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Synopsis:

Background: Hyperglycaemia is prevalent in crit-
ically ill patients and can increase mortality. This
report presents and validates a glycaemic control
system using a physiologically based metabolic
control model (Glucosafe) and an associated inte-
gral based parameter identification method. The
intended application for this glycaemic control
system, and the associated model and parame-
ter identification method is glycaemic control of
critically ill patients. Methods: The glycaemic
control system uses the Glucosafe glucose-insulin
metabolic model. Time varying insulin sensivity,
SI , is determined between measurements using
an integral-based method. The glycaemic control
system is validated by its ability to keep patients
in a normoglycaemic range (4.4-7.75 mmol/L).
Clinical control interventions are determined by
optimization over a series of penalty functions.
The system is validated against 20 virtual pa-
tients by using patient specific insulin sensivity
profiles based on clinical data from 20 critical care
patients at Christchurch Hospital (New Zealand).
Results: The overall median blood glucose con-
centration for all 20 patients is 6.05 mmol/L, and
the IQR is 5.54-6.62 mmol/L. The overall number
of hypoglycaemic measurements per patient is 0
(blood glucose measurements below 2.2 mmol/L).
The overall mean percent of measurements inside
the normoglycaemic range (4.4-7.75 mmol/L) is
87.7 %. Conclusions: The results for the gly-
caemic control validation presented are compara-
ble to other similar studies by Chase et al. (2008)
and are acceptable for later use in clinical pilot
trials.





Chapter 1

Preface

This report represents my collection of worksheets, and together with my two articles named
Parameter Estimation and Prediction Validation for the Glucosafe Glycaemic Control Model
(Article 1) and Development and Validation of a Decision Support System for Critically Ill Pa-
tients utilizing the Glucosafe Glycaemic Control Model (Article 2), is this my (Group 08gr1088e)
written result of the 9. and 10. semester of my study of Health Science and Technology at
Aalborg University in the period from 1. September 2007 to 2. June 2008.
The study is written under the area of specialisation of Medical Signals and Systems (MSS,
AAU) and Model-based Medical Decision Support (MMDS, AAU). The study is accomplished
on the basis of the research of Steen Andreassen, Ulrike Pielmeier (MMDS, AAU) and Geoffrey
J. Chase (University of Canterbury, Dept. of Mechanical Engineering - New Zealand.). The
study is intended to solve a specific health technological problem thesis regarding medical deci-
sion support for glycaemic control.
The report contains introduction for the problem background, followed by concept description,
implementation and test. To fully understand the extend of this study, this report has to be
read together with the two articles.

Brian Juliussen
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Chapter 2

Introduction

2.1 Hyperglycaemia is prevalent for critical care patients

Written in the period from 1. September - 1. November 2007. - updated in the
period from 1. April - 1. may 2008

This introduction documents the problem background of the full concept of my study of designing
a glycaemic control system. More dedicated introductions to each half of my study can be seen in
Article 1 and 2.

Patients who are critically ill due to surgery, trauma or life-threatening illness often require
vital organ function support and often prolonged intensive care [Van den Berghe, 2002]. Many of
these patients present, even with no prior diabetes, with stress induced hyperglycaemia (above
7.75 mmol/L), suggesting overall insulin resistance, due to the treatment and/or their condition
[Langouche et al., 2007] [Chase et al., 2006].
These conditions are characterized by reduced inhibition of hepatic gluconeogenesis and impaired
glucose uptake in insulin-sensitive tissues such as skeletal muscles [Langouche et al., 2007].

Insulin resistance and the resulting hyperglycaemia, for patients in critical care, may with time,
contribute to micro- and macro-angiopathy, neuropathy and organ failure [Langouche et al.,
2007].

A number of clinical studies, beginning with a milestone study by Van Den Berghe in 2001,
showed a significant relationship between the mortality of patients and high blood glucose con-
centrations [Van den Berghe et al., 2001].
Tight glucose control has been shown to reduce mortality by up to 43 % [Chase et al., 2006]
[Van den Berghe et al., 2001] [Krinsley, 2004].
In addition to increased levels of insulin resistance, only limited reductions of the blood glucose
concentration can be made using insulin alone [Lonergan et al., 2006a].
As a result, exogenous nutritional inputs must be reduced under certain conditions, due to ex-
cessive nutrition feeding can cause or exacerbating hyperglycaemia [Patino et al., 1999].

In critical care, with lower glucose nutrition alone has seen significant reductions in average
blood glucose concentrations. [Van den Berghe et al., 2001], [Patino et al., 1999].
Hence, reduced glucose nutrition combined with insulin administration can act to control both
sides (input and removal) of the glucose balance [Wong et al., 2006].
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2.2. MODELLING INVOLVING GIVEN NUTRITION AND INSULIN 2. Introduction

2.2 Modelling involving given nutrition and insulin

Only a few studies have been performed to control the blood glucose concentration in critical
care using models, most use only exogenous insulin including: [Chee et al., 2003], [Plank et al.,
2006], [Wong et al., 2006], [Vogelzang and Nijsten, 2005].
The regulation of blood glucose concentration, which is based on the mathematical models of
glucose metabolism has given promising results, indicating that it is possible to achieve normo-
glycaemia under model-based control.

Glucosafe is a new composite model that makes use of previous work in metabolic modelling
and insulin modelling [Pielmeier et al., 2008].
Mathematical models that are designed to achieve normoglycaemia have been put into the Glu-
cosafe model, which uses information about the insulin sensitivity (SI) and the production of
the endogenous insulin (EP) [Cauter et al., 1992]. Moreover, the system also utilizes a glucose
transporter model, which calculates the glucose balance for a given set of inputs and the gut
absorption rate [Arleth et al., 2000].
The main use of Glucosafe is prediction of the blood glucose concentration [mmol/L].
Model-based methods, as the Glucosafe model, can be very accurate, but require the ability to
identify patient specific parameters in clinical realtime to update the model dynamics. A fast,
accurate patient specific parameter identification method is therefore also important in the pro-
cess of refining and testing this type of model. More importantly, a fast, accurate method also
enables real-time application of model-based control and medical decision support applications.
The identification method uses an integral based approach, which together with Glucosafe can
model a patients blood glucose concentration accurately by utilizing the time varying patient
parameter insulin sensivity (SI).

2.3 Limitations and the aim of this study

The aim of this study is to use the Glucosafe model, and develop it to also incorporate an integral
parameter identification method, and the use of penalty functions into an advice module. These
penalty functions are used in glycaemic control process, where the advice module predicts the
outcome of a insulin [U/h] and nutrition [ml/h] intervention. Thus, every blood glucose predic-
tions that are made, has to be examined in terms of the quantities of exogenous insulin usage,
nutrition given to the patient, and the current concentration of the patients blood glucose. The
goal is then to find the prediction with the lowest sum of penalties, via optimization calculation.
The final validation aims to be virtual trials, where the glycaemic control system is validated
against virtual patients.

Even though this project, because of the limited time frame, stops at virtual trials, this area of
research, using Glucosafe and the advice module is an ongoing process which will lead to also
include a user friendly user interface to work as a decision support system for medical staff. The
future decision support system is intended to work together with the medical staff, and help
them controlling a patients blood glucose concentration, in terms of presentations what the near
future feeding- and exogenous insulin rate should be.
Therefore the result documented in this report is to develop a proof of concept system, which
in the future when added a user friendly interface, can give the medical staff a computerized
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2. Introduction 2.3. LIMITATIONS AND THE AIM OF THIS STUDY

decision support system to improve patient management and provide tight glycaemic control.

Out of the prior introduction, the thesis statement can be formulated:

How is it possible to design and implement a glycaemic control system to work
as decision support for treatment of virtual patients created upon critically ill pa-
tients in intensive care? How is it possible when the glycaemic control system has to
be build upon the Glucosafe model, an integral based parameter estimation method
and penalty functions?
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Chapter 3

Method

3.1 Reading guidance

Written in the period from 1. Marts - 15. May 2008.

This report is my full collection of work sheets, and documents in a chronological manner the full
work flow done during the project period. This chapter will therefore give the reader an overview
of the extend of the study.

Figure 3.1 illustrates the flow of development, and does not show the full picture of the work
process with the different obstacles the development of the system has been exposed for. On
the other hand does this report include these development and implementations obstacles, which
will be to find in section 4.2 on page 15, to document all aspects of the project together with my
two articles:

• ’Parameter Estimation and Prediction Validation for the Glucosafe Glycaemic Control
Model ’ (Article 1).

• ’Development and Validation of a Decision Support System for Critically Ill Patients uti-
lizing the Glucosafe Glycaemic Control Model ’ (Article 2)

These two articles are not included in this report.
However, an early (and UNEDITED) edition of the article ’Parameter Estimation and Predic-
tion Validation for the Glucosafe Glycaemic Control Model ’ (Article 1 old) can be found in the
Appendix of this report to illustrate the total work progress.

To see all patientdata used in this report and the figures in full size use the DVD located in
Appendix A.3 on page 82.
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3. Method 3.1. READING GUIDANCE

Figure 3.1: This illustrates the different main steps and tests during the development of the system.
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3.2. OVERVIEW OVER THE FULL CONCEPT 3. Method

3.2 Overview over the full concept

The purpose of the section is to give the reader an overall overview of the concept of the full
system.

Figure 3.2 illustrates the dynamics of the full glycaemic control system concept which is val-

Figure 3.2: This illustrates the general flow of the glycaemic control system. Also how known inputs from virtual
patients are used to implement and fine tuning of the system model (SM.) and the penalty functions (P.F.)

idated in the final test in ’Validation 5’ in Figure 3.1 on the previous page. To develop the
system model (and the belonging penalty functions) patient data are needed.
Figure 3.2 shows that the patient data can come from real patients, or virtual patients, in the
shape of sampled data from real patients, also known as the virtual trial data, see Appendix A.2
on page 80 for documentation of the SPRINT dataset.
Data from the patients includes data about the blood glucose (G(t) [mmol/L]) and the control
process, in terms of given nutrition (U(t) [ml/h]) and given insulin (P(t) [U/h]).
The sampled blood glucose measurement includes sampling noise from the blood glucose sam-
pling device, therefore the blood glucose used as input is Gnoise(t).
After having found an advice solution in terms of a new P(t) and U(t) these are used in the
physiological model to get a new blood glucose prediction, which keeps the patients blood glucose
concentration normoglycaemic (4.4-7.75 mmol/L).
This complete process happens once every hour, so the first change in the blood glycose con-
centration is expected to show after one hour. Next hour the penalty functions produces a new
result as U(t+1) and P(t +1), and so on. Furthermore, the system model also uses an estimate
of the insulin sensitivity (SI). This parameter is estimated and updated once every hour during
the procedure, to give the a optimum glycaemic control for each specific patient with different
SI profile.
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3. Method 3.2. OVERVIEW OVER THE FULL CONCEPT

Figure 3.3: This figure points out the essential steps in the advice process - also given as an overview in Figure 3.2
on the preceding page. P is given insulin [U/h] and U is given nutrition [ml/h]

Figure 3.3 illustrates the advice module optimizer utilizing the system model, integral based
parameter estimator and penalty functions.
The advice process illustrated in Figure 3.3 is created as the following:

1: Create system model to simulate a patients blood glucose.

2: Add a parameter estimator to the system model, which then will have the ability to estimate
patient specific parameters in terms of the time varying insulin sensivity (SI).

3: Create penalty function shapes templates.

4: Created advice module optimizer.

5: Fit the shapes of the penalty functions by using the advice module optimizer in tests.

6: Optimum and fitted penalty function shapes are found, hence the best possible glycaemic
control for virtual patient cohort.

11



Chapter 4

Model Development and
Implementation

4.1 General description of system

Written in the periode from Thursday the 27. Marts - 15. May 2008

In this section the intended later development of glycaemic control system into a decision sup-
port system is being defined and general described. Furthermore, the area of application and the
system environment is described.
The purpose of this section is to identify the clinical context, of which the future system of this
study has to be used in, and to make a basis for the further development of the glycaemic control
system implemented and tested in this report.

Figure 4.1 illustrates the hardware which are needed to use the decision support System. This
project only focus on the software on the PC of the glycaemic control system, and does therefore
not involve all the necessary hardware to be seen in Figure 4.1. However, in a future clinical
situation, the glycaemic control system needs a blood glucose measurement device, a insulin in-
fusion pump, a nutrition pump, and medical staff for blood glucose measurements, adjustments
of the pumps and control of the decision support system (the glycaemic control system and user
interface).

Area of application

The glycaemic decision support system documented in this chapter aims to help critical ill pa-
tients, placed in the ICU in a longer period. The goal of the system is to reduce the episodes
of which the critical ill patients suffer from hypoglycaemia and hyperglycaemia, and increase
the normoglycaemic periods of which the blood glucose concentration ranges between 4.4-7.75
mmol/L, see Appendix A on page 78.
It is intended that the decision support system has to be implemented as an addition to the ex-
isting hardware in the ICU, in terms of insulin-, nutrition pumps and blood glucose measurement
equipment. The decision support system has to be implemented on a stand alone independent
PC.

As mentioned in the introduction the consequents for critical ill patients suffering from hy-
poglycaemia or hyperglycaemia can be severe. Therefore the goal of the system is to reduce
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4. Model Development and Implementation 4.1. GENERAL DESCRIPTION OF SYSTEM

Figure 4.1: This figure shows an overview of the involved hardware in the system and the actors that the
glycaemic control system has to work with when it is developed to work as a decision support system. As the
figure illustrates, the glycaemic control of a patient is a repeating process, repeated every time a new blood glucose
measurement is available, which depends of the medical staff.

these outcomes, but if the medical staff wants to ignore the intervention advices which the sys-
tem produces, this is accepted, and the system will calculate the next intervention advice as
normal. Therefore this system has to be seen as a supplement to the medical staffs own clinical
knowledge and expertise.
The decision support system needs to be fed with data from the medical staff, in terms of given
insulin [U/h], given nutrition [ml/h] and measured blood glucose [mmol/L]. Furthermore, before
monitoring starts for a specific patient, the system needs to know this specific patients age, gen-
der, weight, height, and if the patients suffer from diabetes type 1 or 2.

Moreover, will the decision support system which except a user interface is developed during
this project and presented in this report, also be a valuable research tool, due to the ability
to save all modelling data from a patient in terms of measured blood glucose, calculated blood
glucose concentration, continues plasma insulin concentration, continues peripheral insulin level,
interventions, gut content, gut absorption and the patients insulin sensivity (SI).

System environment and involved hardware

The decision support systems environment involves 4 elements: The medical staff, the blood
glucose measurement device, the insulin infusion pump and the nutrition pump.

Medical staff: In the future edition of the system, fully implemented in the ICU, the only user
will be the medical staff for feeding the system with latest measured blood glucose, and
the latest set of interventions, in terms of given insulin and given nutrition.
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4.1. GENERAL DESCRIPTION OF SYSTEM 4. Model Development and Implementation

Blood glucose measurement device: This device measures the patients blood glucose, and
displays the result on a screen, of which the medical staff has to type into the user interface
in the glycaemic decision support system. How often the patients blood glucose is measured,
depends of the medical staff.

Insulin infusion pump: The insulin infusion pump injects insulin into the critical ill patients
vein. The dosis at which this happens depends of the medical staff. The insulin infusion
pump can be configured to inject the insulin in a continues insulin infusion, or as a insulin
bolus, depending of the medical staff.

Nutrition pump: The nutrition pump feeds the critical ill patient with various types of nutri-
tion. The type of nutrition and the feed rate depends of the medical staff.

14



4. Model Development and Implementation 4.2. GLUCOSAFE

4.2 Glucosafe

Written in the periode from Monday the 29. October to 4. November 2007 - up-
dated in the period from 1. May to 1. June 2008

This section describes the concept and my implementation of the insulin, gut and glucose mod-
elling of the Glucosafe model.

The modelling part of the glycaemic control system, without the advice module is the phys-
iological model-based glycaemic model, Glucosafe, from Aalborg University [Pielmeier et al.,
2007]. The main function of this model is to predict the development in a patients bloodglucose
concentration during the stay on the ICU. The model needs information about given insulin
[U/h] and nutrition [ml/h].
As described in the Introduction Glucosafe is a new composite metabolic system model, which

Figure 4.2: This illustrates the Glucosafe model as a box with known inputs and the calculated output.

makes use of previous research and models in insulin and metabolic modelling [Pielmeier et al.,
2007] [Chase et al., 2008c] [Lotz, 2007] [Lotz et al., 2008] [Cauter et al., 1992] [Arleth et al.,
2000].
The work progress has therefore been influenced by multiple a priori factors [Arleth et al., 2000]
[Cauter et al., 1992] [Pielmeier et al., 2007]. Later, in section 4.3 the implementation of Glucosafe
will be documented in a more thorough manner by using diagrams for illustrating the process.

4.3 Model overview

Except the modelling of the insulin kinetics [Cauter et al., 1992], Glucosafe represents the Trans-
porter model [Arleth et al., 2000]. The kinetics of the underlying physiology in the Transporter
model is illustrated in Figur 4.3 on the next page, where it illustrates the dynamics and behavior
in the glucose transporter model.

After having identified the behavior in the Transporter model and the insulin kinetics model, all
physiological sub-parts can be defined, which all are subparts of the overall model illustrated in

15



4.3. MODEL OVERVIEW 4. Model Development and Implementation

Figure 4.3: Glucosafe physiological overview, where exogenous insulin is assumed to be intravenous. In this
figure CNS = central nerve system, which together with the muscle cells, fat cells, liver and kidney results in a
negative change in blood glucose (and a positive change in the blood glucose if the concentration is very low). The
enteral nutrition and glucose infusions result in a positive change in blood glucose.

Figure 4.3.
In the following paragraphs these are listed as functionalities in the Matlab implementation of
the Glucosafe model:

Calculation of change in insulin concentration (Insulinchange): A part of the model has
to calculate the change in plasma and peripheral insulin concentration [mU/L], by using
knowledge about the given insulin (P (t) [U/h]) and the endogenous insulin production
(EP (t) [mU/min]).

Calculation of the amount of available active insulin (Insulinsensivity): When know-
ing the insulin concentration [mU/L], it is also necessary to know how big a part of the
available insulin is actually used in the muscle and fat cells (active insulin). To do this
calculation the patient specific parameter insulin sensivity SI is needed.

Calculation of change in blood glucose concentration (Bloodglucosechange): Calculation
of the change of the current blood glucose concentration, is done by knowing the glucose
input from the gut and glucose infusions, and by calculating the usage of blood glucose in
kidney, muscle cells, fat cells, the central nerve system and liver.

Calculation of sum of absorption (Glucoseinput): The input in glucose (Z) [mmol/(kg×

16



4. Model Development and Implementation 4.3. MODEL OVERVIEW

min)] is found by adding the nutrition input from intravenous nutrition and enteral nutri-
tion. Enteral nutrition passes through the gut, and therefore the rate of absorption in the
gut has to be calculated before the sum of absorption (Z) is known.

Model controller: The Glucosafe is a mathematical model simulation of the concentration of
blood glucose for a patient during a certain time periode. Each of the previous subparts
work as input-output functions. Therefore there need to be a model-controller that uses
all subparts to calculate a patients blood glucose..

To complete the documentation of the code architecture of the Matlab implemented Glucosafe
model, there also need to be sub parts to handle the data input in terms of given insulin and
nutrition. These parts are identified to be the following:

Setup: Before the model can simulate the development of blood glucose concentration for a
specific patient, there has to be a setup function to load all necessary data about this
patient to be given to the model.

Getdata: During the simulation, the function Getdata handles the preloaded patient data from
the Setup function to continually feed the model with data.

Next, each of the listed part of the model are explained, in terms of description and implemen-
tation.
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4.3. MODEL OVERVIEW 4. Model Development and Implementation

Insulinchange

Figure 4.4: This figure illustrates the scope of the insulin modelling in Glucosafe.

The implementation of the insulin part of Glucosafe is performed by using previous work
in insulin modelling [Arleth et al., 2000]. Furthermore, the endogenous insulin production, EP
[mU/min], is set as a constant at 27.77 mU/min.
As seen on Figure 4.4 the insulin stimulates the glucose uptake for muscle and fat cells, and also
stimulates the hepatic balance (between blood plasma and the liver).
The purpose of modelling the insulin part is to calculate both the insulin concentration in the
plasma compartment (I [mU/L]) and the insulin concentration in the peripheral compartment
(Q [mU/L]).
The two main equations in the insulin modelling is equation 4.1 and 4.2 [Arleth et al., 2000],
which calculates the insulin concentration in the plasma and peripheral compartment, also shown
in figure 4.5 on the facing page.

dI

dt
= (−nK − nL) ∗ I(t)− nI

VP
∗ (I(t)−Q(t)) +

P (t) + EP (t)
VP

(4.1)

dQ

dt
= −nC ∗Q(t) +

nI

VQ
∗ (I(t)−Q(t)) (4.2)
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4. Model Development and Implementation 4.3. MODEL OVERVIEW

Figure 4.5: This figure illustrates the kinetics of insulin in the model. Where muscle cells, fat cells and the
hepatic balance are insulin dependent.

The calculation of and the change in plasma insulin concentration I(t) [mU/L] and the change in
peripheral insulin concentration Q(t) [mU/L] depends on the parameters nL, nC and VQ defined
in [Pielmeier et al., 2008], and nK , nI and VP , which are functions of basic patient parameters,
defined in [Cauter et al., 1992].
The parameter nK is the kidney clearance [min−1], nI is the transport rate between the plasma
and peripheral compartments [L/min], nL is the liver clearance [min−1] and nC is the irre-
versible loss of insulin in the periphery [min−1]. Finally, VP is the plasma volume [L] and VQ

is the peripheral interstitial volume [L]. The patient specific parameters are calculated in the
Glucosafe model by using the patients gender, age, height, weight and diabetic state, and are set
as static for the patient during the glycaemic control procedure [Pielmeier et al., 2008] [Cauter
et al., 1992].

Implementation of ’Insulinchange’

As mentioned before, the calculation of I(t) and Q(t) happens in two fases, represented in two
equations. When implemented in Matlab this is done using two m-files, respectively named
plasmainsulinchangefunction.m and periphinsulinchangefunction.m, for calculation of change in
concentration of plasma insulin I(t) [mU/L] and the change in concentration of peripheral insulin
Q(t) [mU/L].
Furthermore, periphinsulinchangefunction.m uses the m-file constants.m, to the calculation of
nC , presented in Equation 4.3, which is needed to the calculation of change in the peripheral
insulin concentration:

nC =
nI × (I/Q− 1)

VQ
(4.3)

The following table illustrates the input-output relations in these functions:

19



4.3. MODEL OVERVIEW 4. Model Development and Implementation

function name plasmainsulinchangefunction.m
Input I(t), P (t), Q(t), nI , nL, nK , VP , VQ

Output I(t + 1), Q(t + 1)
function name periphinsulinchangefunction.m

Input I(t), Q(t), nI , VQ

Output Q(t + 1)
function name constants.m

Input (none)
Output GAMMA

Figure 4.6 illustrates the code architecture of the calculation of insulin.

Figure 4.6: This figure illustrates that plasmainsulinchangefunction.m uses periphinsulinchangefunction.m to
calculate change in I(t) and Q(t). Furthermore, periphinsulinchangefunction.m uses constants.m to calculate nC

- the irreversible loss of insulin because of binding to cells
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4. Model Development and Implementation 4.3. MODEL OVERVIEW

Insulinsensivity

The implementation of the insulin sensivity has been done by using a modification [Pielmeier
et al., 2008] of a previously published nonlinear transformation method [Arleth et al., 2000]. As
seen on figure 4.7 the insulin sensivity, SI , decides the fraction of the total amount of insulin
that is active insulin, A(t), that stimulates the uptake of glucose in muscle and fat cells, and the
hepatic balance.
The method to calculate the fraction of existing insulin that is active insulin, A(t), is shown in

Figure 4.7: Simplified model of which processes the insulin sensivity controls, which is the hepatic balance, and
the glucose uptake from muscle and fat cells

the following equations (modification from Arleth et al. [Pielmeier et al., 2008]):

Insabsorption =
Q(t) ∗GAMMA

C
(4.4)

where Insabsorption is the insulin absorption rate [mU/kg/min]. The constant GAMMA (value
= 5/3) is the steady state gradient between plasma and interstitium, that is used to calculate
the maximum amount of active insulin in the interstitium. C (value = 98.1 [kg×min/L]) is the
default conversion factor to convert the Insabsorption, from absorption to plasma value.

f(Q(t)) =
Insabsorption − I0

d
√

(Insabsorption − I0)d + kd
(4.5)

f(Q(t)) is the nonlinear result from Insabsorption, by meaning that f(Q(t)) is the nonlinear effect
(fraction of maximum endogenous balance) from the insulin infusion [U/h] and insulin presence
[mU/L] [Katz et al., 1993], [Rizza et al., 1981].
k (value = 0.539) and d (value = 1.773), both [mU/(kg×min)], are fitting constants for f(Q(t))
in equation 4.5, and I0 is the fasting steady state specific insulin absorption [mU/(kg × min)]
(value = 0.083).
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It is convenient to have values of f(Q(t)) in the range 0-1, therefore f(Q(t)) is subjected to
a linear transformation into the range:

f(Q(t))′ =
f(Q(t))− f(0)

1− f(0)
(4.6)

where f(Q(t))′ is the range-transformed nonlinear fractional insulin effect.
The final result is given in equation 4.7:

A(t) = f(Q(t))′ × SI (4.7)

After using Equation 4.7, A(t) represents the actual fraction of the insulin in the peripheral
compartment that is active. In other words A(t) can be defined to be the physiological limit of
the potential amount of insulin used in the peripheral compartment, meanwhile SI is a multipli-
cation factor for A(t) and thus to decide how big a part of the available insulin in the peripheral
compartment that is active. Hence, SI have influence on the change of blood glucose concentra-
tion.

Model-based methods can be very accurate, but require the ability to identify patient specific
parameters, such as the SI in clinical realtime to update the model dynamics. A fast, accurate
identification method is therefore important in the process of refining this type of model. An
integral based parameter estimation method to calculate and update the SI value used in the
model is explained in section 4.5 on page 35.

Implementation of ’Insulinsensivity’

’Insulinsensivity’ is implemented in Matlab this is done using two functions, respectively named
activeinsulinglucosafefunction.m and nonlineartransformation.m, for calculation of active insulin,
A(t).
The following table illustrates the input-output relations in these functions:

function name activeinsulinglucosafefunction.m
Input Q(t), SI

Output A(t)
function name nonlineartransformation.m

Input Insabsorption

Output f(Q(t))′

Figure 4.8 on the next page illustrates the code architecture of the calculation of A.
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Figure 4.8: This figure illustrates that activeinsulinglucosafefunction.m uses nonlineartransformation.m to cal-
culate ’Active insulin’
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Bloodglucosechange

The implementation of calculation of the blood glucose is done by using previous research con-
cepts [Arleth et al., 2000].
As seen on Figure 4.9 The calculation of change in blood glucose concentration [mmol/L] is
a result of the sum of glucose input and the sum of glucose usage in liver, central nerve sys-
tem, muscle cells, fat cells and the kidney [Arleth et al., 2000]. Pharmacodynamic changes in

Figure 4.9: Simplified model of the change in blood glucose due to the sum of glucose input from the gut and
glucose infusion, and the total glucose usage in muscle cells, fat cells, CNS, kidneys and the liver.

blood glucose concentration, due to endogenous and exogenous inputs of insulin and nutrition
are illustrated in Figure 4.9 and are defined [Pielmeier et al., 2007] [Arleth et al., 2000]:

dG

dt
= (Z(t)+EHepatic(G, A)−EKidney(G, BSA)−ECNS(G)−EMuscle/Fat(G, A))× (BM/GV )

(4.8)
where Z(t) is the sum of absorption from the nutrition input [mmol/(kg×min)], EHepatic(G, A),
EKidney(G, BSA), ECNS(G) and EMuscle/Fat(G, A) (all [mmol/(kg×min)]) are the turnover of
blood glucose to the liver, kidneys, fat cells and muscle cells, respectively (EHepatic is bidirectional
transport of glucose to and from the liver). BSA is the patients body surface area [m2] and is
used to calculate the renal glucose clearance, described in Equation 4.10 on the facing page. The
mass-volumen quotient BM/GV [kg/L], which is the bodymass (BM) [kg] divided by the glucose
distribution volume (GV) [L], can be calculated by knowing the patients weight [Pielmeier et al.,
2008]. The glucose distribution volume is defined to be 0.19 [(L/kg)·BM] [Pielmeier et al., 2008].
The constants in Equations 4.9 on the next page, 4.11 on the facing page and 4.12 on the next
page are explained in Table 4.1, where A(t) is the active insulin.
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Name of constant Value
Hepatic1 0.46 L/(kg·min)
Hepatic2 1.475 mmol/(kg·min)
Hepatic3 1.34 mmol/(kg·min)
CNS1 0.56 mmol/(kg·min)
CNS2 1.5 mmol/l

Muscle/Fat1 5.09 mmol/(kg·min)
Muscle/Fat2 5 mmol/l

Table 4.1: List of constants used to calculate the sum of glucose usage in the kidneys, liver, CNS
and fat/muscle cells

The parameters EMuscle/Fat(G, A) and EHepatic(G, A) represent the peripheral uptake of GLUT4
transporters (SI dependent), and the parameter ECNS(G) and EKidney(G, BSA) represents the
peripheral uptake of GLUT1 and GLUT3 transporters (SI independent) [Arleth et al., 2000].
EHepatic(G, A), EKidney(G, BSA), ECNS(G) and EMuscle/Fat(G, A) are defined [Arleth et al.,
2000]:

EHepatic(G, A) = −Hepatic1 ×G(t)−Hepatic2 ×A(t) + Hepatic3 (4.9)

EKidney(G, BSA) = SMOOTH(max(0, GFR(BSA)×G(t)− Tmax)) (4.10)

The renal reabsorption saturates when a blood glucose concentration exceeds 10-15 mmol/L. The
maximal reabsorption rate Tmax is 120 mmol/h [Rave et al., 2006]. The glomerular filtration
rate GFR is 7.2 L/h per 1.73 m2 body surface area. The function SMOOTH() is a function
that calculates a 7 mmol/L wide moving average.

ECNS(G) = CNS1 ×
G(t)

G(t) + CNS2
(4.11)

EMuscle/Fat(G, A) = Muscle/Fat1 ×A(t)× G(t)
G(t) + Muscle/Fat2

(4.12)

The functions ECNS(G) and EMuscle/Fat(G, A) are both Michaelis-Menten functions, thus they
both have a saturating effect, depending on the blood glucose concentration [mmol/L].
The resulting new blood glucose concentration [mmol/L] is presented:

Newbloodglucose =
dG

dt
+ oldbloodglucose (4.13)

Implementation of ’Bloodglucosechange’

When implementing ’Bloodglucosechange’ in Matlab this is done using 6 Matlab functions.
The functions have the names bloodglucosechangefunctionendobal.m, glucoseturnover.m, glucose-
turnoverrenalclearence.m, glucoseturnoverperi4.m, glucoseturnoverextendhepbal.m and glucose-
turnoverextend.m.
As seen in Figure 4.10 on page 27 the function bloodglucosechangefunctionendobal.m is the main
function in ’Bloodglucosechange’, and therefore uses the other functions to calculate Newbloodglucose
from Equation 4.13.
The function glucoseturnover.m calculates Eturnover(G, A) by using the four functions glucose-
turnoverrenalclearence.m, glucoseturnoverperi4.m, glucoseturnoverextendhepbal.m and glucose-
turnoverextend.m.

25



4.3. MODEL OVERVIEW 4. Model Development and Implementation

Equation 4.8 on page 24 describes that the change in blood glucose is a result from the turnover
of blood glucose to the liver, kidneys, fat cells and muscle cells and Z, which is the sum of
absorption.
The following table illustrates the input-output relations in the functions for ’Bloodglucosechange’
(the turnover of blood glucose to the liver, kidneys, fat cells and muscle cells).
Z is described in section 4.3 on page 28, thus are the parameters only relevant to the calculation
of Z in brackets ():

function name bloodglucosechangefunctionendobal.m
Input BM G(t), BSA, A(t) (gutcontent(t)), (Enteral nutrition)

(glucoseinfusion), (patienttype)
Output G(t + 1), changeinbloodglucose, (gutcontent(t+1))

function name glucoseturnover.m
Input G(t), A(t), BSA

Output Eturnover

function name glucoseturnoverrenalclearence.m
Input G(t), BSA

Output EKidney

function name glucoseturnoverperi4.m
Input G(t), A(t)

Output EMuscle/Fat

function name glucoseturnoverextendhepbal.m
Input G(t)

Output EHepatic

function name glucoseturnoverextend.m
Input G(t), A(t)

Output ECNS

Eturnover in glucoseturnover.m is the sum of glucose turnover from EHepatic(G, A), EKidney(G, BSA),
ECNS(G) and EMuscle/Fat(G, A), defined by [Arleth et al., 2000].
Figure 4.10 on the facing page illustrates the code architecture of the calculation of change in
blood glucose.
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Figure 4.10: This figure illustrates the code architecture in the calculation of change in blood glucose.
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Glucoseinput

The implementation of calculation of the glucose input, Z(t) [mmol/(kg × min)], is done by
using previous work [Arleth et al., 2000], .
As seen on figure 4.11 the total amount of glucose input (absorption rate, Z(t)) is the sum of

Figure 4.11: Simplified model of the total amount of glucose input (absorption rate, Z(t)) depends on the sum
of enteral nutrition and glucose infusions

the gut absorption [mmol/kg/min] from enteral nutrition [mmol/min] and glucose infusion given
intravenous [mmol/min]. The calculation of the total absorption rate, Z(t), is done in the fol-
lowing equations:

dgutcontent

dt
=

enteralnutrition

BM
− gutabsorption (4.14)

gutabsorption = ((−0.026 ∗ gutcontent2 + 0.45 ∗ gutcontent) ∗ (1/60)) ∗Kdelay (4.15)

Equation 4.14 calculates the change in gut content [mmol/kg], by using the parameters enteralnu-
trition [mmol/min], gutabsorption [mmol/kg/min] and the patients bodymass BM. Equation 4.15
calculates the gut absorption rate [mmol/kg/min]. The constants used in 4.15 are fitting con-
stants, defined by using previous work [Arleth et al., 2000].
Finally, the constant Kdelay (value = 0.5), is a result of critical ill patients slow digestion (delayed
gut absorption).

Z(t) =
glucoseinfusion

bodymass
+ gutabsorption (4.16)

Finally, Equation 4.16 calculates the total absorption rate, Z(t), which can be seen in Fig-
ure 4.11. Z(t) is calculated by the intravenous nutrition infusion rate [mmol/kg/min] divided by
the patients bodymass, subtracted with the gut absorption rate [mmol/kg/min].

Implementation of ’Glucoseinput’

The implementation of the calculation of the glucose input in Matlab is done by using the two
functions gutcontentfunction.m and mealabsorbtiondiasfunction.m.
The calculation of the gut absorption rate is done in mealabsorbtiondiasfunction.m, and the
calculation of the change in gut content is done in gutcontentfunction.m. Finally, the total ab-
sorption rate, Z(t), is calculated in gutcontentfunction.m.
The following table illustrates the input-output relations in the functions for ’Glucoseinput’.
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function name gutcontentfunction.m
Input gutcontent(t), enteralnutrition, BM , glucoseinfusion

Output gutcontent(t + 1), gutabsorption, Z(t)
function name mealabsorbtiondiasfunction.m

Input gutcontent(t)
Output gutabsorption

Figure 4.12 illustrates the code architecture of the calculation of total glucose input.

Figure 4.12: This figure illustrates that the calculation of the glucose input is done by the functions gutcontent-
function.m and mealabsorbtiondiasfunction.m
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controlmodel

The physiological model-based Glucosafe is implemented using a Matlab solver function (ODE45),
which is used to calculate the dynamics in the physiologic of the human body. The ODE45 solver
function is a predefined Matlab tool, which calculates and continuous updates all the parameters
in the included differential equations. The time line for these calculations has to be predefined,
due to be an imitation of the physiological dynamics in a human body. Hence, the maximum
time between the parameters are being calculated and updated, are 1 minute (fx. change in
blood glucose concentration is calculated every minute).
The differential equations included in the sub parts, explained in the list in section 4.3 on page 16,
have to be controlled inside and outside the ODE solver function.
The following describes the different functions in the part ’Controlmodel’ in Glucosafe:

model.m: When implemented in Matlab the main m-file that runs the model is called model.m.
The main function of model.m is to initiate the ODE45 solver function, which controls the
model. Furthermore, model.m sets up the ODE45 controller, in terms of how long time the
model should run, which patient data it should use and finally, saving the modelled data,
after it has been through the ODE45 solver function. Finally, model.m include the part
’Setup’ for setting up the system and organizing data, which defines the initial conditions
also needed in the ODE45 solver function, such as starting points for blood glucose, insulin
plasma and peripheral concentration, insulin sensivity and gut content.

glucosafehandler.m: The m-file glucosafehandler.m is a necessary sub-function file to have
for the ODE45 solver function, due to its ability to control and calculate the involved
m-files and differential equations parameters. Finally, glucosafehandler.m include the part
’Getdata’, whose function is to use the data chosen in the part ’Setup’, and feed this to
the model at the correct current time point.

Setup

The ’Setup’ part of Glucosafe has the purpose to organize and choose a set of patient data.
Furthermore, it defines and calculates physiological constants for the specific patient, which is
used in the rest of Glucosafe’s functions. The part ’Setup’ is located in the m-file model.m.
The following list describes the different functions in the part ’Setup’ in Glucosafe:

Patientsetup.m Here the model defines the specific patients weight, height, age, gender, body
surface area (BSA) and the state of diabetes. The output of this function is used by the
rest of the model.

Sprintdatafunction.m The Glucosafe model simulates and models the patient data from the
SPRINT cohort, achieved at Christchurch Hospital, see Appendix A.2 on page 80. By
choosing a specific patient in the SPRINT cohort, the relevant data can be used in the
model. The function of Sprintdatafunction.m is to find and organize the SPRINT data for
a specific patient, regarding given insulin, given nutritional glucose, given glucose infusion
and measured blood glucose. These data sets also include the necessary time stamp, used
in the part ’Getdata’.

setpatientcharacteristics.m This function uses the output from Patientsetup.m to calculate
the 5 static parameters nI , nL, nK , VP and VQ for each specific patient, used in the part
’Insulinchange’, see section 4.3 on page 18.
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constants.m: The function constants.m is a m-file with several predefined fitting constants
and physiological constants defined using previous research [Arleth et al., 2000]. The
purpose of constants.m is to feed setpatientcharacteristics.m with these constant, due to
the calculations of the 5 static patient parameters nI , nL, nK , VP and VQ, which are all
needed to calculate the change in plasma insulin concentration.
Furthermore, constants.m is used in the m-file periphinsulinchangefunction.m, due to the
calculation of the patient specific constant nC , which is needed to calculate the change in
peripheral insulin concentration.

Getdata

The part ’Getdata’ of Glucosafe is located inside the m-file glucosafehandler.m, and has the
purpose to feed data to the model at the correct current time point.
’Getdata’ includes the function givepatientmonitordata.m, that will be described in the following:

givepatientmonitordata.m: The function givepatientmonitordata.m uses the relevant SPRINT
data from ’Setup’ (Sprintdatafunction.m), and has the output parameters ’injected insulin’,
’glucose infusion’, ’nutritional glucose’ and ’measured blood glucose’ to give to the model
each minute.

4.4 Model code architecture

The simulation part of Glucosafe is implemented in Matlab including 19 m-files. Figure 4.13 on
the next page illustrates where and when the different functions are being called to calculate the
next step in the model. As seen in figure 4.13 on the following page the parts ’Insulinchange’,
’Insulinsensivity’, ’Bloodglucosechange’, ’Glucoseinput’ are being called several times, depending
on the ODE45 solver function, from the main part ’Controlmodel’.
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Figure 4.13: This figure illustrates the architecture for all the functions inside Glucosafe implemented in Matlab
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Validation 1

Written in the periode from Thursday the 1. December - 15. December 2008

The purpose of this test is to validate if the Glucosafe model implemented in Matlab can produce
the same graphical result as the original Glucosafe [Pielmeier et al., 2007], when using the same
patientdata and interventions.
The patientdata used in this test is from a woman with a weight of 70 kg, 1.6 meter tall, 60 years
old, who does not suffer from any type of diabetes. Furthermore, the test has been performed
using a fixed insulin sensivity at 0.1625 throughout the entire test period.
Figure 4.14 shows the graphical result from the Glucosafe implemented in Matlab, while Fig-
ure 4.15 on the following page shows the graphical result, achieved from the Java implemented
Glucosafe [Pielmeier et al., 2007] from the same patient.

Figure 4.14: The graphical result from Glucosafe in Matlab
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Figure 4.15: The graphical result from Glucosafe in Java, ref. Ulrike Pielmeier AAU

Conclusion of validation 1

Glucosafe implemented in Matlab works like the original Glucosafe [Pielmeier et al., 2007].

Next, the integral based parameter estimation method is being documented. By implementing
this function into the system. This will give the system the ability to predict with real-time fitted
patient parameter.
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4.5 Integral based ID.

Written in the periode from the 1. February - 15. May 2008

This section describes the design of concept and isolated test of the integral based parameter
estimation method.

The Glucosafe glucose-insulin metabolic model is used to calculate the time-varying response
of blood glucose for given insulin and nutrition. The Glucosafe model itself uses fixed patient
parameters for the patient in any given time period. However, with help from a parameter esti-
mator it can update these values as required.

To be able to calculate a more accurate blood glucose prediction for the patient, it is neces-
sary to implement a function that updates a patient specific parameter. The purpose is to adjust
the model to be more accurate for the specific patient. This study uses the integral based pa-
rameter estimation method.

The patient specific parameter used in this study is the time varying insulin sensivity, SI .
To estimate SI at any given period, an integral based parameter estimation method is used. The
integral based parameter estimation implemented, is the same method as Hann et al. [2005]. In
this case, it is used to identify SI and all other values are held as constants (Arleth et al. [2000]
Lotz [2007]).

By substituting Equations 4.17- 4.25 on the following page and separating the SI dependent
parts, it is possible to isolate and calculate SI every hour. The value of SI is assumed piecewise
constant over the identification interval. In this case, the time interval is set to one hour, to fit
the available blood glucose measurements once every hour in the SPRINT cohort.

The change in plasma insulin concentration, I(t), is defined in Equation 4.17:

dI

dt
= (−nK − nL) ∗ I(t)− nI

VP
∗ (I(t)−Q(t)) +

P (t) + EP (t)
VP

(4.17)

The change in peripheral insulin concentration, Q(t), is defined in Equation 4.18:

dQ

dt
= −nC ∗Q(t) +

nI

VQ
∗ (I(t)−Q(t)) (4.18)

The sum of glucose turnover (E(G, A,BSA)) to the central nerve system, muscle cells, fat cells,
kidneys and the liver, where G is the current blood glucose concentration, A is the active insulin,
is defined in Equation 4.19 and BSA is the patients body surface area [m2]. The constants in
Equations 4.20, 4.21 and 4.23 on the following page are explained in Table 4.2.

E(G, A,BSA) = EHepatic(G, A)− EKidney(G, BSA)− ECNS(G)− EMuscle/Fat(G, A) (4.19)

Where EHepatic(G, A), EKidney(G, BSA), ECNS(G) and EMuscle/Fat(G, A) are defined in Arleth
et al. [2000] as:

EHepatic(G, A) = −Hepatic1 ×G(t)−Hepatic2 ×A(t) + Hepatic3 (4.20)

EKidney(G, BSA) = SMOOTH(max(0, GFR(BSA)×G(t)− Tmax)) (4.21)
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Name of constant Value
Hepatic1 0.46 L/(kg·min)
Hepatic2 1.475 mmol/(kg·min)
Hepatic3 1.34 mmol/(kg·min)
CNS1 0.56 mmol/(kg·min)
CNS2 1.5 mmol/l

Muscle/Fat1 5.09 mmol/(kg·min)
Muscle/Fat2 5 mmol/l

Table 4.2: List of constants used to calculate the sum of glucose turnover in the liver, CNS and
fat/muscle cells

ECNS(G) = CNS1 ×
G(t)

G(t) + CNS2
(4.22)

EMuscle/Fat(G, A) = Muscle/Fat1 ×A(t)× G(t)
G(t) + Muscle/Fat2

(4.23)

The relationship between the active insulin A(t) and SI is defined in Equation 4.24:

A(t) = SI ∗ f(Q(t))′ (4.24)

where f(Q(t))′ is the range-transformed (in the range 0-1) nonlinear fractional insulin effect.
Finally, the total result for the change in blood glucose concentration is defined in Equation 4.25:

dG

dt
= (Z(t) + E(G, A,BSA))× constant (4.25)

where constant is equal to BM/GV , which is the patients bodymass [kg] divided by the glucose
distribution volume (GV) [L], also described in section 4.3 on page 24. Combining Equations
4.17-4.25, the SI non-dependent parameters are presented in Equation 4.26 and the SI dependent
parameters are presented in Equation 4.27.

′a′ = Z(t) + (1/60)× (−Hepatic1 ×G + Hepatic3)− (1/60)× (ECNS + EKidney) (4.26)

Where G comes from the calculation of EHepatic(G, A) in Equation 4.20, where a blood glucose
roof concentration is set at 11.98 mmol/L if the current calculated blood glucose is larger.
By noticing Equation 4.26, it can be seen that ECNS and EKidney are not separated in subparts
like EHepatic and EMuscle/Fat. The reason for this is that none of the parameters inside the
functions ECNS and EKidney are depending to A(t). Z(t), the sum of absorption explained in
section 4.3 on page 28 is calculated each minute by using the nutrition interventions (enteral and
parenteral).

′b′ =
−Hepatic2

60
×A− Muscle/Fat1

60
×A× G

G + Muscle/Fat2
⇒ (4.27)

Where A(t) is the active insulin (fractional effect on glucose turnover).

′b′ =
−Hepatic2

60
× SI × f(Q(t))′ − Muscle/Fat1

60
× SI × f(Q(t))′ × G

G + Muscle/Fat2
(4.28)

The number 1/60 often occurs in both part ′a′ and part ′b′. This is due to the length of the
estimation interval of SI is 1 hour (60 minutes).
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Equation 4.29 uses Equations 4.26 on the facing page and 4.28 on the preceding page to integrate
over the prior hour. Using the blood glucose measurements G(60) and G(0) and the nutrition
information from the previous hour, SI can be calculated for the previous hour. This identified
SI value is then used for the next hour to Model Prediction, by using Equation 4.30.

G(60)−G(0)
constant

=
∫ 60

0
(′a′)dt + SI ×

∫ 60

0
(′b′)dt ⇐⇒ (4.29)

SI =
1∫ 60

0 (′b′)dt
× G(60)−G(0)

constant
−

∫ 60

0
(′a′)dt (4.30)

Every hour a new blood glucose measurement is available from the SPRINT data set, and a
new SI value can therefore be identified for that time interval, which Equation 4.30 illustrates.
Figure 4.16 shows an example of an identified SI profile. Using that hour to hour SI and the
known interventions, the new blood glucose measurement can be predicted and compared to the
clinical data to test the models prediction capability. Alternatively, new interventions can be
tested to predict and determine the best set of given nutrition and injected insulin.

Figure 4.16: This figure illustrates how the patient specific parameter SI changes every hour. Integral based
parameter estimation methods are used to determine these values.

Isolated validation and conclusion of the integral parameter esti-
mation method

Having estimated the SI values for the entire length of the patient data, it is possible to validate
if these calculated SI values are correct. Figure 4.17 on the following page shows the isolated
validation of the integral parameter estimation method for Patient 2 used in the study (see
Table 4.3 and 4.4). Here the SI profile for Patient 2 is calculated, and then used in a model re-
simulation to see how good the calculated blood glucose fits the measured blood glucose values.
As seen on Figure 4.17 the calculated blood glucose fits the measured blood glucose values and
the validation of the integral based ID method is therefore accepted.
These results also show that the model of Equation 4.17 - 4.25 has all the necessary dynamics to
capture the behavior seen in the clinical SPRINT data. This validation and examination have
used retrospective data from SPRINT patients.
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Figure 4.17: The Figure illustrates the validation of the integral based parameter estimation method. The line
is the calculated blood glucose and the blue dots are the measured blood glucose values, available every hour.

The result is considered acceptable for later use in Model Simulation Validation and Model
Prediction Validation, which are presented in section 4.6 on the next page.
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4.6 Validation 2-4

Written in the periode from the 1. February - 15. May 2008

This section describes the tests performed on the Glucosafe model and integral based parame-
ter estimation method without the advice module. These results are also to find in Article 1:
’Parameter Estimation and Prediction Validation for the Glucosafe Glycaemic Control Model’

The tests performed on the model and integral parameter estimation method are listed in the
following:

Validation 2: This test deals with the Model Simulation validation.

Validation 3a: This test validates the Model Prediction first version.

Validation 3b: This test validates the Model Prediction second/final version.

Validation 4: This test validates the chosen Model Prediction method’s ability to predict from
1-10 hour, and validation using different EP [mU/min].

The results are presented in term of the absolute percent error, APE, of blood glucose calculated
as:

APEi =
|BGGS

i −BGi|
BGi

(4.31)

Where BGGS
i is the calculated blood glucose concentration at time i, and BGi is the measured

blood glucose concentration at time i.

Patient cohort used for validation 2 - 4

The patientdata used in validation 2 - 4 comes from 10 patients in the SPRINT study [Chase
et al., 2007] [Lonergan et al., 2006b]. The basic cohorts details can be seen in Tables 4.3 and 4.4.
All of the SPRINT patient data in 1-2 hour intervals are thus relatively dense. Ethics approval

to use this data was obtained from the South Island Regional Ethics Committee, New Zealand.

Patient Age APACHE II score: Diagnosis
1 77 22 Sepsis
2 67 33 Acute renal failure, infarction
3 42 11 Suicide attempt (non drug), respiratoty failure, smoke inhalation
4 44 21 Ventricular drain
5 79 31 infarction, cardiac catheter, hypoxic/ischaemic
6 44 23 Meningitis, ventricular drain
7 53 13 Aspiration, motor vehicle crash
8 53 18 Heavy obesity, Obstructive sleep apnoea
9 59 22 Donor
10 51 29 Acute renal failure, systemic

Table 4.3: Patient data for the 10 SPRINT patients used in validation 2 - 4
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Patient Length of stay in hospital (hours) Length of stay on SPRINT (hours) Gender Diabetes
1 580.8 312 M No
2 458.4 162 M No
3 408 253 M No
4 223.2 207 F No
5 55.2 39 F No
6 280.8 161 F No
7 861.6 17 M No
8 477.6 182 M No
9 99.6 93 F No
10 520.8 360 M No

Table 4.4: Length of stay and further patient data for the 10 SPRINT patients used in Validation
2 - 4.
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Validation 2

This test documents the Model Simulation validation, which also is presented in the article ’Pa-
rameter Estimation and Prediction Validation for the Glucosafe Glycaemic Control Model’.
The Model Simulation process finds a patient specific SI (= SI1,...,SIi,...,SIN ) profile over time

Figure 4.18: Flowchart over the work process for the Model Simulation Validation. First the model simulates
and finds the entire SI profile for a patient at once. Thereafter the model repeats the same simulation using the
founded SI profile from the first simulation.

for a given set of patient data (glucose measurements BGi and insulin and nutrition interven-
tions, IV).
When a new blood glucose measurement BGi becomes available at time ti a new value SIi can
be identified from the measurements BGi−1 and BGi.
In the Model Simulation mode, Glucosafe can use SIi to simulate BGi, using BGi−1 as the initial
value for the simulation:

BGGS
i = GS(BGi−1, SIi; IV )

where BGGS
i is the simulated blood glucose at time ti using SIi and the interventions IV starting

from time ti−1 with the measured blood glucose value BGi−1.
A close match between BGGS

i and BGi will confirm that the identified patient profile SI actually
describes the dynamics of the patients metabolic state (APEi).
Figure 4.19 illustrates the results for Patient 4 in the Model Simulation validation. In Ap-
pendix A.4 on page 83, Article 1 first edition, more of these Model Simulation validation can
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be seen. Dots with error bars show measured clinical data and the line is the identified model.
The overall fits are qualitatively very good. The second panel shows the SI profile. The fitted
data error results for the Model Simulation validation for all 10 SPRINT patients are presented
in Table 4.5. Table 4.5 shows mean and median APE’s per patient over the cohort are 0.45 and
0.24 % and 100 % of measurements per patient being less than 10 % APE.

Figure 4.19: Model Simulation validation of Patient 4. Panel 1 shows the simulated blood glucose, meanwhile
the dots are the measured blood glucose. Panel 2 is the calculated plasma and peripheral plasma concentration.
Panel 3 is the given nutrition, and Panel 4 is the given insulin. Finally, panel 5 is the SI identified in simulation
mode (identified in Model Simulation, see Figure 4.18 on the preceding page). The entire data set is fit as a whole.
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SPRINT Number of Mean Median IQR 5-95% Percent APEi

patient simulations Range < 10%
1 234 0.50 0.18 [0.07 0.45] [0.01 1.32] 100
2 154 0.34 0.23 [0.08 0.46] [0.01 1.07] 100
3 170 0.56 0.38 [0.18 0.69] [0.02 1.62] 100
4 192 0.49 0.29 [0.14 0.57] [0.02 1.59] 100
5 32 0.72 0.51 [0.18 0.98] [0.05 2.72] 100
6 112 0.53 0.30 [0.12 0.64] [0.03 2.17] 100
7 12 0.84 0.29 [0.12 0.63] [0.02 2.61] 100
8 114 0.60 0.23 [0.12 0.55] [0.03 1.65] 100
9 83 0.51 0.35 [0.16 0.55] [0.05 1.71] 100
10 252 0.34 0.20 [0.07 0.42] [0.02 1.05] 100

Overall 1355 0.45 0.24 [0.10 0.51] [0.01 1.33] 100

Table 4.5: Results for the Model Simulation validation of Glucosafe of all SPRINT patients in
validation 2. The Overall result is weighted by the amount of data for each patient. IQR =
interquartile range.

Conclusion of Validation 2

The results of the validation presents a mean APE at 0.45 %. This result proves that the model
dynamic of Glucosafe during Model Simulation fits the measured blood glucose data within an
acceptable error range, and ready for being used in Model Prediction..
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Validation 3

The development of the Glucosafe model and the integral based parameter estimation method
has been through several states of improvements.
Due to fully document my work process, it is necessary to illustrate the two ways of Model
Predictions I have used during the development of the project.
Figure 4.20 illustrates the two different Model Prediction methods, and therefore also two states

Figure 4.20: This figure illustrates the two Model Prediction methods, which have been used. The first prediction
method is shown in the left column, meanwhile the second, and final Model Prediction method is presented in the
right column
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of development, to initiate Model Prediction.
Both Model Prediction methods have the ability to identify the patient parameter SI to minimize
the APEi between BGGS

i which is the calculated blood glucose concentration at time i, and BGi

which is the measured blood glucose concentration at time i.
The first Model Prediction method shown in the left column in Figure 4.20, presents the first
edition of the Model Prediction.
The prove of need of always using a combined system utilizing both a model and a parameter
estimator, can be seen by observing Figure 4.14 on page 33, where the result is presented of using
the Glucosafe model alone, without the ability to estimate SI , but instead a fixed SI during the
total simulation period. Figure 4.19 presents the combined system utilizing both the model and
the parameter estimator.
Simply by observing these two figures, it is possible to see that the need of parameter estimator
is important.

The first Model Prediction method had a big disadvantage, due to the missing ability to predict
SI in realtime.
Model Prediction method working in realtime became necessary, when the system had to be
used against a patient, whose data also becomes accessible en realtime depending on a real blood
glucose measurement device, or virtual patients with unknown interventions - In other word it
became necessary if the current system should work as a part of a glycaemic control system.

After developing the second, and final edition of the Model Prediction method, presented in
the right column in Figure 4.20, the ability to predict in realtime was achieved.
To fully document both Model Prediction methods, these are both validated:

Validation 3a: Validation of the first Model Prediction method. The full result of this method
is presented in Appendix A.4 on page 83, which includes the first edition of the article Pa-
rameter Estimation and Prediction Validation for the Glucosafe Glycaemic Control Model.

Validation 3b: Validation of the second, and final Model Prediction method. This method is
later used in the development of the Decision Support System, using the Advice Module.

The results of this validation is presented in Article 2.
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Validation 3a

This test validates the first Model Prediction method, which is shown in the left column in
Figure 4.20 on page 44.
Visuel results for Validation 3a can be seen in Appendix A.4 on page 83, where Article1old
presents this. The results for the first Model Prediction method is done as illustrated in the left
column in Figure 4.20 on page 44.
The results for the Model Prediction validation for all 10 SPRINT patients included in this test
is presented in Table 4.6.
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SPRINT Number of Mean Median IQR 5-95% APE Percent of measurements
patient Predictions (APE) (APE) Range < 10% APE

1 234 11.58 9.51 [4.83 15.08] [0.58 29.50] 53.02
2 154 11.32 8.12 [3.46 17.69] [0.50 29.50] 54.61
3 170 18.12 14.31 [6.89 27.36] [0.56 41.93] 36.90
4 192 10.73 7.46 [3.37 13.93] [0.58 34.60] 60.00
5 32 15.35 13.02 [7.19 22.57] [0.71 38.73] 36.67
6 112 9.26 5.89 [2.56 11.97] [0.34 29.07] 71.81
7 12 14.65 13.73 [11.90 17.72] [6.76 18.20] 18.18
8 114 16.28 11.50 [5.83 19.78] [1.35 47.49] 40.18
9 83 15.81 12.50 [5.95 18.65] [1.25 44.41] 41.98
10 252 12.58 9.93 [4.43 17.58] [0.79 31.95] 50.4

Overall 1355 13.02 9.91 [4.74 17.78] [0.75 34.75] 50.78

Table 4.6: Results for Model Prediction validation (3a) with integral parameter estimation of
all SPRINT patients in this test. The Overall result is weighted by the amount of data for each
patient. IQR = interquartile range
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Validation 3b

The results for the Model Prediction validation for all 10 SPRINT patients included in this test
is presented in Table 4.7.
Figure 4.6 illustrates the results for Patient 8 in the Model Prediction validation 3b. Dots with
error bars show measured clinical data and the line is the identified model. The overall fits are
qualitatively very good.

Figure 4.21: Model Prediction validation of Patient 8. Panel 1 shows the predicted blood glucose, meanwhile the
dots are the measured blood glucose. Panel 2 is the calculated plasma and peripheral plasma concentration. Panel
3 is the given nutrition, and Panel 4 is the given insulin. Finally, panel 5 is the SI identified during prediction.
The data seen are fitted hour to hour as seen in the right column in Figure 4.20
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SPRINT Number of Mean Median IQR 5-95% APE Percent of prediction
patient Predictions (APE) (APE) Range measurements < 10% APE

1 234 9.7 7.1 [3.6 13.0] [1.6 25.7] 66.5
2 154 9.9 7.5 [3.9 13.4] [1.5 25.3] 61.8
3 170 12.3 10.6 [3.9 18.6] [1.5 30.6] 48.1
4 192 11.2 7.9 [3.7 12.1] [1.7 32.2] 62.8
5 32 14.8 14.3 [6.5 20.4] [2.3 35.8] 33.3
6 112 9.1 6.1 [3.2 12.5] [0.8 32.6] 69.7
7 12 13.4 8.5 [3.8 15.1] [2.4 30.9] 54.5
8 114 11.2 7.1 [4.5 12.6] [0.6 37.3] 63.6
9 83 16.4 12.3 [7.0 19.6] [1.6 36.8] 41.0
10 252 9.3 6.3 [3.4 11.8] [0.8 24.5] 67.3

Overall 1355 10.8 8.0 [4.0 13.9] [1.2 29.5] 60.9

Table 4.7: Results for Model Prediction validation (3b) with integral parameter estimation of all
SPRINT patients in this study. All results are shown in percent. The Overall result is weighted
by the amount of data for each patient. IQR = interquartile range

Conclusion of Validation 3a + 3b

The test results for validation 3a presents a mean APE at 13.02 and a median APE at 9.91. The
test results for validation 3a presents a mean APE at 10.8 and a median APE at 8.0.
Only Validation 3b present a acceptable low Model Prediction error, as compared to the Glu-
cometers used at Christchurch Hospitals with 7-12 % measurement error [Hann et al., 2005].
The results for validation 3a have a bigger APE than the results presented in validation 3b, the
preferred method is therefore the Model Prediction tested in validation 3b.
The reason for the difference in predictions errors (APE) between Validations 3b and 3a, is that
the Model Prediction method validated in 3b handles sudden big changes in a patients blood
glucose [mmol/L] better than 3a.
Besides the better prediction error, the Model Prediction tested in validation 3b is the only
method estimating SI in realtime, see the right column in Figure 4.20 on page 44, and therefore
the only method that can be used in a glycaemic control system with unknown future interven-
tions.
Hence, in the chosen Model Prediction mode (3b), SIi is used to simulate the next measurement,
BGi+1, using BGi as the initial value for the simulation:

BGBG
i+1 = GS(BGi, SIi; IV )

A close match between BGBG
i+1 and BGi+1 shows that the identification of SI can provide an

accurate prediction of the response to clinical intervention.

A more comprehensive documentation of the results achieved in validation 3b can be seen in
Article 1.
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Validation 4

This test validates the chosen Model Prediction methods ability (3b) to predict from 1-10 hour,
see Figure 4.22, and testing the prediction errors (1 hour predictions only) using different EP
values, see Figure 4.23 on the facing page.

The Model Prediction validated in validation 3 has used a fixed EP at 27.77 mU/min. Due

Figure 4.22: This figure illustrates the systems ability to predict over a period up to ten hours for the close-to-
average Patient 6 in the study, using different EP values. The result for this capability is presented using the unit
Root Mean Square of the Relative Logarithmic Error.

to minimize the model Prediction error APE, different values of EP has been tested.
Figure 4.23 on the next page illustrates that the parameters EP and SI are interdependent in
the model as it is defined. A change in EP therefore changes the patients SI profile over the
patient.
It also shows how EP and SI are dependent and trade off for Patient 6. As EP increases SI

falls and vice versa, with similar dynamics in the SI profiles.
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Figure 4.24 on the following page illustrates the relationship between choice of EP and resulting
overall median APE for all 10 patients. The overall median APE for model Prediction has been
testet for choices of EP at 20, 27.77, 30, 35, 40 and 45 mU/min. The dots in Figure 4.24 the
Model Prediction result (overall median) for all 10 patients, and the best overall choice for EP
to have, is a EP value at 27.77 mU/min. However, using a EP value at 27.77 mU/min may
not be the optimum solution in other situations, with another/lesser critically ill patient cohort
(higher SI).

Figure 4.23: This figure illustrates how the predicted blood glucose for Patient 6 is effectively the same by using
different dependent set of EP and SI profiles. The top picture shows 3 predictions produced by using 3 different
EP and SI profiles. The lower picture shows 3 different SI profiles. The upper SI profile is produced by using a
EP = 27.77 mU/min and the lower SI profile is produced by using a EP = 45 mU/min. The prediction lines in
the top panel are close to be the same. This figure is produced by 1 hour prediction only.
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Figure 4.24: This figure illustrates the overall median error (APE) for all 10 patients used in this study, using
a different value of EP.

Conclusion of Validation 4

The tested Model Prediction method has shown to be acceptable for later use in a control scenario
with unknown interventions. Furthermore, the Model Prediction are considered acceptable for
later use in control applications in a clinical setting out to approximately 3 hour predictions
levels, as see in Figure 4.22. These results validate using these models in proof of concept pilot
clinical trials and the later development of a advice module to complete the study. The fixed EP
value at 27.77 mU/min are found to be the optimum value for the tested cohort, and are used
in the later development of the system.

52



Chapter 5

Advice Module Development and
Implementation

5.1 Advice module

Written in the periode from Thursday the 7. May - 2. June 2008

In this section the advice module of the glycaemic control system is being defined and described.
This part of my work is also presented in Article 2: ’Development and Validation of a Decision
Support System for Critically Ill Patients utilizing the Glucosafe Glycaemic Control Model’.

The development of the advice module, in the glycaemic control system, depends on the pres-
ence of the earlier implemented Glucosafe model, see section 4.2 on page 15, and integral based
parameter estimation method, described in section 4.5 on page 35. The development and imple-
mentation of the Glucosafe model and the integral based parameter estimation method, mainly
represents my work done in the first half of this study.

Figure 5.1 on the next page illustrates the build up of the full glycaemic control system, which
includes the model, integral based parameter estimation method, advice module (all in the right
column in the figure) and a patient - which in this study is a virtual patient (left column in the
figure). This chapter will focus on the development of the advice module, and the virtual patient
needed for validation of the glycaemic control system.

The included parts of the advice module are presented in the following:

Blood glucose penalty function: The purpose of the glycaemic control system is to keep the
patient normoglycaemic, and therefore is the blood glucose penalty function designed to
give a high penalty when a set of intervention can cause that the patients blood glucose
gets outside the normoglycaemic range.

Nutrition penalty function: Even though the main purpose of the glycaemic control system
is to maintain a state of normoglycaemia, the patient also has to have a certain amount
of calories during the glycaemic control. The glycaemic control is because of the nutrition
penalty function, a compromise between always being normoglycaemic and getting optimal
feeding.

Insulin penalty function: The purpose of this penalty function is to give a high penalty when
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Figure 5.1: This figure illustrates the full glycaemic control system, which includes the model, integral based
parameter estimation method, advice module and a virtual patient. Further explanation of the nutrition and
insulin advices can be seen in the sections of penalty functions and the advice module optimizer

a high amount of insulin is given, due to stay in control of the patients blood glucose
concentration.

Advice module optimizer: The given sets of interventions are a result of the advice module
optimizer, which uses the three mentioned penalty functions to find the lowest possible
sum of penalty to chose the optimum sets of nutrition and insulin to give to the patient.

Next, each of the listed parts of the advice module, followed by the virtual patients are explained
in terms of concept and implementation.

Blood glucose penalty function

In addition to the Glucosafe glucose-insulin system model and integral based parameter estima-
tion method, the glycaemic control system utilizes three penalty functions and an optimizer, due
to the control of the blood glucose concentration of patients.
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All three shapes have influence on glycaemic control, and the size or values of each penalty
function are weighted against the desired criteria of 1: keeping the patients blood glucose con-
centration inside the normoglycaemia range between 4.4-7.75 mmol/L [Van den Berghe et al.,
2001] [Krinsley, 2004]. 2: giving the patient an adequate amount of calories, and 3: keeping
the control of the patients blood glucose concentration while minimizing the amounts of insulin
given to the patient.

The approach of design of the penalty functions, has in this study been the blood glucose penalty
shape, see Figure 5.2, with basis in previous work [Andreassen et al., 1994]:

BGpenalty = (ln(
BG

BG0
))2 ×KBG−Penalty (5.1)

where BG is the current blood glucose values, and BG0 (= 5.5 mmol/L) is the point at which
the penalty function value is 0. KBG−Penalty is a fitting constant (value = 4). The blood glucose
penalty function results in a penalty range between: [0 0.47] in the targeted blood glucose range
of 4.4-7.75 mmol/L.

Figure 5.2: This figure illustrates the shape of the blood glucose penalty function
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Nutrition penalty function

The nutrition penalty function, illustrated in Figure 5.3 on the next page, is designed on the
basis of keeping the patient normoglycaemic while continually giving the patient as close to 100
% of daily intake (DI) as possible. The penalty range for the nutrition penalty function is [0.00
0.05] in the feeding range between 40-140 % of DI. Equation 5.2 represents the nutrition penalty
function:

Penalty(NUT ) = (NUT − 100%)2 ×KNUT−Penalty (5.2)

where NUT is given nutrition in the range 40-140 % of DI and KNUT−Penalty is a fitting con-
stant (value = 0.15) to weight the nutrition penalty range against the two other penalty functions.

The nutrition advice range illustrated in Figure 5.3 is presented in % of DI, and has to be
converted into caloric intake for the specific patient. The Harris Benedict metabolism equation
[Harris and Benedict, 1918] is used to calculate 100 % of daily calorie intake DI from the patients
gender, weight, age and height, from which calories per day (CD) can be calculated as: CD =
NUT × DI [kcal/day]. The Harris Benedict metabolism equation is presented in the following,
where CD in Equation 5.3 is full daily calorie need for men [kcal/day], and CD in Equation 5.4
is full daily calorie need for women [kcal/day]:

CD = 66.5 + 13.8× weigth + 5× height− 6.8× age (5.3)

CD = 655.1 + 9.6× weigth + 1.8× height− 4.7× age (5.4)

where weight is in [kg], height in [cm] and age in [years] [Harris and Benedict, 1918].
Finally, the advised feeding rate (FR) [ml/h] can be calculated as FR = CD/CV from the calorie
value CV [kcal/ml] of the enteral or parenteral solution. Additionally, see Appendix A.2 on
page 80 for documentation of CV and nutrition type given to the SPRINT cohort.
The nutrition used in this study is an enteral formula named Diabetic Resource (Novartis Medical
Nutrition, Minneapolis, MN, USA), which was also used in earlier studies from which the under-
lying SPRINT patient data for the virtual patients in this study originates [Chase et al., 2008b]
[Chase et al., 2007] [Lonergan et al., 2006a] [Chase et al., 2008a] [Lonergan et al., 2006b]. Impor-
tantly it is also a low carbohydrate formula, where 34 % of the calories come from carbohydrates.

The design criteria for limiting the nutrition to 40-140 % of DI, is that there is no need for
excessive nutrition feeding, due to the cause of or exacerbating hyperglycaemia [Patino et al.,
1999]. The lower limit of 40 % of DI is set as the minimum possible calorie intake for patients
without increasing mortality [Krishnan et al., 2003].
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Figure 5.3: This figure illustrates the shape of the nutrition penalty function

Insulin penalty function

The insulin penalty shape is based on the saturation effect of insulin action on glucose uptake
[Rizza et al., 1981] [Katz et al., 1993]. The shape for the insulin penalty function is illustrated
in Figure 5.4 on the next page.
Saturation has effect when calculating the nonlinear fraction of maximal endogenous balance as
a function of the insulin infusion/absorption rate.
The calculation of the insulin penalty functions is presented in Equation 5.5 and 5.6:

Penalty(INS) = (
(I + Km)2

(Km)2
− 1)×KINS−Penalty (5.5)

where Km is the insulin saturation constant (value = 28 mU/L) [Andreassen et al., 2008] and
KINS−Penalty is a insulin penalty function fitting constant (value = 1/280).
Finally, I [mU/L] depends on the insulin bolus given [U/h] defined in Equation 5.6:

I = INS × C ×BM70 (5.6)

where INS is the insulin bolus from 0-6 U/h (presented as P (t) in Figure 4.3 on page 16), and
C is the default conversion factor (value = 98.1 [kg × min/L]) [Pielmeier et al., 2008] to convert
absorbed insulin to plasma insulin, and BM70 is a bodymass constant (value = 1/70 kg−1).
The system limits the insulin bolus range to 0-6 U/h, and to minimize saturation effects the
insulin penalty range is [0 0.13]. The constant KINS−Penalty in Equation 5.5 is thus a fitting
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constant, whose purpose is to weight the insulin penalty range against the two other penalty
functions.

Figure 5.4: This figure illustrates the shape of the insulin penalty function

Advice module optimizer

As seen on Figure 5.5 on page 60 the advice module optimizer uses all three penalty func-
tions (Penalty(INS), Penalty(NUT ) and Penalty(BG)), and forward simulates the model
(simulation(INS,NUT )) every intervention interval to choose the advice choice with the lowest
sum of penalty error (Advice = min(Total Penalty(INS,NUT))).

In the top of the figure an array of different combinations of given insulin (INS) and given
nutrition (NUT ) can be seen. The optimizer searches this grid of choices before every new in-
tervention advice is given to the virtual patient. The optimizer calculates the penalty for each
of 7 possible insulin combinations (0-6 U/h). Meanwhile, the nutrition to be given is calculated
for each possible combination over the range: 40, 60, 80, 100, 120, 140 % of DI. This search thus
results in 7 × 6 = 42 sets of possible interventions, and therefore 42 times where the optimizer
forward simulates how the blood glucose concentration will respond to each different set of in-
terventions.
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As seen on Figure 5.5 each field of the grid involves a simulation for 3 hours, using the same set
of interventions and SI for the three hour period. The result from this simulation is the set of
blood glucose concentrations: bg60, bg120 and bg180, which are the blood glucose concentrations
after 1,2 and 3 hours, respectively. As seen in Figure 5.5 each set of possible interventions include
the blood glucose penalty sum over 3 hours (Equation 5.7), achieved from the simulation:

BGsum = Penalty(bg60) + Penalty(bg120) + Penalty(bg180) (5.7)

At each field in the grid, having a set of insulin and nutrition, and the resulting development in
the calculated blood glucose concentration (bg60, bg120 and bg180), these values are used as inputs
to the penalty functions to find a penalty sum. The resulting advice is given after repeating this
method for each field in the grid (42 times), and yields the combination with the lowest sum of
penalties.

The functionality and success of the advice module controller depends on that there always
only is given one advice (Advice = min(Total Penalty(INS,NUT))), by meaning that the advice
module controller chooses only one minimum of sum of penalty.
The chance of the advice module optimizer chooses more than one advice is very little, especially
because of the amount of digits involved in each penalty functions calculations. Also, is the final
glycaemic validation involving all 20 virtual patients, described in Article 2, done successfully
with the risk of having two advices.
Conclusively, the risk of a advice module controller breakdown due to the calculation of an advice
results in more than one advice, is theoretical.
Even though, to ensure the glycaemic control systems stability on larger cohorts, a solution is
necessary, which is implemented into the advice module controller in form of two catches and
described in the following:

• Catch 1: In case of two or more global minimums in the calculation: (Advice = min(Total
Penalty(INS,NUT))), then choose the result which will give the smallest blood glucose
penalty BGsum for the blood glucose concentrations (bg60, bg120 and bg180).

• Catch 2: In case Catch 1 results in more than one solution, then choose the advice, which
will result in the lowest nutrition penalty.
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Figure 5.5: This figure illustrates how the advice module optimizer calculates all relevant combinations of nutri-
tion and insulin in a grid to choose the advice choice with the lowest sum of penalty. During each 3 hours penalty
simulation, the same SI estimated for that hour is used.

Design of virtual patient

All retrospective data and measurements are available in 1-2 hour intervals, and are thus rel-
atively dense. Ethics approval to use this data was obtained from the South Island Regional
Ethics Committee, New Zealand.

As seen in the left column in Figure 5.1 on page 54 this study’s concept of a virtual patient,
is the blood glucose response using the Glucosafe model for a model simulation. This virtual
patient simulation utilizes a previously generated SI profile, which original comes from 20 critical
care patients also used in an earlier study with a specific SPRINT cohort [Chase et al., 2007]
[Lonergan et al., 2006a] [Lonergan et al., 2006b], also see Appendix A.2 on page 80. The general
criteria for the Benchmark dataset is that the entry blood glucose concentration is higher than
8 mmol/L, and all 20 patients have been on SPRINT for at least 5 days [Chase et al., 2008a].
To imitate a blood glucose measurement on a real patient, noise is added to the virtual patients
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Patient Age APACHE Diagnosis Hospital Duration of stay Gender
number II stay (hours) on

score: SPRINT (hours)
1 75 17 Hypoxemic 1416 828 M
2 68 18 On pump 439 178 M
3 73 22 Perforation 391 310 M
4 68 19 Laparotomy 185 145 M
5 60 13 Chronic obstructive airways disease 254 205 F
6 70 31 Community acquired pneumonia 648 512 M
7 70 42 Obstruction 770 159 F
8 65 25 Septic shock 298 287 F
9 76 20 Acute abdominal aortic aneurysm 511 458 F
10 58 15 Hip replacement 142 139 F
11 49 30 Hypoglycaemia 302 297 M
12 73 16 Pancreatitis 156 150 M
13 20 15 Trauma 1178 971 M
14 74 23 Infarction/ischaemia 230 192 M
15 63 29 Ventilatory 770 323 F
16 49 14 Pancreatitis 929 923 M
17 45 16 Pancreatitis 653 524 M
18 72 16 Post op. 295 265 M
19 73 22 Orthopaedic 257 253 M
20 65 7 Community acquired pneumonia 149 140 F

Table 5.1: Patient data for the 20 SPRINT patients used to validate the advice module. None
of the involved patients have any type of diabetes

blood glucose response. The noise added is done as in Equation 5.8:

BGvirtual = BGsimulation + BGsimulation ×Normalµ,STD (5.8)

Where the BGsimulation is the virtual patients blood glucose response, in terms of a model sim-
ulation with a duration of 1 hour. BGsimulation is added normal distributed noise with a mean
value (µ) at 0 and a standard deviation (STD) at 0.10×BGsimulation.

The patient cohorts details used to the advice validation can be seen in Table 5.1.
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5.2 Validation 5

Written in the periode from Thursday the 10. May - 2. June 2008

In this section the advice module of the glycaemic control system is being validated. This section
only contains the preliminary validation of the system, meanwhile the final tests and statistics are
presented in Article 2: ’Development and Validation of a Decision Support System for Critically
Ill Patients utilizing the Glucosafe Glycaemic Control Model’.
This validations main focus is to test the advice module, hence, is this also a test of the entire
glycaemic glucose system, due to the results from this validation also reflects the Glucosafe model
(see dedicated test for this part starting in section 4.6 on page 39) and integral based parameter
estimation method (see section 4.5 on page 35 for dedicated test of this part).

The advice module preliminary validations included in Validation 5 covers the following:

• Validation of the glycaemic control systems ability to lower a patients blood glucose con-
centration [mmol/L], when the patients blood glucose concentration is hyperglycaemic (in
this test a starting blood glucose concentration at 26 mmol/L). Furthermore, this is also a
test of how long time it takes to achieve normoglycaemia (4.4-7.75 mmol/L).

• Validation of the glycaemic control systems ability to rise a patients blood glucose concen-
tration [mmol/L], when the patients blood glucose concentration is hypoglycaemic (below
2.2 mmol/L). Furthermore, this is also a test of how long time it takes to achieve normo-
glycaemia (4.4-7.75 mmol/L).

• Validation of the glycaemic control systems ability to keep at patients blood glucose con-
centration normoglycaemic (4.4-7.75 mmol/L) when the patients state of health is normal
with a insulin sensivity, SI equal to 1.

In Figure 5.6 the implementation of virtual patients can be seen. During a glycaemic control of
a given virtual patient, a predefined SI value is given to the virtual patient each hour, and noise
is added (like Equation 5.8 on the previous page) to the virtual patients blood glucose response,
to the current intervention, to imitate a clinical situation with measurement noise. In this study,
a normal distributed noise with a standard deviation of 10 % of the measured blood glucose
is used matching the glucometers used in the SPRINT study Chase et al. [2008b]. All listed
validation of the glycaemic control system are done using the same starting criteria: plasma
insulin concentration at 20 mU/L and a peripheral insulin concentration at 12 mU/L. In the
first two validations the virtual patient utilizes the underlying SI profile from Patient 1, listed
in Table 5.1.
For the two first preliminary validations included in this section Patient 1’s SI profile are loaded
into the virtual patient every hour to give the virtual patient a hour to hour changeable insulin
sensivity profile (SI,i). After having calculated SIestimated(i+1), the advice module, comes up
with the new set of intervention to the virtual patient in the following hour (Nutritioni+1 and
Insulini+1), see Figure 5.6.
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Figure 5.6: This figure illustrates the dynamics of the glycaemic control system working on a virtual patient
imitating a clinical scenario with blood glucose measurement noise
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Advice Module Validation for patient coming from hyperglycaemia

Figure 5.7 illustrates the result for a hyperglycaemic patient (in this case a starting blood glucose
concentration on 26 mmol/L) coming under glycaemic control. At hour 1 the first advice is
calculated to be used for the time interval between hour 1 and hour 2: 4 U/h insulin and 60 % of
DI nutrition is given to lower the blood glucose concentration [mmol/L]. At hour 4 the glycaemic
control system has achieved normoglycaemia for the patient (4.4-7.75 mmol/L).

Figure 5.7: This figure illustrates a hyperglycaemic patient coming on glycaemic control. The starting gut content
2 mmol/kg, which result in a decreasing absorption rate [mmol/kg/min] in the start because of the low nutrition
feeding rate. The given SI profile originates from Patient 1 described in Table 5.1
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Advice Module Validation for patient coming from hypoglycaemia

Figure 5.8 illustrates the result for a hypoglycaemic patient (the starting point for the blood
glucose concentration is 2.2 mmol/L) coming under glycaemic control. At hour 1 the first advice
is calculated to be used for the time interval between hour 1 and hour 2: 0 U/h insulin and 120
% of DI nutrition is given to rise the blood glucose concentration mmol/L. After two hours of
control, at hour 3, the glycaemic control system has achieved normoglycaemia for the patient
(4.4-7.75 mmol/L).

At hour 1 the glycaemic control system chooses to give the patient 120 % of DI instead of
140 % of DI, even though the patients is hypoglycaemic. The reason for this is that the absorp-
tion rate [mmol/kg/min] responds slowly, representing in that the difference in nutrition penalty
between 120 and 140 % of DI is bigger than the penalty difference of the two resulting blood
glucose concentrations (BGsum).
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Figure 5.8: This figure illustrates a hypoglycaemic patient coming on glycaemic control. The starting gut content
0.5 [mmol/kg], which result in a increasing absorption rate [mmol/kg/min] because of the high nutrition feeding
rate. The given SI profile originates from Patient 1 described in Table 5.1
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Advice Module Validation for healthy patient

Figure 5.9 illustrates the result for a healthy patient coming on glycaemic control. The aim of
this validation is to shown that the glycaemic control system can keep a patients blood glucose
concentration normoglycaemic (4.4-7.75 mmol/L) even though the patients insulin sensivity is
1, and therefore differs a lot from the cohort used in this study, see Table 5.1.
Like in the two previous validation the advice calculation begins at hour 1. The starting blood
glucose value in this validation is hyperglycaemic at 26 mmol/L, the goal is to keep and get the
patient inside the 4.4-7.75 mmol/L range.
Overall during this validation, the nutrition feeding rate was close to 100 % of DI.

Figure 5.9: This figure illustrates a healthy patient coming on glycaemic control. The starting gut content is 2
[mmol/kg]. The given SI profile is made up and set as a constant to imitate a healthy patient.
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Conclusion to advice module preliminary validations

Through all 3 validations the Glycaemic control system succeeded in getting the patient into the
normoglycaemic range (4.4-7.75 mmol/L), and keeping the patient there.
For the hyperglycaemic patient it took 4 hours, or 3 advice calculated interventions to achieve
normoglycaemia. For the hypoglycaemic patient it took 3 hours, or 2 advice calculated interven-
tions to achieve normoglycaemia. The validation with the healthy patient also proved that the
glycaemic control system can keep the patient normoglycaemic.

From these preliminary validations of the advice module, the glycaemic control system is ready
to be tested on a bigger scaled patient cohort, described in Table 5.1. The Validation of these
20 critical care patients are presented in Article 2: ’Development and Validation of a Decision
Support System for Critically Ill Patients utilizing the Glucosafe Glycaemic Control Model’.
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Chapter 6

Evaluation

6.1 Discussion

Written in the periode from Thursday the 25. May - 2. June 2008

In this section the full discussion of the project is presented by meaning that this discussion in-
cludes both the topics of the Model Prediction design and result and the final design and results of
the glycaemic control system. This discussion is consistent to both discussions in Article 1 and 2.

The Glucosafe model presented is physiologically defined and utilizes the concept of a remote
compartment for insulin transport to account for the delay between insulin secretion, or infusion,
and utilization.
The integral based fitting method proves effective in reducing a typically non-linear optimiza-
tion problem to a linear, rapidly solved convex optimization problem. Overall, the fitted model
matches all observed clinical dynamics, as seen in Table 4.7 in validation 3b and does so have
minimal error. These fitting results indicate that the model possesses all necessary mathematical
dynamics.
The low Model Prediction error of Table 4.7 (and presented in Article 1), as compared to the
Glucometers used at Christchurch Hospitals with 7-12 % measurement error [Hann et al., 2005],
helps to further justify this choice of approach.

The system prediction model estimates only one parameter SI . As a result, the endogenous
insulin production (EP ) is kept constant. However, this assumption only shifts the identified SI

value if examined in a parametric study. Fitting both parameters in this model is problematic,
as they are not uniquely identifiable without measured insulin data, which is rarely available in
critical care. An added argument for only using SI as a variable parameter is that little is known
about the kinetics of EP secretion, both in magnitude or variation over time, in the critically ill.

The parameters EP and SI are thus dependent and a change in EP therefore mostly scales
the SI profile by a given value over the patient. Figure 4.23 on page 51 shows how 2 different
values for EP and the same SI profile scales the predicted blood glucose values for Patient 6 (in
Model Prediction validation). The shifted dynamics for the three different cases are otherwise
close to the same. It also shows how EP and SI are dependent and trade off for Patient 6. As
EP increases, SI falls and vice versa, with similar dynamics in the SI profiles.
The Glucosafe model validated in this study has used a fixed EP at 27.77 mU/min. Due to
minimize the model Prediction error APE, different values of EP has been tested.

69



6.1. DISCUSSION 6. Evaluation

Figure 4.24 on page 52 illustrates the relationship between choice of EP and resulting overall
median APE for all 10 patients.
The overall median APE for model Prediction has been tested for choices of EP at 20, 27.77,
30, 35, 40 and 45 mU/min. The dots in Figure 4.24 on page 52 represents the Model Prediction
result for all 10 patients, and the best overall choice for EP to have, is a EP value at 27.77
mU/min. However, using a EP value at 27.77 mU/min may not be the optimum solution in
other situations, with a less critically ill patient cohort (higher SI).
In general, the 1-hour prediction validation errors are relatively low and consistent. The cumu-
lative distribution figure presented in Article 1 shows that 90 percent of the Model Prediction
results are below 25 % APE, and 60 percent are below 10 % APE. The same figure also shows an
error distribution that is clearly not normal. Hence, this study reports median and IQR values
to better represent the data than normal statistics.

The Glucosafe model used in this glycaemic control system presented, is physiologically de-
fined and utilizes the concept of a remote compartment for insulin transport to account for the
delay between insulin secretion, or infusion, and its utilization. A prior validation shows that
the fitted model matches all observed clinical dynamics [Lotz, 2007] [Pielmeier et al., 2008]. This
verifies the use of blood glucose response of virtual patients, who are constructed using the same
model added noise, to be the single scale of which the validation of the glycaemic control system
is tested against.

In terms of the design of the advice module in the glycaemic control system where the results
showed in section 5.2 on page 62 that there is a need to adjust the nutrition and insulin given,
to keep the patient inside the normoglycaemia range (4.4-7.75 mmol/L).
The results of glycaemic control validation (presented in Article 2), regarding the average nu-
trition rate, and the ability to keep the patients inside the range of normoglycaemia, are good
examined in isolation. However, more importantly, in combination the compromise between
nutrition given (87.17 % of DI), and the ability to keep patients normoglycaemic (87.73 % of
measurements), can be hard to achieve with this general ICU cohort.
The overall normal average calorie intake per day was 1250 kcal/day, and the overall average
given insulin was 2.2 U/h, which makes the results from this study comparable to other similar
studies - for example the SPRINT clinical implementation and evaluation study by Chase et
al. [Chase et al., 2008b], where the overall lognormal average calorie intake per day were 1283
kcal/day and overall average given insulin per hour were 2.8 U/hour.

In a later clinical scenarios, there are potential limitations in the advices of the glycaemic control.
Some hospitals use fixed nutrition feeding rates (fx. 100 % of DI), so that insulin [U/h] is the only
adjustable parameter ensure patients are kept normoglycaemic. Observing Table II in Article 2
it can be seen that most of the average feeding rates for all 20 patients are in the 80-100 range
[% of DI], depending on the patients average SI . Hence, without modulating nutritional inputs
many similar general ICU patients will have periods of hyperglycaemia where insulin alone may
not be fully effective.
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6.2 Conclusion

Written in the periode from Thursday the 25. May - 2. June 2008

In this section the conclusion of the full project is presented regarding the topics of the Model
Prediction design, results and the final design and results of the glycaemic control system. This
conclusion is consistent to both conclusions in Article 1 and 2.

This study examines and validates the Glucosafe glycaemic control model for critical care pa-
tients in simulation using retrospective clinical data. The model is also validated for its predictive
ability (also presented in Article 1). The Model Prediction utilizes an integral based parameter
estimation method for fitting the patient specific insulin sensivity SI . The goal is to ensure
prediction with minimal absolute percent error, and to assess the models potential clinical util-
ity. The Model Prediction validation and examination (Validation 3b) used retrospective clinical
data from glycaemically controlled critical care patients. The basic patient data for this cohort
are presented in Tables 4.3 and 4.4.

The overall mean and median absolute percent error for both Model Simulation and Model
Prediction are within measurement error.
Both results for Model Simulation validation (Validation 2) and Model Prediction validation
(Validation 3b) are considered acceptable for later use in control applications in a clinical setting
out to approximately 3 hour predictions levels, as seen in Validation 4. These results validate
using these models in proof of concept pilot clinical trials.
Furthermore, this study presents and validates a glycaemic control system, utilizing the Glucosafe
model Pielmeier et al. [2008] and an integral based parameter estimation method for fitting the
patient specific insulin sensivity SI [Hann et al., 2005] (also presented in Article 2). The goal
of the glycaemic control validation is to prove the glycaemic control systems ability to keep 20
virtual patients (produced by patientdata using retrospective clinical data (SPRINT)) inside the
range of normoglycaemia (4.4 - 7.75 mmol/L).

The overall median blood glucose concentration for all 20 patients in the glycaemic control
validation is 6.05 mmol/L, and the IQR is 5.54-6.62 mmol/L. The basic patient data for this co-
hort are presented in Table 5.1. The overall number of hypoglycaemic measurements per patient
is 0 (blood glucose measurements below 2.2 mmol/L). The overall mean percent of measurements
inside the normoglycaemic range (4.4-7.75 mmol/L) is 87.7 %.

Because of the low variation of average feeding given to the virtual patients, and that the
overall average feeding is very close to reach full calorie need, the glycaemic control system is
considered comparable to other similar studies [Chase et al., 2008b], and acceptable for later use
in control applications in a clinical setting using real patients.
The results presented in this study validates using the current version of the glycaemic control
system in proof of concept pilot clinical trials.
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6.3 Future work

Written in the periode from Thursday the 25. May - 2. June 2008

This section contains the aspects for future work of the results achieved during the period of
developing the glycaemic control system. This section can be read together with the full overview
of the decision support system described in section 4.1 on page 12.

The current state of the glycaemic control system is its ability to keep virtual patients blood
glucose concentration normoglycaemic (4.4-7.75 mmol/L). These virtual patients are build upon
real patient data (SPRINT) [Chase et al., 2008b] [Chase et al., 2008a]. The next step of devel-
oping of the glycaemic control system is to add a user friendly interface to medical staff at the
ICU, and by that make it a stand alone decision support system to help medical staff and real
critical ill patients, in terms of the nutrition feeding rate [ml/h] and given insulin [U/h] to these
patients.
The primary task of the decision support systems user interface should be to give insulin [U/h]
and nutrition [ml/h] advices to the medical staff, and to be the systems input user interface, from
where the decision support system can receive the latest measured blood glucose measurement
[mmol/L], of the patient under control, to update the model for continuing the glycaemic control.
It is intended for the decision support system to work together with the local medical staff, and
it should be possible for the staff to bypass the advice given from the system, and instead give
independent nutrition and insulin advices. when that happens, the medical staff should inform
the decision support system with the new intervention, so that the glycaemic control system can
be updated to continue as normal.
Furthermore, different intensive care units can have different treatment politics, in terms of the
interventions given to the critical ill patients under glycaemic control. Therefore, the advice
module optimizer shall have a build in functionality to work after the local rules of intervention:
fx. always feed at a 100 % of DI, different insulin and nutrition limitations ([% of DI] and [U/h]).
Finally, the decision support system’s imbedded physiological model, has to be upgraded to have
an adaptive patient specific post-hepatic endogenous insulin production (EP ) functionality, due
to improve the advice given for each patient under glycaemic control.
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Figure 6.1: This figure shows the step from going from a glycaemic control system working on virtual patients,
to be a decision support system working together with medical staff to optimize the treatment of real critical ill
patients. The top part illustrates the dynamics of the glycaemic control system working on a virtual patient
imitating a clinical scenario with blood glucose measurement noise, meanwhile the lower part gives an overview of
the involved hardware in the system and the actors that the system has to work with when the glycaemic control
system is developed to work as a decision support system.
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Appendix A

Blood glucose

Blood glucose concentration [mmol/L], is tightly regulated in the healthy non-diabetic human
body.
Normally, the blood glucose concentration is maintained between about 4.4 and 7.75 mmol/L
(70 to 150 mg/dL). The total amount of glucose in the circulating blood is therefore about 3.3
to 7 g, assuming an ordinary adult blood volume of 5 litres (glucose = 180 mol/g).
Glucose concentrations rise after meals and are usually lowest in the morning, before the first
meal of the day.
Failure to maintain blood glucose in the normal range leads to conditions of persistently high (hy-
perglycaemia) or low (hypoglycaemia) blood glucose concentration [Despopoulos and Silbernagl,
1991], [Martini, 2004].

Carbohydrate metabolism and Pancreatic hormones

To understand the kinetics of the regulation of the blood glucose concentration, it is necessary
to understand the origin of the different types of cells used for glucose regulation.
This is done by describing the pancreas. More specifically the pancreatic islets, where the
production of these hormones they excrete occurs.
The Pancreatic Islets produce four types of cells that excrete hormones [Martini, 2004]:

Alpha cells Produce the hormone glucagon, which raises the blood glucose concentration when
released, by increasing the rates of glucose released by the liver.

Beta cells Produce the hormone Insulin, which lowers the blood glucose concentration, by
activation the insulin dependent GLUT4 glucose transporter to rise the glucose absorption
in the peripheral uptake of glucose into sceletal and cardiac muscle, and adipose tissues.
The hepatic balance also is insulin dependent (GLUT2 - glucose bidirectional transport)
and more insulin therefore results in a increasing rate of glucose uptake in liver.
The production of C-peptide also takes place in the Beta cells. C-peptide is produced when
the present proinsulin is split into insulin and C-peptide. The split is done when proinsulin
is released from the pancreas into the blood in response to a rise in glucose - one C-peptide
for each insulin.

Delta cells Produces a peptide hormone, GHIH. When released, this hormone suppresses the
production of glycagon.

F cells Pancreatic polypeptide. It suppresses the pancreatic secretion and stimulates gastric
secretion
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A. Blood glucose A.1. HYPERGLYCAEMIA IN THE ICU PATIENT

The regulation of concentration of blood glucose primarily depends on insulin and glucagon.
Insulin is released in the pancreas when glucose concentrations exceed normal and is thus stim-
ulated during digestion, as carbohydrate reaches the bloodstream as glucose.
The glucose can also be removed by the kidney and liver, which also play a role in removing
insulin.

A.1 Hyperglycaemia in the ICU patient

Hyperglycaemia is typically defined as a blood glucose concentration above 7.75 mmol/L.
The early study from Van Den Berghe et al. suggest that hyperglycaemia is an overall factor for
mortality risk [Van den Berghe et al., 2001].

In contrast later studies from other researchers and Van Den Berghe et al. show a more varied
outcome as a consequence of having hyperglycaemia in the ICU. These studies point out that
the result also is cohort depended.

Age-adjusted mortality is twice that of patients without diabetes [Turina et al., 2006].

Patients who are not diabetic, but who present during acute illness with high blood glucose
concentration have a poorer prognosis than patients who are normoglycaemic. This outcome has
been observed in patients with myocardial infarction [Capes et al., 2000], heart failure [Barsheshet
et al., 2006], trauma [Capes et al., 2001], and patients with severe traumatic head injury [Jeremit-
sky et al., 2005]. Krinsley et al. (2003) retrospectively reviewed 1826 patients in the intensive
care unit, finding that mortality increases progressively as glucose increases, even when matched
for APACHE 2 severity of illness scoring [Knaus et al., 1985].
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A.2 Documentation of SPRINT dataset

Written in the periode from Thursday the 23. May - 2. June 2008

This appendix shortly describes the patient data used in the study. The patient data used to
the Model Prediction validation (3a and 3b) is different than the patient cohort used to validate
the full glycaemic control system (validation 5).

The patientdata used in this study originates from Christchurch Hospital, New Zealand, from
where the SPRINT studies have been performed Chase et al. [2007] Lonergan et al. [2006a] Lon-
ergan et al. [2006b]. All data and measurements are available in 1-2 hour intervals, and are thus
relatively dense. Ethics approval to use this data was obtained from the South Island Regional
Ethics Committee, New Zealand.
The full SPRINT patient dataset contains of 394 patients with various length of stay, but with
the same informations for each patient.
The information each SPRINT patient contains are presented in the following:

Age: The age of the patient in full years.

Gender: Man or woman.

Length of stay: presented in days. This is the length of stay at the hospital included the time
on SPRINT.

Outcome ICU: The state of health for the patient when leaving the ICU.

Outcome hospital: The state of health when leaving the hospital.

Apache II: The patients risk of mortality proportional to the Apache II score: the higher
Apache II score the lower risk to survive.

Principal diagnosis: The most important diagnosis given to the patient.

Associated diagnosis: Parallel diagnosis’ less important than the principal diagnosis, and/or
other diagnosis caused by the principal diagnosis.

Underlying diagnosis: The cause of the current state of health or diagnosis for the patient.
It could be an old diagnosis resulting in an other later developed diagnosis.

T.real: The time stamps for the real patients measured blood glucose.

G.real: The value of blood glucose measurements [mmol/L] at the time stamps of T.real.

T.insulin: The time stamps for the given insulin [U/h] to real patient during SPRINT.

Insulin: The bolus size of the given insulin [U/h] at time T.insulin to the real patient during
SPRINT.

T.Feed.rate: The time stamps for the given nutrition to the real patients during SPRINT.

Feed.rate: The feeding rate to the time stamps of which the nutrition [ml/h] is given to the
real SPRINT patients.

Feed.type: The nutrition type given to the real SPRINT patients at time TFeed.rate. The
different types of nutrition are presented in Table A.1.
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Nutrition type [kcal/ml] (CV ) glucose [g/ml] input method
Diabetic Resource 1.06 0.0872 Enteral

Glucerna 1 0.0812 Enteral
Jevity 1.5 0.202 Enteral

Osmolyte 1.2 0.158 Enteral
Peptinex 1 0.16 Enteral
Isosource 1.2 0.17 Enteral

Renal 2 0.2 Enteral
Novasource 2 0.2 Intravenous

Vivonex 1 0.21 Intravenous

Table A.1: This table presents the types of nutrition given to the real patients during SPRINT.
For approximately 90 % of all time stamps for all SPRINT patients the nutrition type given is
the enteral nutrition ’Diabetic Resource’, which also is the nutrition type used to give the virtual
patients in the virtual trials of the glycaemic control system presented in this report.

In the article Parameter Estimation and Prediction Validation for the Glucosafe Glycaemic Con-
trol Model ’ (Article 1), and in validation 1-4, the patient cohort used count the SPRINT patient
1-10. The basic patient details for these patients are presented in Table 4.3 and Table 4.4.
In the article’Development and Validation of a Decision Support System for Critical Ill Patients
utilizing the Glucosafe Glycaemic Control Model ’ (Article 2), and in validation 5, the patient co-
hort used counts the 20 SPRINT patient: 17,21,22,23,28,30,43,44,55,56,58,67,69,83,92,99,105,133,137
and 153. The basic patient details for these patients are presented in Table 5.1 as patient 1-20.
The same patient cohort are used in similar studies by Chase et al. [Chase et al., 2008a].

The SPRINT dataset does not include information about the patients height and weight. Because
of the need of these to patient constants in the study the following rule has been made:

If gender is male: Weight is set to 75 kg, and height is 175 cm.

If gender is female: Weight is set to 65 kg, and height is 165 cm.

The result for the Model Simulation validation presents with an overall mean APE at 0.45 %,
which justifies this choice of approach.
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A.3 DVD guide

Written in the 29. May 2008

This appendix shortly describers the material on the attached DVD in the bottom of this page.
When opening the DVD five folders can be seen with the names 1, 2, 3, 4 and 5.

1: This folder contains: rapport.pdf, pictures included as ’.jpg’ versions (I have given the files
the same name as in the report).

2: This folder contains: Article 1 old in pdf, pictures included as ’.jpg’ versions (I have given
the files the same name as in the Article 1 old).

3: Article 1 in pdf, pictures included as ’.jpg’ versions (I have given the files the same name as
in the Article 1)

4: Article 2 in pdf, pictures included as ’.jpg’ versions (I have given the files the same name as
in the Article 2)

5: The patient data of the two patient cohorts in two folders: Article 1 (10 patients from
SPRINT) and Article 2 (20 patients from SPRINT, Benchmark cohort). Patient data are
explained in Appendix A.2 on page 80
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Abstract

Background: Hyperglycaemia in critically ill patients increases the risk of complications and mortality. This

paper presents and validates a model for clinical glycemic control. The main application for this model and integral

based identification method presented is the real-time automated control of glucose levels in ICU patients and

similar medical decision support systems.

Methods: The Glucosafe glucose-insulin metabolic model is used to calculate the time-varying response of

blood glucose to interventions in terms of insulin and nutrition given to the patient. The model dynamics are

validated in their ability to fit retrospective data, as well as by prediction accuracy for a given intervention. Data

from 10 patients at Christchurch hospital on 1786 hours of data are utilized.

Results: The overall mean absolute procent error for the simulation validation fitting data is 4.35 %.

In 1 hour prediction mode, the mean absolute procent error is 10.31 %.

Conclusions: Both results for model dynamic validation and prediction validation are acceptable for later use

in control applications in a clinical setting.

Index Terms

Glucosafe, SPRINT, Glycemic control, Physiologic modelling, Blood glucose, Insulin Sensivity, Integral

Parameter Estimation, Intensive Care, Virtual Trials
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I. INTRODUCTION

Patients who are critically ill due to surgery, trauma or life-threatening illness can require vital organ

function support and prolonged intensive care [1]. Many of these patients present, even with no prior

diabetes, with stress induced hyperglycemia, suggesting overall insulin resistance due to the treatment

and/or their condition [1] [2] [3]. Insulin resistance and the resulting hyperglycemia may contribute to

micro- and macro-angiopathy, neuropathy and organ failure [3] [4]. A number of clinical studies have

shown a significant relationship between the mortality of patients and high blood sugar levels [5].

Tight glucose control has been shown to reduce mortality by 15-43 % [3] [6] [7] [8] [].

In critical care, lower glucose nutrition alone has seen significant reductions in average blood glucose

levels. [3], [9]. In some cases insulin alone may not be enough to reduce blood glucose to normal level.

As a result, exogenous nutritional inputs must be reduced under certain conditions, due to excessive

nutrition exacerbating hyperglycemia [9] [10]. More specifically, reduced glucose nutrition combined

with insulin administration can act to control both sides (input and removal) of the glucose balance [11]

[3]. Only a few studies have been made to control blood glucose in critical care using models. Most of

these efforts use only exogenous insulin for control [12] [13] [11] [14]. Later studies have combined the

insulin and nutrition paths to control [3] [11] [15] [16]. Overall tight regulation of blood glucose based

on the mentioned mathematical models of glucose metabolism has given promising results, indicating that

it is possible to achieve normoglycaemia.

Glucosafe is a new composite model that makes use of previous work in insulin and metabolic modelling

[17] [18] [19]. The system also utilizes a glucose transporter model, which calculates the glucose balance

for a given set of inputs and the gut absorption rate [20]. Hence it contains clinically validated insulin

kinetics and glucose insulin dynamics.

Model-based methods can be very accurate, but require the ability to identify patient specific parameters

in clinical realtime to update the model dynamics. A fast, accurate identification method is therefore also

important in the process of refining and testing a model. More importantly, a fast, accurate method also

enables application in real-time model-based control and medical decision support applications.

This paper presents a blood glucose prediction and control system using Glucosafe and an integral based
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parameter estimation method. The integral based approach turns a computotionally intense, non-linear and

non-convex optimization, into a fast, convex parameter identification.

The result enables faster, and potentially more accurate, predictions of patient specific parameters and

thus of a patient’s glycaemic response to intervention.

II. METHODS

A. Glucosafe glucose-insulin system model

The Glucosafe glucose-insulin metabolic model is used to calculate the time-varying response of blood

glucose for given insulin and nutrition inputs. The Glucosafe model itself uses fixed patient parameters

for the patient in any given time period, or interval. However, its parameters can be updated between sets

of measurements.

The blood glucose and insulin kinetics of the Glucosafe model are illustrated in Figure 1, and are defined

[19]:

dI

dt
= (−nK − nL) ∗ I(t)− nI

VP

∗ (I(t)−Q(t)) +
P (t) + U(t)

VP

(1)

dQ

dt
= −nC ∗Q(t) +

nI

VQ

∗ (I(t)−Q(t)) (2)

Equations 1 and 2 describe the change in plasma and peripheral insulin concentration, where nK is the

kidney clearance [1/min], nL the liver clearence [1/min], nC the irreversible loss of insulin in the periphery

[1/min] and nI is the transport rate between the plasma and peripheral compartments [L/min].

In this case, Ut is the endogenous insulin secretion rate, the insulin infusion rate, Pt, and the plasma blood

volume is VP . Finally, VQ, is the peripheral interstitial volume.

Changes in blood glucose level for any set of inputs are defined:

dG

dt
= Z(t)− E(G, A) (3)

where Z(t) is the sum of absorption from the nutrition input, and E(G,A) is the positive or negative

turnover of blood glucose to the liver, kidneys, fat cells and muscle cells, which are described in Equation
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Fig. 1. Glucosafe physiological overview, where exogenous insulin is assumed to be intravenous. In this figure CNS = central nerve system,
which together with the muscle cells, fat cells, liver and kidney results in a negative change in blood glucose (and a positive change in the
blood glucose if the level is very low). The enteral nutrition and glucose infusions result in a positive change in blood glucose.

4 respectively, as EL(G, A), EN(G), EH(G) and EM(G, A).

E(G, A) = EL(G, A)− EN(G)− EH(G)− EM(G, A) (4)

EL(G, A), EN(G), EH(G) and EM(G, A) are then defined [20]:

EL(G, A) = −0.46×G(t)− 1.475× A(t) + 1.34 (5)

EN(G) = 0.00367485714×G(t)2 − 0.06392476190×G(t) + 0.27765942857 (6)

EH(G) = 0.56× G(t)

G(t) + 1.5
(7)

EM(G, A) = 5.0868× A(t)× G(t)

G(t) + 5
(8)
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The size of EL(G, A) and EM(G, A) depends on the current level of blood glucose and active or available

insulin, A.

The active insulin, A, is calculated:

A(t) = SI ∗ f(Q(t)) (9)

where f(Q(t)) is the fractional effect of peripheral insulin, which together with the insulin sensivity

SI determines the active insulin level [20]. The brief system model definition in Equations 1-9 are all

clinically validated individually [20] [19].

The integral parameter estimation is implemented used the same method as Hann et al. [21]. In this case,

it is used to identify SI and all other values are held at population constants [20] [19]. By substituting

Equations 1-9 and separating the SI dependent parts from the rest, it is possible to isolate and calculate

SI every hour. The value of SI is assumed piecewise constant over the identification interval.

Figure 2 shows the flowchart for the identification process to find a patient specific SI profile over time

for a given set of patient data. The prediction mode uses this patient specific SI profile to test the models

predeiction ability. In prediction mode, the identified SI profile is used to simulate the patient, as a ’virtual

patient’ [15] [11] [22]. Every hour a new blood glucose measurement is available, a new SI value can

be identified for that preciding (hour) time interval. Using that hour to hour SI value and the known

interventions, the next blood glucose measurement can be predicted. Comparison of the clinical response

in the data to the model prediction can be used to validate the model’s predictive capability in a realistic

control scenario.

Hence, Figure 2 shows how the model of Equation 1-9 and the integral based parameter identification

can be used to provide two forms of model validation. First, is a fitting validation showing the model

can match the clinically observed dynamics (simulation mode). Second, and more difficult, is predictive

validation, showing it captures those dynamics in its patient-specific parameters well enough to enable

consistent, accurate prediction of the response to clinical intervention.

Finally, all other parameters except SI are held constant at population values based on the validation and

sensivity analyses presented previosly [19] [20] [21] [17] [18]. Hence, the value of SI found is relative to

these assumed values, many of which could not be identified in a clinical control situation without many
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extra glucose measurements per hour, as well as unavailable measurements of plasma and/or interstitial

insulin. The identification and validation presented is therefore directly relevant to the clinical control

scenario that Glucosafe will face [3].

Fig. 2. Flowchart over the workprocess for the different stages of validation of the system

B. SPRINT patient cohort

The patientdata used in this study comes from 10 patients in the SPRINT study [15] [22]. The basic

cohorts details can be seen in Tables I and II. All of the SPRINT patient data in 1-2 hour intervals are

thus relativly dense. Ethics approval to use this data was obtained from the South Island Regional Ethics

Committee, New Zealand.
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Patient Age APACHE II score: Diagnosis
1 77 22 Sepsis
2 67 33 Acute renal failure, infarction
3 42 11 Suicide attempt (non drug), respiratoty failure, smoke inhalation
4 44 21 Ventricular drain
5 79 31 infarction, cardiac catheter, hypoxic/ischaemic
6 44 23 Meningitis, ventricular drain
7 53 13 Aspiration, motor vehicle crash
8 53 18 Heavy obesity, Obstructive sleep apnoea
9 59 22 Donor

10 51 29 Acute renal failure, systemic

TABLE I
PATIENT DATA FOR THE 10 SPRINT PATIENTS USED IN THIS STUDY

Patient Length of stay in hospital (hours) Length of stay on SPRINT (hours) Gender Diabetes
1 580.8 312 Male No
2 458.4 162 Male No
3 408 253 Male No
4 223.2 207 Female No
5 55.2 39 Female No
6 280.8 161 Female No
7 861.6 17 Male No
8 477.6 182 Male No
9 99.6 93 Female No

10 520.8 360 Male No

TABLE II
LENGTH OF STAY AND FURTHER PATIENT DATA FOR THE 10 SPRINT PATIENTS USED IN THIS STUDY.

III. RESULTS

A. Model dynamic validation

Figures 3 and 4 illustrate the results for 2 close-to-average patient results from the study. Figure 5

illustrates the result for the poorest patient results in this part of the study. In all three figures, the integral

parameter estimation is used to identify and re-simulate a patient’s glucose data. Dots with error bars show

measured clinical data and the line is the identified model. The overall fits are qualitatively very good.

The second panel shows the SI profile. The fitted data error results for the model dynamic validation for

all 10 SPRINT patients are presented in Table III. Table III shows mean and median absolute percent

errors (APE’s) per patient over the cohort are 3.7-4.3 % and at least 90 % of measurements per patient

being less than 10 % APE.
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Fig. 3. Model dynamic validation of Patient 2. Error bars are the measured blood glucose. Panel two is the "true" SI identified in simulation
mode. The entire data set is fit as a whole.

Fig. 4. Model dynamic validation of Patient 3. Error bars are the measured blood glucose. Panel two is the "true" SI identified in simulation
mode. The entire data set is fit as a whole.
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Fig. 5. Model dynamic validation of Patient 9. Error bars are the measured blood glucose. Panel two is the "true" SI identified in simulation
mode. The entire data set is fit as a whole. The result for Patient 9 is the worst achieved result in the study.

SPRINT Number of Mean Median IQR 5-95% APE Percent of measurements
patient Predictions (APE) (APE) Range < 10% APE

1 234 11.58 9.51 [4.83 15.08] [0.58 29.50] 53.02
2 154 11.32 8.12 [3.46 17.69] [0.50 29.50] 54.61
3 170 18.12 14.31 [6.89 27.36] [0.56 41.93] 36.90
4 192 10.73 7.46 [3.37 13.93] [0.58 34.60] 60.00
5 32 15.35 13.02 [7.19 22.57] [0.71 38.73] 36.67
6 112 9.26 5.89 [2.56 11.97] [0.34 29.07] 71.81
7 12 14.65 13.73 [11.90 17.72] [6.76 18.20] 18.18
8 114 16.28 11.50 [5.83 19.78] [1.35 47.49] 40.18
9 83 15.81 12.50 [5.95 18.65] [1.25 44.41] 41.98

10 252 12.58 9.93 [4.43 17.58] [0.79 31.95] 50.4
Overall 1355 13.02 0.91 [4.74 17.78] [0.75 34.75] 50.78

TABLE III
RESULTS FOR THE MODEL DYNAMIC VALIDATION OF GLUCOSAFE OF ALL SPRINT PATIENTS IN THIS STUDY. ALL RESULT ARE SHOWN
IN PERCENT. THE OVERALL RESULT IS WEIGHTED BY THE AMOUNT OF DATA FOR EACH PATIENT. ABSOLUTE PERCENT ERROR (APE).

IQR = INTERQUARTILE RANGE.

B. Model prediction validation

Figures 6 and 7 illustrates the same 2 patients from Figures 3 and 4. In this case, SI is identified every

hour. Figure 8 illustrates the same patient in Figure 5. Figures 6, 7 and 8 therefore illustrate the realtime

prediction validation result where the identified SI value of every hour "j" is used to predict the blood
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glucose level at hour "j+1" for the known insulin and nutrition intervention at hour "j" that were given

under SPRINT.

The results for the model with prediction validation for all 10 SPRINT patients included in the study

is presented in Table IV. Figure 9 illustrates the distribution of the prediction results shown in Table

Fig. 6. Model with prediction validation for Patient 2. The Error range is set to 7 % of measured data, which is the lower end of
measurement error [15]

IV that clearly shows low median and higher mean resulting from a smaller numbers of relatively large

errors. Figure 10 illustrates the cumulative distribution of the absolute percent errors for each individual

SPRINT patient in this study. Figure 11 illustrates the total cumulative distribution of all prediction errors

over all for all SPRINT patients in this study.

IV. DISCUSSION

The Glucosafe model presented is physiologically defined and utilises the concept of a remote compart-

ment for insulin transport to account for the delay between insulin secretion, or infusion, and utilization.

The integral based fitting method proves effective in reducing a typically non-linear optimization problem

to a linear, rapidly solved convex optimization problem. Overall, the fitted model matches all observed

clinical dynamics, as seen in Figure 3-5 and Table III and does so have minimal error. These fitting results
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Fig. 7. Model with prediction validation for Patient 3. The Error range is set to 7 % of measured data.

Fig. 8. Model with prediction validation for Patient 9. The Error range is set to 7 % of measured data. The result for Patient 9 is the
worst achieved result in the study.
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SPRINT Number of Mean Median IQR 5-95% APE Percent of measurements
patient Predictions (APE) (APE) Range < 10% APE

1 234 11.58 9.51 [4.83 15.08] [0.58 29.50] 53.02
2 154 11.32 8.12 [3.46 17.69] [0.50 29.50] 54.61
3 170 18.12 14.31 [6.89 27.36] [0.56 41.93] 36.90
4 192 10.73 7.46 [3.37 13.93] [0.58 34.60] 60.00
5 32 15.35 13.02 [7.19 22.57] [0.71 38.73] 36.67
6 112 9.26 5.89 [2.56 11.97] [0.34 29.07] 71.81
7 12 14.65 13.73 [11.90 17.72] [6.76 18.20] 18.18
8 114 16.28 11.50 [5.83 19.78] [1.35 47.49] 40.18
9 83 15.81 12.50 [5.95 18.65] [1.25 44.41] 41.98

10 252 12.58 9.93 [4.43 17.58] [0.79 31.95] 50.4
Overall 1355 13.02 9.91 [4.74 17.78] [0.75 34.75] 50.78

TABLE IV
RESULTS FOR PREDICTION VALIDATION WITH INTEGRAL PARAMETER ESTIMATION OF ALL SPRINT PATIENTS IN THIS STUDY. ALL
RESULT ARE SHOWN IN PERCENT. THE OVERALL RESULT IS WEIGHTED BY THE AMOUNT OF DATA FOR EACH PATIENT. ABSOLUTE

PERCENT ERROR (APE). IQR = INTERQUARTILE RANGE

Fig. 9. Box and whiskers plot of the mean and median APE prediction error achieved over all patients

indicate that the model possesses all necessary mathematical dynamics.

More specifically, all fitted values for SI are within physiologically valid ranges reported in the literature

[21]. The system prediction model estimates only one parameter SI . As a result, the endogenous insulin

production (’EP’) is kept constant. However, this assumption only shifts the identified SI value if examined

in a parametric study. Fitting both parameters in this model is problematic, as they are not uniquely
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Fig. 10. This figure illustrates the empirical Cumulative Distribution prediction error for each individual SPRINT patient in the study. The
heavy/thick (red) line is the median Cumulative Distribution for all ten patients

Fig. 11. This figure illustrates the total empirical Cumulative Distribution prediction errors for all SPRINT patients included in the study
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identifiable without measured insulin data, which is rarely available in critical care. An added argument

for only using SI as a variable parameter is that little is known about the kinetics of EP secretion, both

in magnitude or variation over time, in the critically ill.

The parameters EP and SI are thus dependent and a change in EP therefore only scales the SI profile by

a given value over the patient. Figure 12 shows how 3 different values for EP and the same SI profile

scales the predicted blood glucose values for Patient 2. The shifted dynamics for the three different cases

are otherwise the same. Figure 13 shows more clearly how EP and SI are dependent and trade off. As

Fig. 12. This figure illustrates how 3 different EP values scales the blood glucose prediction result for Patient 2 by using the same SI

profile. The dots are blood glucose measurements. The top picture is when using an EP = 27.77/4 [mU/min], number two picture when using
an EP = 27.77/2 [mU/min] and number three picture when using an EP = 27.77 [mU/min]. The last picture shows the used SI profile for
producing the top three pictures

EP increases SI falls and vice versa, with very similar profiles. Note that the lower profiles in the button

picture in Figure 13 are slightly different than the top one (less variable) as they are nearer the lower

physiological limit of SI in the parameter identification. Therefore, holding EP constant at a physiological

value, as was done in this study, while identifying the potentially more dynamic and less known SI

variable has little effect on the outcome given their inter-dependence. The relatively low error prediction

results of Table IV, as compared to 8-10 % measurement errors, further validates this choice of approach.
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Fig. 13. This figure illustrates how the predicted blood glucose for Patient 2 is the same by using different dependent set of EP and SI

profiles. The top picture shows 3 predictions produced by using 3 different EP and SI profiles. The lower picture shows 3 different SI

profiles. The upper SI profile is produced by using a EP = 27.77/4 [mU/min], the middle SI profile is produced by using a EP = 27.77/2
[mU/min] and finally the lower SI profile is produced by using a EP = 27.77 [mU/min].

In general, the prediction errors are relatively low and consistent. Figure 10 shows that 90 percent are

below 25 percent APE, and 70 percent are below 10 percent APE. these values should be considered

relative to blood glucose measurement errors of 5-10 %. Figures 10 and 11 both show a clearly lognormal

error distribution result skewed to a lower mode. Hence, this study reports median and IQR values to

better represent the data than normal statistics. Large errors (more than 20 percent APE) all occur where

sudden patient changes occur. These sudden changes are typically unpredictable, and therefore these errors

are typically unavoidable.

If the system should be implemented in a hospital, it is also necessary to know if it could work in

less acute settings with less staff than a typical critical care unit. To this end, Figure 14 shows the RMS

of the relative logarithmic error for the entire cohort for predictions out to 10 hours forward. By 2 hours

predictions the APE exceeds 15 % and >25 % for 5 hours. These larger errors indicate the difficulty of

long term prediciton in a dynamic cohort.
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Fig. 14. This figure illustrates the systems ability to predict over a period up to ten hours for the close-to-average Patient 2 in the study.
The result for this ability is validated using the unit Root Mean Square of the Relative Logarithmic Error.

V. CONCLUSION

This study examines and validates the dynamics of the Glucosafe glycemic control model in simulation

using retrospective clinical data. The model is also validated for its predictive ability. The prediction mode

utilizes an integral based parameter estimation method for fitting the patient specific insulin sensivity SI .

The goal is to ensure prediction with minimal absolute percent error, and to assess the models potential

clinical utility.

This validation and examination has used retrospective data from SPRINT patients.

The overall mean and median absolute percent error for both fitting and prediction are at or within

measurement error. The log-normal distributions ensure most predictions are relatively low. Both results

for model dynamic validation and prediction validation are considered acceptable for later use in control

applications in a clinical setting.
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Abstract

Background: Hyperglycaemia is prevalent in critically ill patients, and increases the mortality. This paper

validates a physiologically based model for clinical glycaemic control (Glycosafe), and an associated integral

based parameter identification, using a dataset of a critical care patient cohort. The intended application for this

model and the associated parameter identification method is the real-time automated control of glucose levels in

critically ill patients.

Methods: The Glucosafe glucose-insulin metabolic model is used to calculate a patient’s time-varying response

of blood glucose to insulin and nutrition interventions. Time varying insulin sensivity, SI , is determined between

measurements using an integral-based method. The model dynamics are validated by their ability to fit retrospective

clinical data and their ability to predict blood glucose one hour ahead for the given intervention. Clinical data from

10 critical care patients at Christchurch Hospital (New Zealand), covering 1786 hours of data are utilized (SPRINT).

Results: The overall mean absolute percent error, APE, of simulated versus measured blood glucose when

fitting the model is 0.5 % (IQR: [0.10 0.51] and the percent of measurements < 10% APE: 100 %). For 1 hour

prediction validation, the mean APE is 11 % (IQR: [4.0 13.9] and the percent of measurements < 10% APE: 60.9

%).

Conclusions: The results for both model dynamic validation and the clinically important prediction validation

are acceptable for later use in clinical pilot trials.

Index Terms
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I. INTRODUCTION

Patients who are critically ill due to surgery, trauma or life-threatening illness may require vital organ

function support and prolonged intensive care [1]. Many of these patients present with stress induced

hyperglycaemia, suggesting overall insulin resistance due to the treatment and/or their condition [2] [3]

[4] [5] [6]. Insulin resistance and the resulting hyperglycaemia may contribute to micro- and macro-

angiopathy, neuropathy and organ failure [3] [7]. A number of clinical studies have shown a significant

relationship between the mortality of patients and high blood sugar levels [8], and tight glucose control

has been shown to reduce mortality by 34 % [3] and by 29 % [9], as reviewed in [7] [10] [11].

In critical care, reduced glucose nutrition alone can significantly reduce average blood glucose [12].

Additionally, in some cases, insulin alone may not be enough to reduce blood glucose to normal levels

[7].

As a result, exogenous nutritional inputs may need to be reduced under certain conditions, due to ex-

cessive nutrition exacerbating hyperglycaemia [12] [13] [14]. More specifically, reduced glucose nutrition

combined with insulin administration can act to control both sides (input and removal) of the glucose

balance [7] [15]. To achieve tight model-based control, on critically ill patients, some studies have used

insulin alone [16] [17]. Later studies combined the insulin and nutrition paths to control [15] [18] [19].

Overall, tight regulation of blood glucose based on mathematical models of glucose metabolism has given

promising results, indicating that it is possible to safely achieve a level of normoglycaemia in many, if

not all, critical care patients.

Glucosafe is a composite model, consisting of the metabolic and insulin models presented by Pielmeier et

al. [20]. It makes use of previous research and models in insulin and metabolic modelling [21] [22] [23]

[24]. The system utilizes a glucose transporter model, which calculates the glucose balance for a given

set of inputs and the gut absorption rate [24]. Hence, it combines clinically validated insulin kinetics and

glucose-insulin dynamics into a new composite model [25].

Model-based methods can be very accurate, but require the ability to identify patient specific parameters
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in clinical realtime to update the model dynamics. A fast, accurate identification method is therefore also

important in the process of refining and testing this type of model. More importantly, using a fast, accurate

method, enables real-time application of model-based control and medical decision support applications.

A nonlinear least squares parameter identification method was used previously for model validation [25].

That method has the disadvantage of being computationally demanding.

This paper presents a blood glucose prediction and control system using a combination of the Glu-

cosafe model [20], and an integral based parameter estimation method [26]. The integral based approach

turns a computationally demanding, non-linear and non-convex optimization problem, into a fast, convex

parameter identification. The result enables faster, and potentially more accurate, predictions of patient

specific parameters and thus of a patient’s glycaemic response to intervention.

II. METHODS

A. Glucosafe glucose-insulin system model

The Glucosafe glucose-insulin metabolic model is used to calculate the time-varying response of blood

glucose for given insulin and nutrition inputs [25]. The insulin kinetics of the Glucosafe model are

illustrated in Figure 1, and are defined [22] [23] [25]:

dI

dt
= (−nK − nL) ∗ I(t) − nI

VP

∗ (I(t) − Q(t)) +
P (t) + EP (t)

VP

(1)

dQ

dt
= −nC ∗ Q(t) +

nI

VQ

∗ (I(t) − Q(t)) (2)

Equations 1 and 2 describe the change in plasma and peripheral insulin concentration. The parameter nK

is the kidney clearance [min−1], nI is the transport rate between the plasma and peripheral compartments

[L/min], VP is the plasma volume [L] and VQ is the peripheral interstitial volume [L], which all are

functions of basic patient parameters used to determine population values for distribution volumes. nL

the liver clearance [min−1] and nC is the irreversible loss of insulin in the periphery [min−1] [20]. The

Glucosafe model itself uses the patient’s gender, age, height, weight and diabetic state to determine patient

specific parameters nK , nL, nC , nI , VP and VQ [20] [27], which are set as static for the patient in any

specific given time period, or interval. EP (t) is the post-hepatic endogenous insulin secretion rate (which

in Glucosafe is set as a constant at 27.77 mU/min) and P (t) is the insulin infusion rate [mU/min].
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Fig. 1. Glucosafe physiological overview, where exogenous insulin is assumed to be intravenous. The change in blood glucose, BG is a
result of the sum of absorption, Z (positive change in BG). EHepatic causes er positive change in BG if the current BG concentration is
under 12 mmol/L. EKidney , EMuscle/Fat and ECNS all causes a negative change in the BG concentration. In this figure CNS = central
nervous system. The change in BG is calculated in Equations 3

Pharmacodynamic changes in blood glucose concentration, due to endogenous and exogenous inputs

of insulin and nutrition are illustrated in Figure 1 and are defined [24] [25]:

dG

dt
= (Z(t) + EHepatic(G, A) − EKidney(G, BSA) − ECNS(G) − EMuscle/Fat(G, A)) × (BM/GV ) (3)

where Z(t) is the sum of absorption from the nutrition input [mmol/(kg × min)], EHepatic(G, A),

EKidney(G, BSA), ECNS(G) and EMuscle/Fat(G, A) (all [mmol/(kg × min)]) are the turnover of blood

glucose to the liver, kidneys, fat cells and muscle cells, respectively. BSA is the patient’s body surface

area [m2] and is used to calculate the renal glucose clearance, described in Equation 5. The mass-volumen

quotient BM/GV [kg/L], which is the bodymass (BM) divided by the glucose distribution volume (GV),

can be calculated by knowing the patient’s weight [20]. The glucose distribution volume is defined to be

0.19 [(L/kg)·BM] [20]. The constants in Equations 4, 6 and 7 are explained in Table I, where A is the
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Name of constant Value
Hepatic1 0.46 L/(kg·min)
Hepatic2 1.475 mmol/(kg·min)
Hepatic3 1.34 mmol/(kg·min)
CNS1 0.56 mmol/(kg·min)
CNS2 1.5 mmol/l

Muscle/Fat1 5.09 mmol/(kg·min)
Muscle/Fat2 5 mmol/l

TABLE I
LIST OF THE FITTING CONSTANTS USED IN EQUATIONS 4, 6 AND 7.

active insulin.

EHepatic(G, A), EKidney(G, BSA), ECNS(G) and EMuscle/Fat(G, A) are defined [24]:

EHepatic(G, A) = −Hepatic1 × G(t) − Hepatic2 × A(t) + Hepatic3 (4)

EKidney(G, BSA) = SMOOTH(max(0, GFR(BSA) × G(t) − Tmax)) (5)

The renal reabsorption saturates at a blood glucose concentration exceeds 10-15 mmol/L. The maximal

reabsorption rate Tmax is 120 mmol/h [28]. The glomerular filtration rate GFR is 7.2 L/h per 1.73 m2

body surface area. The function SMOOTH() is a function that calculates a 7 mmol/L wide moving

average.

ECNS(G) = CNS1 ×
G(t)

G(t) + CNS2

(6)

EMuscle/Fat(G, A) = Muscle/Fat1 × A(t) × G(t)

G(t) + Muscle/Fat2
(7)

The magnitude of EHepatic(G, A) and EMuscle/Fat(G, A) depends on the current concentration of blood

glucose and active or available insulin, A. The active insulin, A, is calculated [25]:

A(t) = SI ∗ f(Q(t)) (8)

where f(Q(t)) is the fractional pharmacodynamic effect of peripheral insulin (Q(t) [mU/L]). In this model,

insulin sensitivity scales the pharmacodynamic insulin effect and determines the active insulin level [25]

(modification from Arleth et. al. [24]). The model definitions in Equations 1-8 are all clinically validated

individually [22] [23] [24].
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Integral based parameter estimation is implemented using the same method as Hann et al. [26]. In this

case, it is used to identify SI and all other values are held at population constants [22] [23] [24] [25].

While details are presented elsewhere, in short, integrating and substituting Equations 1-8, and separating

SI dependent parts makes it possible to determine a time-varying SI profile in one solution. The value

of SI is assumed piecewise constant over the identification interval [26]. The length of the identification

interval in this study is 1 hour.

Figure 2 shows the flowchart for the identification process to find a patient specific SI (= SI1,...,SIi,...,SIN )

profile over time for a given set of patient data (glucose measurements BGi and insulin and nutrition

interventions, IV).

When a new blood glucose measurement BGi becomes available at time ti a new value SIi can be

identified from the measurements BGi−1 and BGi.

In the Model Simulation mode, Glucosafe can use SIi to simulate BGi, using BGi−1 as the initial value

for the simulation:

BGGS
i = GS(BGi−1, SIi; IV )

A close match between BGGS
i and BGi will confirm that the identified patient profile SI actually describes

the dynamics of the patient’s metabolic state.

In the Model Prediction mode, SIi is used to simulate the next measurement, BGi+1, using BGi as the

initial value for the simulation:

BGBG
i+1 = GS(BGi, SIi; IV )

A close match between BGBG
i+1 and BGi+1 shows that the identification of SI can provide an accurate

prediction of the response to clinical intervention.

All other parameters except SI are held constant at population values. Hence, the value of SI found at any

point in time is dependent to these assumed values, many of which could not be identified in a realistic

clinical control situation without excessively frequent glucose measurements, as well as unavailable real-

time measurements of plasma and/or interstitial insulin. The identification and validation approaches and
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methods presented are therefore directly relevant to the clinical control scenario that Glucosafe eventually

will face [7].

Fig. 2. Flowchart over the work process for the different stages of validation of the system. Model simulation validation (left path) and
model prediction validation (right path). GS is short for Glycosafe, and IV is short for intervention (given nutrition and insulin). Glycosafe
calculates the blood glucose BGGS

i starting from the measured BGm
i−1. IVi−2 is the intervention given from i− 2 to i− 1. There is 1 hour

between i− 2 and i− 1.

The results are presented in term of the absolute percent error, APE, of blood glucose calculated as:

APEi =
|BGGS

i − BGi|
BGi

(9)
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Patient Age APACHE II score: Diagnosis
1 77 22 Sepsis
2 67 33 Acute renal failure, infarction
3 42 11 Respiratory failure, smoke inhalation
4 44 21 Ventricular drain
5 79 31 infarction, cardiac catheter, hypoxic/ischaemic
6 44 23 Meningitis, ventricular drain
7 53 13 Aspiration, motor vehicle crash
8 53 18 Heavy obesity, Obstructive sleep apnoea
9 59 22 Donor
10 51 29 Acute renal failure, systemic

Patient Length of stay Length of stay Gender
in hospital (hours) on SPRINT (hours)

1 580.8 312 M
2 458.4 162 M
3 408 253 M
4 223.2 207 F
5 55.2 39 F
6 280.8 161 F
7 861.6 17 M
8 477.6 182 M
9 99.6 93 F
10 520.8 360 M

TABLE II
PATIENT DATA FOR THE 10 SPRINT PATIENTS USED IN THIS STUDY. NONE OF THE INVOLVED PATIENTS HAVE TYPE I OR TYPE II

DIABETES

Where BGGS
i is the calculated blood glucose concentration at time i, and BGi is the measured blood

glucose concentration at time i.

B. SPRINT patient cohort

The patient data used in this study comes from 10 critical care patients in the SPRINT study [18] [19]

[29]. The SPRINT patient cohorts details can be seen in Table II. All data and measurements are available

in 1-2 hour intervals, and are thus relatively dense. Ethics approval to use this data was obtained from

the South Island Regional Ethics Committee, New Zealand.

III. RESULTS

A. Model Simulation validation

Figure 3 illustrate the result for Model Simulation validation of the close-to-average Patient 6. The

known nutrition and injected insulin interventions are shown over 10 hours to illustrate the dynamics
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SPRINT Number of Mean Median IQR 5-95% Percent APEi

patient simulations Range < 10%
1 234 0.50 0.18 [0.07 0.45] [0.01 1.32] 100
2 154 0.34 0.23 [0.08 0.46] [0.01 1.07] 100
3 170 0.56 0.38 [0.18 0.69] [0.02 1.62] 100
4 192 0.49 0.29 [0.14 0.57] [0.02 1.59] 100
5 32 0.72 0.51 [0.18 0.98] [0.05 2.72] 100
6 112 0.53 0.30 [0.12 0.64] [0.03 2.17] 100
7 12 0.84 0.29 [0.12 0.63] [0.02 2.61] 100
8 114 0.60 0.23 [0.12 0.55] [0.03 1.65] 100
9 83 0.51 0.35 [0.16 0.55] [0.05 1.71] 100

10 252 0.34 0.20 [0.07 0.42] [0.02 1.05] 100
Overall 1355 0.45 0.24 [0.10 0.51] [0.01 1.33] 100

TABLE III
ABSOLUTE PERCENT ERROR (APE) FOR THE MODEL SIMULATION VALIDATION OF GLUCOSAFE OF ALL SPRINT PATIENTS IN THIS

STUDY. ALL RESULT ARE SHOWN IN PERCENT. THE OVERALL RESULT IS WEIGHTED BY THE AMOUNT OF DATA FOR EACH PATIENT. IQR
= INTERQUARTILE RANGE.

between interventions and changes in the patients glucose level and plasma/peripheral insulin concentra-

tion. In the figure, the integral parameter estimation method is used to identify SI from two consecutively

blood glucose measurements as described in Figure 2. For example, the value of SI = 0.17 plotted in the

interval from hour 21 to hour 22 is determined from the measurements taken at 21 and 22 hours. The

blood glucose measured at 21 hours is used as the starting value, and then the simulation is performed

using the value of SI = 0.17 for the interval between 21 and 22 hours. The APE, for that interval is

calculated from comparing the simulated and the measured blood glucose at hour 22 (see Figure 3).

The APE result for the Model Simulation validation for all 10 SPRINT patients are presented in Table

III. Table III shows mean and median APE’s per patient over the cohort are 0.45 and 0.24 % and 100 %

of measurements per patient have less than 10 % APE.

B. Model Prediction validation

Figure 4 shows (panel 1) the Model Prediction validation of the total data set for Patient 6. Figure 4

therefore illustrates the realtime Model Prediction validation result, where the SI,i identified from BGi−1

and BGi is used to predict the blood glucose level at time i + 1 (BGGS
i+1), using the known insulin and

nutrition interventions IV .

Quantitatively, the results for the Model Prediction validation for all 10 SPRINT patients included in
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Fig. 3. Model Simulation validation for Patient 6. The figure illustrates 10 hours, in the period 20-30 hours, from the total simulation
period of 161 hours.

the study is presented in Table IV. Figure 5 illustrates the distribution of the Model Prediction validation

results shown in Table IV. Median errors (8.0 %) are lower than mean errors (10.8 %) due to a small

number of relatively large errors. Figure 6 illustrates the cumulative distribution of the APE results for

each individual SPRINT patient in this study, covering all 1355 1-hour predictions made.

C. The endogenous insulin production

The Glucosafe model validated in this study has used a fixed EP at 27.77 mU/min. Due to minimize

the model Prediction error APE, different values of EP has been tested.
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Fig. 4. Model Prediction validation for Patient 6. Panel 1 shows Patient 6 blood glucose, where the dots are the measured blood glucose
and the line is the blood glucose predicted by the model. Panel 2 shows the plasma and peripheral insulin concentration, panel 3 and 4 the
nutrition and insulin and panel 5 shows Patient’s 6 insulin sensivity profile SI .

Figure 7 illustrates that the parameters EP and SI are interdependent in the model as it is defined. A

change in EP therefore changes the patient’s SI profile over the patient.

It also shows how EP and SI are dependent and trade off for Patient 6. As EP increases SI falls and vice

versa, with similar dynamics in the SI profiles.

Figure 8 illustrates the relationship between choice of EP and resulting overall median APE for all 10
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SPRINT Number of Mean Median IQR 5-95% APE Percent of predictions
patient Predictions (APE) (APE) Range with < 10% APE

1 234 9.7 7.1 [3.6 13.0] [1.6 25.7] 66.5
2 154 9.9 7.5 [3.9 13.4] [1.5 25.3] 61.8
3 170 12.3 10.6 [3.9 18.6] [1.5 30.6] 48.1
4 192 11.2 7.9 [3.7 12.1] [1.7 32.2] 62.8
5 32 14.8 14.3 [6.5 20.4] [2.3 35.8] 33.3
6 112 9.1 6.1 [3.2 12.5] [0.8 32.6] 69.7
7 12 13.4 8.5 [3.8 15.1] [2.4 30.9] 54.5
8 114 11.2 7.1 [4.5 12.6] [0.6 37.3] 63.6
9 83 16.4 12.3 [7.0 19.6] [1.6 36.8] 41.0

10 252 9.3 6.3 [3.4 11.8] [0.8 24.5] 67.3
Overall 1355 10.8 8.0 [4.0 13.9] [1.2 29.5] 60.9

TABLE IV
RESULTS FOR MODEL PREDICTION VALIDATION WITH INTEGRAL PARAMETER ESTIMATION OF ALL SPRINT PATIENTS IN THIS STUDY.
ALL RESULT ARE SHOWN IN PERCENT. THE OVERALL RESULT IS WEIGHTED BY THE AMOUNT OF DATA FOR EACH PATIENT. ABSOLUTE

PERCENT ERROR (APE). IQR = INTERQUARTILE RANGE

Fig. 5. Box and whiskers plot (the smallest observation, lower quartile„ median, upper quartile, and largest observation). The figure is
produced from the Model Prediction validation of the two observations: mean and median APE prediction errors for each 10 patients. The
difference is due to a few large errors.

patients. The overall median APE for model Prediction has been testet for choices of EP at 20, 27.77, 30,
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Fig. 6. This figure illustrates the cumulative distribution prediction APE of the Model Prediction Validation for each individual SPRINT
patient in the study. The thick line is the cumulative distribution APE for all ten patients

35, 40 and 45 mU/min. The dots in Figure 8 represents the Model Prediction result for all 10 patients,

and the best overall choice for EP to have, is a EP value at 27.77 mU/min. However, using a EP value

at 27.77 mU/min may not be the optimum solution in other situations, with a lesser critically ill patient

cohort (higher SI).

IV. DISCUSSION

The Glucosafe model presented is physiologically defined and utilizes the concept of a remote com-

partment for insulin transport to account for the delay between insulin secretion, or infusion, and its

utilization.

Overall, the fitted model matches all observed clinical dynamics, as seen in Figure 4 and Table IV. These

fitting results indicate that the model possesses all necessary mathematical dynamics seen in clinical data.

More specifically, all fitted values for SI are within physiologically valid ranges reported in the literature

[26]. Only one parameter, SI , is estimated, meanwhile the endogenous insulin production (EP), which is
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Fig. 7. This figure illustrates how the predicted blood glucose for Patient 6 is effectively the same by using different dependent set of EP
and SI profiles. The top picture shows 2 predictions produced by using 2 different EP and SI profiles. The lower picture shows 2 different
SI profiles. The upper SI profile is produced by using a EP = 27.77 mU/min and the lower SI profile is produced by using a EP = 45
mU/min. The prediction lines in the top panel are close to be the same that they are not labelled. This figure is produced by 1 hour prediction
only.

likely patient specific and potentially variable, is kept constant. Fitting both parameters in this model is

problematic, as they are not uniquely identifiable from two blood glucose measurements without measured

insulin data, which is rarely available in critical care.

The low Model Prediction error of Table IV, as compared to the Glucometers used at Christchurch

Hospitals with 7-12 % measurement error [26], helps to further justify this choice of approach.
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Fig. 8. This figure illustrates the overall median error (APE) for all 10 patients used in this study using a different value of EP.

In general, the 1-hour prediction validation errors are relatively low and consistent. Figure 6 shows that

90 percent are below 25 % APE, and 60 percent are below 10 % APE. Figure 6 also shows an error

distribution that is clearly not normal. Hence, this study reports median and IQR values to better represent

the data than normal statistics.

V. CONCLUSION

This study examines and validates the Glucosafe glycaemic control model for critical care patients in

simulation using retrospective clinical data. The model is also validated for its predictive ability. The

prediction mode utilizes an integral based parameter estimation method for fitting the patient specific

insulin sensivity SI . The goal is to ensure prediction with minimal absolute percent error, and to assess
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the models potential clinical utility. This validation and examination used retrospective clinical data from

glycaemically controlled critical care patients.

The overall mean and median absolute percent error for both fitting and prediction are at or within

measurement error. The log-normal distributions ensure most predictions are relatively low. Both results

for model dynamic validation and prediction validation are considered acceptable for later use in control

applications in a clinical setting out to approximately 3 hour predictions levels. These results validate

using these models in proof of concept pilot clinical trials.
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Abstract

Background: Hyperglycaemia is prevalent in critically ill patients and can increase mortality. This paper presents

and validates a glycaemic control system using a physiologically based metabolic control model (Glucosafe) and

an associated integral based parameter identification method. The intended application for this glycaemic control

system, and the associated model and parameter identification method is glycaemic control of critically ill patients.

Methods: The glycaemic control system uses the Glucosafe glucose-insulin metabolic model. Time varying

insulin sensivity, SI , is determined between measurements using an integral-based method. The glycaemic control

system is validated by its ability to keep patients in a normoglycaemic range (4.4-7.75 mmol/L). Clinical control

interventions are determined by optimization over a series of penalty functions. The system is validated against

20 virtual patients by using patient specific insulin sensivity profiles based on clinical data from 20 critical care

patients at Christchurch Hospital (New Zealand).

Results: The overall median blood glucose concentration for all 20 patients is 6.05 mmol/L, and the IQR is 5.54-

6.62 mmol/L. The overall number of hypoglycaemic measurements per patient is 0 (blood glucose measurements

below 2.2 mmol/L). The overall mean percent of measurements inside the normoglycaemic range (4.4-7.75 mmol/L)

is 87.7 %.

Conclusions: The results for the glycaemic control validation presented are comparable to other similar studies

by Chase et al. (2008) and are acceptable for later use in clinical pilot trials.

Index Terms
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I. INTRODUCTION

Critically ill patients can, over long-term intensive care, often require significant help to maintain and

support vital body functions [1].

Many critically ill patients have hyperglycaemia, due to stress of their condition, which results from

significant stress induced insulin resistance [2] [3] [4] [5] [6]. Insulin resistance and the resulting hyper-

glycaemia may contribute to a higher mortality rate because of multiple-organ failure with sepsis [3] [7].

Several clinical studies have investigated and demonstrated that there is a significant correlation between

the mortality of critically ill patients and high blood glucose concentrations [8]. Tight control of blood

glucose values between 6.1-7.75 mmol/L, has been shown to reduce mortality by 15-43 % [3] [9] [10],

as reviewed in [7] [11].

Most studies have only used insulin to reduce blood glucose [3] [9] [11]. Another, recent study modulated

both insulin and nutrition to maintain a tight control of blood glucose, and thus reduced mortality [10].

In fact, lower nutrition alone has shown to result in significant reductions in average blood glucose

concentrations [12], [13]. Thus, avoiding excessive nutrition, can help to avoid or reduce hyperglycaemia

[13].

Two important results can therefore be drawn from these studies. First, tighter control with lower glycaemic

limits appears to offer increased benefit in terms of reduced mortality and reductions in other measurable

negative clinical outcomes. Second, the degree of critical illness is generally correlated to observed

hyperglycaemia and lowered insulin sensivity [8] [14], which will result in a decreased ability to reduce

blood glucose with insulin alone for more critically ill cohorts. Hence, reduced glucose nutrition combined

with insulin administration can act to control both sides (input and removal) of the glucose balance [10]

[15] [16] [17].

Only a few studies have controlled blood glucose in critical care patients using models [18], [19], [20],

[21]. This area was reviewed in [7].
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Glucosafe is a composite metabolic and insulin system model presented by Pielmeier et al. [22]. It makes

use of previous models of insulin and metabolism [23] [24] [25] [26]. The glycaemic model presented

utilizes a glucose transporter model, which calculates the glucose balance for a given set of inputs and

the gut absorption rate [26]. Hence, it combines clinically validated insulin kinetics and glucose-insulin

dynamics into a new overall system model.

This paper presents and validates a glycaemic control system using a combination of Glucosafe [27]

and an integral based parameter estimation method [28]. Finally, the glycaemic control system uses an

optimizer utilizing penalty functions for nutrition and insulin, presented in this study, and a penalty function

for blood glucose, whose shape was defined in earlier studies [29]. The validation of the glycaemic control

system is performed using virtual patients, created from identified patient specific parameters during model

simulation using Glucosafe [27], and the integral based parameter estimation method [28]. This method

is described in detail in [16].

II. METHODS

A. Glucosafe glucose-insulin system model and integral based parameter estimation method

The Glucosafe model is used to calculate the time-varying response of blood glucose for given insulin

and nutrition inputs [22] [27]. The insulin kinetics of the Glucosafe model are illustrated in Figure 1, and

are defined in detail elsewhere [24] [25] [27].

The calculation of and the change in plasma insulin concentration I(t) [mU/L] and the change in peripheral

insulin concentration Q(t) [mU/L] depends on the parameters nL, nC and VQ defined in [27], and nK ,

nI and VP , which are functions of basic patient parameters [30].

The parameter nK is the kidney clearance [min−1], nI is the transport rate between the plasma and

peripheral compartments [L/min], nL is the liver clearance [min−1] and nC is the irreversible loss of

insulin in the periphery [min−1]. Finally, VP is the plasma volume [L] and VQ is the peripheral interstitial

volume [L]. The patient specific parameters are calculated in the Glucosafe model by using the patients

gender, age, height, weight and diabetic state, and are set as static for the patient during the glycaemic

control procedure [27] [30]. Finally, EP (t) is the post-hepatic endogenous insulin secretion rate, which

in Glucosafe is set as a constant at 27.77 mU/min [27], and P (t) is the given insulin infusion rate [U/h].



HEALTH SCIENCE AND TECHNOLOGY, AALBORG UNIVERSITY 4

Fig. 1. Glucosafe physiological overview, where exogenous insulin is assumed to be intravenous. The change in blood glucose, BG is a
result of the sum of absorption, Z (positive change in BG). EHepatic is the hepatic balance between the liver and the plasma compartment.
EKidney , EMuscle/Fat and ECNS all causes a negative change in the BG concentration. In this figure CNS = central nervous system.

The pharmacodynamic changes in blood glucose concentration [mmol/L], due to endogenous and ex-

ogenous inputs of insulin and nutrition are illustrated in Figure 1, and are defined in detail in [22]

[26]. Z is the sum of glucose absorption from the nutrition inputs [mmol/(kg × min)], EHepatic is

the bidirectional glucose transport to and from the liver [mmol/(kg × min)], and EKidney, ECNS and

EMuscle/Fat, all [mmol/(kg ×min)], are the turnover of blood glucose to the kidneys, central nervous

system, fat cells and muscle cells, respectively. [27]. The blood glucose turnover to liver, fat and muscle

cells [mmol/(kg×min)] is stimulated by the active insulin, which is proportional to the patients insulin

sensitivity, SI [22] (modification from Arleth et. al. [26]).

Integral based parameter estimation is implemented using the same method as Hann et al. [28]. In this
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case, it is used to identify SI and all other values are held at population constants [22] [24] [25] [26].

The value of SI is assumed piecewise constant over any given identification interval [28]. The length of

the identification interval is 1 hour for the SPRINT [10] patient cohort used in this study.

B. The decision support systems advice module

In addition to the Glucosafe glucose-insulin model and the integral based parameter estimation method,

the glycaemic control system utilizes three penalty functions and an optimizer, to control the blood glucose

concentration of patients. Figure 2 illustrates the penalty shapes for all of the penalty functions used in

this study. These functions are related to patient state and intervention limitations in: insulin bolus [U/h],

nutrition feeding rate [% of DI] and blood glucose concentration [mmol/L].

All three shapes have influence on glycaemic control, and the size or values of each penalty function

are weighted against the desired criteria of 1: keeping the patients blood glucose concentration inside

the normoglycaemia range between 4.4-7.75 mmol/L [3] [9]. 2: giving the patient an adequate amount

of calories, and 3: keeping the control of the patients blood glucose concentration while minimizing the

amounts of insulin given to the patient.

The design approach for the penalty functions are based on the blood glucose penalty shape, which

was defined in [29]:

Penalty(BG) = (ln(
BG

BG0

))2 ×KBG−Penalty (1)

Where BG is the current blood glucose values, and BG0 (= 5.5 mmol/L) is the point at which the penalty

function value is 0. KBG−Penalty is a fitting constant (value = 4). The blood glucose penalty function

results in a penalty range of: [0 0.47] in the targeted blood glucose range of 4.4-7.75 mmol/L.

The insulin penalty shape is based on the saturation effect of insulin action on glucose uptake [31]

[32]. Saturation has effect when calculating the nonlinear fraction of maximal endogenous balance as a

function of the insulin infusion/absorption rate. The calculation of the insulin penalty functions is presented

in Equation 2 and 3:

Penalty(INS) = (
(I + Km)2

(Km)2
− 1)×KINS−Penalty (2)
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Fig. 2. This figure illustrates the three penalty functions for insulin bolus [U/h], nutrition feeding rate [% of DI] and blood glucose
concentration [mmol/L] used in the advice module

where Km is the insulin saturation constant (value = 28 mU/L) [33] and KINS−Penalty is a insulin penalty

function fitting constant (value = 1/280).

Finally, I [mU/L] depends on the insulin bolus given [U/h] defined in Equation 3:

I = INS × C ×BM70 (3)
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where INS is the insulin bolus from 0-6 U/h (presented as P (t) in Figure 1), and C is the default

conversion factor (value = 98.1 kg × min/L ) [27] to convert absorbed insulin to plasma insulin, and

BM70 is a bodymass constant (value = 1/70 kg−1 ). The system limits the insulin bolus range to 0-6

U/h, and to minimize saturation effects the insulin penalty range is [0 0.13]. The constant KINS−Penalty

in Equation 2 is thus a fitting constant, whose purpose is to weight the insulin penalty range against the

two other penalty functions.

Finally, the nutrition penalty function is designed on the basis of keeping the patient inside normoglycaemia

while continually giving the patient as close to 100 % of daily intake (DI) of calories as possible. The

penalty range for the nutrition penalty function is [0.00 0.05] in the feeding range of 40-140 % of DI.

Equation 4 represents the nutrition penalty function:

Penalty(NUT ) = (NUT − 100%)2 ×KNUT−Penalty (4)

where NUT is given nutrition in the range 40-140 % of DI and KNUT−Penalty is a fitting constant (value

= 0.15) to weight the nutrition penalty range against the two other penalty functions.

The nutrition advice range illustrated in Figure 2 is presented in % of DI, and has to be converted into

caloric intake for the specific patient. The Harris Benedict metabolism equation [34] is used to calculate

100 % of daily calorie intake DI from the patients gender, weight, age and height, from which calories

per day (CD) can be calculated as: CD = NUT × DI [kcal/day]. Finally, the advised feeding rate (FR)

[ml/h] can be calculated as FR = CD/CV from the calorie value CV [kcal/ml] of the enteral or parenteral

solution.

The nutrition used in this study is an enteral formula named Diabetic Resource (Novartis Medical Nutrition,

Minneapolis, MN, USA), which was also used in earlier studies from which the underlying SPRINT patient

data for the virtual patients in this study originates [10] [16] [17] [35] [36]. Importantly it is also a low

carbohydrate formula, where 34 % of the calories come from carbohydrates.

As seen on Figure 3 the advice module optimizer uses all three penalty functions (Penalty(INS),

Penalty(NUT ) and Penalty(BG)), and forward simulates the model (simulation(INS, NUT )) every

intervention interval to choose the advice with the lowest sum of penalty error (Advice = min(Total
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Fig. 3. This figure illustrates how the advice module optimizer calculates all relevant combinations of nutrition and insulin in a grid to
choose the advice choice with the lowest sum of penalty. During each 3 hours penalty simulation, the same SI estimated for that hour is
used.

Penalty(INS,NUT))).

In the top of the figure an array of different combinations of given insulin (INS) and given nutrition

(NUT ) can be seen. The optimizer searches this grid of choices before every new intervention advice

is given. The optimizer calculates the penalty for each of 7 possible insulin combinations (0-6 U/h).

Meanwhile, the nutrition to be given is calculated for each possible combination over the range: 40,

60, 80, 100, 120, 140 % of DI. This search thus results in 7 × 6 = 42 sets of possible interventions,

and therefore 42 times where the optimizer forward simulates how the blood glucose concentration will

respond to each different set of interventions.

As seen on Figure 3 each field of the grid involves a simulation for 3 hours, using the same set of

interventions and SI for the three hour period. The result from this simulation is the set of blood glucose

concentrations: bg60, bg120 and bg180, which are the blood glucose concentrations after 1,2 and 3 hours,

respectively. As seen in Figure 3 each set of possible interventions include the blood glucose penalty sum
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over 3 hours (Equation 5), achieved from the simulation:

BGsum = Penalty(bg60) + Penalty(bg120) + Penalty(bg180) (5)

At each field in the grid, having a set of insulin and nutrition, and the resulting development in the

calculated blood glucose concentration (bg60, bg120 and bg180), these values are used as inputs to the

penalty functions to find a penalty sum. The resulting advice is given after repeating this method for each

field in the grid (42 times), and yields the combination with the lowest sum of penalties.

An example of the glycaemic control system in action can be seen in Figure 4, which illustrates the

first 20 hours of glycaemic control for Patient 2 in this study. Here, the chosen advice is presented in

panels 6 and 7 for a given nutrition [% of DI] and given insulin [U/h], respectively. On panel 3 the advice

resulting penalty of each penalty functions are shown.

C. SPRINT Benchmark patient cohort

The patient data used in this study comes from 20 critical care patients in the SPRINT study [10]

(Benchmark patient cohort, [35]) some of which also have been used in other previous studies [16] [17]

[36]. The patient cohorts details can be seen in Table I. All retrospective data and measurements are

available in 1-2 hour intervals, and are thus relatively dense. Ethics approval to use this data was obtained

from the South Island Regional Ethics Committee, New Zealand.

In Figure 5 the implementation of virtual patients can be seen. During a glycaemic control of a given

virtual patient, a predefined SI value is given to the virtual patient each hour, and noise is added to the

virtual patients blood glucose response, to the current intervention, to imitate a clinical situation with

measurement noise. In this study, a normal distributed noise with a standard deviation of 10 % of the

measured blood glucose is used matching the glucometers used in the SPRINT study [10].

III. RESULTS

Table I shows that the length of stay for the 20 SPRINT patients included in this study varies in the

range of [139 971] hours. In this study the glycaemic control system is validated over a 1 week long

period (168 hours), where it was possible, for each of the virtual patients.
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Fig. 4. This figure illustrates the glycaemic control for the first 20 hours for Patient 2 included in this study. The second panel illustrates the
results of the glycaemic control, where the first blood glucose measurements (at hour 0) are real measurement from the underlying SPRINT
patient, meanwhile the subsequent measurements are the virtual patients response to the advice interventions supplied by the glycaemic
control system.

All virtual patients included in this study start at a blood glucose concentration that originates from the

clinical SPRINT patient data. Furthermore, the gut content is set as a starting guess at 1.8 mmol/kg, plasma

insulin concentration at 20 mU/L, and a peripheral insulin concentration at 12 mU/L. The normoglycaemia

range is in this study defined to be 4.4-7.75 mmol/L. Hypoglycaemia is defined as a measurement less

than or equal 2.2 mmol/L.

A. Glycemic control validation

The results for the advice validation for all 20 patients included in this study are presented in Table II,

where it can be seen that the overall median blood glucose concentration is 6.05 mmol/L with IQR = [5.54
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Patient Age APACHE Diagnosis Hospital Duration of stay Gender
number II stay (hours) on

score: SPRINT (hours)
1 75 17 Hypoxemic 1416 828 M
2 68 18 On pump 439 178 M
3 73 22 Perforation 391 310 M
4 68 19 Laparotomy 185 145 M
5 60 13 Chronic obstructive airways disease 254 205 F
6 70 31 Community acquired pneumonia 648 512 M
7 70 42 Obstruction 770 159 F
8 65 25 Septic shock 298 287 F
9 76 20 Acute abdominal aortic aneurysm 511 458 F

10 58 15 Hip replacement 142 139 F
11 49 30 Hypoglycaemia 302 297 M
12 73 16 Pancreatitis 156 150 M
13 20 15 Trauma 1178 971 M
14 74 23 Infarction/ischaemia 230 192 M
15 63 29 Ventilatory 770 323 F
16 49 14 Pancreatitis 929 923 M
17 45 16 Pancreatitis 653 524 M
18 72 16 Post op. 295 265 M
19 73 22 Orthopaedic 257 253 M
20 65 7 Community acquired pneumonia 149 140 F

TABLE I
PATIENT DATA FOR THE 20 SPRINT PATIENTS USED IN THIS STUDY. NONE OF THE INVOLVED PATIENTS HAVE ANY TYPE OF DIABETES

Fig. 5. This figure illustrates the glycaemic control process as a whole. SIestimatedi+1 is used in the period i+1, but are estimated using
data from the period i. The same applies to Nutritioni+1 and Insulini+1. Due to the virtual patients used in this study originates from
of SPRINT data, the length of this repeating process is 1 hour
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6.62] mmol/L. Table II also shows that the 20 patients are inside the normoglycaemic range (4.4-7.75

mmol/L) in 87.7 % of measurements. The length of the glycaemic control varies from 144 to 167 advices

for each patient (145-168 hours of glycaemic control), which results in a total of 3233 advices and 3253

hours of measured blood glucose concentrations done in this study.

During glycaemic control the overall average feed was 87.2 % of DI, meanwhile the overall average

calorie intake per day was 1250 kcal/day, of which 425 kcal/day were carbohydrates for all 20 patients.

The overall average given insulin was 2.2 U/h for all 20 patients. The average number of blood glucose

measurements below 4.4 mmol/L were 6 for each patient (approximately 3 % of measurements), the

average number of blood glucose measurements below 3.4 mmol/L were 1 for each patient (below 1 %

of measurements) and the number of hypoglycaemic measurements below 2.2 mmol/L were 0 for all 20

patients.

Finally, Table II shows that the estimated overall average SI for all 20 patients was 0.23, and varied from

0.18 to 0.27.

Figure 6 illustrates the cumulative distribution of the blood glucose measurements recorded for each

individual virtual patient in this study, covering all 20 blood glucose measurements for all 20 patients.

The thick line in Figure 6 shows the overall cumulative distribution of the blood glucose values for all

20 virtual patients (3253 hours of blood glucose concentration measurements [mmol/L]). Finally, Figure

7 illustrates the box-and-whisker plot of hourly measured blood glucose concentrations [mmol/L] for all

20 virtual patients, covering the first 24 hours of glycaemic control adaptation period.

IV. DISCUSSION

The Glucosafe model used in this glycaemic control system presented, is physiologically defined and

utilizes the concept of a remote compartment for insulin transport to account for the delay between insulin

secretion, or infusion, and its utilization. A prior validation shows that the fitted model matches all the

observed and predicted clinical dynamics [22] [24] [27]. These studies validates the use of blood glucose

response from virtual patients, who are constructed using the same model with added noise.

Figure 4 confirms that there is a need to adjust the nutrition and insulin given, to keep the patient inside

the normoglycaemic range (4.4-7.75 mmol/L). The results of glycaemic control validation, regarding the



HEALTH SCIENCE AND TECHNOLOGY, AALBORG UNIVERSITY 13

Patient Median 5-95th IQR No. < No. < No. Average Mean Mean Mean % in
number BG range 3.4 4.4 of feed % Kcal/ insulin SI band

mmol/ mmol/ advices day [U/h]
L L

1 5.96 [4.60 7.14] [5.44 6.48] 0 3 167 89.5 1306 2.3 0.24 97.0
2 5.27 [4.30 6.30] [4.79 5.78] 1 12 167 90.4 1362 1.6 0.27 92.8
3 6.59 [4.65 9.73] [5.78 8.04] 0 6 167 80.1 1180 3.0 0.21 66.5
4 5.11 [4.38 5.67] [4.74 5.67] 0 8 144 87.8 1323 1.4 0.27 92.4
5 5.98 [4.27 7.74] [5.50 6.61] 0 11 167 97.7 1264 1.9 0.24 88.6
6 5.10 [4.05 6.08] [4.74 5.42] 2 16 167 83.3 1244 1.4 0.27 90.4
7 6.03 [4.70 7.14] [5.63 6.40] 0 0 158 103.1 1286 1.6 0.25 96.9
8 5.89 [4.30 7.60] [5.30 6.64] 1 8 167 103.9 1320 1.7 0.25 92.2
9 6.78 [5.29 8.41] [6.26 7.20] 0 1 167 89.6 1092 3.0 0.21 84.4

10 5.99 [4.17 7.73] [5.29 6.53] 2 9 138 102.6 1337 1.8 0.25 88.4
11 6.51 [4.12 9.40] [5.55 7.60] 2 15 167 82.0 1342 3.3 0.23 67.7
12 6.04 [4.39 7.34] [5.57 6.59] 2 8 149 81.6 1201 2.1 0.24 93.3
13 6.45 [5.36 7.43] [5.92 6.83] 0 1 167 59.3 1087 2.3 0.22 98.2
14 6.94 [5.31 9.71] [6.32 7.94] 0 0 167 74.1 1086 3.3 0.20 70.1
15 5.70 [5.02 6.91] [5.46 5.87] 0 1 167 96.7 1238 1.2 0.18 98.2
16 5.15 [4.31 6.13] [4.86 5.47] 0 10 167 88.1 1441 2.0 0.20 94.0
17 5.12 [4.27 6.02] [4.74 5.45] 0 13 167 80.6 1340 1.7 0.20 92.2
18 6.57 [5.03 9.39] [6.08 7.03] 1 4 167 81.1 1199 3.0 0.22 85.0
19 6.92 [5.36 8.43] [6.38 7.64] 0 1 167 77.2 1136 3.4 0.21 77.8
20 6.95 [5.92 8.14] [6.52 7.25] 0 0 140 94.9 1206 2.6 0,22 88.5

Overall 6.05 [4.69 7.69] [5.54 6.62] 1 6 3233 87.2 1250 2.2 0.23 87.7

TABLE II
RESULTS FOR ALL PATIENTS INCLUDED IN THE ADVICE VALIDATION WITH CLINICAL LIMITS IN CHRISTCHURCH HOSPITAL. IQR =

INTERQUARTILE RANGE. THE NORMOGLYCAEMIA BAND IS DEFINED AS BLOOD GLUCOSE CONCENTRATION BETWEEN 4.4-7.75
MMOL/L. THERE WERE 0 HYPOGLYCAEMIC MEASUREMENTS (HYPOS) FOR ALL 20 PATIENTS. HYPOGLYCAEMIC IS WHEN BLOOD
GLUCOSE CONCENTRATION IS BELOW 2.2 MMOL/L. THE OVERALL NUMBER OF ADVICES (3233) COUNTS THE TOTAL NUMBER OF

ADVICE PERFORMED IN THIS STUDY

average nutrition rate, and the ability to keep the patients inside the range of normoglycaemia, are good

examined in isolation. However, more importantly, in combination the compromise between nutrition given

(87.17 % of DI), and the ability to keep patients normoglycaemic (87.7 % of measurements), can be hard

to achieve with this general ICU cohort. The overall average calorie intake per day was 1250 kcal/day,

and the overall average given insulin was 2.2 U/h, which makes the results from this study comparable

to other similar studies. For example the SPRINT clinical implementation and evaluation study by Chase

et al. [10], where the overall lognormal average calorie intake per day was 1283 kcal/day and overall

average given insulin per hour was 2.8 U/h. This correlation to the SPRINT clinical results adds a further

level of confidence in the virtual trials.
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Fig. 6. This figure illustrates the cumulative distribution of each virtual patients blood glucose values during glycaemic control. The thick
line is the overall cumulative distribution of the blood glucose values for all 20 virtual patients. This figure represents all data including the
original patientdata starting points.

In later clinical scenarios, there maybe potential advice limitations in the glycaemic control. Some hospitals

use fixed nutrition feeding rates (fx. 100 % of DI), so that insulin [U/h] is the only adjustable parameter

to ensure patients are kept normoglycaemic. Observing Table II it can be seen that most of the average

feeding rates for all 20 patients are in the 80-100 % of DI range. Hence, without modulating nutritional

inputs many similar general ICU patients will have periods of hyperglycaemia (> 7.75 mmol/L) where

insulin alone may not be fully effective.

V. CONCLUSION

This study presents and validates a glycaemic control system, utilizing the Glucosafe model [27] and

an integral based parameter estimation method for fitting the patient specific insulin sensivity SI [28]. The

goal of validation is to prove the glycaemic control systems ability to keep 20 virtual patients (produced

by patientdata using retrospective clinical data (SPRINT)) inside the range of normoglycaemia (4.4 - 7.75
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Fig. 7. This figure shows the Box and whiskers plot (the smallest observation. lower quartile, median, upper quartile and largest observation
for each hour) for all 20 patients blood glucose during the first 24 hours under glycaemic control. Points (outliers) beyond the whiskers
are displayed using +. The dotted Box and whiskers plot at hour 1 represents original SPRINT blood glucose measurements, and are used
as starting points for all virtual patients before going on the glycaemic control, these values are because of this not a result of the advice
given.

mmol/L).

The overall median and IQR blood glucose concentrations are, for all 20 virtual patients, within the

range of normoglycaemia. This result is also achieved without any hypoglycaemic measurements below

2.2 mmol/L. Because of the low variation of average feeding given to the virtual patients, and that the

overall average feeding is very close to estimated full calorie needs, the glycaemic control system is

considered comparable to other similar studies [10], and acceptable for later use in control applications

in a clinical setting.
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