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Preface

This report is written by group 1088a during 9th and 10th semester of the Biomedical Engi-
neering and Informatics education at Aalborg University, in the period from September 1st 2007
to June 2nd 2008. This report is the product of an experimental study done during the 9th
semester in the Department of Computing and Electronic Systems, University of Essex. The
authors would like to thank Dr. Francisco Sepulveda, Coordinator - Brain-Computer Interfaces,
for help and supervision during the project. An additional study was made during the 10th
semester which builds on many of the methods and ideas proposed in this report. The second
study is documented with a paper and some supplementary worksheets enclosed in this report.
In addition a CD, containing experimental data, MATLAB and LabView code, is attached.

Readers guide:

The report is divided into 3 parts: Part one is the introduction which leads to the hypothesis.
It contains a literature study of some of the work done with error-related potentials. The in-
troduction is followed by a description of the experimental study. Part two describes the signal
processing used to analyze the data obtained from the experimental study. It includes prepro-
cessing of the signal, feature extraction and classi�cation. Furthermore it includes evaluation of
di�erent classi�cation methods. The third part contains the discussion of the results obtained in
this project and a conclusion.

Esben Wermuth Ingstrup Christian Kannegård Nikolajsen
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Chapter 1

Preanalysis

In this chapter the research area of the Brain-Computer Interface (BCI) will be introduced. The

problems with BCI will be described and a possible solution to these problems will be proposed.

The proposed solution will lead to a hypothesis there will be sought to be con�rmed or rejected

within the work presented in this report.

1.1 Brain-computer interfaces

The BCI utilizes neurological signals from the human brain and converts them into command
signals which can control computers and external devices. The goal of BCI research is to develop
technologies that will bene�t severely disabled people by improving their independence and abil-
ity to perform daily activities and potentially restore lost function.[Kübler et al., 2006] Important
applications of BCI systems are to give new non-muscular communication or movement possibil-
ities to people su�ering from severe neurological impairments which a�ect the neural pathways
that control muscles or a�ect the muscles themselves.[Sanei & Chambers, 2007]

Wolpaw et al. [2006] have categorized the potential users of BCI into three groups. The �rst
group includes people who are totally locked-in due to end-stage amyotrophic lateral sclerosis
(ALS) or severe cerebral palsy. These people have no muscular function, not even eye movement.
With this group it is not certain if the cognitive functions and vision remain intact and therefore
unclear whether this group will be able to use BCI systems. However people who start using
BCI in earlier stages of ALS may still be able to use BCI in the end-stage.

In the second group of potential BCI users people have very limited muscular control. This
group is much larger than the �rst group and includes people with late-stage ALS, brain stem
stroke and severe cerebral palsy. These diseases a�ect nearly two million people in the United
States alone, and far more around the world [Wolpaw et al., 2002]. The incidence of amyotrophic
lateral sclerosis is about 1.5-2:100,000 and seems to be growing [Kübler et al., 2001]. Modern
life-support technology allows these people to live long lives, so that the personal, social, and
economic burdens of their disabilities are prolonged and severe. Studies have shown that with
adequate physical and social support they can lead lives that they and their families and friends
consider worthwhile and enjoyable and giving them the opportunity to communicate their life
quality will be highly increased.[Wolpaw et al., 2002, 2006]

The third group which is the largest includes people who are expected to retain enough muscular
control to speak and use their hands. These will be able to continue to operate communication
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1.1. BRAIN-COMPUTER INTERFACES 1. Preanalysis

devices and therefore will not have much bene�t of current BCI systems.[Wolpaw et al., 2006]
The second group and people progressing to the �rst group is therefore the most likely to bene�t
from BCI systems.

Other applications for BCI have also been suggested including stroke rehabilitation, neurofeed-
back therapies.[Graimann et al., 2007] People su�ering from stroke of a spinal cord injury may
have di�culties in initiating movements. Their intention may only lead to a small twitch of the
muscle early in the recovery process. This action may gain strength and precision if the patients
are able to practice. Neurofeedback from a BCI system could help improve the recruitment or
order of recruitment of motor pools to enhance the control of the motor task.[Dobkin, 2007]
Also in games for both educational and entertainment purposes BCI systems have application
possibilities.[Werkhoven & van Erp, 2007]

A BCI system consist of di�erent parts normally including signal acquisition, preprocessing,
feature extraction, classi�cation (detection), and application interface as seen in �gure 1.1. The
input to the system, the brain signal, has to be acquired using recording electrodes, ampli�er
and an analog to digital converter. Further information on signal acquisition can be found in
appendix B. The recorded and digitized signal then has to be processed. Preprocessing in terms
of �ltering the brain signal is necessary to improve the signal to noise ratio by reducing the sur-
rounding noise. From the command signal features has to be extracted to classify and thereby
decode the users intent. Possible features include time and frequency domain parameters like
amplitude measurements and the spectral content of the signal. The task of the classi�er compo-
nent is to use the signal features provided by the feature extractor to assign the recorded samples
of the signal to a category of brain patterns. The classi�cation step can consist of simple thresh-
old methods or more sophisticated linear or nonlinear classi�ers. Finally an application interface
uses the output of the classi�er to control a spelling device on a computer, neuroprosthesis or a
wheelchair etc.[Pfurtscheller et al., 2005; Wolpaw et al., 2002]

10



1. Preanalysis 1.2. EVENT-RELATED POTENTIALS

Figure 1.1: The di�erent parts of a BCI system. [Pfurtscheller et al., 2005]

1.2 Event-related potentials

There are di�erent approaches in the use of electroencephalography (EEG) for BCI. The most
used brain signals in BCI are event related potentials (ERPs). ERPs are an electrical response
of the cortex to a sensory, a�ective, or cognitive event. The ERP is generated by a lot of actions
potentials in one area �ring at the same time, typical in response to a peripheral or external
stimulation. For an introduction to brain anatomy and EEG generation read appendix A and
C. ERPs are small (1-30 µM) relative to the background EEG activity and a signal averaging
procedure is often necessary to visually reveal their waveform. The ERP waveforms can be quan-
titatively characterized across three main dimensions: amplitude, latency, and scalp distribution.
The ERP may also be characterized by relative latencies between its subcomponents. [Sanei &
Chambers, 2007] The ERPs used in BCI can be divided into 5 categories:

• Beta and mu rhythms. These signals are associated with activity in the motor cortex and
can be detected during physical or imaginary movements.[Sanei & Chambers, 2007][Wolpaw
et al., 2002]

• P300 evoked potential. This is the most studied and widely used ERP. The P300 is a
positive potential normally appearing between 300 ms and 400 ms after an auditory, visual
or somatosensory stimulus although latencies can range from 250 ms to 900 ms [Patel &
Azzam, 2005], see example in �gure 1.2. The P300 is elicited by a rare or signi�cant stimuli
and its amplitude is strongly related to the unpredictability of the stimulus. The more
unpredictable stimuli, the higher the amplitude, which usually have the range of 5 µV to
20 µV though amplitudes as high as 40 µV have been reported [Patel & Azzam, 2005]. The
P300 can be divided into two subcomponents, P300a having a more frontal distribution and
P300b having a more parietal distribution. The P300a re�ects an automatic orientation of
attention to novel or salient stimuli. The P300a is characterized by a more rapid habituation
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1.2. EVENT-RELATED POTENTIALS 1. Preanalysis

to frequent stimuli than the P300b. After repetition of the stimulus the P300a will quickly
decrease whereas the P300b seems to be less a�ected by the repetition, which suggests
that the P300b re�ects a categorization process of the stimulus.[Sanei & Chambers, 2007;
Friedmann et al., 2001] The P300 is often investigated using an oddball paradigm, in which
subjects are exposed to continuous succession of two types of stimuli, one frequent stimuli
and one infrequent stimuli.[Sanei & Chambers, 2007; Wolpaw et al., 2002]

• N200. This component is typically evoked 180 to 325 ms following a visual or auditory
stimulus and is a negativity resulting from a deviation in form or context of prevailing
stimulus [Patel & Azzam, 2005], see example in �gure 1.2. Also visual N100 and P200 have
been reported. These potentials appears after rapid visual stimulation.[Sanei & Chambers,
2007; Wolpaw et al., 2002]

• Steady-state visual evoked potentials (SSVEP). These potentials are responses to visual
stimulations at speci�c frequencies. The brain generates activity at the same frequency as
the visual stimulus.[Sanei & Chambers, 2007; Wolpaw et al., 2002]

• Movement-related cortical potentials (MRCPs). The MRCPs can be seen as slow negative
shifts in the EEG about 1500 ms to 1000 ms prior to the actual movement depending of
the body segment doing the movement, see example in �gure 1.3 on the next page. The
amplitudes are also depending on which body segment is used, for example foot movements
generates higher MRCP amplitudes than �nger movement.[Brunia & van den Bosch, 1984]
The MRCPs can also be seen before imaginary movements, but with lower amplitude than
real movements. In addition it has been shown possible that the rate of force development
can be used to discriminate MRCPs.[do Nascimento et al., 2006; Farina et al., 2007]

Figure 1.2: An example of an averaged response to a deviant stimulus where a clear N200 and P300 is
present.[Friedmann et al., 2001]

1.2.1 Problems with BCI

For a reliable BCI system a suitable control signal from the EEG has to be determined. Due to
the nature of the EEG it can be di�cult to �nd a control signal which can be precisely charac-

12



1. Preanalysis 1.3. ERROR-RELATED POTENTIALS

Figure 1.3: An example of an averaged MRCP before foot movement.[Brunia & van den Bosch, 1984]

terized, readily modulated and be detected and tracked consistently and reliably.

One problem in BCI is separating the control signals from the background EEG. Another prob-
lem with the use of EEG signal is artifacts which are interfering with the signal. In order to
have an artifact free EEG to extract the control signals, the EEG have to be restored from the
artifacts, such as eye-blinking, muscle activity, electrocardiograms, and any other internal or
external disturbing e�ects.[Sanei & Chambers, 2007]
A third issue concerning the stability of a BCI system is the intra- and inter-user variations in
the EEG signals. Signal features are likely to di�er greatly between di�erent users an there will
possibly be even more variation in users with disabilities. The EEG will in addition naturally
change over time, both between di�erent sessions and within a single session. Studies have shown
pronounced intra-individual variations in the BCI performance occurring within minutes. These
changes can be due to individual factors like level of alertness, reaction speed, working memory
capacity and the ability to perform parallel tasks.[Wolpaw et al., 2002; Parra et al., 2003; But-
t�eld et al., 2006]

The signal variations obviously generate great challenges for the development of BCI systems.
To deal with these variations the classi�er of the BCI system needs to adapt throughout its use
and keep it tuned to drift in the signals it is receiving.[Parra et al., 2003; Butt�eld et al., 2006]

1.3 Error-related potentials

To achieve a more reliable and robust BCI system the classi�er needs a feedback on its perfor-
mance. First of all it could be useful to detect if the classi�er makes a wrong decision based on
the recorded EEG and stop the BCI from executing incorrect commands. During ongoing use it
might be possible to improve the performance of the classi�er as well, by constantly adjusting
it. One option could be to use error-related potentials (ErrP) as feedback of the classi�ers per-
formance. [Butt�eld et al., 2006]

An ErrP is an event-related response from the brain as a response to an error. ErrPs pro-
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1.3. ERROR-RELATED POTENTIALS 1. Preanalysis

vide important evaluative information, since they indicate that a behavior was inadequate given
the current context and that, in future, a di�erent response needs to be selected [Holroyd &
Coles, 2002]. ErrPs can be elicited by negative feedback and by error commission itself and the
generation of the ErrP is equally sensitive to errors committed by di�erent motor modalities.
Investigations suggest that the ErrP is generated in anterior cingulate cortex and it is elicited
by a high-level error processing system. The anterior cingulate cortex has a great diversity of
inputs from cortical and subcortical areas and is believed to be a neural center where motor
intentions are mapped into action. It is believed to provide a critical pathway for emotional
and motivational factors in�uencing motor activity and that anterior cingulate motor areas are
involved in learning the mapping from intention to action by reward-related information carried
to the anterior cingulate cortex by the mesencephalic dopamine system. An illustration of the
error processing system can be seen in �gure 1.4.[Holroyd & Coles, 2002]

A simple example of a real BCI application where ErrPs would improve the performance could be

Figure 1.4: A model of the error processing system in the brain modi�ed from Holroyd & Coles [2002].

to make some kind of navigation to the left and to the right based on two imaginary movements.
This application could be useful if the BCI user in the long run would be able to control for
example an electrical wheelchair. The classi�cation of either left or right could maybe be im-
proved by correcting or supporting the decision with an ErrP. The ErrP would appear from the

14
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user when a wrong decision is made based on the classi�cation of the two imaginary movements.
Detection of ErrP could either correct the decision by choosing the opposite choice or prevent
executing the decision. In addition the ErrP could be used to adapt the classi�er so that the
users intent will be classi�ed correctly next time.

1.3.1 Former investigations of error-related potentials

ErrPs have been investigated by di�erent psychophysiology research groups [Falkenstein et al.,
2000; Holroyd & Coles, 2002; Krigolson & Holroyd, 2006, 2007] and in recent years also in the
context of BCI research [Schalk et al., 2000; Parra et al., 2003; Blankertz et al., 2003; Ferrez &
del R. Millán, 2005; Butt�eld et al., 2006; Ferrez & del R. Millán, 2007].

The studies can be distinguished by how the ErrP is triggered. One way is to use reaction
tasks, where time pressure makes the subjects perform the task incorrectly. The ErrP can be
triggered by recognition of an incorrect response by the subject itself or by feedback. Ferrez &
del R. Millán [2007] uses respectively the terms 'response ErrP' and 'feedback ErrP'.

Response ErrP

In context of BCI the 'response ErrP' has been investigated in Schalk et al. [2000], where subjects
were told to choose either 'YES' or 'NO' on a computer screen using a cursor controlled by the
subject brain signals. The 'YES' and 'NO' appeared alternating in the top or bottom of the
screen. For every selection of a word, either correct or wrong, the selected word was blinking
three times, whether or not it was the correct selection. In �gure 1.5 the ErrP reported by Schalk
et al. [2000] is shown. The average EEG is computed for all correct hits and for all incorrect hits
and subtracted. Here the dominant components are a positive peak 180 ms and a negative peak
approximately 500 ms after incorrect response.

Blankertz et al. [2003] used a modi�ed 'd2-test' where the subject should press one key when a
target appeared on the screen and another key if a non-target appeared. Targets in the d2-test
were compound symbols consisting of the letter 'd' and exactly two horizontal bars that may
occur in four possible positions each. Non-targets either show the letter 'b' and an arbitrary
number of bars (0-4) or the letter 'd' and a number of bars that di�er from two. In �gure 1.6
the ErrP reported by Blankertz et al. [2003] is shown. Here the components are negative peak
at 30 ms and positive at 250 ms after incorrect response.

Falkenstein et al. [2000] used several Go/NoGo reaction tasks and the main components of the
ErrPs reported are a negative potential showing up 80 ms after the incorrect response followed
by a larger positive peak showing up approximately 300 ms after the incorrect response see �gure
1.7.

Feedback ErrP

'Feedback ErrP' have been investigated by Holroyd & Coles [2002]. In their study the subject
was given two di�erent visual stimuli presented on a computer screen. The stimuli were mapped
to either the left or right button. The feedback was delivered randomly as either a money-bonus
reward or penalty independent on how the subject responded to the stimuli. In this study the
incorrect response was characterized by a negative component peaking 250 ms after feedback,
see �gure 1.8.
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1.3. ERROR-RELATED POTENTIALS 1. Preanalysis

Figure 1.5: The ErrP detected in the study by Schalk et al. [2000]. The signal shown is a grand average of
di�erence in wave shapes (error minus correct). The signal is measured at electrode location Cz.

Figure 1.6: The ErrP detected in the study by Blankertz et al. [2003]. The signals shown are grand averages of
the di�erence in wave shapes (error minus correct). The signals are measured at electrode location Cz and Fz.

Interaction ErrP

Recently, ErrPs triggered by the errors made by the interface and not by the subject itself has
been investigated, referred to as 'interaction ErrP' [Ferrez & del R. Millán, 2005; Butt�eld et al.,
2006; Krigolson & Holroyd, 2007; Ferrez & del R. Millán, 2007]. In these studies, ErrP has
successfully been identi�ed in response to errors made by the BCI system. To make sure the
errors is caused by interface mistakes and not the user, the task has to be quite simple. In Ferrez
& del R. Millán [2007] the experiment of detecting the existence of the ErrP was accomplished
by a test subject giving repetitive commands simulating the task of bringing a robot to the left
or right side of a room by pressing either right or left key. The test subject receives feedback by
a cursor moving to either the left or the right side of a computer screen. The interface makes a
mistake during 20% of the task executions and provides the wrong feedback.

The 'interaction ErrP' seems to be quite similar to event potentials which are a response to
an event the brain has been exposed to. Ferrez & del R. Millán [2005] describes the ErrP as
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Figure 1.7: The ErrP detected in the study by Falkenstein et al. [2000]. The signal shown is a grand average of
the di�erence in wave shapes (error minus correct). The signal is measured at electrode location Cz.

Figure 1.8: The ErrP detected in the study by Holroyd & Coles [2002]. Mind that this is not the di�erence signal
(error minus correct), but the response from correct and incorrect feedback. The signal is measured at electrode
location Cz.

three wave forms. First a sharp negative peak (Ne) appearing 270 ms after the test subject
receives the feedback. A later positive peak (Pe) appears between 350 and 450 ms after the
feedback. These two waves are the same appearing as a response to an event. But the ErrP
separates from the event potentials with an additional negative peak appearing 550 ms after the
feedback. In the latter study by Ferrez & del R. Millán [2007] the main components are reported
to be, at �rst a relatively small positive peak 200 ms after the feedback, a negative peak and a
positive peak 250 ms and 320 ms after the feedback, respectively and �nally, a second broader
negative peak about 450 ms after the feedback, see �gure 1.9.
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1.3. ERROR-RELATED POTENTIALS 1. Preanalysis

In all studies the ErrPs have been recorded within the medial-frontal cortex and it is expected
that the cortical areas involved in error processing are the presupplementary motor area and
anterior cingulate cortex. [Holroyd & Coles, 2002; Ferrez & del R. Millán, 2007]

Figure 1.9: The ErrP detected in the study by Ferrez & del R. Millán [2007].

18
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1.3.2 ErrP investigation in this project

To summarize last section several studies have been conducted to investigate the presence of
ErrPs. Di�erent �ndings due to the di�erent approaches have been reported. Error potentials
induced by the interface are still not as well documented as ErrPs induced by the users own
mistakes. The two studies by Ferrez & del R. Millán [2005] and Ferrez & del R. Millán [2007]
have investigated the ErrP when the interface response incorrectly to a manual task (key press)
performed by the subject. Obviously this task is not representing a realistic BCI situation, which
only uses the subject brain signals for task execution. Therefore it will be interesting to investi-
gate the presence of ErrPs induced by the interfaces incorrectly response to the subjects intent
only, as when no task is performed by the user manually.
The hypothesis for this study is:

'ErrPs induced by incorrectly classi�cation of imaginary movements can be detected

and classi�ed successfully.'

The detection of ErrPs should be used to improve the accuracy of a BCI system described
in Farina et al. [2007]. The system classi�es MRCPs generated by variation in force related pa-
rameters during foot movement. The ErrPs should therefore follow an incorrectly classi�cation
of imaginary foot movements. It have not been possible to �nd any investigations of ErrPs, in
relation to MRCPs during imaginary motor tasks, reported in the literature. In the following
chapters of this report the work done to con�rm or reject the hypothesis is presented. The work
includes data collection through an experiment with a number of subjects, signal preprocessing,
signal analysis, feature extraction and classi�cation.
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Chapter 2

Protocol

In this chapter the experiment which was conducted to investigate error-related potentials (ErrPs)

is explained. First follows the design considerations and second the description of the setup and

experiment execution.

2.1 Experimental design

The purpose of the experiment is to make a setup which will generate ErrPs which are easy
to isolate and classify in a group of test subjects. To simulate a realistic BCI situation the
test subject should perform an imaginary task followed by feedback on the performance of this
task. That is, if the BCI system could classify the intended imaginary task correctly or not.
As the detection of ErrPs should be used to improve the BCI system, described in Farina et al.
[2007], the imaginary tasks chosen for the experiment are two plantar �exions with di�erent
force rates. Although no online BCI system currently is available for this type of input it was
chosen to convince the subjects that an actual online classi�cation of the recorded EEG was
made. Thus the feedback to the subjects was given without any correspondence to the subjects
actual performance. The outcome of this experiment is therefore dependent on how well the
test subjects are convinced that their movements are classi�ed in accordance to their intent.
Furthermore is the ratio between the number of correct and error feedbacks crucial if the subject
is to stay motivated during the entire session.

2.2 Experimental activity

The experiment included six subjects (three males and three females) without any right foot or
ankle pathologic history. The volunteers did not su�er from any brain neurological pathology.
The subject was initially convinced that he/she was in an experiment in which a BCI system was
being tested and that the imaginary movements of the foot were measured and classi�ed online.

Preparation

For preparation of the experiment the subjects were asked to perform two di�erent tasks in-
volving real plantar �exion of the right foot. This preparation period was made to prime the
subject for the imaginary movements. The task consisted of real voluntary plantar �exion using
two di�erent rates, high rate (ballistic) and low rate (moderate). In both ballistic and mod-
erate movement the aim was 70% of maximum voluntary contraction (MVC). Where ballistic
was reaching 70% of MVC as fast as possible and the moderate was a steady increase of force
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Figure 2.1: In the �gure the experimental setup for the preparation period is shown. The force applied on the
strap during ankle �exion was visualized on a computer.

with 20% of MVC per second. The test subject was instructed to place the right foot in a strap
attached to a force transducer, which returned a visual feedback of the force produced by the
subject through the graphical user interface. The subjects were asked to repeat each of the tasks
20 times. The setup can be seen in �gure 2.1.

Actual experiment

Because the experiment was based on imaginary movements the subject was told not to move the
ankle, but only imagine the movement during the experiment. They were instructed to follow
the same parameters for the imaginary movement as they did during the preparation. From a
computer screen the subjects were instructed to perform either an imaginary moderate plantar
�exion or imaginary ballistic plantar �exion. The graphical user interface was made in LabView,
view �gure 2.2. The subject had to do 40 of each task chosen in randomly order to prevent
the type of task a�ecting the outcome. A progress bar showed on the screen determined the
duration of the imaginary task. After each task the subject received a feedback in terms of
either "correct" or "wrong", appearing in a pop-up window on the screen, view �gure 2.3. The
feedback was chosen randomly (75% correct and 25% error). The subject was going through
the same three sessions, run at three di�erent days. One session contained 80 trials which were
divided in groups of ten trials. One trial consisted of a preparation period before the task and a
performance period where the subject had to imagine the task as instructed from the graphical
user interface. In between the ten trials there was a waiting period of ten seconds. In this waiting
period a pop-up window with no relevant information (the letter X) randomly appeared ten times
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Figure 2.2: The graphical user interface which instructed the test subject to do either a moderate or a ballistic
movement. In the bottom of the screen the progress bar timed the task execution.

Figure 2.3: The pop-up window which provided feedback about the subjects performance.

during a session, view �gure 2.4. The reason for this feedback was to investigate the di�erence

Figure 2.4: The event pop-up window which purpose was to make a P300 response from the test subject.

between ErrP and P300 signals. After every group of ten trials there was a short break of approx-
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imately two minutes. During the experiment the subject was settled down in a comfortable chair.

2.3 Signal acquisition and analysis

The EEG was recorded by 64 + 7 electrodes with a BioSemi digital DC ampli�er using the Ac-
tiView acquisition software. The 64 electrodes scalp electrodes was mounted on an electrode cap,
see electrode locations in �gure 2.5. One ear lobe electrode was used as reference. The BioSemi
used 2 feedback electrodes for the ampli�er. The sample frequency was 512 Hz. Eye movements
and blinking was recorded by 4 electrodes to make a more e�cient removal of EOG from the
EEG. Two electrodes were positioned above and beneath the right eye and two electrodes were
positioned on the outer and inner canthi on the right eye. All recordings from all channels were
preprocessed for signal enhancement. From the preprocessed recordings the signal epochs of one
second before, to one second after onset of imaginary movement, were extracted for analysis of
MRCPs. One second following feedback were extracted for analysis of ErrPs. Trigger signals
sent from the computer showing the graphical user interface to the ampli�er simpli�ed this ex-
traction. The analysis was focused on the channels Fz, Cz and Pz.

In �gure 2.6 the signal processing of the experimental data of this study is shown.

Figure 2.5: Electrode locations for the EEG recording.[BioSemi, 2008]
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Figure 2.6: The �gure illustrates the working process of this study.
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Part II

Signal processing
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Chapter 3

Preprocessing

Before the signals were useful for feature extraction and classi�cation, the signal to noise ratio

had to be improved and artifacts removed. The signal was �ltered with linear �lters and electroocu-

lography (EOG) which was causing large peaks in the EEG signal was removed by independent

component analysis (ICA).

3.1 Filtering

The �rst step of preprocessing is �ltering. This part is very important for improving the signal
to noise ratio. Before any �ltering it is necessary to know the requirements of the �lter. The
easiest �lter to use, but still very e�cient, is a linear �lter. The linear �lter attenuates the signal
components which are outside the stop band. The linear �lter can be used as a �nite impulse
response (FIR) �lter or an in�nite impulse response (IIR) �lter. The FIR has the advantage
of always being stable and having linear phase shifts however they are more computationally
demanding than IIR �lters. The primary advantage of IIR �lters over FIR �lters is that they
can meet a speci�c cuto� sharpness or slope, with a much lower �lter order. The disadvantage of
IIR �lters is that they have nonlinear phase characteristics. However if the �ltering is used on a
data sequence where the entire signal is available, such as o�ine analysis, a noncausal technique
can be used to produce zero phase �lters.[Semmlow, 2004] The analysis in this project was done
o�ine. As a result an IIR �lter was chosen because it is possible to make backwards-forwards
�ltering which prevent time shift of the signal.

The analysis of error-related potentials (ErrPs) required a bandpass �lter suited for �ltering
event-related potentials (ERPs). To remove low frequency baseline drift and high frequency
noise from the EEG a bandpass �lter is normally used. The ErrP is reported to be a low fre-
quency signal in the range 1-10 Hz [Butt�eld et al., 2006]. The response signals were bandpass
�ltered using a 4th order highpass Butterworth �lter with cuto� frequency at 1 Hz and a 5th
order lowpass Butterworth �lter with cuto� frequency at 10 Hz.

The movement-related cortical potentials (MRCPs) are relatively slow cortical potentials which
require a highpass �lter with low cuto� frequency to prevent removing some of the low frequen-
cies components in the signal.[do Nascimento et al., 2006] A 1st order highpass Butterworth �lter
with cuto� frequency at 0.1 Hz was chosen. To make sure none of the interesting components
of the signal were removed and no 50 Hz powerline noise was present in the signal a 10th order
lowpass Butterworth �lter with cuto� frequency at 45 Hz was chosen.
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The �lters were implemented using forward-backward �ltering giving a zero phase response.
The signals were then referenced to the right ear. An alternative reference is the average signal
of all EEG channels which is used by [Ferrez & del R. Millán, 2007] before detection of ErrPs.
This reference method was also tried in this project but it was not preferable compared to the
ear reference method. The reason for this is that the ErrP will possibly be recorded in the
entire mediofrontal cortex and by using the average reference method some of the important
information may be removed. Finally to remove o�set every channel had its mean set to zero.

3.2 EOG removal

Before the signal can be used for feature extraction and classi�cation, interference from EOG
has to be removed. EOG causes very big distortion in the EEG signal. If an eye blink is present
it can completely distort the signal and make it impossible to determine whether it is a correct
or an error response. The easiest way to prevent eye blinks is to make an experimental design
where the test subject has plenty of time to blink elsewhere during the trial, and instruct the
subject to avoid eye blinks during the part of interest. However for some test subjects it is still
not enough to prevent eye blinks in the interesting parts so it has to be removed from the signal
after the experiment.

In Fatorechi et al. [2007] they investigate the methods for EOG removal used by di�erent re-
search groups. Most groups do not deal with EOG or they reject the trials which are distorted
manually. The methods which are used to remove EOG are linear �ltering, linear combination
and regression, blind source separation and some non-linear adaptive methods.

• The linear �ltering has already been used to remove baseline and higher frequencies, but
they do not deal with any of the frequencies between the two �lters. [Fatorechi et al., 2007]

• Linear combination and regression is based on subtraction some small area from an EOG
channel from the desired channel, however subtracting the EOG signal may remove parts
of the EEG signal, which can ruin the classi�cation as well. [Fatorechi et al., 2007]

• Blind source separation (BSS), is an approach to estimate and recover the independent
source signals using only the raw mixed EEG signal (�gure 3.1). A used method for making
BSS is independent components analysis (ICA). The concept of ICA is to decompose the
EEG signal into their independent components and because the EOG is an independent
component it should be easy to remove. However a disadvantage of this method is that it
is very slow to calculate which makes it almost impossible to use online. In addition the
EOG components have to be identi�ed before removal. [Fatorechi et al., 2007]

• Non-linear adaptive methods has according to Fatorechi et al. [2007] not shown to be an
e�cient way of removing EOG.

Based on the conclusion in Fatorechi et al. [2007]; Li et al. [2006]; Jung et al. [2000]; Krishnaveni
et al. [2006] it was assumed that the most suited method for removing EOG in this project
was by blind source separation. There was no need of online removal of EOG because the data
analysis was done o�ine. The other issue about blind source separation is to choose which of
the components to remove and which to keep. This problem was approached by implementing
an automatic method which removed the components that were most alike the EOG signals
recorded with the eye electrodes.
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3.2.1 Independent component analysis

The EEG signal is a mix of the electrical activity of all the neurons in the brain and di�erent kind
of interfering artifacts from the body itself and the measuring equipment. In the use of BCI it is
typically speci�c signal components which are of interest. The concept of ICA is to decompose
the EEG signal into their independent components (ICs). Using the simplest assumptions about
the mixing medium of the EEG signal; the source signals arrive at the sensors at the same time,
the BSS model can be formulated as:

Figure 3.1: The �gure illustrates the concept of blind source separation applied to EEG recordings.[Sanei &
Chambers, 2007]

x̄(n) = H̄s̄(n) + v̄(n) (3.1)

Where s̄(n) has the dimensions of (m × 1) , and x̄(n) (ne × 1) and v̄(n) (ne × 1) denote
respectively the vectors for source signal, observed signal, and noise at discrete time n. The ne

denotes the number of electrodes used to record the EEG signal and m the unknown number
of independent sources in the brain. H̄ is a mixing matrix of size ne × m. To reconstruct the
original EEG signal is performed by:

ȳ(n) = W̄ x̄(n) (3.2)

Where W̄ is a separating matrix of size m × ne, which uses only the information about x̄(n). If
this assumption is left out of account di�erent delays and attenuation from the di�erent sources
has to be considered. The mixing process may be given as:

xi(n) =
M∑

j=1

hijsj(n− δij) + vi(n), for i = 1, . . . , N (3.3)
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Where the attenuation, hij , and delay, δij , of source j to sensor i is determined by the distance
between the source and sensor. With this mixing process the reconstruction process will be
expanded as well:

yj(m) =
N∑

i=1

wjixi(m− δji), for j = 1, . . . ,M (3.4)

Where wji is the elements of W . This model is di�cult to apply on EEG signal because the
number of sources is unknown which makes the separation matrix impossible to construct. This
problem has been solved by di�erent kind of statistics. One method is the fast ICA. The main
part of using this method is nongaussianity. This is a result of probability theory telling that
the distribution of a sum of two independent random variables usually has a distribution that
is closer to Gaussian than any of the two original random variables. By using statistic tools as
kurtosis the sources can be extracted one-by-one. [Sanei & Chambers, 2007]

The method used for ICA in this project is the one included in the EEGLAB toolbox which
is based on the infomax algorithm developed by Bell & Sejnowski [1995] [CNL/The Salk Insti-
tute, 2008]. The ICA algorithm is based on minimizes the mutual information among the data
projections or maximizes their joint entropy. The method seeks to �nd component time courses
that are mutually independent, meaning that component cross-correlations as well as all the
higher order moments of the signals are zero.[Delorme & Makeig, 2004]

3.2.2 Implementation considerations of ICA

The main use of ICA in the project was to remove EOG from the recorded EEG which could
improve the detection of the ErrP. In �gure 3.2 the original recorded EEG with eye blink is
illustrated, the high spike in the middle of the signal across the channels is a eye blink which
clearly will give problems for detection of the ErrPs. Instead of using manually selection of
the EOG components from the EEG, which can be done by investigation the time course and
the corresponding spatial scalp topography of each IC, an automatically detection of the EOG
components are used. In �gure 3.3 some of the independent components are showed. The EOG
components from the ICA are selected by comparing the ICs with EOG recorded from electrodes
placed around the eye. To use the eye recorded EOG to remove the right IC a similarity or
distance between each decomposed independent components and the EOG has to be calculated.
Li et al. [2006] proposed to calculate the angle between each scalp topography of the IC and
a template topography made from manually detected eye blinks in the EEG. In this project it
was proposed to use the angle to calculate the similarity between the recorded EOG and the
decomposed IC. The angle between the eye recorded EOG channels and the ICs was calculated
by following equation:

αj,i = cos−1

[
ICeegj · EOGi

‖ICeegj‖ ‖EOGi‖

]
(3.5)

The eye recorded EOG is termed EOG and calculated for each of the four EOG channels, the
scalp recorded independent components being ICeegj , j = 1, ..., N , where N is the number of
independent components and i = 1, ..,K where K is the number of recorded EOG channels. If
αj was less or higher than two prede�ned thresholds the j'th IC was assumed to be an eye blink
component and removed. The high and low thresholds were set to 1.8 and 1.4 radians, where
1.6 corresponds to completely independence between the IC and EOG. The corrected EEG can
be seen in �gure 3.4 after removing ICs which was classi�ed as EOG.
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Figure 3.2: The spikes in the middle of the �gure are eye blinks from which have the highest amplitude in the
frontal part of the head.

Figure 3.3: The independent components from the signal are showed. It is clear that the �rst IC is related to
EOG.

3.2.3 Evaluation of EOG correction

It is clearly very important for further analysis and classi�cation of the EEG signals that the
ICA method e�ciently removes EOG components from the EEG without any distortion of the
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Figure 3.4: The corrected EEG.

signal. Figure 3.4 shows that the method removed most EOG leaving only a minimal corruption.
To evaluate if the method distort the EEG in any other way is more complicated. The easiest
approach is to manually take out all trials not corrupted by EOG and calculate the average of
these signals ( manually-corrected average). By comparing that manually-corrected average to
the average of all trials with EOG correction (ICA-corrected average) one can visually evaluate
if the two waveforms have a similar shape or if the EOG correction have caused a distortion.
In �gure 3.5 (A) and 3.6 (A) the outcome of this approach can be seen for subject 1 and sub-
ject 4 respectively. Subject 1 and 4 were chosen because they were the only two where it was
possible to extract trials without any interference from EOG, to make the manually-corrected
average. Only correct trials were used for this evaluation. It can be seen that the wave shapes
of the ICA-corrected average and manually-corrected average have very similar characteristics
and time course. It has to be taken into account that the ICA-corrected waveforms were made
by average of 180 trials whereas the others were made of only 20 and 34 trials for subject 1 and
4 respectively. In (B) the average of all correct trials without any EOG correction is shown.
Especially for subject 1 the shape of the waveform di�ers from the ones shown in (A) as a large
negative de�ection caused by eye blinking is present around 600 ms after feedback.

In �gure 3.7 all steps of the signal preprocessing are illustrated. After these steps the signal
to noise ratio of the EEG signals should be increased to improve the following feature extraction
and classi�cation.
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(A) (B)

Figure 3.5: In (A) is the ICA-correcte average (dashed) of the all correct trials (n=180) shown for subject 1.
The manually-corrected average (solid, n=20). In (B) the average of all correct trials without any EOG correction
is shown.

(A) (B)

Figure 3.6: In (A) is the ICA-correcte average (dashed) of the all correct trials (n=180) shown for subject 4.
The manually-corrected average (solid, n=34). In (B) the average of all correct trials without any EOG correction
is shown.
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Figure 3.7: Illustration of the preprocessing steps.
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Chapter 4

Signal analysis

In this chapter the preprocessed EEG recordings will be analysed to see if signal averages reveal

the presence of the error related potential (ErrP). This chapter should give an insight to the signal

quality and characteristics of the subjects included in the experiment.

As explained in the pre-analysis the appearance of the signals vary quite a lot from study to
study, which was the case in this study as well. There were also large variations from subject
to subject. Former investigations suggest that the ErrPs are generated in the anterior cingulate
cortex and presupplementary motor cortex.[Ferrez & del R. Millán, 2007; Holroyd & Coles, 2002]
To validate if this information holds for this study as well, a grand average of the six subjects
scalp topographies is made, see �gure 4.1 and 4.2. The topographies are made of the recorded
response at time instances from 0 to 950 ms after feedback with a interval of 50 ms. Especially
the topographies at the time instances 200 ms, 300 ms and 500 ms are of interest as this ap-
proximately are the latencies for the ErrP described by Ferrez & del R. Millán [2007]. From
the topographies it seems that most cortical activity is generated along the central line of the
brain. During one second after feedback there is activity in both frontal, central and parietal
areas of the brain and it is therefore interesting to analyze the response recorded from electrode
location Fz, Cz and Pz. The topographies give no information about di�erence in the brain areas
activated after error and correct feedback.

35



4. Signal analysis

Figure 4.1: The grand average scalp topographies for all subjects from 0 to 950 ms after correct feedback. The
channels P2, P8 P10 and O2 are removed due to large noise interference.

Figure 4.2: The grand average scalp topographies for all subjects from 0 to 950 ms after error feedback. The
channels P2, P8 P10 and O2 are removed due to large noise interference.
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4.1 The response to feedback

The grand average response after feedback of all six subjects can be seen in �gure 4.3, 4.4 and
4.5 recorded at Fz, Cz and Pz respectively. The grand averages show a negative peak at 200 ms,
positive peak at 300 ms and broad negativity from 400 ms to 700 ms after feedback. The error
feedback seem to generate a slightly more negative amplitude between 500 and 600 ms compared
to correct feedback. The grand average response after the X-event show negative peak at 200
ms a positive peak at 300 ms and a broader negative peak between 500 and 600 ms. At Fz and
Cz the negative peak at 200 ms and the positive at 300 seem to be more clear compared to the
response recorded at Pz. The averaged response signals for the subjects individually can be seen
in appendix D.

There are clearly some variations between the di�erent signals from subject to subject, but
also some consistency in the characteristics. The primary purpose of the X-events showed to the
subject was to clear if the response recorded after the error and correct feedback, mainly was
a result of the visual stimuli or the actually information about their performance. The three
peaks at approximately 200 ms, 300 ms and between 400 and 600 ms respectively are present
after error and correct feedback as well as after the event. This implies that none of the elicited
peaks are exclusively related to error perception. On the contrary Ferrez & del R. Millán [2007]
reports three very similar peaks, with similar latencies as being error related. The error and
correct feedback and the event which in this experiment are given by a pop-up window might all
be characterized as infrequent events. Therefore the negative peak at 200 ms and the positive
at 300 ms, are very likely to be contributed by the N200 and P300 which both are well docu-
mented responses after a infrequent visual event.[Patel & Azzam, 2005; Friedmann et al., 2001;
Sanei & Chambers, 2007] A negative peak at 400 ms, the N400 is reported to be present after
semantic stimuli, such as a word or number within a prior context.[Sanei & Chambers, 2007;
Fogelson et al., 2004; Fonseca et al., 2006; Lang & Kotchoubey, 2000] The late negative peak
seen between 400 and 600 ms could be related to this semantic process. This peak however has
in the response from three subjects (subject 1, 4 and 5) either a more negative amplitude or a
longer duration after error feedback than after correct feedback. This implies that the peak also
could be contributed by an error potential.
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Figure 4.3: The grand average response signals from correct and error feedback and X-event for all six subjects,
recorded at electrode location Fz. Feedback was presented at time 0 seconds. The signals are averages of the
recordings from all 3 sessions.

Figure 4.4: The grand average response signals from correct and error feedback and X-event for all six subjects,
recorded at electrode location Cz. Feedback was presented at time 0 seconds. The signals are averages of the
recordings from all 3 sessions.
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Figure 4.5: The grand average response signals from correct and error feedback and X-event for all six subjects,
recorded at electrode location Pz. Feedback was presented at time 0 seconds. The signals are averages of the
recordings from all 3 sessions.
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4.2 Imaginary movements

As the ErrP is suggested to be related to the performance of motor tasks, the motor-related
cortical potentials (MRCPs) measured during the subjects imaginary ankle movement tasks will
be analyzed. The measured signal was expected to be a slow, but strong negative de�ection
starting around one second before movement execution. In �gure 4.6 the grand average signal
from one second before to one second after movement onset is shown. It can be seen that the
negative de�ection does not start until after movement onset and does not seem to be as slow
as reported in the literature.[Brunia & van den Bosch, 1984; do Nascimento et al., 2006] These
unexpected �ndings can be caused by the relative long performance period of six seconds, which
may have a�ected the timing of the task onset to be very subjective. The subjects probably
engage to the task after the onset indicator, meaning that the imaginary movement will start
sometime after time 0 seconds. The strong similarity of both MRCPs may be an indicator that
variations of rate of force development are not something that can be easily imagined. The sharp
and large MRCP peaks observed may be a consequence that ballistic movements may be more
easily assimilated and generate larger cortical responses.

Figure 4.6: The grand average of the recorded signal for all six subject one second before to one second after
onset of imaginary movement. An MRCP can be seen starting after time 0 seconds.
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Chapter 5

Feature extraction

In this chapter feature extraction methods for detection of error related potentials (ErrPs) will be

explained. The usefulness of the features will be evaluated in chapter 7.

5.1 Features for brain-computer interface

The ErrPs, are like most event-related potentials from the brain, very di�cult to characterize be-
cause of large variation from signal to signal. It is probably di�cult to establish any morphology
features for the ErrP. The amplitude of the signal is sometimes smaller than the background EEG
signal which often drowns the ErrP, and make it almost impossible to detect.[Sanei & Chambers,
2007] The di�culties of extracting any useful features made other groups use the recorded signal
as a feature vector [Ferrez & del R. Millán, 2005; Parra et al., 2003; Blankertz et al., 2003]. In
this study however, it has to be investigated what features are most useful for the classi�ca-
tion of ErrP. Various feature extraction methods has been tried by di�erent research groups to
classify slow cortical potentials and P300 which characteristics may have some similarity to the
ErrP. According to Bashashati et al. [2007]; Mason et al. [2007] various types of time/frequency
analysis, correlation with a template and peak and area calculation has been tried and hence
these methods were considered in this project.

• Features extracted from a wavelet transform were tried as a time/frequency analysis in this
study. This feature extraction approach was tried in two di�erent variants. The �rst one
is based on a method suggested by Bostanov [2004] and called t-CWT.

• Correlation with a template can be characterized as a feature extraction method as well as
a classi�cation method and therefore will be described in section 6.2.

• Due the very poor signal to noise ratio in single trials peak and area calculation was not
tried because it was almost impossible to �nd any shapes in the signals. However some
statistic features were calculated which could serve as replacement for these features.

In the following the di�erent methods will be explained. It was additionally tried to gather all
the features including the signal in one large feature space. To prevent redundancy, principal
component analysis (PCA) was calculated and features which did not provide any information
to the classi�cation were rejected. The new feature space from the PCA was used as features as
well.
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5.2 Wavelet feature extraction

The wavelet transform is related to Fourier transform where a signal is described by sine func-
tions. Instead of using sine functions the wavelet transform is using a waveform which changes
over time, by changing the scale of the waveform.[Semmlow, 2004] The wavelet transform (WT)
is a joint time-frequency analysis. Wavelets have been proven to be appropriate starting points
for the classi�cation of the measured signals. They allow extraction of richer problem speci�c
information from sensor signals. Based on this transform, several methods have been developed
to capture sensor signal features. [Pittner & Kamarthi, 1999]

The wavelet transform can be implemented as a continuous wavelet transform CWT and a
discrete wavelet transform DWT. The two methods are quite similar however the DWT is reduc-
ing the number of wavelet coe�cients by changing the scale and translation in powers of 2, which
will produce a nonredundant transform of a signal. This is not the case with the CWT which is
highly redundant by producing a lot of information which is useless if an inverse transformation
has to be made.[Semmlow, 2004] However if the wavelet transform is used to �nd shapes like ERP
it is more likely to �nd a scale of the wavelet which �ts the waveform in the signal.[Bostanov,
2004] The de�nition of the continuous wavelet transform of signal f(t) is:

W (a, b) =
1√
a

∫ ∞
−∞

f(t)Ψ(
t− b
a

)dt (5.1)

Where b denotes the time shift (the position parameter), a denotes the scale parameter (inversely
proportional to frequency). The wavelet coe�cients, W (a, b), describe the correlation between
the waveforms in the signal and the wavelet at various translations and scales: the similarity be-
tween the waveform and the wavelet at a given combination of scale and position, a, b. Semmlow
[2004]. Ψ is the wavelet function, which has zero mean:∫ ∞

−∞
Ψ(t)dt = 0 (5.2)

The transform is linear and is invariant under translations and dilation:

If f(t)→W (a, b) then f(t− τ)→W (a, b− τ) (5.3)

and

f(σt)→ 1√
σ
W (σa, σb) (5.4)

The continuous wavelet transform is a kind of template matching, a computation of the cross
correlation between the signal and the prede�ned waveform, the template Ψ, which is shifted
forward and backward in time and dilated and constricted in scale. The local extreme values
from W (a, b) indicates were the best match between the wavelet template and signal in the
time-frequency domain. The choice of which wavelet to use for the continuous wavelet transform
depends on how well localized the time or scale has to be. The Mexican Hat wavelet, which is
well localized in the time domain, are used for detection of ERP components, whereas wavelets
that are well localized in the frequency domain, like the Morlet wavelet, are used for detection
of salient oscillations [Bostanov, 2004]. In �gure 5.1 the two mother wavelets are shown, where
(A) is the Mexican Hat and (B) is the Morlet Hat. In this project a Mexican hat is used which
is the second derivative of a Gaussian waveform:

Ψ(t) = (1− t2)e−0.5t2 (5.5)
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(A) (B)

Figure 5.1: The Mexican Hat wavelet (A) which is good for locate objects in time domain and the Morlet Hat
(B) which is used to detect objects in the frequency domain.

[Sanei & Chambers, 2007]

There have been implemented and tested two di�erent methods to extract features from the
continues wavelet function. These methods will be described in the following.

5.2.1 First wavelet feature

In the �rst method the feature extraction from the wavelet transform is done by a method pro-
posed by Bostanov [2004]. The data is divided in a training set and a test set, same way as
classi�ers which need both to train and evaluate the classi�cation. In the method the training
set is used to �nd the coordinates which in the end should provide the values where there is most
information about the di�erence between error and correct feedback responses in time and scale.
The method proposed is called t-CWT and is performed in �ve steps.

The �rst step is to calculate the CWT, Wn(a, b) of the signal fn(t) which is calculated for
every trial n.

The second step is to calculate the mean Wg(a, b) and variance σg(a, b) from each CWT of
each trial:

Wg(a, b) =
1
Ng

Ng∑
n=1

Wn(a, b) (5.6)

σg(a, b) =
1

Ng − 1

Ng∑
n=1

(Wn(a, b)−Wg(a, b))2 (5.7)

Where Ng is the number of trials in group (g = correct or error)

The third is to calculate the t-statistic of the trials t(a, b):

t(a, b) =
Wcorrect(a, b)−Werror(a, b)√

σcorrect−error(a, b)
(5.8)
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Where:

σcorrect−error(a, b) =
(ncorrect − 1)σcorrect + (nerror − 1)σerror

ncorrect + nerror − 2
(

1
ncorrect

+
1

nerror
) (5.9)

[Bostanov, 2004]

In �gure 5.2 the t(a, b) is shown from data recorded during one session from test subject 4 with
20 error and 60 correct trials. The t-test is a useful tool to calculate how equal two di�erent pop-
ulations are. The t-test determines whether two given data sets each characterized by its mean,
standard deviation and number of data points are distinct, taking variance into account.[Ross,
2004]

The fourth step is extracting the local extremes of the function t(a, b) referred to as (ai, bi)

Figure 5.2: The t-test for each time and scale from the wavelets of correct and error from subject 4.

which are the point of maximal di�erence between correct and error feedback responses. The
�fth and last step is to compute each point (ai, bi) for each single trial n for both the test and
the training data.[Bostanov, 2004]

In the �gure 5.2 it is possible to see where the largest di�erence between the two classes af-
ter feedback is, which gives a good indication where the error potentials are best located, and
thus where the best area for feature extraction is. The area with dark blue and dark red indicate
where the largest di�erence is.
The 15 maximums and 15 minimums with highest values are chosen to use as features for training
and test, giving a total number of 30 features for each trial.

5.2.2 Second wavelet feature

The second wavelet feature extraction is similar to the �rst one but the data is not divided in
two sets as in the �rst one. In the other method the CWT was calculated for all the trials in the
training set and used in a t-test to calculate where the large di�erence was located and detecting
the local maximum and minimum values in the data from the t-test. In this method the local
maximums values and coordinates are calculated for each trial, which is used as training and
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test in the classi�er. In this method the 15 maximums and 15 minimums with highest values are
chosen and additionally the coordinates are found as well for every extreme value, which brings
the total number of features to 90.
As in the other method the �rst step is to calculate the CWT, Wn(a, b) of the signal fn(t) for
each trial n. The second step is to detect all the local extremes in the wavelet transform. Using
this approach information on frequency and time di�erences between correct and error trials is
included in the features.

5.3 Statistical features

As mentioned earlier the SNR of the EEG signals are very low, and it is almost impossible to
�nd any characteristic in single trials. It is still assumed that it should be possible to detect
small changes between correct and error trials even in single trials which statistic features maybe
could indicate.

Statistical features are useful to describe the probability distribution of the signal from each
trial. To describe the probability distribution of the signal mean and variance are calculated,
and for describing the shape of the probability distribution skewness and kurtosis are calculated.
The mean is calculated by following equation:

mean(x) =
1
n
·

n∑
i=1

xi (5.10)

And the variance is calculated by following equation:

var(x) =
1
n
·

n∑
i=1

(xi − µ)2 (5.11)

Skewness, the third standardized moment, is a measure of the asymmetry of the probability
distribution which is calculated by following equation:

skew(x) =
√
n
∑n

i=1(xi − µ)3

(
∑n

i=1(xi − µ)2)3/2
(5.12)

Kurtosis, the fourth standardized moment, is a measure of the "peakedness" of the probability
distribution of the signal:

kurt(x) =
n
∑n

i=1(xi − µ)4

(
∑n

i=1(xi − µ)2)2
− 3 (5.13)

three is subtracted to give a kurtosis of zero which for a standard normal distribution would have
been three.[Ross, 2004]

The four statistic features only provide with one value each for one single trials giving a to-
tal number of four features which is a bit few with such a complicated signal, however it is very
fast to calculate and easy to use in a classi�er. If it is giving equally good classi�cation with
some of the other methods the statistic features is preferable.
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5.4 Principal component analysis

If the signal and the features from wavelet and statistic features are gathered to one feature vec-
tor it would end up giving a lot of features where some of them do not add any useful information
to the classi�cation. If there are too many features represented with no information of the two
classes it will only reduce the chances of making a good classi�cation. Principal Component
Analysis (PCA) is used to transform a new feature space and sort out which of the features is
most useful, and reduce the feature space by rejection of some of the redundant features.

PCA is an orthogonal linear transformation that transforms the data to a new coordinate system
where the greatest variance by any projection of the data is described by the �rst coordinate,
the second greatest variance on the second coordinate, and so forth [Jackson, 1991]. The relation
between the input data x and the transformed data y can be expressed as.

y = A(x− µx) (5.14)

where A contains the eigenvectors ei as row vectors, hence A = [e1e2 . . . en]T . µx is the mean
of the data set given by µx = 1

nΣn
i=1xi. Since PCA is a linear transformation with orthonormal

basis vector it can be expressed as a translation and rotation. In �gure 5.3 is the basic principles
of PCA illustrated for the two dimensional case. The �rst two �gures illustrate how the data
are transformed into another representation where the main part of the variance of the data is
represented in the variable y1. If the second variable is ignored, as illustrated in the last �gure,
the main variance is kept.

Figure 5.3: The basic principle of PCA.[Moeslund, 2001]

The eigenvectors can be found by solving following equation, which is known as the eigenvalue
problem:

(Cx − λI) · ei = 0 (5.15)

where Cx is the covariance matrix, λ the eigenvalue and I the identity matrix.[Moeslund, 2001]

When PCA is calculated from the input signal matrix X which contains all the recorded EEG
components, an output matrix y with all the new transformed features will be made. The matrix
will have the same size as the input matrix with the same number of features and channels, so
nothing is so far gained in terms of data reduction. The problem is now to reduce the required
features as much as possible without losing too much information. By sorting all the eigenvec-
tors in such a way where the one with high information is �rst and the one with low information
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is last it is a matter of removing some of the last components. It is done by calculating a J-
measure which is an expression of which and how good the eigenvectors separates the classes.
The J-measure is de�ned as:

J(ei) =
eTi Mei
λi

(5.16)

Where J(ei) denotes the J-measure of the i'th component, ei denotes the i'th eigenvector. λi

denotes the I'th eigenvalue and M the scatter matrix of the input data. The scatter matrix is
de�ned as:

M =
K∑

i=1

P (ki)(µi − µ)(µi − µ)T (5.17)

It contains a measure of the variances between the components in each class, where K denotes
the number of classes, P (ki) the probability of the i'th class µi the mean of the i'th class in
the input data and the µ is the mean of the means. In �gure 5.4 the reduction of features is
illustrated with the eigenvectors on the �rst axis and the associated eigenvalues on the second
axis. The threshold m separate the eigenvectors in two groups where I1 represent the features
which is kept and I2 represent the features which is rejected.[Moeslund, 2001]

To make sure the threshold m does not remove too much of the information about the two
classes di�erent values were tested. It was tested using from two features to half the numbers of
features in the feature vector.

Figure 5.4: Illustration of which eigenvectors to keep and which to reject, the threshold m seperate the eigenvec-
tors in two groups where I1 is kept and I2 rejected.[Moeslund, 2001]
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Chapter 6

Classi�cation

In the following chapter the choice of classi�cation methods for this project will be examined.

The choice of classi�er is very important for a good result for this reason several classi�cation

methods will be tested.

6.1 Choice of classi�er

There are several classi�cation methods available for di�erent classi�cation purposes. Among
them neural networks (NN), linear discriminant analysis (LDA), k-nearest neighbour (kNN) and
support vector machines (SVM), which all have been used in BCI research [Mason et al., 2007].
Which classi�cation method to choose is dependent on the number of classes and the choice of
features which needs to be classi�ed. In this project it is a relative complicated signal which
makes it very di�cult to decide the best classi�cation method which will perform best. Due to
this four di�erent classi�cation methods were tested. The four classi�ers were tested using data
from two subjects, and the classi�er giving the best result was chosen for further analysis.

The classi�ers were evaluated using 10-fold cross validation. The data samples were divided in
10 equal sized subsamples which were tested separately in the classi�er giving nine subsamples
for training of the classi�er. When all subsamples were tested separately the mean performance
for the classi�cation was calculated.

6.2 Template matching

Template matching is a method sometimes used in detecting the P300 component in BCI re-
search.[Bashashati et al., 2007] A template is constructed from previous P300 components and
then the cross-correlation is calculated between the P300 template and the signal in which P300
components is wished to be detected. The result of the cross-correlation can be used as a feature
or using a simple threshold the method also can be used for classi�cation.

6.2.1 Theory

The error and correct response are divided in a training set and tests set according to the 10-fold
cross validation. To make the template of the error response xe and the correct response xc the
training set is used. The template is calculated by making an average of all the trials N in each
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of the two subset giving two templates:

x̄e =
1
N

N∑
n=1

xe(n) (6.1)

and

x̄c =
1
N

N∑
n=1

xc(n) (6.2)

The cross-correlation is calculated between the two templates and each of the trials in the testset
si, where N is the number of samples, i is the number of trials, which is classi�ed:

(x̄e ∗ s)i(n) =
∑

j

x̄e
∗(n) · si(n+ j) (6.3)

and

(x̄c ∗ s)i(n) =
∑

j

x̄c
∗(n) · si(n+ j) (6.4)

[Ross, 2004]

Whether the single trials belong to the correct or the error class is decided by choosing the one
giving the best correlation with the single trial:

result = MAX[(x̄e ∗ g)i (x̄c ∗ g)i] (6.5)

6.2.2 Implementation considerations of template matching

A data set from a previous study where the identity of each single trial was known was divided and
two templates were made, one corresponding to the correct response class and one corresponding
to the error response class. Both templates were constructed by making an average of several
response signals. For classi�cation the cross-correlation, between the response signal and the two
templates, was calculated. The response signal was assigned to the class for which the template
gave the highest cross-correlation.

6.3 Linear discriminant analysis

Linear Discriminant Analysis (LDA) is a relatively simple method to discriminate between two
classes and is commonly used in classi�cation of EEG patterns. Using this method it is assumed
that the two classes is linear separable, which may not be the case in this project and thereby
be a disadvantage compared to other non-linear classi�cation methods. However the simplicity
of a linear method can also be advantage as the decision boundary will not be over�tted to
the training samples. Another consideration is when building non-linear classi�ers as multilayer
perceptrons or support vector machines, di�erent free parameters have to be carefully selected for
the classi�cation to be e�cient. They may also need a large number of training samples, which
is not available in this project, to outperform a linear classi�cation. Taking these considerations
into account using LDA may be more robust and produce better classi�cation results than using
non-linear methods.[Bashashati et al., 2007]
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6.3.1 Theory

The method used in the LDA is Bayes rule. Bayesian classi�cation is based on probability
theory. Instead of making the decision for an observation based on the smallest distance to
di�erent classes, the Bayes theory is based on which classes the observation most likely belong
to. If the observation has a feature vector x with some attributes that characterize some kind of
object. There would be a conditional probability of the object represented by x belonging to class
wi which can be written as: P (ωi|x). If the probabilities P (ω1|x) and P (ω2|x) is determined the
decision is like this:

if P (ω1|x) > P (ω2|x) x ∈ ω1; (6.6)

if P (ω1|x) < P (ω2|x) x ∈ ω2; (6.7)

if P (ω1|x) = P (ω2|x) the decision is arbitrary (6.8)

The posterior probabilities P (ωi|x) can be computed if the probability density function of the
distribution of the feature vector in both classes is known. If so the respective likelihood of x
can be calculated: p(x|ωi), by Bayes law:

P (ωi|x) =
p(x|ωi)P (ωi)

p(x)
(6.9)

with p(x) =
c∑

i=1

p(x|ωi)P (ωi), the total probability of x. (6.10)

The decision can be made by the following statement:

if p(x|ω1)P (ω1) > p(x|ω2)P (ω2) then x ∈ ω1 else x ∈ ω2 (6.11)

[Duda et al., 2001]

6.4 Neural networks - multilayer perceptrons

Neural networks has proven to be e�ective in classi�cation problems where no general priori
knowledge of the patterns exists and the classi�er has to be build using experience-based learn-
ing.[Rangayyan, 2002]

6.4.1 Theory

Arti�cial neural networks have been motivated from the functionality of the human brain which
is a highly complex information processing system. The neural network consists of several
information-processing units named neurons after their resemblance to the neurons in the brain.
Figure 6.1 shows the model of a single neuron. The neuron has several input signals xj , each
connected by synapses having a weight wkj of their own. A summation of the weighted inputs
is input to an activation function ϕ which gives the range of output signal of the neuron a �nite
value, normaly a closed unit interval [0,1]. A bias b can be used for increasing or decreasing the
input to the activation function.[Haykin, 1999]
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Figure 6.1: The model of a neuron.[Haykin, 1999]

A very common used feedforward network is the Multilayer Perceptron (MLP) which consists of
a input layer, one or more hidden layers of computation nodes and a output layer of computa-
tion nodes. MLP is trained in a supervised manner using the error back-propagation algorithm.
Learning by error back-propagation consists of pass forwards and a pass backwards through the
network. During the forward pass the input signal is applied to the nodes of the network layer by
layer and �nally gives an output response. The weights of the network are all �xed during this
pass. In the backward pass the output response is compared with the desired response which
produces an error signal which is propagated backwards in the network to adjust all the weights
in order to make the actual output response approaching the desired response. In �gure 6.2 the
architecture of the MLP is shown.[Haykin, 1999]

Figure 6.2: The architecture of a MLP with two hidden layers.[Haykin, 1999]
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Learning processes for a NN

The neural network can be used as self-organization where no training is needed and is called
unsupervised classi�cation where no results or classes is known from the data, but in this case
where there is knowledge of the classes and data from the environment where the neural network
is used it has to be trained before use. By training the neural network is learning from its
environment, and improving its performance. Training the neural network is a process where
the synaptic weighs and bias level is adjusted. How to adjust the synaptic weighs and bias level
on the neural network is achieved by minimizing a cost function or error energy E(n) of the
performance. This cost function is designed to make the output signal of a neural network come
closer to the desired response. The cost function is de�ned in terms of an error signal denoted
by ek(n):

E(n) =
1
2
e2k(n) (6.12)

In �gure 6.3 a simple feed-forward neural network is illustrated with only one neuron k in the
output layer. The neuron is driven by one signal vector x̄(n), the output signal of the neuron k
is denoted by yk(n). By compared the output with a desired response dk(n) the error signal is
produced:

Figure 6.3: Block diagram of a neural network highlighting the only neuron in the output layer.[Haykin, 1999]

ek(n) = dk(n)− yk(n) (6.13)

The training of the neural network is done step by step where the adjustment of the synaptic
weights of the neuron k are continued until the system reaches a steady state. The update step
of the weight is done according to the delta rule, where the adjustment ∆Wkj(n) is applied to
the synaptic weight wkj at time step n:

wkj(n+ 1) = wkj(n) + ∆wkj(n) (6.14)

wkj denotes the value of the synaptic weight of the neuron k activated by element xj(n) of the
signal vector x̄(n). The adjustment δWkj(n) is de�ned by:

∆wkj(n) = ηek(n)xj(j) (6.15)

Where η is a positive constant that determines the rate of learning.[Haykin, 1999]
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6.4.2 Implementation considerations for MLP

The MLP was implemented using the neural networks toolbox in MATLAB. A single hidden
layer was used, consisting of 12 neurons. The number of neurons in the hidden layer was chosen
by testing which number gave the best classi�cation. As output layer a single neuron was used.
The MLP was trained to give a error energy of 0.2 to avoid over�tting to the test samples. If
the limit of 0.2 was not met the training will automatically stop after 100 training epochs and
use the parameters for the weight and bias from the step which gave the smallest value for the
error energy.

6.5 Support vector machine

Support vector machine (SVM) is a non-linear pattern classi�cation method. The central idea
of SVM is the adjustment of a discriminating function so that it optimally uses the separability
information of the boundary patterns. [de Sá, 2001]

6.5.1 Theory

SVM is a supervised classi�er and the concept of this method is easiest approached by considering
a binary classi�cation. The function of a linear classi�er made from the training samples would
be:

f(x̄) = sign((w̄ · x̄) + b) = +1 if x̄ belongs to the �rst class (6.16)

f(x̄) = sign((w̄ · x̄) + b) = −1 if x̄ belongs to the second class (6.17)

where x̄ is the feature vector and w̄ determines the orientation of the discriminant plane. There
will be an in�nite number of planes discriminating the two classes. The optimal classi�er �nds
the plane which seperates the two classes while being furthest from both classes.

Suppose a hyperplane separates the positive and negative class. The data point lying on the
plane satisfy

w̄ · x̄+ b = 0 (6.18)

where w is the normal to the hyperplane, |b| / ‖w̄‖2 is the perpendicular distance from the
hyperplane to the origin and ‖w̄‖2 is the Euclidean norm of w̄.
Let two supporting hyperplanes be de�ned as

x̄ · w̄ + b ≥ +1 for y = +1 (6.19)

x̄ · w̄ + b ≤ −1 for y = −1 (6.20)

The SVM algorithm maximizes the margin between these two support hyperplanes. The planes
are pushed apart until the meet the closest data points, which will be the support vectors. In
�gure 6.4 the hyperplane and the support vectors are shown. The margin is de�ned as

γ = 2/ ‖w̄‖2 (6.21)

and to maximize the margin one have to minimize

w̄ · w̄ subject to constrain yi(x̄i · w̄)− b) ≥ 1 (6.22)

This is a constrained optimization problem which can reformulated to a Lagrangian problem
which can be solved by using quadratic programming algorithms. [Sanei & Chambers, 2007;
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Bennett & Campbell, 2000]

When training samples are non-seperable a soft margin classi�er most be constructed. This
gives following constrained optimization problem. One have to minimize

w̄ · w̄ + C
∑

xii subject to constrain yi((x̄i · w̄ + b) ≥ 1− ξi (6.23)

C is parameter representing the tradeo� between minimizing the training set error and maximiz-
ing the margin.

In many non-separable cases a nonlinear classi�cation function can help separating the classes.
SVM uses kernel mapping where the data are nonlinearly projected into a higher-dimensional
space which then makes the data separable by a linear hyperplane. Two of the most used kernel
functions K(u,v) are the polynomial:

K(u, v) = ((u · v) + c)2 (6.24)

and gaussian radial basis function:

K(u, v) = exp(−
‖u− v‖22

2σ2
) (6.25)

[Sanei & Chambers, 2007]

Figure 6.4: SVMs �nd the optimal hyperplane (solid line) to separate two classes by maximizing the margin.
It can be described by the vector w and the bias term b. Only support vectors (bordered circles) are necessary to
calculate w and b.[Kaper et al., 2004]

An exclusive-OR (XOR) is a simple example which cannot be solved using a linear classi�ca-
tion method on the features itself. In �gure 6.5 on the next page (A) the problem is illustrated,
where the points k = 1, 3 at x = (1, 1)t and (−1,−1)t are in category ω1(marked with red) and
k = 2, 4 at x = (1,−1)t and (−1, 1)t are in category ω2(marked with black). By preprocessing
the features to map them in a higher dimension space the XOR problem can be solved linear.
By using a second order function the four features x are mapped to a six-dimensional space by
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(A) (B)

Figure 6.5: In (A) the original x1x2-space is shown, the two red patterns are in category ω1 and the black ones
in ω1. The four training patterns x are mapped in a new feature space shown in (B) which makes the four features
linear separable.[Haykin, 1999]

1,
√

2x1,
√

2x2,
√

2x1x2, x
2
1, x

2
2. As seen in �gure 6.5 (B) two of the new features can be sepa-

rated linear with a optimal hyperplane g(x1, x2) = x1x2 = 0 and the margin b =
√

2.[Haykin,
1999]

6.5.2 Implementation considerations for SVM

In this project the SVM used is implemented by Chang & Lin [2001]. This is a C implementation
of the method, which also include a MATLAB interface.

To get good results Hsu et al. [2007] suggest the radial basis function (RBF) kernel as �rst
choice for many classi�cation problems. The polynomial kernel has more parameters which gives
a higher complexity in �nding the best classi�cation. The RBF kernel also has less numerical
di�culties. However the RBF kernel may not produce better results in case of a very high fea-
ture number where the less complex linear kernel will give a similar performance.[Hsu et al., 2007]

When using the linear kernel for classi�cation only the parameter C has to be chosen initially.
When using the RBF kernel in addition another parameter σ has to be chosen. The goal is
to �nd the parameters C and σ to obtain the best classi�cation. One will not necessarily get
the best results by just optimizing the parameters to improve the training accuracy which may
produce the over �tting problem. To get better results Hsu et al. [2007] recommend to do a grid
search using cross validation to �nd the best values for C and σ.

In this project a 10-fold cross validation was used, initially on a rough grid with C = [2−5, 2−3, .., 215]
and σ = [2−15, 2−13, .., 23]. When the initial values of C and σ were found another �ner grid
search was used to �nd the best values. Afterwards the parameters were used together with the
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entire training set to train the classi�er.

6.6 Evaluation of classi�cation methods

In the following tables the classi�cation results are listed for the template matching, LDA, MLP
and SVM respectively. Only results for subject 1 and 2 have been calculated. As input for the
classi�ers the �rst wavelet features, statistical features and the signal downsampled were used
separately.

The results have been calculated using 10-fold cross-validation. Each day have 20 error sam-
ples and 60 correct samples. To get the most reliable results the error samples were mixed
randomly and 20 of the 60 correct samples were taken out in random order and used for the
cross-validation. This step was repeated 30 times. The mean and standard deviation of the 30
10-fold cross-validation results are shown in the tables. Se the three di�erent tables from each of
the classi�ers; table 6.1 contains the template results, table 6.2 the LDA result and �nally table
6.4 for the SVM.

It can be seen from the results that this is indeed a di�cult classi�cation problem. Using
template matching most error responses is assigned to the error class, but so are the correct
responses. LDA and MLP have similar performance, with LDA having higher total classi�cation
accuracy for subject 1. The SVM does not outperform the other classi�ers. However for subject
1 day where the clearest deviation between error and correct response was shown the SVM is
giving slightly better classi�cation results. For that reason the SVM method has been chosen for
classi�cation of ErrP's in this project and because it unlike many other classi�ers perform well
in the following situations:

• the number of features is high;

• there is a limited time for performing the classi�cation;

• there is a nonuniform weighting among the features;

• there is a nonlinear map between inputs and outputs;

• the distribution of the data is unknown;

[Sanei & Chambers, 2007]
In addition a study by Schlögl et al. [2005] investigated the performance of the classi�ers LDA,
KNN and SVM, to solve a EEG signal classi�cation test, and found the latter to be signi�cantly
better, whereas Garrett et al. [2003] found SVM to be only slightly better than LDA and NN.
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Subject 1 Subject 2 Average

10-fold cross validation day 1

E 99.0±3.0 96.3±6.0
C 4.0±6.5 16.3±12.7

10-fold cross validation day 2

E 91.0±8.1 98.7±3.2
C 13.2±11.2 4.8±6.2

10-fold cross validation day 3

E 100.0±0.0 54.6±28.4
C 10.7±6.7 44.8±27.9

E 89.8±8.1
C 15.7±11.9

Table 6.1: The classi�cation accuracy (mean and standard deviation) for error trials (E) and
correct trials (C) for subject 1 and 2 using template matching.

Signal Wavelet Statistical

Subject 1 Subject 2 Subject 1 Subject 2 Subject 1 Subject 2 Average

10-fold cross validation day 1

E 63.8±7.5 63.5±8.1 62.2±9.3 58.7±9.5 49.5±32.1 55.2±31.9
C 53.8±9.7 54.3±10.0 48.5±9.0 57.2±9.3 57.0±21.7 41.3±25.9

10-fold cross validation day 2

E 68.0±6.5 52.5±10.6 61.3±9.1 60.5±7.6 73.3±19.7 70.3±17.9
C 55.5±7.1 38.2±10.0 49.8±10.2 53.6±8.8 27.3±20.0 32.3±14.2

10-fold cross validation day 3

E 64.3±5.0 55.5±7.8 70.5±6.3 61.3±8.9 89.8±0.9 32.2±18.5
C 68.2±6.9 57.3±9.1 52.7±10.6 63.3±9.3 55.6±7.8 63.2±25.0

E 61.8±12.1
C 51.6±12.5

Table 6.2: The classi�cation accuracy (mean and standard deviation) for error trials (E) and
correct trials (C) for subject 1 and 2 using the proposed features in LDA.
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6.6. EVALUATION OF CLASSIFICATION METHODS 6. Classi�cation

Signal Wavelet Statistical

Subject 1 Subject 2 Subject 1 Subject 2 Subject 1 Subject 2 Average

10-fold cross validation day 1

E 57.8±10.3 62.2±8.0 59.0±8.6 63.3±9.2 59.2±8.3 55.0±8.6
C 53.3±9.4 54.8±8.1 47.5±11.7 57.8±11.6 54.3±11.4 54.3±9.0

10-fold cross validation day 2

E 57.3±12.2 56.7±11.2 57.5±8.3 50.7±10.6 51.7±11.3 51.6±12.3
C 55.8±10.8 52.0±10.0 53.3±9.4 49.8±10.2 49.5±8.9 54.0±11.3

10-fold cross validation day 3

E 63.5±10.4 57.2±8.8 62.5±9.1 57.5±10.9 70.8±8.5 53.2±11.1
C 55.2±9.0 56.2±10.3 57.9±9.4 54.8±10.2 75.0±10.3 50.8±11.3

E 58.2±9.9
C 54.8±10.1

Table 6.3: The classi�cation accuracy (mean and standard deviation) for error trials (E) and
correct trials (C) for subject 1 and 2 using the proposed features in MLP.

Signal Wavelet Statistical

Subject 1 Subject 2 Subject 1 Subject 2 Subject 1 Subject 2 Average

10-fold cross validation day 1

E 55.8±10.1 62.7±13.9 57.5±8.0 61.5±9.5 51.2±8.1 46.0±10.5
C 71.2±14.4 70.5±14.2 72.8±9.2 61.5±8.5 65.2±14.1 59.7±12.2

10-fold cross validation day 2

E 58.8±15.8 68.6±16.7 47.8±9.8 49.2±10.3 42.7±14.9 47.5±10.3
C 63.7±11.5 53.8±17.7 56.3±11.0 51.7±10.3 52.7±19.8 52.6±10.2

10-fold cross validation day 3

E 78.8±8.7 56.2±19.7 68.5±10.2 54.0±11.4 66.8±7.0 45.7±14.3
C 81.0±8.7 66.8±15.0 61.0±11.1 52.2±11.0 81.0±7.6 55.2±10.2

E 56.6±11.6
C 62.2±12.0

Table 6.4: The classi�cation accuracy (mean and standard deviation) for error trials (E) and
correct trials (C) for subject 1 and 2 using the proposed features in SVM.
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Chapter 7

Classi�cation results

In this chapter all the results from the classi�cation will presented in separate tables. The best

performing classi�cation method found in chapter 6 is used on all features from the six subjects.

In the following tables classi�cation results are listed for all six subjects using a support vector
machine (SVM). Some of the features proposed in chapter 5 have given very poor classi�cation
results and are therefore not listed. It concerns the second wavelet based features and the PCA
transformed features. The second wavelet based features gave an accuracy rate of approximately
50% or less and PCA did not improve anything. Figure 7.1 illustrates the process for evaluation
of the features and classi�ers. The calculation of the classi�cation accuracy of the other proposed
features is done by 10-fold cross validation using the same procedure as described in section 6.6.

In table 7 the classi�cation results from subject 1 to 6 are shown. The feature vector used

Figure 7.1: Illustration of evaluation process for features and classi�ers.

to obtain these results was samples of the 700 ms long signal recorded after feedback. To reduce
the size of the feature vector the signal was downsampled with 8 giving 45 features.
It can be seen from the tables that the average classi�cation rate is 64.6%. Only subject 1 and
subject 4 on day 3 show signi�cantly better classi�cation rates around 80%. These results are in
accordance with the averaged response signals showed earlier in section 4.1 which also showed
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7. Classi�cation results

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Average

10-fold cross validation day 1

E 55.8±10.1 62.7±13.9 58.8±14.5 43.3±32.2 56.2±19.5 62.0±6.2 56.5±16.1
C 71.2±14.4 70.5±14.2 56.7±12.3 64.3±28.0 59.2±16.0 67.3±9.7 64.9±15.8

10-fold cross validation day 2

E 58.8±15.8 68.6±16.7 62.7±20.2 74.3±9.3 56.8±14.4 60.0±7.9 63.5±14.1
C 63.7±11.5 53.8±17.7 61.7±18.1 70.7±7.7 65.8±13.7 75.8±12.4 65.3±13.5

10-fold cross validation day 3

E 78.8±8.7 56.2±19.7 58.5±15.0 83.3±7.2 68.5±12.7 62.0±10.3 67.9±12.3
C 81.0±8.7 66.8±15.0 66.7±12.3 76.7±6.9 62.0±19.0 65.3±11.1 69.8±12.2

E 62.6±14.2
C 66.7±13.8

Table 7.1: The classi�cation accuracy (mean and standard deviation) for error trials (E) and
correct trials (C) for all six subjects in the test group using the response signal as feature vector.

that the deviation between correct and error trials were most clear in these two subjects.

In table 7 the classi�cation results using wavelet features are shown. The feature vector used was
based on wavelet transformation giving 30 features with supposedly the most deviation between
the two classes. In the tables it can be seen that using these features did not improve the overall
classi�cation rate which was 58.3% for all subjects.

In table 7 the classi�cation results when using statistical features are shown. The feature vector
included the four statistical features mean, variance, kurtosis and skewness. These features give
the lowest overall classi�cation rate at 56% and the rate for subject 4 is now signi�cantly lower
compared to the classi�cation rate when using the signal as feature vector.

As indicated by the classi�cation results, it seems that it is extremely di�cult to extract in-
formation which can successfully separate correct trials from error trials. Even with a strong
classi�er as the SVM it still not possible to obtain satisfying results. However the classi�cation
for subject 1 and subject 4 on day 3 show reasonable results, compared to rates presented in the
literature [Ferrez & del R. Millán, 2005, 2007].
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7. Classi�cation results

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Average

10-fold cross validation day 1

E 57.5±8.0 61.5±9.5 57.0±11.6 50.2±11.8 46.0±12.0 57.7±5.4 55.0±9.7
C 72.8±9.2 61.5±8.5 55.7±10.1 57.5±10.7 48.8±13.7 66.8±9.0 60.5±10.2

10-fold cross validation day 2

E 47.8±9.8 49.2±10.3 50.5±11.2 64.0±8.9 50.5±10.4 57.5±7.2 53.3±9.6
C 56.3±11.0 51.7±10.3 51.3±7.1 67.8±10.1 59.0±10.0 72.0±9.8 59.7±9.7

10-fold cross validation day 3

E 68.5±10.2 54.0±11.4 55.2±9.4 82.7±6.4 44.5±10.3 52.8±11.0 59.6±9.8
C 61.0±11.1 52.2±11.0 58.5±9.7 74.7±6.5 62.0±10.4 60.0±11.0 61.4±10.0

E 56.0±9.7
C 60.5±10.0

Table 7.2: The classi�cation accuracy (mean and standard deviation) for error trials (E) and
correct trials (C) for all six subjects in the test group using the wavelet coe�cients as feature
vector.

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Average

10-fold cross validation day 1

E 51.2±8.1 46.0±10.5 72.0±12.1 53.2±14.3 49.3±10.8 42.3±11.5 52.3±11.2
C 65.2±14.1 59.7±12.2 58.7±9.0 45.7±16.5 59.7±10.1 55.0±12.5 57.3±12.4

10-fold cross validation day 2

E 42.7±14.9 47.5±10.3 44.3±9.8 64.7±10.2 53.0±11.3 49.5±11.5 50.3±11.3
C 52.7±19.8 52.6±10.1 72.0±12.4 68.8±10.1 61.2±11.3 51.8±14.6 59.9±13.1

10-fold cross validation day 3

E 66.8±7.0 45.7±14.3 49.3±8.6 55.7±12.9 46.3±11.8 61.2±9.3 54.2±10.7
C 81.0±7.6 55.2±10.2 57.5±13.7 59.0±12.4 58.5±14.8 63.8±14.4 62.5±12.2

E 52.3±11.1
C 59.9±12.6

Table 7.3: The classi�cation accuracy (mean and standard deviation) for error trials (E) and
correct trials (C) for all six subjects in the test group using statistical features.
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Part III

Discussion and conlusion
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Chapter 8

Discussion

Research in the area of Brain-Computer Interfaces (BCIs) has been in progress for several years
to develop methods to assist patients with severe neuromuscular impairments such as patients
su�ering from amyotrophic lateral sclerosis (ALS), brainstem stroke or cerebral palsy. The pur-
pose of BCI research is to give these patients an opportunity to communicate and control external
devices only by measuring the patients intent from the brain activity, which may improve their
quality of life signi�cantly.

A BCI system normally consist of di�erent parts including signal acquisition, preprocessing,
feature extraction, classi�cation, and a application interface. Di�erent approaches are being
used to obtain information from di�erent cortical areas and to discriminate between the signals
measured, which would give BCI users a high level of control opportunities. Especially event
related potentials (ERPs) are used for BCI for example the P300 component and motor-related
cortical potentials (MRCPs). A problem with using ERPs is their relative low amplitude com-
pared to the surrounding EEG. In addition di�erent artifacts such as eye movement and muscle
activity are present which all are contributing to a low signal to noise ratio (SNR). Although
advanced signal processing- and feature extraction methods are implemented in the BCI, classi-
�cation errors may still occur. This is not only due to the low SNR but also due to high intra-
and inter-user variations in the electroencephalography (EEG). These challenges have to be met
when developing a reliable BCI system. One way to minimize the rate of classi�cation errors is
to make the classi�er adapt to the signal variations throughout its use.

To achieve a more reliable and robust BCI system the classi�er needs a feedback on its per-
formance. It have been suggested to use error related potentials (ErrPs) as feedback of the
classi�ers performance. If ErrPs can be detected during the BCI systems, it might be possible
to improve the performance by making a adaptive classi�er based on these ErrPs. Furthermore
it could prevent incorrect execution of commands

ErrPs have been investigated in numerous studies including a few studies in the context of
BCI research. In these studies it has been shown that ErrP can be triggered by recognition of an
incorrect response by the subject itself or by feedback.[Falkenstein et al., 2000; Holroyd & Coles,
2002; Ferrez & del R. Millán, 2007; Butt�eld et al., 2006] The ErrP have similar characteristics
but also di�ers depending on the experimental protocol used. ErrP triggered by an incorrect
feedback to the subjects correct response has recently been investigated, that is ErrPs induced by
the interface[Ferrez & del R. Millán, 2005, 2007]. Most of these studies have in common that the
subject had to make a response by performing some motor task, for example by pressing buttons.
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8. Discussion

The aim of our study was ato investigate ErrPs, but it was emphasized to simulate a realis-
tic BCI situation where only imaginary movements and no real movements were involved. The
hypothesis was

'ErrPs induced by incorrectly classi�cation of imaginary movements can be detected

and classi�ed successfully.'

When no real movement is made it is obviously more unclear for the subject what has caused
the error. It could be due to an incorrect imaginary task from the subject, a lack of the subjects
concentration when performing the task or it could be entirely an error made by the interface.
This unclearness may also e�ect the measured response after error feedback and thus it might
not be completely comparable to other studies.

Six subjects were included in this study. In every trial of the experiment they were asked
to imagine moderate or a ballistic ankle �exion and were afterwards given feedback on their
performance by a pop-up window with the text "Correct" for correct feedback and "Wrong" for
error feedback. Correct and error feedback was given in random order with a rate of 75% and
25% of the trials respectively. In 10% of trials an event was included in terms of a pop-up window
with the letter X. The X-event was included for comparison with the response to the feedback.
The measured EEG was band-pass �ltered and electrooculography (EOG) was removed using
independent component analysis (ICA).

The analysis of the EEG recordings show that correct and error feedback and the event all
generate a similar response from the subjects. In the grand average of all six subjects a negative
and a positive peak is present at 200 ms and 300 ms after feedback onset respectively and a sec-
ond broader negative peak is present around 500 ms after feedback. From these results none of
the peaks can exclusively be explained by an ErrP although all three peaks in other studies have
been suggested to be error related [Ferrez & del R. Millán, 2005; Butt�eld et al., 2006; Ferrez &
del R. Millán, 2007]. The �rst two peaks could very likely be the N200 and P300 caused by a
deviant visual stimuli. The second negative peak does not have the same easily explainable cause
although it have same characteristics as the N400 seen in subjects during semantic processing.
However it seems like the error feedback generates a larger negative de�ection from 400 ms to
600 ms compared to a correct feedback in three out of six subjects, which implies that the ErrP
could contribute to this negative peak.

The MRCPs was investigated to verify existence of the ErrP and it was shown that a nega-
tive de�ection was present after imaginary movement onset similar to the �ndings described by
do Nascimento et al. [2006]. It was however di�cult to visually discriminate the two MRCPs
corresponding to the ballistic and moderate movements. It seems to have been di�cult for the
subjects to imagine two di�erent force rate developments.

The fact that the characteristics of the response to error and correct feedback are very simi-
lar makes a single trial classi�cation of the responses di�cult. In this project di�erent methods
for feature extraction were investigated to extract relevant information and thereby enhance the
following classi�cation. Features based on wavelet transformation and simple statistical features
were tried. A downsampled version of the measured response were also tried as a feature vector.
To extract most relevant information of the proposed features, principal component analysis
(PCA) was tested as well.
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8. Discussion 8.1. CONCLUSION

To discriminate between the response to error feedback and the response to correct feedback
four di�erent classi�ers were investigated. The �rst was based on a simple correlation between
a template made of the error response and the trials. The second simple method was based on
linear discriminant analysis (LDA) and the last two were nonlinear methods in form of neural
networks and support vector machine (SVM). As the number of error trials per subject were
relatively low (20 trials per day) the feature set obviously also were relatively small. Therefore
the classi�ers were evaluated using 10-fold cross validation. The best classi�cation was obtained
using the SVM with a downsampled version of the recorded response as feature vector. This
gave an overall classi�cation accuracy rate of 62.6% and 66.7% for error and correct trials, when
including the average accuracy for all six subject all three days. The accuracy achieved is not
impressive, but two subjects showed on day three an accuracy rates of approximately 80% for
both error and correct trials, which are comparable to other reported results. As it seems very
di�cult to see any clear deviations between correct and error trials from the averaged signals
in the three out of six subjects these classi�cation results are not surprising. The relatively
low number of samples available when training the SVM classi�er may also have a�ected the
classi�cation rate negatively.

Methodological considerations

In this study it seems di�cult to discriminate between components from some error processing
system and components related to visual or cognitive processing. In the experimental design
it was chosen to give a strong visual feedback of the subjects performance in form of a pop-up
window with the message "correct" or "wrong". This type of feedback may be problematic as
the large visual components may interfere with the ErrP. In addition there may be components
related to some kind of semantic processing also interfering with the components of interest.
The pop-up window may also provoke the subject to blink more often than if another type of
feedback was used. The eye movements are in this study corrected using independent component
analysis, but it can be argued that some remains of EOG components still are corrupting the
signal. Especially it seems that most subjects blink after feedback which indeed can corrupt the
interpretation of the average signals as well as reduce the classi�cation accuracy if their com-
ponents are not completely removed. For further investigation of the ErrP a new experimental
protocol should be designed to reduce all other interfering factors. In relation to improvements
of classi�cation rate of ErrPs a new study should also include more trials to achieve a larger
number of training samples for the classi�er. It has proven to be very important to keep the
subject engaged and motivated in the task to see the MRCPs which has to be more in focus in
a new experiment. In this experiment subjects only practiced real movement in the beginning.
To keep the subjects primed to the di�erence of the two imaginary movement, practice of real
movements throughout the experiment may be necessary.

8.1 Conclusion

In conclusion we have investigated the presence of error related potentials following error feedback
to imaginary movements. The result implys that a negative component is present approximately
500 ms after error feedback in some of the subjects. There are however some large variations
in the measured responses between the subjects and it is also not clear if the ErrP is related
to execution of an imaginary motor task. The �ndings in this study in addition with �ndings
reported in the literature suggest that it could be possible to detect ErrPs after incorrect feedback
to an imaginary motor task. A new study with an improved experimental protocol might give
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8.1. CONCLUSION 8. Discussion

more clear indications whether this detection of ErrPs could be reliable enough to improve the
performance of BCI systems.
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Appendix A

Brain anatomy

To understand the location of the electrodes, it is an advantage to know some of the interesting
parts of the brain for BCI. In �gure A.1 the major parts of the brain is showed, the brain is
lateral showed. The brain is divided into a left and a right hemisphere by a deep groove that runs
from the front of the head to the back. The cerebral cortex is divided into four main divisions, or
lobes, separated by noticeable folds in the surface. The frontal lobes house the motor cortex as
well which is located in the back of the frontal lobes. Broca's area, which handles the production
of speech, is also a part of the frontal lobes. Planning and mental representation of the outside
world are also attributed to the frontal lobes. The parietal lobes process the signals that come
from sensation. The temporal lobes are concerned with memory, hearing, and, in Wernicke's
area, with the ability to understand language. The occipital lobes are specialized to manage the
intricate processing of vision.[Ackerman, 1991]
Another important part of the brain for this study is the anterior cingulate cortex which is a part
of the limbic network which deals with evaluative, cognitive and emotional components, among
other things. The anterior cingulate cortex is a part of the cingulate gyrus which lies deep in
the center of the brain illustrated in �gure A.2. The interest in this part of the brain is because
an error-related potentials, is seen regularly when actions are discrepant from an intended goal
representation. [Beauregard, 2003]
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A. Brain anatomy

Figure A.1: The brain illustrated in a lateral view.

Figure A.2: The location of the anterior cingulate cortex.
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Appendix B

Measurement techniques

Brain signals used in BCI can be divided into invasive and non-invasive signals. The invasive
signals comprises the electrocorticography (ECoG) recorded using electrodes placed beneath the
skull either subdural or epidural as well as intracortical signals. The non-invasive signals include
the electroencephalography (EEG) which is recorded using surface electrodes placed on the skull.
The EEG recordings re�ects the common activity of several millions of neurons extending over
some square centimeters of the cortical tissue. In contrast to the EEG, the ECoG represents
integrated bioelectrical activity over a much smaller cortical area, but still constitutes the com-
mon activity of many thousands of neurons. The multichannel intracortical recordings re�ect
extracellular activity generated by small neuronal populations in the order of about 100 cells or
fewer. The invasive methods obviously gives better signal resolution but are also associated with
the risks of brain surgery, and will not be discussed any further.[Sanei & Chambers, 2007]

Using EEG both the spatial and temporal resolution of the brain signal becomes limited due
to the overlapping electrical activity generated by di�erent cortical areas. Furthermore, during
the passive conductance of these signals through brain tissue, bone and skin, resolution is also
lost owing to the low-pass �ltering of the EEG signals. Artifacts from EMG and EOG will also
a�ect the EEG signals. Despite these disadvantages EEG is being used all over in the �eld of
BCI research and many systems using EEG has been developed.[Sanei & Chambers, 2007]

Conventional Electrode Positioning

The mostly used measurement technique for EEG is electrode caps. The electrodes are �xed
on the cap after a conventional electrode setting for 21 electrodes recommended from the Inter-
national Federation of Societies for Electroencephalography and Clinical Neurophysiology called
10-20, as shown in �gure B.1[Sanei & Chambers, 2007]

The most common reference electrodes are the earlobe electrodes, connected respectively to
the left and right earlobe. The placement of the electrodes considers some constant distance by
using speci�c anatomic landmarks from which the measurement would be made and then uses
10 to 20% of that speci�ed distance as the electrode interval. The numbering of the electrodes
is done by giving the left electrodes odd numbers and the right even numbers. When using a
larger number of electrodes mentioned in 10-20 the rest of the electrodes are placed in between
the above electrodes with equidistance between them. Extra electrodes are sometime used for
eliminating di�erent kinds of artifacts. The main artifacts can be divided into patient-related
and system artifacts. For BCI it is normally electrodes on the top of the scalp which has the
most interest.[Sanei & Chambers, 2007]
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B. Measurement techniques

Figure B.1: The electrode positions on the cap using the 10-20 system.[Sanei & Chambers, 2007]
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Appendix C

EEG generation

The current �owing during synaptic excitations of the dendrites of many pyramidal neurons in
the cerebral cortex are called electroencephalography (EEG). The synaptic currents are produced
within the dendrites when the brain cells are activated. The current is generated by pumping
the positive ions of the sodium, Na+, potassium, K+ calcium, Ca++ and the negative ion of
chlorine, Cl−, through the neuron membranes.[Sanei & Chambers, 2007]

The amplitude of the EEG is about 100 µV when measured on the scalp, and about 1-2 mV
when measured on the surface of the brain. A neurons resting potentials is around -70 mV, and
the peak of the action potential is positive. The amplitude of the nerve impulse is about 100
mV and lasts about 1 ms.[Malmivuo & Plonsey, 1995]. Only large populations of active neurons
can generate enough potential to be recordable using the scalp electrodes, the reason for this is
the attenuation from the di�erent layers the head consists of. The signal has to penetrate sev-
eral layers of non-neural tissue including the meninges, �uid, bones of the skull, and the skin, to
reach the electrodes. Therefore it takes many thousands synchronous neurons to generate a large
enough EEG signal which can be detected by the electrodes. When a large group for neurons is
excited simultaneously, the tiny signals sums to on signal large enough to reach the surface for
the skull.[Bear et al., 2001] The attenuation of the signal in the brain can be illustrated by a
volume conductor models showed in �gure C.1. The radius of the skull in the illustration is set
to 8 and 8.5 cm, and the radius of the head is 9.2 cm. The brain and the scalp has approximated
a resistivity on 2.22 Ωm whereas for the skull the resistivity is approximated 177 Ωm.[Malmivuo
& Plonsey, 1995]

The noise interfering with the signal is generated either within the brain or over the scalp.
The EEG signal is generated from approximately 1011 neurons from a newly born baby, this
makes an average of 104 neurons per cubic mm. The numbers of synapses per neuron increases
with age, adults have approximately 5 · 1014.

When EEG is measured di�erent rhythms will appear in the signal if synchronous excitation
of a large group of cells is repeated again and again. The EEG rhythms can be divided into �ve
main groups: delta(δ), theta(θ) alpha (α), beta(β) and gamma (γ) mentioned from the lowest
to highest frequencies.[Sanei & Chambers, 2007; Bear et al., 2001]

• Delta waves lie within the range of 0.5-4 Hz. These low frequencies are primarily associated
with deep sleep and may appear during waking state.

• Theta waves lie within the range of 4-7.5 Hz. Theta waves appear as consciousness slips
towards drowsiness.
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C. EEG generation

Figure C.1: A model of the conductivity of the three main lairs in the head [Malmivuo & Plonsey, 1995].

• Alpha waves lie within the range of 8-13 Hz. Alfa waves have been thought to indicate a
relaxed awareness without any attention or concentration. The alpha waves appear in the
posterior half of the head and are often found in the optical region of the brain.

• Beta waves lie within the range of 14-26 Hz. The beta rhythms are present during active
thinking, like solving concrete problems.

• The frequency above 30 Hz is the gamma waves. Gamma waves have proved to be a good
indication of event-related synchronization of the brain.

Delta(δ), theta(θ) alpha (α), beta(β) waves can be seen in �gure C.2. In BCI the most important
waves is beta and mu rhythms. The mu rhythms frequency lies within the regions as alpha
rhythms. Mu rhythms is strongly related to the motor cortex.[Sanei & Chambers, 2007]

Figure C.2: The most common brain rhythms.
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Appendix D

Individual EEG recordings

For each subject included in the experiment there are three �gures. They all contains an average
of the response signal from error and correct feedback and the X-event for Fz, Cz and Pz respec-
tively. The signals are �ltered and EOG is removed using ICA as explained in the preprocessing
chapter. The average for error and correct feedback are made from 60 and 180 trials respectively
which are all trials for one subject from all three days.Subject 1, see �gure D.1, show a negative
peak and a positive peak at respectively 230 ms and 300 ms after feedback. A broader de�ection
peaking around 600 ms after feedback is also present. The two negative peaks deviate between
correct and error feedback. The �rst negative peak is less negative for error feedback whereas the
second negative peak more negative for error feedbacks. The response to the X-event has very
similar characteristics as to the correct and error feedback. The same peaks are present with
similar amplitudes and latencies, which is a negative peak at 220 ms, a positive at 320 ms and
another negative peak at 500 ms after the event. The response recorded at Fz, Cz and Pz has
very similar characteristics except from the negative peak at 230 ms which is not so clear from Pz.

Subject 2, see �gure D.2, show only a large negative peak around 400 ms after feedback. There
is no clear negative around 200 ms and no clear positive at 300 ms after feedback. There seems
to be a slightly shorter latency for this peak after error feedback. The response to the X-event
show a very clear negative peak at 200 ms, a positive at 280 ms and another negative at 400
ms after the event. The response recorded at Pz di�ers from Fz and Cz in having a more clear
positive peak at 180 ms.

Figure D.1: The response signals from correct and error feedback and the X-event for subject 1, recorded at
electrode location Fz, Cz and Pz respectively. Feedback was presented at time 0 seconds. The signals are averages
of the recordings from all 3 sessions.
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D. Individual EEG recordings

Figure D.2: The response signals from correct and error feedback and the X-event for subject 2, recorded at
electrode location Fz, Cz and Pz respectively. Feedback was presented at time 0 seconds. The signals are averages
of the recordings from all 3 sessions.

Figure D.3: The response signals from correct and error feedback and the X-event for subject 3, recorded at
electrode location Fz, Cz and Pz respectively. Feedback was presented at time 0 seconds. The signals are averages
of the recordings from all 3 sessions.

Figure D.4: The response signals from correct and error feedback and the X-event for subject 4, recorded at
electrode location Fz, Cz and Pz respectively. Feedback was presented at time 0 seconds. The signals are averages
of the recordings from all 3 sessions.
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D. Individual EEG recordings

Figure D.5: The response signals from correct and error feedback and the X-event for subject 5, recorded at
electrode location Fz, Cz and Pz respectively. Feedback was presented at time 0 seconds. The signals are averages
of the recordings from all 3 sessions.

Figure D.6: The response signals from correct and error feedback and the X-event for subject 6, recorded at
electrode location Fz, Cz and Pz respectively. Feedback was presented at time 0 seconds. The signals are averages
of the recordings from all 3 sessions.
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D. Individual EEG recordings

Subject 3, see �gure D.3, show a clear negative peak at 200 ms a positive at 300 and another
negative again between 350 and 400 ms after feedback. The error feedback show smaller ampli-
tudes at the last two peaks and a shorter latency for the last negative peak. The response to
the X-event show also a clear negative peak at 200 ms, a positive peak at 300 ms and a negative
between 400 and 500 ms after the event.

Subject 4, see �gure D.4, show a small negative peak at 270, a small positive peak at 320
ms and a large negative peak at 400 ms after correct feedback. After error feedback only the
large negative peak around 400 ms is present. This peak is however much broader than dur-
ing correct feedback. The response to the X-event show a negative peak at 250 ms, a positive
around 400 ms and another negative peak between 500 and 600 ms after the event. The response
recorded at Pz show a equally broad negative peak around 400 ms for both error and correct
feedback whereas Fz and Cz show a much broader peak during error feedback.

Subject 5, see �gure D.5, show a negative peak at 200 ms, a positive at 300 ms and a nega-
tive beween 500 and 600 ms after feedback. The error feedback show a less amplitude for the
�rst peak and a larger amplitude for the last two peaks compared to the correct feedback. The
response to the X-event shows a large negative peak at 200 ms, a positive a 300 ms and a negative
peak between 500 and 600 ms after the event.

Subject 6, see �gure D.6, show a negative peak at 200 ms, a positive at 300 ms and a nega-
tive a 600 ms after correct feedback. After error feedback the same peaks are present but with
larger amplitudes and approximately 200 ms longer latency for the last two peaks. The response
for the X-event show a negative peak at 220 ms and a postive peak between 300 and 400 ms
after the response. No clear second negativity is present.
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Detection of error-related potentials to improve
brain-computer interfaces

Esben Wermuth Ingstrup and Christian Kannegård Nikolajsen

Abstract— The brain-computer interface (BCI) permit the use
of brain signals to control external devices. The signal to noise
ratio is however low and the intra-individual variations of the
signals are high, which complicate the recognition of the users
intent. To improve the performance of BCI systems, the detection
of error related potentials (ErrPs) have been suggested as they
may indicate that the system have made an erroneous action.
In this paper the detection of single trial ErrPs following erro-
neous feedback to imaginary tasks is described. An experiment
including a test group of ten subjects and a control group of three
subjects was conducted. The results reveal a significant difference
between error and correct trials which cannot be explained by the
presence of an oddball. By using a support vector machine (SVM)
we achieved an averaged classification accuracy of73.6% and
72.3% for single error trials and single correct trials respectively.
The results reported in this paper support the idea that ErrPs
possibly will improve the accuracy of future BCI systems.

Index Terms— Error-related potentials, movement-related cor-
tical potentials, P300, brain-computer interfaces, independent
component analysis, continues wavelet transformation, support
vector machine.

I. I NTRODUCTION

The brain-computer interface (BCI) utilizes neurological
signals from the human brain and converts them into command
signals which can control computers and external devices. The
goal of BCI research is to develop technologies that will ben-
efit severely disabled people by improving their independence
and ability to perform daily activities and potentially restore
lost function. [1]

For a reliable BCI system a suitable control signal from the
electroencephalogram (EEG) has to be determined. Due to the
nature of the EEG it can be difficult to find a control signal
which can be precisely characterized, readily modulated and
be detected and tracked consistently and reliably. One problem
in BCI is separating the control signals from the background
EEG. Another problem with the use of EEG is the variety of
artifacts which can interfer with the control signal. The signal
has to be restored from artifacts like eye-blinking, muscle
activity, cardiac activity, and any other internal or external
disturbing effects. [2]

A third issue concerning the stability of a BCI system is
the intra- and inter-user variations in the EEG signals. Signal
features are likely to differ greatly between different users
and there will possibly be even more variation in users with
disabilities. Potential users of BCI are patients with locked-
in syndrome due to late- or end-stage amyotrophic lateral
sclerosis (ALS). [3] These patients are fed by tubes, require
ventilation support and are bound to a bed or a wheelchair.
This may lead to intermittent lung and bladder infections,

autonomic dysfunction with fluxes in blood pressure, dia-
betes mellitus, hypertension, and other toxic and metabolic
complications which are commonly seen in immobile people.
All these factors may also affect the cortical activity and
thus the reliability of the EEG as a command signal. [4]
The EEG will in addition naturally change over time, both
between different sessions and within a single session. Studies
have shown pronounced intra-individual variations in the BCI
performance occurring within minutes. These changes can be
due to individual factors like level of alertness, reactionspeed,
working memory capacity and the ability to perform parallel
tasks. [5]–[7].

The signal variations obviously generate great challengesfor
the development of BCI systems. To deal with these variations
the classifier of the BCI system needs to adapt throughout its
use and keep it tuned to drift in the signals it is receiving.
[6], [7] To achieve a more reliable and robust BCI system
the classifier needs a feedback on its performance. First of all
it could be useful to detect if the classifier makes a wrong
decision based on the recorded EEG and stop the BCI from
executing incorrect commands. During ongoing use it might
be possible to improve the performance of the classifier as
well, by constantly adjusting it. One option could be to use
error related potentials (ErrP) as feedback of the classifiers
performance. [7]

An ErrP is an event related response from the brain as
a response to an error. ErrPs provide important evaluative
information, since they indicate that a behavior was inadequate
given the current context and that, in future, a different
response needs to be selected [8]. ErrPs can be elicited by
negative feedback and by error commission itself and the
generation of the ErrP is equally sensitive to errors committed
by different motor modalities. Investigations suggest that the
ErrP is generated in anterior cingulate cortex (ACC) and it is
elicited by a high-level error processing system. The ACC has
a great diversity of inputs from cortical and subcortical areas
and is believed to be a neural center where motor intentions
are mapped into action. It is believed to provide a critical
pathway for emotional and motivational factors influencing
motor activity and that anterior cingulate motor areas are
involved in learning the mapping from intention to action
by reward-related information carried to the ACC by the
mesencephalic dopamine system. [8]

ErrPs have been investigated by different psychophysiology
research groups [8]–[13] and in recent years also in the context
of BCI research [6], [7], [14]–[18].
Three different types of ErrPs have been reported. A negative
deflection peaking 100 ms after error commission in a speeded
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response task have been reported by [10] and is sometimes
referred to as response ErrP. A second negative deflection
peaking 250 ms after feedback has been reported by [8], [9],
[11] and is sometimes referred to as feedback ErrP. Both the
response and the feedback ErrP are present after errors made
by the subject himself. A third ErrP referred to as interaction
ErrP has been reported by [18]. This ErrP is triggered by an
erroneous feedback caused by the interface and it consists of
four peaks. First a positive peak at 200 ms after feedback. Then
a negative peak and a positive peak at 250 ms and 320 ms
after feedback, respectively. Finally a broader negative peak
is present at 450 ms after feedback.

In a realistic BCI situation however erroneous feedback can
be caused by non-optimal performance of the interface as
well as by the users own mistakes. Another important aspect
is that the reported ErrPs always followed a motor task, for
example pressing a button. In a realistic BCI situation no tasks
are performed by the subject overtly, only mentally (e. g. by
performing imaginary movements). As a consequence it will
never be clear to the user what exactly caused the erroneous
feedback. It is therefore interesting to clarify if an erroneous
feedback in this type of situation also elicits an ErrP that
is large and consistent enough for single trial detection to
improve the accuracy of BCI systems.

The objective of this study is to investigate the presence
of ErrPs in a BCI situation as just described. The detection
of ErrPs should be used to improve the accuracy of a BCI
system described in [19]. The system classifies movement-
related cortical potentials (MRCPs) generated by variation in
force-related parameters during imaginary foot movement.The
ErrPs should therefore follow an incorrectly classification of
imaginary foot movements. To our knowledge ErrPs in relation
to MRCPs during imaginary motor tasks have not previously
been investigated. This study is based on a fake online BCI
setup, as controlling the rate of error trials is important in the
investigation of ErrPs.

II. M ETHODS

A. Subjects

The experiment included a test group and a control group.
Ten subjects, six males and four females, with age ranging
from 20 to 25 (mean22.2 ± 1.5), constituted the test group.
Three subjects, two males and one female with age ranging
from 25 to 27 (mean26.3±1.2), constituted the control group.
All subjects had no known history of any motor or neurolog-
ical pathology. The experiment was approved by local ethical
committee (N-20070001) and written and verbal information
were given to the subjects prior to the experiment. All subjects
gave a written informed consent for their participation.

B. Experimental Activity

1) Test Group:The subjects were told that they were in an
experiment in which a BCI system was being tested and that
imaginary movements of the foot were measured and classified
online.

The subjects were seated in a comfortable chair with the
right foot placed on a pedal instrumented with a force gauges

which measured the exerted force. The force exerted to the
pedal was shown to the subjects through an oscilloscope.
Before the actual experiment there was a preparation period
where the subjects practiced real foot movements to become
familiar with the tasks. The tasks during practice consisted
of real isometric plantar flexions of the right foot using two
different force rates, either high rate (ballistic) or low rate
(moderate). During both ballistic and moderate movement
the aim was a force level at 70% of maximum voluntary
contraction (MVC). Ballistic movement consisted of reaching
the force level as fast as possible and the moderate movement
was reaching the force level by a steady increase of force with
40% of MVC per second.

During the actual experiment the subjects were told only to
imagine the isometric plantar flexion and to follow the same
parameters for the imaginary movement as during practice.
From a computer screen the subject were instructed to perform
either an imaginary moderate plantar flexion or imaginary
ballistic plantar flexion. The number of the two tasks were
equally sized and shown in random order. The graphical user
interface was made in LabView, as shown in figure 1.

On the screen a clock with one hand was shown. One clock
cycle had a duration of ten seconds which determined the
duration of one trial. A trial started when the clock hand was
at the 3 o’clock marker. The subject was instructed to stop
the clock hand at the 12 o’clock marker for each trial by
performing the correct imaginary movement. Hence the correct
feedback was a stopping hand at the 12 o’clock marker for two
seconds and the error feedback was a continuing hand. As
there was no online detection of the imaginary movements,
the feedback was chosen in random order with a probability
of 75% for correct trials and 25% for error trials.

The execution of an imaginary movement should start
exactly when the clock hand passed into the red colored area
of the clock (three seconds before feedback). To minimize the
EOG interference the subject was told to blink only within the
white colored area of the clock if possible.

Each subject participated in the experiment in two sessions
during two different days. One session consisted of eight
blocks of 20 trials, giving a total of 160 trials per session.
In between every block of 20 trials, the subjects practiced
real ankle flexions as during the preparation period to keep
them primed on the task that should be imagined. To keep
the subjects further motivated they could follow a progress
bar on the screen, which filled up progressively each time a
correct feedback was given. It was obviously not possible to
completely fill up the bar, although this was told to be the aim
for the subjects. Half way through the session the subjects had
a five to ten minutes break.

2) Control Group: Investigations of P300 normally follow
the oddball paradigm, where the subject is given a frequent and
an infrequent stimuli. The infrequent and deviant stimuli elicite
the P300 component. As the procedure in this experiment
can be characterized as an oddball paradigm, a control group
was included to investigate the interaction of the P300 and
the ErrP. The experimental activity for the subjects in the
control group was exactly the same as for the test group.
The only difference was the information given to the subjects.
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Fig. 1. The graphical user interface shown to the subjects during the
experiment.

The subjects were not told that they were in an experiment in
which a BCI system was being tested and were not convinced
that imaginary movements of the foot were measured and
classified online. Instead they were instructed only to keep
focused on the clock hand which would stop at the 12 o’clock
marker or continue in random order with no relation to their
task performance. In addition they were instructed not to pay
attention to the progress bar.

C. Data Acquisition

The EEG recordings were performed with a 40 channel
digital DC EEG amplifier (Neuro Scan, model NuAmps), and
data were recorded with the Acquire module of the Scan 4.3
software (Neuro Scan). For EEG recordings 28 electrodes
placed on a cap according to 10-20 system were used, i.e.:
FP1, FP2, F7, F3, FZ , F4, F8, FC5, FC1, FC2, FC6, T3,
C3, CZ , C4, T4, CP3, CPZ , CP4, T5, P3, PZ , P4, T6, POZ ,
O1, O2, andFPZ was used as ground. Each monopolar EEG
electrode (tin) was referenced to common reference electrodes
(tin) placed on the earlobes (A1, A2). Four standard tin
electrodes was used for EOG recording, with two positioned
above and beneath the right eye and two electrodes positioned
on the outer and inner canthi on the right eye. The EEG and
EOG signals was amplified by a gain of 19, band-pass filtered
from DC to 100 Hz and digitized at 500 Hz using a 16-bit
A/D converter.

D. Preprocessing

The processing of the collected data was performed using
MATLAB version 7.4.0 (The MathWorks, Inc.). The signal
was band-pass filtered using a 1st order high-pass and a 10th
order low-pass Butterworth filter with cutoff frequencies at
0.1 Hz and 45 Hz respectively. For removal of EOG from the
EEG an automatic method based on independent components
analysis (ICA) is proposed. The ICA algorithm used in this
study was the one included in the EEGLAB toolbox [20]
which is based on the infomax algorithm developed by [21].
The problem about making an automatic method based on ICA
is that the independent components (ICs) reflecting the EOG

have to be identified before removal [22]. This was solved by
calculating the angle between the eye recorded EOG channels
and the ICs which gives a similarity between the recorded
EOG and the decomposed ICs. The angle was calculated by
following equation:

αj,i = cos−1

[

ICeegj · EOGi

‖ICeegj‖ ‖EOGi‖

]

(1)

The angle was calculated between each of the four EOG
channels and the scalp recorded independent components,
ICeegj, j = 1, ..., N , whereN is the number of independent
components andi = 1, .., K where K is the number of
recorded EOG channels. Ifαj was less or higher than two
predefined thresholds the j’th IC was assumed to be an
EOG component and removed. The high and low thresholds
were set to 1.8 and 1.4 radians, where 1.6 corresponds to
completely independence between the IC and EOG. After the
EOG components were removed, the EEG was restored by
inverse ICA.

After EOG removal the signal epochs of interest were
extracted for further analysis. To investigate the presence of
MRCPs, signal from 1.5 second before to 1.5 seconds after
movement onset were extracted. For investigation of ErrPs
the response signal from 0 to 1 second after feedback were
extracted. The response signals were furthermore band-pass
filtered with a 4th order high-pass and a 5th order low-pass
Butterworth filter with cutoff frequencies at 1 Hz and 10 Hz
respectively, as the ErrP is reported to be in this range [7].

E. Statistical analysis

To validate the presence of ErrPs an ANOVA was conducted
to calculate if there was significant difference between the
recorded response signals. In the test group, correct and
error feedback were compared by performing ANOVA on the
maximum amplitude from the averaged response signals from
each subject in the interval 200 ms to 600 ms after feedback.
The same procedure was done for comparing the trials with
stopping hand (corresponding to correct feedback) and trials
with a continuing hand (corresponding to error feedback) in
the control group. In between the two groups the ANOVA was
performed to compare correct feedback and the hand stopping
as well as to compare error feedback with the hand continuing.

F. Feature Extraction

According to [23], [24] time/frequency analysis and the
signal itself are often used as features in the contexts of ERP
classification. In this study the two approaches were compared.
The response signal was a window from 200 to 600 ms after
feedback downsampled by 5. The time/frequency analysis was
implemented using the continuous wavelet transform (CWT).
The CWT is highly redundant and time consuming to compute
compared to the discrete wavelet transform (DWT). However
the DWT is reducing the wavelet coefficients by changing
the scale and translation in powers of 2, which will produce
a nonredundant transform of a signal. [25] If the wavelet
transform is used to find shapes like ERP it is more likely
to find a scale of the wavelet which fits the waveform in the
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signal by using the CWT. [26] The definition of the CWT of
a signalf(t) is:

W (a, b) =
1√
a

∫

∞

−∞

f(t)Ψ(
t − b

a
)dt (2)

Where b denotes the time shift (the position parameter),a
denotes the scale parameter (inversely proportional to fre-
quency), andΨ is the wavelet function. The CWT is a
computation of the cross correlation between the signal and
the predefined waveform, the templateΨ, which is shifted
forward and backward in time and dilated and constricted in
scale. The Mexican Hat was chosen as the wavelet function
for the CWT. The method used for feature extraction from the
CWT is proposed by [26]. The method suggests using a t-test
to calculate where the largest difference between the CWT of
the error and correct trials. The method is performed in five
steps: The first step is to calculate the CWT,Wn(a, b) of the
signalfn(t) which is calculated for each trial n. The second
step is to calculate the meanWg(a, b) and varianceσg(a, b)
from each CWT of each trial:

Wg(a, b) =
1

Ng

Ng
∑

n=1

Wn(a, b) (3)

σg(a, b) =
1

Ng − 1

Ng
∑

n=1

(Wn(a, b) − Wg(a, b))2 (4)

Where Ng is the number of trials in group (g = correct or
error)
The third step is to calculate the t-statistic for error and correct
trials t(a, b):

t(a, b) =
Wcorrect(a, b) − Werror(a, b)
√

σcorrect−error(a, b)
(5)

Whereσcorrect−error(a, b) is defined according to equation 6.
The fourth step is extracting the local extremes of the

function t(a, b) refered to as(ai, bi) which are the points
of maximal difference between correct and error feedback
responses. The 15 maximums and 15 minimums were chosen
to use as features for training and test, giving a total number
of 30 features for each trials.
The fifth and last step is to compute each point(ai, bi) for
each single trialn for both the test and the training data. [26]

G. Classification

The classification was performed by support vector ma-
chines (SVM) as implemented by [27]. The SVM is a non-
linear pattern classification method. The central idea of SVM
is the adjustment of a discriminating function so that it
optimally uses the separability information of the boundary
patterns. [28] A training set ofi examples is defined with the
data vectorxi and a class labelyi:

(x1, y1), . . . , (xi, yi) ∈ RN ×−1, 1 (7)

To separate the training set, a classification method needs
to find a hyperplane which satisfy some optimality criterion.

The class label of a new data vectorx can be predicted by
projectingx on the weight vectorw:

f(x) = w · x + b (8)

The sign of this equation would reveal the predicted class
label. To describe the hyperplane, only the vectors on the
margin, the so-called support vectors, are necessary. The
margin γ described by the support vectors is maximized by
minimizing (1/2) ‖w‖2 subject to constraintyi(w ·xi+b) ≥ 1.
A so called slack-variableξi is introduced to allow violation
which gives the SVM optimization problem:

min
1

2
‖w‖2 + C

∑

i

ξi (9)

s.t. yi(wxi + b) ≥ 1 − ξi, ξi < 0∀i (10)

Where C is parameter representing the tradeoff between min-
imizing the training set error and maximizing the margin.

By using a Kernel functionK(x, xi) the given data space
can be transformed into a higher dimensional feature space
which then makes the data separable by a linear hyperplane.
[29] In this study a Gaussian radial basis function kernel was
used which is defined by:

K(x, xi) = exp

(

−‖x − xi‖2

2σ2

)

(11)

The SVM classifier is controlled by the regularization param-
eter C and the bandwidthσ of the Gaussian kernel. To get
better results [30] recommend to do a grid search using cross
validation to find the best values forC and σ. In this study
best values ofC and σ were found by cross validation with
C = [2−5, 2−3, .., 215] andσ = [2−15, 2−13, .., 23].

III. R ESULTS

A. Signal analysis

In figure 2(a) the grand averages of the response signals
measured after feedback are shown. It is evident that there is
a difference in amplitude between error and correct feedback.
The conducted ANOVA revealed a significant difference in
amplitude F(1,18)=8.41, p<0.01. The grand average response
signal from the control subjects, figure 2(b), does not show a
clear amplitude difference between the two types of feedback
and the difference did not reach significance F(1,4)=0.03,
p=0.87. There is however a significant difference in ampli-
tude between the correct feedback and the stopping hand,
F(1,11)=8.15, p<0.05. A significant amplitude difference is
also the case between the error feedback and the continuing
hand, F(1,11)=8.6, p<0.01. There were no statistical significant
difference in latencies between the two types of feedback nor
between the feedback in the two groups.

The averaged difference signal (error minus correct) can be
seen in figure 3(a) where a clear negative peak and a positive
peak are present at 380 ms and 560 ms after feedback respec-
tively. The scalp topographies of the response difference signal
(error minus correct) in figure 3 show a widely distributed
negativity centred in the parietal area and a positivity more
centred at Cz.
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σcorrect−error(a, b) =
(ncorrect − 1)σcorrect + (nerror − 1)σerror

ncorrect + nerror − 2
(

1

ncorrect

+
1

nerror

) (6)

One of the main factors in keeping the experimental activity
for the two groups exactly the same was the performance of an
imagninary plantar flexion prior to the feedback. In figure 4(a)
and 4(b) the grand averaged MRCPs for respectively the test
group and the control group is shown. Both the test and control
group show a slow negative deflection from 1500 ms before
the movement to 1500 ms after the movement is executed.

B. Single trial classification

In table I and II the single trial classification rates are listed
for all ten subjects in the test group. The results are shown
from a 10-fold cross validation using the recordings of day
one, 10-fold cross validation using the recordings of day two
and by training the classifier with recordings of day one and
testing with the recordings of day two, respectively. In table I
the results were obtained by using a downsampled version of
the response signal as feature vector to the SVM. Using this
approach averaged accuracy of73.6% and 72.3% for error
and correct trials were obtained training with recordings from
day one and testing with recordings from day 2. In table II the
results are obtained using wavelet coefficients as feature vector
to the SVM. Using this approach averaged accuracies of75.5%
and70.0% for error and correct trials were optained training
with recordings from day one and testing with recordings from
day 2.

IV. D ISCUSSION

A. Error related potentials

The aim of this study was to investigate the presence of
ErrPs following feedback indicating incorrectly interpretation
of imaginary movements. In a realistic BCI setting the error
could be due to an incorrect imaginary task from the subject,a
lack of the subjects concentration when performing the taskor
it could be entirely an error made by the interface. All three
situations could possibly give an error in the recognition of
the users intent while it is not clear to the user which of the
three situations that have caused it. If ErrPs should be useful to
improve performance of BCI systems they should be elicited
in this type of BCI setting and more importantly, single trial
classification of errors should be feasible. It was hypothesized
that the ErrP elicited in the conducted experiment would
be similar to the feedback ErrP, which has been reported
as a negative deflection peaking approximately 250 ms after
erroneous feedback [8], [9], [11]. The ErrP can however easily
interact with the P300 component which is elicited by a rare
or significant stimuli and which amplitude is strongly related
to the unpredictability of the stimulus as would be the case of
the feedback given in this experiment. The P300 is normally
appearing between 300 ms and 400 ms after stimuli, but
latencies can range from 250 ms to 900 ms [31]. If the ErrP
and the P300 is present in the same time interval the resulting

outcome could be a response similar to the P300 in shape and
latency, but with a decreased amplitude. The control subjects
in the experiment was included to confirm that the difference
between error and correct trials could not entirely be explained
by the changes in P300 amplitude due to the difference in
probability of the two types of feedback, often referred to as
an oddball paradigm. The feedback to the control group was
exactly the same as for the test group. The only difference
was in terms of the information given to the subjects in the
two groups, which resulted in a positive outcome (correct
feedback) and a negative outcome (error feedback) for the test
group, whereas both types of feedback would be perceived as
neutral for the control group.

The results from this study reveal that there indeed is a
significant difference between error and correct trials. The
grand average of the correct trials show a clear P300 peaking
at 380 ms after feedback, whereas error trials show a reduced
P300 peaking around 430 ms after feedback. This reduced
amplitude could very likely be caused by the presence of
the negative component of the ErrP. In the control group the
stopping hand also elicit a P300 response with approximately
the same latency at 380 ms after feedback. The averaged
amplitude is however decreased significantly with maximum
of 2.7µV compared to a maximum amplitude of 11µV in the
test group. The continuing hand did not show a significantly
decreased P300 compared to the hand stopping, as it was the
case in the test group.

The scalp topographies of the grand averaged difference
signal (error minus correct) implies that the medio-parietal
area contributes most to the difference, although the difference
is widely distributed over the cortical areas. This finding is
in conflict with the general assumption that ErrP generation
is localized in the medio-frontal area [8], [11], [18]. The
explanation to this contradiction could very likely be that
the difference between error and correct trials is strongly
contributed by the P300 component which is generated in the
parietal area [31].

The difference between error and correct trials is presum-
ably caused by two factors: 1) there is negative component
very similar to the feedback ErrP after error feedback. The
negative component is very likely an ErrP although it has
a latency of approximately 380 ms after feedback. 2) The
P300 component has increased amplitude when the subjects
are given a correct feedback. This finding is in agreement
with the fact that P300 is larger after positive outcomes in
reward-based learning tasks reported by [32]. The findings are
also similar to the ones reported by [16] where they discovered
that a correct classification elicits a P300 whereas an erroneous
classification did not in a P300-based BCI system.
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Fig. 2. a) The grand average of the response signal after error and correct feedback for all ten subjects in the test group recorded at Cz. b) The grand average
of the response signal after a stopping and a continueing hand for all three subjects in the control group recorded at Cz.
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Fig. 3. a) The grand average difference signal (error minus correct) for all ten subjects in the test group recorded at Cz.b) Grand average scalp topographies
for all teen subjects in the test group.

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Subject 7 Subject 8 Subject 9 Subject 10Average

10-fold cross validation day 1

E 82.5±5.2 73.2±8.3 72.8±5.9 67.6±5.9 70.1±7.1 59.8±9.6 80.3±8.8 87.7±5.0 85.1±4.9 94.6±3.4 77.4±6.4

C 63.8±7.6 71.4±6.0 62.6±7.6 55.0±8.5 70.3±6.5 56.3±9.0 50.3±8.1 83.7±5.0 75.8±5.3 86.5±4.3 67.6±6.8

10-fold cross validation day 2

E 86.8±3.8 63.5±6.6 87.1±3.1 54.7±9.3 58.5±5.7 74.7±4.7 79.9±5.5 90.8±2.6 88.9±5.2 86.0±3.1 77.1±5.0

C 81.3±5.1 62.6±7.1 69.8±5.3 58.5±7.9 78.5±7.6 68.3±7.9 69.3±5.6 85.9±5.7 78.0±7.1 81.8±5.8 73.4±6.5

Day 2 classified with day 1

E 79.9±8.8 56.6±6.2 78.8±9.5 77.5±8.4 60.4±7.7 71.0±13.4 69.6±13.5 87.5±6.4 93.0±3.1 62.1±6.7 73.6±8.4

C 81.2±6.8 74.2±7.6 68.9±8.3 34.9±7.0 80.1±8.7 63.3±13.9 69.7±7.3 85.6±5.0 72.6±6.4 92.8±4.3 72.3±7.5

TABLE I

The classification accuracy (mean and standard deviation) for error trials (E) and correct trials (C) for all ten subjects in the test group using the response

signal as feature vector.
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Fig. 4. a) The grand average MRCP for all ten subjects in the test group recorded at Cz. Time 0 corresponds to the onset of themovement. b) The grand
average MRCP for all three subjects in the control group recorded at Cz. Time 0 corresponds to the onset of the movement.

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Subject 7 Subject 8 Subject 9 Subject 10Average

10-fold cross validation day 1

E 79.4±7.8 78.5±5.6 70.2±8.1 64.8±7.4 74.0±8.1 59.0±9.5 79.3±6.6 86.9±5.5 86.5±5.9 94.2±3.0 77.3±6.8

C 68.1±6.1 69.1±7.8 62.2±7.4 55.8±7.9 71.5±5.0 54.8±10.0 54.6±7.4 84.4±5.2 74.9±6.9 88.6±5.0 68.4±6.9

10-fold cross validation day 2

E 89.7±5.6 72.5±4.2 85.3±4.4 58.1±10.1 59.0±4.6 77.1±6.2 78.7±7.0 90.8±2.9 88.7±5.0 87.6±6.3 78.8±5.6

C 82.2±5.6 63.2±6.6 71.4±6.1 64.3±6.5 78.9±6.4 69.8±6.6 68.8±6.0 88.0±5.8 75.0±6.6 78.3±4.7 74.0±6.1

Day 2 classified with day 1

E 81.0±7.1 56.2±7.4 81.7±10.4 73.6±11.1 58.4±5.3 65.7±20.0 69.4±13.0 87.1±6.7 90.2±4.7 91.6±4.5 75.5±9.0

C 81.5±5.6 78.0±5.3 69.0±6.1 40.7±13.6 85.8±7.7 56.4±16.5 69.2±8.8 84.0±7.0 74.6±6.1 60.5±4.0 70.0±8.1

TABLE II

The classification accuracy (mean and standard deviation) for error trials (E) and correct trials (C) for all ten subjects in the test group using the wavelet

coefficients as feature vector.

B. MRCPs

There was a clear negative deflection in the grand average of
the MRCPs for the test and control group which verifies that
imaginary movements were performed and that no deviation
in this matter could be causing the difference in the measured
response signal. The difference between the ballistic and the
moderate movements is however not significant as reported
by [33]. In the control group the difference is most likely
due to large MRCP amplitude variations between the subjects.
[33] suggested that the difference between ballistic and the
moderate is a matter of rate of force development, i.e. the
duration of the task, and not force level. The strong similarity
of both MRCPs may be an indicator that variations of rate
of force development is not something that can be easily
imagined.

C. Classification

The classification accuracies revealed in the result section
show that it is feasible to perform single trial detection of
ErrPs. The SVM seem to be a strong tool for discriminating

error trials from correct trials. By using a downsampled
version of the response signal recorded 200 ms to 600 ms
after feedback as feature vector we obtained an averaged
classification accuracy above70%. This was done by training
the classifier with data recorded at day one of the experiment
and testing with data recorded at day two. The CWT- and t-test
based feature extraction method did not show improvements
of the classification. The classification accuracies obtained in
this study should evidently be explained by the presence of the
large P300 in the correct trials. Therefore classification of ErrP
with an accuracy rate as reported in this paper is dependent
on a P300 eliciting feedback. This is however presumably the
case in BCI where the systems execution of a command often
would be characterized as a deviant and infrequent stimulus
to the user.

In conclusion this study have shown that incorrectly clas-
sification of imaginary movements elicit an ErrP and that
correct classification increases the P300 which in total gives
a difference in the two types of outcome that can be detected
with the suggested approach. The reported findings support
the idea that the ErrP very likely can be used to improve the
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overall performance of future BCI systems.
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Chapter 1

Individual EEG recordings

1.1 Error-related potentials

In the following figures, from 1.1 to 1.5, the response signals recorded after feedback are showed.
It can be seen that the signals from all subjects have similar characteristics. The correct feedback
elicit a small negative peak at approximately 220 ms after feedback and a large positive peak
between 380 ms and 400 ms after feedback. These findings were expected as an infrequent and
deviant stimuli has been reported to elicite the N200 and P300 in numerous studies [Sanei &
Chambers, 2007; Patel & Azzam, 2005; Friedmann et al., 2001]. The response to error feedback
have some of the same charateristics. For some of the subject the error feedback also elicit a
N200. The positive peak around 400 ms after feedback seems however to be broader, have a
smaller amplitude and a longer latency. Especially the smaller amplitude has also been reported
by Hajcak et al. [2005]; Bayliss et al. [2004]. The difference in amplitude could be due the
presence of an error-related potential in the response signals after error feedback.
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1. Individual EEG recordings 1.1. ERROR-RELATED POTENTIALS

(A) (B)

Figure 1.1: The averages of the response signals recorded after feedback at Cz. In (A) from subject 1 and (B)
from subject 2.

(A) (B)

Figure 1.2: The averages of the response signals recorded after feedback at Cz. In (A) from subject 3 and (B)
from subject 4.
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1.1. ERROR-RELATED POTENTIALS 1. Individual EEG recordings

(A) (B)

Figure 1.3: The averages of the response signals recorded after feedback at Cz. In (A) from subject 5 and (B)
from subject 6.

(A) (B)

Figure 1.4: The averages of the response signals recorded after feedback at Cz. In (A) from subject 7 and (B)
from subject 8.
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1. Individual EEG recordings 1.2. CLASSIFICATION OF MRCPS

(A) (B)

Figure 1.5: The averages of the response signals recorded after feedback at Cz. In (A) from subject 9 and (B)
from subject 10.

1.2 Classification of MRCPs

The detection of error-related potentials (ErrPs) should be used to improve the accuracy of a
BCI system described in Farina et al. [2007]. The system classifies movement-related cortical
potentials (MRCPs) generated by variation in force-related parameters during imaginary foot
movement. The experiment was implemented with an imaginary movement followed by a feed-
back of the subject performances. One of the ideas of the experiment was to see if the ErrPs
could improve the classification ratio of the MRCPs, according to the classification ratio found
in Farina et al. [2007]. In this study a clear negative deflection was found in the grand average
of the MRCPs which verifies that imaginary movements were performed. However the difference
between the ballistic and the moderate movements was not significant as reported by do Nasci-
mento et al. [2006] and by using the method proposed in Farina et al. [2007] a classification
accuracy of approximately 50% was achieved. In figure 1.6 to 1.10 the averaged MRCPs for each
subject in the test group is showed. do Nascimento et al. [2006] suggested that the difference
between ballistic and the moderate is a matter of rate of force development, i.e. the duration of
the task, and not force level. The strong similarity of both MRCPs may be an indicator that
variations of rate of force development is not something that can be easily imagined. It was fur-
thermore reported that the difference between the MRCPs was smaller for imaginary movement
compared to real movement. In Farina et al. [2007] the execution of the two movements was
different from the one in this experiment both in force level as well as rate of force development
for the moderate movement. These two factors could explain why the classification rate of MR-
CPs in this study is not comparable to the findings in Farina et al. [2007] where a classification
accurracy of 85% was obtained.
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(A) (B)

Figure 1.6: The averages of the MRCPs recorded at Cz. In (A) from subject 1 and in (B) from subject 2.

(A) (B)

Figure 1.7: The averages of the MRCPs recorded at Cz. In (A) from subject 3 and in (B) from subject 4.

(A) (B)

Figure 1.8: The averages of the MRCPs recorded at Cz. In (A) from subject 5 and in (B) from subject 6.
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(A) (B)

Figure 1.9: The averages of the MRCPs recorded at Cz. In (A) from subject 7 and in (B) from subject 8.

(A) (B)

Figure 1.10: The averages of the MRCPs recorded at Cz. In (A) from subject 9 and in (B) from subject 10.
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1.3 Improvement of the BCI using ErrPs

[Schalk et al., 2000; Blankertz et al., 2003; Ferrez & del R. Millán, 2005; Buttfield et al., 2006]
have showed that detecting ErrPs will improve the performance of BCI in terms of increasing
the bit rate. The bit rate is the amount of information communicated per unit time and depends
on speed and accuracy p of the system. It is a standard measure in communication systems,
originally derived from [Shannon & Weaver, 1964], and it is also used to as a measure of the
performance of BCI systems [Schalk et al., 2000; Blankertz et al., 2003; Bayliss et al., 2004;
Ferrez & del R. Millán, 2005]. The bit rate can be calculated in bits/sec or bits/trial (BpT).

p =
Correct MRCP

All trials
(1.1)

BpT = 1 + p · log2(p) + (1 − p) · log2(1 − p) (1.2)

This equation holds when the number of possible selections in the BCI system is 2. [Schalk et al.,
2000; Wolpaw et al., 2000]

If the ErrP is introduced with a classification accuracy of erroneous trials, e, and a classifi-
cation accuracy of correct trials, c, the detection of ErrPs could be used to simply stop and not
sent the outcome of the classification of the MRCPs. The new accuracy p′ of the BCI becomes:

p′ =
All Hits − Rejected Hits

All Trials − Rejected Trails
(1.3)

This can be rewritten in probabilities:

p′ =
p − p · (1 − c)

1 − (p · (1 − c) + (1 − p) · e)
(1.4)

With this new accuracy the information transfer rate in bits/trial is:

BpT = 1 + p′ · log2(p′) + (1 − p′) · log2(1 − p′) · [1 − (p · (1 − c) + (1 − p) · e)] (1.5)

However if this bit rate calculation should give a reasonable result a decent classification of the
MRCPs is required which was not the case in this study.

1.3.1 Example

If the classification rate on 85% which was found in Farina et al. [2007] for MRCPs can be
obtained, the bit rate only for MRCPs would have been:

1 + 0.85 · log2(0.85) + (1 − 0.85) · log2(1 − 0.85) = 0.39[bit/trails] (1.6)

By introducing the ErrP classification with accuracies found in this study the MRCP classification
could have been improved to:

0.85 − 0.85 · (1 − 0.72)
1 − (0.85 · (1 − 0.72) + (1 − 0.85) · 0.74)

= 0.94 (1.7)

Which would give a new bit rate at:

(1+0.94·log2(0.94)+(1−0.94)·log2(1−0.94))·[1−(0.85·(1−0.72)+(1−0.85)·0.74)] = 0.44[bit/trails]
(1.8)

Which would give a bit rate improvement of:
0.44 − 0.39

0.39
= 0.12 (1.9)
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