Singulær perturbationsteori for diskrete lineære operatorer
Studenteropgave: Kandidatspeciale og HD afgangsprojekt
- Niels Lund
4. semester, Matematik, Kandidat (Kandidatuddannelse)
I denne rapport introduceres en matematisk beskrivelse af den periodiske struktur i en to-dimensionel krystal. Dette gøres i form af et perfekt gitter med et atom i hvert gitter-punkt. Bølgefunktionerne for elektronerne i denne krystal danner grund for et Hilbertrum. På dette rum defineres Hamiltonoperatoren, hvis spektrum består af de tilladte energi-niveauer for elektronerne i krystallen.
Ved at udskifte en af atomerne i gitteret opnås et nyt ikke-perfekt gitter. Hamiltonoperatoren for dette gitter har, ud over det oprindelige spektrum, en isoleret ikke-degenereret egenværdi. I rapporten vises det at denne egenværdi er stabil under magnetisk perturbation, samt at den perturberede egenværdi kan skrives som en asymptotisk række omkring feltstyrken.
Ved at udskifte en af atomerne i gitteret opnås et nyt ikke-perfekt gitter. Hamiltonoperatoren for dette gitter har, ud over det oprindelige spektrum, en isoleret ikke-degenereret egenværdi. I rapporten vises det at denne egenværdi er stabil under magnetisk perturbation, samt at den perturberede egenværdi kan skrives som en asymptotisk række omkring feltstyrken.
Sprog | Dansk |
---|---|
Udgivelsesdato | 23 maj 2014 |
Antal sider | 49 |
Udgivende institution | Department of Mathematical Sciences |
Emneord | perturbationsteori |
---|