Author(s)
Term
4. term
Education
Publication year
2017
Submitted on
2017-06-10
Pages
71 pages
Abstract
Regenerative medicine is an emergent field whose future potential is huge for all sorts of biomedical applications. Despite the progress in tissue engineering has already led to successful clinical trials, great work needs yet to be done in regard of skeletal muscle regeneration. This report gathers the investigation of novel scaffolding techniques for that purpose by the use of coaxial electrospinning. This promising technique offers the possibility to entrap living cells within a core-shell fibre structure to restrict cell growth in a desired direction. This alignment would be a friendly environment for the development of skeletal muscle but requires the assessment of cell viability proliferation and differentiation. The scope of this research aims to address such issues for different cell types, emphasizing on the study of mouse myogenic C2C12 cells, which demonstrated to survive the electrospinning process and remain viable over time. PCL-shell and PEO/alginate-core polymers proved to be the optimal materials for fibre biofabrication the fibrous scaffold. However, further research is required to analyse the regeneration potential, since no evidence of differentiation was found in this project.
Keywords
Documents
Colophon: This page is part of the AAU Student Projects portal, which is run by Aalborg University. Here, you can find and download publicly available bachelor's theses and master's projects from across the university dating from 2008 onwards. Student projects from before 2008 are available in printed form at Aalborg University Library.
If you have any questions about AAU Student Projects or the research registration, dissemination and analysis at Aalborg University, please feel free to contact the VBN team. You can also find more information in the AAU Student Projects FAQs.