk of overflow and
ensuring sufficient decimal precision.

Section: 6.5 Summary 57

Chapter 7
Split-Radix FFT Mapping

The mapping of the SRFFT algorithm explains how the algorithm derived in section 3.3 is par-
titioned into datapath and controlpath and how these partitions are implemented on the FPGA
system. Furthermore the necessary clock domains needed to drive the system are discussed. At
last a summary is given along with examination of the hardware utilization.

7.1 Tasks

The overall task of the SRFFT to be implemented is to calculate a full 1024 point FFT. As
described in section 3.3 the SRFFT consists of a series of L-shaped butterflies and a repeated
subdivision of the transform into subtransforms of length N/2 and N/4. The resulting structure of
the transform is shown in figure 7.1 for a 32 point example SRFFT.

Starting at level 0, a block of total length 32 consisting of 8 L-butterflies is calculated. Next
at level 1, 4 L-butterflies are calculated giving a total block length of 16. At level 2, three blocks
of length 8 starting at addresses 0, 16 and 24 are calculated. Level 3 consists of 5 4point L-
butterflies, and level 4 of 11 2 point butterflies. As may be derived from the figure, the SRFFT
consists of log2(N) levels at which a number of L-butterfly blocks (stages) need to be calculated.

The result of the SRFFT algorithms is the Fourier transform in bit-reversed order. A final stage
of reordering the data could be included. However, the most efficient method for reordering the
data is for the system, which is to read the result, to have its address bus connected to the RAM
holding the results in bit-reversed order.

Thus two principal datapath structures are needed to perform the SRFFT are an L-butterfly
and a 2 point DFT. The design and implementation of these two datapaths is examined in section
7.2. Furthermore, a control structure managing the levels and stages progress is needed to gener-
ate the addresses of the data to be calculated supply datapaths with the relevant data and storing
the computed results is needed. This control structure is designed in section 7.3.

59

L
ev

el
0

L
ev

el
1

L
ev

el
2

L
ev

el
3

L
ev

el
4

32

16

8
4

8

8
4

4

4

2

2
2
2

2

2

2
2
2

2
2

4

24

16

8

Addr. 0

Figure 7.1: Principal structure of a full 32 point SRFFT.

Finally, the SRFFT environment consists of a RAM block and a clock controller. Since the
SRFFT can be calculated in place, the RAM#1 designed in section 6.1.1 is used for both input
and output. The tasks of the SRFFT are gathered in the system abstraction model in figure 7.2.

7.2 Datapath

This sections accounts for the mapping of the datapaths of the SRFFT, including the L-butterfly
and 2 point butterfly needed to calculate the FFT.

7.2.1 L-Butterfly

The functionality of the L-butterfly is to calculate the 4 expressions in equations (7.1) to (7.4):

y[0] = x[0] + x[2] (7.1)

y[1] = x[1] + x[3] (7.2)

y[2] = (x[0]− x[2] + j (x[1]− x[3])) · TnmN (7.3)

y[3] = (x[0]− x[2]− j (x[1]− x[3])) · T 3nm
N (7.4)

where x[0..3] are four complex inputs, y[0..3] are the four complex outputs to be returned to
the RAM and T kN are twiddle factors found from the current level, m, and counting variable,
n ∈ [0..N/4− 1], where N is the length of the L-butterfly block at level m.

60 Chapter: 7 Split-Radix FFT Mapping

RAM # 1 Clock Gen.

FSM L. Butterfly

N. ButterflyAddr. Gen.

Environment

Control Data

Figure 7.2: Tasks for SRFFT

Design Choices

To optimize the utilization of the calculation units constituting the L-butterfly datapath it is de-
cided to pipeline the function in order for it to accept a set of input samples and produce a set of
output samples at each clock cycle.

Furthermore, input and output data are kept aligned in time. The calculation of y[0] and
y[1] is composed of only one summation, whereas y[2] and y[3] are both composed of two
subtractions followed by a multiplication, introducing a inherent misalignment of output data.
This decision leads to buffering of the calculated results of y[0] and y[1] to obtain equal latency
of all results in the L-butterfly datapath.

Implementation

The structure of the implementation of the L-butterfly datapath is shown in figure 7.3, where each
computation of the L-butterfly datapath defined in equations (7.1) to (7.4) is implemented as a
separate calculation unit to enable the chosen full pipelining of the datapath.

The data and computations in the figure are complex, thus:

• complex addition is calculated as:

(a+ jb) + (c+ jd) = (a+ c) + j(b+ d) (7.5)

• complex subtraction is calculated as:

(a+ jb)− (c+ jd) = (a− c) + j(b− d) (7.6)

• complex multiplication is calculated as:

(a+ jb) ∗ (c+ jd) = (ac− bd) + j(ad+ bc) (7.7)

Section: 7.2 Datapath 61

1
cy

cl
e

1
cy

cl
e

4
cy

cl
es

1
cy

cl
e

Get
Twiddle

j

y[1]x[1]

x[0]

x[2]

x[3]

y[0]

m

n

Tmn
N

T3mn
N

y[2]

y[3]

Figure 7.3: Implementation of L-butterfly for SRFFT. The figure shows the scheduling of compu-
tations in the L-butterfly, resulting in a total latency of 7 clock cycles. All computa-
tions are complex and data not operated on during a cycle is buffered for alignment
in time.

Multiplication by j is done by explicitly mapping the connections of the subtractor output of
(r = y[1]− y[3]) to r′:

Re {r′} = −Im {r}
Im {r′} = Re {r}

where the negation of Im {r} is the source of the one cycle delay of this block.
Finally, the generation of twiddle factors for the complex multiplication is implemented as

two lookup-tables, one containing Tmn and one containing T 3mn
N , which are both complex. The

splitting of TmnN and T 3mn
N into separate tables is a tradeoff between minimizing the table sizes

and easing the look-up algorithm. At present, the first third of the T 3mn
N is already present in the

TmnN table. This overhead could be eliminated by merging the two tables at the cost of a more
complex derivation of the look-up instances for the last two thirds of the T 3mn

N values.

7.2.2 Two-Point Butterflies

The two-point butterfly data path is used to calculate the last level of the SRFFT where the
sub-transform length is less than 4. The function that are calculated by the two-point butterfly

62 Chapter: 7 Split-Radix FFT Mapping

datapath was described in section 3.3:

y[0] = x[0] + x[1] (7.8)

y[1] = x[0]− x[1] (7.9)

Design Choices

In order for the 2-point butterfly datapath to fit the data format of the RAM#1 block, it is decided
to copy the 2-point butterfly data path, defined above, and perform two in parallel. This, of
course is done at the cost of utilizing additional LEs on the FPGA, but the computation time for
the calculation of this level is effectively reduced by half, and this approach is estimated to be
more efficient than to change the design of the RAM#1 block to be able to handle not reading
and writing 4 values per clock.

Implementation

The principal structure of the 2-point butterfly implementation is shown in figure 7.4. The 2-point
butterfly datapath consists of two complex adders and two complex subtractors to compute two
instances of the equations (7.8) and 7.9.

y[0]

y[3]

y[2]

y[1]

1c
yc

le

x[3]

x[2]

x[1]

x[0]

Figure 7.4: Structure of datapath implementation for 2-point butterfly. The data and operations
are complex valued.

7.3 Control Path

The purpose of the control path is to manage the data paths by supplying input data and storing
output data. In this section the structure of these tasks are divided into a general control path and
address generators.

Section: 7.3 Control Path 63

7.3.1 General Control Path

The purpose of the general control path is to manage the overall flow of the SRFFT algorithms
execution. The main task of the controller is thus to activate and deactivate the L-butterfly and
2-point butterfly datapaths and corresponding address generators when required.

Design Choices

As discussed in section 6.2 the controller is implemented as a finite state machine. The basis for
the FSM are one state for activating the L-butterfly address generator and datapath and one state
for the 2-point butterfly datapath and address generator. The activation signal generated by the
FSM is rippled through the address generator, RAM#1 block and data path pipelines and used to
indicate the presence of valid data.

To enable detection of the completion of the address generator, where this need no longer
be active, the address generator issues a completion signal inducing a state change in the control
FSM. At this point, the L-butterfly datapath is still calculating due to the pipelining and the
RAM# block is thus not available for the 2-point butterfly address generator to be activated.

A flush state is therefore inserted to wait for the L-butterfly datapath to empty. When entering
the flush state, a signal is rippled through the L-butterfly datapath to detect, when the flush is
complete, and the controller can continue to activate the 2-point butterfly address generator and
datapath. For the 2-point butterfly states, the same procedure for detecting address generator
completion and datapath flush.

Implementation

The resulting finite state machine for the general control path is shown in figure 7.5.
At system startup a reset state (reset_s) is added to ensure that all data paths and address

generators are in a predefined state. Next, the system goes into an idle state (idle_s) waiting
for a go input signal. For test purposes this signal is generated manually using one of the starter
kit input buttons, instead of being produced periodically by a system process.

When the go signal is generated, the state machine moves into the doLButterfly_s state,
activating the L-butterfly address generator and datapath. The rest of the SRFFT algorithm exe-
cution follows the procedure described in the previous section. Finally, when the 2-point butterfly
pipeline is flushed the state machine returns to idle state and polls the go signal until this again is
present.

7.3.2 Address Generators

The final components of the SRFFT are the address generators. The task of these generators is
to supply the addresses of the datapath input to the RAM#1 block. Two address generators need
to be implemented; one for the L-butterfly state and one for the 2-point butterfly state. Both are
designed using the same principles and therefore examined together in this section.

64 Chapter: 7 Split-Radix FFT Mapping

reset_s idle_s ~goPressed

doLButterfly_s

goPressed

~LBut_done

doLbutterflyFlush_s

LBut_done

~LBut_flushed

doNButterfly_s

LBut_flushed

~NBut_done

doNButterflyFlush_s

NBut_done

NBut_flushed

~NBut_flushed

Figure 7.5: SRFFT controlling state machine

Design Choices

The design of the address generators for the SRFFT algorithm is based on [Skodras and Con-
stantinides, 1992]. The main challenge for the L-butterfly state is to determine the location and
length of each of the blocks of L-butterflies. Using the C-algorithm for generating look-up table
containing the block start addresses, as suggested in [Skodras and Constantinides, 1992], along
with a second LUT containing the number of L-butterflies to be calculated in the corresponding
block, supplies the data needed for address generation.

For the 2-point butterfly state, a similar procedure may be used. In this state the length of the
transform is always one, thus only a start address of each butterfly to be calculated is needed.

Alternatively, the LUT-generating algorithm could be implemented directly. This would
reduce the memory requirements of the address generators significantly, since addresses and
lengths then would be generated dynamically and not need storing. However, this approach
would also require more calculations to be performed between each datapath clock cycle, and
the address generators would require more area LE area utilization for dynamic start address and
block length calculation. Therefore, the approach where LUTs containing the algorithm results
is chosen for implementation in this system.

Section: 7.3 Control Path 65

Implementation

The structures of the two address generators for the L-butterfly and 2-point butterfly states are
shown in figures 7.6 and 7.7, respectively.

Compare

Compare

Add
Map

Program
counter

LUT length

LUT address

n counter

Program end value

Clock

reset

increment

reset

Done out

Address out

n out

Stage out

Figure 7.6: Structure of L-butterfly address generator implementation

The address generation for the L-butterfly state is composed of two counters and two look-up
tables, which in effect constitute an outer loop counting through the L-butterfly blocks and an
inner loop counting through the individual L-butterflies of each block.

A program counter defines the active entry in the address- and length look-up tables. The
address entry defines the start address of the active L-butterfly block, and the length describes
both the number of L-butterflies in the block and the input sample displacement. Thus the value
read from the address LUT is used to compare to the n counter, which is incremented by the
clock signal, to enable reset of the n counter and increment the program counter when n and the
LUT entry are equal.

The first data addresses of each L-butterfly is found by adding the block start address from the
address LUT with the n counter value. Relating this address to the input data described in figure
7.3, this address is a(x[0]). The final three addresses, a(x[1..3]), are found by adding multiples of
the length to a(x[0]) to end up with:

a(x[0]) = (LUT address) + (n counter) (7.10)

a(x[1]) = a(x[0]) + (LUT length) (7.11)

a(x[2]) = a(x[0]) + 2 · (LUT length) (7.12)

a(x[3]) = a(x[0]) + 3 · (LUT length) (7.13)

Finally, the value of n and the length LUT is also sent to the L-butterfly datapath for twiddle
factor look-up.

The address generator for the 2-point butterflies is significantly simpler, as shown in figure
7.7. Since the 2-point butterflies are always working on to successive data samples, the address
generator need only read the start address and add one to have the necessary addresses for one
2-point butterfly. In order to accommodate the four sample structure of the RAM#1, two LUT

66 Chapter: 7 Split-Radix FFT Mapping

LUT addresss

Compare

Program
counter

Program end value

reset

clock
Map

Done out

Address out

Figure 7.7: Structure of 2-point butterfly address generator implementation

values are read for each program count, generating the necessary four addresses. Relating the
address generator output to the data input of the 2-point butterfly datapath described in figure 7.4,
the four addresses, a(x[0..3]), generated in each datapath clock cycle are:

a(x[0]) = LUT[·Program counter]
a(x[1]) = LUT[2 · Program counter] + 1
a(x[2]) = LUT[2 · Program counter + 1]
a(x[3]) = LUT[2 · Program counter + 1] + 1 (7.14)

7.4 Clock Domains Generation

As mentioned in the mapping sections, the design require two clock domains; one 4 times faster
than the other. The down conversion from the fast clock may be accomplished either by utilizing
one of the embedded Phase-Locked Loops in the device or, since the down conversion factor is a
power of 2, by implementing a 2 bit counter and where the MSB will have a frequency of 1/4 of
the clock driving the counter.

The global system clock in the development board is fixed at 50 MHz. However, a reconfig-
urable main clock is required for adjusting the system clock to investigate power consumptions
dependency of clock frequency. Thus, the PLL solution is chosen. This way both clocks may be
down converted with arbitrary values.

As will become clear in the test section 9.1, the SRFFT implementation is tested both with
the full clock of 50 MHz resulting in the datapath being driven at 12.5 MHz and a clock reduced
by 1/3, i.e. 16.7/4.17 MHz where the available time of 0.5 ms for calculating the FFT is fully
utilized.

7.5 Summary

With the tasks for the SRFFT datapath, control path and environment implemented, the achieved
design is summarized in this section before moving on to mapping the SFFT. An overview of the
SRFFT system implementation is shown in figure 7.8.

In the figure, the FSM controller and clock signals are left out for overview. The multiplexers
and demultiplexers are used to direct addresses and data to and from the RAM#1 block and active

Section: 7.4 Clock Domains Generation 67

2-point
butterfly
datapath

2-point

address
generator

L-butterfly

address
generator

L

datapath

butterflyD
E

M
U

X
D

E
M

U
X

oData

oAddr

RAM#1

wData

wAddr

rAddr

M
U

X
M

U
X

M
U

X

Figure 7.8: Overview of SRFFT address generators, RAM#1 and datapath interconnection. For
overview, the FSM controller and clock signals are left out.

address generator and datapath. As seen in the figure the addresses generated are rippled through
the RAM#1 block and active datapath to supply write addresses aligned with datapath output
data to the RAM#1 block.

7.5.1 Hardware Utilization

To get an indication of the resulting hardware utilization of the achieved SRFFT system is rea-
sonably comparable with other reference designs when measured on hardware utilization, the
system is compared in table 7.1 to the same FFT reference design used in section 4.2 to indicate
the hardware requirements.

Feature Available SRFFT utilization Reference design
Logic Elements 24,624 3,299 3,033
Memory [kBits] 504 66.6 102.4
Multipliers (18x18) 66 16 3

Table 7.1: SRFFT system hardware utilization compared to available resources and reference
design used to estimate hardware requirements in section 4.2.

As seen in the table the spend number of LEs are within 10% of each other, the memory usage
approximately 35% lower in the SRFFT system, and the utilized number of embedded multipliers
5.3 times higher in the current implementation. It must be noticed that the functionality of the
two systems are not exactly equal, and the reference may thus only be used as an indication.
The relatively high utilization of multipliers is a consequence of the datapath structure where all
computations of the L-butterfly and 2-point butterflies are assigned separate hardware resources.

68 Chapter: 7 Split-Radix FFT Mapping

Based on this condition the achieved hardware utilization for the SRFFT system is considered
acceptable.

A further examination of the SRFFT system into the power consumption performance of the
system is conducted in the test section 9.1 on page 87.

The SRFFT system serves as benchmark for the calculation of a full DFT for comparison with the
calculation of only the subset of subcarriers of interest using the SFFT. Furthermore, the SRFFT
composes a significant component of the SFFT, which is mapped in the next chapter.

Section: 7.5 Summary 69

Chapter 8
Sørensen FFT Mapping

The Sørensen FFT described in section 3.4 on page 23 is mapped to the FPGA platform in this
chapter.

Initially the tasks needed to perform the SFFT are examined. This results in an extra datapath
which performs the recombination. This datapath requires its own control mechanism which is
designed afterwards. At last the overall system-clock is adjusted to achieve the correct time-
performance and a summary including hardware utilization is given.

8.1 Tasks

Equation (3.20) on page 25 is repeated in equation (8.1):

X[k] =
Q−1∑
n2=0

[
P−1∑
n1=0

xn2 [n1] · Tn1·{k}p

]
︸ ︷︷ ︸
Xn2 [r]=

PP−1
n1

xn2 [n1]T
n1·r
p

·Tn2·k
N (8.1)

Examining equation (8.1) it is seen that the SFFT is a sum of the outputs of smaller FFTs, thus
the byname ’transform decomposition’. This is further elaborated in figure 3.3 on page 26 where
the recombination steps are shown as additions.

A number of Q FFTs of length P are thus required to compute the SFFT. It is decided to use
the split-radix FFT described in chapter 7 to perform these FFTs. This is done as the design and
mapping already exists, and the SRFFT algorithm is an efficient method for calculating the FFT.

The project SRFFT requires changes to the address generator and lookup-tables used in the
execution. These changes consists of performing a P = 32 length FFT Q = 32 times with
increasing base offsets, instead of a full 1024-length FFT. These changes are trivial and are not
discussed further. The values of P and Q are selected in section 3.5.4 on page 27.

Returning to (8.1) it is seen that the recombination step is a series of Multiply and ACcumulate

71

(MAC) operations. The abstraction model for the SFFT is thus extended, based on the SRFFT
abstraction shown in figure 7.2, with a recombination part in the control- and datapath as seen in
figure 8.1.

RAM # 1 Clock Gen.

FSM L. Butterfly

N. ButterflyAddr. Gen.

Recomb. PathRecomb Ctrl.

Environment

Control Data

Figure 8.1: Tasks for SFFT

An extension of the interface definitions in figure 6.1 on page 48 is provided for the case of
the SFFT in figure 8.2 on the facing page. A further explanation of the connections and entities
are presented in the following section 8.3 on page 76.

Each of the control- and datapath entries are designed in the following.

8.2 Datapath

Requirements

The operations to be performed in the SFFT datapath is

X[k] =
Q−1∑
n2=0

xn2 [{k}P] · Tn2·k
N (8.2)

which is a rewritten equation (3.20) where it is assumed that xn2 [r], r = 0 . . . P −1, r = {k}P
is the FFT transformed data.

Design Choices

A possible optimization is presented in [Sørensen and Burrus, 1993, p. 1188], where (8.2) is
rewritten as a convolution

X[k] =
Q−1∑
m=0

(xQ−m−1[{k}P])
(
T kN

)Q−m−1
, n2 = Q−m− 1 (8.3)

72 Chapter: 8 Sørensen FFT Mapping

Subcarrier
Demapping

Prefix
Cyclic

Remove

RAM # 2 RAM # 3RAM # 1

SRFFT

FSM

FFT

SFFT

Datapath

SFFT

Control

Figure 8.2: The SFFT shown in conjunction with the interface definitions in figure 6.1 on
page 48. The connections and entities are the only ones discussed in this section.

Exchanging the upper boundary with j but keeping the input sequence yields

yk[j] =
j−1∑
m=0

xQ−m−1[{k}P] · T k·(j−m−1)
N (8.4)

As j approaches Q the equation X[k] = yk[j]
∣∣∣∣
j=Q

is true. This is a convolution with a system

Hk(z) =
z−1

1− z−1 · T kN
(8.5)

and input xQ−j−1[{k}P].

Rewriting the impulse response as

Hk(z) =
z−1 · (1− z−1T−kN)

(1− z−1 · T kN)(1− z−1T−kN)
(8.6)

Hk(z) =
z−1 · (1− z−1T−kN)

1− 2 · cos
(

2πk
N

)
z−1 + z−2

(8.7)

Section: 8.2 Datapath 73

and drawing the direct form II realization in figure 8.4 it is seen that the number of multiplications
per iteration is reduced from 1 complex multiplication (2 real multiplications and 2 real additions)
to one real and imaginary scaling (2 real multiplications). The operations right of the dotted line
are only performed once to compute the output, as no results are dependent on the feed-forward
network.

This saves a complex multiplication compared to figure 8.3, instead a real and imaginary
scaling is performed.

+
xQ−j−1[{k}P]

T k·j
N

z−1

yk[j]

Figure 8.3: Direct form II structure for MAC operation, see (8.5). Modified from [Sørensen and
Burrus, 1993, figure 5.]

+

+ +

−1 −T−k
N

z−1

z−1

xQ−j−1[{k}P]

2 · cos
(

2πk
N

)
yk[j]

Figure 8.4: Direct form II structure for modified MAC operation. Operations right of the dotted
line are only performed once, thus saving multiplications. See (8.7). Modified from
[Sørensen and Burrus, 1993, figure 6.]

The downside to rewriting (8.7) (henceforth known as Method 2) is the presence of feedback

74 Chapter: 8 Sørensen FFT Mapping

with an amplitude greater than 1, which can cause instability. A test of the achieved values is
performed in C for 300 different FFT input sets. The results are shown in table 8.1.

M2 Re M2 Im MAC Re MAC Im
Mean 24.58 24.68 1.52 1.52
Variance 6.91 8.31 0.003 0.004
Maximum 32.60 34.81 1.67 1.70

Table 8.1: Comparison of dynamic range in SFFT of Method 2 (M2) and standard Multiply-
Accumulate (MAC). All possible values computed for 300 different seed-values. The
table shows that Method 2 requires a higher dynamic range in the data representation,
as a tradeoff it has a lower computational complexity.

Of primary interest is the maximum achieved values for Method 2 compared to the maximum
achieved values for the MAC-solution. The dynamic range of Method 2 is thus much greater and
would require a data format of Q6.13 instead of the Q4.13 which is used in the rest of the design.
See section 6.3 on page 50 for information about numerical representation. The decision between
Method 2 and MAC is then based on the following

• Method 2 uses two more bits in the numerical representation than the MAC solution

• Method 2 uses two more registers for temporary storage than the MAC solution

• Method 2 uses fewer arithmetic operations than the MAC solution

Examining the itemized list, it is seen that the two extra needed bits and the two extra needed
registers are outweighed by the complex multiplication in the MAC solution. Method 2 is then
selected for implementation as it requires fewer arithmetic operations. The tradeoff is the use of
more logic elements.

Implementation

The implementation is based on figure 8.4 on the facing page. The negation of the poles is im-
plemented by subtraction instead of summation and the scaling by 2 · cos

(
2πk
N

)
is implemented

directly as a multiplier. The forward path multiplication twiddle factors and addition is imple-
mented as a complex multiplier and standard adder. The result is seen in figure 8.5 on the next
page.

This figure also shows the conversion blocks between Q4.13 and Q6.13 and the ROMs used
for the scaling factors 2 · cos and the twiddle factors. As the computational structure requires
all summations and multiplications to be performed before data is latched, it is necessary to add
intermediate cycles to the structure. The recombination datapath thus also uses the four times
faster clock, which is used in RAM#1, but no design entities are clocked directly from the fast
clock. The colored cn shows in which sub-cycle the entity becomes active.

To stay in synchronization with the rest of the system, the methodology used in clock-
assignment is that of doing the latching last and working backwards through the latches de-
pendencies. The converter and simple multiplier is triggered in cycle 0, c0 , and produces data

Section: 8.2 Datapath 75

A+B

A-B Mult

Latch

Latch

A+B

Convert Convert

2 cos
ROM

Complex
Mult

Twiddle
Factors

Input Output

c0

c2

c1 c0

c3

c3

cx

Q6.13

Q4.13

Q6.13

Q4.13

cx

B

A

c0 cycle 0

c1 cycle 1

c2 cycle 2

c3 cycle 3

4x Clock

Clock

Input ready

cx other control

cx

Figure 8.5: SFFT recombination datapath. The colored numbers show which cycle the block
becomes active.

which is ready for the subtractor in cycle c1 and later for the adder in cycle c2. The complex
multiplier and adder are controlled by external signals from the SFFT control path. The control
path is also responsible for producing data at the Input at the start of c0 and storing the produced
data at the Output.

8.3 Control Path

Design of the control path is based on figure 8.2 on page 73. As discussed the overall execution
is controlled by a FSM which executes the SRFFT and activates the SFFT when transformed data
is ready in RAM # 1. The SRFFT FSM is thus extended from figure 7.5 on page 65 to figure 8.6,
where the last recombination state is added.

76 Chapter: 8 Sørensen FFT Mapping

reset_s idle_s ~goPressed

doLButterfly_s

goPressed

~LBut_done

doLbutterflyFlush_s

LBut_done

~LBut_flushed

doNButterfly_s

LBut_flushed

~NBut_done

doNButterflyFlush_s

NBut_done

~NBut_flushed

doRecombination_s

NBut_flushed

recombinationDone

~recombinationDone

Figure 8.6: SFFT controlling state machine, extended with an SFFT state (doRecombination_ s)
from figure 7.5 on page 65.

Requirements

Returning to figure 8.2 it is seen that the SFFT datapath writes its output to RAM # 2 with
the address controlled from the SFFT control. The SFFT control also determines the source
address for data movement from RAM # 1 to the input of the SFFT datapath. The addresses
are determined from the values of l to be computed, which are stored in RAM # 3. The highest
address in RAM # 3 contains the value of L, the total number of l-values to be computed.

The requirements for the SFFT control path can be summarized as

• Ensure the correct number and values of l is computed

• Issue addresses to RAM # 1 which are then moved to the input of the SFFT datapath

• Issue the address to store the result in RAM # 2

• Control the execution in the datapath

Section: 8.3 Control Path 77

Design Choices

Initially the SFFT is designed to compute one value of X[k] at a time. As RAM # 1 can read
and write 4-data values pr. cycle, this SFFT design is to be instantiated 4 times to utilize RAM #
1 to full capability. This instantiation is trivial and the further design only deals with one SFFT
control and datapath.

The two main objectives of the control path is that of controlling the datapath and handling
the number of l-values computed. These are two distinct tasks which can be defined to run more
or less independently. As this is possible the control path is split in two, an upper and a lower
control, as shown in figure 8.7. The upper control path handles the values of l while the lower
control path handles the datapath. The upper control path determines which values of l to be
computed and orders the lower control path to do the computation for each l. A state machine for
the upper control path is shown in figure 8.8 on page 81. A state machine for the lower controller,
which controls the execution on the datapath and the movement of data between RAM # 1 and
the datapath, is seen in figure 8.9 on page 82.

SFFT

Datapath

RAM # 1RAM # 3

RAM # 2FSM

data

addr.

l-values

re
su

lt

l-values

recombinationDone

do
R

ec
om

bi
na

tio
n

addr.

(control)
Control
Upper

Control
Lower

SFFT SFFT

Figure 8.7: The upper and lower control paths of the SFFT is shown here in conjunction with the
datapath and RAM. The upper control path handles the values of l while the lower
control path handles the datapath.

Implementation

The implementation of the two controllers are performed in VHDL as a state machines which
manipulate internal variables and determines state transitions based on these. All files regarding
the implementation on the accompanying CD [08gr1042, 2008, algorithmStages/02bfgpaSFFT].

Of special note is that the addressing of RAM # 1, which contains the transformed data. As
the SRFFT produces the output in bit reversed fashion for each 32 point FFT, the five lowermost
bits of the address must be bit reversed. This is handled in VHDL by “wire reordering” as shown
in figure 8.10 on page 83. This figure also shows an example state from figure 8.9. The states are
implemented as switch-like statements in C.

78 Chapter: 8 Sørensen FFT Mapping

8.4 Clock Adjustment

A simulation where the end-time is examined shows, that a standard clock of 8MHz and a faster
clock of 32MHz is needed to compute the 250 values of l in the allotted 0.5 ms, as defined in
the system specification, section 2.3 on page 15. The simulation is found on the accompanying
CD [08gr1042, 2008, testresults/sfft/248samples.zip]. The clocks are generated by the PLL as
described in section 7.4 on page 67.

A closer count of cycles from the simulation is shown in table 8.2. The resulting needed
cycles is greater than the 4000 cycles = 8MHz · 0.5 ms which is provided in the simulation.
There is thus a discrepancy between the observed simulated behavior and the behavior expected
from piecewise examination of the states. The requirement from the piecewise state examina-
tion is 4112 cycles

0.5 ms = 8.224MHz, an increase of 2.7% which is not investigated further for this
project, as this change is deemed insignificant. All tests and simulations are performed with 8
and 32MHz clocks.

State Cycles Multiplicity Result [cycles]
SRFFT 23 + 11 Q 1088
fetchData_ s 4 63 252
fetchDataAndCalc_ s” 28 63 1764
calc_ s 5 63 315
createOutput_ s” 3 63 189
done_ s” 2 63 126
idle_ s” 6 63 378
SUM 4112

Table 8.2: Cycle count for simulation of SFFT. The cycles column shows the number of cycles
required for one 32-point SRFFT or from one value of X[k] in the case of the lower
controller states. The values for the SRFFT is from 23 L-butterflies and 11 two-point
butterflies. The multiplicity is the number of times the state is executed, thus Q = 32
for the SRFFT and d250/4e for the SFFT states.

8.5 Summary

The SFFT is implemented by extending the SRFFT with an extra state in which the recombination
is performed. This recombination is performed in a dedicated datapath with its own controller
and stores its results in the separate RAM # 2.

8.5.1 Hardware Utilization

The hardware utilization by the SFFT is seen in table 8.3 on the next page. This includes the 4
times instantiation of the data- and control paths.

Section: 8.4 Clock Adjustment 79

Feature Available SRFFT Utilization SFFT Utilization
Logic Elements 24,624 3,299 8,004
Memory [kBits] 504 66.6 332
Multipliers (18x18) 66 16 66

Table 8.3: SFFT system hardware utilization compared to available resources and SRFFT de-
sign.

Compared to the SRFFT the recombination data- and control path uses more memory and all
of the available multipliers. The high memory usage is due to the instantiation where identical
ROMs are created to contain the values of 2 · cos and the twiddle factors. The use of the max-
imum number of multipliers shows that the current design approaches the limit what is suitable
for the chosen FPGA. There is a risk that a number of multipliers has been synthesized from logic
elements and memory blocks as lookup-tables, instead of embedded multipliers [Altera, 2007c,
p. 5-3]. This could cause suboptimal power performance. To remedy this the instantiation could
be performed only 3-times or the MAC solution could be investigated instead. This is left for
later investigation.

With the design of the mapping of the SRFFT and SFFT complete. The next part is concerned
with evaluation of the achieved results. Initially, all tests are performed and analyzed. After-
wards, a design space exploration is performed to examine the possible changes which could
improve the performance of the mappings. Finally the conclusion and further perspectives are
discussed.

80 Chapter: 8 Sørensen FFT Mapping

idle_s

issueFindMaxL_s

doRecombination

done_s

~doRecombination

waitForMaxL_s

saveMaxL_s

needMore_s
(All l calculated?)

Yes

fetchl_s

No

waitForl_s

savel_s

startDatapath_s

waitForDatpath_s

datapathDone

~datapathDone

Figure 8.8: SFFT upper control state machine. Initially the “doRecombination” signal is sent
by the controlling FSM (see figure 8.7 on page 78) and the upper controller reads
the highest address of RAM # 3 which contains the value of L. Afterwards a value of
l is fetched from RAM # 3 and the lower controller (and thus the datapath) is started
for each value of l. The lower controller is active in the states marked with blue.
When all l is calculated the done_ s is entered and the controlling FSM is signalled
with the output “recombinationDone”. The upper controller returns to the “idle_
s” when “doRecombination” is set low from the controlling FSM. All variables and
counters are reset in “idle_ s”.

Section: 8.5 Summary 81

idle_s

fetchData_s

doCalc

done_s

issued < DELAY

fetchDataAndCalc_s

issued >= delay

issued < Q

calc_s

issued >= Q

calcs < Q

createOutput_s

calcs >= Q

calcIsDone

~calcIsDone

Figure 8.9: SFFT lower control state machine. Initially the “doCalc” signal is issued from the
upper controller along with a value of l (not shown). The controller then issues
fetches of data to RAM # 1, see figure 8.7 on page 78. The delay in cycles between
the data fetch issues and the arrival of data at the datapath is the constant “DE-
LAY”. When data arrives at the datapath, it is enabled in the “fetchDataAndCalc_
s”. States shown in blue is where the datapath is active. When “Q” data fetches
has been issued the state is changed to “calc_ s” where only calculations are per-
formed. When “Q” calculations has been performed the rightmost part of figure 8.4
on page 74 is activated and the output is created.

82 Chapter: 8 Sørensen FFT Mapping

1 −−−
2 when f e t c h D a t a _ s => −− f e t c h da ta s t a t e −−
3 c l e a r < = ' 1 ' ; −− e n s u r e d a t a p a t h z e r o e d
4

5 −− f e t c h da ta
6 i f f e t c h e s I s s u e d < Q t h e n
7 −− c o n v e r t v a r i a b l e tempAddr t o s t d−l o g i c−v e c t o r
8 bitRevTemp (9 downto 0) := s t d _ l o g i c _ v e c t o r (TO_UNSIGNED(tempAddr , ↘

f e t chAddr ' Length)) ;
9

10 −− do b i t r e v e r s e , f e t c h A d d r (9 downto 0) i s mapped t o an o u t p u t and
11 −− a d d r e s s i n p u t o f RAM #1
12 f e t c h A d d r (9 downto 5) < = bitRevTemp (9 downto 5) ;
13 f e t c h A d d r (4) < = bitRevTemp (0) ;
14 f e t c h A d d r (3) < = bitRevTemp (1) ;
15 f e t c h A d d r (2) < = bitRevTemp (2) ;
16 f e t c h A d d r (1) < = bitRevTemp (3) ;
17 f e t c h A d d r (0) < = bitRevTemp (4) ;
18

19 doFetchAddr < = ' 1 ' ; −− e n a b l e read from RAM #1
20 f e t c h e s I s s u e d := f e t c h e s I s s u e d + 1 ; −− keep a c c o u n t o f f e t c h e s
21 tempAddr := tempAddr − Q; −− n e x t a d d r e s s t o g e t
22 e l s e
23 f e t c h e s I s s u e d := f e t c h e s I s s u e d ; −− keep v a l u e
24 tempAddr := tempAddr ; −− keep v a l u e
25 doFetchAddr < = ' 0 ' ; −− d i s a b l e RAM #1 read
26 f e t c h A d d r (9 downto 0) ≤ " 0000000000 " ; −− z e r o read a d d r e s s
27 end i f ;
28

29 −− n e x t s t a t e l o g i c
30 i f (f e t c h e s I s s u e d > = DATAPATHDELAY) t h e n
31 n e x t _ s t a t e < = f e t c h D a t a A n d C a l c _ s ; −− change s t a t e
32 e n a b l e < = ' 1 ' ; −− e n a b l e d a t a p a t h
33 c l e a r < = ' 0 ' ; −− do n o t c l e a r d a t a p a t h
34 e l s e
35 n e x t _ s t a t e < = f e t c h D a t a _ s ; −− c o n t i n u e as u s u a l
36 end i f ;
37 −−−
38 when f e t c h D a t a A n d C a l c _ s => −− f e t c h da ta and c a l c s t a t e −−
39 −− . . . (n o t i n c l u d e d i n t h i s example)

Figure 8.10: VHDL code for an example state in the SFFT lower controller. First it is checked if
the needed number of data fetches has been issued. If not, the variable “tempAddr”
is converted to a standard logic vector format and then assigned bit-reversed to the
address output which is connected to RAM # 1. Otherwise reading from RAM is
disabled and the output address is zeroed. The next state logic examines if data is
ready for the datapath and activates the datapath. If the data is not ready the state
is kept and another read from RAM # 1 is issued in the next cycle.

Section: 8.5 Summary 83

Part III

Evaluation
This final part is concerned with the test and evaluation of the FFT designs implemented in

the previous part.

First, the two FFT systems are simulated and tested to verify the functionality and evaluate
the power consumption of the systems. Next, a design space exploration is performed, where
the details of the power simulations are used to determine possible design changes, which may
achieve improved system power performance. Finally, the project conclusion recapitulate the
project course and achieved results.

Contents

9 Test 87
9.1 Split Radix FFT . 87
9.2 Sørensen FFT . 92
9.3 Summary . 97

10 Design Space Exploration 99
10.1 Basis for Analysis . 99
10.2 Simulation Summary . 100
10.3 Performance by Hierarchy . 100
10.4 Examination of the SFFT Implementation 102
10.5 Summary . 104

11 Conclusion 105

Chapter 9
Test

The test chapter is concerned with a functional verification of the SRFFT and SFFT systems.
Furthermore, the simulations and measurements of system power consumtion for the two imple-
mententations are documented and are evaluated. A deeper examination of the results to point
out possible system improvements are found in the following chapter.

9.1 Split Radix FFT

The test of the Split Radix FFT is concerned with first of all to verify the functionality of the
algorithm implementation on the Cyclone III System. This verification is done by estimation of
the Signal to Quantization Noise Ratio (SQNR) for the system. Next the power consumption is
evaluated by simulation, using the available tools and measurement options described in chapter
5.

The implementation for the FPGA is found on the accompanying CD [08gr1042, 2008, algo-
rithmStages/02afgpaSRFFT].

9.1.1 Functional Verification

The functionality of the SRFFT implementation is verified by comparing the results calculated
by the system to the results calculated by the C-model described in section 3.3. This allows
estimation of a SQNR for the SRFFT implementation, which describes the obtained precision of
the system. SQNR is given as:

SQNR = 10log10
µ
(|Xref |2

)
µ (|Xref −Xsys|2)

(9.1)

where µ() denotes the mean operator, Xref is the C-model reference output, calculated using
32bit floating point data types, and Xsys is the SRFFT system output calculated using the Q4.13
signed integer data type defined in section 6.3 on page 50. As stated in equation (9.1), the
quantization noise power is found from mean of differences between Xref and Xsys, thus the 32
bit floating point reference is regarded as an exact reference.

87

A sample of 36 system results has been taken from the SignalTap analyzer, and the cor-
responding values have been taken from the C-model reference to calculate the SQNR for the
SRFFT:

SQNRSRFFT = 10log10

(
1

3.4398 · 10−6

)
(9.2)

= 54.63dB (9.3)

The sample used for estimating SQNRSRFFT is found on the accompanying CD [08gr1042,
2008, testresults/srfft/veriSRFFT.mat]. From the SQNR, a number of effective decimal bits may
be calculated:

SQNR = 20log10(2beff)⇔ (9.4)

beff = log2

(
10

SQNR
20

)
= 9.07 ≈ 9bit (9.5)

Thus the last four decimal bits of the system output contain the noise floor added by computing
the implemented SRFFT algorithm.

9.1.2 Power Simulations

The power consumption of the SRFFT design has been simulated using the method described in
chapter 5.

Full Clock System

Based on simulation results of a 2 ms system run, the total power dissipated by the system is esti-
mated to 96.95 mW. In order to enable comparison with the power measurements on the system,
table 9.1 gathers the simulated currents drawn from the FPGA core power supplies. VCCINT
supplies the internal logic, memories and embedded computation units, VCCIO suppplies the I/O
interfaces, and VCCA and VCCD supply the analog and digital part of the embedded PLLs.

The Cyclone III board allows for measuring the current drawn from the 1.2 V supply, feeding
VCCINT and VCCD on the FPGA. With a supply voltage of 1.2 V, the power consumption from
this supply is:

Psimfull = U · I
= 1.2 · (IVCCINT + IVCCD)
= 1.2 · (13.28 + 14.24) = 33.0mW (9.6)

Reduced Clock System

The results of a second simulation, where the system clocks are reduced to approximately fit
algorithm completion time to the available 0.5 ms, are gathered in table 9.2. The total system
power consumption is simulated to 89.75 mW.

88 Chapter: 9 Test

Supply Total [mA] (I) Dynamic [mA] Static [mA]
VCCINT [1.2 V] 13.28 9.04 4.24

VCCIO [2.5 V / 3.3 V] 4.18 2.59 1.59
VCCA [2.5 V] 22.76 2.19 20.57
VCCD [1.2 V] 14.24 5.45 8.79

Table 9.1: Power simulation results for currents drawn from FPGA voltage supplies with system
running at 50 Mhz/12.5Mhz.

Supply Total [mA] Dynamic [mA] Static [mA]
VCCINT [1.2 V] 8.69 4.58 4.12

VCCIO [2.5 V / 3.3 V] 2.46 0.87 1.59
VCCA [2.5 V] 22.74 2.19 20.55
VCCD [1.2 V] 14.08 5.33 8.75

Table 9.2: Power simulation results for currents drawn from FPGA voltage supplies with system
running at 16.7 MHz / 4.17 MHz.

The power consumption from the 1.2 V supply is then:

Psim = U · I
= 1.2 · (8.69 + 14.08) = 27.3mW (9.7)

9.1.3 Power Measurements

The Split Radix FFT calculates the entire 1024 points of the Fast Fourier Transform, thus only
one test case is necessary. In order to estimate the mean power consumption of the SRFFT
algorithm, measurements of the power consumption are needed for the FPGA design in the idle
and active states, respectively, and the time spent in the active state.

As described in chapter 5 the Cyclone III kit allows for measuring the power consumption
of the FPGA core using a 0.01Ω sense resistor on the 1.2 V power supply [Altera, 2007b, pp.
4-1 - 4-3]. In order to measure the power consumption in each state, the state machine described
in figure 7.5 on page 65 is controlled by the board pushbuttons to stay in idle state or cycle
the active states continuously. Finally, the output diode LED0 has been connected to the state
machine and is switched on and off, when the system is in a active or idle state, respectively.
Using a DC voltmeter across jumper JP6 the voltage across the sense resistor is measured. The
time spent in an active state is measured by recording the voltage across the LED0 diode using
a oscilloscope.

Full Clock System

For the system running at full system clock speed, 50 MHz / 12.5 MHz, the measured results are
shown in table 9.3

Section: 9.1 Split Radix FFT 89

State Voltage across JP6 [mVDC] Time [mus]
Idle 0.315 -

Active 0.449 156.4

Table 9.3: Measurement Results of Power measurements for SRFFT. The voltages are measured
across a 0.01Ω sense resistor. placed in series with the FPGA core voltage supply.
The time for the active state is the completion time of the FFT algorithm.

Using the results in table 9.3 the mean power consumption of the SRFFT algorithm for the
scenario defined in section 2.3 on page 15 where one FFT needs to be calculated every 2 ms. The
mean power consumption may then be found as:

PavgSRFFT =
1

2ms
(
(
tactive · UFPGA · Uactive

RJP6

)
+ . . .(

(2ms− tactive) · UFPGA · Uidle
RJP6

)
) (9.8)

=
1

2ms
(
(

156.4µs · 1.2V · 0.449mV
0.01Ω

+
)

+ . . .(
(2ms− 156.4µs) · 1.2V · 0.313

0.01Ω

)
) (9.9)

=
1

2ms
(156.4µs · 53.9mW + (2ms− 156.4µs) · 37.6mW) (9.10)

= 38.8mW (9.11)

Reduced Clock System

Reducing the clock by one third to 16.67 MHz / 4.17 MHz to utilize the 0.5 ms available for
calculating the SRFFT, results in the voltages and time gathered in table 9.4.

State Voltage across JP6 [mVDC] Time [µs]
Idle 0.241 -

Active 0.290 470,0

Table 9.4: Measurement Results of Power measurements for SRFFT with clock reduced to 16.67
MHz / 4.17 MHz.

Using the results in table 9.4 the mean power consumption over a 2 ms interval for the reduced
clock SRFFT is found to be:

PavgSRFFT = (
1

2ms
470µs · 28.9mW + . . . (9.12)

(2ms− 470µs) · 34.8mW)
= 33.4mW (9.13)

90 Chapter: 9 Test

9.1.4 Discussion

The results presented above are summed up in table 9.5.

Simulated [mW] Measured [mW]
Full Clock 33.0 mW 38.8

Reduced Clock 27.3 mW 33.4

Table 9.5: Simulation and measurement results summary.

Comparing the simulated power consumption with the measured results it is seen that the
estimated mean power consumption of the SRFFT based on measurements is 5.8 mW higher for
the full clock system and 6.1 mW higher for the reduced clock system compared to the simulation
estimate. The possible source for this difference, which shows also to be present when testing
the SFFT, is discussed in section 9.2.4.

Although, the simulation and measurement results deviate, they are still reasonably coherent,
and the details provided from the simulation reports, will be used to evaluate the system design.
One main point to be made is that a relatively high portion of the power consumed is used to
drive the PLL circuit used to generate the multiple system clocks. For the 1.2 V supply in the
full clock system, 14.24 mA of 27.52 mA (51.7 %) are drawn by at VCCD as shown in table 9.1.
When reducing the system clock the current drawn at VCCINT is reduced, and the consumption
by the PLL circuit becomes even more significant (61.8 %).

Thus, a design with only one clock, and no PLLs activated, may reduce system power con-
sumption. This would require a redesign of the counter reset procedures in the address generators,
and would probably increase execution time, since the datapath would need to be halted during
these reset procedures.

A second issue is that of board system clock frequency. From both simulations and measure-
ments it is clear that there are significant power consumption reductions to be achieved when
reducing the system clock to fit timing constraints. By reducing the clock by a factor of 3, the
power consumption is reduced by approximately 6 mW or 20 %. In addition, the simulations
show that this reduction is almost entirely achieved by reducing the current drawn at VCCINT by
4.6 mA (5.52 mW).

As seen in equation (9.3) the SQNR of both algorithms is approximately 54dB which leaves
9 decimal bits effectively representing the output signal. This representation was chosen in sec-
tion 6.3 on page 50 as a tradeoff between reducing risk of overflow, decimal precision and power
usage. Whether or not this signal precision and thus number representation is acceptable will de-
pend on actual system requirements for SQNR and the input data SNR. This is important from a
power consumption point of view as the data representation effectively scales the computational
units of the data path, and the size of memories for storing data, which results in changed power
usage.

This problem is more significant for decimal bits than integer bits, since bits only representing
noise will toggle signal nodes in the system generating dynamic power consumption, whereas
overhead integer bit will not be used and thus, ideally, not contribute to system dynamic power
consumption.

Section: 9.1 Split Radix FFT 91

Based on the simulations and measurements of the SRFFT implementation some power op-
timization has been achieved and potential for significant reductions in the power consumption
have been discussed. The results obtained in the test of the SRFFT with a reduced system clock,
provide a benchmark for power consumption in the SRFFT algorithm, where the full DFT is
calculated. This benchmark is used to compare results of the SFFT implementation where only
the subset of subcarriers of interest are calculated.

9.2 Sørensen FFT

The method for simulating and testing the SFFT in analogue to the approach used for testing
the SRFFT in the previous section. In this section the results of these simulations and tests,
performed with the SFFT calculating a range of of subcarriers, are presented.

The implementation for the FPGA is found on the accompanying CD [08gr1042, 2008, algo-
rithmStages/02bfgpaSFFT].

9.2.1 Functional Verification

The results calculated by the SFFT in simulation and on the FPGA is shown in figure 9.1 on the
facing page. This figure contains 56 samples of l for real and imaginary values.

The values of the FPGA are measured using the SignalTap-tool provided in Quartus II. The
compilation has been performed without fitter- and power optimizations as these renders the de-
sign numerically inaccurate. The power simulations discussed in the next section are based on
compilation with fitter- and power optimizations enabled. The values of the simulation are from
a functional simulation whereas the simulation provided with the power estimation is a timing
simulation. The measured values and simulation is found on the accompanying CD [08gr1042,
2008, testresults/sfft/sfftVerification.zip].

The data is split into two ranges, each targeting either the positive 1√
2

or negative− 1√
2

constella-
tion according to expected result. This produces figure 9.2 on page 94 for the upper constellation
point and 9.3 on page 95 for the lower constellation point.

An overview of the means and variances is provided in table 9.6. The table and previous fig-

Mean Variance
Simulated Upper 0.7077 1.5594 · 10−6

Simulated Lower -0.7078 4.1619 · 10−6

FPGA Upper 0.7010 0.2112
FPGA Lower -0.5555 0.3601

Table 9.6: Mean and variances for the SFFT simulation and implementation.

ures 9.2 and 9.3 shows that the functional simulation produces accurate results, while the FPGA
implementation does not produce satisfying results. It is furthermore seen in the figures that the
FPGA implementation produces results which would be falsely classified.

92 Chapter: 9 Test

0 100 200 300 400 500 600

−1.5

−1

−0.5

0

0.5

1

1.5

l

A
m

pl
itu

de

Simulated Re
Simulated Im
FGPA Re
FGPA Im
Target

Figure 9.1: The output of the SFFT plotted for simulated and FPGA measured values.

This is a somewhat expected outcome as only the functional simulation shows accurate results.
A timing simulation shows more inaccurate results, as it accounts for timing problems in the
design. One cause of the inaccuracy could be a fragile design in the SFFT control- or datapath
which makes it susceptible to changes in signal timing etc. incurred by the fitting to the FPGA.
This is further supported by the observation that enabling improved fitting- and power optimiza-
tion effort for compilation to the FPGA produces even worse results. This is a design error which
would have to be corrected in future work.

Examining the simulation it is seen that the SFFT functionally performs as expected. This means
that the implementation can be used for power measurements, even though the results are not
correct.

Section: 9.2 Sørensen FFT 93

5 10 15 20 25

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Index

A
m

pl
itu

de

Simulated Re
Simulated Im
FGPA Re
FGPA Im
Simulated Mean
Simulated Variance
FGPA Mean
FGPA Variance

Figure 9.2: Simulated and implemented SFFT output for upper constellation point. The mean
and variance of the FPGA measurements are shown, while the simulated mean and
variance of the simulation are indiscernible on the figure.

A SQNR is defined in section 9.1.1 and is calculated here for the simulation only

SQNRSFFT,sim = 10 · log10

µ
(|Xref |2

)
µ (|Xref −Xsys|2)

= 10 · log10

(
1

3.8016 · 10−6

)
(9.14)

= 54.2 dB (9.15)

which is approximately the same as found in (9.3) on page 88.

9.2.2 Power Simulations

The simulated mean power consumptions of the SFFT algorithm is shown in table 9.7 for a range
of number of demodulated subcarriers.

94 Chapter: 9 Test

5 10 15 20 25 30

−1

−0.5

0

0.5

1

Index

A
m

pl
itu

de

Simulated Re
Simulated Im
FGPA Re
FGPA Im
Simulated Mean
Simulated Variance
FGPA Mean
FGPA Variance

Figure 9.3: Simulated and implemented SFFT output for lower constellation point. The mean
and variance of the FPGA measurements are shown, while the simulated mean and
variance of the simulation are indiscernible on the figure.

9.2.3 Power Measurements

For the same range of demodulated subcarriers used in the simulations above, measurements of
voltages across Rs have been measured in active and idle states, as well as calculation times.
These results are gathered in the first three columns of table 9.8. Based on these measurements,
the last three columns contain the calculated mean, idle and active power consumptions.

9.2.4 Discussion

The power consumption results gathered in section 9.1 for the SRFFT and this section for the
SFFT are plotted together in figure 9.4.

Section: 9.2 Sørensen FFT 95

n Pmean [mW]
4 39.29

20 39.60
60 39.79
80 39.96

100 40.04
120 40.27
160 40.51
200 40.82
248 41.29

Table 9.7: Simulation results for SFFT. Mean power consumption, Pmean, simulated for each
number demodulated subcarriers, n.

n VRs_idle VRs_active tactive Pmean Pidle Pactive

4 0.375 0.473 123 45.7 45.0 56.7
20 0.376 0.477 143 45.9 45.1 57.2
60 0.373 0.481 210 46.1 44.7 57.7
80 0.375 0.483 240 46.5 45.0 57.9

100 0.374 0.487 267 46.6 44.8 58.4
120 0.371 0.485 300 46.5 44.5 58.2
160 0.373 0.489 363 47.2 44.7 58.6
200 0.373 0.490 423 47.7 44.7 58.8
248 0.375 0.490 493 48.4 45.0 58.8
unit [mV] [mV] [µs] [mW] [mW] [mW]

Table 9.8: Measurements results for SFFT for a set of different number of demodulated subcar-
riers, n. Based on idle and active voltages across Rs and calculation times, mean,
idle and active power consumptions have been calculated for each test.

First of all, it is seen that the Powerplay analyzer is underestimating the power consumption
of the SFFT as well. The mean difference between the simulation and the measured results is:

∆P = µ(Pmeanmeas)− µ(Pmeansim) (9.16)

= 46.79mW − 40.18mW
= 6.61mW

This difference is proportionally similar to the difference between simulations and measure-
ments on the SRFFT system and as seen in figure 9.4 the difference is reasonably constant. This
offset behavior of the difference could indicate that parameters for estimating the power con-
sumption of the system are inaccurate. First of all, it is worth noticing that the power models for
the Cyclone III device family using in the Powerplay analyzer are preliminary Altera [2008b].
This factor introduce some inaccurate power model parameters which may show in the simula-
tion results.

96 Chapter: 9 Test

50 100 150 200 250
25

30

35

40

45

50

Number of Demodulated Subcarriers

M
ea

n
P

ow
er

 C
on

su
m

pt
io

n
[m

W
]

Power Consumption in FFT Algorithms

SFFT Measured
SFFT Simulated
SRFFT Measured
SRFFT Simulated

Figure 9.4: Results of measurements and simulations of SRFFT and SFFT power consumption

Furthermore, the settings of ambient temperature and cooling characteristic may be tuned by
measurements of both the device environment (e.g. air temperature and humidity) and the device
temperature changes during operation. Such measurements would add further confidence to the
to the simulation results since ambient temperature a the ability to lead heat away from the device
contributes to the power consumption characteristics of the system.

9.3 Summary

Based on the results gathered in figure 9.4 it would seem that the SFFT does not perform bet-
ter than the SRFFT for any number of subcarriers demodulated, mainly since the idle power
consumption of the SFFT is significantly higher than mean power consumption of the SRFFT.

However, it is clear from the results in equation (9.13) for the SRFFT and table 9.8 for the
SFFT that the measured power consumption in idle state constitute a significant percentage of the
total power consumption of the systems. The effects of this idle power consumption is discussed
in further detail in the next chapter, along with a more detailed design space exploration into

Section: 9.3 Summary 97

which system optimizations that may accomplish improved power performance based on the
simulation and measurement reports.

98 Chapter: 9 Test

Chapter 10
Design Space Exploration

With the algorithms implemented and tested on the FPGA, the design process shown in figure 1.3
on page 4 has been completed. Depending on system requirements and tested performance, a fur-
ther iteration of the design process can be performed to improve system performance. For this
project a deeper examination of the power-wise performance of the implementation is desired.
This is done to examine the implementation for power-wise flaws and to gain a better understand-
ing of which low-level factors to manipulate to produce power optimized designs.

Complete exploration of the design space is for practical purposes nearly impossible, as there
are many combinations of all possible design changes. For this project a focus area of power
consumption is chosen and the implemented design is analyzed for possible design improvements
which may reduce power consumption.

10.1 Basis for Analysis

The analysis is performed as if a further iteration of the mapping process of the FFT algorithms
onto the FPGA archirtecture was to be carried out, and thus seeks to clarify which areas to focus
on for improvements. The analysis itself is based on the simulated results, where the Power-
analyzer tool provides in-depth information about circuit performance.

For this analysis only the SFFT is examined. This can be done as the SFFT performs a
SRFTT as part of its execution. Both design are thus examined, but not directly compared.

The SFFT is set to calculateL = 248 points as this will expose the biggest difference between
the SRFFT and SFFT. This is caused by the simulation output being an average of the entire
simulation where if L is low the SFFT datapath extension would appear insignificant compared
to the SRFFT. Finally the simulation length is set to 2 ms to keep evaluation the prerequisites
consistent with the measurements and simulations performed in the previous chapter.

Another fact of interest is that the simulation includes the total power usage whereas the
system measurements only includes FPGA core power. Thus the simulation results as a whole
cannot be directly compared to the measured results. The simulations divide the total power
consumption into static-, dynamic and routing power. These concepts, extensively used in the
following discussion, are defined in section 5.1.1 on page 38.

99

The remainder of this chapter is concerned with an initial examination of the overall simu-
lation summary followed by a top down examination of the implementation, where the design
is split into different functional groups to determine where the most significant changes can be
made. At last the SFFT implementation are examined in depth and a complete chapter summary
is given.

10.2 Simulation Summary

An excerpt from the simulation results summary is given in table 10.1. It is seen that the static
power usage is actually bigger than the dynamic power usage. This means that the idle power-
usage represent will the main part of the active power-usage. It must be noted that idle-state
power usage cannot be directly equated with static power usage, but for cases where the clock
signal is nullified, a large part of the idle-power used is static power usage.

This could be caused by the large area spent on SFFT control and datapath, which is idle
while the SRFFT is running. However, by comparing the static power consumption of the SFFT
and SRFFT in table 10.1, it is clear that these are almost identical. Difference in area utilization
thus seems to have a small effect on the leakage and sub threshold currents in the FPGA system.

Group Power Usage SFFT [mW] Power Usage SRFFT [mW]
Dynamic 28.45 16.24
Static 66.39 66.33
I/O 9.57 7.57
Total 104.4 90.14

Table 10.1: Summary of the power analysis. The usage is divided into dynamic, static and I/O
power usage.

The unwanted idle-power usage could be removed by introducing a power-off state for the
SRFFT and SFFT parts. Thus the circuits is completely turned off while inactive, instead of just
having their clocks disabled as in the current design.

If a power-off state were introduced, the calculations, based on the results from the experi-
ments, of power-usage, see equation (5.9) on page 43, would yield the results of figure 10.1 on
the next page, which shows the SFFT method actually is feasible for approximately L < 100.
This is quite contrary to the results of the SFFT test (chapter 9.2 on page 92) which shows that the
SFFT has an infeasible performance compared to the SRFFT. A power-off state would thus be a
highly-prioritized improvement in the further design and make the computational complexity as
a performance measure on par with the power usage.

10.3 Performance by Hierarchy

Having examined the general summary in the previous section, the individual power usages of
the design partitions in the system are of interest in this section. The power usage divided into dy-

100 Chapter: 10 Design Space Exploration

50 100 150 200 250
2

4

6

8

10

12

14

16

Number of Demodulated Subcarriers

P
ow

er
 c

on
su

m
pt

io
n

[m
W

]

Active Power Comsumption

SFFT
SRFFT

Figure 10.1: Power consumption for FFT algorithms assuming zero idle power consumption.
The data is from the results of the experiment as the simulation does not produce
output in which idle- and active periods can be discerned.

namic power and routing power is shown in table 10.2 on the next page. Static power usage is not
included in these simulation results, but are instead included in table 10.1 in the previous section.

Each of the entities in table 10.2 are discussed in the following. All but the “Miscellaneous”
entries are defined in the design chapters and shown in figure 8.2 on page 73.

The miscellaneous entry covers the connecting of design entities and simulation-taps which
erroneously are connected to output pins. These erroneous pin connections covers at least
4.23mW which can be seen in the simulation and should be removed in a design revision.

A positive discovery is that the power consumption of the SRFFT and RAM # 1 entries are
low, relative to the other blocks in the design. Together they consume approximately 14% of the
total power spent. It is thus not in these design entries that major savings are found, instead the
analysis should focus on the other parts.

As a side note, the top level controlling state machine has a negligible power usage. It is

Section: 10.3 Performance by Hierarchy 101

Group Total [mW] Dynamic [mW] Routing [mW]
RAM # 1 1.91 1.35 0.56
Clock Generator 12.98 6.43 6.55
SRFFT 2.63 2.51 0.12
SFFT 10.89 10.01 0.88
Miscellaneous 4.30 4.30 0.00
Total 32.71 24.60 8.11

Table 10.2: Power usage by hierarchy

not shown in table 10.2 but is listed as 0.00mW in the simulation. This should be compared to
the power usage of the softcore processor NIOS-II which is an alternative control method, but
probably fueatures higher power usage due to functionality overhead resulting from the recon-
figurability of the NIOS-II. The NIOS-II softcore processor is not tested or investigated further
in this project.

The two remaining entries are the clock generating circuit and the SFFT. The SFFT is dis-
cussed in section 10.4. The final entry is the clock generation circuit which consists of a PLL.
It is seen that this entry has the largest power consumption of the design entities. The power us-
age is split evenly between dynamic and routing power, which is atypical compared to the other
design entries. This could be caused by the PLL being implemented in dedicated hardware in a
corner of the FPGA device, see figure 4.1 on page 31, and the output driving entire global clock
networks covering the entire device. Changing the structure of the clock networks to reduce the
network distribution across the device may prove difficult. This is due to the full utilization of the
embedded multipliers in the SFFT design results in a design scattered across the device, which
too gives rise to generally long signal lines between utilized device entities and thus increased
dynamic power consumption.

Another approach to possibly decrease the power consumption of the clock generation task is
to replace the external 50MHz clock crystal with a crystal which does not require clock-division,
or implement the clock division by counters instead of in a PLL.

10.4 Examination of the SFFT Implementation

The second highest power consumption of table 10.2 is the SFFT block which primarily consists
of four parallel SFFT datapaths. The multiple instantiations of the SFFT datapaths represents a
tradeoff between area and clock-frequency. The instantiation allows for a slower overall clock
frequency for the entire design (SRFFT and others included), which yields a lower dynamic
power consumption. On the contrary the instantiation uses more area which should results in a
higher static power usage and thus idle power usage. The multiplicity and power usage for the
SFFT design entities are shown in table 10.3 on the next page.

Comparing the entries it is seen that the datapath uses a majority of the power for the SFFT.
ROM # 3 which contains the values of l and L has a low power expenditure while the control-

102 Chapter: 10 Design Space Exploration

Group Multiplicity Power Usage [mW]
Datapath 4 2.61
Control 4 0.09
8× 18bit delay 1 0.07
ROM # 3 4 0.01

Table 10.3: SFFT power usage by hierarchy and multiplicity. The power usage column is for
one data- and control path, as shown in figure 8.7 on page 78. Values where the
multiplicity is greater than one are average values.

paths together uses 0.36mW. A small improvement could be gained by consolidating the control
paths and improving the scheduling to e.g. avoid an 8× 18 bit delay introduced during mapping
to neutralize an one cycle latency of the controlling statie machine. ROM # 3 could be merged to
one ROM bank, but this should only be done in conjunction with the merger of the control paths,
as the improvement from joining the ROMs are insignificant.

Removal of 2 or 3 instances of the datapath has more complex effects. The overall clock-
frequency would have to be increased which would give rise to a higher dynamic power us-
age. This must be compared to the gain achieved from instantiation of fewer SFFT datapaths.
This comparison must also include the possible power improvements in the individual datapaths,
which will be discussed next.

An overview of the power usage of a single SFFT datapath is seen in table 10.4.

Entity Total [mW] Dynamic [mW] Routing [mW]
ROM (2 · cos) 1.21 1.20 0.00
ROM Twiddle Real 0.60 0.60 0.00
ROM Twiddle Imag 0.30 0.30 0.00
Mult Complex 0.10 0.10 0.01
Mult 6Q13 Real 0.08 0.03 0.05
Mult 6Q13 Imag 0.04 0.03 0.01
FF20 bit (real) 0.02 0.00 0.02
subtractors 0.01 0.01 0.00

... < 0.01 < 0.01 < 0.01

Total 2.66 2.42 0.24

Table 10.4: SFFT datapath power usage. Not all entities are shown.

The three most power consuming entities are the ROM banks containing the values of 2 ·
cos(k) and the two twiddle factor ROMs. Compared to other ROMs, this usage is abnormally

Section: 10.4 Examination of the SFFT Implementation 103

high. A deeper examination of the implementation reveals that the ROMs are connected directly
to the fast clock, without a signal to enable and disable the ROMs. This is a design error, as the
ROMs in the current configuration are always read, even when everything else in the SFFT block
is idle. With this error corrected the power usage should drop to levels seen with other ROMs.
As an example ROM # 3 of table 10.3 on the previous page uses 0.01mW. The ROMs in the
SFFT datapath should approach this value.

As a further improvement the ROM containing the 2 · cos(k) values are only needed to be
read once for each value of l. An improvement of the control structure of the datapath to only
read this value once and then store it in a latch could be investigated, but it must be considered
that the gain could be insignificant.

The remaining components such as multipliers, subtractors and flip-flops are difficult to change
as they require a complete redesign of the implementation. Additional alternatives include a test
implementation of the MAC for the SFFT datapath solution shown in figure 8.3 on page 74, to
see if it performs as well or better than the current SFFT method.

10.5 Summary

A resume of the main discoveries in the design space exploration is given below.

• Implement a power-off instead of idle, to avoid static static power expenditure. This would
make the SFFT feasible for values of approximately L < 100 as seen in figure 10.1 on
page 101.

• Correct design errors:

– Simulation taps erroneously connected to output pins. This should lower the miscel-
laneous power consumtion in table 10.2 on page 102.

– ROMs in the SFFT datapath should be controlled by a clock enable, which would
lower the power expenditure. This should lower the power usage with approximately
1.5 to 2mW per datapath. This change would bring the SFFT power usage to a level
comparable to that of the SRFFT in table 10.2 on page 102.

• The clock generating circuit output should be compared to the requirements to precision
set by the overall design. The quality of the output, and thus the complexity of the clock
generator, should be adjusted to match the requirements. Furthermore the placement of the
clock generator, whether by PLL or alternative implementation, could have an impact on
the routing power expenditure.

• Experiments with the number of instantiated datapaths in the SFFT and overall clock fre-
quency, compared to the overall power expenditure of the system could be performed.

With these optimizations implemented a new power-analysis should be performed to further
improve the design.

104 Chapter: 10 Design Space Exploration

Chapter 11
Conclusion

The main purpose of this project was to investigate the power consumption of DFT algorithms
suited for multiuser OFDM, when implemented on a FPGA platform, by comparison of the
achieved power consumption with the theoretical computational complexity of the DFTs when
only a subset of the OFDM subcarriers need to be demodulated. Through the work carried out to
achieve this comparison and evaluation of performance measures, the project considered topics
concerning algorithm mapping onto the FPGA platform, power simulation and measurement and
design space exploration for power optimization as well.

Based on an analytical model of an OFDM downlink scenario, a DFT subsystem was spec-
ified for evaluation. A full length Split Radix FFT and a Transform Decomposition method
(Sørensen FFT) for calculating only a subset of the FFT outputs was examined and mapped onto
a Altera Cyclone III FPGA system using a Finite State Machine with Datapath approach.

Next, the DFT systems was evaluated with regards to power consumption by both simula-
tions using a Altera Powerplay analyzer, and by measurements of the power supply feeding the
internal logic of the FPGA. Comparing these simulations and measurements showed a consistent
tendency for the power analyzer to underestimate the power consumption. This difference may
be reduced with the maturing of the power model for the device family, which is preliminary,
and by more elaborate setup of the device ambient characteristics used in the simulations. Still
the comparisons of simulations and measurements showed good coherency in power consump-
tion changes from test case to test case, and the elaborate structure of the simulation results was
therefore used to determine potential optimizations of the system design.

The conclusion made from the measurements and simulations is, that the computational com-
plexity is not directly comparable to the power usage for this project.

In order for the computational complexity to be a good performance measure compared to
the power consumption for this project, is essential to keep idle power consumptions low or to
remove it all together. This is due to the idle or static power consumption constituting a consid-
erable percentage of the total power consumption, for the SRFFT the idle power consumption
accounts for up to 62%. In addition to the disabling of clocks to inactive circuits used in the

105

design, an introduction of a power-off state to the system is recommended to minimize this idle
power consumption.

Secondly, the evaluation of minimizing the system clock frequency to exploit the require-
ments for algorithm completion time showed significant mean power consumption reductions. A
reduction of the system clock from 50 MHz to 16.7 MHz gave rise to power consumtion reduc-
tions of 35% and 23% for active and idle states, respectively.

When it comes to the design space exploration, the simulations show several potential power
optimizations in the design. The addition of parallel datapaths in the SFFT to keep the system
clock low proves to increase the power consumption significantly. The optimal tradeoff between
utilized area and system clock frequency would require further iterations of the system design
process.

An additional improvement in area utilization may be found from an evaluation of the data
format used in the algorithms. The numerical precision should be no better than required in the
system since widening the data buses also increase the size of the calculation units and thus the
area utilization.

Finally, the circuitry for generating the system clocks, which is implemented using a PLL
embedded in the FPGA, has shown to be the source of a significant power consumption as well.
Therefore, a redesign of the clock generation circuit using e.g. counters instead of a PLL or a
different crystal, should be tested to evaluate possible power consumption improvements.

Although, the design used for test in this project is not power-wise optimal, the analysis of
power consumption in FPGAs and tests and simulations of the resulting system has given rise to
some conditions for achieving consistence between algorithm computational complexity and im-
plementation power consumption as well as general guidelines for improving power performance
of FPGA designs:

• Minimize idle power consumption by disabling clocks and powering off.

• Minimize system clock frequencies to fit system time constraints.

• Minimize area utilization by fitting data formats to requirements.

• Optimize time vs. area tradeoff by iterating over algorithm concurrency utilization.

These conditions and guidelines have been achieved with a predefined hardware platform. If the
system design includes defining the HW platform additional topics such as supply voltage and
device cooling are important to consider, since these parameters affect the FPGA device power
consumption as well.

This project has focused on investigating the coherency between computational complexity and
power consumption, when inplementing FFT algorithms suited for OFDM system on an FPGA
device. Thus, only two algorithms and one architecture has been examined. For further work,
investigations of other algorithms and architectures, such as DSP and micro-controllers, are in-
teresting in order to verify if the results obtained are generally applicable, and to obtain a set of
guidelines into which algorithms are most power efficiently mapped onto which HW-platforms.

106 Chapter: 11 Conclusion

	Titlepage
	Titlepage (Danish)
	Preface
	List of Figures
	List of Tables
	Notation
	Nomenclature
	Bibliography
	Introduction
	Cooperative Radio and Multiuser OFDM
	Project Purpose and Objectives
	Problem Specification
	DFT Algorithms
	Implementation Prerequisites and Constraints
	Project Methodology
	Analysis
	Architecture Mapping
	Evaluation

	I Analysis
	Application Analysis
	System Model
	Orthogonal Frequencies
	An OFDM Downlink System

	Subcarrier Allocation Schemes
	System Specification

	Fourier Transform Algorithms
	Algorithm Selection
	Discrete Fourier Transform
	Split-Radix FFT Algorithm
	SRFFT Derivation
	Datapath Derivation
	Graphical Example

	Sørensen FFT
	SFFT Derivation
	Graphical Example

	Complexity Analysis
	DFT Complexity
	Split-Radix FFT Complexity
	Sørensen FFT Complexity
	Comparison

	Architecture Analysis
	The Cyclone III FPGA
	The Cyclone III Starter Kit
	Quartus II software tools and design flow
	Compilation Flow
	Verification Flow

	Power Estimation and Measurement
	Power Simulations
	Power models

	Power Measurements
	Power Performance Measure

	II Algorithm Mapping
	General Mapping
	Environment Description
	RAM

	General Control Strategy
	Number Representation
	Integer Word Length
	Fractional Word Length

	Arithmetic Operations
	Summary

	Split-Radix FFT Mapping
	Tasks
	Datapath
	L-Butterfly
	Two-Point Butterflies

	Control Path
	General Control Path
	Address Generators

	Clock Domains Generation
	Summary
	Hardware Utilization

	Sørensen FFT Mapping
	Tasks
	Datapath
	Control Path
	Clock Adjustment
	Summary
	Hardware Utilization

	III Evaluation
	Test
	Split Radix FFT
	Functional Verification
	Power Simulations
	Power Measurements
	Discussion

	Sørensen FFT
	Functional Verification
	Power Simulations
	Power Measurements
	Discussion

	Summary

	Design Space Exploration
	Basis for Analysis
	Simulation Summary
	Performance by Hierarchy
	Examination of the SFFT Implementation
	Summary

	Conclusion

