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1. Introduction  

We don’t exactly know what consequences world-spanning phenomena, such as 

globalisation and climate change will have on land-use. To promote environmental 

sustainability and to minimize the risk for future environmental catastrophes, we 

however need to prepare ourselves and tackle the future already today. Land-use 

planning is a future-oriented activity, where the “building bricks” for the future are being 

laid and therefore it is very relevant to integrate projections and spatial scenarios the 

planning process. 

There are a lot of political initiatives that directly work towards an environmentally 

more sustainable future. Future-oriented goals - strategies and legislative - on a local (e.g. 

Agenda 21) and an international (e.g. Kyoto, the Biodiversity convention) and European 

level (e.g. the Flood Directive, Water Framework Directive), are also very much being 

taken into account the land-use planning process, since it has been recognized that a 

sustainable future is also very much related to a sustainable land-use pattern. Common 

for many of these policies is their spatial dimension – i.e. they want to improve the state 

of the coast, watersheds, seas and halt the decline of biodiversity for instance in urban 

areas. In land-use planning these multi-scale and multi-target goals meet.  

Projections and scenarios can help decision makers, planners and participating citizens 

to take future uncertainties, challenges, and alternative possibilities and e.g. climate 

related threats into account in their area of interest. In western countries, such as 

Finland and Denmark, it is easy to get hold of statistical projections on a national or even 

at the municipal level regarding population increase and economy. These are very useful 

for dimensioning land-use plans. However, land-use planning generally includes a more 

local dimension – for instance, as part of the planning process, plan maps are made for a 

region or a municipality. To actors in land-use planning, spatial scenarios, for visualising 

the development alternatives of an area on a map would be very useful. However, today 

spatial scenarios are not generally being used as part of the decision making process, 

even though the technology, such as land-use models and participatory Internet-based 

techniques, for integrating them is do exist. 
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Integration of good-quality data is regarded as the key for successful implementation of 

spatial policies. Data is equally important for the development of scientifically justified 

spatial scenarios. Problems have been found regarding data availability, quality and when 

combining data from different sources and scales. In this light, the international 

geographical community and the European Union (EU) saw the need to promote 

accessibility and usability of spatial data. This has resulted in initiative to create so called 

Spatial Data Infrastructures on different levels in society. The EU have ratified the so-

called INSPIRE Directive to improve the situation regarding geographical information 

(INSPIRE 2008).  

This project is addressed to 

1. the increasing availability of good-quality, spatial data relevant to land-use 

modelling, 

2. the growing and challenging need and technical possibilities to integrate land-use 

models in the decision making process  and  

3. the challenges that are yet to be thoroughly solved in the field of urban land-use 

modelling, and most specifically it is related to the methodology for justifying 

neighbourhood rules, which will be proven to be a relevant subject for improving 

present land-use models that can simulate alternatives of the future land-use 

pattern. 

After this introductory chapter follows a Land-use dynamics and modelling chapter, which 

describes relevant concepts and the state-of-the-art technique for urban land-use 

modelling. In the third Problem statement chapter the problem statement and the research 

questions related to it are defined and in the Methods chapter the methods to answer 

these questions are described. Next, in the Theoretical components of Neighbourhood Interaction 

chapter the concepts and GIS-related techniques behind neighbourhood interaction will 

be explained. The Software Development chapter again presents the conceptual model 

developed and the tool that was programmed according to it. This is followed by the 

Results and Discussion chapter, where the findings of this project are brought forward. We 
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conclude with the Conclusion and Prospects chapter, where the findings are summed up and 

a few prospects of the future are pointed out. 

2. Land-use dynamics and modelling 

Changes in land cover and land use are among the most important human induced 

changes that have an impact on earth. Land cover and land use have direct and indirect 

affects on biodiversity, climate change and global warming. Additionally, changes in 

land-use can influence the vulnerability of places to climatic, economic or socio-

economic perturbations. For the consequences on local and regional level the actual 

spatial pattern of land-use may be of high importance. It is not only a question about 

what land-uses are changing, but also where they are changing. For example new 

residential area may be vulnerable for climatic changes in one area, but not in another. 

You can therefore say that land-use patterns play a key role in the environmental 

stability of our future earth (Verburg et al. 2004a: 668).  

Cities and their complexity has been the focus of many geographers and urban scientists 

for several decades. The first and most famous attempts to model the urban 

morphological structure or the land-use pattern of cities was the sector model by 

Burgess in 1925, the sector model made by Hoyt in 1939 and the multiple nuclei model 

developed by Harris and Ullman in 1945 (Wikipedia 2008). Common for these models 

are that they explain the spatial configuration of land-use classes within and proximate 

to a city with socio-economic so called spatial externalities. These spatial externalities 

can be defined as the radiated priced or unprized effects of one land-use on another. 

Hoyt's sector model positions the residential areas of the low income households 

adjacent to railways and the industry sector, where negative externalities like noise and 

pollution make them less attractive for living. In present time, the Not-In-My-Backyard 

(NIMBY) and Locally-Unwanted-Land-Use (LULU) can be regarded as part of the same 

phenomena (Hagoort et al. 2008:42). Common for the old-time models is that they are 

descriptive and highly static in their nature, not directly taking the time factor into 

account.  
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Today researchers from different disciplines address land-use change issues to better 

understand the causes and consequences of land-use change (Verburg et al. 2004a:668). 

The land-use pattern that form our urban landscape of today, has according to recent 

research emerged from a complex interaction between the human and the natural 

environment (Verburg et al. 2004b:125), a phenomena that is often referred to as the 

land-use dynamics. There is no overall theory on the so called driving forces or driving 

factors that are the triggers of land-use change. It is however generally recognized that 

these determinants of land-use change are diverse; they act on different levels and have a 

cross-disciplinary nature. On micro level the determinants include biophysical 

conditions, economic factors, social factors, spatial interaction and neighbourhood 

characteristics, and spatial policies; while it on macro level is the population growth, 

migration, and economic change among other things that affect the pattern of land-use 

change (Verburg et al. 2004b:126). It is the latter ones that influence the magnitude and 

extent of land-use change (Verburg et al. 2004b:668), while the micro level determinants 

affect changes in land-use pattern on a local and regional scale.  

All processes affecting the land-use dynamics are intertwined and work both from a top 

down and bottom up perspective. A typical example of a top down derived process is a 

land-use plan that steer the expansion of urban land use in a particular area in a 

particular direction. However you can also regard global phenomena as top down steered 

processes, because of its effects on land-use on the local scale. For example the allocation 

of jobs to countries, where costs of labour is lower, have consequences on the local level. 

A small town that have lost its main industry will have it hard to attract new 

inhabitants, and subsequently the expansion of residential will decline. On the other 

hand, the land-use dynamics also works the other way: changes on the local scale can 

have a regional or even a national impact. The construction of a new motorway or a 

major bridge can trigger off new building activities. A good example of this case is the 

areas proximate to the Øresund's bridge, where huge changes in land-use have taken 

place after the bridge was constructed. The Øresund's bridge has strengthened the 

region by literally building a bridge between people, universities and innovation-based 

economies. Small scale patterns give in the long run give birth to larger scale patterns, 

such as a certain spatial configuration of residential, industrial and other urban land-use.  
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Land use models have been used for several decades to predict the location and extent 

the of land-use change. Generally the ways to use science in these land-use models has 

changed. While 50 years ago, the view was that one can simplify reality, to make an 

absolute model of the phenomena taking place within our complex cities, today urban 

land-use modelling is less oriented to aid in understanding and to structure debate, not 

to make absolute predictions. This can be seen as a shift to the use of so called “What if 

scenarios”, which dominate present model-building (Batty and Torrens 2001:3).  

However, it does not make it less valuable to base these models on real-life information.  

Recent research has also aimed at exploring and predicting the extent and location of 

future land-use change (Verburg et al. 2004a:668) using dynamic land-use models. Many 

methods have been developed in attempting to model land-use change. Of the models 

developed, including statistical and transition probability models, optimisation models 

and linear programming, dynamic simulation models, agent-based models, the Cellular 

Automata (CA) models have by many been regarded as most important for land-use 

modelling purposes. We have already presented the determinants of urban land-use as 

being complex. There are always uncertainties about the outcome of processes of change 

that originate from bottom up and this is often referred to as complexity (Batty 

2005:preface). During recent years, focus has been changed from top down to bottom up 

approaches to explain and to model this complexity (Batty 2005:preface) and CA has 

been found a very useful tool. CA models stand out for example in their ability to 

simulate existing urban forms using a bottom-up based perspective of self-organisation 

(Hagoort et al. 2008:42-43).  

Cellular Automata date back to the beginnings of digital computation (Batty 2005:74). 

Standard CA is based on four characteristics: cells, state, neighbourhood and transition 

rules. First there is a regular lattice of identical cells. Second, each cell may only have one 

cell state at a time. These discrete states define the outcomes of the system. Third, the 

state of any cell depends on the states and configurations of other cells in the 

neighbourhood of that cell. In a strict, traditional CA the neighbourhood cells are those 

that are immediately adjacent with the cell in question. Finally there are transition rules 

that drive changes of state in each cell. The transition rules are a function that describe 
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what exists or what is happening in the cell's neighbourhood (Batty 2005:68). In short, 

the state of a cell is determined by transition rules that according to the prevailing state 

of a cell's neighbourhood at a time t, returns an outcome cell state at time (t+1) 

(O'Sullivan & Torrens 2000:2).  

CA has so far been applied to the simulation of a wide range of urban phenomena 

(O'Sullivan & Torrens 2000:1). One of the most useful applications of cellular automata, 

at least from the land-use planning point of view, is their use in simulation of urban 

growth at local and regional level (Barredo et al. 2003:145). Several approaches have been 

proposed for modifying standard CA making them more suitable for urban simulation 

(Barredo et al. 2003:145). Common for the urban implementations of CA is that they 

somewhat differ from the original CA structure (O'Sullivan & Torrens 2000:1). In 

applications applied in urban geography, the cells are usually represented by pixels in a 

two-dimensional grid-based lattice, which also is characteristic of the cellular 

presentation of data in raster-based GIS (Engelen et al. 2002:9). The cell states are 

usually defined as various categories of land-use classes, such as residential, service and 

industrial land use classes. These are often divided into three categories. The first 

category being the active classes expands as a result of external driving forces. 

Residential cells are an example of these.  The second category is the passive classes, on 

which expense the active classes can expand. Examples of these are agricultural land and 

forest. The third category are the static classes, that stay unchanged and only affects the 

other classes by different push and pull effects. Infrastructure and watersheds belong to 

this category. (Hansen 2007).  

What happens within the neighbourhood is of particular importance in the context of 

modelling urban growth. In comparison with the strict CA approach where all actions of 

interest are local i.e. taking place in the immediate vicinity of the cell, urban geographical 

phenomena often include actions at distance and the neighbourhood is therefore defined 

accordingly (Batty 2005:73). For instance the placement of a new shopping centre will 

influence a larger area than the closest cells and this also needs to be taken into account 

in urban CA applications. Therefore it is regarded important to quantify the extent and 

type of this land-use interaction within a neighbourhood and to integrate this 
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information in the transition rules of urban CA. For each land-use function, the 

transition rule is a weighed sum of distance functions calculated relative to other land-

ust functions and features. These transition rules represent the competition of human 

activities within the urban area (Engelen et al. 2002: 6).  

The basic idea of CA is to simulate global patterns and structures from local elements. 

Many urban phenomena have this kind of bottom-up structure: air pollution, 

neighbourhood upgrading and decline, and so on, making traditional CA applicable. 

However, socio-economic systems, such as cities, are also highly shaped by interaction 

processes that take place at various geographical scales, some of which are very local and 

within the reach of the extended neighbourhood, and some of which are beyond the 

reach of cellular automata. In order to incorporate the dynamics caused by these long 

range macro level processes and phenomena beyond the reach of the neighbourhood, you 

can link cellular automata models to macro level drivers. Socio-economic and other 

macro-level models can be linked to force growth in a certain way acting, as a constraint, 

upon the local CA-model (Engelen et al. 2002:8). For instance, you can use the municipal 

population projections to set the growth demand of each municipality and let it steer the 

allocation of new residential cells on a regional level. Land-use plans and transport 

infrastructure are also obvious examples macro scale constraints. These kinds of global 

structures need be imposed as external global constraints on local interaction in urban 

land-use models (O'Sullivan & Torrens 2000:2). That is why urban implementations of 

CA usually are constrained. 

White and Engelen (Engelen et al. 2002:8) simulated the development of land use in year 

1966 in a hypothetical city with the same kinds of dimensions as the medium sized US 

cities of Cincinnati, Houston, Milwaukee and Atlanta (figure 1). This model used trend 

lines as a growth constraint and broke with the standard CA notion that 

neighbourhoods should be local. The neighbourhood chosen was based on a circular 

neighbourhood of radius six cells containing some 113 cells in total and being divided in 

19 distinct distance bands. However, no sensitivity testing was made regarding the 

choice of the neighbourhood size. Most certainly the use of another neighbourhood 

would have given another result. (Batty and Torrens 2001:26-27).  
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Later, other models such as MOLAND (Engelen et al. 2002:23-25) and LUCIA (Hansen 

2007) have been applied using constrained CA methods and extended neighbourhoods. 

Common for these models is that they calculate the potential for each cell to change or 

the so-called transitional potential. The transitional potential is calculated based on 

weighed factors, such as the cumulative neighbourhood interaction, the accessibility of a 

cell and its suitability for building activities and moreover based on the binary 

constraints imposed by zoning. Once the transitional potential for each cell has been 

calculated, the transition rule is to change each cell to the state for which it has the 

highest potential – with the constraint that the number of cells in each cell state must be 

equal to the number demanded at that iteration. The type and rate of the macro scale 

demands that impose changes to land-use at local scale are modelled externally of the CA 

model using for instance socio-economic data (Engelen et al. 2002:6-7, Hansen 2007).  

 

Figure 1. The actual land-use in Cincinnati in year 1960 (left) and the land-use simulated by a constrained 

urban CA model (right). The model was made by White and Engelen in 1993 (Engelen) 

It is generally recognized that in order to make good land-use models, and to simulate 

alternative land-use patterns of the future, the present processes causing land-use need 

to be sufficiently known. Presently this is not the case. Land-use models are being 
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criticized for being based on too loose a scientific foundation (Malcewski 2000:21). For 

instant the choice of transition rules and the used neighbourhoods are usually not based 

on empirical studies. The field of urban CA is also been criticized for being too 

technology driven so far, instead of being based on actual urban dynamics (Verburg et al. 

2004a:669, Geertman et al. 2007:549). Today, the technology for making simulations is 

out there. For instance, we already know how to make urban CA models. What is then 

needed? Practically, we need to quantify the drivers of land-use change, so that we can 

base our land-use models on empirical studies on where (location) the land-use changes 

are taking place and find out the extent (quantity) of the changes. In this way the “What 

if scenarios” can, to a certain extent be scientifically justified, which argue for their wider 

use in decision-making processes.  

When the processes of land-use change are so diverse and complex, how shall we know 

what to focus on to find out what we need? A study made by Verburg et al. (2004b) in 

the Netherlands indicate that the historical land-use pattern can be explained by the 

conditions of soil and land form (e.g. height and distance to watershed), in particular 

regarding the location of agricultural land and of forest and nature area. Recent land-use 

changes were no longer determined by biophysical factors of a location, but instead 

mainly by accessibility, spatial policies and neighbourhood interactions (Verburg et al. 

2004; 146). Based on this you can draw the conclusion that changes in land-use patterns 

of today follow a process of bottom-up based self-organisation, where the accessibility 

and proximity of existing networks and urban centres steer the direction of the growth 

and that this self-organising development can be altered with the aid of land-use 

planning implementing spatial policies. The constraints on land-use imposed by land-use 

plans are usually of binary nature; either a certain type of building activity is allowed or 

prohibited, and therefore these are easy to take into account into land-use models, if just 

data is available. These represent the top-down steered part of land-use change. Taking 

in account local interaction in the neighbourhoods of existing land-use is far more 

complicated. In order to do so, we need to be able to answer questions such as: Which 

land-use repel and attract each other? How much? And does this interaction change over 

distance? Where is the interaction at its maximum and when does it even out? Is the 

neighbourhood interaction alike or is it different in different region and what happens to 
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the neighbourhood interaction when we change the scale of observation? There are no 

straightforward answers to these questions, which of course make it interesting to look 

deeper into it. Many authors have also recently indicated that the validity of 

neighbourhood rules is an important and urgent research issue to improve the usability 

of CA models (Hagoort et al. 2008:40-43,  Hansen 2008, Geertman et al. 2007:548-551, 

Verburg et al. 2004a:668-670).  
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3. Problem Statement 

We live in a complex world, full of uncertainties, making the future hard to predict. In 

order to make better simulations and “What if scenarios” of the land-use of tomorrow, 

we need to gain deeper knowledge about the processes underlying land-use change. We 

can improve present land-use models by justifying the transition rules underlying them 

scientifically. The neighbourhood interaction has previously been proven one of the most 

crucial spatial factors in land-use dynamics, which inner components needs to be fully 

investigated. To improve our present land-use models, we need to look into the 

neighbourhood interactions between land-use classes and to evaluate the effect of this on 

land-use change. The goal of this project is to develop a tool that can assist in this 

process. When we know the extent and importance of neighbourhood interaction, we 

can use our gained knowledge to make scientifically justified land-use models and to be 

integrated further for instance as a participatory tool in decision support systems. 

Technologies for integrating neighbourhood rules in land-use models and for integrating 

land-use models in participatory planning already exist.  

The primary goal of this project is to develop a tool with which you can describe existing 

neighbourhood interactions between land-use classes. Additional requirements of the 

tool is that it should be simple to use and easy to understand for users of desktop GIS 

software. It should be scale-independent so that it can be used on input data of any 

resolution.  

With the help of the developed tool you should be able to: 

• quantify the neighbourhood interaction, 

• integrate different neighbourhood sizes and configurations 

• compare the use of different data as input data. and 

• scientifically justify the use of certain neighbourhood rules in CA based on the 

calculated results  

During the development process, focus will be put on the following research questions:  
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1. What are the theoretical components of neighborhood interaction and how can 

they be approached? 

 

2. Can we develop a tool that fulfills our pre-specified goals? 

 

3. What are the challenges related to the development and use of such a tool  

Due to the time limits of this project, we need to limit our focus. Our main focus will not 

be on data, but on the development of an applicable tool. But since, we recognize that 

data play a central role for the usability of the tool and for the quality of the resulting 

output of the tool and therefore we will allocate available time on data issues, bearing in 

mind that it is the tools and concepts that are out main focus. 

We have earlier stated that knowing the location and extent of change is of a central 

importance to improve land-use models. This project will focus a certain kind of aspect 

of location. We will develop a tool with which you can find where changes are taking 

place and which kind of neighborhood interactions are behind these changes. However, 

we will not look at which land-use classes are likely to change and to what extent, even 

though you may partly get answers to these questions through the same kind of analysis. 

The idea is only try to capture the spatial extent of neighborhood interaction and not the 

extent of land-use change on a more general level.  
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4. Methods 

This study is based on a methodologically combined approach, where a tool will be 

developed to quantify neighbourhood interaction, which again can be used to support 

the ultimate goal to derive empirically justified neighbourhood rules to be integrated in 

urban CA models.  

In order to develop such a tool and to find answers to our research questions the 

following methods will be applied: 

1. a literature study on the theoretical components of neighbourhood interaction; 

2. input data evaluation and preparation; and 

3. software development  

The findings from the literature study will be presented in the chapter on Theoretical 

Components of Neighbourhood Interaction. The chapter also includes a brief description of 

methods in basic spatial statistics and raster-based GIS functions that are relevant for 

the estimation of spatial interaction and neighborhood characteristics within the field of 

land-use dynamics.  

In the following stage, data from the study area will be evaluated regarding its suitability 

and quality and its contents will be prepared for data processing. These processes will be 

described in the report. Aspects regarding the contents of the data will be put forward 

and challenges related to data will be described. The major outcome of this method can 

be found in the chapter Data.  

The final stage is to design a programme that can be used for quantifying neighbourhood 

interaction between land-use classes. A conceptual model of the programme components 

will be made and a programme will be developed according to it. The conceptual model 

and the resulting programme will be described in the chapter Software Development. 
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5. Theoretical components of Neighbourhood Interaction 

5.1. Characteristics of spatial data  

Statistical methods for measuring relationships are well established in traditional non-

spatial statistics. These methods are based on assumptions that are not valid for spatial 

data. Typical of spatial data is that they may include a regional or a directional trend that 

vary in your data. This is for example the case with wind data and other spatially 

continuous environmental data. Additionally geographical features that are near each 

other are more likely have similar values more similar than distant feature. This 

phenomenon, which is referred to as spatial autocorrelation, violates the assumption that 

observations are independent on which traditional statistics is based (Mitchell 

2005:200-201). If nearby features are more like each other than distant features, there is 

said to be a positive spatial autocorrelation. An example of a data set with spatial 

autocorrelation is urban land-use data – since for instance in the vicinity of industrial 

feature there tend to be other industrial features. If neighbouring features tend to be 

unlike each other, this is termed negative spatial autocorrelation (Mitchell 2005:105).  

Spatial autocorrelation makes spatial data redundant in a statistical sense and therefore 

it may be of relevance to find out whether your data is spatially autocorrelated or not. 

Spatial autocorrelation is a typical characteristic of very precise data, holding small units. 

When using large geographical units the problem with spatial autocorrelation is not as 

present, but then again you risk loosing the local variation within the data. For example 

if you use a coarse resolution for your land-use data, will the land-use classes in real-life 

be a mixture of many kinds of land-uses. Researchers have proposed several techniques 

for dealing with this problematic issue. Broadly speaking, these are different resampling 

techniques to exclude the spatial influence or techniques to incorporate the spatial 

influence in the analysis for gaining a more accurate picture of real-world spatial 

relationships (Mitchell 2005:200-201). Of these, the latter technique is in line with this 

study. 

 14



Spatial interaction is closely related to the phenomenon of spatial autocorrelation. 

Spatial interaction can in its simplest be defined as the influence a geographic feature has 

on another geographic feature or in other words the spatial relationship that exist 

between them. Basic tools to support the quantification of spatial interaction do exist in 

desktop GIS. However, for studying the dynamics of land-use in a broader sense these 

tools have to be combined and developed further. Only then they may be able to measure 

real-life influence of land-use classes on each other within an area of interest. In the 

following we will describe GIS-based statistical methods a GIS functions, which may be 

useful for estimating neighbourhood interaction.  

5.2. GIS and measuring spatial interaction  

In desktop GIS, there are several methods, which enable you to identify and characterise 

patterns and clusters based on the feature or cell values of your data. So-called global 

statistics methods, like join count statistics for categorical data (Mitchell 2005:109); 

indicate if there is a spatial autocorrelation. To capture local variations, and so-called hot 

or cold spots in the data you can use local statistical methods, such as Local Geary’s c. 

While global statistics calculate a single statistic that summarizes the pattern for the 

study area, the local methods calculate a statistics for each feature, based on its similarity 

to its predefined neighbours. Local statistics can therefore help pinpointing which 

features contribute to the spatial autocorrelation, so that you can account for it in your 

model (Mithcell 2005:165).  

Global and local statistical methods use both the values of features and the spatial 

relationship between the features. In these processes, GIS compares the value of a target 

feature with the values of its neighbouring or all features, looping through all target 

features, calculating measures of the pairs of features we are interested in. We might for 

example want to know if the location of a certain land-use class correlated with the 

location of another land-use class within a dataset. A precondition for making this kind 

of local statistical analysis is that we need to define the area surrounding the target 

feature, which we are interested in. This area is what we call the neighbourhood. If you 

use a neighbourhood, you should define the shape and extent of it based on the spatial 

interaction of the particular phenomena of interest. However, the spatial interaction may 
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not be known or at least not empirically proved. Additionally the nature of the spatial 

relationship between the features needs to be defined (Mitchell 2005:135). The spatial 

relationship of two features could be known to decline with the distance to the target 

feature. However, in many cases the spatial relationship may not be known either. To 

carry out these statistical methods describing whether a pattern is dispersed, clustered 

or random, actually may require research on spatial autocorrelation and spatial 

relationships within your data, which is the focus of this study. 

Next we will go into GIS functions that apply for raster data. Raster-based functions are 

relevant, since land-use data is often represented and CA models incorporated with data 

in raster form. Several raster-based GIS techniques are available that may help in 

founding out the spatial interaction within raster data. In ArcGIS raster analysis can be 

carried out using the Spatial Analyst extension. Spatial Analyst allows you to perform a 

whole range of functions, including neighbourhood functions, using the so called Map 

Algebra language. When working with Spatial Analyst to find out about the 

neighbourhood interaction, you are likely to use many of these functions, which make it 

relevant to describe several of them in more detail:  

• local functions that work on single cell location 

• focal functions that work on cell locations within a user-defined neighbourhood 

• zonal functions that work on cell locations within zones, which can be a land-use 

class  

• global functions that work on all cells within the raster dataset 

• application functions that perform a specific application or task, as for instance 

the altering of resolution (ESRI 2007) 

Local functions, or per-cell functions, compute a raster output dataset, where the output 

value at each location (cell) is a function of the value associated with that location on one 

or more raster datasets. An example of a per-cell function is the base 10 logarithm of the 

cells in a raster.  
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Figure 2.  An example of a local function, in this case the base 10 logarithm, the expression being 

LOG10(INGRID) 

Focal functions create output values for each cell location based on the value of a certain 

location and the values identified in the defined neighbourhood around that location. 

Characteristic for these focal functions are that they move from cell to cell with an 

overlap and therefore they are also called overlapping neighbourhood functions. These 

generally calculate a specified statistics within the neighbourhood. For example, you can 

find the sum of the values within a rectangular Moore neighbourhood of 3 x 3 cells 

(figure 3 and 6). This is useful if we are interested in how many cells of a particular land-

use class is in the proximity of another land-use class. When carrying out these kinds of 

analysis, the neighbourhood size and configuration used play a central and will affect the 

calculated result.  The cells on the edge of the data set will be affected by the lack of 

neighbours. 
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Figure 3. An example of a focal function in ArcGIS, in this case using the expression  

FOCALSUM(INGRID, Rectangle, 3, 3).  

The zonal functions provide a set of tools for zonal analysis and computing zonal 

statistics. A zone is all the cells in a raster that have the same value. An example of a zone 

is a land-use class of interest. Zonal statistical functions perform operations on a zone-

to-zone basis, so that a single output is computed for every zone defined by the input 
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zone dataset. Based on the zone dataset, you calculate the statistics from a value raster, 

containing the input values to be used in the calculation. You can for instance calculate 

the mean land value in different land-use zones with the ZonalMean funtion. In that case 

the output is a raster dataset. You can also choose to calculate the zonal statistics an get 

a table as an output using the ZonalStatisticsAsTable function. In this case you do not 

need to choose what statistics you are interested in, since these fields will be 

automatically created: Value, count, area, min, max, range, sum, mean, and std fields will 

be created regardless of the input values. Majority, minority, median, and variety fields 

will only be created when the input value raster is integer. 
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Figure 4. An example of a zonal function, with the expression being ZONALMEAN(INGRID1, INGRID2)  

So-called conditions (Con) can be used to restrict the scope of another function in Map 

Algebra. Conceptually, the Con function visits each cell location and, based on the cell's 

value and the conditional statement, determines if the cell evaluates to true or false. If the 

cell evaluates to true, the output value for that location is identified in the true input raster 

or constant. If the cell evaluates to false, the output value for that location is identified in 

the false input raster or constant. It is by setting these kinds of conditions that you can 

implement for instance Cellular Automata using ArcGIS Spatial Analyst.  
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Figure 5. An example the use of a condition, in this case (Con(INGRID == 1), 1, 0) 

5.3. Neighbourhood configurations  

 

Figure 6. Examples of neighbourhoods, where 0 represents the target feature (cell) and 1 represents the 

neighbourhood. The central cell is not included in the neighbourhoods of these examples - usually it is.  

There are many kinds of neighbourhoods in use. Figure 6 presents a few examples of 

these. There is no general agreement on which neighbourhood to use – it depends on the 

purpose and application you are using it for. Generally very little research has been 
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addressed to evaluating the use of different neighbourhood configurations (Geertman et 

al. 2007:551).  In most cases the size and configuration of neighbourhood is chosen 

arbitrarily and only the direct neighbourhood of a location if taken into account – either 

4 cells according to the Von Neuman or 8 adjacent cells according to the Moore 

neighbourhood. In many cases no sensitivity testing is made regarding the choice of the 

neighbourhood size that is being used in for instance in Cellular Automata-based urban 

application. However, most certainly the choice of neighbourhood affects the result. 

(Batty  and Torrens 2001:26-27). 

it is recognized that the neighbourhood interaction between land-use classes in cities 

may extend beyond the most adjacent cells (Verburg et al. 2004a:671). This is why 

extended neighbourhoods have been used in recent research on neighbourhood 

interaction and in newly developed urban land-use models (Verburg et al.,2004a; 671, 

Geertman et al., 2008:554, Hansen 2008). For example, Geertman et al. (2008:554) and 

(Verburg et al. 2004a:688) used eight specific neigbourhoods on their 100 x 100 square 

meter data. Each zone was 100 meter wide, leading to a maximum distance of 800 meter 

around a specific location. Why that particular neighbourhood size was chosen was not 

reflected on in these articles and according to one paper this square shape was only 

chosen due to computational benefits. It was mentioned that the use of circular 

neighbourhoods would be better, since the distance between the neighbourhood and the 

central cell stay more or less the same in these (Verburg et la. 2004a:688).   

5.4. Weights, distance decay functions and neighbourhood rules 

In land-use models that aggregate the land-use development over many years, such as 

constrained urban CA models, it may be relevant to use weights representing the spatial 

interaction between the features or cells or. In this way the neighbourhood interaction 

influencing a cell can be aggregated. The simplest and most often used method in GIS for 

doing this is by specifying a matrix of weights for example between land-use classes 

either ad hoc or through a trial and error based method. In desktop GIS, you can also 

specify the rate at which the influence or spatial interaction decreases as the distance 

decreases. This is termed the distance decay. If the influence decreases at a constant rate, 

the inverse of the distance is a suitable weight measure. It can be derived by dividing one 
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(1) with the distance the feature is from the target feature. This means that the weight of 

a feature decreases with its distance from the observed feature. Other straightforward 

and integrated methods to include the spatial influence as weights are exponential 

distance decay, proportional weights and row-standardized weighting (Michell 2005: 

135-145). The drawback of these weights is that they are not in most cases based on real 

relations, from empirical studies. The use of these kinds of non-empirical weights as a 

basis for transition rules in land-use models, have been highly questioned and criticized 

(Hagoort et al. 2008:40, Malczewski 2000:16-19).  

Using weights between two separate land-use classes also address another problem. The 

spatial interaction doesn't only differ between land-use classes for example within a 

defined neighbourhood, it also differs according to the distance from the target 

feature/cell. According to Tobler's so called first law of geography “Everything is related 

to everything else, but near things are more related than distant things”. The meaning of 

it plays a significant role for understanding importance of spatial interaction in urban 

land-use dynamics (Barredo et al., 2003:146). Tobler's law stresses that the 

neighbourhood of a feature, also beyond the most adjacent space, can influence the 

feature as a function of distance. The influence of different land-use types on the land-use 

type under observation differs of course. A certain land-use can have a attracting, 

repulsive effect or no effect at all on another land-use at a certain distance. Often the 

effect changes over distance. For example a motorway in the direct proximity is not 

desirable for residential areas due to noise, pollution and other negative effects. However, 

having good access to a motorway from your home is a benefit of a residential area, when 

it is for instance one to two kilometres away.  

Empirically based distance decay functions can be used to describe the influence a factor 

have on another factor over distance. These functions can be integrated in land-use 

models as so called neighbourhood rules. They can be defined as transition rules that are 

based on neighbourhood interaction and its aggregated effect. Seven generalised types of 

neighbourhood rule shapes have been identified (figure 7). The seventh, not shown in the 

figure, represents those where no or an indifferent spatial relationship has been 

identifie
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Figure 7. A neighborhood rule shape typology modified after Hagoort et al., 2008:45 

But how can we actually derive these distance decay functions? First of all, you need to 

have access to good-quality temporal data, from which you can produce land-use classes, 

which are convenient to represent the land-use dynamics. The land-use classes need to 

be suitable for the scale of investigation and since they will have an effect on the 

observed distance decay function, they may not directly be applicable for another scale. 

Secondly, you need to analyse and quantify the amount of neighbourhood interaction 

that has been taken place in your study area since it has been found that the factors 

influencing the land-use dynamics may differ from place to place. Ideally you would have 

access to data the temporal resolution of one year, so that you could follow the 

development from year to year (Hansen 2008). Unless you have access to this you need 

to be aware of the consequences on the results. If you compare land-use with a temporal 

resolution of 10 years, the urban cells of the later land-use data will according to the 
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previous data have neighbours such as arable land. This would probably not be the case 

if the temporal resolution was one year, then the urban evolution would proceed so that 

the earlier datasets would give a more realistic picture of the neighbours of a new urban 

cell. When analysing the spatial interaction of land-use classes, you also have to take into 

account that the neighbourhood shape (form) and size influence the results of your 

analysis and you should therefore evaluate which neighbourhoods capture the spatial 

interaction the best. After this process you should be able to identify which 

neighbourhood rules are relevant for your case study area.  

A formal theory of shaping neighbourhood rules is only slowly developing. A difficulty is 

to recognize how many neighbourhood rules that need to be defined (Hagoort et al. 

2008:44). If your land-use data have 10 land-use classes, there are 100 combinations of 

land-use classes, whose neighbourhood interaction to study. If you additionally want to 

test the influence of different kinds of neighbourhoods the amount of analysis increases 

by 100 for each new neighbourhood type. It is unnecessary to carry out such an extensive 

process. The number of land-use relations to be analysed, can be cut down without 

compromising with the result, by not analysing static land-use classes, which do not 

change and by not analysing land-uses that are known not to interact, such as the 

passive classes (Hagoort et al. 2008:44). Instead main focus can be put on the active 

expanding urban classes. You can also use methods such as join count statistics to find 

out which land-use classes that show a spatial interaction of interest. Alternatively you 

can ask experts on land-use issues (Hagoort et al 2008:45).  

5.5. Spatial metrics and the enrichment factor 

One way of identifying neighbourhood rules and the processes they describe is to analyse 

spatial processes with the help of so-called spatial metrics. Spatial or landscape metrics 

have been used for a couple of decades in landscape ecology and recently also outside 

that field (Geertman et al. 2007:552). They were developed to describe the landscape 

structure on a patch, class and a landscape level. While in landscape ecology a class is 

represented by a biotope or a habitat type, it is represented by a land-use class when 

studying urban land-use dynamics. Although many spatial metrics have been developed 

and applied for the characterization of various, also urban, landscape patterns, their use 
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in urban studies has not been fully explored (Geertman et al. 2007:552). With spatial 

metrics you can describe spatial characteristics, such as the size, shape, number, kind, 

and configuration of the urban morphological structure, in an effective, innovative way. 

Spatial metrics cannot of course explain the causes of observed land-use patterns and 

processes, but they can give scientifically justified indications of causal relationships 

taking place (Geertman et al. 2007:552) and this is what is needed to justify the use of 

neighbourhood rules in urban CA.  

Several authors have found a landscape metric – the so-called mean enrichment factor – 

particularly appropriate for quantifying and analysing neighbourhood characteristics 

(Verburg et al. 2004a:685, Geertman et al. 2007:552-554, Hansen 2008). The enrichment 

factor characterises the over- or under-representation of different land-use types in a 

neighbourhood of a specific raster cell. To measure this over- or under-representation, it 

compares the amount of cells of a particular land-use type in the vicinity of a specific 

location as relative to the volume of cells of that land-use type in the study area in total. 

When the proportion of a land-use type in a neighbourhood equals the national average, 

the neighbourhood possesses an enrichment factor of 1 for that land-use type. If the 

neighbourhood of a specific location (cell) consists of 20% residential areas, whereas the 

proportion of residential areas in the study area as a whole in total is 5%, we can 

characterise the neighbourhood by an enrichment factor of 4 for residential areas. 

Contrary an under representation of a certain land-use type in the neighbourhood will 

result in an enrichment factor between 0 and 1.  

The equations for the enrichment factor are specified in Verburg et al. (2004a:671-672) as 

follows: 
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Where Fi,k,d characterises the enrichment of neighbourhood d of location i with land-use 

type k. The shape of the neighbourhood and distance of the neighbourhood from the 

central grid cell i are identified by d. This neighbourhood characteristic results from each 

 24



grid cell i in a series of enrichment factors for the different land use types (k). The 

procedure is repeated for different neighbourhoods located at different distances (d) 

from the grid cell to study the influence of distance on the relation between land-use 

types. 

The average neighbourhood characteristic for a particular land-use type l ( dkiF ,, ) is 

calculated by taking the average of the enrichment factors for all raster cells belonging to 

a certain land-use type l, following: 

∑
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where L is the set of all locations with land-use type l, and N1 is the total number of cells 

belonging to this set. 

To conclude, it seems that if we can make a programme that derives, the enrichment 

factor, we can arrive at theoretically and empirically more justifiable neighbourhood 

rules, which in their turn can help to improve urban CA models.  To make and to use 

such a programme we need to have access to spatio-temporal land-use data, which is the 

focus of the next chapter. 
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6. Data  

6.1. Description of data 

 

Data is important, because without data this kind of programme development could only 

be carried out on a theoretical level. Additionally it is of course relevant that there are 

data available that you can use in your programme. However, the main focus of this 

project is to understand how to analyse neighbourhood interaction and to actually learn 

how to develop a program characterising neighbourhood effects. It is not a data driven 

project, but a method-driven. Anyway, it is good to take a critical look at the data you 

work with, to be aware of its quality and possible disadvantages so that these do not 

cause unexpected problems in the software development process. In the long run, the 

availability of most suitable data is the key to get the best possible results, also regarding 

the quantification of neighbourhood interaction.    

 

Figure 8. The study area in South-Western Finland. The land-use codes are explained in table 1. 
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The data, which is used in the development process, is from South-Western Finland. It 

covers the area of eleven municipalities and the areas surrounding them; Turku, Kaarina, 

Lieto, Masku, Merimasku, Naantali, Parainen, Piikkiö, Raisio, Rusko, Rymättylä (figure 

8). In all the study area is 4900 square kilometres. The area within the municipalities is 

1913 square kilometres in all, including inland, coastal municipalities and municipalities 

situated in the archipelago. Both delineations are used. 

To study neighbourhood characteristics, temporal land-use data is required. Three land-

use datasets exist from the study area: two representing the situation in year 1990 and 

one representing the situation in year 2000. The land-use data has been produced 

according to the principles and classification of the European CORINE Land Cover 

project. The data therefore represents more the land-cover on the surface and not so 

much directly the purpose or use of land. It will however be referred to as land-use data 

in this report.  

CORINE LC is being produced differently for Finland than in most other European 

countries. The production is based on a combined method consisting of automated 

interpretation of satellite images and the integration existing digital map data. The 

quality of the source data and how these are benefited in the production process 

therefore affect the quality of CORINE. In addition to the European CORINE data set a 

national, less generalized data set have been made and it is the national version of 

CORINE 2000 that is used in this project. The national data set have a spatial resolution 

of 25 x 25 m pixels in comparison with the European vector data, where the minimum 

mapping unit for most features is 25 hectares (CLC 2000:3).  

The use of satellite images and map data for producing CORINE LC 2000 has been 

evaluated. According to the validation of the national CORINE LC 2000 dataset, the 

accuracy is 90 % for the most aggregated class at the co-called level 1 (for instance mire, 

class 4000), 80 % for level 2 classes (for instance forest, class 3100) and 70 % for level 3 

classes (for instance lake, class 5110) when compared to the National Forest Inventory 

(NFI) information (CLC 2000:41). The NFI does not cover agricultural and the artificial 

surfaces classes and therefore these classes were compared with another Finnish land-
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use data, SLICES, which is one of the primary sources for the artificial surfaces and for 

agricultural areas of CORINE LC 2000. Overall accuracies for these classes are high; 85% 

on level 1 and 85 on level 3 (CLC 2000:43).  

An official CORINE LC 1990 does not exist for Finland. The land-use data for year 1990 

has been produced after CORINE LC 2000 as an attempt to cover this data gap and to 

develop a method to make a data set with which land-use changes between these the 

years 1990 and 2000 can be derived. The 1990 data has only been produced for a pilot 

area in South-Western Finland. It has the same spatial resolution as the national 

CORINE 2000, i.e. 25 m cells. To ensure comparability, the production chain for making 

CORINE 2000 was repeated as much as possible, integrating data sets from 

approximately year 1990. Separate themes describing artificial surfaces, agricultural 

areas, forests, wetlands and water were produced using old digital map datasets, 

registers and satellite data received close to year 1990 (CLC 1990). Since a complete set 

of input map databases representing year 1990 was not available, like for year 2000, a 

fully compatible land-use cover classification was not possible to produce. So far there is 

little information on the quality of this data. What we know is, that data availability 

differed from the situation in year 2000 and that the lack of data sources representing the 

land-use situation in 1990 could partly be replaced by more extensive image 

interpretation and segmentation (CLC 1990). At the time of writing, a master's thesis is 

being made at the Finnish Environment Institute to evaluate the quality in more detail.  

A common challenge in the production of CORINE LC 2000 and the test version of 1990, 

is that the delineation of urban land-use classes or build-up areas, is partly based on the 

national Building and Dwelling register, containing information on the location, purpose 

and size of buildings. The problem with using register data that only are fixed to one 

geographical point, is that neither the point nor its attribute data can sufficiently explain 

the spatial extent and configuration of the buildings and their surrounding artificial land. 

This is especially essential for industrial and service buildings which often include 

extensive parking lots and other supporting facilities, all of which should be classified as 

urban artificial surfaces. This problem was reduced in the production of CORINE LC 

2000 by integrating interpretation of satellite images with available GIS data sets. For 
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CORINE LC 1990 an additional segmentation method that was based on multidate 

satellite data was used to capture these artificial areas . As part of data integration made 

for CORINE LC 1990 separate GIS and remote sensing-based (RS) datasets were merged 

according to several rules. Not only map data from the BDR was integrated, but also data 

from, but also data from other sources, such as SLAM, Unofficial Finnish Corine of year 

1990 and Corine LC 2000 (CLC 1990).  

The most relevant data quality issue of this project is related to how well the two land-

use data sets that are being used in the study match together or in other words how well 

they can be compared to describe the actual changes of urban land-use. For this analysis, 

we will use the Building and Dwelling Register (BDR) from year 2006. The register 

contains extensive attribute data, such as the coordinates of building, the construction 

year and the use of the building etc. The register is being updated by the municipalities, 

and the quality can therefore vary (BDR 2006). 

Both the land-use data and the building and dwelling register are concerned by INSPIRE. 

INSPIRE requires geographic data to be well-described, easily evaluated and easily 

accessible, of a good quality, available for broad use and harmonised across Europe 

(INSPIRE 2008). In relation to the INSPIRE Directive, several requirements are filled, 

but there is still work to be done.  

Against one of one major so-called INSPIRE principles it may be hard to find and to 

actually get access the data. A juridical agreement was made in order to obtain the data 

to this project. The situation of the data accessibility and availability of at least the land-

use data will be improved as part of the implementation of INSPIRE in the 

environmental administration of Finland. Within the same project the coordinate system 

will be changed from the national grid (Gauss Krûger projection) to the European 

standard ETRS89.   

For the official CORINE LC 2000 data, descriptions are available on the Internet, both 

regarding productions procedures and data. Also the BDR is well described. Although 

these descriptions are not made based on standards, they can with not too much an 

effort be converted to the metadata imposed by INSPIRE. The unofficial test data from 

 29



year 1990 is only described in a few articles that are of a more technical nature.  A 

drawback of this data was that its quality is not yet known, but more relevant for this 

project is to know how well the land-use data sets match thematically and spatially. A 

few analyses are carried as part of the data preprocessing to get a picture of this.  

6.2. Data preprocessing 

Table 1. The land use classes used in this project.  

Land-Use class in Corine Used land-use class  Description 
1110 and 1120 1100 Residential 
1210  1210 Industry and service 
1220 1220  Traffic areas 
1230  1230 Port areas 
1240 1240 Airports 
1310 - 1330 1300 Extraction and dump sites 
1410 1410 Green urban areas 
1421 1421 Summer cottages 
1422 1422 Sports facilities 
2110 - 2430 2100 Arable and semi-natural areas 
3111-3133 3100 Forest 
3241 -3246 3200 Grasslands and shrubs 
3310 3310 Beaches, dunes and sand plains 
3320 3320 Bare rock 
4111-4212 4000 Mire 
5110 5110 Lake 
5120 5120 River 
5230 5230 Sea 

We took a closer look at the data in order to check its compatibility, and to improve its 

suitability for this project, taking into account the time limits. The national classification 

of the land-use classes is unnecessarily narrow for this project and for urban land-use 

modelling purposes in general. The land-use data for 1990 and 2000 used in this study 

contained 38 classes and 40 classes respectively. CORINE is a land-cover data, not an 

urban land-use data set, and data that represent the urban land-use should preferably 
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include only relevant land-use classes to explain the processes and spatial interaction of 

interest. For instance, it is not relevant in respect to urban land-use modelling purposes 

and for this project, to know the exact type of forest. Rather it is relevant to know if 

there is forest or not, to find out if the proximity of forests have an attractive or repulsive 

effect on urban land-use. A need for reclassification was also supported by the 

indications that imply that the data quality improves by using a broader thematic 

classification (CLC2000; 41-44). A reclassification of the original land-use data was 

made, with ArcGIS Reclass by ASCII file function, to respond to these issues. The used 

classification is presented in table 1. In the rest of the report the classes 1100 to 1422 will 

be referred to as urban classes.  

 

Next, the land-use classes were compared. Inconsistent changes within a land-use class 

would indicate that the datasets used in the study are not comparable. There was also 

another purpose of this comparison. Two versions of the land-use data of 1990 had been 

made and we needed to decide which one of these to use. Since a sufficient evaluation of 

the quality of these data sets did not exist, we hoped this comparative analysis would 

help us to decide on that.  

 

    
Figure 9. The original 1990 land-use data with white holes and the 1990 land-use data, where the holes 

have been filled with Corine 2000 data.  

 

Before we look at the comparison, we need also to reveal that there were 172 745 cells 

that lacked a class in the land-use data of year 1990 (figure 9). These data gaps were filled 

with cell from the land-use data of year 2000. The majority of the cells were replaced 
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with agricultural, forest and mire cells, but about 20 000 urban cells were added as well. 

The replaced cells were the same for both the 1990 data versions.  

Table 2. A comparison on the amount of cells of a certain land-cover type in the original data sets from year 

1990 and year 2000, having a resolution of 25 times 25 meter.  

Used land-use 
class  

Description Land-use 1990 

All arable 

Land-use 1990 

Not all arable 

Land-use 2000 

1100 Residential 302560 302560 421902

1210 Industry and service 60675 60675 75712

1220  Traffic areas 60611 60611 91518

1230 Port areas 3529 3529 3666

1240 Airports 2417 2417 2512

1300 Extraction and dump sites 12256 12256 20098

1410 Green urban areas 2271 2271 3067

1421 Summer cottages, leisure 
homes 

90408 90408 140837

1422 Sports facilities 7988 7988 11022

2000 Arable and semi-natural 
land  

1870787 1719873 1715662

3100 Forest 2519714 2547196 2439737

3200 Grasslands and shrubs 769878 889997 769271

3310 Beaches, dunes and sand 
plains 

18 20 65

3320 Bare rock 78394 81590 44474

4000 Mire 115951 115966 123542

5110 Lake 12963 12963 12963

5120 River 24290 24290 26458

5230 Sea 1905390 1905390 1937494

 Total 7840000 7840000 7840000

 

No major inconsistencies were found (table 2) on this level of classification; all urban 

classes, those from 1100 to 1422, have increased on the expense of mainly the forested and 

arable land areas. However, how well this increase corresponds to actual changes cannot 

be evaluated here. It is certain that the use of slightly different methods and different 

source data also have a share in it. An indication of the effect of the use of different 
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methods and source data can be observed in the changes of the values of the most stable 

classes, where changes are not likely to have taken place in reality; such as for sea and 

mires. 

 

The differences between the 1990 data sets were obvious. In the first version (All arable), 

all possible arable lands from image interpretation and other data sources have been 

classified as arable on the expense mainly of the forest class, grasslands and shrubs, and 

the bare rock class. For the other version, the situation is the opposite. However, the so-

called urban classes are identical. In this research we are not interested in which cells 

that are being changed into urban cells, but instead we are interested in what type of 

cells those cells that have changed where in the proximity of before changing. Therefore 

we can conclude that it is indifferent which of the 1990 data sets we use for this study.  

  

Next it was checked how well the land-use data correspond with the buildings of the 

building and dwelling register. Generally the buildings from the BDR correspond very 

well with the location of the urban land-use classes that is the classes 1100 to 1422. A 

visual comparison show a very good spatial match between the location of buildings and 

the residential areas (1100) and summer cottage areas (1421). The same cannot be said for 

the aggregated business and service class (1210) and the port class (1230). In figure 10 all 

buildings are presented by the same symbol type, but in real-life service and business-

related buildings are generally bigger. This has been taken into account in the 

production of these land-use datasets by expanding or increasing the size of the 25 x 25 

building pixels, by 25, 50 and 75 meters according by their type of use (CLC2000:20). 

Part of the difference can also be explained by the extensive parking lots and other 

pavements that are related both to this class and the port areas that have been captured 

by the help of image interpretation and other map data as already stated before.  

The visual comparison also revealed that the road network represented by the traffic 

class (1220) was not continuous. Due to this, the traffic class is not representative of road 

accessibility. Therefore, if you include the traffic areas in the neighbourhood analysis, it 

will affect the result in an inconsistent way. To improve the land-use data to examine 

neighbourhood interaction the inconsistent traffic areas should preferably be eliminated. 
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This also is supported by the fact that the Road and rail network and associated land, 

that we have referred to as the traffic class is the worst class accuracy wise, according to 

a data quality study made on the national CORINE 2000 (CLC 2000:44). As part of the 

traffic elimination, you could also try to minimize the influence of the data gaps in the 

dataset of 1990 data that were replaced with land-use data from 2000.  

 

Figure 10. Visual comparison of the correspondence between land-use classes and buildings, showing land-

use from year 1990 (including all arable lands) and buildings from the end of 1990.  

One possible way to eliminate linear traffic features and to diminish the effect of the data 

gaps, would be to change the data into a coarser resolution, which actually could be 

quite a good idea. The use of a coarser resolution may also be better to capture urban 

land-use dynamics - it would at least be interesting to compare the 25 meter resolution 

with a coarser one to find this out. A drawback of the 25 meter cell resolution is that you 

need to analyse a four times more cells to reach the distance where the neighbourhood 

interaction ebbs away, than if you use data with the resolution of 100 meter. The use of a 

coarser resolution therefore reduces processing time.  

A simple way to change the resolution in ArcGIS is to resample your data. To completely 

eliminate traffic areas you need to reclassify the traffic cells into NODATA before doing 
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the resampling. An example of the result of resampling the land-use data based on the 

cells that have the majority is presented in figure 11. According to a visual comparison of 

the result with the original data set, it appears to be an effective tool to eliminate linear 

traffic feature. However, the disadvantages of this resampling method to the data quality 

are also obvious; it results in the elimination of other linear elements, such as a river s 

(light blue in the figure), the elimination of small features, such as stand-alone summer 

cottages (orange in the figure), distorting the composition of land-use classes and their 

location among themselves, which are crucial when studying neighbourhood interaction. 

To fix for instance the absence of for instance summer-cottages and rivers, we would 

need to separately rasterise these features into 100 meter cells and update the resampled 

data with them.  

 

Figure 11. The original data set of 25 meter cells (left) and the resampled data set of 100 meter cells (right) 

showing the city centre of Turku and the surroundings. 

A few other drawbacks of using resampling were also realised. If we resample by 

majority, the spatially most connected and extensive land-use classes will cluster and 

expand. In urban areas for instance residential areas will expand on the expense of parks 

and other less dominant land-use types. In more scarcely populated locations, for 

instance single residential cells and summer cottages that traditionally are not situated 

too close to each other, will be resampled into the surrounding dominant forest or arable 

class. You can regard this as a good method for eliminating non-urban stand-alone 
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houses in the countryside. However, in this way the good match with the BDR would be 

lost (figure 12). 

You can also argue that single stand-alone buildings are relevant to take into account in 

the neighbourhood calculations. Excluding these from the neighbourhood analysis 

would give the wrong result; since we found that it is in the vicinity to these stand-alone 

residential cells that further building development take place at least in the vicinity of 

attractive urban centres, such as the city centre of Turku. Also new summer cottages are 

likely to be built on free spots on the coast, despite the existence of neighbours, when 

more private locations no longer exist. These single residential cells and summer cottages 

cannot simply be added the resampled dataset as 100 meter residential a summer cottage 

cells. This way they might be expanded too much, so that new buildings from the 

subsequent year will coincide with already built-up cell, which mean that they will not 

be observed as new, changed cells. These things can be observed in figures 12 and 13. 
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Figure 12. A. Land use in year 1990 (All arable land) and existing buildings (black). Cell size is 25 m. The 

area is 10 kilometres wide. B. Land use in year 1990 (All arable land) and existing buildings (black) after 

resampling. Cell size is 100 m. The area is 10 kilometres wide.  
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Figure 13. A. Land use in year 2000 and existing buildings (black) in the end of year 2001. Cell size is 25 m. 

The area is 10 kilometres wide. B. Land-use in year 2000 and existing buildings (black) in the end of year 

1990. Cellsize is 25 m. The area is 10 kilometres wide.  

Based on these observations, we can conclude that the resampling method studied is not 

good enough in our case and we discarded the option to use resampling in this project. 
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We are fully aware of that if the goal of our project would be to derive actual 

neighbourhood rules, the resolution of 25 meter cells may not be the most convenient for 

studying neighbourhood interaction between land-use cells. In other neighbourhood 

studies a spatial resolution of 50-500 meter has been used, and of this range the 100 m 

resolution have been used most often (Engelen 2002:5, Hansen 2008, Verburg et al. 

2004:674, Geerman et al. 2007:554). Using small the 25 resolution grids, require the use 

of larger neighbourhoods, which increases the execution time considerably (Engelen et 

al. 2002:5-6). However, since we focus on developing a tool with which neighbourhood 

characteristics can be quantified, the scale of the test data is not of major importance. 

We also recognize the probable need to improve the land-use data thematically and 

temporally, if actual neighbourhood rules were to be derived from it. The use of land-use 

representing time series of subsequent years has been highly recommended by several 

authors (Verburg et al. 2004a:687, Hansen 2008). If you would have access to data 

representing the land-use of subsequent years, you could make the neighbourhood 

analysis based on actual yearly changes and on the neighbourhood interactions of each 

year. This would of course give much more reliable results, than if you are using data of a 

temporal resolution of ten years and where the neighbours have had time to change 

several times.  

A way to improve the data quality and thematic and temporal resolution to better fit the 

purposes of neighbourhood analysis, you could develop a method to update of the 

original land-use dataset(s) using the building and dwelling register. In the process, you 

could use the information about the annual increase of buildings, their building type and 

size. In this way you could for instance develop a good consistent way to extract service 

buildings from the aggregated service and industry class. This would be very desirable, 

since the repulsive and attractive effects service and industry have on itself and on other 

land-use classes may greatly vary. However, since the extent urban land-use classes do 

not directly correspond to the building and dwelling register, as we earlier 

demonstrated, but also to image interpretation, this may not be a straightforward task. 

Unofficial documents of the construction methods of the Finnish CORINE LC contains 

valuable information on how much each building type of BDR have been expanded, or in 

other words how much a the single buildings have been exaggerated in order to 
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represent it’s actual area in a two-dimensional space. Perhaps by using this information 

we could develop a method to extract the service class and to make an urban data set for 

subsequent years.  The suggested method was briefly tested, but we realized that the 

suggested method development need more focus than there was time for in this project.  
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7. Software development 

7.1. The structure of the programme 

In the first phase of the software development, a conceptual model of the programme 

was developed (figure 14). The conceptual model explains which parts and processes the 

model should consist of. How to process input data and how to derive neighborhood 

rules from the output is not included.  

The programme should be able to find changed cells between land-use in “year 0” and 

land-use in “year 1” (Calculate Changes). The changes should then be classified according 

to the type of change we are interested to look deeper into (Reclassify). In the case of 

urban sprawl and expansion, it is most interesting to analyse the neighbourhoods of 

where new residential, industry or summer cottage cells have emerged. In the following 

the amount of a particular cell-type (e.g. residential, industry) within a specified 

neighborhood will be calculated (Calculate Focal Sum). Focal Sum is a function in 

ArcGIS Spatial Analyst, which enable you to do this. Next, the neighborhood enrichment 

factor for all the neighborhood pairs (e.g. residential-residential, residential-industry) 

should be calculated, on cell-to-cell basis (Calculate Enrichment). Based on the detailed 

neighborhood enrichment data a general statistics table (Calculate Statistics) and a 

mean enrichment factor raster can be produced (Calculate Mean Enrichment). The base 

10 logarithm of the mean enrichment factor will be calculated (Calculate log10). The 

programme should loop trough all user-specified neighbourhoods and make the 

described output tables and rasters for all neighbourhoods. Next you should run the 

model on data from the following years, “year 1” and “year 2”, instead of “year 0” and “year 

1”. The data the model produces should be usable to evaluate the effects of using different 

neighbourhood configurations and to make scientifically founded neighborhood rules. 

Due to lack of time, focus was limited down to implement this conceptual model for the 

neighbourhood effect of existing residential areas/cells on new residential areas/cells. 

The same principles can be adopted for the rest of the land-use types of interest. Of 

course the Reclassify and Focal Sum functions have to be altered according to the land-

use pairs of interest. It is a question of taste if you would like to keep the analysis 
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separate for separate urban classes or if you would like to combine them to a separate 

script.  

 

Figure 14. A conceptual model of the programme structure 
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7.2. Choosing software 

 

In the beginning we thought of two options as programming environment; Octave and 

Python. The first alternative was to develop the program in Octave, the open-source 

equivalent to Matlab. Ethically, it would have been more convenient to make a program 

using Octave. Octave is a programme under GNU licence and the use of it is therefore 

free of charge and it is easy to share with any one. In this option the raster data would 

have been converted into text-based matrices and the calculation would have been based 

on simple mathematics and the programme would therefore have been very fast and 

effective.  

 

The other alternative was to use Python, which is also a GNU licensed programming 

environment. However, if ArcGIS functionalities, such as Spatial Analyst functions, are 

used in your Python script, you of course need to have the corresponding ArcGIS 

functionalities installed on your computer. This requires an expensive license. Due to the 

time limits of the project and due to our deeper knowledge of the implementation of 

ArcGIS functionalities in Python, than of the use of Octave, Python together with 

ArcGIS were chosen as the programme development environment. This choice went 

hand in hand with pre-specified requirements. The benefits of the Python and ArcGIS 

constellation is that it enables an easy integration of raster and vector GIS-data and that 

it makes visualising your results a straightforward task. It also means that the tool can be 

developed on using Map Algebra functions, which are easy to understand for users of 

GIS. Earlier efforts to quantify the neighbourhood interaction have been developed using 

C ++ (Verburg et al., 2004a:672) and Delphi (Hansen 2008), so in that sense use of 

Python together with  ArcGIS will bring forward  a new kind of an approach.  

7.3. The Python script 

 

The goal is to make a programme to support the estimation of neighbourhood influence 

between land-use classes. For this an ArcGIS-based Python script was created.  
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The enrichment factor is regarded as a useful measure for calculating neighbourhood 

interaction. In order to calculate the enrichment factor we need to know: 

1. the number of cells that that have the value 1100 within a certain neighbourhood 

2. the total amount of the cells in the neighbourhood 

3. the total  amount of 1100 cells within the area to be analysed 

4. the number of land-use cells that are being analysed 

The total amount of land-use cells needs to be inserted in the Python script by the user of 

the script. The rest of the numbers, the script calculates. Based on these values, the script 

generates the cell-specific enrichment factor, the mean enrichment factor, the log10 mean 

enrichment and statistics regarding the enrichment factor. This information is calculated 

for each neighbourhood size that has been pre-specified by the user.  

 

The script requires the following input data: 

• the original land-use 

• the land-use of a later year 

• neighbourhood text files, defining the extent of the focal analysis 

and additionally the following input parameters: 

• the number of land-use cells to be analysed 

• the cell size 

• the input, temporary  and output folders 

All input, temporary and output map data are in ERDAS IMAGINE (.img) raster format.  

In the following we'll go through the developed script step by step, bringing forward 

which things need to be changed if the script was to be applied for another area using 

other input data or for testing other neighbourhood relationships. On the way will also 

point out different kinds of findings and try to visualize what processes the script is 

actually carrying out.   
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# --------------------------------------------------------------------------- 
# CalcNeigbMetrics.py 
# created on: on may 1 2008  
# Lena Hallin-Pihlatie 
# 
# A programme for estimating neighbourhood characteristics 
# -------------------------------------------------------------------------- 

This first part of the script serves as an introduction. Everything that is after the sign # 

will not be interpreted by Python as code, but as additional comments. First the name of 

the script is specified (CalcNeigbMetrics.py). Secondly the script contains a date when 

this script was created. In this case the date expresses when the script was elaborated 

the last time (May 1st 2008). The author of the script is Lena Hallin-Pihlatie.  

# Import system modules 
import sys, string, os, arcgisscripting 
 

The actual script starts by importing system modules. Arcgisscripting makes it possible 

to use ArcGIS 9.2's functionalities.  
# Create the Geoprocessor object 
gp = arcgisscripting.create() 
 

To make Python able to actually use the tools of the ArcGIS 9.2 geoprocessor, several 

additional steps have to be carried out. First the Geoprocessor object needs to be created.  
 
# Check out any necessary licenses 
gp.CheckOutExtension("spatial") 
 
# Load required toolboxes... 
gp.AddToolbox("C:/Program Files/ArcGIS/ArcToolbox/Toolboxes/Spatial Analyst Tools.tbx") 
gp.AddToolbox("C:/Program Files/ArcGIS/ArcToolbox/Toolboxes/Data Management Tools.tbx") 
gp.AddToolbox("C:/Program Files/ArcGIS/ArcToolbox/Toolboxes/Conversion Tools.tbx") 
 

Next, since the Spatial Analyst extension is required to carry out most of the raster-

based analysis, the availability of the extension Spatial Analyst is checked. Finally the 

toolboxes the script is using need to be loaded. It should be mentioned that, the path to 

these Toolboxes may be different on another computer.  
# Allow output to overwrite 
gp.OverwriteOutput = 1 
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The script will be run several times. There is a need to be able to automatically overwrite 

the output data, both in the iterative construction phase but also when running the 

finalized script itself. The loop is constructed so that it creates temporal data sets that 

will be overwritten during the next loop. This will be pointed out in more detail later. 

The local variables and the geoprocessing environment specified below need to be 

changed in order to use this script on another data of perhaps another resolution. The 

lines that need to be synchronized according to user needs are marked in red.  
# Set the Geoprocessing environment... 
WS = "C:/Data/" 
gp.Extent = WS + "clc_1990_25m_eilaaj_classes.img" 
gp.CellSize = 25 
 
# Set the number of cells in the input 
CountTotal = 7840000  
 

Next the environment, where the script is to be run, is chosen. All input data and results 

will be fetched and put in folder “C:/Data”, unless another folder is specifically pointed 

out. For flexibility the Workspace is given the variable WS. The WS variable is used 

when setting the extent, the maximum and minimum x and y-coordinates of lower left 

and upper right corner. In this case it is the extent of the data set 

"clc_1990_25m_eilaaj_classes.img", which is being used. All analysis in this Python script 

will be carried out within the limits of the extent, and all output data sets will be of the 

same extent. The cell size should go hand in hand with the input data, which in this case 

have a resolution of 25 times 25 meters. A precondition for the script to work is of course 

also that the data sets to be analyzed have to be in the same coordinate system, covering 

the same extent. If the study area does not have a rectangular form, which can be 

specified by the extent, you might want to specify which cells to be included in the 

calculations with gp.Mask = WS + dataset_name. This gives you flexibility to test 

different kinds of mask for the same data. A mask can be useful for instance, if you want 

to study if the enrichment factor is different in a region or a municipality than in another.  

You also need to give the amount of cells that are included in your study area. In this case 

there are 7 840 000 cells. This figure is used in the calculation of the enrichment factor 

later on in the script.  
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# Local variables... 
# Input data ..  
LandUse1990 = WS + “clc_1990_25m_eilaaj_classes.img” 
LandUse2000 = WS + “clc_2000_25m_classes.img” 
 
# Temporary data  
Changes = WS + "changes.img" 
 
# Temporary data, overwritten in each loop 
ResidentialSum = WS + "Temp/residential_sum.img"  
ResidentialResidential = WS + "Temp/residential_residential.img"  
CountNeighbourConstant = WS + "Temp/CountNeighbourConstant.img" 
test1 = WS + "Temp/test1.img" 
test2 = WS + "Temp/test2.img" 
test3 = WS + "Temp/test3.img" 
test4 = WS + "Temp/test4.img” 
Constant = WS + "Temp/constant.img" 
 

In the following, the main part of script the local variables are set. Variables are very 

useful, since it is much easier to write a Python script using variables than whole file 

names. Only two input data sets are needed, representing the land-use at two times and 

these are marked in red. The temporary data sets are overwritten by each loop. As it is 

now, you need to go into this script and change the name of the land-use data to be 

compared each time you want to run it for new data sets.  This could of course be 

improved, for instance by using Tkinker. 

# Make a comparison of the changes between the input land-use images 
gp.Diff_sa(LandUse2000, LandUse1990, Changes) 
gp.Reclassify_sa(Changes, "Value", "1100 1100 1; 1112 5550 0" , ChangeResidential, "NODATA") 
 
 

Next, the changes between the land-use data will be extracted. A comparison is made 

between the data sets LandUse2000 and LandUse1990, using the Statistical Analyst 

(Diff_sa) tool. This local tool compares the cells of the first data set (LandUse2000) with 

the cells of the second data set (LandUse1990) and returns the cells that are different.  

In this particular version of the script we are only interested in which cells that are new 

residential cells i.e. having the Value 1100. Therefore the residential cells (1100) of the 

Changes data set is being reclassified to one (1), and the rest is classified to zero (0). Of 

course if you are interested in the changes of summer cottages, the corresponding 

classification has to be done, by exchanging "1100 1100 1; 1112 5550 0" with “1421 1421 1; 

1100 1420; 0 1422 5550; 0” 
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Figure 15. The new residential areas that have emerged between year 1990 and year 2000. 

 

To check that the Diff_sa function captures the right changes, and that the data sets can 

be compared, the data set where the new residential cells have value 1 and the rest value 

0 (ChangeResidential) was multiplied with the original dataset from year 1990 

(LandUse1990) in the Raster Calculator of Spatial Analyst: changes_residential.img * 

clc_1990_25m_eilaaj_classes. We found that 7 720 659 cells were unchanged, 34 256 have 

changed into residential cells from arable and semi-natural lands (2100), 52 727 have 

changed from forest (3100), 30 385 from grasslands and shrubs (3200), 1 966 from bare 

rock (3320) and 8 mire cells (4000). It seems that the Diff_sa function captures the 

changes of this data. Also figure 15 supports this statement. However, when we tested 

this same comparison with resampled 100 cell data, inconsistencies were found: other 

urban cells had changed class into residential, which is at least to some extent is unlikely 

to have happened. If you are interested in changes in the urban fringes and for instance 
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not in changes in proximity of stand-alone cells in the countryside, this Diff_sa function 

is not enough and should be changed.  

# Set initial conditions for the neighbourhood loop     
NumNeighbourhood = 5    # You need to know the number of neighbourhoods 
 
# Start neighbourhood loop 
Neighbourhood = 1 
while (Neighbourhood <= NumNeighbourhood):  
   gp.AddMessage("Neighbourhood:") 
   gp.SingleOutputMapAlgebra_sa("FocalSum((" + LandUse1990 + " == 1100), IRREGULAR, " + WS +   
"Neighbourhood_Circular_" +str(Neighbourhood) + ".txt, DATA)", ResidentialSum) 
 

You need to specify how many neighborhoods you want to use. The programme will 

iterate the rest of the script for all pre-specified neighbourhoods, where you expect that 

some neighbourhood interaction can take place. Iteration means to repeat a process and 

is sometimes referred to as looping. Iteration is a key concept in most programming 

languages enabling you to execute a process over and over using different data in each 

iteration. In this case the different data is the neighbourhood text files referred to as " + 

WS +    "Neighbourhood_Circular_" +str(Neighbourhood) + ".txt 

The number of neighbourhood specifies how many times this script should loop through, 

before being finished. NumNeighbourhood = 5 means that we are using five 

neighbourhoods. This value has to be changed according to the amount of different 

neighborhoods used. 

The initial value of the Neighbourhood = 1. The script will run as long as the condition for 

the While loop “while (Neighbourhood <= NumNeighbourhood): “ is true or in this case 

five times. The commands that are to be carried out within the loop are all intended. In 

the Python script, the processes to be carried out fit on a line, while in this document the 

line continues unintended on the next line.  

Next, we calculate the amount of cells that is residential cells (i.e. has the value of 1100). 

The calculation is made for each cell. We use the data set that represents the initial state 

or in this year the land-use of year 1990. The function FocalSum, sums up (1 + 1 + 1 and so 

on) the amount of 1100 that exist within a specified neighborhood.  This procedure can 

be demonstrated with a simple picture (figure 15). 
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Figure 16.  An example of: gp.SingleOutputMapAlgebra_sa("FocalSum((" + LandUse1990 + " == 1100), 

IRREGULAR, " + WS +    "Neighbourhood_Circular_" +str(Neighbourhood) + ".txt, DATA)", 

ResidentialSum) 

 

Figure 17. The neighbourhood text file used in figure 16. 

The neighborhood shape is defined by a text-file, where the neighborhood has value 1 

and the rest value 0. The neighborhood can have any shape as long as its name is in line 

with the loop number. str(Neighbourhood) stands in this case for 1 and the whole 

pathname of the first neighborhood file is: C:/Data/Neighbourhood_Circular_1.txt. In the 
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second loop number the text file ending with “2.txt” is used to specify the extent of the 

neighborhood and so on.  

In the example, figure 16, the impact of the edges on the analysed result is big. However, 

in a real situation the share of the edge is much less. To eliminate this problem, you could 

use two masks. In this case a mask where the area of the study area has been buffered to 

include cells for example on the other side of a municipality border in the FocalSum 

calculation. For the next steps of the script another mask can be used, covering only the 

actual study area, not taking into account the cells outside the municipality border 

anymore.    

# Get the FocalSum values for new residential areas only 
    gp.SingleOutputMapAlgebra_sa(ResidentialSum + " * " + ChangeResidential, ResidentialResidential) 
 

We are not interested in the FocalSum values of all cells, but only in the values of those 

cells that are new residential cells in year 2000. This is why the ResidentialSum is being 

multiplied with ChangeResidential, where the cells that have changed into a residential 

cell (Value =1100) have the value 1 and the rest have the value 0. The affect of this 

multiplication can be seen by comparing figure 18a and 18b.   

In figure 19 you can compare the location of the new residential cells with the urban cells 

of a land-use raster from 1990. Many new residential cells have emerged in the vicinity of 

existing urban, and especially residential, cells. The FocalSum function, that has been 

carried out, captures this phenomenon very well. 
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Figure 18a. An example of the FocalSum values of ResidentialSum raster. A neighbourhood of 61 cells have 

been used. 

 

Figure 18b. An example of the ResidentialResidential raster, which includes only the previous FocalSum 

values of new residential cells . A neighbourhood of 61 cells have been used. 
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Figure 19. The figure shows the amount of residential cells in the vicinity of new residential cells and their 

location in relation to the urban land-use of year 1990. The cell number of the neighbourhood is 61. The 

area is 7 kilometres wide.  

The next steps show how the values needed for the enrichment factor are being derived 

and how the enrichment factor output data is generated.  
# Derive the enrichment factor for each cell for the neighbourhood  
# Find out the amount of 1100 cells in the LandUse1990 table 
# Create search cursor 
    rows = gp.SearchCursor(LandUse1990, "Value = 1100") 
    row = rows.Next() 
    while row: 
       Count1100 = row.GetValue("Count") 
       row = rows.Next() 
    del row 
    del rows 
    print(Count1110) 

The enrichment factor is calculated according to formula (1), described in detail in 

chapter 5.5.  In order to calculate the enrichment factor we need to know in this case: 

1. the number of cells that that have the value 1100 within a certain neighbourhood size 

2. the total amount of the cells in the neighbourhood 

 53



3. the total  amount of 1100 cells within the area to be analysed 

4. the amount of land-use cells that are being analysed 

We already know the amount of cells that have the value 1100 within a certain 

neighbourhood, the “ResidentialResidental” data contains that information. We also 

know that the dataset to be analysed contains 7840000 pixels. We now need to find out 

the amount of residential cells (Value = 1100) in the land-use data that represents the 

initial state. First we search the Value 1100. The GetValue method returns a field's value, 

with the field name being the only input parameter. When found we can get the number 

of residential cells from the Count-field and use it later as the variable Count1100. The 

figure is printed to the Python Shell with print (Count1100) so that the user can follow 

and double check the calculations. For table 3 the Count1100 is 302 560. This number 

stays the same during the whole looping process, so you could save processing time by 

putting it outside the loop, for example after specifying the amount of cells to be 

analysed. If we were interested to study the effect of another class, the same procedure 

could be carried out to obtain e.g Count1421 by finding the value of the summer cottage 

class, 1421.  

Table 3. Example of LandUse1990. 
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   # Calculate the number of cells in the neighbourhood 
   gp.ASCIIToRaster_conversion(WS + "Neighbourhood_Circular_" +str(Neighbourhood) + 
"_to_image.txt", WS + "/Temp/Neighbourhood_" +str(Neighbourhood) + ".img") 
   rows = gp.SearchCursor(WS + "/Temp/Neighbourhood_" +str(Neighbourhood) + ".img", "Value = 1") 
   row = rows.Next() 
   while row: 
       CountNeighbour = row.GetValue("Count") 
       row = rows.Next() 
  del row 
  del rows 
  gp.CreateConstantRaster_sa(CountNeighbourConstant, str(CountNeighbour), "Float")  
  print(CountNeighbour) 
 

In order to calculate the enrichment factor, we also need to know the size of the 

neighborhood used. This number is different for each loop. We start by converting a text 

file representing the neighbourhood into an image. The text file used for making a raster 

is somewhat different from the text file used in the previous calculation. In addition to 

the row and column numbers, the x and y-coordinates of the lower left corner need to be 

specified and of course within the extent set earlier on in the script. The cellsize and the 

value of NoData also have to be included. The “cells” representing the neighbourhood 

have the value zero, while the rest have value -9999, the value of NoData (figure 20). The 

value of the rest could also be 0 – it wouldn't make any difference. When we know the 

“cells” of the neighborhood has the value 1, we can search for them and get their amount 

(CountNeighbour) the same way as in the previous case.  

Next, we can create a raster (CountNeighbourConstant) from the CountNeghbour 

value, by changing it to a string object (str(CountNeighbour)). It automatically 

generates a raster, in the cell size specified in the beginning of the script. We choose to 

make it into a floating point value (Float), but unfortunately the constant raster, but is 

still made into integer. There seems to be a bug here. 
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Figure 20. An example of a neighbourhood text file that can be used for making a raster.  

As referred to earlier, the numbers to be used for the enrichment factor calculations 

printed by for example the command print(CountNeighbour), so that you can follow the 

looping process in the Python shell (figure 21). This might also be useful to check that 

the input values to the following enrichment factor calculation are correct.  

 

Figure 21. The values of each loop are printed in the Python shell.  

 
    gp.Times_sa(ResidentialResidential, 1000, ResidentialDivide)  
 
    # Calculate the Neighbourhood Enrichment Factor 
    gp.Divide_sa(ResidentialDivide, CountNeighbourConstant, test1) 
    gp.SingleOutputMapAlgebra_sa(str(CountTotal) + " / " + str(Count1100), test2) 
    gp.SingleOutputMapAlgebra_sa(test1 + " * " + test2, test3) 
    gp.Divide_sa(test3, 1000.00, test4) 
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Divide_sa is a local function, where the values of the first raster is divided with the values 

of the second raster on a cell-by-cell basis According to ArcGIS help, you get a floating 

point value if either value you are using in your division is floating point.  Unfortunately, 

neither of the rasters contained floating values (due to the bug), so when we divided 

ResidentialResidential (e.g. containing values up to 9) with CountNeighbourConstant 

(e.g 9), the result was returned as integer and in this case all cells in the output raster 

gets the value 0. In order to solve this problem, we needed to multiply the 

ResidentialResidential data first, by another local function, Times_sa.  In this example 

the ResidentialResidential is multiplied by 1000 to create the new raster 

ResidentialDivide.  

 

According to the equation (1) presented in chapter 5.5, we can obtain the enrichment 

factor by the following divisions and multiplication, creating the temporal datasets test1, 

test2 and test3. One additional step is added to the calculation, since we need to divide it 

with 1000 to compensate for the earlier multiplication.    

 
    # Specifies what dataset the calculation should be put into 
    OutputEnrichment = WS + "Temp/Enrichment_ResRes_N" + str(Neighbourhood) + ".img" 
 
    # We are interested only in the situation of changed 1100 
    gp.SingleOutputMapAlgebra_sa("Con((" + Changes + " == 1100)," + test4 + ")", OutputEnrichment)   
 
 
Now we know the enrichment factor on a cell-to-cell basis and can assign the name of 

the output files for it to be saved in. The number of the loop is used, so that it will not be 

overwritten by the following loop. The condition (Con) ensures that only the value of 

the cells from test4 that have been changed into residential cells, will be put into the 

output raster (OutputEnrichment). In figure 22 you can see that actually many new 

residential cells have the value zero.  
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Figure 22. The enrichment factor for new residential cells using the first neighbourhood (Moore) presented 

in figure 17.  

 
 
    # Calculate the average enrichment factor and put the result into a table 
     
    gp.Reclassify_sa(Changes, "Value", "1100 1100 1" , Constant, "NODATA")       
    OutputTable = WS + "AveEnrichment_ResRes_N" + str(Neighbourhood) + ".dbf" 
    gp.ZonalStatisticsAsTable_sa(Constant, "Value", OutputEnrichment, OutputTable) 
    OutputImage = WS + "AveEnrichment_ResRes_N" + str(Neighbourhood) + ".img" 
    gp.ZonalStatistics_sa(Constant, "Value", OutputEnrichment, OutputImage, "Mean", "Data")  

After we have the enrichment factor for each cell, we can now calculate the average 

enrichment factor according to equation (2) in chapter 5.5. We want to make a zonal 

function, where the zone consists only of the new residential cells. A separate raster, 

Constant, is made by a reclassification function to represent this zone. In this way the 

cells that have the enrichment value zero is also included in the calculation. When the 

output table name has been specified, we can calculate the zonal statistics as a table 

(ZonalStatisticsAsTable_sa), using the Constant raster as the zone and the 

OutputEnrichment file as the input data. The output table contains the minimum and 

maximum values, the value range, the mean value, the standard deviation value and an 

aggregated sum of the enrichment factor values, within the specified zone (table 4).  
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Table 4. An example of the output of the ZonalStatisticsAsTable function.  

 

We also want to make a raster representing the average enrichment factor. We can do it 

by first specifying an output file name, OutputImage, and by then using the 

ZonalStatistics_sa function, where it is specified that we want to calculate the mean value 

and that the calculation will be based only on data, not on possible NoData values.  

 

Figure 23. An example of the average enrichment factor.  

# Calculate base 10 logarithm for the Enrichment factor and the Average Enrichment factor 

    gp.Log10_sa(WS + "Output/AveEnrichment_ResRes_N" + str(Neighbourhood) + ".img", WS + 
"Output/AveEnrichment_ResRes_Log_N" + str(Neighbourhood) + ".img")  

 

In most cases the mean enrichment factor is presented as the base 10 logarithm. When 

the base 10 logarithm is used, small values, where the residential class is 

underrepresented and have an average value under 1 will be assigned negative values. 

 59



This is convenient, because it shows that instead of being a positive autocorrelation, 

there is actually a negative one. We therefore decided to include the calculation of the 

base 10 logarithm in this script.  

 
Figure 24.  An example of the base 10 logarithm average enrichment factor, using the input data of figure 

23. 

 

 
    Neighbourhood = Neighbourhood + 1 
 

This marks the end of each loop and also the end of the programme after the final loop.  

By this stage you have three separate rasters as a result of each neighbourhood loop. In 

the following you can combine the rasters with the combine function of Spatial Analyst, 

for combining the neighbourhood wise data sets to three combined raster datasets, 

containing the attribute values of all neighbourhoods. Unfortunately the function did not 

completely meet our needs – it turns all values into integer, eliminating all valuable 

variations. However, by first multiplying the values by for instance 1000 in the similar 

manner as earlier, this problem can be solved.  
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7.4. Test run 

In the following we will present some test results, calculated by the script. We 

calculated the enrichment factor for new residential areas, both regarding existing 

residential cells, as in the script above, and for existing summer cottages within the 

eleven municipalities pointed out in the Data chapter. Five neighbourhoods were used 

(figure 25). The neighbourhoods are based on aggregation, so that the first 

neighbourhood contains the cells with number 1, the second neighbourhood contains the 

cells of number 1 and number 2, and so on. Since the cell size is only 25 meter, we can 

expect no radical changes in the enrichment factor within this the maximum distance, 

used here.  
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Figure 25. The extent of the neighbourhood used in the analysis. 

All results earlier presented focus on the average enrichment factor and its base 10 

logarithm. However, since a cell-to-cell based enrichment factor raster is generated using 

this programme, we take a look at these rasters first.  

Table 5. The variation of the enrichment factor on a cell-to-cell basis 

Neighbourhood N1 N2 N3 N4 N5 
 

Enrichment Factor: 
Residential-Residential 

0-14.59 
 

0-15.16 0-15.77 0-16.02 0-16.15 
 

Enrichment Factor:  
Residential-Summer Cottage 

0-51.98 0-49.52 0-46.83 0-42.79 0-43.14 
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It does not seem logical that the enrichment factor of residential-summer cottages is 

higher than the enrichment factor of residential-residential (table 5). However, we found 

the explanation of this. Of the study area, 6.09 % is covered by residential areas and 1.71 

% by summer cottage areas. The relative low share of the summer cottages influences the 

calculations, so that s neighbourhoods that included summer cottages therefore get a 

higher value of over-representation, than if the same neighbourhood would contain the 

same amount of residential cells. This is problematic and has not been revealed in studies 

where only the average enrichment factor has been addressed.  

The average enrichment factor is lower for summer cottages than for residential areas for 

the zone of new residential cells (table 6). There are relatively few high enrichment factor 

values in the cell-to-cell based data set.  The broader variation of enrichment factor 

values can also be seen as higher standard deviation (std) values for summer cottage 

areas. Despite the higher range of values and higher variation of enrichment values, the 

average enrichment factor seems to describe the overall situation well: the neighbours of 

new residential cells are overrepresented by existing residential cells, while new 

residential cells are either under-represented or almost as present as in the study area on 

average in the neighbourhoods of the new residential cells.  The increasing trend in the 

figures also seems logical, since it is more likely that there is a residential cell over 50 

meters away, that really close to existing residential or summer cottage cells. It is not 

needed to build buildings as close as 25 meters to each other, in a country like Finland, 

where there is enough space for every one.   

We would have expected the mean enrichment and the base 10 log values to have been 

higher for the residential cells. Verburg et al. (2004:676) obtained the mean enrichment 

value of 7.9 in the Moore neighbourhood of residential cells, when using land-use data 

from year 1989 and 1996. Compared with the Netherlands, the building activities in 

Finland are in general more dispersed and less controlled, explaining some of the 

difference. The use of 500 meter cells in comparison with 25 meter cells in this study, 

also explain part of the difference. In our study no single standing houses were eliminated 
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through aggregation or resampling methods. In comparison, the data used in the Dutch 

study, was aggregated from 25 m to 500 m cells according to the majority rule, 

diminishing the role of dispersedly situated settlements.  

Table 6. The average enrichment factor for new residential cells in relation to residential cells and summer 

cottage cells in the 1990 data. Information of the observed standard division is also included. 

Neighbourhood N1 N2 N3 N4 N5 
 

Average 
Enrichment  
Factor(std): 
Residential- 
Residential 
 

2,37879 
(3.55) 

2,50902 
(3.37) 

2,69285 
(3.15) 

2,73605 
(3.00) 

2,7045 
(2.87) 

Average 
Enrichment  
Factor(std): 
Residential- 
Summer cottage 
 

0,867761 
(4.36) 

0,979208 
(4.31) 

1,16746 
(4.24) 

1,28651 
(4.10) 

1,34008 
(3.91) 

In a visual comparisons, made earlier in this study, we could observe that new residential 

buildings are generally built in the vicinity of existing ones, in urban areas. However, if 

there are only a few residential cells in the neighbourhood, as is the situation in many 

cases outside highly urbanized areas, the result will not indicate over-representation, 

which evens out the neighbourhood effect of residential areas. The neighbourhood 

interaction is also partly evened out due to the broad temporal resolution of the data. Our 

data has a time gap of 10 years, it may in may cases seem that the neighbours are arable 

land or forest, even though in reality the process of urbanisation have continued in a 

certain direction cell by cell. To capture these yearly subsequent changes, requires data of 

a better temporal resolution (Hansen 2008), so to some extent the low mean enrichment 

values of residential cells were expected as a result of the land-use data used.  

The neighbourhood configuration also plays a role. In the study carried out by Verburg et 

al. (2004:671), Moore neighbourhoods and extended Moore neighbourhoods were used. 

In this way, a lot more cells where included than in our configuration, for example for the 

fifth neighbourhood 121 cells in comparison with our 61 cells.  
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In some studies, the base 10 logarithm values have been found to be as high as 0.9 to 1.3 

(Verburg et al. 2004:677-680,  Hansen 2008). In a study carried out by Geertman et al. 

(2007:559) the over-representation near new residential areas for the period 1986-1993 

were found to have values between 0.7 and 0.3, depending on the characteristics of the 

area observed. The latter value is similar to the values obtained in this test run (table 7). 

There have been no results published on the mean enrichment factor for summer cottage 

areas, so we cannot make any comparison with results of others regarding them.  

Table 7. The base 10 log average enrichment factor of new residential cells in relation to residential cells 

and summer cottage cells in the 1990 data 

Neighbourhood N1 N2 N3 N4 N5 
 

LogAverage 
Enrichment 
Factor: 
Residential- 
Residential 
 

0,376356 
 

0,399505 
 

0,430212 
 

0,437124 
 

0,43087 
 

LogAverage 
Enrichment  
Factor: 
Residential- 
Summer cottage 
 

-0,0616 
 

-0,00913 
 

0,067241 
 

0,190941 
 

0,12713 
 

The overall results of the test run seem logical in relation to the study area and available 

data. We can conclude that the role of data and neighbourhoods are big, for observing 

neighbourhood interaction. There also seems to be a lot of regional and scale-related 

variations. We also found that the enrichment factor is very sensible to the proportion of 

the observed land-use in the study area as a whole. This sensibility is good to be aware of 

when deriving neighbourhood rules from the resulting values. 
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8. Results and discussion 

During the scope of this project we have described the components of neighbourhood 

interaction in land-use dynamics and modelling as it is understood and approached 

today. We have recognized, that neighbourhood interaction plays  a central in urban 

land-use dynamics and that we can improve the transition rules of land-use models of 

today, and particularly CA-based ones, by knowing and quantifying the rules of the 

neighbourhood interaction. Literature indicated that a spatial metrics, the enrichment 

factor, is an appropriate measure of neighbourhood interaction, what can help in 

defining the needed neighbourhood rules and so we decided to make a tool with which 

the enrichment factor can be quantified.   

Earlier attempts have been carried out to quantify neighbourhood interaction in the form 

of the enrichment factor, but no one seems to have used a raster-based Map Algebra 

approach for doing it. In the process of developing the tool, we ran into challenges and 

obstacles related to the pre-processing of raster data and to the use of the ArcGIS and 

Python constellation. The challenges that appeared as Python or ArcGIS bugs could be 

solved by adding more procedures to the script. This of course makes the programme 

more time-consuming to run, but hopefully in the long run the advantages of working 

closely with visualisation tools and easily understandable Map Algebra will win. The 

speed can also be cut down by using input data of a coarser resolution.  

Based on our data evaluation, the land-use datasets were found to have a good spatial 

and thematic match with each other and with the building and dwelling register. 

Nevertheless, it was not ideal for analysing neighbourhood interaction. In the report, 

changes are suggested to the land-use data, regarding its temporal resolution, the 

thematic classification and the resolution. According to our experience, it is not a simple 

task to change the resolution of a good-quality temporal land-use data in raster form. We 

made an attempt in the data-processing phase, since we recognized that the original 

resolution of the land-use data, 25 meter cells, was not ideal for studying urban land-use 

dynamics. Despite the fact that we also had access to the building and dwelling register 

(BDR) and good documentation of the production methods of the land-use datasets, we 
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could not successfully carry out all the data processing we found relevant; including the 

deriving of a service class and the production of land-use data for subsequent years. Even 

though the production of our land-use data was well documented, it was not detailed 

enough in order to extract a land-use class (e.g. service) from within an existing land-use 

class (e.g. industry and service). Due to the combination of automatic image 

interpretation and the use of diverse map data in the production process of the land-use 

data, it is challenging to produce land-use data representing the situation of subsequent 

years. The challenges related to data could not be solved within the limits of this project. 

However, this is not of major importance, since the main focus of the project was to 

develop a tool that can be applied on more suitable data later on.   

We succeeded in making a simple tool in the form of a Python script for quantifying 

neighbourhood interaction, in the form of the enrichment factor, between land-use 

classes. By using the tool, the influence of different input data and different 

neighbourhoods can be analysed in several ways, using the output rasters and tables of 

the programme. The data you use for deriving neighbourhood characteristics may vary 

regarding spatial, thematic and temporal resolution and this will affect the resulting 

enrichment factor. With the tool, you test which kind of data best captures the 

neighbourhood interaction that you are interested in quantifying.  

More specifically, the data set representing changes in a certain land-use type and the 

enrichment factor raster data set, can be used in for example ArcGIS to visually locate 

areas where changes has been taken place and possible areas with a big deviations in the 

enrichment factor. In this way it you can evaluate if your calculations are representative 

for your whole study area or if you possibly should analyze your data in smaller parts. 

The DBASE table that contains zonal statistics again can be useful for evaluating the 

quality of the mean enrichment factor, using information on the standard deviation. You 

can combine the tables for all neighbourhood sizes to make summarizing graphical 

presentations. The average mean enrichment factor raster can be used for visualizing 

purposes. You can compare the mean enrichment factor with the 10 base logarithm mean 

enrichment factor data and consider which numbers you want to elaborate further into 

actual neighbourhood rules.  According to several authors (Verburg et al. 2004:685), it is 
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possible to use the calculated enrichment factors to assist in the definition of 

neighbourhood rules. Unfortunately, we did not have time to test this in practice.  

According to literature, surprisingly little focus have been put on the neighbourhood 

configuration, even though it may have a big effect on the result. This tool may also be 

used to indicate which neighbourhood configuration is most suitable for capturing urban 

land-use interaction, since the user of the tool can choose the size and the configuration 

of the neighbourhood delineation he wants to use, by making simple text files as 

demonstrated in the previous chapter. 
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9. Conclusion and prospects 

We met most of the goals that were set up in the beginning of our project. We have 

explained what neighbourhood interaction is, what central components it has, how it 

can be measured and why it is so important in the field of land-use dynamics and 

modelling. We have demonstrated in practice that the neighbourhood interaction can be 

studies using Map Algebra-based coding in Python. We have developed a tool that met 

most of our expectations. However, how the enrichment factor can be transformed into 

actual neighbourhood rules for use in for instance a Cellular Automata-based model 

remain to be discovered. This is anyway better to carry out when data better meet our 

needs. 

The challenges regarding data were surprisingly big and time consuming. A major effort 

should be put on this in subsequent work. In order to be able to properly evaluate the 

developed Python script, we need to test it on another data. Preferably this would be 

land-use data with a classification suitable for capturing relevant interaction between its 

land-use classes, land-use data of a bit coarser resolution and most importantly land-use 

data of subsequent years, produced in a consistent way, retaining data compability.  

Data is important because only with suitable datasets can we gain true knowledge of the 

neighbourhood rules of a certain area. Unfortunately, your results are never better than 

the data you rely on in your analysis, however good a method or tool you have developed. 

Fortunately people are working on improving the overall data situation continuously and 

new data sets are being made. For the time being a European Urban Atlas and CORINE 

LC 2006 are under production. With the implementation of the INSPIRE, other kinds of 

improvements will also take place. If they are sufficient for the needs of land-use 

modellers remain to see.  

Today, we live in a world where we are surrounded by technology. There are all kinds of 

tools out there. Even by using desktop GIS you can develop land-use models for making 

land-use simulations. There are also tools available, which could make it possible to 

integrate these as a part of participatory decision support systems. Imagine the 
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participants of a planning process being able to simulate the future alternatives using 

their own criteria and constraints, and giving the results in the hand of the planner. 

Technically this is already possible. However, there are still challenges on the way. We 

need to analyse the phenomena behind land-use change for making empirically justified 

transition rules to base our land-use models simulating “What if scenarios” on. This 

project is a small step towards this goal.  
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