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SYNOPSIS:

This thesis concerns the establishment, imple-
mentation, testing, and finally comparison of an
array of controllers on an electro hydraulic ro-
bot manipulator. The result of the thesis is the
comparison of the established controllers, which
has the purpose of evaluating the performance of
the chosen controllers, implemented on the elec-
tro hydraulic robot manipulator, when used as
a position servo. The controllers are tested re-
garding a set of criteria involving tracking perfor-
mance, number of transducers needed and robust-
ness towards disturbances. As a base of testing,
a series of classical linear controllers have been
established, and also a series of non-linear con-
trollers such as adaptive and learning controllers
have been implemented and tested against each
other and the linear control schemes.
In order to simulate the behavior of the electro
hydraulic servo robot with the various controllers
implemented, a non-linear model has been devel-
oped, and for the development and analysis of
the controllers also a linear model has been de-
veloped. Selected controllers have then been im-
plemented on the physical electro hydraulic servo
robot.

By signing this document, each member of the group confirms that all partici-
pated evenly in the project work and thereby that all members are collectively
liable for the content of the report.





Preface

This thesis documents a master thesis completed by group P101-P16B at the 10th semester
at M.Sc education in mechanical engineering/Electro-Mechanical System Design at the
University of Aalborg. The thesis concerns testing of the performance of various con-
trollers, linear and non-linear, on an electro hydraulic position servo. The testing of the
controllers is carried out on a non-linear model of the electro hydraulic position servo
constituted by a robot manipulator. Selected controllers is then implemented and subse-
quently tested on the physical robot. After having implemented and tested the various
controllers, a comparison is carried out in order to decide which controller types are best
suited for an electro hydraulic position servo.

The thesis is divided into four main parts - a part concerning the system modeling and
trajectory planning, a part concerning linear control design, a part concerning advanced
control design and finally a part regarding comparison of the chosen controllers, together
with final conclusions and perspectives.

Material which has relevance for the thesis but does not belong inside this documentation
is accompanied either in paper format in the appendix of the report or on the appended
CD. The CD contains various MATLAB/SIMULINK models of the robot constituting
the electro hydraulic servo system, data sheets, program code and a PDF-version of the
thesis etc.

Group P101-P16B, June 2008
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In this chapter the thesis outline and the system utilized in this thesis are presented. Fol-
lowing this the problem formulation of the thesis is accounted for, followed by a description
of the approach for solving the problem formulation.

1.1 Thesis Outline

This thesis is carried out in order to investigate the performance of an array of controllers
both linear and non-linear controllers such as adaptive and learning controllers imple-
mented on a hydraulic servo system (hence forward designated HSS). The idea is to test
the various controllers regarding tracking performance, robustness to disturbances, and
the amount of equipment involved, in utilizing the abilities of the controllers, such as
position, velocity, acceleration, and pressure transducers.

The controllers will be tested on a nonlinear model of a hydraulic two bar linkage robot
manipulator. All the established controllers are tested in simulation, and chosen con-
trollers are implemented and tested on the physical system. A linear model of the HSS
is also developed in order to design the linear controllers, and also in order to develop
a simplified linear model of the HSS to facilitate the design of some of the nonlinear
controllers.

11



12 Chapter 1. Thesis Outline, System Overview & Approach

1.2 Overall System Description

The overall system consists of two subsystems namely a hydraulic system and solid-state
mechanical system. These are presented in the following.

1.2.1 Solid-State Mechanical Subsystem

The solid-state mechanical subsystem is, as seen on figure 1.1, constituted by two links
and a base. On each link, or arm, is mounted a servo system consisting of a cylinder,
safety valve and servo valve. Link I is connected to the base of the robot by a revolute
joint, and also connected to link II by a revolute joint. Link I and II, including their
belonging servo systems, will in the remaining of this thesis be designated HSS I and HSS
II, respectively.

Cylinder II

Cylinder I

Accumulators

Accumulators

Link I

Link II

Servo valve & Safety valve I

Servo valve & Safety valve II

Base

Figure 1.1: Overview of robot manipulator.

1.2.2 Fluid Mechanical Subsystem

The fluid mechanical subsystem is constituted of two identical fluid mechanical subsys-
tems, one for each link on the system. In figure 1.2 is shown a schematic of the fluid
mechanical subsystem. On each side of the cylinders is mounted a pressure transducer
supplying information on the pressure of both sides of the pistons. Directly on the cylin-
ders is mounted a safety valve which cuts of supply to the cylinders if the power to the
safety valves is cut, which facilitates an emergency stop. The servo valves are mounted
after the safety valves in the flow line to the cylinders. On each supply- and return line
is mounted an accumulator in order to minimize pressure fluctuations in the system. As
seen on the figure a drain is connected to each cylinder, indicating that leakage oil is
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returned to the reservoir. The cylinders are constructed in a way that minimizes coulomb
friction by allowing a clearance between the piston and the cylinder wall. By doing so
allows for a larger leakage flow than for cylinders where this is not implemented, however
at the same time it removes stiction phenomena.

Safety valve Safety valve

MeqMeq

Figure 1.2: Diagram of hydraulic system.

1.3 Problem Formulation

The problem initiating this thesis is the question if, whether or not, there is something
to gain by using more advanced, and possibly also more demanding nonlinear control
schemes for controlling a hydraulic servo system, instead of more classical linear con-
trollers.

To solve this task the following problems that need to be solved are:

• Which design criteria should be used for designing the various controllers?

• How can the controllers and their performance be compared?

• Which controllers perform the best?

1.4 Thesis Approach

In the following the approach for this thesis is described. The approach is divided into
the following elements.

• Development of system models

• Verification of models

• Trajectory planning
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• Establishment of linear controllers

• Establishment of nonlinear controllers

• Comparison of controllers

• Conclusions

In the following, the above listed elements will be briefly described.

1.4.1 Development of System Models

In order to develop and test the various controllers in this thesis, a nonlinear and linear
model are developed. The nonlinear model for test of controllers, and the linear model
which is to be used for linear control design.

1.4.2 Verification of Models

In order to insure the validity of the nonlinear model outputs, this is compared with
transducer outputs from the physical system, and the nonlinear model is tuned to fit
this. The outputs from the nonlinear and linear models is then compared in order to
validate the linear model near an operating point.

1.4.3 Establishment of Linear Controllers

As basis for comparison of controllers, a series of classical linear controllers are establish-
ment. Furthermore some extensions to these controllers are made.

1.4.4 Establishment of Nonlinear Controllers

A series of nonlinear controllers in the form of various adaptive and learning controllers
are establishment.

1.4.5 Comparison of Controllers

After having implemented the controllers on the nonlinear model, and in some cases on the
physical system, a comparison of the controllers will be made on the basis of performance,
equipment needed in the form of transducers, and robustness towards disturbances.

1.5 Evaluation Criteria

In the following a list of evaluation criteria is set up and subsequently elaborated.

• Tracking performance

• Number of sensors needed

• Robustness towards disturbances
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1.5.1 Tracking Performance

The tracking performance of each controller will be tested on the nonlinear model and for
some controllers implemented on the physical system. In order to evaluate the tracking
performance the system is to follow a a certain trajectory, either in actuator space, or for
the tool center point (TCP). The difference between the desired trajectory and the actual
trajectory followed by the HSS’s is then evaluated, by observing the rms tracking error
and the peak tracking error. By doing so the controllers ability to handle time varying
references is evaluated.

1.5.2 Number of Transducers Needed

Depending on the complexity of the controllers, a varying amount of transducers are
needed in order to secure the necessary amount of feedback signals from the HSS making
the controller in question more expensive and at the same time also more prone to errors
in the form of transducer failure. This hopefully is countered by increased controller
performance.

1.5.3 Robustness Towards Disturbances

When the HSS’s is in operational mode a number of disturbance input to the system is to
be expected, and therefore a crucial parameter in the evaluation of the controllers is their
robustness towards such disturbances. In order to test this robustness each controller is,
on the nonlinear model in simulink, subjected to mass step at a given point in time of
the trajectory, and the ability to reject the disturbance is then evaluated.

1.5.4 Final Conclusions

Based on the comparisons of the various controllers a conclusion is made stating which
controllers are the most suited for this type hydraulic servo system.

1.6 Summary

In this chapter the thesis outline and a system description has been given. Further a prob-
lem formulation has been setup, and an approach for how to solve the problem formulation
has been given. The tasks for solving the problem formulation are various modeling work
and verification, trajectory planning, establishment of linear controllers, establishment of
nonlinear controllers, and finally a comparison of the established controllers followed by
conclusions made from this thesis.
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In this chapter the non-linear dynamic model of the robot manipulator is accounted for.
Here the overall considerations regarding the kinematics and kinetics of the robot manipu-
lator are described, and a more detailed derivation of the model are found in appendix A.
Finally, the model verification will be carried out.

2.1 Solid-State Mechanical Subsystem

The solid state part of the model is derived as a two degree of freedom system. The flexible
behavior of the system is neglected in the model, and the system is hence considered as
consisting of completely rigid bodies. The kinematics of the system is derived based on
the joint angles (illustrated in figure 2.1):

q = [θI θII ]T (2.1)

The solid state part of the model is derived in joint space by use of the Newton-Euler
formulation:

τ = [τLI τLII ]T = D(q)q̈ + H(q, q̇) + G(q) (2.2)

Here the joint load torques are related to the forces applied from the hydraulic system
(via the cylinder pistons), by the drive jacobian J

d
, which yields:

τL = JT
d
FL (2.3)

19
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Hence the non-linear dynamic model of the solid state part of the system compliant with
the hydraulic system, is established as:

FL = J−T
d

τL = J−T
d

D(q)q̈ + J−T
d H(q, q̇) + J−T

d
G(q) (2.4)

As mentioned previously, the complete derivation of the nonlinear model is found in
appendix A.

θII

θI

TCP
Link I

Link II

Cylinder II

Cylinder I

Figure 2.1: Robot manipulator.

2.2 Fluid Mechanical Subsystem

The hydraulic system model is established as two individual actuator models. The models
are based on the force equilibriums, and the flow continuities of the two actuators, and
the hydraulic servo valves are represented by orifice equations, relating the load pressure
and spool position voltage to the flow through the servo valves. Flow forces, pressure loss
in hoses etc., has been neglected. The model derivation of the hydraulic system is found
in appendix A.

2.3 Model Verification

The nonlinear model is verified with respect to experimental measurements on the physical
system. In the following, the model is verified regarding gravitation and dynamics of the
system. This is carried out by sampling the valve input signals given to the servo valves
of the physical system, and feeding these to the nonlinear model, and hence observing
and comparing the variations in load pressure of the two cylinders.
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2.3.1 Verification of Gravitation

The model of the system has been derived such that it is possible to apply a load element
to the system near the TCP. However, the load element for this use has not been available,
and hence the model is verified only for the no load situation.
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Figure 2.2: (A) Load pressure PLI . Both cylinder pistons are initially in extended position. Cylinder I is
retracted, while cylinder II is kept in fixed position. (B) Load pressure PLI . Cylinder I is initially
in extended position, and cylinder II in retracted position. Cylinder I is retracted, while cylinder II
is kept in fixed position.
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Figure 2.3: (A) Load pressure PLI . Cylinder I is initially in retracted position, and cylinder II in extended
position. Cylinder I is extended, while cylinder II is kept in fixed position. (B) Load pressure PLI .
Both cylinder pistons are initially in retracted position. Cylinder I is extended, while cylinder II is
kept in fixed position.

In order to verify the gravitational terms of the model, the experiments are carried out
with constant low velocity on the pistons, thereby not exiting any dynamics of the system.
The low velocity will cause the coriolis- and viscous friction terms to be small, and
hence having no significant influence on the system. Thereby these can be neglected.
Furthermore, as the pistons are moving with constant velocity, not exiting the system
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dynamics, the gravitational terms and coulomb friction can be verified by evaluating the
load pressures of the cylinders.

From figures 2.2 and 2.3 it is found that the static terms of link I has been modeled
sufficiently accurate, compared to the physical system. However, from figures A.16 and
A.17 of appendix A (verification plots for link II), it is found that this is less accurate
than that of the verification for link I. This is assumed to be due to inaccuracies in the
modeling regarding masses lengths and so on. However, it is found that the model is a
sufficiently accurate rendering of the physical system regarding gravitation.

2.3.2 Verification of Dynamics

In order to verify the dynamics of the model, the dynamics of the hydraulic system need
to be excited. This is carried out by applying a series of step inputs to the servo valve.
These steps are applied randomly, and are of different magnitude, and the input signals
over time is different for the two actuators. The inputs are applied simultaneously for the
two actuators. Hence it is possible to verify the dynamics of the complete system. The
results are shown in figure 2.4.
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Figure 2.4: Load pressures resulting from the random step inputs. (A) Load pressure for cylinder I PLI . (A)
Load pressure for cylinder II PLII .

During the data acquisition shown in figure 2.4, the initial positions for the cylinder
pistons is the center position of the cylinders. The position for cylinder I has during
simulations displaced itself approximately 80 [mm] to each side from its initial position,
thereby making it possible to verify the dynamics in most of its position range. Cylinder
II has displaced itself approximately 40 [mm] to each side of its initial position, during
the experiment. This is a relatively small part of the position range, but due to the nearly
constant inertia load on cylinder II, this is considered acceptable.

From figure 2.4 it is found that the model resembles the physical system, both regarding
the pressure level and regarding the frequency of the resulting transients in the pressure.
Regarding cylinder II, this is less accurate. However, still the pressure transients seen on
the model resembles these of the physical system.



2.4. Summary 23

From the dynamic verification, it is found that the model is sufficiently accurate in re-
semblance to the physical system, implying that the model can be used in the design of
various control systems. Hence the model is considered verified.

2.4 Summary

In the above, a dynamic model of the robot manipulator, both solid state and fluid me-
chanical, has been established. The developed model was subsequent tested, by compari-
son of pressure data from the physical system, regarding both dynamics and gravitation.
It was found that the model proved adequately accurate for the development and testing
of controllers.
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This chapter concerns the development of the linear model of the robot manipulator. This
is carried out by simplifying the expressions of the non-linear model, and linearizing non-
linear terms. In this chapter an overall description of the linear model development is
accounted for, and a complete derivation of this is found in appendix C. Finally, the linear
model is compared to the non-linear model, and verified.

The linear model is established for the individual actuators, hence considering these as
SISO systems. The index i can either denote I or II.

3.1 Linear Model

The linear model is derived for an operating point, chosen as the center position of the
cylinder (accounted for in appendix C). The describing linear equations are given by:

Meqis
2xPi = pLiAi −BvisxPi − FDi (3.1)
qLi = Kqiuvi + KqpipLi (3.2)

pLi =
4βFi

VΣis
(qLi − sAixPi − CLipLi) (3.3)

Where:
Meqi: equivalent mass [kg]
pLi: load pressure [Pa]
Ai: ram area [m2]
Bvi: viscous damping [kg/s]
xPi: piston position [m]
FDi: disturbance [N ]

25
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qLi: load flow [m3/s]
βFi: bulk modulus [Pa]
VΣi: total volume of cylinder chambers and hoses [m3]
CLi: internal leakage coefficient [ms/s/Pa]

Represented by a block diagram, the linear model appears as shown in figure 3.1.

+
-
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β4
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viB

PixLip
qiKviu -

DiFqpiK

-

iA

Figure 3.1: Block diagram of system.

Reducing the block diagram of figure 3.1, the transfer function representing the relation-
ship between the servo valve input uvi and the cylinder position xPi is obtained as:

Gi(s) =
XPi(s)
Uvi(s)

=
Ki

T 2
nis

2 + 2ζiTnis + 1
1
s

(3.4)

Here the coefficients are give by:

Ki =
APiKqi

(CLi −Kqpi)Bvi + A2
Pi

(3.5)

ωni =
1

Tni
=

√
4βFi

VΣiMeqi
((CLi −Kqpi)Bvi + A2

Pi) (3.6)

ζi =
4βFi(CLi −Kqpi)Meqi + VΣiBvi

2Tni(4βFi((CLi −Kqpi)Bvi + A2
Pi))

(3.7)

Note that Kqpi is defined negative in appendix C.

3.2 Verification of Linear Model

It is needed to verify that the linear models does in fact represent the nonlinear model in
the operating point (OP). This is carried out by applying small inputs to the two servo
valves (due to the fact that the situation with a slight opening of the valve, is the most
critical for the servo valve)- when the velocity of the piston in the nonlinear model reaches
steady state, and is at the center position of the cylinder, a step input of uvi = 0.1 [V ] is
applied to excite the dynamics - at this point values of the actual load pressures and bulk
modulus’ are obtained, and these values are substituted in the coefficients of the linear
model. Then a step input equal to one applied to the non-linear model at the operating
point, is applied to the linear model, and as these are established for the operating point
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in the center position of the cylinder, it is possible to examine whether the linear models
actually represents the nonlinear model at this point. The results are shown in figure 3.2.
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Figure 3.2: Transient responses of non-linear- and linear models. Operating point is reached at time t = 3 [s].
(A) Verification of HSS I. (B) Verification of HSS II.

It is seen from figures 3.2 (A) and (B), that the transient behavior of the linear models
are very similar to those of the nonlinear model near the operating point. As it would
be expected, it is also seen that the linear models deviates from the nonlinear model the
further away from the operating point the cylinder pistons moves.

It is concluded that the linear models are sufficiently accurate in resemblance to the
nonlinear model near the operating point, and hence suitable for linear control design.

3.3 Summary

In this chapter a linear model of the robot manipulator has been derived, and subsequently
verified by applying small inputs to the servo valves near the operating of the linear
model and comparing outputs of the linear model to those of the nonlinear model. From
comparison it was found that the resemblance to the nonlinear model was adequate and
the linear model is hence considered verified.





Chapter 4
Trajectory
Planning

Contents

4.1 Introduction . . . . . . . . . . 29

4.2 General Trajectory Boundaries 30

4.3 Trajectory Generation . . . . . 32

4.4 Trajectory Profiles (RECT) . . 33

4.5 Trajectory Profiles (IOT) . . . 37

4.6 Necessary Pressure & Flow . . 38

4.7 Summary . . . . . . . . . . . . 40

In this chapter the planning of the trajectory will be carried out. This involves the shape of
the trajectory for the tool center point, ensuring that the system is loaded in a proper way
to be able to evaluate the performance of the control systems. The shape of the trajectory
will be based on the wanted positions, velocities and accelerations/decelerations experienced
by the system when the trajectory is executed.

4.1 Introduction

In order to evaluate the performance of the controllers applied in this thesis, the tra-
jectories must be planned in such a way, that the robot manipulator is properly loaded
regarding power consumption, thereby meaning regarding necessary flow and load pres-
sure for the individual actuators. It has, by the project group, been decided to apply
two trajectories from which the performance of the controllers will be evaluated. Here
two scenarios are used - a scenario concerning robot control, where the tool center point
(henceforward designated TCP) of the robot manipulator is to track a specified trajectory,
and a scenario concerning servo control where the actuators are to follow a specified tra-
jectory regardless of the resulting TCP trajectory - the chosen scenarios are for the robot
control scenario a rectangular trajectory, and for the servo control scenario a trajectory
where actuators are to retract and extend within a specified period of time. Hencefor-
ward these trajectories are designated RECT for the rectangular trajectory, and IOT for
the in/out trajectory. In this chapter, the boundaries for these trajectories are defined,
and within these the position, velocity and acceleration profiles are established (note that
TCP-coordinates are denoted xD, yD).

29
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4.2 General Trajectory Boundaries

Previous to establishing the trajectories, the boundaries for these must be considered.
This involves the physical position boundaries for the system, and the maximum allow-
able power consumption used by the system to complete the trajectories. The position
boundaries defined by the kinematic constraints defines the working area for the TCP,
which is shown in figure 4.1.
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Figure 4.1: Working area for the TCP of the robot manipulator.

In the following subsections, the mentioned boundaries are described.

4.2.1 Physical Position Boundaries

The actuators have a build-in mechanical damping that damps the movement of the
cylinder piston at the endpoints of the piston position ranges, and it is desirable to avoid
these endpoints when designing the trajectory, as the sudden increased damping at the
endpoints of the cylinder ranges will act as undesired disturbances - hence the project
group has redefined the working area limits for the actuators to be (note the complete
stroke length is 0.350 [m]):

0.032 [m] < xi < 0.318 [m] (4.1)

This damping effect has positive influence regarding damaging if the actuators are encoun-
tering actuator saturation. However, as the robot manipulator in this thesis is operating
at a relative high pressure PS = 167 [bar], this damping effect will possibly not be suffi-
cient to avoid damage - hence an outer control loop is designed to oppose this, ramping
down the control input to the servo valves, near the endpoints of the cylinder ranges. The
boundary at which the control input is ramped down is chosen as the points at which the
mechanical damping is initiated. The outer control loop consists of a first order polyno-
mial that is multiplied to the control input, along with the necessary conditions. This
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outer loop is the given as:

35
16

uPiuvi , 0 [m] ≤ xPi ≤ 0.032 [m] (4.2)

uvi , 0.032 [m] < xPi < 0.318 [m] (4.3)(
−35

16
uPi +

175
16

)
uvi , 0.318 [m] ≤ xPi ≤ 0.350 [m] (4.4)

Where:

xPi: piston position [m]
uPi: voltage signal corresponding to the piston position [V ]
uvi: control input [V ]

The function above is illustrated below in figure 4.2.

0 [m] 0.350 [m]0.032 [m] 0.318 [m]

uv

xP

Figure 4.2: Sketch of how the outer loop functions.

4.2.2 Allowable Power Consumption

The trajectories must be planed in such a way, that the boundaries for maximum available
power are not exceeded. These boundaries are defined by the pressure-flow (PQ) charac-
teristics for the individual actuators. The PQ-characteristic for servo HSS I (equivalent
for servo HSS II) is shown in figure 4.3 (A).
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Figure 4.3: (A) PQ-characteristic for HSS I. (B) Power efficiency for HSS I. Both figures are plotted for a
load pressure of PS = 167 [bar].
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It is necessary to plan the trajectories such that the systems are able to correct the
tracking error, meaning that it must ensured that the power needed to control the robot
manipulator is present. As shown in figure 4.3 (B) the power efficiency is dramatically
decreasing when exceeding a load pressure of 2/3 of the supply pressure, and hence
the power boundaries for the allowable power consumption for the robot manipulator
to complete the trajectories are defined at 2/3 of the supply pressure, in order to have
enough power for control.

4.3 Trajectory Generation

In this section the trajectory generation is described. The notation x can be equivalent
with any position in the system such as TCP coordinate, piston position etc. In this thesis
the trajectories will be described by linear functions with parabolic blends as described
by [Craig s 210-212]. The following equations are derived from figure 4.4. For linear

t

x

x0

xf

t0 tb tf - tb tf

xh

th

Figure 4.4: Linear segment with parabolic blends

functions with parabolic blends, and blends having the same duration in time there is
symmetry at the halfway point in time and position (th, xh). In order to have a smooth
curve the velocity at the end of the blend region must be the same as at the beginning
of the linear segment, which yields equation 4.5:

ẍ · tb =
xh − xb

th − tb
(4.5)

Where:

ẍ: acceleration [m/s2]
xh: halfway position [m]
xb: blend end position [m]
tb: blend time [s]
th: halfway time [s]

The position of xb is given by equation 4.6, where x0 is the initial position:
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xb = x0 +
1
2
· ẍ · t2b (4.6)

Combining expressions 4.5 and 4.6, and isolating tb, noting that t = 2·th, yields (according
to [Craig, 2005]):

tb =
tf
2
−
√

ẍ2 · t2 − 4 · ẍ · (xf − x0)
2 · ẍ

(4.7)

Where the chosen acceleration is constrained by equation 4.8:

ẍ ≥
4 · (xf − x0)

t2
(4.8)

Where:

t: duration of motion [s]
xf : end position of the motion [m]
x0: start position of the motion [m]

In the following the above described theory as applied to obtain the trajectories RECT
and IOT.

4.4 Trajectory Profiles (RECT)

By use of the equations derived in the previous section, the position-, velocity and acce-
leration profiles for the TCP-trajectory are defined as functions of time. The trajectories
are established by reaching a compromise between physical boundaries, the flow- and pres-
sure boundaries and expression 4.8, to achieve trajectories where the robot manipulator
is properly loaded. The obtained trajectories are presented in the following.

4.4.1 Trajectory Profiles for the TCP

The position-, velocity- and acceleration profiles for the xD-axis of the TCP is shown in
appendix D.

The resulting trajectory profiles are shown in figures 4.5 and 4.6.
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Figure 4.5: TCP trajectory profiles for xD.
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yD - position profile

Figure 4.6: TCP trajectory profiles for yD.

From the above trajectory profiles for the TCP, the trajectory profiles in joint and actuator
space are obtained by use of the inverse kinematic constraints. This is carried out in the
following.

4.4.2 Inverse Kinematics

As the trajectory of the TCP has now been established, the corresponding trajectories
in joint- and cylinder space need to be determined, and for this the inverse kinematic
constraints between the TCP and the individual joints, and between the joints and the
actuators, are used. This is carried out regarding position, velocity and acceleration.

Inverse Kinematics - Joint Space

Based on figure 4.7 the inverse position kinematics are derived.
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Figure 4.7: Sketch used to to derive the inverse position kinematic.

It is seen from figure 4.7, that:

LOD =
√

x2
D + y2

D and ϕOD = arctan

(
yD

xD

)
(4.9)

Hence the angle θI is found as:

θI = ϕOBD + ϕOD = arccos

L2
OB + x2

D + y2
D − L2

BD

2LOB

√
x2

D + y2
D

+ arctan

(
yD

xD

)
(4.10)

Regarding angle θII1, this is found as:

θII1 = π + ϕBDE − ϕBDO = π + ϕBDE − arccos

(
L2

OB + L2
BD − x2

D − y2
D

2LOBLBD

)
(4.11)

The inverse velocity kinematics is derived by use of the jacobian. The forward kinematics
for the TCP related to the joints are:

rD =
[

xD

yD

]
=
[

cos(θI)LOB + cos(θI + θII1)LBD − sin(θI + θII1)LBE

sin(θI)LOB + sin(θI + θII1)LBD + cos(θI + θII1)LBE

]
(4.12)

Then the time derivative of the forward kinematic constraints, defines the the forward
kinematic velocity constraints:

ṙD =
[

ẋD

ẏD

]
=

[
∂xD
∂θI

∂xD
∂θII1

∂yD
∂θI

∂yD
∂θII1

] [
θ̇I

θ̇II1

]
(4.13)
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Hence the velocity of the joint angles are:[
θ̇I

θ̇II1

]
=

[
∂xD
∂θI

∂xD
∂θII1

∂yD
∂θI

∂yD
∂θII1

]−1 [
ẋD

ẏD

]
(4.14)

The inverse acceleration kinematics is determined as the time derivative of the inverse
velocity kinematics, which yields:

[
θ̈I

θ̈II1

]
=

 d
dt

(
∂xD
∂θI

)
d
dt

(
∂xD
∂θII1

)
d
dt

(
∂yD
∂θI

)
d
dt

(
∂yD
∂θII1

) −1 [
ẍD

ÿD

]
(4.15)

Inverse Kinematics - Actuator Space

The kinematic constraints relating the joint angles, angular velocities and angular accel-
erations to the linear positions, velocities and accelerations in actuator space can be found
in appendix A.1.1 (note that θ̇II1 = θ̇II and θ̈II1 = θ̈II). Combining these constraints,
the inverse kinematic relations between the TCP and the actuators are established.

4.4.3 Trajectory Profiles in Joint- & Actuator Space

In figure 4.8, the trajectory profiles in joint space are presented, and the trajectory profiles
in actuator space are shown in figure 4.9.
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θI - acceleration profile
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Figure 4.8: Joint space trajectory profiles. Sub-figures (A), (B), (C) are profiles for θI . Sub-figures (D), (E),
(F) are profiles for θII .
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xI - velocity profile
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xI - acceleration profile
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xII - acceleration profile

Figure 4.9: Actuator space trajectory profiles. Sub-figures (A), (B), (C) are profiles for xI . Sub-figures (D),
(E), (F) are profiles for xII .

4.5 Trajectory Profiles (IOT)

In a similar way as for the RECT, the position-, velocity and acceleration profiles are
established for the IOT - however here the trajectories for the actuator axes are equal to
each other, hence ẍI = ẍII = ẍi. The position-, velocity- and acceleration profiles for the
actuator axes are shown in table 4.1.

Time [s] xi [m] ẋi [m/s] ẍi [m/s2]
0 < t < tb11 q0xi + 0.5ẍit

2 ẍit ẍi

tb11 < t < (tf11 − tb11) ẍitb11t− 0.5ẍit
2
b11 + q0xi ẍitb11 0

(tf11 − tb11) < t < tf11 −0.5ẍi(t − (tf11 − tb11))2 +
ẍitb11t− 0.5ẍit

2
b11 + q0xi

−ẍi(t −
tf11)

−ẍi

tf11 < t < tf11 + tb22 q1xi − 0.5ẍi(t− tf11)2 −ẍi(t −
tf11)

−ẍi

tf11 + tb22 < t < tf22 − tb22 −ẍitb22(t− tf11) + 0.5ẍit
2
b22 +

q1xi

−ẍitb22 0

tf22 − tb22 < t < tf22 0.5ẍi(t − (tf22 − tb22))2 −
ẍitb22(t−tf11)+0.5ẍit

2
b22+q1xi

ẍi(t− tf22) ẍi

Table 4.1: Position-, velocity- and acceleration profiles for the actuator axes.

4.5.1 Trajectory Profiles in Actuator Space

In figure 4.10, the IOT profiles in joint space are presented.
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xI/xII - velocity profile
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xI/xII - acceleration profile

Figure 4.10: Actuator space trajectory profiles. (A) Position profile. (B) Velocity profile. (C) Acceleration
profile.

It should be noted that in the acceleration profile for the IOT trajectory, that the jerk is
not bounded. As the jerk is not bounded, the demand for the system to track the reference
smoothly, is that the acceleration can de- or increase momentarily, which requires that
the pressure build-up changes momentarily. This is not possible in reality, and hence it
can not be expected that the system will be able to track the trajectories smoothly.

4.6 Necessary Pressure & Flow

In the following the power consumption used to complete the defined trajectories are
presented. This is presented as the flow and pressure necessary, for the solid mechanical
part of the robot manipulator to complete the trajectories.

4.6.1 Pressure & Flow for the RECT

From figure 4.11 (A) it is seen that actuator I is fairly well loaded when it has to complete
the RECT, as it in some situations regarding necessary pressure, reaches the defined
boundary of PL = 2/3PS . As the actuator does not need to use the available maximum
flow, it is found that it will be possible, with a suitable control system, to complete the
RECT. From figure 4.11 (B), it is found that actuator II is not very well loaded which
is due to the relatively low inertia load, and the relatively low flow requirement, when
completing the RECT.
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Figure 4.11: Necessary flow and pressure to complete the rectangular trajectory. (A) Actuator I. (B) Actuator
II. (The red lines expresses the 2/3 PS boundary).

The resulting rectangular trajectory appears as shown in figure 4.12.
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Figure 4.12: Rectangular trajectory for the TCP (RECT).

4.6.2 Pressure & Flow for the IOT

From figures 4.13 (A) and (B), it is clear that neither HSS I or HSS II is very well loaded,
when completing the IOT. However, it is found that this trajectory is still suitable to
evaluate the servo performance of the individual actuators. If the IOT were completed
with a faster time rate, the flow necessity would be increased.
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Figure 4.13: Necessary flow and pressure to complete the in/out trajectory. (A) Actuator I. (B) Actuator II.
(The red lines expresses the 2/3 PS boundary).

4.7 Summary

In this chapter the trajectories used to evaluate the controller performance have been
established. The limits for the trajectories have been defined as the physical position
boundaries, along with the flow- and pressure boundaries. Furthermore the position
boundaries have been redefined to avoid the mechanical damping at the endpoints of the
actuators.

In order to establish the trajectories two scenarios have been set up - a robot control
scenario, and a servo control scenario. In the robot control scenario, the TCP is to follow
a specified trajectory, in this case a rectangular trajectory, which requires fairly large
variations in the actuator space trajectories. In the servo control scenario, the actuators
are to track the same trajectory, which in this case is a retraction and extension of the
actuators, over a specified period of time of 2.50 [s]. In the RECT, the TCP has to
complete the rectangular trajectory within a time period of 3.68 [s].
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In this chapter classic linear controllers/compensators are developed and implemented on
the nonlinear model. The control types chosen to be tested in this chapter are a proportional
controller, a proportional + integral controller, a Lead compensator, a Lag compensator
and a Lag-Lead compensator.

5.1 Introduction

As mentioned in the meta text, this chapter concerns the development of classical linear
controllers/compensators using position feedback. The controller development will be
performed by use of linear control theory applied on the SISO transfer functions estab-
lished in chapter 3. The nomenclature of this chapter, not previously defined, is given
below.

KPi: proportional gain [−]
KPIi: proportional gain [−]
Kci: proportional gain [−]
TPIi: time constant [s]
Tleadi: time constant [s]
Tlagi: time constant [s]
αi: scaling factor [−]
βi: scaling factor [−]
γleadi: scaling factor [−]
γlagi: scaling factor [−]

5.1.1 Design Specifications

In order to facilitate the design and comparison of the chosen linear controllers, design
specifications are setup in the following. First and foremost the system must remain stable

43
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for all chosen controllers, and accompanying parameters, which is done by ensuring that
the phase and gain margins (henceforward designated PM and GM, respectively), as a
minimum, are always positive. However to ensure a certain clearance, it is desirable to
have GM > 6− 8 [dB] and PM > 45◦ − 60◦[Rasmussen, 1996]. Furthermore it is, since
the actuators are to follow the specified trajectories, desired to have an error as small as
possible.

5.1.2 Design Approach

The control design process will be performed by use of the frequency responses for the
individual servo systems, which are considered as position servos. In the design phases,
when the different controller types have been found to satisfy the design specifications,
the compensated system responses are evaluated when subjected to step-, ramp-, and
sinusoidal (parabolic-like) inputs, respectively, in order to evaluate their performance on
position, velocity and acceleration inputs primarily regarding oscillatory behavior. The
ramp and sinus inputs are chosen because the reference position profiles for the cylinder
pistons (in both the RECT and IOT) are primarily made up by ramp- and parabolic
like segments. The controllers are discretely implemented on the laboratory setup, and
this might cause accelerations and decelerations of such magnitude that it, in some cases,
could resemble a step input. Therefore in order to ensure the desired system stability
in such situations, a step is also included to test the system with the chosen controllers.
Since the trajectories in actuator space as mentioned are composed of linear and par-
abolic segments, the ramp and sinusoidal inputs will be of main interest, when tuning the
controllers, and a response to a step input only secondary.
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Figure 5.1: Frequency response for the plants. (A) HSS I. (B) HSS II.

The chosen controllers will be tuned within the boundaries of the stability requirements
previously mentioned for the open loop frequency response, and by ensuring that the
resonance peak does not rise above unity gain to ensure stability. Furthermore, the per-
formance of the compensated systems are evaluated by observing how well the system
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tracks the step, ramp and sinusoidal inputs, and possibly subsequently adjusted.

The controllers established in this chapter are especially suited for regulator problems
with constant references, but has poor performance regarding position servo problems
with trajectory tracking (varying references). Efforts to compensate for this are taken
in the following chapter. The frequency responses for the uncompensated systems are
shown in figure 5.1.

The natural frequencies and damping ratios for the uncompensated systems are:

ωnI = 39.68 [rad/s] , ωnII = 133.01 [rad/s] (5.1)
ζnI = 0.11 [−] , ζnII = 0.12 [−] (5.2)

5.2 Proportional Control (P)

The first controller to be implemented is a proportional (P) controller which has the
purpose of speeding up the transient response of the system. The proportional gain
is tuned until a reasonable compromise between step, ramp and sinusoidal response is
obtained. Due to the fact that the system is a type 1 system, there will be a steady state
error for ramp and sinusoidal inputs, when utilizing a proportional controller. Applying a
proportional controller to a system only affects the magnitude of the frequency response,
and the phase remains unaltered. When the proportional gain is increased for HSS I and
II both the gain margin and phase margin is minimized until the compensated system
satisfies the design specifications. The frequency response for the compensated system
are shown in appendix E.

The margins obtained for the tuning of the proportional controller for HSS I and II are:

GMI = 7.50 [dB] ∧ PMI = 88.90 [◦] (5.3)
GMII = 7.89 [dB] ∧ PMII = 88.60 [◦] (5.4)

5.3 Proportional Integral Control (PI)

In order to compensate for the steady state error on the ramp input, when using a
proportional controller, an integral term is applied to controller. The structure for the
PI controller is:

Gc(s) = KPIi
TPIis + 1

TPIis
(5.5)

It is seen that applying a PI controller to a HSS increases the system type by 1, so the
compensated system becomes a type 2 system. It must be taken into account when ap-
plying a PI controller to a type 1 system, that the DC-phase becomes −180 [o]. Hence in
order to avoid instability of the system, one must choose the position of the zero of the
PI controller at a relatively low frequency assuring that no low frequent dynamics causes
instability of the system.
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Like for the proportional controller, the PI controller is tuned observing the phase and
gain margin of the frequency response. As mentioned above the PI compensated HSS
is a type 2 system with an initial phase of −180 [◦] - the zero enables the possibility of
adjusting the PM - hence it is possible to adjust the compensated system to meet the
design specifications regarding GM and PM. The gains and the time constants of the PI
controllers of the two compensated systems are tuned to meet the following margins:

GMI = 7.96 [dB] ∧ PMI = 62.40 [◦] (5.6)
GMII = 6.37 [dB] ∧ PMII = 67.60 [◦] (5.7)

It is noted that when applying a PI controller, integrator anti wind up also must be
implemented. The anti wind up is briefly accounted for in appendix G.

5.4 Proportional Lead Compensator

The motivation for applying a lead compensator is to increase the bandwidth of the
compensated system and hence increase the speed of the response. The basic structure
of a lead compensator is given by:

Gc(s) = Kci
Tleadis + 1

αiTleadis + 1
; αi < 1 (5.8)

The lead compensator is implemented in the forward path of the HSS in cascade with
the plant, and is essentially a PD controller. The zero and pole of the lead compensator
is placed near the resonance peak in order to add phase lead here. Here the zero is
placed in the low frequency region and the pole in the high frequency region. The lead
compensator speeds up the response due to the added phase lead - however, due to the
relatively poor damped system, little effect is obtained by using the lead compensator.
Furthermore the zero and pole has been placed, and the gain designed in such a way,
that the performance specifications are met regarding GM and PM, and the frequency
responses of the compensators and compensated systems are found in appendix E. The
achieved margins for the compensated systems are:

GMI = 7.15 [dB] ∧ PMI = 91.40 [deg] (5.9)
GMII = 7.90 [dB] ∧ PMII = 91.70 [deg] (5.10)

5.5 Proportional Lag Compensator

In this section a lag compensator is established. The motivation for applying a lag
compensator is to decrease the steady state velocity error. The basic structure of a lag
compensator is given by:

Gc(s) = Kci
Tlagis + 1

βiTlagis + 1
; βi > 1 (5.11)

The lag controller is applied with both the pole and zero are placed in the low frequency
region, such that the phase contribution of the compensator approximately does not in-
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fluence the phase near the resonance peak. By doing so, it is avoided to add additional
negative phase to the already poorly damped system. Then by subsequently adjusting
the compensator gain, increased gain at lower frequencies is achieved, reducing the steady
state error. However, the placement of a pole in the low frequency region reduces the
bandwidth and hence the speed of the transient response. On the other hand, this en-
ables the possibility of increasing the gain further than it would be possible, if the lag
compensator was not introduced.
As the lag compensator (and the lead compensator) does not introduce any additional
free integrators to the compensated system, the system type remains a type 1, which
yields a static velocity error - it is not possible in any way to alter the system to a type
2 system by using only a lag compensator, but the steady state velocity error will be
reduced due to the possibility of increasing the gain further. The frequency responses of
the compensators and compensated systems are found in appendix E.

The achieved margins for the lag compensated systems are:

GMI = 7.74 [dB] ∧ PMI = 65.50 [deg] (5.12)
GMII = 7.18 [dB] ∧ PMII = 82.70 [deg] (5.13)

5.6 Proportional Lag-Lead Compensator

In this section a lag-lead compensator is established. Implementing this type of com-
pensator is motivated by the possibility for achieving the advantages of lead- and lag
compensators regarding speed of the transient response and the reduction of the steady
state error, respectively. Essentially, the lag-lead compensator consists of a lead and a
lag compensator placed in cascade with each other and the plant, hence the structure of
the lag-lead compensator is:

Gc(s) = Kci
Tlagis + 1

γlagiTlagis + 1
Tleadis + 1

γleadiTleadis + 1
; γleadi < 1 < γlagi (5.14)

The lag part of this compensator is placed in the low frequency region in a way similar to
the lag compensator in order to increase the gain at lower frequencies. The lag compen-
sator is placed near the resonance peak in order to add phase in this frequency area. As
for the previous mentioned compensators, the frequency responses of the compensators
and compensated systems are found in appendix E.

The margins achieved by applying lag-lead compensators to the systems are:

GMI = 7.00 [dB] ∧ PMI = 66.90 [deg] (5.15)
GMII = 7.04 [dB] ∧ PMII = 67.60 [deg] (5.16)

In the following the simulation results for the systems implemented with the described
controllers are presented. The controller parameters designed for the above controllers
are found in appendix F.
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5.7 Simulation Results

The trajectory tracking for the RECT of the compensated systems configured with the
different controllers are shown in figures 5.2 and 5.3 along with their errors. It is clear that
these controllers provide poor position tracking performance, as these are not suitable for
tracking continuous changing trajectories.
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Figure 5.2: Trajectory tracking for HSS I. (A) Trajectory tracking. (B) Tracking errors
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Figure 5.3: Trajectory tracking for HSS II. (A) Trajectory tracking. (B) Tracking errors

5.7.1 Tracking Errors (RECT)

In table 5.1 the tracking error, both peak and rms, are summarized.
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Compensator |emaxI | [mm] ermsI [mm] |emaxII | [mm] ermsII [mm]
P 67.55 35.15 33.90 14.16
PI 60.30 34.65 26.70 8.83
Lead 70.20 35.09 36.64 16.01
Lag 50.80 30.78 28.60 11.64
Lag-Lead 70.50 32.04 29.50 11.55

Table 5.1: Tracking error values for controllers tested on the rectangular trajectory.

The simulation results for the IOT, along with their errors are found in appendix L.

5.8 Summary

In this chapter different compensators have been designed by use of frequency responses
to meet the design specifications of GM and PM, and the designed compensators have
subsequently been adjusted to have satisfactory responses when subjected to step-, ramp
and parabolic inputs. It is found that these classic linear controllers provide poor tracking
performance for the position servo, experiencing large maximum- and rms values of the
tracking errors. This calls for additional controllers in order to decrease the errors, which
is carried out in the following chapter. Due to the poor tracking performance, the con-
trollers designed in this chapter are not implemented on the physical robot manipulator.
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This chapter serves as an extension to chapter 5 and the classical linear feedback control.
Here velocity feedforward compensators are introduced, both with passive and active gains
in the feedforward loops, and their effects are evaluated.

6.1 Introduction

The controllers designed previously are especially suited for regulator problems, and have
poor performance regarding the position servo problems of this thesis, when tracking a
trajectory where the reference is continuously changing with time. An effort that can
be made to achieve improved performance is to implement a velocity feedforward com-
pensation (henceforward designated VFC) in combination with the previously designed
controllers. In the following the index i is omitted.

The nomenclature of this chapter, not previously defined, is shown below.

K: system gain [−]
Tn: time constant [s]
ζ: damping ratio [−]
FD: disturbance [N ]

6.2 Velocity Feedforward Compensation

The general idea of implementing this type of compensation is to feed forward the ideal
servo valve gain, and from knowledge of the system and of the velocity trajectory, it is
possible to establish this feed forward control signal. As the desired displacement flow is
proportional to the velocity of the piston, based on information of the relationship be-
tween the spool position of the servo valve, the velocity of the piston, and piston velocity
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reference trajectory it is possible to realize this compensation.

As mentioned above the VFC provides the main or ideal part of the reference tracking
signal, and hence only additional transients deviating from the reference trajectory are
needed to be regulated. By applying VFC, the feedforward compensated system trans-
forms the servo problem into a regulator problem, for which the previously designed linear
feedback controllers are suited. Therefore combining the VFC with a feedback controller,
dramatically increases the tracking performance, as it will be shown in section 6.3. It is
noted that the error will not be eliminated completely by applying VFC, as this only acts
as a pre-filter and does not alter the closed loop system.

In the following a VFCP (VFC with passive valve gain) is designed and implemented in
combination with the previously designed feedback controllers. Furthermore, based on
knowledge of the load pressure, also an active feed forward gain (VFCA) is designed.

6.2.1 VFCP - Passive Gain

The ideal gain for the VFCP is calculated based on knowledge of the system, and it
is possible to obtain the passive valve gain as the inverse gain of the transfer function
describing the individual servo systems. The passive valve gain ΓV FCP is hence found as
[Mohieddine Jelali, 2004]:

ΓV FCP =
T 2

ns2 + 2ζTns + 1
K

∣∣∣∣
s=0

=
1
K

(6.1)

The implementation of the VFCP on the SISO systems is shown in figure 6.1.

VFCPΓ

vu SISO system
(Plant)

Px
+++-

Reference
generator

DFRx&

Rx )(sGc

Figure 6.1: VFCP compensated system.

It is noted that the VFCP essentially results in a pre-filtering of the reference input to
the system. The applied velocity reference corresponds to applying a zero to the position
reference, and hence multiplying the reference signal with a differentiating first order
filter, before the input is given to the closed loop system. The filtering effect is shown in
figure 6.2 (equivalent to figure 6.1).
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VFCPΓ

vu SISO system
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+-

DF

Rx )(sGc
+

Figure 6.2: VFCP compensated system.

Closing the loop made up of the feed forward contribution, the pre-filter is obtained as:

sΓV FCP

Gc(s)
+ 1 = s

ΓV FCP

Gc(s)
+

Gc(s)
Gc(s)

=
sΓV FCP + Gc(s)

Gc(s)
(6.2)

As the VFCP acts as a pre-filter, this does not affect the stability of the closed loop
system.

6.2.2 VFCA - Active Gain

In the previous section a VFC was established using the passive valve gain - however,
this valve gain does only comply with the actual valve gain at the operating point of the
linear model. Hence, it will be appreciable to extend the VFC to be valid for all operating
points, and hence establish an active feedforward compensation (VFCA). In the following
it is assumed that the pressure dynamics and the leakage flow can be neglected, and hence
from the orifice equation, the load flow is given by (see appendix C):

qL = AẋP = Kvuv

√
PS − PT − PL

2
(6.3)

Isolating uvi, yields:

uv =
A
√

2
Kv

√
PS − PT − PL

ẋP (6.4)

Using the above expression, the VFCA is implemented as shown in figure 6.3, where the
load pressure is fed back to continuously update the feedforward gain.

LTSv PPPK
A

−−

2

Px&
vu SISO  system

(Plant)

Px

Lp
+++-

Reference
generator

DFRx&

Rx

Figure 6.3: Velocity feedforward compensated HSS, using pressure feedback.
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In order to evaluate the effect of the pressure feedback loop on the system, the linearized
orifice equation is considered.

qL = AẋP = Kquv + KqppL (6.5)

Again by isolating uv in the above expression, yields:

uv =
A

Kq
ẋP −

Kqp

Kq
pL (6.6)

Hence the feedforward compensator in linearized form has been obtained. Implementing
this feedforward compensator on the linear model results in the feedforward compensated
HSS shown in figure 6.4.
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Figure 6.4: Velocity feedforward compensated system, using pressure feedback.
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Figure 6.5: (A) Bode diagram for the non-compensated/compensated system. (B) Zoom of the bode diagram
for non-compensated/compensated system. (in this case HSS I - similar effects occur on HSS II).

It is seen that the first term of the right hand side of expression 6.6, when implemented
on the linear model, acts as a pre-filter to the reference input, and hence does not affect
the closed loop stability of the system. However, the last term introduces an additional
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loop to the system due to the pressure feedback. Moving the pressure feedback loop from
summation point 1 (SP 1) to summation point 2 (SP 2), results in a loop where KqppL is
fed back with negative sign - opposite to the feedback loop already in the linear model,
where KqppL is fed back with positive sign, resulting in (Kqp −Kqp)pL = 0. From this it
is found that this pressure feedback loop decreases the damping of the system. To further
evaluate the effect of the pressure feedback loop, the bode diagram of HSS I is shown in
figure 6.5.

It is seen from figure 6.5 that applying the pressure feedback to the velocity feedforward
compensator, decreases the damping of the system, thereby allowing a smaller gain to
the additional controller - however as the pressure feedback allows the feedforward gain
to be more accurate in all of the working area, increased tracking performance should be
achieved. To evaluate the increased tracking performance, the two HSS’s are implemented
with a feedback controller with unity gain and feed forward contribution, with passive
and active VFC gain. See figure (6.6).
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Figure 6.6: Active and passive gain VFC compensated systems. (A) HSS I. (B) HSS II.

It is seen from figure 6.6 (A) that a dramatic increase in the tracking performance is
achieved by applying the VFCA on HSS I. However, as seen in figure 6.6 (B), the VFCA
does not have any significant effect on the tracking performance of HSS II. The reason
for this is that the inertia mass of HSS II is nearly constant, and hence the load pressure
is nearly constant.

6.3 Simulation Results - VFCP

The trajectory tracking of the compensated systems configured with the different con-
trollers are presented in the following, along with their tracking errors.

It is seen from figures 6.7 and 6.8 that adding a feed forward contribution with passive
gain increases the performance dramatically, due to the fact that the feedforward provides
the ideal valve gain throughout the trajectory.
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Figure 6.7: Trajectory tracking with VFCP for HSS I. (A) Trajectory tracking. (B) Tracking errors.
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Figure 6.8: Trajectory tracking with VFCP for HSS II. (A) Trajectory tracking. (B) Tracking errors.

In the table below the tracking errors when implementing a VFCP in combination with
the previously designed linear feedback controllers are shown.

Tracking Errors (RECT)

Compensator |emaxI | [mm] ermsI [mm] |emaxII | [mm] ermsII [mm]
P-VFCP 15.37 5.26 2.25 0.83
PI-VFCP 10.97 4.58 1.95 0.63
Lead-VFCP 15.22 5.27 2.39 0.92
Lag-VFCP 12.13 4.33 2.58 0.74
Lag-Lead-VFCP 10.29 4.61 2.44 0.80

Table 6.1: Tracking error values for controllers tested on the rectangular trajectory.

The simulation results for the IOT along with their errors are found in appendix L.



6.4. Simulation Results - VFCA 57

6.4 Simulation Results - VFCA

To evaluate the effect of the VFCA, this is implemented in combination with P and PI
controllers, and tested on the RECT and IOT. From figure 6.9 it is seen that the VFCA in
combination with P and PI controllers decreases the errors significantly in comparison to
the control systems using VFCP. Hence it is found that the VFCA enhances the transient
performance of the control system, but deteriorates the steady state performance.

Regarding HSS II, it is found from figure 6.10, that the VFCA has no significant influence
on the tracking performance compared to the VCFP. As mentioned earlier, this was
expected due to the nearly constant inertia load on HSS II.
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Figure 6.9: Trajectory tracking with VFCA for HSS I. (A) Trajectory tracking. (B) Tracking errors.
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Figure 6.10: Trajectory tracking with VFCA for HSS II. (A) Trajectory tracking. (B) Tracking errors.

6.4.1 Tracking Errors (RECT)

The tracking errors are summarized in table 6.2.

The simulation results for the IOT, along with their errors are found in appendix L.
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Compensator |emaxI | [mm] ermsI [mm] |emaxII | [mm] ermsII [mm]
P-VFCA 7.51 3.25 2.40 0.83
PI-VFCA 7.44 3.24 2.05 0.74

Table 6.2: Tracking error values for controllers tested on the rectangular trajectory.

6.5 Experimental Results

From the experimental results shown in figures 6.11 and 6.12 it is found that these resem-
bles those of the simulation, however with a slight increase in the errors. This deviation
in errors may be caused by inaccuracies in the nonlinear model. However, it is found
the linear controllers implemented in combination with the VFCP on the physical system
achieves fairly good performance.

(A) (B)

0 0.5 1 1.5 2 2.5 3 3.5
-200

-150

-100

-50

0

50

100

150

Time [s]

Pi
st

on
 p

os
iti

on
 [m

m
]

 

 

Reference trajectory
Trajectory tracking - P
Trajectory tracking - PI
Trajectory tracking - Lead
Trajectory tracking - Lag
Trajectory tracking - Lag-lead

0 0.5 1 1.5 2 2.5 3 3.5
-15

-10

-5

0

5

10

15

20

25

Time [s]

Po
si

tio
n 

er
ro

r 
[m

m
]

 

 

Position error - P
Position error - PI
Position error - Lead
Position error - Lag
Position error - Lag-lead

Figure 6.11: Trajectory tracking for HSS I. (A) Trajectory tracking. (B) Tracking errors.
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Figure 6.12: Trajectory tracking for HSS II. (A) Trajectory tracking. (B) Tracking errors.
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6.5.1 Tracking Errors

Compensator |emaxI | [mm] ermsI [mm] |emaxII | [mm] ermsII [mm]
P-VFCP 12.46 5.29 6.15 2.01
PI-VFCP 10.01 4.73 5.58 1.73
Lead-VFCP 12.72 5.34 6.51 2.25
Lag-VFCP 10.04 4.55 6.13 1.87
Lag-Lead-VFCP 10.03 4.57 5.54 1.91

Table 6.3: Tracking error values for controllers tested on the rectangular trajectory.

6.6 Summary

In this chapter the performance of the linear controllers were augmented by adding ex-
tensions in the for of feed forward compensation, both passive and active. The passive
feed forward gain has been found by use of the inverse dynamics of the linear system
representation, and the active feed forward gain were established by use of a pressure
feedback, updating the feed forward gain.

It was found that utilizing a feed forward gain, boosted controller performance regarding
tracking errors. It was also found that the effect of the VFCA was most pronounced
on the HSS I, since the inertia mass of HSS II is nearly constant, and the load pressure
therefore also is nearly constant.
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In this chapter a compensator is developed based on a state space representation of the
linear system. More specifically a state feedback gain compensator is developed using the
pole assignment technique, in order to achieve certain system specifications. Furthermore
a modification is made to this compensator regarding feedforward contribution.

7.1 Introduction

The pole assignment technique could be advantageous to use in the compensator design,
for a compensator usable for trajectory tracking. The general idea of applying this method
is to alter the properties of the system, by displacing the poles of the uncompensated
system to desired locations of the compensated system. As the servo systems are poorly
damped, and have slow transient response due to the free integrator, this method might
prove usable, and will be used in this chapter. The nomenclature of this chapter is given
below (not notations introduced previously).

xi: state vector [−]
ẋi: time derivative of state vector [−]
Ai: system matrix [−]
Bi: input matrix [−]
Ci: output matrix [−]
y: output [−]
x1, x2, x3: states [−]
K: state feedback gain matrix [−]
k1, k2, k3: elements of the state feedback gain matrix [−]
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7.2 State Space Model Representation

In the following a state space representation of the two servo systems is established, and
the generalized form of this representation is given by:

ẋi = Aixi + Biu , y = Cixi (7.1)

The control design method considered in this chapter enables the possibility of considering
the complete system as a MIMO HSS in the state space representation - however it has
been decided by the project group to consider the system as two separate SISO systems.
The describing equations are (valid for both systems):

qLi = AiẋPi +
VΣi

4βFi
ṗLi + CLipLi (7.2)

qLi = Kqiuvi + KqpipLi (7.3)
MeqiẍPi = pLiAi −BviẋPi (7.4)

As the two SISO systems algebraically are similar to each other, the following is valid for
both systems, and hence in the following the index i is omitted. The states of the system
are defined as the piston position and velocity and the load pressure, which yields:

x1 = xP , x2 = ẋP = ẋ1 , x3 = pL (7.5)

Combining equations 7.2 and 7.3, and isolating the state time derivatives of the describing
equations, yields:

ṗL =
4βF

VΣ
(Kquv + (Kqp − CL)pL −AẋP ) (7.6)

ẍP =
1

Meq
pL −BvẋP (7.7)

The system matrix, input matrix and the output matrix are the given as:

A =

 0 1 0
0 A

Meq
− Bv

Meq

0 −4βF
VΣ

A 4βF
VΣ

(Kqp − CL)

 , B =

 0
0

4βF
VΣ

Kq

 , C =

 1 0 0
0 1 0
0 0 1



7.3 State Controllability

To be able to apply the pole assignment technique, the system must be completely con-
trollable. The HSS is completely controllable if the controllability matrix has full rank
[Ogata, 2002]. It can be shown that:

[B AB A2B] = 3 = full rank (7.8)

As the controllability matrix has full rank, the system states are completely controllable,
and hence the system can be subjected to control design by use of the pole assignment
technique.
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7.4 Compensation by Pole Assignment

In this section a compensator is developed by use of the pole assignment technique. This
is motivated by the fact that this technique enables the possibility of altering the position
of the poles to a specified position by use of a state feedback gain matrix (henceforward
designated GFM). The state feedback gain matrix is defined aos[Ogata, 2002]:

K = [k1 k2 k3 ] (7.9)

The state feedback control scheme appears as shown in figure 7.1.

Px&vu SISO system
(Plant)

Px

Lp
+-+-

DF

Rx
1k

2k

3k
+
+

Figure 7.1: State feedback control scheme.

The compensated system dynamics are described in the following state space form:

ẋ = (A−BK)x + Bk1u (7.10)

With the reference control signal given by:

u = −Kx + k1u = −(k2x2 + k3x3) + k1(xR − x1) (7.11)

Then by proper chosen K, it is possible to design the control scheme such that the closed
loop poles are placed in desired positions.

As the HSS’s are poorly damped, and has slow transient performance, the desired closed
loop poles are chosen such that the damping ratios and the speed of the HSS’s are in-
creased. Figure 7.2 shows how the damping ratio and the natural frequency is related to
the poles.
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21 ζωω −= nd

nζω

nω
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djω

ζα

Figure 7.2: Relationship between the poles and the damping ratio and natural frequency .

The damping ratio ζ increases as αζ decreases - to ensure a properly damped system,
the poles should be chosen such that αζ ≈ 45◦ (ζ ≈ 0.7). It is clear that this is achieved
by letting both the real and complex part of the pole take the same value. Furthermore
to increase the speed of the system, the pole at the origin (the free integrator), should
be displaced towards left, to decrease the dominance of this, as the free integrator slows
the system - by doing so corresponds to replacing the free integrator by a first order
integrating system. Another initiative to increase the speed of the system, is to place
the complex poles further to the left, thereby achieving a higher natural frequency. The
approach for this compensator will be to displace the the real pole of the origin to the
left, but at the same time maintain some level of integrating effect, by still letting this be
the dominant pole of the system. The proper damping is achieved by letting αζ = 45◦.
Furthermore the complex poles are displaced as far to the left as possible, and at the
same time assuring that no valve saturation is present, when completing the trajectories.
The obtained poles of the compensated systems are (for HSS I and II, respectively):

sI = −150± j150 ∧ sI = −25 and sII = −350± j350 ∧ sII = −35 (7.12)
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Figure 7.3: Bode diagrams for the GFM compensated systems. (A) HSS I. (B) HSS II.

From figure 7.3 it is clearly seen that the damping ratios of the systems are increased.
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In order to increase the tracking performance, as for the classical linear controllers, a
velocity feed forward compensation can be applied. In this case this is found in a way
similar to the the VFCP. However, as the system has now been altered, one must take
into account the velocity and pressure loops introduced by the GFM. Hence by closing the
velocity and pressure feedback loops provided by the GFM, and disregarding the position
feedback loop, the compensated system can be considered as an open loop system, as
shown in figure 7.4.

Px&vu SISO system
(Plant)

Px

Lp
+-

DF

Rx
1k

2k

3k
+
+

Figure 7.4: Open loop compensated system.

Now the passive feed forward gain is obtained similar to the one of expression 6.1. By
letting the system gain of the compensated open loop system be denoted KG, then the
feed forward gain ΓV FCPG

is obtained as:

ΓV FCPG
=

1
KG

(7.13)

As mentioned earlier the feedforward compensation acts as a pre-filter and hence does
not affect closed loop stability of the systems. Hence no further analysis is necessary
regarding the feedforward contribution.

7.5 Simulation Results

In the following the simulation results when implemented on the nonlinear model, are
presented for the GFM compensated system. The compensated systems are first subjected
to the rectangular trajectory (RECT), and following this the IOT.

7.5.1 Simulation Results

In the following the simulation results for the rectangular trajectory tracking are pre-
sented. It is noted that the GFM compensated systems with feedforward compensation,
is not shown for the RECT, as this experiences valve saturation in this situation.

It is seen from figures 7.5 and 7.6 that compensation by use of a state gain feedback
matrix provides fairly good tracking performance for HSS II - however for HSS I relatively
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large tracking error occurs. It has not been possible to implement the feed forward
compensation in this situation, as the valve in this case reaches the saturation limits,
when completing the RECT. It is seen that applying multiple feedback loops (as the GFM
compensation does) causes the systems to track their trajectories without oscillations in
the tracking error, as is experienced with the classic linear controllers.
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Figure 7.5: Simulation results for the GFM controller, applied on HSS I. (A) Trajectory tracking. (B) Tracking
error.
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Figure 7.6: Simulation results for the GFM control scheme, applied on HSS II. (A) Trajectory tracking. (B)
Tracking error.

7.5.2 Tracking Errors (RECT)

Compensator |emaxI | [mm] ermsI [mm] |emaxII | [mm] ermsII [mm]
GFM 18.54 7.22 15.18 5.90

The simulation results for the IOT, along with their errors are found in appendix L.
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7.6 Summary

In this chapter state space representation is utilized for controller development. Here
both a state feedback gain compensator and an augmentation of the same compensator by
applying feed forward contributions is developed by use of the pole placement technique.
The augmented state feedback gain compensator could unfortunately not be tested on
the system using RECT, as this caused valve saturation. However, the augmented state
feedback gain compensator could be tested for the system using IOT, which yielded a
dramatically increased tracking performance compared to the pure GFM compensated
system.
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Chapter 8
Simplified
Actuator Model

This chapter concerns the establishment of a simplified actuator model, suitable for use in
the development of the adaptive control schemes. This simplified model will be based on
the existing model of the hydraulic actuators.

Before initiating the process of establishing the adaptive control laws, a simplified model
used to represent the system is determined - this will be carried out considering the indi-
vidual servo systems, hence the simplified model is established as a SISO system.

In general, hydraulic systems include various time variant parameters, which are difficult
to describe. To be able to establish the adaptive controllers, as for the linear controllers,
a mathematical model is needed. In this case, it is desirable to have a simplified lower
order model, rather than having a complex relative high order model as that used in the
linear control design. In order to establish this simplified lower order model, the following
assumptions are made:

• The forces applied by the load pressure is strictly larger than the inertia load and
the friction forces counteracting this - hence the force equilibrium is omitted in the
simplified model

• The hydraulic oil is infinitely stiff - hence the pressure dynamics are omitted

Due to the less accurate simplified model based on the above mentioned assumption, the
modeling error has increased compared to the linear model obtained previously - hence
in the simplified model, a modeling error which is considered unknown, is introduced.

To provide further justification for using the simplified model in the control design, the
previously obtained linear actuator model representation is considered:

GPi(s) =
Ki

(T 2
nis

2 + 2ζiTnis + 1)s
=

Ki(
1

ω2
ni

s2 + 2ζi
1

ωni
s + 1

)
s

(8.1)
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It is seen that for large values of the natural frequency and damping ratio, which occurs
for small values of the equivalent mass, it is reasonable to consider the dynamic model as
consisting of the system gain and the pure integrator - hence, as mentioned before, when
assuming that the forces applied by the load pressure is strictly larger than the inertia
load, this is a valid simplification.

It is assumed that the stiffness of the hydraulic oil is infinite, thereby neglecting the
pressure dynamics. When also neglecting the inertia load, the friction forces, and when
also omitting the leakage flow, the describing equations for the actuators are reduced to:

QL = Kviuvi

√
PS − PT − sign(uvi)PLi

2
, QL = AisxPi ⇒ (8.2)

AisxPi = Kviuvi

√
PS − PT − sign(uvi)PLi

2
⇒ (8.3)

xPi

uvi
=

Kvi

√
PS−PT−sign(uvi)PLi

2

Ai

1
s

(8.4)

Hence the simplified dynamic model is given by:

Gsi =
Γp

s
where, Γp =

Kvi

√
PS−PT−sign(uvi)PLi

2

Ai
=

Kvi

√
PS − PT − sign(uvi)PLi√

2Ai

(8.5)

Rewriting the dynamic model to express the valve input, introducing the modeling error ν
(due to the neglected terms following from the made assumptions), the simplified dynamic
model is given by:

Γ(t)ẋP (t) + ν(t) = u(t) where, Γ(t) =
1
Γp

(8.6)

This simplified model is a time variant function, representing the individual servo systems,
thereby meaning a hydraulic cylinder and a servo valve.
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This chapter concerns the establishment and implementation of adaptive control schemes.
First a derivation of a Robust Model based Controller (RMC) control law is carried out,
which will form the base for the adaptive control laws. Hereafter the adaptive control laws
are chosen and proved stable, and finally these are implemented and tested in simulations
and in experiments.

9.1 Introduction

The adaptive control schemes developed and implemented in this chapter, based on the
simplified model are:

• Adaptive Inverse Dynamics Controller (AIDC)

• Modified Adaptive Inverse Dynamics Controller (MAIDC)

• Augmented Adaptive Controller (AAC)

• Modified Augmented Adaptive Controller (MAAC)

• Robust Adaptive Inverse Dynamics Controller (RAIDC)

• Robust Augmented Adaptive Controller (RAIDC)

The approach will be to establish a control law that will enable the closed loop system
to track a position reference, when assuming non varying system states, and thereby no
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parameter variation (Robust Model based Controller)[Andersen, 1996]. In reality this is
not the case, as parameters will vary, and to take these variations into account, adaption
laws are introduced, enabling the possibility of updating the control parameters contin-
uously over time, increasing the tracking performance. In each of these adaptive control
schemes it will be necessary to prove that the chosen control law will cause the closed
loop system to remain stable, and that the position error will converge to zero. For the
stability proofs Lyapunov theory is used.

In the following (t) and the index i is omitted for reasons of clarity. Furthermore vector
notation is omitted.

9.2 Robust Model Based Controller (RMC)

In this thesis the adaptive control scheme will basically be constituted by two elements
- a gain in the feedforward path of the closed loop system stabilizing the error tracking
system, and a feedforward contribution using the inverse dynamic expression in the feed-
forward loop, which as previously mentioned will provide the necessary valve input for
trajectory tracking, and thereby increase tracking performance.

The robust control scheme is suggested as[Andersen, 1996]:

Γ̂(ẋR − kpe) + ν̂ = u (9.1)

With the Γ̂ and ν̂ representing the control parameter estimates. This control scheme is
motivated by the fact that it can be shown that, in the ideal case with known parameters
and no disturbances, the system error dynamics will converge to zero, as time goes to
infinity, which is found from the following. The simplified model and ideal case control
law is given by:

ΓẋP + ν = u ; Γ(ẋR − kpe) + ν = u ; e = xP − xR (9.2)

From the above expressions, the closed loop dynamics is given by:

ΓẋP + ν = Γ(ẋR − kpe) + ν (9.3)
ΓẋP + ν = ΓẋR − Γkpe + ν (9.4)

Γ(ẋP − ẋR) = −Γkpe (9.5)
Γė + Γkpe = 0 (9.6)

ė + kpe = 0 (9.7)

It is found that the error dynamics will converge to zero as time goes to infinity, and
thereby the closed loop system is asymptotically stable (for proper values of kp).

In reality however, the ideal case with known parameters an no disturbances does not
occur, and hence it is needed to show that the closed loop system with estimated control
parameters Γ̂ and ν̂ are stable, which is shown in the following. The closed loop control
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system with estimated control parameters is given by:

ΓẋP + ν = Γ̂(ẋR − kpe) + ν̂ (9.8)
(9.9)

Subtracting ΓẋR on both sides, yields:

ΓẋP + ν − ΓẋR = Γ̂(ẋR − kpe) + ν̂ − ΓẋR (9.10)

Γė + ν = Γ̂ẋR − Γ̂kpe + ν̂ − ΓẋR (9.11)

Γė = (Γ̂− Γ)ẋR − Γ̂kpe + ν̂ − ν (9.12)

Defining the error estimates Γ̃ = Γ̂− Γ and ν̃ = ν̂ − ν[Slotine E J-J, 1991], yields:

Γė = Γ̃ẋR − Γ̂kpe + ν̃ (9.13)

Γ̂ė− Γ̃ė = Γ̃ẋR − Γ̂kpe + ν̃ (9.14)

Γ̂ė + Γ̂kpe = Γ̃ẋR + Γ̃ė + ν̃ (9.15)

Γ̂(ė + kpe) = Γ̃ẋR + Γ̃ẋP − Γ̃ẋR + ν̃ (9.16)

Γ̂(ė + kpe) = Γ̃ẋP + ν̃ (9.17)

ė + kpe = Γ̂−1Γ̃ẋP + Γ̂−1ν̃ (9.18)

Using ė = ẋP − ẋR, yields:

ė + kpe = Γ̂−1Γ̃ė + Γ̂−1Γ̃ẋR + Γ̂−1ν̃ (9.19)

ė− Γ̂−1Γ̃ė + kpe = Γ̂−1Γ̃ẋR + Γ̂−1ν̃ (9.20)

ė(1− Γ̂−1Γ̃) + kpe = Γ̂−1Γ̃ẋR + Γ̂−1ν̃ (9.21)

Using Γ̃ = Γ̂− Γ ⇒ Γ = Γ̂− Γ̃ ⇒ Γ̂−1Γ = 1− Γ̂−1Γ̃, yields:

ėΓ̂−1Γ + kpe = Γ̂−1Γ̃ẋR + Γ̂−1ν̃ (9.22)

ė + Γ̂Γ−1kpe = Γ̂Γ−1Γ̂−1Γ̃ẋR + Γ̂Γ−1Γ̂−1ν̃ (9.23)

ė + Γ̂Γ−1kpe = Γ−1Γ̃ẋR + Γ−1ν̃ (9.24)

ė + Γ̂Γ−1kpe = Γ−1(Γ̃ẋR + ν̃) (9.25)

Addition of kpe on both sides yields:

ė + kpe + Γ̂Γ−1kpe = Γ−1(Γ̃ẋR + ν̃) + kpe (9.26)

ė + kpe = Γ−1(Γ̃ẋR + ν̃) + kpe− Γ̂Γ−1kpe (9.27)

ė + kpe = Γ−1(Γ̃ẋR + ν̃) + (1− Γ̂Γ−1)kpe (9.28)

Defining ξ = Γ−1(Γ̃ẋR + ν̃) + (1− Γ̂Γ−1)kpe, yields:

ė + kpe = ξ (9.29)
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It is seen that the above expression represents a linear differential equation given by:

se + kpe = ξ (9.30)
(s + kp)e = ξ (9.31)

e

ξ
=

1
s + kp

= h(s) ⇒ h(t) = e−kpt (9.32)

The function norm in appendix H.5 is used to give h(s) a bound. The function norm
says that for any fixed p ∈ [1,∞], if f : <n → < belongs to Lp if

∫∞
0 |f(t)|pdt < ∞. This

means that if ‖h(s)‖∞ has a finite positive value, then h(s) is bounded (according to the
function norm). This yields:

‖h(s)‖∞ =
∫ ∞

0
|e−kpt|dt =

1
kp

(9.33)

From the above it is then found that h(s) is bounded since ‖h(s)‖∞ < ∞. It is not
possible to conclude whether ξ is bounded - however by using the truncated L∞ norm, ξ
can be given a bound in some limited time interval 0 < t < T , where T < ∞. Then for
zero initial conditions it is possible to give the error a bound as[Andersen, 1996]:

‖e‖T∞ ≤ 1
kp
‖ξ‖T∞ (9.34)

Defining α1 = ‖Γ−1(Γ̃ẋR + ν̃)‖T∞ and α2 = ‖(1− Γ̂Γ−1)kp‖T∞, expression 9.34 is written
as:

‖e‖T∞ ≤ 1
kp

α1 +
1
kp

α2‖e‖T∞ ⇒ (9.35)

‖e‖T∞ ≤
1
kp

α1

1− 1
kp

α2
(9.36)

To ensure that e is bounded (e ∈ L∞), the right hand side of expression 9.36 must have
a finite value, which implies that:

1
kp

α2 < 1 (9.37)

1
kp
‖(1− Γ̂Γ−1)kp‖T∞ < 1 (9.38)

‖1− Γ̂Γ−1‖T∞ < 1 (9.39)

Using expression 8.5 and disregarding sign(uvi), yields:

1− Γ̂Γ−1 = 1− Γ̂
Kvi

√
Ps − PT − PLi√

2Ai

< 1 (9.40)

The estimate Γ̂ is chosen as:

Γ̂ =
√

2Ai

Kvi

√
Ps − PT

(9.41)
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Substituting into expression 9.40, yields:

1−
√

2Ai

Kvi

√
Ps − PT

Kvi

√
Ps − PT − PLi√

2Ai

< 1 (9.42)

1−
√

Ps − PT − PLi√
Ps − PT

< 1 (9.43)

As the trajectories are planned such that the necessary supply pressure does not exceed
PLi = 2/3Ps in order to have have enough power for control, the inequality of expression
9.43 will always be satisfied. Then the robustness of the controller is assured if the
following conditions are satisfied[Andersen, 1996].

Γ̂(t) exists , kp > 0 , ‖1− Γ̂Γ−1‖T∞ < 1 (9.44)
e = 0 for t = 0 , ẋR is bounded , ν is bounded (9.45)

If these conditions are satisfied, then the system is stable, with:

‖e‖T∞ ≤
1
kp

α1

1− 1
kp

α2
(9.46)

It has now been shown that the suggested control law implemented in the system is stable,
and this control law will form the base of the following adaptive control schemes.

9.3 Adaptive Inverse Dynamics Controller (AIDC)

The AIDC is derived based on the RMC control law, and in addition to this an adaption
law is added, which will adapt the estimated control parameters continuously over time to
achieve increased tracking performance. The stability for this set of differential equations
which constitutes the control- and adaption laws, is proved by use of Lyapunov theory.
By use of the simplified model and the control law, the closed loop system is given by:

ΓẋP + ν = Γ̂(ẋR − kpe) + ν̂ (9.47)

Subtracting ΓẋR on both sides yields:

ΓẋP + ν − ΓẋR = Γ̂(ẋR − kpe) + ν̂ − ΓẋR (9.48)

Γė + ν = Γ̂(ẋR − kpe) + ν̂ − ΓẋR (9.49)

Using the error estimates Γ̃ = Γ̂− Γ and ν̃ = ν̂ − ν, yields:

Γė = Γ̂(ẋR − kpe) + ν̃ − ΓẋR (9.50)

Γė = Γ̃(ẋR − kpe) + Γ(ẋR − kpe) + ν̃ − ΓẋR (9.51)

Γė = Γ̃(ẋR − kpe) + ΓẋR − Γkpe + ν̃ − ΓẋR (9.52)

Γė = Γ̃(ẋR − kpe)− Γkpe + ν̃ (9.53)

Γė + Γkpe = Γ̃(ẋR − kpe) + ν̃ (9.54)

Γ(ė + kpe) = Γ̃(ẋR − kpe) + ν̃ (9.55)
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The following vectors are defined:

Y =
[

ẋR − kpe 1
]

and ã =
[

Γ̃
ν̃

]
(9.56)

Substituting these vectors into expression (9.55), the system is rewritten to:

Γ(ė + kpe) = Y ã (9.57)

ė + kpe = Γ−1Y ã (9.58)

ė = −kpe + Γ−1Y ã (9.59)

Written by use of the laplace transform, this yields:

ė + kpe = Γ−1Y ã (9.60)

e(s + kp) = Γ−1Y ã (9.61)

e =
1

s + kp
Γ−1Y ã (9.62)

From lemma I in appendix H.2 it is seen, that the adaption parameters will adapt such
that e → 0 for t →∞, if the adaption law is chosen as:

˙̃a = −γY T e ; γ > 0 (9.63)

Here γ is the adaption gain. In the following, the stability of the AIDC will be shown
using Lyapunov theory.

9.3.1 Stability Proof (AIDC)

The Lyapunov candidate is chosen to be[Andersen, 1996]:

V (e, ã) =
1
2
e2 +

1
2
γ−1Γ−1ãT ã (9.64)

Taking the time derivative yields:

V̇ (e, ã) = ėe +
1
2
γ−1(Γ̇−1ãT ã + 2Γ−1ãT ˙̃a) (9.65)

Substituting the error dynamics (expression 9.59), yields:

V̇ (e, ã) = (−kpe + Γ−1Y ã)e +
1
2
γ−1(Γ̇−1ãT ã + 2Γ−1ãT ˙̃a) (9.66)

= −kpe
2 + Γ−1Y ãe +

1
2
γ−1Γ̇−1ãT ã + γ−1Γ−1ãT ˙̃a (9.67)

Assuming that ‖Γ̇‖ << ‖ ˙̃a‖, yields:

V̇ (e, ã) = −kpe
2 + Γ−1Y ãe + γ−1Γ−1ãT ˙̃a (9.68)
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Using that Y ã = ãT Y T , yields:

V̇ (e, ã) = −kpe
2 + Γ−1ãT (Y T e + γ−1 ˙̃a) (9.69)

Substituting the adaption law, yields:

V̇ (e, ã) = −kpe
2 + Γ−1ãT (Y T e + γ−1(−γY T e)) (9.70)

= −kpe
2 + Γ−1ãT (Y T e− γ−1γY T e) (9.71)

= −kpe
2 + Γ−1ãT (Y T e− Y T e) (9.72)

= −kpe
2 ⇒ (9.73)

V̇ (e, ã) = −kpe
2 ≤ 0 (9.74)

It is seen that V̇ (e, ã) is negative semi-definite as the inequality is satisfied, independent
of the value of ã. This indicates that e ∈ L2∩L∞ and ã ∈ L∞. Then by considering 9.59,
and noting that ẋR, ã and Γ are bounded, it is found that ė is bounded and ė ∈ L∞. The
following can now be stated:

V (e, ã) > 0 ; V̇ (e, ã) ≤ 0 ; (e, ã) 6= 0 (9.75)

According to the Lyapunov-like lemma in appendix H.4, if 9.75 is satisfied, and V̇ (e, ã)
is uniformly continuous, then e → 0 for t →∞. Barbalats lemma (appendix H.3) states,
that a sufficient condition for a differentiable function to be uniformly continuous, is that
its derivative is bounded. This means that it is needed to show that V̈ (e, ã) is bounded.
Taking the time derivative of V̇ (e, ã), yields:

V̈ (e, ã) = −2kpeė (9.76)

From the above expression it is seen, that as e and ė are bounded, then V̈ (e, ã) is bounded,
and hence V̇ (e, ã) is uniformly continuous, according to Barbalats lemma. It can then,
according to the Lyapunov-like lemma, be concluded that e → 0 as t →∞, yielding that
e is asymptotically stable.

The control- and adaption laws of the AIDC can now formally be written, noting that
˙̃a = ˙̂a, when considering a as a true slow varying parameter.

AIDC control law:

Γ̂(ẋR − kpe) + ν̂ = u ; e = xP − xR ; kp > 0 (9.77)

AIDC adaption law:

˙̃a = ˙̂a = −γY T e =

[
˙̂Γ
˙̂ν

]
=
[
−γ1(ẋR − kpe)e

−γ2e

]
; γ1, γ2 > 0 (9.78)
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9.4 Modified Adaptive Inverse Dynamics Controller (MAIDC)

The MAIDC is similar to the AIDC, but with a modified adaption law - instead of only
having the integral part, also a proportional part is added to the adaption law. The
model and control law is, as for the AIDC:

ΓẋP + ν = u and Γ̂(ẋR − kpe) + ν̂ = u ; e = xP − xR (9.79)

And the modified adaption law is given by[Hansen, 1997]:

˙̃a = −γY T e− α
d

dt
(Y T e) ; γ, α > 0 (9.80)

9.4.1 Stability Proof (MAIDC)

The Lyapunov candidate is chosen as[Hansen, 1997]:

V (e, Ĩ) =
1
2
e2 +

1
2
γΓ−1IT I (9.81)

Where I =
∫

(Y T e)dt. Taking the time derivative and assuming that ‖Γ̇‖ << ‖ ˙̃a‖, yields:

V̇ (e, I) = ėe + γΓ−1İT I (9.82)

Substituting the error dynamics (expression (9.59)), yields:

V̇ (e, I) = (−kpe + Γ−1Y ã)e + γΓ−1İT I (9.83)

= −kpe
2 + Γ−1Y ãe + γΓ−1İT I (9.84)

= −kpe
2 + Γ−1İT ã + γΓ−1İT I (9.85)

Using the modified adaption law:

˙̃a = −γY T e− α
d

dt
(Y T e) (9.86)

= −γİ − αÏ ⇒ (9.87)

ã = −γI − αİ ⇒ (9.88)

I = γ−1(−ã− αİ) (9.89)

And inserting, yields:

V̇ (e, I) = −kpe
2 + Γ−1İT ã + γΓ−1İT γ−1(−ã− αİ) (9.90)

= −kpe
2 + Γ−1İT ã + Γ−1İT (−ã− αİ) (9.91)

= −kpe
2 + Γ−1İT ã− Γ−1İT ã− αΓ−1İT İ (9.92)

= −kpe
2 − αΓ−1İT İ (9.93)

= −(kpe
2 + αΓ−1İT İ) (9.94)

The terms e2 and İT İ will always be positive, and as Γ is positive it is found that V̇ (e, I) is
negative semi-definite, for positive values of kp and α. As V̇ (e, I) is negative semi-definite
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and V (e, I) > 0, it is found that e and İ are bounded. Furthermore, by considering
expression 9.59 it is found that ė is bounded and ė ∈ L∞. Then if V̇ (e, I) is uniformly
continuous, e → 0 for t →∞ (Lyapunov-like lemma, appendix H.4), and e will hence be
asymptotically stable. Taking the time derivative of V̇ (e, I), yields:

V̈ (e, I) = −2kpeė− 2αΓ−1İT Ï (9.95)

Substituting ˙̃a = −γİ − αÏ ⇒ Ï = −γİ/α− ˙̃a/α, yields:

V̈ (e, I) = −2kpeė− 2αΓ−1İT (−γİ/α− ˙̃a/α) (9.96)

= −2kpeė− 2Γ−1İT (−γİ − ˙̃a) (9.97)

As e, ė and İ are found to be bounded, and as ˙̃a is bounded, it is found that V̈ (e, I) is
bounded, and consequently that V̇ (e, I) is uniformly continuous. From the Lyapunov-like
lemma it is found that e → 0 for t →∞. The control- and adaption laws of the MAIDC
are formally written as shown below.

MAIDC control law:

Γ̂(ẋR − kpe) + ν̂ = u ; e = xP − xR ; kp > 0 (9.98)

MAIDC adaption law:

˙̃a = ˙̂a =

[
˙̂Γ
˙̂ν

]
=
[
−γ1(ẋR − kpe)e− α1

d
dt((ẋR − kpe)e)

−γ2e− α2
d
dte

]
; γ1, γ2, α1, α2 > 0

9.5 Augmented Adaptive Controller (AAC)

The AAC control scheme is similar to that of the AIDC, however in the AAC an additional
proportional+integral term is added in the control law - the motivation for applying this
control scheme is an initiative to decrease the error further than that of the AIDC. The
control law is given by[Andersen, 1996]:

Γ̂(ẋR − kpe) + ν̂ − kPI x̄ = u ; x̄ = e + kp

∫ t

0
e(τ)dτ ; e = xP − xR (9.99)

First it is shown that this control structure will in fact cause the error to converge to
zero, when the control parameters are known (as also carried out for the RMC control
law used for the AIDC and MAIDC). Using the simplified model, and the AAC control
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scheme with known parameters, the closed loop dynamics is given by:

ΓẋP + ν = Γ(ẋR − kpe) + ν − kPI x̄ (9.100)
ΓẋP + ν = ΓẋR − Γkpe + ν − kPI x̄ (9.101)

ΓẋP = ΓẋR − Γkpe− kPI x̄ (9.102)
ΓẋP − ΓẋR + Γkpe = −kPI x̄ (9.103)

Using the expression for x̄, yields:

Γ(ė + kpe) = −kPI x̄ (9.104)
Γ ˙̄x = −kPI x̄ (9.105)

Γ ˙̄x + kPI x̄ = 0 (9.106)

The chosen Lyapunov candidate is[Andersen, 1996]:

V (x̄) =
1
2
Γx̄2 (9.107)

Taking the time derivative, yields:

V̇ (x̄) = Γx̄ ˙̄x (9.108)

Substituting ˙̄x = −Γ−1kPI x̄, yields:

V̇ (x̄) = Γx̄(−Γ−1kPI x̄) (9.109)

V̇ (x̄) = −kPI x̄
2 (9.110)

V̇ (x̄) ≤ 0 (9.111)

It is seen that V̇ (x̄) is negative semi definite, and as V (x̄) > 0 it is found that x̄ is
bounded and x̄ ∈ L2 ∩L∞. From this it follows by considering expression (9.106), that ˙̄x
is bounded and ˙̄x ∈ L∞. Then if V̇ (x̄) is uniformly continuous, x̄ → 0 for t → 0. Taking
the time derivative of V̇ (x̄), yields:

V̈ (x̄) = −2kPI x̄ ˙̄x (9.112)

As x̄ and ˙̄x are bounded, V̈ (x̄) is bounded, and hence V̇ (x̄) is uniformly continuous.
According to the Lyapunov-like lemma, this implies that x̄ → 0 for t →∞. This however,
does not imply whether e converges to zero, only that x̄ does - to determine whether e
does in fact converge to zero the expression for x̄ is considered. Taking the time derivative
and the laplace transform, yields:

sx̄ = se + kPIe (9.113)
sx̄ = (s + kPI)e ⇒ (9.114)

e =
s

s + kPI
x̄ (9.115)

From the above expression it is found that for positive values of kPI and if x̄ → 0 for
t → ∞ (which is the case), then e is stable and e → 0 for t → ∞. From this it is found
that the error will in fact converge to zero with an additional PI term in the control law.
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As mentioned earlier there is not perfect knowledge of the control law parameters, and it
is now shown that the e is asymptotically stable when using the adaption law to estimate
the control parameters.

9.5.1 Stability Proof (AAC)

The control law is given by:

Γ̂(ẋR − kpe) + ν̂ − kPI x̄ =
[

ẋR − kpe 1
] [ Γ̃

ν̃

]
− kPI x̄ = Y â− kPI x̄ = u (9.116)

With the adaption law[Andersen, 1996]:

˙̂a = −γY T x̄ (9.117)

The Lyapunov-like candidate is chosen as[Andersen, 1996]:

V (x̄, ã) =
1
2
Γx̄2 +

1
2
γ−1ãT ã (9.118)

Taking the time derivative, yields:

V̇ (x̄, ã) =
1
2
Γ̇x̄2 + Γx̄ ˙̄x + γ−1ãT ˙̃a (9.119)

Using:

Γ ˙̄x = Γė + Γkpe = u− ν − ΓẋR + Γkpe (9.120)

Yields:

V̇ (x̄, ã) =
1
2
Γ̇x̄2 + x̄(u− ν − ΓẋR + Γkpe) + γ−1ãT ˙̃a (9.121)

Assuming ‖Γ̇‖ << ‖ ˙̃a‖, gives:

V̇ (x̄, ã) = x̄(u− ν − ΓẋR + Γkpe) + γ−1ãT ˙̃a (9.122)

= x̄(u− ν − Γ(ẋR + kpe)) + γ−1ãT ˙̃a (9.123)

Using the control law:

Γ̂(ẋR − kpe) + ν̂ − kPI x̄ = u (9.124)

And substituting, gives:

V̇ (x̄, ã) = x̄(u− ν − Γ(ẋR + kpe)) + γ−1ãT ˙̃a (9.125)

= x̄((Γ̂(ẋR − kpe) + ν̂ − kPI x̄)− ν − Γ(ẋR + kpe)) + γ−1ãT ˙̃a (9.126)

= x̄(Γ̃(ẋR − kpe) + ν̃ − kPI x̄) + γ−1ãT ˙̃a (9.127)

= x̄(Y ã− kPI x̄) + γ−1ãT ˙̃a (9.128)
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Using the adaption law, and assuming that a is a slow varying parameter:

˙̃a = ˙̂a = −γY T x̄ (9.129)

Yields:

V̇ (x̄, ã) = x̄(Y ã− kPI x̄) + γ−1ãT ˙̃a (9.130)

= x̄(Y ã− kPI x̄) + γ−1ãT (−γY T x̄) (9.131)

= x̄(Y ã− kPI x̄)− ãT Y T x̄ (9.132)

Using that ãT Y T = Y ã, yields:

V̇ (x̄, ã) = x̄(Y ã− kPI x̄)− Y ãx̄ (9.133)

= Y ãx̄− kPI x̄
2 − Y ãx̄ (9.134)

= −kPI x̄
2 (9.135)

It is seen that V̇ (x̄, ã) is negative semi-definite. As expression 9.135 is identical to expres-
sion 9.110, then using the same argumentation it can be shown that x̄ → 0 for t → ∞,
hence e → 0 for t → ∞. Thereby it is found that the e is asymptotically stable. The
AAC can now formally be written as:

AAC control law:

Γ̂(ẋR − kpe) + ν̂ − kPI x̄ = u ; e = xP − xR ; kp, kPI > 0 (9.136)

AAC adaption law:

˙̃a = ˙̂a =

[
˙̂Γ
˙̂ν

]
=
[
−γ1(ẋR − kpe)x̄

−γ2x̄

]
; γ1, γ2 > 0 (9.137)

Where:

x̄ = e + kp

∫ t

0
e(τ)dτ (9.138)

9.6 Modified Augmented Adaptive Controller (MAAC)

The MAAC is similar to the AAC but instead of using only integral terms in the adaption
law, also a proportional term is added (as also done in the MAIDC). The control law and
belonging adaption law is given as[Andersen, 1996]:

Γ̂(ẋR − kpe) + ν̂ − kPI x̄ = u ; x̄ = e + Kp

∫ t

0
e(τ)dτ ; e = xP − xR (9.139)
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˙̃a = −γY T x̄− α
d

dt
(Y T x̄) ; γ, α > 0 (9.140)

To ensure that this control law is stable with the modified adaption law, again Lyapunov
theory is used. Previous to the stability proof, ˙̄x is obtained by use of the simplified
closed loop system.

ΓẋP + ν = Γ̂(ẋR − kpe) + ν̂ − kPI x̄ (9.141)

Subtracting ΓẋR on both sides, yields:

ΓẋP + ν − ΓẋR = Γ̂(ẋR − kpe) + ν̂ − kPI x̄− ΓẋR (9.142)

Γė + ν = Γ̂(ẋR − kpe) + ν̂ − kPI x̄− ΓẋR (9.143)

Γė = Γ̂(ẋR − kpe) + ν̃ − kPI x̄− ΓẋR (9.144)
(9.145)

Using Γ̂ = Γ̃ + Γ, yields:

Γė = Γ̃(ẋR − kpe) + Γ(ẋR − kpe) + ν̃ − kPI x̄− ΓẋR (9.146)

Γė = Γ̃(ẋR − kpe) + ΓẋR − Γkpe + ν̃ − kPI x̄− ΓẋR (9.147)

Γė = Γ̃(ẋR − kpe)− Γkpe + ν̃ − kPI x̄ (9.148)

Γė + Γkpe = Γ̃(ẋR − kpe) + ν̃ − kPI x̄ (9.149)
Γė + Γkpe = Y ã− kPI x̄ (9.150)

Using that ˙̄x = ė + kpe, yields:

Γ ˙̄x = Y ã− kPI x̄ (9.151)
˙̄x = Γ−1Y ã− Γ−1kPI x̄ (9.152)

The error dynamics has now been derived using the closed loop dynamics, and the stability
proof can be carried out.

9.6.1 Stability Proof (MAAC)

The Lyapunov candidate is chosen as[Hansen, 1997]:

V (x̄, Ĩ) =
1
2
x̄2 +

1
2
γΓ−1IT I (9.153)

Where I =
∫

(Y T x̄)dt. Taking the time derivative and assuming that ‖Γ̇‖ << ‖ ˙̃a‖, yields:

V̇ (x̄, I) = ˙̄xx̄ + γΓ−1İT I (9.154)

Substituting the expression 9.151, yields:

V̇ (x̄, I) = (Γ−1Y ã− Γ−1kPI x̄)x̄ + γΓ−1İT I (9.155)

= Γ−1Y ãx̄− Γ−1kPI x̄
2 + γΓ−1İT I (9.156)
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Using the modified adaption law:

˙̃a = −γY T x̄− α
d

dt
(Y T x̄) = −γİ − αÏ ⇒ (9.157)

ã = −γI − αİ ⇒ I = γ−1(−ã− αİ) (9.158)

And inserting, yields:

V̇ (x̄, I) = Γ−1Y ãx̄− Γ−1kPI x̄
2 + γΓ−1İT I (9.159)

= Γ−1Y ãx̄− Γ−1kPI x̄
2 + γΓ−1İT (γ−1(−ã− αİ)) (9.160)

= Γ−1Y ãx̄− Γ−1kPI x̄
2 − Γ−1İT ã− αΓ−1İT İ (9.161)

= Γ−1Y ãx̄− Γ−1kPI x̄
2 − Γ−1Y ãx̄− αΓ−1İT İ (9.162)

= −Γ−1kPI x̄
2 − αΓ−1İT İ (9.163)

= −Γ−1(kPI x̄
2 + αİT İ) ≤ 0 (9.164)

It is seen that V̇ (x̄, I) is negative semi-definite, and as V (x̄, I) > 0, then according to
the Lyapunov-like lemma, if V̇ (x̄, I) is uniformly continuous, x̄ will converge to zero as
time goes to infinity. The argumentation that V̇ (x̄, I) is uniformly continuous is similar
to that of the MAIDC, and it is found that x̄ → 0 for t → ∞, and consequently that
e → 0 for t → ∞. Thereby it is found that e is asymptotically stable. The control- and
adaption laws of the MAAC are given as shown below.

MAAC control law:

Γ̂(ẋR − kpe) + ν̂ − kPI x̄ = u ; e = xP − xR ; kp, kPI > 0 (9.165)

MAAC adaption law:

˙̃a = ˙̂a =

[
˙̂Γ
˙̂ν

]
=
[
−γ1(ẋR − kpe)x̄− α1

d
dt((ẋR − kpe)x̄)

−γ2x̄− α2
d
dt x̄

]
; γ1, γ2, α1, α2 > 0

Where:

x̄ = e + kp

∫ t

0
e(τ)dτ (9.166)

9.7 RAIDC & RAAC

In this section robust versions of the adaption law of the AIDC and AAC are presented
(Robust Adaptive Inverse Dynamics Controller and Robust Augmented Adaptive Con-
troller).

These adaption laws are accounted for, but not proved by Lyapunov theory as the pre-
vious controllers presented in this chapter. For stability proofs, there is referred to
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[Andersen, 1996].

The AIDC and AAC adaption laws consists of pure integral parts, and it was assumed
that the system could be represented by the simplified first order model - however, the
system is of higher order which introduces dynamics that is not taken into account in the
simplified model, and hence un-modeled high frequency dynamics might cause instability
to the physical system. Furthermore, on the physical robot manipulator, the control
schemes are implemented in a discrete way, using feedback signals containing some level
of noise. This may also cause instability in the system if for example the adaption law
adapts the control parameters using signals overlayed with noise. The mentioned elements
acts as disturbances to the system, which calls for robust versions of the adaption laws,
enabling the control schemes to cope with these disturbances.

In the robust adaption laws, instead of letting these consist of pure integral terms, a first
order integrating system is put instead of the integrator. This corresponds to applying a
first order filter in the adaption law, enabling the possibility to avoid these disturbances
to some extend, making the parameter adaption more robust. As this is equivalent to
applying a feedback loop in the adaption law, this ensures that the adapted parameters
remain bounded provided that the input signals to the adaption algorithm are bounded.

It is noted that the adaption laws for the AIDC and AAC are similar to each other,
and hence the following robust adaption law goes for both control schemes, seen from an
algebraic point of view. The robust adaption laws are given by[Andersen, 1996]:

˙̃a = ˙̂a = −σâ− γY T e ; γ, σ > 0 (9.167)

From the following, it is found that the σâ term in the above expression does correspond
to applying a first order filter to the adaption algorithm, instead of a pure integrator.
Laplace transforming, yields:

âs = −σâ− γY T e (9.168)

âs + σâ = −γY T e (9.169)

(s + σ)â = −γY T e (9.170)

â = − γ

s + σ
Y T e (9.171)

(9.172)

It is seen that including the σâ term does have a filter effect in the adaption algorithm,
with filter time constant determined by σ.

The RAIDC- and RAAC control schemes are given in the following:
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RAIDC control law:

Γ̂(ẋR − kpe) + ν̂ = u ; e = xP − xR ; kp > 0 (9.173)

RAIDC adaption law:

˙̃a = ˙̂a =

[
˙̂Γ
˙̂ν

]
=
[
−σγ1

∫
t((ẋR − kpe)e)dt− γ1(ẋR − kpe)e

−σγ2

∫
t(e)dt− γ2e

]
; σ, γ1, γ2 > 0 (9.174)

RAAC control law:

Γ̂(ẋR − kpe) + ν̂ − kPI x̄ = u ; e = xP − xR ; kp, kPI > 0 (9.175)

RAAC adaption law:

˙̃a = ˙̂a =

[
˙̂Γ
˙̂ν

]
=
[
−σγ1

∫
t((ẋR − kpe)x̄)dt− γ1(ẋR − kpe)x̄

−σγ2

∫
t(x̄)dt− γ2x̄

]
; σ, γ1, γ2 > 0

(9.176)

Where:

x̄ = e + kp

∫ t

0
e(τ)dτ (9.177)

9.8 Parameters for Adaptive Control Schemes

In the following the control parameters obtained, when implementing the MAIDC- and
MAAC schemes, will be presented. The AIDC-, AAC, RAIDC and RAAC control schemes
are presented in appendix I. When implementing the adaptive control schemes, it is nec-
essary to consider the initial values of the adapted parameters and in particular Γ̂ - in the
case of large deviations in the initial value of Γ̂ compared to Γ, the parameter adaption
might experience large transient periods, as this may not be able to adapt the parameters
with sufficient speed. However, by using proper initial values of the adaption parame-
ters, close to the actual values of these parameters, the transient period of the parameter
adaption will be decreased.

The parameters used during simulations are presented in appendix J. It is noted that
these has been found by trial and error, as no method for this purpose is available.
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9.9 Simulation Results

In the following the simulation results for the MAIDC and the MAAC are presented.

From figures 9.1 and 9.5 it is found that the MAIDC and MAAC when implemented on
HSS I increases tracking performance compared to the classic linear controllers, especially
when completing the parabolic-like segments of the trajectory. From figures 9.2 and 9.6
no visible improvement is found, compared to the classic linear controllers - however,
from table 9.1 it is clear that both maximum- and RMS errors are decreased compared
to the classic linear controllers.

It is found from figures 9.3, 9.4, 9.7, 9.8, that when choosing proper initial values for the
adapted parameters and properly tuned controller parameters, the adapted parameters
Γ̂i are able to track fluctuations in the Γi to some extend.

9.9.1 MAIDC
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Figure 9.1: MAIDC scheme implemented on HSS I. (A) Trajectory tracking. (B) Tracking error.
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Figure 9.2: MAIDC scheme implemented on HSS II. (A) Trajectory tracking. (B) Tracking error.
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Figure 9.3: MAIDC scheme implemented on HSS I. (A) Adaption of Γ̂I . (B) Adaption of ν̂I .
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Figure 9.4: MAIDC scheme implemented on HSS II. (A) Adaption of Γ̂II . (B) Adaption of ν̂II .

9.9.2 MAAC
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Figure 9.5: MAAC scheme implemented on HSS I. (A) Trajectory tracking. (B) Tracking error.
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Figure 9.6: MAAC scheme implemented on HSS II. (A) Trajectory tracking. (B) Tracking error.
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Figure 9.7: MAAC scheme implemented on HSS I. (A) Adaption of Γ̂I . (B) Adaption of ν̂I .
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Figure 9.8: MAAC scheme implemented on HSS II. (A) Adaption of Γ̂II . (B) Adaption of ν̂II .
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9.9.3 Tracking errors - (RECT)

Compensator |emaxI | [mm] ermsI [mm] |emaxII | [mm] ermsII [mm]
MAIDC 4.00 1.59 1.15 0.23
MAAC 10.00 2.82 0.65 0.17

Table 9.1: Tracking error values for controllers tested on the rectangular trajectory.

The simulation results for the IOT, along with their errors are found in appendix M.

9.10 Experimental Results

When implemented on the physical system, the tuned controller parameters obtained on
the on linear model have been scaled down in order to make the controllers function. This
may be due to possibly un-modeled higher order dynamics, which effects are not shown
when simulating the model. When implementing the MAIDC and MAAC it is found
from figures 9.9, 9.10, 9.11 and 9.12 that the results resembles those of the simulations,
however with increased errors. Particularly the experiments regarding actuator II shows
decreased tracking performance. The project group considers this, to a large extend, to
be due parameter tuning, and it is found that it may be possible to achieve increased
performance, if more time is used on parameter tuning.

9.10.1 MAIDC
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Figure 9.9: MAIDC scheme implemented on HSS I. (A) Trajectory tracking. (B) Tracking error.
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Figure 9.10: MAIDC scheme implemented on HSS II. (A) Trajectory tracking. (B) Tracking error.

9.10.2 MAAC
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Figure 9.11: MAAC scheme implemented on HSS I. (A) Trajectory tracking. (B) Tracking error.
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Figure 9.12: MAAC scheme implemented on HSS II. (A) Trajectory tracking. (B) Tracking error.

9.10.3 Tracking Errors - (RECT)

Compensator |emaxI | [mm] ermsI [mm] |emaxII | [mm] ermsII [mm]
MAIDC 6.97 1.80 5.77 1.82
MAAC 8.73 3.03 6.62 2.05

Table 9.2: Tracking error values for controllers tested on the rectangular trajectory.

9.11 Summary

In this chapter first a non-adaptive robust model based controller (RMC) has been pre-
sented and proved stable. This was hence used as base for the adaptive control schemes.
Then various control and adaptive laws has been presented and proved stable, and ro-
bust adaption laws were presented, but not proved stable. The adaptive control schemes
AIDC, MAIDC and RAIDC utilizes the same control law as the RMC. In the augmented
adaptive control schemes AAC, MAAC and RAAC, the control law of the RMC were
altered such that an extra proportional + integral term were added. All controllers es-
tablished in this chapter has been implemented in simulation (except the RMC), and the
MAIDC and MAAC has also been implemented on the physical system. When imple-
mented on the physical system, the MAIDC and MAAC showed performance similar to
the simulations. However, in general, when implemented on the physical system, slightly
decreased performance were achieved compared to simulation, and this is found to be due
to various modeling errors and parameter tuning.
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This chapter concerns the establishment of an adaptive robust controller (ARC) suitable
to take into account the effect of various uncertainties, disturbances etc.

10.1 Introduction

On the physical system, both parametric uncertainties such as varying inertia load, vari-
ations of bulk modulus due to temperature changes and varying pressure, and uncertain
non-linearities, such as external disturbances, un-modeled leakage and friction, occurs. In
the design phase of this ARC, an initiative to compensate for these uncertainties is carried
out. The controller established is a modified version of an ARC, called a discontinuous
projection based adaptive robust controller[Yao et al., 2001]. The controller is established
based on the complete hydraulic actuator model, and the design approach used is partly
adaptive backstepping control design. In the following the index i is omitted.

10.2 Model used in Design Phase

In the model used in the design phase, proposed by [Yao et al., 2001], the servo valve
dynamics is described by a third order system, where the complex conjugated poles are
sufficiently fast to be neglected. However, for the servo valves implemented on the phys-
ical system object for this thesis, the servo valve dynamics is approximated by a second
system, constituted by poles sufficiently fast to be neglected in the control design phase.
In order to avoid redoing the proof developed by [Yao et al., 2001], it is assumed that the
first order dynamics for the servo valve is present.

95
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In the treatment of the ARC controller, the inertia load dynamics of the system is de-
scribed by equation 10.1, where f̃(t, xP , ẋP ) represents the external disturbances and
un-modeled friction forces.

MeqẍP = PLA− bẋP − FC(ẋP ) + f̃(t, xP , ẋP ) (10.1)

The actuator dynamics is described by equation 10.2:

Vt

4βF
ṖL = −AẋP − CLPL + QL (10.2)

The load flow QL is given by 10.3:

QL = Cdwxv

√
PS − sign(xv)PL

ρ
(10.3)

The relation between the spool valve displacement and the input voltage is given by
equation 10.4.

τvẋv = −xv + Kvuv (10.4)

As seen from equation 10.4 the spool valve / input voltage relation is described by a first
order system where τv and Kv is the servo valve time constant and gain, respectively.
When implementing the controller for simulation purposes numerical errors may arise
according to [Yao et al., 2001], and in order to minimize this phenomena scaling factors
are used to scale the valve opening and the load pressure, by x̄v = xv

Sc4
and P̄L = PL

Sc3
,

respectively. By including the scaling factors and rewriting the system equations the
equations take the form of 10.5:

ẍP =
ASc3

Meq

(
P̄L −

b

ASc3
ẋP −

FC(xP )
ASc3

)
+ d(t, xP , ẋP ) (10.5)

˙̄PL =
4βF

Vt

Sc4√
Sc3

Cdw√
ρ

(
− A

Sc4

√
Sc3

√
ρ

Cdw
ẋP −

√
Sc3

Sc4

√
ρ

Cdw
CLP̄L + g3(P̄L, x̄v)x̄v

)
˙̄xv = − 1

τv
x4 +

Kv

Sc4τv
uv

Where, d = 1
Meq

f̃(t, xP , ẋP ), g3(P̄L, x̄v) =
√

P̄S − sign(xv)P̄L and P̄S = PS
Sc3

. The system
is now formulated in state space, with the states defined as:

x1 = xP , x2 = ẋP , x3 = P̄L , x4 = x̄v (10.6)

Hence the state space representation of the system, is given as:

ẋ1 = x2 (10.7)

ẋ2 =
ASc3

m
(x3 − b̄x2 − F̄C) + d(t, x1, x2)

ẋ3 =
4βF

Vt

Sc4√
Sc3

Cdw√
ρ

[−Āx2 − C̄Lx3 + g3x4]

(10.8)
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ẋ4 = − 1
τv

x4 +
K̄v

τv
uv

Where:

b̄ =
1

ASc3
b , F̄C =

1
ASc3

FC , Ā =
1

Sc4

√
Sc3

√
ρ

Cdw
A , (10.9)

C̄L =
√

Sc3

Sc4

√
ρ

Cdw
CL , K̄v =

1
Sc4

Kv (10.10)

In order to reduce parametric uncertainties of bulk modlus βF , the inertia load Meq and
the nominal value of the disturbance d (henceforward designated dn), the state space
equations in 10.7 are linearized and parameterized. The unknown parameter set θ =
[θ1, θ2, θ3]T is defined as:

θ1 =
ASc3

m
, θ2 = dn , θ3 =

4βF

Vt

Sc4√
Sc3

Cdw√
ρ

(10.11)

The state space equations resulting from the linearization, parameterization and defining
d̃ = d(t, x1, x2)− dn, is given by:

ẋ1 = x2 (10.12)

ẋ2 = θ1(x3 − b̄x2 − F̄C(x2)) + θ2 + d̃(t, x1, x2) (10.13)
ẋ3 = θ3[−Āx2 − C̄Lx3 + g3(x3, x4)x4] (10.14)

ẋ4 = − 1
τv

x4 +
K̄v

τv
u (10.15)

It is assumed that the bounds of 10.16 holds true.

θ ∈ Ωθ = {θ : θmin < θ < θmax} (10.16)

| d̃(t, x1, x2) |≤ δd(x1, x2, t)

where: θmin = [θ1min, θ2min, θ3min]T , θmax = [θ1max, θ2max, θ3max]T and δd(t, x1, x2) are
known. The adaption law proposed by [Yao et al., 2001], is given by:

˙̂
θ = Projθ̂(Γτ) (10.17)

where Γ > 0 describes a constant diagonal matrix, τ is an adaption function and Proj is
a discontinuous projection given by:

Projθ̂(•) =


0 if θ̂i = θimax and • > 0
0 if θ̂i = θimin and • < 0

• otherwise

(10.18)

Here θ̂ is the estimate of θ, and θ̃ is the estimation error given by θ̃ = θ̂ − θ. Bounds on
the projection Projθ̂ are given by (according to [Yao et al., 2001]):

θ̂ ∈ Ω̄θ = {θ̂ : θmin ≤ θ̂ ≤ θmax} (10.19)

θ̃T (Γ−1Projθ̂(Γτ)− τ) ≤ 0, ∀τ (10.20)
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The parts of ẋ2 and ẋ3 that can be calculated are given by ˆ̇x2 and ˆ̇x3, respectively, and
given by expressions 10.21.

ˆ̇x2 = θ̂1(x3 − b̄x2 − F̄C(x2)) + θ̂2 (10.21)
ˆ̇x3 = θ̂3[−Āx2 − C̄Lx3 + g3(x3, x4)x4]

10.3 Control Design

In the following the control design will be accounted for. This is carried out according
to [Yao et al., 2001]. The control design is carried out in three steps - first a Lyapunov
function is established for the first two states x1 and x2 directly. Following this, Lyapunov
functions are established first, and the control laws are thus found in a way similar to
the backstpping design approach[Yao et al., 2001]. In the following, notations (•) will be
omitted.

10.3.1 Step 1

The error dynamics denoted by z2 is given by equation 10.22:

z2 = ė1 + kpe1 (10.22)

Where e1 = x1 − x1R is the tracking position error. x1 is the actual position, x1R is the
desired position and kp is a positive feedback gain. Defining x2eq = ẋ1R − kpe1, the error
dynamics is rewritten as:

z2 = x2 − x2eq (10.23)

Laplace transforming equation 10.22 yields,

z2 = ė1 + kpe1

z2 = e1s + kpe1

z2 = e1(s + kp)
e1(s)
z2(s)

=
1

s + kp
(10.24)

Since 10.24 is a stable transfer function, then if the input z2 is bounded the output e1

will also be bounded. Hence if the input converges to zero the output will also converge
to zero as time goes to infinity. Then in the following the objective will be to make z2

become as small as possible, in order to make the error e1 as small as possible.

Differentiating 10.23 and substituting equation 10.13, yields:

ż2 = ẋ2 − ẋ2eq = θ1(x3 − b̄x2 − F̄C) + θ2 + d̃− ẋ2eq , ẋ2eq = ẍ1R − kpė1 (10.25)

A virtual control law α making z2 small can be chosen for x3 (according to [Yao et al., 2001]),
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and is given by 10.26:

α2(x1, x2, θ̂1, θ̂2, t) = α2a + α2s = α2a + α2s1 + α2s2 (10.26)

Where:

α2a = b̄x2 + F̄C +
1

θ̂1

(ẋ2eq − θ̂2) , α2s1 = −k2s1z2 , α2s2 = − h2

2θ1minε2
z2 (10.27)

For a more detailed description of the elements of the control law in expression 10.26, see
appendix N.1.

Defining the input discrepancy between x3 and the control function α2 by z3 = x3 − α2,
and substituting into expression 10.25, yields:

ż2 = θ1(x3 − b̄x2 − F̄C) + θ2 + d̃− ẋ2eq

= θ1x3 − θ1b̄x2 − θ1F̄C + θ2 + d̃− ẋ2eq

= θ1(z3 + α2)− θ1b̄x2 − θ1F̄C + θ2 + d̃− ẋ2eq

= θ1(z3 + α2a + α2s)− θ1b̄x2 − θ1F̄C + θ2 + d̃− ẋ2eq

= θ1z3 + θ1α2s + θ1(α2a − b̄x2 − F̄C) + θ2 + d̃− ẋ2eq (10.28)

Noting that θ̃ = θ̂ − θ ⇒ θ = θ̂ − θ̃, yields:

ż2 = θ1z3 + θ1α2s + θ̂1(α2a − b̄x2 − F̄C)− θ̃1(α2a − b̄x2 − F̄C) + θ2 + d̃− ẋ2eq

(10.29)

Knowing that α2a is given as α2a = b̄x2 + F̄C + 1
θ̂1

(ẋ2eq − θ̂2), yields:

ż2 = θ1z3 + θ1α2s + θ̂1(
1

θ̂1

(ẋ2eq − θ̂2))− θ̃1(α2a − b̄x2 − F̄C) + θ2 + d̃− ẋ2eq

= θ1z3 + θ1α2s − θ̂2 − θ̃1(α2a − b̄x2 − F̄C) + θ2 + d̃ (10.30)

Knowing that α2s = α2s1 + α2s2 where α2s1 = −k2s1z2, yields:

ż2 = θ1z3 + θ1(α2s2 − k2s1z2)− θ̃2 − θ̃1(α2a − b̄x2 − F̄C) + θ2 + d̃

(10.31)

The following vector is defined:

φ2 =

 α2a − x̄2 − F̄C

1
0

 (10.32)

Then ż2 can be written as:

ż2 = θ1z3 + θ1α2s2 − θ1k2s1z2 − θ̃T φ2 + d̃ (10.33)
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Now a positive semi-definite Lyapunov function V2 is defined.

V2 =
1
2
w2z

2
2 ; w2 > 0 (10.34)

With the time derivative:

V̇2(z2) = w2z2ż2 (10.35)

Substituting expression 10.28, yields:

V̇2 = w2z2ż2

= w2z2(θ1z3 + θ1α2s2 − θ1k2s1z2 − θ̃T φ2 + d̃) (10.36)

= w2θ1z2z3 + w2z2(θ1α2s2 − θ̃T φ2 + d̃)− w2θ1k2s1z
2
2 (10.37)

The above Lyapunov function is in itself not proved stable, but as it will be shown in the
following, by establishing an overall Lyapunov function composed of the above expression
and Lyapunov functions for the remaining states, it is possible to proof stability. Hence
this step has been completed, and step 2 can be initiated.

10.3.2 Step 2

In this step a virtual control law for α3 is developed for Q̄L such that x3 tracks the
control function α2 developed in Step 1. Like the control function α2 in Step 1 the
control function α3 also consists of two parts as shown in equation 10.38, and is chosen
according to [Yao et al., 2001]:

α3(x̄3, θ̂, t) = α3a + α3s (10.38)

The time derivative of 10.38, is given by:

α̇2 = α̇2c + α̇2u

=
∂α2

∂x1
x2 +

∂α2

∂x2
ẋ2 +

∂α2

∂θ̂

˙̂
θ +

∂α2

∂t
(10.39)

=
∂α2

∂x1
x2 +

∂α2

∂x2

ˆ̇x2 −
∂α2

∂x2

˜̇x2 +
∂α2

∂θ̂

˙̂
θ +

∂α2

∂t
(10.40)

Here α̇2c is the calculable part and α̇2u is the incalculable part due to various uncertainties.
Hence these are obtained as:

α̇2c =
∂α2

∂x1
x2 +

∂α2

∂x2

ˆ̇x2 +
∂α2

∂t
(10.41)

α̇2u =
∂α2

∂x2
(−˜̇x2) +

∂α2

∂θ̂

˙̂
θ =

∂α2

∂x2
θ̃1[−(x3 − b̄x2 − F̄C)− θ̃2 + d̃] +

∂α2

∂θ̂

˙̂
θ (10.42)

In the following an initiative to deal with the incalculable part α̇2u, is taken. Taking the
time derivative of the previously defined z3 = x3 − α2, yields:

ż3 = ẋ3 − α̇2 (10.43)
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Substituting the state equation ẋ3 = ṖL, yields:

ż3 = θ3(−Āx2 − C̄Lx3 + g3x4)− α̇2c − α̇2u (10.44)
= θ3(−Āx2 − C̄Lx3 + Q̄L)− α̇2c − α̇2u (10.45)

Defining z4 = Q̄L − α3 ⇒ Q̄L = z4 + α3, and substituting, yields:

ż3 = θ3(−Āx2 − C̄Lx3 + z4 + α3)− α̇2c − α̇2u (10.46)
= θ3z4 + θ3(−Āx2 − C̄Lx3 + α3)− α̇2c − α̇2u (10.47)

Now the Lyapunov candidate, regarding the third state equation, is established. The
Lyapunov candidate is chosen as [Yao et al., 2001]:

V3 = V2 +
1
2
w3z

2
3 ; w3 > 0 (10.48)

Taking the time derivative, yields:

V̇3 = θ1w2z2z3 + V̇2|α2 + w3z3 (10.49)

Here V̇2|α2 denotes V̇2 under the condition that x3 = α3, which yields z3 = 0. Substituting
the expression for ż3, yields:

V̇3 = θ1w2z2z3 + V̇2|α2 + w3z3

(
θ3z4 + θ3(−Āx2 − C̄Lx3 + α3)− α̇2c − α̇2u

)
(10.50)

= θ3w3z3z4 + V̇2|α2 + w3z3

(
w2

w3
θ1z2 + θ3(−Āx2 − C̄Lx3 + α3)− α̇2c − α̇2u

)
Substituting the expression for α̇2u, yields:

V̇3 = θ3w3z3z4 + V̇2|α2 + w3z3(
w2

w3
θ1z2 + θ3(−Āx2 − C̄Lx3 + α3)− α̇2c (10.51)

− ∂α2

∂x2
(−(x3 − b̄x2 − F̄C)θ̃1 − θ̃2 + d̃) +

∂α2

∂θ̂

˙̂
θ)

= θ3w3z3z4 + V̇2|α2 + w3z3θ3α3 + w3z3(
w2

w3
θ1z2 + θ3(−Āx2 − C̄Lx3)− α̇2c

− ∂α2

∂x2
(−(x3 − b̄x2 − F̄C)θ̃1 − θ̃2 + d̃) +

∂α2

∂θ̂

˙̂
θ)

Using the error estimate θ̃ = θ̂ − θ ⇒ θ = θ̂ − θ̃, yields:

V̇3 = θ3w3z3z4 + V̇2|α2 + w3z3θ3α3 + w3z3(
w2

w3
θ̂1z2 + θ̂3(−Āx2 − C̄Lx3) (10.52)

− w2

w3
θ̃1z2 − θ̃3(−Āx2 − C̄Lx3)− α̇2c −

∂α2

∂x2
(−(x3 − b̄x2 − F̄C)θ̃1 − θ̃2 + d̃) +

∂α2

∂θ̂

˙̂
θ)

Considering the third term of the right hand side of the above expression, and using that
α3 = α3a + α3s, yields:

w3z3θ3α3 = w3z3θ3α3s + w3z3θ3α3a (10.53)
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Using that θ = θ̂ − θ̃, gives:

w3z3θ3α3 = w3z3θ3α3s + w3z3θ̂3α3a − w3z3θ̃3α3a (10.54)

Substituting into equation 10.52, yields:

V̇3 = θ3w3z3z4 + V̇2|α2 + w3z3θ3α3s + w3z3(
w2

w3
θ̂1z2 + θ̂3(−Āx2 − C̄Lx3 + α3a)

− w2

w3
θ̃1z2 − θ̃3(−Āx2 − C̄Lx3 − α3a)− α̇2c −

∂α2

∂x2
(−(x3 − b̄x2 − F̄C)θ̃1 − θ̃2

+ d̃) +
∂α2

∂θ̂

˙̂
θ) (10.55)

Defining the expression:

α3e =
w2

w3
θ̂1z2 + θ̂3(−Āx2 − C̄Lx3)− α̇2c (10.56)

And the vector:

φ3 =

 w2
w3

z2 − ∂α2
∂x2

(−(x3 − b̄x2 − F̄C)
−∂α2

∂x2

−Āx2 − C̄Lx3 + α3a

 (10.57)

Then expression 10.55 can be written as:

V̇3 = θ3w3z3z4 + V̇2|α2 + w3z3θ3α3s (10.58)

+ w3z3

(
θ̂3α3a + α3e − θ̃T φ3 −

∂α2

∂x2
d̃− ∂α2

∂θ̂

˙̂
θ

)
The control law α3 is chosen as[Yao et al., 2001]:

α3 = α3a + α3s = α3a + α3s1 + α3s2 where, (10.59)

α3a = − 1

θ̂3

α3e , α3s1 = −K3s1z3 , α3s1 = − 1
2θ3min

h3z3

The coefficients of the above control law is accounted for according to [Yao et al., 2001],
and are given in appendix N.2. Substituting into expression 10.58, yields:

V̇3 = θ3w3z3z4 + V̇2|α2 + w3z3

(
θ3α3s2 − θ̃T φ3 −

∂α2

∂x2
d̃

)
− θ3w3K3s1z

2
3 − w3z3

∂α2

∂θ̂

˙̂
θ

(10.60)

The second step of the control design has now been completed, and the third step can be
carried out.

10.3.3 Step 3

In this step, the control law for the valve input uv is established. This is carried out
such that Q̄L tracks the control law established in step 2, and can be carried out by step
2, where the control law was determined based on the time derivative of the Lyapunov
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candidate. However, as Q̄L contains sign(x4), Q̄L is not continuous at x4 = 0, and hence
is not differentiable. However, according to [Yao et al., 2001], it is possible to proceed the
control design by noting that Q̄L is differentiable anywhere except at the singular point
of x4 = 0 and is continuous anywhere.

Similar to the previous step, the positive semi-definite Lyapunov candidate is chosen
as[Yao et al., 2001]:

V4 = V3 +
1
2
w4z

2
4 ; w4 > 0 (10.61)

Taking the time derivative, yields:

V̇4 = θ3w3z3z4 + V̇3|α3 + w4z4ż4 (10.62)

Using that:

z4 = Q̄L − α3 ⇒ ż4 = ˙̄QL − α̇3 (10.63)

And substituting into 10.62, yields:

V̇4 = θ3w3z3z4 + V̇3|α3 + w4z4( ˙̄QL − α̇3) (10.64)

= V̇3|α3 + w4z4(θ3
w3

w4
z3 + ˙̄QL − α̇3) (10.65)

The time derivative of the control law α3 is determined as:

α̇3 = α̇3c + α̇3u (10.66)

Where α̇3c and α̇3u are the calculable and the incalculable parts, respectively.

α̇3c =
∂α3

∂x1
x2 +

∂α3

∂x2

˙̂x2 +
∂α3

∂x3

˙̂x3 +
∂α3

∂t
(10.67)

α̇3u =
∂α3

∂x2
(−(x3 − b̄x2 − F̄C)θ̃1 − θ̃2 + d̃)− ∂α3

∂x3
(−Āx2 − C̄Lx3 + g3x4)θ̃3 (10.68)

+
∂α3

∂θ̂

˙̂
θ)

Substituting expressions 10.66 and 10.68 into expression 10.65, and using that ˙̄QL =
∂g3

∂x3
ẋ3x4 + g3ẋ4, yields:

V̇4 = V̇3|α3 + w4z4(θ3
w3

w4
z3 +

∂g3

∂x3
ẋ3x4 + g3ẋ4 − α̇3c −

∂α3

∂x2
(−(x3 − b̄x2 − F̄C)θ̃1

− θ̃2 + d̃)− ∂α3

∂x3
(−Āx2 − C̄Lx3 + g3x4)θ̃3 +

∂α3

∂θ̂

˙̂
θ)) (10.69)

Substituting the third state equation ẋ3 into the above expression gives:

V̇4 = V̇3|α3 + w4z4(θ3
w3

w4
z3 +

∂g3

∂x3
θ3(−Āx2 − C̄Lx3 + g3x4)x4 + g3ẋ4 (10.70)
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Continued ⇒

− α̇3c −
∂α3

∂x2
(−(x3 − b̄x2 − F̄C)θ̃1 − θ̃2 + d̃)

− ∂α3

∂x3
(−Āx2 − C̄Lx3 + g3x4)θ̃3 +

∂α3

∂θ̂

˙̂
θ))

Using that θ = θ̂ − θ̃, and inserting the expression for ẋ4 yields:

V̇4 = V̇3|α3 + w4z4(θ̂3
w3

w4
z3 +

∂g3

∂x3
θ̂3(−Āx2 − C̄Lx3 + g3x4)x4 − θ̃3

w3

w4
z3 (10.71)

− ∂g3

∂x3
θ̃3(−Āx2 − C̄Lx3 + g3x4)x4 + g3(−

1
τv

x4 +
K̄v

τv
u)− α̇3c −

∂α3

∂x2
(−(x3 − b̄x2

− F̄C)θ̃1 − θ̃2 + d̃)− ∂α3

∂x3
(−Āx2 − C̄Lx3 + g3x4)θ̃3 +

∂α3

∂θ̂

˙̂
θ))

Defining expressions:

α4e = θ̂3
w3

w4
z3 − g3

1
τv

x4 +
∂g3

∂x3

˙̂x3x4 + α4e (10.72)

φ4 =

 −∂α3
∂x2

(−(x3 − b̄x2 − F̄C)
−∂α3

∂x2
w3
w4

z3 − ( ∂g3

∂x3
x4 − ∂α3

∂x3
)Āx2 − C̄Lx3 + Q̄L

 (10.73)

And noting the expression for ˙̂x3, expression 10.71 is written as:

V̇4 = V̇3|α3 + w4z4(g3
K̄v

τv
u + α4e − θ̃φ4 +

∂α3

∂x̂2
d̃− ∂α3

∂θ̂

˙̂
θ)

The control law for uv is now chosen according to [Yao et al., 2001], as:

uv(x, θ̂, t) = ua + us = ua + us1 + us2 (10.74)

Where:

ua = − τv

K̄vg3
α4e , us1 = −K4s1z4 , us2 = − τv

2K̄vg3ε4
h4z4 (10.75)

The constants of the above expression is presented in appendix N.3. Substituting expres-
sion 10.60 into expression 10.74, yields:

V̇4 = w2z2

(
θ1α2s2 − θ̃T φ2 + d̃

)
− θ1w2K2s1z

2
2 (10.76)

+ w3z3

(
θ3α3s2 − θ̃T φ3 −

∂α2

∂x2
d̃

)
− θ3w3K3s1z

2
3

+ w4z4(g3
K̄v

τv
us2 − θ̃T φ4 +

∂α3

∂x2
d̃)− w4K4s1z

2
4

− (w3z3
∂α2

∂θ̂

˙̂
θ + w4z4

∂α3

∂θ̂

˙̂
θ)
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10.4 Stability Proof (ARC)

According to theorem 1 of appendix N.4, if the adaption law is chosen as:

τ =
4∑

j=2

wjzjφj (10.77)

Then expression 10.76 can, according to [Yao et al., 2001], be rewritten to:

V̇4 ≤ −
4∑

j=2

wjkjz
2
j − θ̃T τ (10.78)

The following new Lyapunov function is defined:

Vθ = V4 +
1
2
θ̃T Γ−1θ̃ (10.79)

Taking the time derivative, yields:

V̇θ = V̇4 + θ̃T Γ−1 ˙̃
θ (10.80)

Considering θ a slow varying parameter, then ˙̃
θ = ˙̂

θ. This gives:

V̇θ = V̇4 + θ̃T Γ−1 ˙̂
θ (10.81)

Substituting expression 10.78, yields:

V̇θ ≤ −
4∑

j=2

wjkjz
2
j − θ̃T τ + θ̃T Γ−1 ˙̂

θ (10.82)

Using the projection bound of expression 10.20 and noting the adaption law of expression
10.17, yields:

θ̃T (Γ−1Projθ̂(Γτ)− τ) ≤ 0 (10.83)

θ̃T (Γ−1 ˙̂
θ − τ) ≤ 0 (10.84)

θ̃T Γ−1 ˙̂
θ − θ̃T τ ≤ 0 (10.85)

θ̃T Γ−1 ˙̂
θ ≤ θ̃T τ (10.86)

Substituting into expression 10.82, yields:

V̇θ ≤ −
4∑

j=2

wjkjz
2
j (10.87)

As wj and kj are positive constants, it is found that expression 10.87, which contains
V̇2, V̇3 and V̇4, is negative semi-definite, indicating that z2, z3 and z4 are bounded as
Vθ > 0. Then according to the Lyapunov-like lemma of appendix H.4, if V̇θ is uniformly
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continuous, z2, z3, z4 → 0 for t →∞. Taking the time derivative of V̇θ, yields:

V̈θ = −2(w2k2z2ż2 + w3k3z3ż3 + w4k4z4ż4) (10.88)

In the above it was found that z2, z3, z4 are bounded, and according to [Yao et al., 2001]
it can be shown that ż2, ż3 and ż4 are bounded. Hence it is found that V̈θ is bounded, and
V̇θ is uniformly continuous. Then according to the Lyapunov-like lemma z2, z3, z4 → 0
for t → 0. From the above, and noting expression 10.22, it is found that e → 0 for t → 0.
The control- and adaption laws are summarized below.

ARC control law:

uv = ua + us (10.89)

Where the terms ua and us are synthesized as shown in the derivation.

ARC adaption law:

˙̂
θ = Γτ ; Γ > 0 (10.90)

Where:

Γτ =


0 if θ̂i = θimax and Γτ > 0
0 if θ̂i = θimin and Γτ < 0
Γτ else

(10.91)

And:

τ =
4∑

j=2

wjzjφj = w2z2φ2 + w3z3φ3 + w4z4φ4 (10.92)

Due to the significant amount of parameters in the ARC, it has not been possible to
obtain reasonable tracking performance in simulations within the time frame of this thesis.
However, the project group will attempt to achieve reasonable results in order to present
these at the thesis evaluation.

10.5 Summary

In this chapter an adaptive robust controller has been derived and proved stable, based
on the theory of [Yao et al., 2001]. However, due to difficulties in the tuning phase,
which were caused by the significant amount of unknown controller parameters, it has
not been possible to obtain reasonable tracking performance within the time frame of this
thesis. An initiative to improve performance of the ARC will be made in order to present
reasonable result to the thesis evaluation.
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In this chapter learning control schemes are introduced. First a simple iterative learning
controller (ILC) is established, followed by a robust and more complex discrete learning
controller (RDLC). Finally, the two learning controllers are tested. This chapter is based
on [Andersen, 1995]

11.1 Introduction

This type of control schemes is motivated by the possibility of implementing a learning
or self-tuning law, accompanying the control law. The controllers treated cancels out
the unknown repeatable dynamics of the system by adaptively altering the feed forward
input to the plant. To be able to apply learning control it is a necessary condition
that the control system is to track cyclic trajectories, thereby meaning that the control
system has to track a given trajectory over and over again. The idea is then to improve
tracking performance based on knowledge of the error experienced by the control system
in the previous cycle. The error occurring in the previous cycle is recorded and used
to compensate for the error in the present cycle. For both the controllers presented in
this chapter, the control system appears as shown in figure 11.1 (n indicates the cycle
number).

Gc ++ SISO system
(Plant)

Learning 
operation

++
un(t) un+1(t)

xR(t) xP(t)

xR(t)

Figure 11.1: Control system implemented with learning controller.

107
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In figure 11.1, un(t) is the input trajectory. The learning operator L() compares xP (t)
and xR(t) and adds an update term to un(t) resulting in an output un+1(t).

11.2 Iterative Learning Controller (ILC)

The iterative learning control scheme introduced in this section, is derived based on the
same simple first order dynamic model used to derive the adaptive control schemes of
chapter 8. Hence the model used is given by:

u = ΓẋP + ν (11.1)

The error dynamics is defined as (the index n denotes the nth cycle):

ėn + kpen = ξL (11.2)

The idea is then to add a term to the right hand side of expression 11.2, that reduces
the right hand side of the above expression as close to zero as possible. Hence the error
dynamic equation is given by:

ėn + kpen = ξn − un
∼= 0 (11.3)

Hence based on knowledge of ξn−1, un is updated such that ξn−un approaches zero. For
this to be possible, it is necessary that ξn is approximately the same during each cycle.
Laplace transforming expression 11.3, yields:

sen + kpen = ξn − un (11.4)

en =
1

s + kp
(ξn − un) (11.5)

Defining:

HL(s) =
1

s + kp
(11.6)

Yields:

en = HL(s)(ξn − un) (11.7)

The control law is chosen as[Andersen, 1995]:

u = Γ̂(ẋR + kpen + un) (11.8)

Here the learning term un is chosen as:

un+1 = un + L(s)en (11.9)

Substituting expression 11.7 into expression 11.9, yields:

un+1 = un + L(s)HL(s)(ξn − un) (11.10)
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Defining CL1 = L(s)HL(s), yields:

un+1 = un + CL1(ξn − un) (11.11)
= CL1ξn + un(1− CL1) (11.12)

(11.13)

Letting u0 = 0, expression 11.11 can be written as:

un =
n∑

i=1

((1− CL1)n−iCL1)ξn (11.14)

Subtracting ξn on both sides of expression 11.14, gives:

un − ξn =
n∑

i=1

((1− CL1)n−iCL1)ξn − ξn (11.15)

= (
n∑

i=1

((1− CL1)n−iCL1)− 1)ξn (11.16)

Defining CL2 = 1− CL1, yields:

un − ξn = (
n∑

i=1

(Cn−i
L2 CL1)− 1)ξn (11.17)

= (
n∑

i=1

(Cn−i
L2 (1− CL2))− 1)ξn (11.18)

It is possible to write
∑n

i=1(C
n−i
L2 (1−CL2)) = 1−Cn

L2. Substituting into expression 11.17,
yields:

un − ξn = ((1− Cn
L2)− 1)ξn (11.19)

= −Cn
L2ξn (11.20)

Substituting CL2 = 1− CL1, yields:

un − ξn = −Cn
L2ξn (11.21)

= −(1− CL1)nξn (11.22)

Applying the L2 norm, yields:

‖un − ξn‖2 ≤ ‖ − (1− CL1)n‖2‖ξn‖2 (11.23)

From expression 11.23, it is found that for un to converge to ξn, the following must be
satisfied, noting that n represents the number of cycles, and hence always will be 0 ≤ n:

‖ − (1− CL1)‖2 ≤ 1 for ‖ − (1− CL1)n‖2 → 0 (11.24)
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Now choosing the learning operator L(s) to L(s) = s + (kp − µ)[Andersen, 1995], yields:

1− CL1 = 1− L(s)HL(s) = 1− s + (kp − µ)
s + kp

(11.25)

=
s + kp

s + kp
− s + (kp − µ)

s + kp
(11.26)

=
s + kp − s− kp + µ

s + kp
(11.27)

=
µ

s + kp
(11.28)

Taking the L2 norm (according to appendix H.7), yields:

‖1− CL1‖2 =
∥∥∥∥ µ

s + kp

∥∥∥∥
2

= max
ω∈<

∣∣∣∣ µ

jω + kp

∣∣∣∣ = µ

kp
(11.29)

Hence it is found that for ‖(1−CL1)‖2 ≤ 1 to be satisfied, the following must be satisfied:

0 < µ < kp (11.30)

Hence by satisfying expression 11.30, it is found that un will approach ξn as the number of
cycles progresses. From this it follows that the error will approach zero. Now the control-
and learning update law can be written as shown below (here the learning update law is
displaced one cycle back).

ILC control law:

u = Γ̂(ẋR + kpe + un) (11.31)

ILC learning update law:

un = un−1 + L(s)en−1 = un−1 + (s + (kp − µ))en−1 (11.32)

11.3 Robust Discrete Time Learning Controller (RDLC)

The controller presented in this section is a robust discrete time learning controller for
non-linear time varying systems as the type described by the state space equations of
expressions 11.33.

ẋn(t) = f(xn((t), t) + B(xn((t), t)un(t) + ωn(t) (11.33)
yn(t) = g(xn((t), t)

First there will be a motivation (according to [Andersen, 2004a]) for using the later pro-
posed more general learning control law, following a presentation of the proposed control
and learning laws proposed for the system at hand.
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In the following a motivation for the later proposed learning control law is given. This is
based on the same simplified model, used in the previous section (expression 11.1). The
simplified model is rewritten to the following form:

ẋP (t) = Γ−1(t)u(t)− Γ−1(t)ν(t) (11.34)

It is seen that −Γ−1(t)ν(t) is equivalent to the state error, and will in the following be
denoted φ(t). Denoting the nth work cycle, yields (in the following the subscript P is
omitted):

ẋn(t) = Γ−1
n (t)un(t) + φn(t) (11.35)

By utilizing Taylor expansion the output xn at time t + ∆t can be described as:

xn(t + ∆t) = xn(t) + ẋn(t)∆t = xn(t) + [Γ−1
n (t)un(t) + φn(t)]∆t (11.36)

The subsequent work cycle is denoted by n + 1 and an expression for the input is found
as:

xn+1(t + ∆t) = xn+1(t) + ẋn+1(t)∆t = xn+1(t) + [Γ−1
n+1(t)un+1(t) + φn+1(t)]∆t (11.37)

By substituting xn+1(t + ∆t) with xd(t + ∆t) the input signal un+1(t) which causes
xn+1(t + ∆t) to approach xR(t + ∆t) can be found if φ(t) is known. This is carried out
in the following. Substituting xn+1(t + ∆t) with xR(t + ∆t), yields (xR represents the
desired, or reference position):

xR(t + ∆t) = xn+1(t) + ẋn+1(t)∆t = xn+1(t) + [Γ−1
n+1(t)un+1(t) + φn+1(t)]∆t (11.38)

If the variation of φ(t) between two cycles is ignored, meaning that φn(t) = φn+1(t),then
φn+1(t) can be eliminated from equation 11.38, and an expression for φ(t) is subsequently
derived by isolating in equation 11.36.

xn(t + ∆t) = xn(t) + [Γ−1
n (t)un(t) + φn(t)]∆t ⇒

xn(t + ∆t)− xn(t)− Γ−1
n (t)un(t)∆t = φn(t)∆t ⇒

xn(t + ∆t)
∆t

− xn(t)
∆t

− Γ−1
n (t)un(t) = φn(t) (11.39)

Inserting equation 11.39 into equation 11.38, yields:

xR(t + ∆t) = xn+1(t) + [Γ−1
n+1(t)un+1(t) +

xn(t + ∆t)
∆t

− xn(t)
∆t

(11.40)

− Γ−1
n (t)un(t)]∆t

= xn+1(t) + Γ−1
n+1(t)un+1(t)∆t + xn(t + ∆t)− xn(t) (11.41)

− Γ−1
n (t)un(t)∆t ⇒

xR(t + ∆t)− xn(t + ∆t) = xn+1(t)− xn(t) + [Γ−1
n+1(t)un+1(t)− Γ−1

n (t)un(t)]∆t (11.42)

Equation 11.42 can, by isolating un+1(t) and ignoring the variation of Γ between the
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cycles, be turned into a learning algorithm given by:

xR(t + ∆t)− xn(t + ∆t) = xn+1(t)− xn(t) + [Γ−1un+1(t)− Γ−1un(t)]∆t ⇒ (11.43)

xR(t + ∆t)− xn(t + ∆t)− xn+1(t) + xn(t)
∆t

= [Γ−1un+1(t)− Γ−1un(t)] (11.44)

Isolating un+1(t) yields the motivational learning update law:

un+1(t) = un(t) + Γ
[xR(t + ∆t)− xn(t + ∆t)]− [xn+1(t)− xn(t)]

∆t
(11.45)

A more general form of the learning law is proposed in equation 11.46[Andersen, 2004a]:

un+1(t) = (1− γ)un(t) + γu0(t) + L(xn(t), t)
[xR(t + ∆t)− xn(t + ∆t)]− [xn+1(t)− xn(t)]

∆t
(11.46)

Where, L : Rm × [0, T ] → Rr×m is bounded, and the term γ is can be used to prevent
input wandering at initial conditions and also function as a bias. The term L(xn(t), t) is
a learning operator which in this thesis is considered constant. If the system described in
equation 11.33 uses the learning law of equation 11.46, and satisfies assumptions (A1)−
(A5) listed in appendix K, then (according to [Andersen, 2004a]) given an obtainable xR,
and if:

‖(1− γ)I − Ln(g(x(t), t)
1

∆t

∫ t+∆t

t
gx(x, t)B(x, t)dτ‖ ≤ ρ < 1 (11.47)

And if the initial state error is bounded, then as n approaches infinity, the error between
un and uR is bounded,that is ‖xR(0)− xn(0)‖ ≤ bx0.

As the number of work cycles approaches infinity, then the error between un and uR are
bounded.

Where ∀(x, t) ∈ <n × [0, T ].

By choosing a small ∆t the theorem of equation 11.47 is reduced to equation 11.48:

‖(1− γ)I − Ln(g(x(t), t)gx(x, t)B(x, t)dτ‖ ≤ ρ < 1 (11.48)

Where ∀(x, t) ∈ <n × [0, T ].

The chosen control law is given as 11.49[Andersen, 2004a]:

u = Γ̂(t)(ẋ(t)− kP (xR(t)− x(t))) + uL (11.49)

where uL is the learning term.

A modified version of the learning law given in equation 11.46 is given by equation
11.50[Andersen, 2004a].

uL
n+1(t) = uL

n(t) + L(t)
[xR(t + ∆t)− xk(t + ∆t)]− [xk+1(t)− xk(t)]

∆t
(11.50)

where the learning operator L(t) represents Γ.
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Also the state and output asymptotic errors are bounded, and these depend on the bound
of the initial state error, the bound on the state disturbance and γ.

Given a desired input trajectory the output will eventually converge to the desired input
trajectory which is implied by equation 11.47 if ‖ 1 − L 1

∆t

∫ t+∆t
t gxBdτ‖ ≤ ρ < 1. by

regarding ∆t as being small the above condition is reduced to ‖ 1− LΓ−1 ‖≤ ρ < 1.

From this expression it is seen that choosing L ≤ Γ will make the expression hold true.
The control law and learning update law for the RDLC are given below.

RDLC control law:

u = Γ̂(ẋR + kpe + un) (11.51)

RDLC learning update law:

un(t) = un−1(t) +
L

∆t
((xR(t + ∆t)− xP (t + ∆t))n−1 − (xk(t)− xk−1(t))) (11.52)

11.4 Simulation results

Regarding the implementation of the learning controllers, the following must be taken
into account. As the error reaches a minimum of what the controller can perform, the
error over time will be oscillatory, as the output tracks about the reference. This will
cause the learning part of the controller to accumulate these oscillations, and use this
in the feed forward learning term. Hence the error will increase, yielding poor tracking
performance. The same phenomena occurs if the feedback signal is overlayed with noise,
which to some extend occurs on the physical system. Therefore it is necessary to define
some limits that switches of, or scales down the learning term at a given error value.

11.4.1 Simulation results - ILC

As the ILC is not a robust controller, to ensure that disturbances are similar to each
other during each cycle, and thereby evaluate the performance, the tracking performance
is evaluated by testing the individual HSS’s, while the other is kept in a fixed position.

Regarding the used parameters, the Γ̂ values are chosen poorly, in order to observe the
effect of the learning controller. The parameters used for the ILC’s, are found in appendix
J. It is noted that the learning operators are scaled down in order to be able to observe
the learning effect over several cycles.

It is clear from figures 11.2 and 11.3, that the learning update term causes the effect of
reducing the errors as the trajectory cycles progresses. It is also found from figures 11.2
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and 11.3, that the oscillations begins to accumulate at the last cycles - hence the effect
of the learning operator needs to be scaled down at this point.
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Figure 11.2: Learning controller implemented on HSS I. (A) Trajectory tracking. (B) Tracking error.
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Trajectory tracking - ILC II
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Figure 11.3: Learning controller implemented on HSS II. (A) Trajectory tracking. (B) Tracking error.

11.4.2 Simulation results - RDLC

The simulations for the RDLC control systems are carried out similar to the these of the
ILC control systems, hence evaluating the tracking performance for the individual HSS’s,
while the other is kept in a fixed position.
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Figure 11.4: RDLC implemented on HSS I. (A) Trajectory tracking. (B) Tracking error.
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Trajectory tracking - RDLC II
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Figure 11.5: RDLC implemented on HSS II. (A) Trajectory tracking. (B) Tracking error.

The parameters used in the simulations of the RDLC, are as for the ILC, chosen poorly,
in order to observe the effect of the learning operation. The parameters used for the
RDLC’s are found in appendix J.

It is clear from figures 11.2 and 11.5, that the learning update term causes the effect of
reducing the errors as the trajectory cycles progresses. It is also found from figures 11.2
and 11.3, that the oscillations begins to accumulate at the last cycles - hence the effect
of the learning operator needs to be scaled down at this point.

11.4.3 Tracking Errors - (RECT)

The maximum- and RMS errors are obtained for the trajectory cycles with best perfor-
mance, and are given in the table below.
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Compensator |emaxI | [mm] ermsI [mm] |emaxII | [mm] ermsII [mm]
ILC 5.79 1.72 1.64 0.49
RDLC 10.36 3.59 3.21 0.73

Table 11.1: Tracking error values for controllers tested on the rectangular trajectory.

The simulation results for the IOT, along with their errors are found in appendix M.

11.4.4 Summary

In this chapter two learning controllers, an ILC and a RDLC has been treated. Both
learning controllers are established using the same simplified system model as for the
adaptive controllers. A proof for the stability of the ILC is given and for the RDLC a
motivation for using the learning law of the RDLC has been given. Both controllers have
been implemented and tested in simulink. The controllers were however not implemented
on the physical robot during this thesis, but an initiative to implement the controllers
before the thesis evaluation will be carried out.
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This chapter treats the comparison of the controllers in order to estimate which controllers
yield the best performance when implemented on a hydraulic servo application as the servo
robot in this thesis.

In order to estimate the performance of the various controllers, a set of evaluation criteria
was setup in chapter 1. These where the maximum RMS error, maximum peak error and
robustness towards disturbances.

Even though some of the controllers in the following will perform worse then others, it
may still be justifiable to use them on a hydraulic servo robot, depending on the task
that the robot is to perform. This means that the performance of the controllers might
vary with the job that the robot is to carry out.

12.1 Robustness

As mentioned in section 1.5.3 the robustness of the controllers will also be investigated.
The analysis of the robustness is carried out in order to be able to evaluate how robust
the control systems tested in the thesis, are towards disturbances. In order to provide
proper disturbances to the control systems, it will be appreciable to be able to apply a
disturbance that excites all of the system dynamics. To do this an additional load is
applied to the system at a given point of time during the trajectory - this is applied as a
step to the mass of link II at the center of mass of this. Due to the sudden increase in the
load, the pressure dynamics will be affected, hence affecting all of the hydraulic system.
This analysis is carried only for the RECT, as this is the trajectory that provides the
highest demands for the system. The applied mass will be 50 [kg], and will be applied at
time t = 1 [s] for all control systems. This analysis will be carried out for the linear con-
trollers with VFCP and VFCA, for the AIDC, MAIDC, RAIDC, AAC, MAAC, RAAC,
and for the learning controllers ILC and RDLC. Regarding the learning controllers, the

119



120 Chapter 12. Comparison of Controllers

disturbance is applied during the trajectory cycle with the best performance.

The analysis will be carried out by evaluating the error differences (∆|emaxi|, ∆eRMSi)
between the errors experienced for the control system without disturbance, and for the
control systems with disturbance. Plots of the ∆|emaxi| and for the trajectory tracking
of the controllers when subjected to a disturbance, are found in appendix O.

The controllers are evaluated within each main group of controllers meaning linear, adap-
tive and learning. It should be noted that the performance of the controllers is dependent
on the tuning of the belonging parameters, meaning that the controllers implemented in
this thesis might perform better than illustrated below, given a different tuning.

All the controllers established and tested in this thesis are listed subsequently with indi-
cations on whether or not a given controller has been implemented on the physical robot,
or only the model. An indication of the number and types of sensors needed for each
controller is also given for the servo system.

Compensator Implemented
on physical
robot

Number of
sensors re-
quired

Types of sensors required

P-VFCP x 1 Position
PI-VFCP x 1 Position
Lead-VFCP x 1 Position
Lag-VFCP x 1 Position
Lag-Lead-VFCP x 1 Position
P-VFCA - 2 Position, Pressure
PI-VFCA - 2 Position, Pressure
GFM - 3 Position, Pressure, Velocity
GFM+VFCP - 3 Position, Pressure, Velocity
MAIDC x 1 Position
MAAC x 1 Position
RAIDC - 1 Position
RAAC - 1 Position
AIDC - 1 Position
AAC - 1 Position
ILC - 1 Position
RDLC - 1 Position

Table 12.1: Controllers established in this thesis.

12.2 Linear Controllers

12.2.1 Performance for the RECT

As seen in table 12.2 the best performing controller, when running the RECT, regarding
emax and erms for link I is the PI-VFCA. Even though the feed forward gain of the PI-
VFCA is continuously adjusted, and the controller also uses both pressure and position
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sensors, it does not performing as well for link II, regarding emax and erms, as the PI-
VFCP controller. But as seen the difference between PI-VFCA and PI-VFCP in tracking
error, for both emax and erms for link II are small.

Compensator |emaxI | [mm] ermsI [mm] |emaxII | [mm] ermsII [mm]
P-VFCP 15.37 5.26 2.25 0.83
PI-VFCP 10.97 4.58 1.95 0.63
Lead-VFCP 15.22 5.27 2.39 0.92
Lag-VFCP 12.13 4.33 2.58 0.74
Lag-Lead-VFCP 10.29 4.61 2.44 0.80
P-VFCA 7.51 3.25 2.40 0.83
PI-VFCA 7.44 3.24 2.05 0.74
GFM 18.54 7.22 15.18 5.90
GFM+VFCP − − − −

Table 12.2: Tracking error values for controllers tested on the rectangular trajectory.(simulation)

Performance for Experimental Results for the RECT

Compensator |emaxI | [mm] ermsI [mm] |emaxII | [mm] ermsII [mm]
P-VFCP 12.46 5.29 6.15 2.01
PI-VFCP 10.01 4.73 5.58 1.73
Lead-VFCP 12.72 5.34 6.51 2.25
Lag-VFCP 10.04 4.55 6.13 1.87
Lag-Lead-VFCP 10.03 4.57 5.54 1.91

Table 12.3: Tracking error values for controllers tested on the rectangular trajectory(experimental).

In the table listing the experimental results it is seen that the tracking errors, both emax

and erms, are very similar for the PI-VFCP, Lag-VFCP and Lag-Lead-VFCP for link I.
The peak tracking error for link II is smallest when using the Lag-Lead-VFCP, but the
erms value is the smallest when using the PI-VFCP, which has a reasonable emax value
close to that of the Lag-Lead-VFCP. It is also seen that the controllers implemented
on the physical system does perform better regarding emax for link I, but worse for
erms for both link I and II and also worse regarding emax for link II. The difference in
performance between the simulated and experimental results, is believed to be due to
model uncertainties, and could probably be rectified, or improved, by additional tuning
of the controller parameters on the physical system.
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12.2.2 Performance for the IOT

Compensator |emaxI | [mm] ermsI [mm] |emaxII | [mm] ermsII [mm]
P-VFCP 11.61 6.97 1.88 1.18
PI-VFCP 14.08 8.83 0.92 0.41
Lead-VFCP 11.45 6.90 2.19 1.36
Lag-VFCP 12.28 7.85 1.49 0.82
Lag-Lead-VFCP 15.68 9.48 1.46 0.51
P-VFCA 14.44 6.39 3.37 1.87
PI-VFCA 21.06 7.67 1.48 0.52
GFM 13.43 10.90 9.02 7.36
GFM+VFCP 1.27 0.65 1.44 1.07

Table 12.4: Tracking error values for controllers tested on the out/in trajectory (simulation).

For the IOT trajectory the controller showing the least tracking error, both emax and
erms is clearly the GFM+VFCP, which is also the controller utilizing the most sensors.
Unfortunately, as previously mentioned, the GFM+VFCP controller could not be tested
on the RECT due to valve saturation, and it is therefore not possible to test wether or
not that the GFM+VFCP controller would also have been the best performance for the
RECT.

The emax for link II is also the lowest when using the GFM+VFCP, but does not have
nearly as good an erms performance as the PI-VFCA which also shows good performance
regarding emax.

Generally the GFM+VFCP controller performs well since it uses information from more
states to generate the control input. On the other it also needs more sensors than the
rest of the controllers.

12.2.3 Robustness of Linear Controllers

The difference in maximum errors |∆emaxi| and difference between the RMS errors ∆ermsI ,
found from the ∆e plots in appendix O, are presented in the table below.

Compensator |∆emaxI | [mm] ∆ermsI [mm] |∆emaxII | [mm] ∆ermsII [mm]
P-VFCP 10.85 2.19 1.05 0.03
PI-VFCP 9.54 1.50 0.67 0.04
Lead-VFCP 10.90 2.22 1.13 0.03
Lag-VFCP 9.75 1.55 0.79 0.05
Lag-Lead- VFCP 9.13 1.32 0.78 0.05
P-VFCA 11.71 1.28 0.62 0.12
PI-VFCA 11.45 1.98 0.57 0.38
GFM 2.49 0.42 1.27 0.006

Table 12.5: Difference in errors |∆emaxi| and ∆ermsI , between control systems with and without disturbances
(simulation).
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It is found that all linear control systems, except the control system with GFM, are able
to cope with the applied disturbance in a way similar to each other. However, even though
it did not perform well in neither the RECT nor the IOT simulation, it is found that the
most robust of the linear controllers clearly is the GFM control system which is due to a
relative high damping of the compensated system.

12.3 Adaptive Controllers

12.3.1 Performance for the RECT

Compensator |emaxI | [mm] ermsI [mm] |emaxII | [mm] ermsII [mm]
MAIDC 4.00 1.59 1.15 0.23
MAAC 10.00 2.82 0.65 0.17
RAIDC 6.46 2.68 1.16 0.36
RAAC 6.82 2.48 2.03 0.60
AIDC 9.6 3.00 1.33 0.32
AAC 9.7 2.62 0.91 0.27

Table 12.6: Tracking error values for controllers tested on the rectangular trajectory (simulation).

As for the linear controllers, the best performing controllers are not the same for link I and
link II. The MAIDC is clearly the best performing controller, both regarding emax and
erms for link I whereas the MAAC is the best performing controller for link II. Generally
speaking, all the adaptive controllers perform rather well regarding erms for both link
I and II, but with rather varying results on the emax for link I. It would be expected
that the MAIDC and MAAC controllers would be the best performing, since both of
these have an integral part and a proportional part increasing the speed of the parameter
adaption, whereas the remaining controllers only have an integral part. The difference in
performance for the MAIDC and the MAAC on link I and II is assumed to be, in some
degre, due to tuning of parameters and could probably be decreased if additional time
was spent tuning these.

Performance for Experimental Results for the RECT

Compensator |emaxI | [mm] ermsI [mm] |emaxII | [mm] ermsII [mm]
MAIDC 6.97 1.80 5.77 1.82
MAAC 8.73 3.03 6.62 2.05

Table 12.7: Tracking error values for controllers tested on the rectangular trajectory.(experimantal)

The experimental results for the RECT shows reasonable performance for both the
MAIDC and the MAAC controllers, but the MAIDC is the best performing of the two for
both link I and link II, regarding emax and erms. The difference in controller performance
is to some extent assumed to be due to parameter tuning.
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Performance for the IOT

Compensator |emaxI | [mm] ermsI [mm] |emaxII | [mm] ermsII [mm]
MAIDC 3.85 1.73 0.35 0.14
MAAC 7.20 2.17 0.31 0.11
RAIDC 3.02 1.31 0.55 0.16
RAAC 5.90 2.65 0.63 0.33
AIDC 3.21 1.48 0.61 0.16
AAC 6.86 3.66 1.00 0.64

Table 12.8: Tracking error values for controllers tested on the in/out trajectory (simulation).

For the IOT the RAIDC is the best performing controller for link I for both emax and erms,
while the MAAC, as for the RECT, is the best performing for link II regarding both emax

and erms. Since the IOT is a less demanding trajectory than the RECT regarding power
consumption, the controllers which only utilizes an integral part does perform better than
for the RECT. It is suspected that the MAIDC could also have been performing better
if additional parameter tuning was applied.

12.3.2 Robustness

Compensator |∆emaxI | [mm] ∆ermsI [mm] |∆emaxII | [mm] ∆ermsII [mm]
MAIDC 15.65 3.39 1.70 0.04
MAAC 13.63 2.59 1.43 0.04
AIDC 12.01 1.89 1.42 0.03
AAC 11.13 1.70 1.71 0.06
RAIDC 12.89 1.75 1.93 0.05
RAAC 13.00 1.48 1.33 0.08

Table 12.9: Difference in errors |∆emaxi| and ∆ermsI , between adaptive control systems with and without
disturbances (simulation).

The adaptive controllers all show rather similar tendencies regarding robustness. The
largest deviances between the controllers are found for link I for erms, which was to be
expected since link I has larger variations in inertia mass than link II, and also less excess
power for control.

12.4 Learning Controllers

12.4.1 Performance for the RECT

Compensator |emaxI | [mm] ermsI [mm] |emaxII | [mm] ermsII [mm]
ILC 5.79 1.72 1.64 0.49
RDLC 10.36 3.59 3.21 0.73

Table 12.10: Tracking error values for controllers tested on the rectangular trajectory (simulation).



12.4. Learning Controllers 125

It is seen for both the RECT and IOT that the best performing controller for link I and
link II, regarding emax and erms, is the ILC controller which may be due the tuning of
the parameters.

12.4.2 Performance for the IOT

Compensator |emaxI | [mm] ermsI [mm] |emaxII | [mm] ermsII [mm]
ILC 1.23 0.35 0.68 0.32
RDLC 10.07 3.45 3.10 0.67

Table 12.11: Tracking error values for controllers tested on the in/out trajectory (simulation).

As for the RECT the ILC outperforms the the RDLC for link I and II regarding both emax

and erms, especially regarding the emax for link I. Again this may be due to parameter
tuning.

12.4.3 Robustness

The difference in maximum errors |∆emaxi| and difference between the RMS errors ∆ermsI ,
are presented in the table below.

Compensator |∆emaxI | [mm] ∆ermsI [mm] |∆emaxII | [mm] ∆ermsII [mm]
ILC 7.88 0.81 0.88 0.03
RDLC 9.65 0.15 1.40 0.0002

Table 12.12: Difference in errors |∆emaxi| and ∆ermsI , between nonlinear control systems with and without
disturbances.(simulation)

The ILC controller is the most robust regarding ∆emax, whereas the RDLC controller
shows the best robustness regarding ∆erms.





Chapter 13
Conclusions & Perspectives

This thesis have been initiated in order to investigate the performances of an array of
controllers, linear and non-linear, on an electro hydraulic servo system realized by an
electro hydraulic robot manipulator, in order to decide which of the tested controllers
were the most suited for implementation on such a system. The controllers investigated
were classical linear controllers, linear controllers with extensions, adaptive, and learning
controllers. The thesis has been divided into four parts were the tasks and outcome of
each part is summarized subsequently.

Part I

In order to simulate the behavior of the electro hydraulic robot manipulator and test the
controllers a dynamic non-linear model of the electro hydraulic robot manipulator has
been established, both for the solid state and fluid mechanical parts of the overall system.
The model has then subsequently been tested, by comparison of pressure data from the
physical system, regarding both dynamics and gravitation, which has proved the model
to be adequately accurate for the design and testing of controllers.

The non-linear model has then been linearized and a linear model of the robot manipulator
has been developed. The linear model has been verified by applying small inputs to the
servo valves near the operating point of the linear model and afterwards comparing the
outputs of the linear model to those of the nonlinear model. From this comparison
the linear model has been found sufficiently accurate, and has therefore been used for
development of the linear controllers.

In order to have a common testing scenario for evaluating the performances of the con-
trollers developed in the thesis, trajectories have been established. The limits for the
trajectories have been set up as the physical system boundaries, taking into account the
mechanical damping at the actuator endpoints in order to avoid undesired system behav-
ior. Furthermore flow and pressure boundaries for the hydraulic part of the system have
been taken into account. Two trajectory scenarios have been set up - a robot control
scenario, and a servo control scenario. In the robot control scenario the tool center point
is to track a rectangular trajectory which requires fairly large variations in the actuator
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space trajectories over a specified period of time. In the servo control scenario both actu-
ators are to track the same trajectory, which is constituted by a retraction and extension
of the actuators, also over a specified period of time.

part II

As a base of comparison different linear controllers have been designed by use of frequency
responses to meet the design specifications of GM and PM, and the designed compensators
have subsequently been adjusted to have satisfactory responses when subjected to step-,
ramp and parabolic inputs. It has been found that the classical linear controllers provided
poor tracking performance for both trajectories, resulting in large rms and peak tracking
errors. In order to augment the performance of the classical controllers, extensions has
been added in the form of feed forward compensation, both passive and active. The
passive feed forward gain has been found by use of the inverse dynamics of the linear
system representation, and the active feed forward gain has been established by use of
pressure feedback, updating the feed forward gain. It has been found that adding a feed
forward gain boosted the performance of the controllers regarding tracking performance.
It has also been found that the effect of adding the active feed forward gain was most
pronounced on the HSS I, since this part of the system has the largest variations in inertia
mass and thereby also the largest fluctuations in load pressure. As the inertia mass for
HSS II is almost constant, resulting in nearly constant load pressure rendering the active
feed forward gain nearly constant, and therefore without any noteworthy difference from
the passive feed forward gain.

By use of state space representation and pole placement two versions of a controller have
been developed - one with state feedback gain matrix, and an augmented version with
feed forward contributions. The augmented state feedback gain compensator could unfor-
tunately not be tested on the system using the rectangular trajectory, as this caused valve
saturation. However, the augmented state feedback gain compensator could be tested for
the system using IOT, which yielded a dramatically increased tracking performance in
comparison with the controller without feed forward contributions.

Part III

A non-adaptive robust model based controller (RMC) has been presented and proved sta-
ble forming the base of for the adaptive control schemes AIDC, MAIDC and RAIDC which
utilizes the same control law as the RMC, but uses adaption laws in order to continuously
adapt the parameters of the control law. The augmented adaptive control schemes AAC,
MAAC and RAAC uses an altered control law, where an extra proportional + integration
term has been added. All adaptive control schemes have been implemented and tested in
simulink, and the MAIDC and MAAC have also been implemented on the physical robot
manipulator. Also an adaptive robust controller has been established and proved stable,
based on the theory of [Yao et al., 2001]. It has however not been possible to obtain
reasonable tracking performance for this controller within the time frame of this thesis
due to difficulties in the tuning phase. An initiative will however be made to improve
the performance of the ARC in order to present reasonable results at the thesis evaluation.
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Furthermore in this part, two learning controllers, an ILC and a RDLC, have been estab-
lished. Both learning controllers have been established using the same simplified system
model as for the adaptive controllers, and were both tested on the in simulation. The
controllers were however not implemented on the physical robot during this thesis, but
an initiative to implement the controllers before the thesis evaluation will be carried out.

The controller parameters used in this part have all been found by trial and error, as
no method for this task is available. The adaptive controllers all provided good tracking
performance in simulation and when implemented on the physical system (For those
implemented there). The learning function of the learning controllers has been found
to perform reasonable, and it has been found that these controllers reduces tracking
errors significantly as the trajectory cycles progresses. For the nonlinear controllers it is
found that these may achieve even better tracking performance, if more time is spend on
parameter tuning.

Part IV

In this part controllers have been evaluated by performance and robustness, but also
the number of sensors necessary for implementing the controllers were taken into con-
sideration. The controllers have been grouped into three categories - linear, adaptive
and learning controllers, and within each category the controller performance has been
tested on the rectangular- and in/out trajectories, and subsequently the robustness of the
controllers has been tested by giving a mass step to the system at a given time during
the rectangular trajectory. The peak and rms errors have then been compared to the
peak and rms errors without the disturbance input, and ∆ peak- and rms values have
been found as an indicator of the robustness of the given compensated system towards
disturbance in the form of a mass step.

It has been found that the performance of the controllers varied with the trajectory, and
to which actuator they were applied, meaning that controllers showing good performance
for one trajectory and actuator, could show a rather different performance for the other
trajectory and actuator.

Performance of Controllers

Linear Controllers

It has been found that the best performing linear controller running the rectangular
trajectory for actuator I was the PI-VFCA with a peak tracking error of 7.44 [mm] and
an rms error of 3.24 [mm]. The best performing linear controller for actuator II was the
PI-VFCP with peak and rms errors of 1.95 [mm] 0.63 [mm] respectively. However, the
difference in tracking error both rms and peak between the PI-VFCP and the PI-VFCA
for link II was found to be rather small with differences of peak and rms error of 0.1 [mm]
and 0.11 [mm], respectively.

When running the in/out trajectory in simulation, it has been found that the GFM+VFCP
was the best performing linear controller for actuator I, with peak and rms errors of
1.27 [mm] 0.65 [mm], respectively. Unfortunately this controller could not be tested
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for the RECT due to servo valve saturation. For actuator II the best performing con-
troller was the PI-VFCP with peak and rms tracking errors of 0.92 [mm] and 0.41 [mm],
respectively.

Of the linear controllers implemented on the physical system the best performance re-
garding peak error for actuator I, has been obtained with the PI-VFCP with an error of
10.01 [mm], whereas the best rms error performance was obtained with the Lag-VFCP,
with an rms error of 4.55 [mm]. It was also noted that the difference in peak and rms er-
rors for the PI-VFCP, Lag-VFCP and Lag-Lead-VFCP was rather small with the biggest
differences being between PI-VFCP and Lag-VFCP, with differences in peak and rms
errors of 0.03 [mm] and 0.18 [mm] respectively.

The peak tracking error for acuator II has been found to be smallest when using the
Lag-Lead-VFCP, but the rms value is the smallest when using the PI-VFCP, which also
has a peak value close to that of the Lag-Lead-VFCP. It is also seen that the controllers
implemented on the physical system does perform better regarding peak error for actuator
I, but generally worse regarding rms errors for both actuator I and II, and also worse
regarding peak error for actuator II.

Adaptive Controllers

The adaptive controller performing the best for actuator I, running the rectangular tra-
jectory, has been found to be the MAIDC with peak and rms errors of 4 [mm] and
1.59 [mm], respectively, and for actuator II the best performing controller is the MAAC
with peak and rms errors of 0.65 [mm] 0.17 [mm], respectively. It was also noted that
the difference in peak and rms error, for link II, using the MAIDC and MAAC was only
0.5 [mm] and 0.06 [mm] respectively.

The controller performance when running the in/out trajectory was found to be best for
link I and II when utilizing the RAIDC and MAAC controllers respectively.

When implemented on the physical system the MAIDC performed the best for both
actuator I and II with peak and rms errors of 6.97 [mm] and 1.80 [mm], respectively, for
actuator I and 5.77 [mm] 1.82 [mm] respectively for actuator II.

Learning Controllers

The best performing learning controller for both the rectangular- and in/out trajectories,
for both actuator I and II, was found to be the ILC. For the RECT the peak and rms
errors for actuator I was 5.79 [mm] and 1.72 [mm], and for actuator II the peak and
rms values was 1.64 [mm] 0.49 [mm] respectively. When running the IOT the peak and
rms errors for actuator I was 1.23 [mm] and 0.35 [mm], and the peak and rms values for
actuator II was 0.68 [mm] 0.32 [mm] respectively. The Difference in tracking performance
between the ILC and RDLC, is assumed to be partially due to the parameter tuning for
each of the controllers.
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Robustness

The most robust of the tested controllers proved to be the GFM controller, which is due to
the relative high damping of the compensated system. The remaining controllers showed
rather similar tendencies regarding the robustness. Also it was noted that the adaptive
controllers in general did not yield good robustness compared to the linear controllers,
which is thought to be due to the parameter adaption not being fast enough, which was
to be expected since the adaptive controllers are not meant for fast changing parameter
variations.

The different tuning of the controller parameters makes the comparison difficult, since
some of the controllers probably would be able to perform rather different given a better
tuning. However, it can be concluded that the performance of the tested controllers varies
with the trajectory, and also according to which of the actuators the controller is imple-
mented on. Therefore the task of the servo system should be considered before choosing
a controller, since this can make the difference on whether or not a given controller will
yield a reasonable performance. It is also concluded that one of the best all-round per-
forming controllers is the MAIDC, which provide reasonable good tracking performance
for both the rectangular- and in/out trajectory in simulation and also for the rectangular
trajectory, when implemented on the physical system.

Perspectives

During this thesis it was found that the tuning of the controller parameters naturally has
great influence on the behavior of the compensated systems. For the linear controllers this
did not pose a problem since it was possible to analyze the behavior of the compensated
system and tune the parameters accordingly. For the non-linear controllers, it did however
pose a problem since the non-linear controllers generally had more parameters which are
difficult to determine, since no method for this is available. Because of this it was rather
difficult to obtain consistent results, and the tuning also proved to be rather cumbersome
for some of the controllers. It was also noted that some of the non-linear controllers
might have performed better given a different tuning. Hence it might prove prudent
to utilize optimization techniques for tuning of the parameters, and thus maybe obtain
better controller performance, and a better basis of comparison of the controllers, since
this process might help tuning the parameters to values closer to their optimal values.





Chapter 14
Abstract

This master thesis concerns the development and implementation of an array of con-
trollers both linear and non-linear in order to investigate if there is something to gain by
using more advanced control schemes instead of simple and linear schemes on an electro
hydraulic servo system implemented by an hydraulic robot manipulator. It should be
noted that this is considered mainly as a position servo.

In order to develop, test and tune the various controllers, a non-linear dynamic model of
the hydraulic robot manipulator has been developed and verified by comparing pressure
and position data for the physical robot manipulator, and the non-linear dynamic model.
Afterwards the non-linear model has been linearized in order to obtain a linear model
for tuning and analyzing the linear controllers. The linear model has been verified by
comparison to the nonlinear model in a region near the operating point of the linear
model.

Using the linear model for parameter tuning an array of linear controllers were developed,
all including a feed forward gain contribution. Two versions of the feed forward gain have
been tested, one with passive gain and one with an active gain utilizing the load pressure
of the system. The controllers were added to the system yielding a compensated system
which has been tuned by using frequency responses.

For establishment and testing of the more advanced non-linear controllers a simplified
version of the linear model has been derived describing only a simplified version of the
actuator dynamics of the system, since this was found to be the dominant part of the
system. A term taking into account the modeling error, due to the simplification of the
system, has also been added and the simplified system is ultimately given by a gain, an
integrator, and the modeling error term.

Utilizing the simplified linear model, an array of adaptive controllers have been developed
and proved stable. The adaptive controllers have been implemented on the non-linear
model and the system behavior for the compensated systems have been simulated, and
selected controllers have been implemented and tested on the physical system. Also two
learning controllers have been developed, using the simplified linear model, and imple-
mented and tested in the non-linear model.

The controllers treated in this thesis have been compared on peak and rms errors regard-
ing the tracking of selected trajectories. It has been found that the performance of the
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controllers to a wide extent varied depending on the chosen trajectory, indicating the im-
portance to take into account the specific use of the hydraulic servo system when choosing
a control strategy. Performance wise the comparisons showed reasonable performance for
some controllers in both the linear, adaptive and learning category and it was seen that
one of the best performing controllers for a specific trajectory was a state feedback gain
matrix controller with an added feed forward gain. The controller with the best over-
all performance has been found to be a Modified Adaptive Inverse Dynamic Controller
(MAIDC) which performed well on all tested trajectories, and also when implemented on
the physical robot manipulator.

The robustness of the controllers have also been tested, by giving a disturbance input to
the top link of the robot manipulator in the form of a mass step. The different tuning
of the controller parameters made the comparison difficult, since some of the controllers
probably would be able to perform rather different given a better tuning. However, it can
be concluded that the performance of the tested controllers varies with the trajectory,
and also according to which of the actuators the controller is implemented on. Therefore
the task of the servo system should be considered before choosing a controller, since
this can make the difference on whether or not a given controller will yield a reasonable
performance.
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Appendix A
Dynamic Model

In this appendix, the kinematics and kinetics of the robot manipulator will be described.
First the necessary kinematic constraints will be derived, followed by kinetic derivations.
Finally, the dynamic model will be formulated mathematically, and the inertia, coriolis and
gravitational are presented graphically. Values for characteristic lengths, masses, inertia
etc. are given according to [Andersen, 2004b]

A.1 Kinematics

In this section necessary kinematic constraints for the model development is derived. This
includes kinematic relations between the cylinder positions and joint angles, definition of
lengths on cylinders and kinematic relations between the joint angles and the overall
robot structure.

A.1.1 Kinematic Constraints Between Joint Angles & Cylinder Posi-
tions

From figure A.1 it is seen that the angle θI is found as:

θI = ϕI − ϕO + ϕOQ ⇒ ϕI = θI + ϕO − ϕOQ (A.1)

The relationship between the joint angle θI and the total length of cylinder I and piston
I, xI , is found as:

ϕI = arccos

(
L2

OQ + L2
HO − x2

I

2LOQLHO

)
(A.2)

From the above expression, xI is determined as:

xI =
√

L2
OQ + L2

HO − 2LOQLHOcos(ϕI) (A.3)
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The velocity and acceleration are given by:

ẋI =
2LOQLHOsin(ϕI)θ̇I

2
√

L2
OQ + L2

HO − 2LOQLHOcos(ϕI)
(A.4)

ẍI =
2LOQLHOcos(ϕI)θ̇2

I + sin(ϕI)θ̈I

2
√

L2
OQ + L2

HO − 2LOQLHOcos(ϕI)
(A.5)

−
(2LOQLHO)2sin2(ϕI)θ̇2

I

4(L2
OQ + L2

HO − 2LOQLHOcos(ϕI))2/3

θII

θI

TCP
R

LHO

LOQ

xI

φOφI

φOQ

αJI

Q

H

O

Figure A.1: Sketch forming the base for derivation of expressions describing the positions, velocities and
accelerations internally on the robot manipulator.

From figure A.2 the angle θII is found as:

ϕII1 − ϕB + ϕBGO = −θII ⇒ ϕII1 = −θII + ϕB − ϕBGO (A.6)

The the relationship between the joint angle θII and xII is found as:

ϕII1 = arccos

(
L2

BW + L2
BG − x2

II

2LBW LBG

)
(A.7)

From the above expression xI is determined as:

xII =
√

L2
BW + L2

BG − 2LBW LBGcos(ϕII1) (A.8)
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Similar to the previous joint angle, the velocity and acceleration are given by:

ẋII =
2LBW LBGsin(ϕII1)θ̇II

2
√

L2
BW + L2

BG − 2LBW LBGcos(ϕII1)
(A.9)

ẍII =
2LBW LBGcos(ϕII1)θ̇2

II + sin(ϕII1)θ̈II

2
√

L2
BW + L2

BG − 2LBW LBGcos(ϕII1)
(A.10)

−
(2LBW LBG)2sin2(ϕII1)θ̇2

II

4(L2
BW + L2

BG − 2LBW LBGcos(ϕII1))2/3

C

G

O

B

R

E

A

yI

L EPφ

L
A

E

φEA

B

LBG

-θII

W

φBGO

φB

φC

LBW

x II

φII1

-θII1

E

F

D

αJII

Figure A.2: Sketch forming the base for derivation of expressions describing the positions, velocities and
accelerations internally on the robot manipulator.

A.1.2 Additional Necessary Constraints

Later in this appendix, some additional angles are needed in order to calculate the torque
arms, relating the cylinder force to the joint torques. Hence the following angles αJI and
αJII are obtained (see figures A.1 and A.2, respectively).

αJI = arccos

(
L2

OQ + x2
I − L2

HO

2LHOxII

)
(A.11)
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αJII = arccos

(
L2

BG + x2
II − L2

BW

2LBGxII

)
(A.12)

A.1.3 Definition of xI & xII

The definitions for the cylinder positions are shown in figure A.3.
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yI

L EPφ

L
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B
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LV

xPI,xPII

xI,xII

Figure A.3: Definition of cylinder lengths.

The nomenclature of figure A.3, is:

xI , xII : total length of cylinder plus piston [m]
xPI , xPII : piston position [m]
xImin, xIImin: minimum length of cylinder [m]
LV : stroke length [m]

As it is seen from the figure above, the reference point is defined at the center of the
cylinders, and hence the total lengths of cylinders plus pistons are defined as:

xI = xImin + LV /2 + xPI ∧ xII = xIImin + LV /2 + xPII (A.13)

A.2 Positions, Velocities & Accelerations of Point C

In this subsection the expressions describing the position, velocities and accelerations of
key points internally on the robot manipulator will be derived. This derivation is based
on figure A.4.
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Figure A.4: Sketch forming the base for derivation of expressions describing the positions, velocities and
accelerations internally on the robot manipulator.

The nomenclature of figure A.4, is:

x, y: global coordinate system [−]
xI , yI : local coordinate system for link I [−]
xII , yII : local coordinate system for link II [−]
s′I : position B, relative to coordinate system I [m]
s′II : position C, relative to the local coordinate system II [m]
A

I
: rotational matrix for link I relative to global [−]

A
II

: rotational matrix for link II relative to global [−]
θI : angle between link I and global [rad]
θII : angle between link II and link I [rad]
ϕII : angle between link II and global [rad]
LOB: length between point A and B [m]
LBC : length between point B and G [m]

First the different vectors and rotational matrices are established, and these are given by:

s′I =
[

LOB 0
]T

, s′II =
[

LBC 0
]T (A.14)

A
I

=
[

cos(θI) −sin(θI)
sin(θI) cos(θI)

]
, A

II
=
[

cos(ϕII) −sin(ϕII)
sin(ϕII) cos(ϕII)

]
(A.15)

The position of the center of mass for link II can now be described as:

rC = A
I
s′I + A

II
s′II =

[
cos(θI)LOB + cos(ϕG)LBC

sin(θI)LOB + sin(ϕG)LBC

]
(A.16)
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Taking the first time derivative of expression A.16, yields the velocity vector:

ṙC =
[
−sin(θI)θ̇ILOB − sin(ϕII)ϕ̇IILBC

cos(θI)θ̇ILOB + cos(ϕII)ϕ̇IILBC

]
(A.17)

And the second time derivative of expression A.16, yields the acceleration vector:

r̈C =
[
−cos(θI)θ̇2

ILOB − sin(θI)θ̈ILOB − cos(ϕII)ϕ̇2
IILBC − sin(ϕII)ϕ̈IILBC

−sin(θI)θ̇2
ILOB + cos(θI)θ̈ILOB − sin(ϕII)ϕ̇2

IILBC + cos(ϕII)ϕ̈IILBC

]
(A.18)

A.3 Force & Torque Equilibriums for Link I

The kinetic diagram for link I is shown in figure A.5.
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Figure A.5: Kinetic diagram for link I.

From figure A.5, the following force and torque equilibrium equations can be established:∑
FIx = ROx + RBx = MI ẍR (A.19)∑
FIy = ROy + RBy −MIg = MI ÿR (A.20)
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Taking the torque equilibrium about point O, yields:∑
MIO = τLI − τLII −RBxLOBsin(θI) + RByLOBcos(θI)−MIgLORcos(ϕI) (A.21)

= JIO · θ̈I (A.22)

Here ϕI = θI + ϕOBR.

A.4 Force & Torque Equilibriums for Link II

The kinetic diagram for link II is shown in figure A.6.
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Figure A.6: Kinetic diagram for link II.

From figure A.6, the following force and torque equilibrium equations can be established:∑
FIIx = −RBx = MII ẍC (A.23)∑
FIIy = −RBy −MIIg = MII ÿC (A.24)

Here ϕII = θI − θII . Taking the torque equilibrium about point G, yields:∑
MIIG = τLII + RBxLBCsin(ϕII) + RByLBCcos(ϕII) = JIIG · ϕ̈II (A.25)

A.5 Mass Properties for Link I

In the following the total mass of link I, and the mass moment of inertia about point A
are derived. Furthermore, due to the relative large masses of the hydraulic cylinders, the
torque produced about point B due to the reaction forces at point F is derived.
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A.5.1 Total Mass of Link I
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Figure A.7: Sketch forming the base for derivation of the center of mass for link I.

It is seen from figure A.7, that the total mass of link I is given by:∑
MlinkI = MI = MGM + MKO + MLI + Mcyl (A.26)

A.5.2 Mass Moment of Inertia for Link I

From figure A.7 (A) it is seen, that the mass moment of inertia of link I about point A,
is given by:

JIO = JIR + MIL
2
OH (A.27)

A.6 Mass Properties for Link II
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Figure A.8: Sketch forming the base for derivation of the center of mass for link II.
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A.6.1 Center of Mass for Link II

The total mass of link II is given by:∑
MlinkII = MII = ML2 + Mload + MBE (A.28)

(A.29)

Due to the fact that load can vary, the position of the center of mass can vary, and hence
an expression for this position is described. Related to the local coordinate system for
link II (xII , yII), the position of the center of mass is for the xII -position:∑

MlinkIILBCx = MIILBCx = ML2LAEx + Mload(LBD − LLOX) (A.30)

LBCx =
ML2LAEx + Mload(LBD − LLOX)

MII
(A.31)

And for the yII -position:∑
MlinkIILBCy = MIILBCy = ML2LAEy + Mload(LAEy + LLOy) + MBELBE (A.32)

LBCy =
ML2LAEy + Mload(LAEy + LLOy) + MBELBE

MII
(A.33)

The length between point B and G is then given by:

LBC =
√

L2
BCx + L2

BCy (A.34)

In the expressions above, the nomenclature is:

LBCx: length from point B to point G (x-direction) 0.353 / 0.632 [m]
LBCy: length from point B to point G (y-direction) 0.130 / 0.213 [m]
LBC : length from point B to point G 0.376 / 0.667 [m]
LAEx: length from point B to point K (x-direction) 0.420 [m]
LAEy: length from point B to point K (y-direction) 0.142 [m]
LBD: length from point B to point N 1.080 [m]
LLOx: length from point L to point N 0.200 [m]
LLOy: length from point K to point L 0.145 [m]
LBE : length from point B to point J 0.071 [m]
MBE : mass of bearing housing at point B 7.800 [kg]
ML2: mass of link II 38.000 [kg]
Mload: mass of load 0.000 / 50 [kg]
MII : total mass of link II 45.800 / 95.800 [kg]

The above values has been obtained from [Andersen, 2004b]

A.6.2 Mass Moment of Inertia for Link II

The mass moment of inertia about point B is given by:

JC
IIC = JC

L2 + JC
AEx + JC

load (A.35)
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Using the parallel axis theorem to find the mass moment of inertia about point G, yields:

JB
IIC = JC

IIC + MIIL
2
BC (A.36)

A.7 Formulating the Describing Equations in Joint Space

In the following, the model will be established in cylinder space by use of the describing
equations derived in the previous sections of the present appendix.

To be able to sustain the overview, the describing equations are presented again.

ẍG = −cos(θI)θ̇2
ILOB − sin(θI)θ̈ILOB − cos(ϕII)ϕ̇2

IILBC − sin(ϕII)ϕ̈IILBC (A.37)

ÿG = −sin(θI)θ̇2
ILOB + cos(θI)θ̈ILOB − sin(ϕII)ϕ̇2

IILBC + cos(ϕII)ϕ̈IILBC (A.38)

τLI = JIAθ̈I + τLII + RBxLOBsin(θI)−RByLOBcos(θI) + MIgLORcos(ϕI) (A.39)
τLII = JIIGϕ̈II −RBxLBCsin(ϕII)−RByLBCcos(ϕII) (A.40)
RBx = −MII ẍG (A.41)
RBy = −MIIg −MII ÿG (A.42)

The model is expressed by use of the Newton-Euler formulation, given by:

τL = [τLI τLII ]T = D(q)q̈ + H(q, q̇) + G(q) (A.43)

Substituting the above equations and substituting ϕII = θI − θII , the Newton-Euler for-
mulation is obtained. The elements of D(q), H(q, q̇) and G(q) are found on the appended
CD, in the Maple file Newton Euler Joint Space.

A.8 Formulating the Describing Equations in Actuator Space

In this section the dynamic equations are formulated in actuator space. Expression A.43
are related to the linear forces provided by the hydraulic actuators by the drive jacobian
J

d
, yielding:

τL = JT
d
FL (A.44)

Where:

τL = [τLI τLII ]T , FL = [FLI FLII ]T , JT
d

=
[

LOQsin(αJI) 0
0 −LBGsin(αJII)

]
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Hence the non-linear dynamic model of the solid state part of the system compliant with
the hydraulic system, is established as:

FL = J−T
d

τL = J−T
d

D(q)q̈ + J−T
d H(q, q̇) + J−T

d
G(q) (A.45)

The J
d

transpose provides the torque arms, and hence the perpendicular distance from
the cylinder line of action, to the joints, relating the cylinder forces to the joint torques.
In order to express equation B.3 in terms of the cylinder positions, the definition of the
drive jacobian is used:

xP = J
d
q (A.46)

The piston velocities ẋP and accelerations ẍP , are obtained as:

ẋP = J
d
q̇ , ẍP = J̇

d
q̇ + J

d
q̈ (A.47)

Isolating the last expression above, yields:

J
d
q̈ = J̇

d
q̇ − ẋP (A.48)

q̈ = J−1
d

ẍP − J−1
d

J̇
d
q̇ (A.49)

Substituting the expression for q̇, yields:

FL = J−T
d

D(q)(J−1
d

ẍP − J−1
d

J̇
d
q̇) + J−T

d H(q, q̇)J−1
d

+ J−T
d

G(q) (A.50)

= J−T
d

D(q)J−1
d

ẍP + (J−T
d H(q, q̇)J−1

d
− J−T

d
D(q)J−1

d
J̇

d
q̇) + J−T

d
G(q) (A.51)

Hence the cylinder forces are expressed in terms of the piston velocities and accelerations.
The inertia-, coriolis and gravitational terms are then given in actuator space, as:

M
xP

(q) =
[

MxP 11(q) MxP 12(q)
MxP 21(q) MxP 22(q)

]
= J−T

d
D(q)J−1

d
(A.52)

V
xP

(q, q̇) =
[

VxP 11(q) VxP 12(q)
VxP 21(q) VxP 22(q)

]
= (J−T

d H(q, q̇)J−1
d
− J−T

d
D(q)J−1

d
J̇

d
J−1

d
) (A.53)

G
xP

(q) =
[

GxP 1(q)
GxP 2(q)

]
= J−T

d
G(q) (A.54)

By substituting expressions q, q̇ and q̈, the formulation in actuator space is obtained as:

FL = M
xP

(xP )ẍP + V
xP

(xP , ẋP ) + GxP
(xP )xP (A.55)

The model is now formulated in actuator space. However, friction phenomenons are
present, hence coulomb and viscous friction elements are added, acting in the opposite
direction of the cylinder force, which yields:

FL = M
xP

(xP )ẍP + V
xP

(xP , ẋP ) + GxP
(xP ) + BT

v ẋP + F T
c sign(ẋP ) (A.56)

The inertia, coriolis and gravitational terms are shown in figures A.9, A.10, A.11, A.12
and A.13, respectively.
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Figure A.9: (A) Equivalent mass for cylinder I, Meq11. (B) Equivalent mass for cylinder II, Meq22.

Figure A.10: (A) Equivalent mass representing the dynamic coupling between cylinders, Meq12. (B) Equivalent
mass representing the dynamic coupling between cylinders, Meq21.

Figure A.11: Coriolis terms for cylinder I. (A) Tested with piston velocities ẋI = ẋII = 0.25 [m/s]. (B)
Tested with piston velocities ẋI = ẋII = 0.50 [m/s]. (C) Tested with piston velocities ẋI =
ẋII = 0.75 [m/s]



A.9. Hydraulic Model 151

Figure A.12: Coriolis terms for cylinder II. (A) Tested with piston velocities ẋI = ẋII = 0.25 [m/s]. (B)
Tested with piston velocities ẋI = ẋII = 0.50 [m/s]. (C) Tested with piston velocities ẋI =
ẋII = 0.75 [m/s]

Figure A.13: (A) Gravitational term for cylinder I. (B) Gravitational term for cylinder II.

A.9 Hydraulic Model

In this section a non-linear model of the fluid mechanical system will be developed. First
the fluid mechanical system will be described and the governing equations for describing
the model will be deduced. This appendix takes base in [Andersen, 2003a]. The deriva-
tions takes base in figure A.14. In the following the index i can either denote actuator I
or II.

A.9.1 Modeling of Cylinders

Since both cylinders on the robot have the same specifications the equation deduced in
the following will be general and valid for both cylinders. The equations are deduced
based on figure A.14.
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Q1i Q2i

PT PTPS

P1i P2i

A A

V1i

xP

Meq

V2i

xv

F(xP, xP).

QLi

Figure A.14: Sketch of cylinder/servo valve setup

Equilibrium Equation

The force equilibrium equation is given by equation A.57∑
Fx = Meqi · ẍP = P1i ·A− P2i ·A− α−Bvi · ẋ− FD(xP , ẋP ) (A.57)

Where:
Meq: Equivalent mass [kg]
ẍP : Acceleration of cylinder piston [m/s2]
P1i: Pressure on side 1 [Pa]
P2i: Pressure on side 2 [Pa]
A: Piston area [m2]
α: Coulomb friction [−]
Bvi: Viscous damping coefficient [−]
ẋP : Velocity of cylinder piston [m/s2]
F (xP , ẋP ): Force from robot acting on piston rod [m/s2]

Continuity Equations

The continuity equations are given by A.58 and A.59.

Q1i −QLEi =
dV1

dt
+

V1i

βFi
· dP1i

dt
(A.58)

QLEi −Q2i =
dV2

dt
+

V2i

βFi
· dP2i

dt
(A.59)

Where:
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Q1i: Flow into cylinder on side 1 [m3/s]
Q2i: Flow out of cylinder on side 2 [mm3/s]
QLEi: Leakage flow between cylinder wall and piston [m3/s]
V1i: Chamber volume on side 1 of the cylinder [m3]
V2i: Chamber volume on side 2 of the cylinder [m3]
βFi: Bulk modulus [bar]
P1i: Pressure on side 1 [Pa]
P2i: Pressure on side 2 [Pa]

A.9.2 Modeling of Servo Valves

Subsequently the equations describing the flows through the servo valve are deduced.
Equations A.60 and A.61 describe the flows when the servo valve plunger is displaced in
the positive direction.

Q1i = Kviuvisign(PS − P1i)
√
|PS − P1i| (A.60)

Q2i = Kviuvisign(P2i − PT )
√
|P2i − PT | (A.61)

Equations A.62 and A.63 describe the flows when the servo valve plunger is displaced in
the negative direction.

Q1i = Kviuvisign(P1i − PT )
√
|P1i − PT | (A.62)

Q2i = Kviuvisign(PS − P2i)
√
|PS − P2i| (A.63)

Where:

Kvi: Flow value gain for the orifice [−]
uvi: Servo valve input voltage [V ]
PT : Tank pressure [Pa]
PS : Supply pressure [Pa]

Establishment of Flow Value Gain Kvi

In the following values for the flow value gain for both the Rexroth and the Moog servo
valves will be found. In figure A.15 a principal sketch of a servo valve at no load conditions
is shown. Since the both servo valves are symmetrical valves it follows that Kvi goes for
both orifices and thus the pressure drop over each of the orifices is given by Ps − P1 =
P2 − PT = ∆P .This yields:

Qnom = Kviuvi

√
∆P (A.64)

Where:
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Servo valve

PS PT

P1i = P2i

1 2

PS – P1i P2i - PT

Qnom

Figure A.15: Sketch of servo valve at no-load

Qnom: Nominal flow for arbitrary servo valve [−]
Kvi: Flow value gain for arbitrary symmetrical servo valve [−]
δP : Pressure drop over servo valve orifice [V ]

Isolating Kvi yields,

Kvi =
Qnom

uvi

√
δP

(A.65)

The value of Kvi can now be found for both the Moog and the Rexroth servo valves. Since
no data sheets for the exact model numbers of either of the servo valves were available
at the time of writing, values for Qnom, uvi and ∆P was found in [Andersen, 2004b].

Servo Valve Dynamics

Usually the dynamics of a servo valve can be approximated with a second order system
of the form of equation A.66, which is also assumed in this thesis. In order to describe
the 2.order system the damping ζ and undamped natural frequency ωn of the servo valve
need to be found. This is also usually done by use of data sheets for the servo valves,
however these values are also found in [Andersen, 2004b].

H(s) =
ω2

n

s2 + 2ζωns + ω2
n

(A.66)

Bulk Modulus

Since Bulk modulus varies with pressure, temperature and amount of air entrapped in the
oil it is not desirable to use a constant bulk modulus but rather calculate and estimate
continuously. According to [Mohieddine Jelali, 2004] most of the entrapped oil dissolves
into the oil at higher pressures, and does therefore not affect the Bulk modulus. If
assuming that the temperature of the oil is relative constant only the pressure is left to
alter the value of Bulk modulus. In the Simulink model of the hydraulic system Bulk
modulus is calculated by use of an empirical formula given by equation A.67, proposed
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in [Mohieddine Jelali, 2004].

E′(p) = a1Emaxlog(a2
p

pmax
+ a3) (A.67)

Where a1 = 0.5, a2 = 90, and a3 = 3 are empirical values, and the maximum value of
bulk modulus and the pressure are given as Emax and pmax, respectively.

A.10 Additional Verification Plots for the Nonlinear Model

In the following, addition verification plots for the nonlinear model is shown. Here the
gravitation for link II is shown.
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Figure A.16: (A) Load pressure PLII . Both cylinder pistons are initially in retracted position. Cylinder II is
extended, while cylinder I is kept in fixed position. (B) Load pressure PLII . Cylinder I is initially
in extended position, and cylinder II in retracted position. Cylinder II is extended, while cylinder
I is kept in fixed position.
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Figure A.17: (A) Load pressure PLII . Cylinder I is initially in retracted position, and cylinder II in extended
position. Cylinder II is retracted, while cylinder I is kept in fixed position. (B) Load pressure
PLKII . Both cylinder pistons are initially in extended position. Cylinder II is retracted, while
cylinder I is kept in fixed position.

It is found from figures A.16 and A.17, that the data acquisition for the pressures of
cylinder two is quite noisy. However, it is still possible to verify that the pressure levels,
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and variations are similar when comparing the simulated and measured load pressures
for cylinder II. Hence it is found that the part of the model concerning gravitation on
cylinder II, is a sufficiently accurate rendering of the physical system.
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In this appendix, the simulink model of the robot manipulator is presented, along with its
limitations.

The overall model of the system is shown in figure B.1.

time

Step2

Step1

Robot dynamics

P_LI

P_LII

x_I

x_dI 

P_LI 

x_PI

x_PII

P_LII 

x_dII 

x_II

Hydraulic dynamics

x_1

x_1,d

u_1

u_2

x_2,d

x_2

P_L1

P_L2

Clock

Figure B.1: Simulink model of the system.
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B.1 Simulink Model of the Solid State Mechanical Subsys-
tem

In figure B.2 the functions denoted Angular Acceleration contains the Newton Euler
formulation in joint space. The accelerations are integrated by the double integrator, and
the angular positions and velocities are then calculated and transformed into actuator
space in order to calculate viscous and coulomb friction, torque arms etc.
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Double integrator
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Acc
Pos
Vel
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Theta_I

f(u)
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Theta_II

f(u)

P_LII
2

P_LI
1

Figure B.2: Simulink model of the solid state part of the system.

B.2 Simulink Model of the Fluid Mechanical Subsystem

Figure B.3 shown the complete model of the hydraulic system.
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Figure B.3: Simulink model of the hydraulic part of the system.

The flow continuities and orifice equations are implemented in simulink as shown in figures
B.4, B.5 and B.6.
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Figure B.4: Simulink model of servo valve.
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Figure B.5: Simulink model of flow continuities.
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Figure B.6: Simulink sub model of flow continuity.

B.3 Limitations

As it from a model point of view is possible for the robot manipulator to reach singularity
points, it is necessary to define limitations for the joint angles of model. Based on the
saturation points of the hydraulic actuators, the limits of the joint angles are defined as:

q
min

< q < q
max

(B.1)

From this, the limits used in the limited double integrator block of the solid state me-
chanical subsystem of the simulink model are:

q̇ =


0, if q ≥ q

max
∧ q̇ > 0

0, if q ≤ q
min

∧ q̇ < 0
q̇, else

, q̈ =


0, if q ≥ q

max
∧ q̇ > 0

0, if q ≤ q
min

∧ q̇ < 0
q̈, else

(B.2)

Further more initial conditions for the joint angles are calculated. The initial load pres-
sures are calculated based on:

PL = [AI AII ]−1J−T
d

G(q) (B.3)
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This appendix concerns the derivation of the linear SISO representation of the nonlinear
dynamic model of the robot manipulator. The linear SISO model is derived for use in the
development of classical linear SISO controllers applied on the individual servo loops.

C.1 Linearized & Reduced Describing Dynamic Equations

To be able to establish the linear models, the describing dynamic equations are simplified
and linearized for a defined point of operation for the two servo loops, and following from
this a block diagram and hence a transfer function can be established. Furthermore it is
noticed that as the servo loops are similar to each other, both of the linear models are
algebraically equal to each other, and hence the indices are i = I ∨ i = II.

The assumptions used in this derivation are:

• The servo valves are constructed with ideal zero-lap spools

• Possible leakage flow in servo valves can be disregarded

• Supply pressure is constant

• Tank pressure is constant

Furthermore due to the high frequency of the servo valves compared to the frequency of
the solid state part of the system, this is disregarded in the linear model as these are less
dominating for the dynamic behavior.

161
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C.1.1 Force Equilibrium

MPI ẍPI = PLIAI −BvI ẋPI − FCI − FextI (C.1)
− (M11(x)ẍPI + M12(x)ẍPII + V1(x, ẋ)ẋPI + G1(x))

MPII ẍPII = PLIIAII −BvII ẋPII − FCII − FextII (C.2)

− (M22(x)ẍPII + M21(x)ẍPI + V2(x, ẋ)Ṗ xII + G2(x))

Due to the plots of the coriolis- and gravitation forces (figures A.11, A.12 and A.13), the
project group considers it as a reasonable assumption to consider these as neglectable in
comparison to the inertia load, and as the coulomb friction forces are considered constant
these are disregarded in the linear model. Furthermore, as these linear models are to be
obtained as SISO systems in order to be able to derive classical control algorithms from
them, the inertia cross couplings are considered solely as the disturbance forces FDI and
FDII , respectively. Hence the linear systems are considered as decoupled systems, and
hence SISO systems. This reduces to:

MPI ẍPI + M11(x)ẍI = PLIAI −BvI ẋPI − FDI (C.3)
MPII ẍPII + M22(x)ẍII = PLIIAII −BvII ẋPII − FDII (C.4)

Setting:

MeqI = MPI + M11 and MeqII = MPII + M22(x) (C.5)

And applying the index i due to algebraically similarity, yields:

MeqiẍPi = PLiAi −BviẋPi − FDi (C.6)

Laplace transformation, yields:

Meqis
2xPi = PLiAi −BvisxPi − FDi (C.7)

C.1.2 Servo Valves

To simplify the linear model, the load pressure is introduced as the pressure difference
between two chambers of the cylinders - in steady state, disregarding the compression of
the oil, the oil flows in- and out of the cylinder chambers can be considered equal to each
other, which from the orifice equations yields:

Q1i = Q2i = Kviuvi

√
Ps − P1i = Kviuvi

√
P2i − PT ⇒ (C.8)

Ps − P1i = P2i − PT (C.9)

From the definition of the load pressure, the pressures P1i and P2i, are described as:

PLi = P1i − P2i , ẋi > 0 ⇒ (C.10)

P1i =
PS + PT + PLi

2
, P2i =

PS + PT − PLi

2
(C.11)
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Substituting the last expression of C.11 into the last expression of C.8, the orifice equation
describing the load flow is given as:

QLi = Q2i = Kviuvi

√
PS + PT − PLi

2
− PT = Kiuvi

√
PS − PT − PLi

2
(C.12)

Due to the nonlinear expressions describing the load flow, this needs to be linearized. By
use of taylor series, the linearized form of the load flow orifice equation is given by:

qLi = Kqiuvi + KqpipLi (C.13)

with the linearization coefficients:

Kqi =
∂QLi

∂uvi

∣∣∣∣
ūvi,P̄Li

= Kvi

√
PS − PT − P̄Li

2
, Kqpi =

∂QLi

∂PLi

∣∣∣∣
ūvi,P̄Li

=
−Kviūvi

2
√

2
√

PS − PT − P̄Li

(C.14)

C.1.3 Flow Continuities

The flow continuity equations has previously been described, and are given as:

Q1i −QLEi = Q1i − CLiPLi =
dV1i

dt
+

V1i

βFi

dP1i

dt
(C.15)

QLEi −Q2i = CLiPLi −Q1i = −dV2i

dt
+

V2i

βFi

dP2i

dt
(C.16)

As the volumes V1i and V2i are made up by initial volumes V10i and V20i plus the change
in volume produced by the displacement of the piston. The volumes V1i and V2i can be
expressed as:

V1i = V10i + AixPi (C.17)
VAr = V20i −AixPi (C.18)

Thereby the continuity equations can be written as,

Q1i − CLiPLi =
dV1i

dt
+

V10i

β

dP1i

dt
+

AixPi

β

dP1i

dt
(C.19)

CLiPLi −Q2i = −dV2i

dt
+

V20i

β

dP2i

dt
− AixPi

β

dP2i

dt
(C.20)

As the linear model only concern the dynamics of the system, at a specific operating
point, it is assumed that V10i >> AixPi and V20i >> AixPi. This is assumed as the
linear model is created for a specific operating point, hence the displacement of the
piston about the operating point is considered to be small relative to the initial volumes.
Thus it is found reasonable to neglect AixPi, resulting in the following simplified laplace
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transformed continuity equations,

q1i − CLipLi = sAixPi +
V10i

β
sp1i ⇒ q1i = sAixPi +

V10i

β
sp1i + CLipLi (C.21)

CLipLi − q2i = −sAixPi +
V20i

β
sp2i ⇒ −q2i = −sAixPi +

V20i

β
sp2i − CLipLi (C.22)

Introducing the total volume V1i = V2i = VΣi/2 (center position of the cylinder), intro-
ducing the load flow as the average flow through the cylinder, yields:

qLi =
q1i + q2i

2
= sAixPi + s

VP i

4βFi
pLi + CLipLi (C.23)

The above expression is obtained for the center position of the cylinder (which is the
point with lowest possible natural frequency, and hence the operating point).

C.2 Transfer Function

Establishing the transfer block diagram based on the linear describing equations, yields
the diagram of figure C.1.

+
-
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DiFqpiK

-

iA

Figure C.1: Block diagram of HSS.

Reducing the block diagram of figure C.1, the transfer function is obtained to be:

Gi(s) =
XPi(s)
Uvi(s)

=
Ki

T 2
nis

2 + 2ζiTnis + 1
1
s

(C.24)

With the coefficients:

Ki =
APiKqi

(CLi −Kqpi)Bvi + A2
Pi

(C.25)

ωni =
1

Tni
=

√
4βFi

VΣiMeqi
((CLi −Kqpi)Bvi + A2

Pi) (C.26)

ζi =
4βFi(CLi −Kqpi)Meqi + VΣiBvi

2Tni(4βFi((CLi −Kqpi)Bvi + A2
Pi))

(C.27)

Now the linear model has been derived.
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C.3 Assessment of Operating Point

Regarding an operating point for which the linear models must be valid, a critical point
of operation must be chosen - regarding the cylinders the critical point of operation is
where the lowest possible natural frequency occurs, which for symmetric actuators is at
the center position. Due to the symmetry of the cylinders, this critical point occurs at
the center stroke position.
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Figure C.2: Bode diagram of HSS I with different values for the input voltage at the operating point.

Regarding an operating point for the servo valves, the damping ratio of the transfer func-
tion is examined via its bode diagram, when varying the input signal in the linearization
coefficients - it is seen from the bode diagram in figure C.2, that the critical point of op-
eration is when the spool of the servo valve is slightly opened, due to the poor damping
ratio.
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I this appendix the expressions for the trajectory profiles a given.

Time [s] xD [m] ẋD [m/s] ẍD [m/s2]
0 < t < tb1 q0x + 0.5ẍDt2 ẍDt ẍD

tb1 < t < (tf1 − tb1) ẍDtb1t− 0.5ẍDt2b1 + q0x −ẍD(t −
(tf1−tb1))+
ẍDtb1

0

(tf1 − tb1) < t < tf1 −0.5ẍD(t − (tf1 − tb1))2 +
ẍDtb1t− 0.5ẍDt2b1 + q0x

ẍD(t −
(tf1 − tb1))

−ẍD

tf1 < t < tf2 −0.5ẍD(tf1 − (tf1 − tb1))2 +
ẍDtb1tf1 − 0.5ẍDt2b1 + q0x

0 0

tf2 < t < (tf2 + tb3) q1x − 0.5ẍD(t− tf2)2 −0.5ẍD(t −
tf2)

−ẍD

(tf2 + tb3) < t < (tf3 − tb3) −ẍDtb3(t−tf2)+0.5ẍDt2b3+q1x −ẍDtb3 0
(tf3 − tb3) < t < tf3 0.5ẍD(t − (tf3 − tb3))2 −

ẍDtb3(t− tf2)+0.5ẍDt2b3 + q1x

ẍD(t −
(tf3−tb3))−
ẍDtb3

ẍD

tf3 < t < tf4) 0.5ẍD(tf3 − (tf3 − tb3))2 −
ẍDtb3(tf3 − tf2) + 0.5ẍDt2b3 +
q1x

0 0

Table D.1: Position-, velocity- and acceleration profiles for the xD-axis.
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Time [s] yD [m] ẏD [m/s] ÿD [m/s2]
0 < t < tf1 q0y 0 0
tf1 < t < tf1 +
tb2

q0y + 0.5ÿD(t− tf1)2 ÿD(t− tf1) ÿD

tf1 + tb2 < t <
tf2 − tb2

ÿDtb2(t− tf1)− 0.5ÿDt2b2 + q0y ÿDtb2 0

tf2 − tb2 < t <
tf2

−0.5ÿD(t − (tf2 − tb2))2 + ÿDtb2(t − tf1) −
0.5ÿDt2b2 + q0y

−ÿD(t −
(tf2−tb2))+
ÿDtb2

−ÿD

tf2 < t < tf3 −0.5ÿD(tf2− (tf2− tb2))2 + ÿDtb2(tf2− tf1)−
0.5ÿDt2b2 + q0y

0 0

tb3 < t < tf3 +
tb4

q1y − 0.5ÿD(t− tf3)2 −ÿD(t−tb3) −ÿD

tf3 + tb4 < t <
tf4 − tb4

−ÿDtb4(t− tf3) + 0.5ÿDt2b4 + q1y −ÿDtb4 0

tf4 − tb4 < t <
tf4

0.5ÿD(t − (tf4 − tb4))2 − ÿDtb4(t − tf3) +
0.5ÿDt2b4 + q1y

ÿD(t−(tf4−
tb4))− ÿDtb4

ÿD

Table D.2: Position-, velocity- and acceleration profiles for the yD-axis.



Appendix E
Linear Control -
Bode Diagrams

This appendix presents the bode diagrams for the compensated systems, and compensators
developed in the linear control design.
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Figure E.1: Bode diagrams for P-compensated systems. (A) HSS I. (B) HSS II.
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Figure E.2: Bode diagrams for PI-compensated systems. (A) HSS I. (B) HSS II.
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Figure E.3: Bode diagrams for lead-compensated systems. (A) HSS I. (B) HSS II.
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Figure E.4: Bode diagrams for lag-compensated systems. (A) HSS I. (B) HSS II.
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Appendix F
Linear
Controller
Parameters

In this appendix the controller parameters used for the linear controllers are presented.

The notation z and p refers to whether it is a time constant relating to a zero or a pole.

P - Controllers

KpI = 6.84 ; KpII = 15.00 (F.1)

PI - Controllers

KpI = 6.39 , TiI = 0.55[s] (F.2)
KpII = 17.72 , TiII = 0.16[s] (F.3)

Lead - Controllers

KLeadI = 6.67 , TzI = 0.027[s] , TpI = 0.014[s] (F.4)
KLeadII = 12.90 , TzII = 0.0086[s] , TpII = 0.0042[s] (F.5)

Lag - Controllers

KLagI = 45.50 , TzI = 0.48[s] , TpI = 3.1[s] (F.6)
KLagII = 78.342 , TzII = 0.54[s] , TpII = 2.6[s] (F.7)
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Lag-Lead - Controllers

KLag−leadI = 44.00 , TzI1 = 0.48[s], TzI2 = 0.028[s] , TpI1 = 3.2[s], TpI2 = 0.016[s]
(F.8)

KLag−leadII = 287.44 , TzII1 = 0.15[s], TzII2 = 0.0086[s] , TpII1 = 3.1[s], TpII2 = 0.0038[s]
(F.9)



Appendix G
Anti Wind Up

Contents

In this appendix, integrator antiwind up is briefly accounted for.

As long as the values of piston positions and valve spool positions are not in saturation,
the feedback loop enables the system to correct the error. However, when the valve spool
position and cylinder piston position saturates, the feedback loop looses its effect as the
outputs of these are not influenced by their inputs. This can cause the destabilizing effect
of the integrator to reach large values, as it keeps on accumulating the errors. At some
point of time, when the integrator is accumulating the error, the output will become
larger than the input to the system, hence the error changes its sign. At this point the
integrator will begin to wind down. This will not happen unless the system overshoots
its target value with a certain value. The initiative taken to avoid the integrator windup
phenomenon, is to ensure that the integral has a reasonable value as the valve and cylinder
saturates. By doing so, integral anti windup has been created. Integrator anti windup is
implemented both in the software on the physical system, and in the simulation models.
The anti windup implemented in the model is shown in figure G.1, and it is seen that if
the controller output exceeds the saturation value of the limiter/saturator, the difference
between the saturation value and the controller output value, is increased an subtracted
from the input to the controller thereby correcting the controller to have a maximum
value equal to the saturation value. This value will, at most, only exceed the saturation
value momentarily, depending on the value of the constant in the anti wind-up feedback
loop.

++-+ pK

sT
K

i

p -+

AWK

ε

e vu

Figure G.1: Sketch of integrator anti wind up implemented in the model.
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Appendix H
Lemmas,
Theorems &
Norms

This appendix presents the theorems, lemmas and function norms used in the stability
proofs of the adaptive controllers.

H.1 Lyapunov’s Stability Theorem

If there exists a function V : <n → < which is positive definite, and if its derivative along
dx
dt = f(x) is negative semi-definite, then the solution x = 0 is stable. If dV

dt is negative
definite, then the solution is asymptotically stable. V is then referred to as a Lyapunov
function for dx

dt = f(x).

H.2 Lemma I

(This lemma has been taken directly from [Slotine E J-J, 1991])

Consider two signals e and φ related by the following dynamic equation:

e(t) = H(s)(kφT (t)v(t)) (H.1)

Where:

e(t): scalar output signal [−]
H(s): strictly positive real transfer function [−]
k: unknown constant with known sign [−]
φ(t): m× 1 vector function of time [−]
v(t): measurable m× 1 vector [−]

177



178 Appendix H. Lemmas, Theorems & Norms

If the vector φ varies according to:

φ̇ = −sign(k)γev(t) (H.2)

with γ being a positive constant, then e(t) and φ(t) are globally bounded. Furthermore
if v(t) is bounded, then:

e → 0 for t →∞ (H.3)

H.3 Lemma II - Barbalats Lemma

If g is a real function of a real variable t, defined and uniformly continuous for t ≥ 0, and
if the limit of the integral: ∫ t

0
g(τ)dτ (H.4)

Exists for t →∞ and is a finite number, then:

lim
t→∞

g(t) = 0 (H.5)

Remark: A consequence of Barbalats Lemma is that if g ∈ L2 and dg
dt is bounded, then:

lim
t→∞

g(t) = 0 (H.6)

Uniform Continuity

A sufficient condition for a differentiable function to be uniformly continuous is that its
derivative is bounded.

H.4 Lemma III - Lyapunov-like Lemma

If a scalar function V (x, t) satisfies the following conditions:

• V (x, t) is lower bounded

• V̇ (x, t) is negative semi-definite

• V̇ (x, t) is uniformly continuous

Then:

V̇ (x, t) → 0 for t →∞ (H.7)



H.5. Function Norms 179

H.5 Function Norms

(Taken directly from [Andersen, 2003b])

For any fixed p ∈ [1,∞], if f : <n → < belongs to Lp if
∫∞
0 |f(t)|pdt < ∞. The associated

norm is:

‖fp‖ =
(∫ ∞

0
|f(t)|pdt

) 1
p

=
1
kp

(H.8)

In addition to the class of functions in Lp, this extended space also includes truncated
functions of the form:

fT (t) =
{

f(t) t ≤ T
0 t > T

(H.9)

Such that:

‖fT ‖p < ∞ ; ∀T (H.10)

H.6 Induced Matrix Norms

(Taken directly from [Andersen, 2003b])

For a matrix A ∈ <n×n a norm can be defined by,

‖A‖p=̂ sup
x 6=0

‖Ax‖p

‖x‖p
, ∀x ∈ <n (H.11)

The norm is called the induced (matrix) norm of A corresponding to the vector norm
‖x‖p. For the induced norm it can be shown that,

‖AB‖p ≤ ‖A‖p · ‖B‖p, ∀A, B ∈ <n×n (H.12)

‖Ax‖p ≤ ‖A‖p · ‖x‖p, ∀A ∈ <n×n, x ∈ <n (H.13)

For p = 2 the induced norm can be given as ‖A‖2 =
√

maxiλi(AT A).

H.7 Gain of Linear Operators

(Taken directly from [Andersen, 2003b])

Let H be a causal operator H : f → g. The Lp gain of H is denoted ‖H‖p and is defined
as the smalles value of γ such that:

‖g‖p = ‖Hf‖p ≤ γ‖f‖p + β ∀f ∈ Lp (H.14)
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Consider the convolution-type operator H : f → g given by,

g(t) =
∫ ∞

−∞
h(t− τ)f(τ)dτ ∀t ∈ < (H.15)

Then for p = 2 the L2 gain is given by:

‖H‖2 = max
ω∈<

|ĥ(jω)| (H.16)

Where ĥ(s) is the laplace transform of the impulse response of H. For p = ∞ the L∞ is
given by:

‖H‖∞ =
∫ ∞

0
|ĥ(t)|dt (H.17)

Having defined the Lp spaces the following lemma is useful in analysing the input-output
proporties of systems with exponentially stable transfer functions.

Lemma 1: (Desoer & Vidyasagar)

Let the transfer function H(s) be exponentially stable and strictly proper. Then f ∈ L2

implies that g = H · f ∈ L2 ∩ L∞, ġ ∈ L2, g is continuous, and g → 0 as t → ∞. If, in
addition f → 0 as t →∞, then ġ → 0.

H.8 Normed Spaces

(Taken directly from [Andersen, 2003b])

A normed space is a vector space V with a given norm. A norm on a vector space V
is a rule which, given any x ∈ V , specifies a real number ‖x‖, such that,

(a) ‖x‖ > 0 if x 6= 0, and ‖0‖ = 0;
(b) ‖ax‖ = |a| · ‖x‖ for any x ∈ V and any scalar a;
(c) ‖x + y‖ ≤ ‖x‖+ ‖y‖ for any x, y ∈ V (the triangle inequality);

A normed vector space is called real or complex according to whether the underlying
vector space V is real or complex. Subsequent only norms defined on <n are considered.

Examples of norms which satisfy the axioms of the norm are,

‖x‖1=̂
n∑

i=1

|xi| (H.18)
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‖x‖p=̂

(
n∑

i=1

|xi|p
)1/p

(H.19)

‖x‖∞=̂ max
i
|xi| (H.20)

‖x‖2 is the usual Euclidean of x.

An important result is that all norms are equivalent in the sense that there exist positive
numbers κ1 and κ2 such that,

κ1‖x‖a ≤ ‖x‖b ≤ κ2‖x‖a,∀x ∈ <n (H.21)

This means that any norm can be used to show boundedness or convergence. Hence,
often the symbol ‖ · ‖ is used without specifying exactly which norm is meant.
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In this appendix the simulation results for the AIDC, AAC, RAIDC and AAC schemes are
presented. These are presented for the rectangular trajectory, and the plots when simulated
on the in/out trajectory are found on the appended CD.
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I.1 Simulation Results - AIDC/AAC (RECT)

I.1.1 Results - AIDC
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Reference trajectory
Trajectory tracking - AIDC I
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Figure I.1: Trajectory tracking for AIDC control system. (A) HSS I. (B) HSS II.
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Position error - AIDC I
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Figure I.2: Tracking error for AIDC control system. (A) HSS I. (B) HSS II.
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Figure I.3: Γ adaption for AIDC control system. (A) HSS I. (B) HSS II.



I.1. Simulation Results - AIDC/AAC (RECT) 185

0 0.5 1 1.5 2 2.5 3 3.5
0.4

0.5

0.6

0.7

0.8

0.9

1

Time [s]

Pa
ra

m
et

er
 a

da
pt

io
n 

[V
]

 

 

Adapted νI

0 0.5 1 1.5 2 2.5 3 3.5
-0.02

-0.01

0

0.01

0.02

0.03

Time [s]

Pa
ra

m
et

er
 a

da
pt

io
n 

[V
]

 

 

Adapted νII

(A) (B)

Figure I.4: ν adaption for AIDC control system. (A) HSS I. (B) HSS II.

I.1.2 Results - AAC
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Figure I.5: Trajectory tracking for AAC control system. (A) HSS I. (B) HSS II.
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Figure I.6: Tracking error for AAC control system. (A) HSS I. (B) HSS II.
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Figure I.7: Γ adaption for AAC control system. (A) HSS I. (B) HSS II.
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Figure I.8: ν adaption for AAC control system. (A) HSS I. (B) HSS II.

I.1.3 Tracking Errors - AIDC/AAC

Compensator |emaxI | [mm] ermsI [mm] |emaxII | [mm] ermsII [mm]
AIDC 9.6 3.00 1.33 0.32
AAC 9.7 2.62 0.91 0.27

Table I.1: Tracking error values for controllers tested on the rectangular trajectory.



I.2. Simulation Results - RAIDC/RAAC (RECT) 187

I.2 Simulation Results - RAIDC/RAAC (RECT)

I.2.1 Results - RAIDC
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Figure I.9: Trajectory tracking for RAIDC control system. (A) HSS I. (B) HSS II.
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0 0.5 1 1.5 2 2.5 3 3.5
-1.5

-1

-0.5

0

0.5

1

1.5

Time [s]

Po
si

tio
n 

er
ro

r 
[m

m
]

 

 

Position error - RAIDC II

Figure I.10: Tracking error for RAIDC control system. (A) HSS I. (B) HSS II.
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Figure I.11: Γ adaption for RAIDC control system. (A) HSS I. (B) HSS II.
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Figure I.12: ν adaption for RAIDC control system. (A) HSS I. (B) HSS II.

I.2.2 Results - RAAC
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Figure I.13: Trajectory tracking for RAAC control system. (A) HSS I. (B) HSS II.
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Figure I.14: Tracking error for RAAC control system. (A) HSS I. (B) HSS II.
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Figure I.15: Γ adaption for RAAC control system. (A) HSS I. (B) HSS II.
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Figure I.16: ν adaption for RAAC control system. (A) HSS I. (B) HSS II.
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I.2.3 Tracking Errors - RAIDC/RAAC

Compensator |emaxI | [mm] ermsI [mm] |emaxII | [mm] ermsII [mm]
RAIDC 6.46 2.68 1.16 0.36
RAAC 6.82 2.48 2.03 0.60

Table I.2: Tracking error values for controllers tested on the rectangular trajectory.

I.3 Simulation Results - AIDC/AAC (IOT)

In this section of the appendix, the simulation results regarding errors for the IOT are
presented. The plots for the trajectory tracking and errors are found on the appended
CD under IOT plots.

I.3.1 Tracking Errors - AIDC/AAC

Compensator |emaxI | [mm] ermsI [mm] |emaxII | [mm] ermsII [mm]
AIDC 3.21 1.48 0.61 0.16
AAC 6.86 3.66 1.00 0.64

Table I.3: Tracking error values for controllers tested on the in/out trajectory.

I.4 Simulation Results - RAIDC/RAAC (IOT)

The plots for the trajectory tracking and errors are found on the appended CD under
IOT plots.

I.4.1 Tracking Errors - RAIDC/RAAC

Compensator |emaxI | [mm] ermsI [mm] |emaxII | [mm] ermsII [mm]
RAIDC 3.02 1.31 0.55 0.16
RAAC 5.90 2.65 0.63 0.33

Table I.4: Tracking error values for controllers tested on the in/out trajectory.
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In this appendix the parameters for the adaptive and learning controllers used during sim-
ulation are presented. Controller parameters for the AIDC, AAC, RAIDC and AAC are
found on the appended CD.

J.1 Control Parameters used for MAIDC/MAAC

J.1.1 Control Parameters used for the RECT - MAIDC/MAAC

The control parameters used for the MAIDC and MAAC, when completing the rectan-
gular trajectory are presented in table J.1.
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Parameter MAIDC MAAC
kpI 13.00 10.00
kpII 15.00 38.00
kpiI − 15.00
kpiII − 13.00
γ1I 0.01 0.50
γ1II 20.00 0.80
γ2I 20.00 2.10
γ2II 20.00 0.80
α1I 5.00 3.00
α1II 1.00 0.80
α2I 5 17.00
α2II 0.10 17.00
Γ̂iniI 1.80 1.80
Γ̂iniII 1.20 1.10
ν̂iniI 0.55 0.50
ν̂iniII 0.03 0.00

Table J.1: Parameters used in the control- and adaption laws of the MAIDC and MAAC

J.1.2 Control Parameters used for the IOT - MAIDC/MAAC

The control parameters used for the MAIDC and MAAC, when completing the IOT are
presented in table J.2.

Parameter MAIDC MAAC
kpI 13.00 10.00
kpII 15.00 38.00
kpiI − 15.00
kpiII − 13.00
γ1I 0.01 0.50
γ1II 20.00 0.80
γ2I 20.00 2.10
γ2II 20.00 0.10
α1I 5.00 3.00
α1II 5.00 0.30
α2I 0.10 17.00
α2II 0.10 17.00
Γ̂iniI 1.80 2.30
Γ̂iniII 1.20 1.13
ν̂iniI 0.80 0.50
ν̂iniII 0.025 0.05

Table J.2: Parameters used in the control- and adaption laws of the MAIDC and MAAC
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J.2 Control Parameters used for ILC/RDLC

The control parameters used for the ILC and RDLC aresimilar for both trajectories.

J.2.1 Control Parameters used for ILC

Γ̂I = 1 , kpI = 20 , µI = 10 (J.1)

Γ̂II = 1 , kpII = 20 , µII = 5 (J.2)

J.2.2 Control Parameters used for RDLC

Γ̂I = 1 , kpI = 1 , LI = 0.011 (J.3)

Γ̂II = 1 , kpII = 1 , LII = 0.011 (J.4)

Here ∆t = 1/2000 [s].
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This appendix presents the bounds and assumptions used for the RDLC. This is taken
directly from [Andersen, 2004a].

In the following the desired trajectory is denoted xd, whereas the desired trajectory in
this thesis is denoted xR.

K.1 Bounds & Assumptions

The following has been scanned directly from [Andersen, 2004a].
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Figure K.1: Extract from [Andersen, 2004a].
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In this appendix the simulation results for linear controllers tested on the IOT are pre-
sented.

L.1 Simulation Results - Classic Linear Controllers

As shown in figures L.1 and L.2, it is clear that the tracking performance is similar to
those of the RECT, despite the lesser demanding trajectory.
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Figure L.1: (A) Trajectory position tracking, for the nonlinear model cylinder I. (B) Position tracking errors
for the nonlinear model, cylinder I.
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Figure L.2: (A) Trajectory position tracking, for the nonlinear model cylinderII. (B) Position tracking errors
for the nonlinear model, cylinder II.

L.1.1 Tracking Errors (IOT)

As for the RECT, the tracking errors are summarized and shown in table L.1.

Compensator |emaxI | [mm] ermsI [mm] |emaxII | [mm] ermsII [mm]
P 85.81 59.06 23.21 18.53
PI 138.20 71.79 11.65 5.93
Lead 86.79 59.20 26.95 21.33
Lag 98.91 56.75 23.88 13.33
Lag-Lead 141.55 72.27 13.76 7.46

Table L.1: Tracking error values for controllers tested on the out/in trajectory.

L.2 Simulation Results - VFCP/VFCA

L.2.1 Simulation Results - VFCP

From figures L.3 and L.4 it is found that the performance is similar to the situation,
where the compensated systems are subjected to the RECT.
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Figure L.3: (A) Trajectory position tracking, for HSS I. (B) Position tracking errors for HSS I.
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Figure L.4: (A) Trajectory position tracking, for HSS II. (B) Position tracking errors for HSS II.

Tracking Errors (IOT)

The tracking errors for the IOT are summarized in table L.2.

Compensator |emaxI | [mm] ermsI [mm] |emaxII | [mm] ermsII [mm]
P-VFCP 11.61 6.97 1.88 1.18
PI-VFCP 14.08 8.83 0.92 0.41
Lead-VFCP 11.45 6.90 2.19 1.36
Lag-VFCP 12.28 7.85 1.49 0.82
Lag-Lead-VFCP 15.68 9.48 1.46 0.51

Table L.2: Tracking error values for controllers tested on the out/in trajectory.

L.2.2 Simulation Results - VFCA

It is found from figures L.5 and L.6, that when testing a VFCA in combination with
a P and PI controller, the tracking performance is decreased, compared to the tracking
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performance obtained with the RECT. Especially in the second half of the IOT, the
controllers are not able to track the reference position. This may by due to that the
forces and hence the load pressures are reversed within as short period of time when the
actuators are to retract. This may cause variations in the active feed forward gain to
such an extend, that these are not corrected within the second half of the time period for
the trajectory.
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Figure L.5: Trajectory tracking with VFCA for HSS I. (A) Trajectory tracking. (B) Tracking errors.
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Figure L.6: Trajectory tracking with VFCA for HSS II. (A) Trajectory tracking. (B) Tracking errors.

Tracking Errors

Compensator |emaxI | [mm] ermsI [mm] |emaxII | [mm] ermsII [mm]
P-VFCA 14.44 6.39 3.37 1.87
PI-VFCA 21.06 7.67 1.48 0.52

Table L.3: Tracking error values for controllers tested on the in/out trajectory.
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L.3 Simulation Results - GFM

In the following the simulation results for the in/out trajectory are presented. Here it
is possible to apply the feed forward compensation, as the control valve input does not
experience saturation with the IOT. It is found from figures L.7 and L.8 that the tracking
performance for the IOT is similar to the tracking performance of the RECT. However, it
is found that the maximum errors regarding the IOT are smaller compared to the RECT,
and this improvement is caused by the lesser demands to the system when completing
the IOT.

(A) (B)

(A) (B)

0 0.5 1 1.5 2 2.5
-150

-100

-50

0

50

100

150

200

Time [s]

Pi
st

on
 p

os
iti

on
 [m

m
]

 

 

Reference trajectory
Trajectory tracking - GFM I

0 0.5 1 1.5 2 2.5
-150

-100

-50

0

50

100

150

200

Time [s]

Pi
st

on
 p

os
iti

on
 [m

m
]

 

 

Reference trajectory
Trajectory tracking - GFM II

0 0.5 1 1.5 2 2.5
-15

-10

-5

0

5

10

15

Time [s]

Po
si

tio
n 

er
ro

r 
[m

m
]

 

 

Position error - GFM I

0 0.5 1 1.5 2 2.5
-10

-5

0

5

10

Time [s]

Po
si

tio
n 

er
ro

r 
[m

m
]

 

 

Position error - GFM II
Figure L.7: Simulation results for the GFM control scheme applied on HSS I. (A) Trajectory tracking. (B)

Tracking error.
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Figure L.8: Simulation results for the GFM control scheme applied on HSS II. (A) Trajectory tracking. (B)
Tracking error.

From figures L.9 and L.10 it is seen that adding the feed forward contribution to the
controller, dramatically increases the tracking performance.
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Position error - GFM + feed forward HSS I
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Figure L.9: Simulation results for the GFM+feed forward applied on HSS I. (A) Trajectory tracking. (B)
Tracking error.
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Figure L.10: Simulation results for the GFM+feed forward applied on HSS II. (A) Trajectory tracking. (B)
Tracking error.

L.3.1 Tracking Errors (IOT)

Compensator |emaxI | [mm] ermsI [mm] |emaxII | [mm] ermsII [mm]
GFM 13.43 10.90 9.02 7.36
GFM+VFCPG 1.27 0.65 1.44 1.07

Due to the fact that no velocity sensors are available on the physical system, this com-
pensator has not been tested the test setup.
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In this appendix the simulation results for linear controllers tested on the IOT are pre-
sented.

The simulation results for the IOT, along with their errors are found in appendix M.

M.1 Simulation Results - Adaptive Controllers

In the following the simulation results for the MAIDC and the MAAC are presented.

It is found from figures M.1, M.2, M.5 and M.6, that when using MAIDC- and MAAC
schemes to complete the IOT, tracking performance is similar to completing the RECT -
however, with an increase in the tracking performance.

Regarding the parameter adaption, it is found from figures M.3, M.4, M.7 and M.8, that
the adapted parameters Γ̂i experiences increased tracking of the calculated Γi, along the
ramp-like segments of the IOT.
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M.1.1 MAIDC
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Figure M.1: MAIDC scheme implemented on HSS I. (A) Trajectory tracking. (B) Tracking error.
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0 0.5 1 1.5 2 2.5
-150

-100

-50

0

50

100

150

Time [s]

Pi
st

on
 p

os
iti

on
 [m

m
]

 

 

Reference trajectory
Trajectory tracking - MAIDC II

Figure M.2: MAIDC scheme implemented on HSS II. (A) Trajectory tracking. (B) Tracking error.
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Figure M.3: MAIDC scheme implemented on HSS I. (A) Adaption of Γ̂I . (B) Adaption of ν̂I .
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Figure M.4: MAIDC scheme implemented on HSS II. (A) Adaption of Γ̂II . (B) Adaption of ν̂II .

M.1.2 MAAC
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Figure M.5: MAAC scheme implemented on HSS I. (A) Trajectory tracking. (B) Tracking error.
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Figure M.6: MAAC scheme implemented on HSS II. (A) Trajectory tracking. (B) Tracking error.
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Figure M.7: MAAC scheme implemented on HSS I. (A) Adaption of Γ̂I . (B) Adaption of ν̂I .
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Figure M.8: MAAC scheme implemented on HSS II. (A) Adaption of Γ̂II . (B) Adaption of ν̂II .

M.1.3 Tracking Errors - IOT

Compensator |emaxI | [mm] ermsI [mm] |emaxII | [mm] ermsII [mm]
MAIDC 3.85 1.73 0.35 0.14
MAAC 7.20 2.17 0.31 0.11

Table M.1: Tracking error values for controllers tested on the in/out trajectory.

M.2 Simulation Results - Learning Controllers

M.2.1 Simulation Results - RDLC

The parameters of the learning controllers used for the IOT are given below.

Γ̂I = 1 , kpI = 1 , KLI = 0.011 (M.1)

Γ̂II = 1 , kpII = 1 , KLII = 0.011 (M.2)
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Regarding the IOT, simulation results are similar to the ones obtained for the RECT -
however, due to the lesser demanding trajectory, the obtained minimum errors are smaller
than the ones obtained for the RECT.
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Figure M.9: RDLC implemented on HSS I. (A) Trajectory tracking. (B) Tracking error.
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Figure M.10: RDLC implemented on HSS II. (A) Trajectory tracking. (B) Tracking error.

M.2.2 Tracking Errors - (IOT)

The maximum- and RMS errors are obtained for trajectory cycle with best performance,
and are given in the tables below.

Compensator |emaxI | [mm] ermsI [mm] |emaxII | [mm] ermsII [mm]
RDLC 10.07 3.45 3.10 0.67

Table M.2: Tracking error values for controllers tested on the in/out trajectory.

It has not been possible to implement the learning controllers within the time frame
of the thesis, hence no experimental results are presented. However, efforts to obtain
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reasonable experimental results for the learning controllers will be made previous to the
thesis evaluation, and the results will presented there.

M.2.3 Simulation Results - ILC

The parameters of the learning controllers used for the IOT are given below.

Γ̂I = 1 , kpI = 20 , µI = 8 (M.3)

Γ̂II = 1 , kpII = 20 , µII = 8 (M.4)

Regarding the IOT, simulation results are similar to the ones obtained for the RECT -
however, due to the lesser demanding trajectory, the obtained minimum errors are smaller
than the ones obtained for the RECT.
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Figure M.11: Learning controller implemented on HSS I. (A) Trajectory tracking. (B) Tracking error.
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Figure M.12: Learning controller implemented on HSS II. (A) Trajectory tracking. (B) Tracking error.
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M.2.4 Tracking Errors - (IOT)

Compensator |emaxI | [mm] ermsI [mm] |emaxII | [mm] ermsII [mm]
ILC 1.23 0.35 0.68 0.32

Table M.3: Tracking error values for controllers tested on the in/out trajectory.
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This appendix presents the elements of the control laws for the ARC. This is taken directly
from [Yao et al., 2001].

N.1 Control Law α2

The following has been scanned directly from [Yao et al., 2001]. The following two figures
(N.1, N.2 and N.3) are coherent.

Figure N.1: Extract from [Yao et al., 2001].
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Figure N.2: Extract from [Yao et al., 2001].

Figure N.3: Extract from [Yao et al., 2001].

N.2 Control Law α3

The following has been scanned directly from [Yao et al., 2001].
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Figure N.4: Extract from [Yao et al., 2001].

N.3 Control Law uv

The following has been scanned directly from [Yao et al., 2001]. The following two figures
(N.5 and N.6) are coherent.

Figure N.5: Extract from [Yao et al., 2001].
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Figure N.6: Extract from [Yao et al., 2001].

N.4 Theorem 1

The following has been scanned directly from [Yao et al., 2001]. The following two figures
(N.7 and N.8) are coherent.
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Figure N.7: Extract from [Yao et al., 2001].

N.6) are coherent.
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Figure N.8: Extract from [Yao et al., 2001].
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This appendix is a supplement to the chapter concerning the robustness of the control sys-
tems. Here the trajectory tracking of the control systems, when subjected to a disturbance,
are presented.

O.1 ∆ Error Plots for Linear Controllers
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Δ position error - HSS I
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Δ position error - HSS II

Figure O.1: Difference in error between P control system, with and without disturbance. (A) HSS I. (B) HSS
II.
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Δ position error - HSS II

Figure O.2: Difference in error between PI control system, with and without disturbance. (A) HSS I. (B) HSS
II.
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Δ position error - HSS II

Figure O.3: Difference in error between Lead control system, with and without disturbance. (A) HSS I. (B)
HSS II.
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Figure O.4: Difference in error between Lag control system, with and without disturbance. (A) HSS I. (B)
HSS II.
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Figure O.5: Difference in error between Lag-Lead control system, with and without disturbance. (A) HSS I.
(B) HSS II.
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Figure O.6: Difference in error between P-VFCA control system, with and without disturbance. (A) HSS I.
(B) HSS II.
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Figure O.7: Difference in error between PI-VFCA control system, with and without disturbance. (A) HSS I.
(B) HSS II.
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Figure O.8: Difference in error between GFM control system, with and without disturbance. (A) HSS I. (B)
HSS II.

O.2 ∆ Error Plots for Nonlinear controllers
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Figure O.9: Difference in error between MAIDC control system, with and without disturbance. (A) HSS I.
(B) HSS II.
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Figure O.10: Difference in error between MAAC control system, with and without disturbance. (A) HSS I.
(B) HSS II.
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Figure O.11: Difference in error between AIDC control system, with and without disturbance. (A) HSS I. (B)
HSS II.
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Figure O.12: Difference in error between AAC control system, with and without disturbance. (A) HSS I. (B)
HSS II.



222 Appendix O. Robustness analysis

(A) (B)

0 0.5 1 1.5 2 2.5 3 3.5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

Time [s]

Δ
 p

os
iti

on
 e

rr
or

 [m
m

]

 

 
Δ position error - HSS II

0 0.5 1 1.5 2 2.5 3 3.5
-10

-5

0

5

10

15

Time [s]

Δ
 p

os
iti

on
 e

rr
or

 [m
m

]

 

 

Δ position error - HSS I

Figure O.13: Difference in error between RAIDC control system, with and without disturbance. (A) HSS I.
(B) HSS II.
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Figure O.14: Difference in error between RAAC control system, with and without disturbance. (A) HSS I.
(B) HSS II.
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Figure O.15: Difference in error between ILC control system, with and without disturbance. (A) HSS I. (B)
HSS II.
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Figure O.16: Difference in error between ILC control system, with and without disturbance. (A) HSS I. (B)
HSS II.
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Figure O.17: Trajectory tracking P control system, with and without disturbance. (A) HSS I. (B) HSS II.
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Figure O.18: Trajectory tracking PI control system, with and without disturbance. (A) HSS I. (B) HSS II.
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Figure O.19: Trajectory tracking Lead control system, with and without disturbance. (A) HSS I. (B) HSS II.
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Figure O.20: Trajectory tracking Lag control system, with and without disturbance. (A) HSS I. (B) HSS II.
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Figure O.21: Trajectory tracking Lag-Lead control system, with and without disturbance. (A) HSS I. (B)
HSS II.
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Figure O.22: Trajectory tracking GFM control system, with and without disturbance. (A) HSS I. (B) HSS II.
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O.4 Trajectory tracking for nonlinear controllers applied to
a disturbance
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Figure O.23: Trajectory tracking MAIDC control system, with and without disturbance. (A) HSS I. (B) HSS
II.
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Figure O.24: Trajectory tracking MAAC control system, with and without disturbance. (A) HSS I. (B) HSS
II.
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Figure O.25: Trajectory tracking AIDC control system, with and without disturbance. (A) HSS I. (B) HSS II.
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Figure O.26: Trajectory tracking AAC control system, with and without disturbance. (A) HSS I. (B) HSS II.
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Figure O.27: Trajectory tracking RAIDC control system, with and without disturbance. (A) HSS I. (B) HSS
II.
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Figure O.28: Trajectory tracking RAAC control system, with and without disturbance. (A) HSS I. (B) HSS
II.
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Figure O.29: Trajectory tracking between ILC control system, with and without disturbance. (A) HSS I. (B)
HSS II.
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Figure O.30: Trajectory tracking between RDLC control system, with and without disturbance. (A) HSS I.
(B) HSS II.
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In this appendix the laboratory equipment used for implementing and testing the controllers
from the thesis is described

In the following is listed all the laboratory equipment used during this thesis along with
and indication of where the belonging data sheets may be found. Afterwards a more
detailed description of selected components are given along with a diagram showing the
coupling of the various components.

• One servo valve, Moog, E760-942, El05(Data sheet on CD (not specific valve))

• One servo valve, Rexroth, 4WS 2 EE 10-40(Data sheet on CD(not specific valve))

• Two safety valves, Rexroth, 4 WE 6 Y51/AG24NZ4(No data sheet available)

• Two cylinders, Rexroth, STC 0331-10/, WLP350 17126, H05001(No data sheet
available)

• Four pressure transducers, HBM P4A(Data sheet on CD)

• Two position transducers, Messotron WLP 350(Data sheet on CD)

• One pressure transducer amplifier, (No data sheet available)

• Two position transducer amplifiers, HBM, MVD2555(Data sheet on CD)

• One servo valve amplifier, Moog, Moog servo amp(No data sheet available)

• One servo valve amplifier, Rexroth, VT 1610(No data sheet available)

• Two DC power supplies(No data sheet available)

• One PC with DSP and DAQ card(No data sheet available)

• One DSP interface(No data sheet available)
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DSP interface
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Figure P.1: Overview of lab setup

P.1 DSP System

The DSP (Digital signal processor) consists of three main parts, a DSP card, a DAQ card
and a DSP interface. The DSP and DAQ cards are mounted in a PC via PCI facilitating
relative quick data transfers of up to 132[MB/s]. Mounted on the DSP is also a processor,
ram, and a BITSI interface connecting the DSP and DAQ card. The DAQ card facilitates
the transport of data between the DSP card and the DSP interface where the various
transducers and the servovalves are connected. The DSP interface is used for scaling
signals, which is done by use of operational amplifiers, to and from the DAQ card which
only supports signals in the range of ±5[v].

P.2 Servo Valves and Safety Valves

The servo valves controlling the oil flow to and from the cylinders is mounted directly
on cylinder 1 and 2. The Rexroot valve requires a control signal in the range of ±10[v]
whereas the Moog valve requires a signal in the range of ±15[v] in order to insure the
full operating range of the valves. Since the maximal signal output range of the DAQ
card is ±5[v] the signal for both the Rexroot and the Moog valve will have to be scaled
in order to achieve the full operating range of the valves. The scaling is done by use of
the operational amplifiers mounted on the DSP interface.
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P.3 Pressure Transducers

The pressure transducers are mounted one on each side of each cylinder chamber allowing
for data acquisition of pressure P1I , P2I , P1II and P2II . Each of the pressure transducers
output a signal ranging from 0[v]−5[v], meaning that no scaling of the signals is necessary
since the DAQ card as previously mentioned ranges from ±5[v].

P.4 Position Transducers

The position transducers are mounted on the cylinders, and is used for measuring the
position of the cylinder piston. The position transducers are coupled to a position trans-
ducer amplifier where the signal is amplified to a range from 0− 10[v], meaning that the
signal has to be scaled to 0− 5[v] in order to fit the range of the DAQ card.

P.5 Code

The code is divided into two parts namely the DSP code and the PC code. The DSP
code governs the behavior of the DSP whilst the PC code implements the graphical
user interface hence forward designated GUI. The GUI allows the user of the system
to communicate with the DSP allowing for fine tuning of some controller parameters,
sampling of data and etc. The GUI is divided into several sections using tab sheets. The
two main sheets are the ”controller type” and the ”trajectory” sheets. In the ”controller
type” sheet (see figure P.2) it is possible to choose which controller to use with a given
trajectory. In the ”trajectory” sheet (see figure P.3) a .txt file containing a trajectory
can be read into system memory, and afterwards executed in order to run the desired
trajectory. The remaining tab sheets makes it possible to see plots of position, pressure
and valve voltage. When loading a trajectory and checking the ”sample data” function,
data from the transducers will be sampled and displayed in the tabs containing the
plotting functions. The data can also be saved to disc if desired, by pressing the ”save
data” button in the main window. The code for the DSP can be found on the project
CD.
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Figure P.2: GUI for choosing controller type.

Figure P.3: GUI for loading and running trajectory.
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