AAU Studenterprojekter - besøg Aalborg Universitets studenterprojektportal
A master thesis from Aalborg University

Machine Learning og Tværsnittet af Skandinaviske Aktiemarkedsafkast

[Machine Learning and the Cross-Section of Scandinavian Stock Market Returns]

Forfatter(e)

Semester

4. semester

Uddannelse

Udgivelsesår

2023

Afleveret

2023-06-01

Abstract

This thesis investigates whether machine learning techniques such as random forest and gradient boosting improve cross-sectional asset return forecasting statistically and economically compared to traditional OLS regression. The analysis deviates from extant literature in three ways: (1) addressing the U.S. bias by analyzing Scandinavian stocks, (2) including fewer variables to get an eye-level comparison, and (3) excluding micro caps. Surprisingly, this thesis finds OLS exhibiting superior predictive performance that translates into economic profitability relative to machine learning techniques. However, OLS is only marginally better than gradient boosting and all three portfolios generate significant Sharpe ratios. Reasons for the underperformance might include limitations in the data size and potential over-/underfitting. Nevertheless, there is moderate support for the results when looking at the deviations in the methodology (1-3) and when seeing the existing results in the literature through a critical lens.

Dokumenter


Kolofon: Denne side er en del af AAU Studenterprojekter — Aalborg Universitets studenterprojektportal. Her kan du finde og downloade offentligt tilgængelige kandidatspecialer og masterprojekter fra hele universitetet fra 2008 og frem. Studenterprojekter fra før 2008 kan findes i trykt form på Aalborg Universitetsbibliotek.

Har du spørgsmål til AAU Studenterprojekter eller Aalborg Universitets forskningsregistrering, formidling og analyse, er du altid velkommen til at kontakte VBN-teamet. Du kan også læse mere i AAU Studenterprojekter FAQ.