Author(s)
Term
4. term
Education
Publication year
2007
Submitted on
2007-06-04
Pages
110 pages
Abstract
Design of modern multi-layered composite shell structures such as wind turbine blades is a highly complex task due to the conflicting requirements of high strength and stiffness at low weight and cost. In the development of such products, design optimization methods have become an increasingly important tool in aiding the designer at obtaining rational designs. Such optimization procedures rely on computationally efficient and robust analysis tools. The objective of the present project is to develop and implement efficient isoparametric degenerated shell finite element formulations for analysis and optimization of laminated composite shell structures. On basis of preliminaries pertaining to the finite element analysis of laminated composite shell structures, the governing equations for linear static stress analysis and linearized buckling analysis are developed. Formulation of degenerated isoparametric shell elements is shown and furthermore the thickness dependency of the strain-displacement relation is expressed explicitly. In combination with a linear approximation through the thickness of the inverse Jacobian matrix, explicit thickness integration is enabled. Consequently, the evaluation of element matrices may be performed efficiently for multi-layered shell elements with more than four layers. For higher number of layers, the formulation is an order of magnitude more efficient compared to layer-wise numerical integration schemes. The explicit thickness integration scheme's similarity with the integrations performed to obtain ABD-matrices in Classical Laminated Plate Theory reveals a link to lamination parameters. Thus, the stiffness matrix may be expressed in terms of an extended set of lamination parameters which turns out to be convenient in stiffness optimization. Structural design optimization is introduced and the maximum stiffness and the maximum stability design problem is formulated. For these problems design sensitivity analysis is shown for generalized design variables. From here, the focus is turned towards design optimization of composite laminates. Problems of non-convexity of a fibre angle parametrization is addressed by two simple examples. To provide convexity in stiffness optimization an alternative laminate parametrization is presented in terms of lamination parameters and the use with an existing laminate optimization procedure is outlined. A number of numerical examples are shown to validate the implementations of a 9- and a 16-node version of the element formulation. Convergence and accuracy of the `new' formulation is very similar to that of the existing isoparametric degenerated shell elements. In the thick shell range, the approximations made to enable explicit thickness integration cause some inaccuracy. For radius of curvature-to-thickness ratios above 25, the deviation of displacements compared to the existing isoparametric formulation is less than 4%. Eventually, two optimization examples confirm the performance gain in multi-layered settings.
Design af kompositte skalstrukturer med mange lag, såsom vindmøllevinger er en yderst krævende opgave grundet de modstridende krav om høj styrke og stivhed ved lav vægt og pris. Udviklingen af sådanne komponenter baseres i stigende grad på designoptimering som et værktøj til at opnå rationelt forbedrede designs. Disse optimeringsværktøjer er afhængige af beregningseffektive og robuste analyseværktøjer. Formålet med dette projekt er at udvikle og implementere effektive isoparametriske degenererede finite element skalelement-formuleringer til analyse og optimering af laminerede kompositte skalstrukturer. På basis af indledende studier relateret til finite element analyse af laminerede komposit skalstrukturer opstilles de styrende ligninger for lineær elastisk statisk spændingsanalyse samt lineariseret bulingsanalyse. Degenererede isoparametriske skalelementer formuleres og yderligere udtrykkes tøjnings-forskydningsmatricens tykkelsesafhængighed eksplicit. Kombineres dette med antagelsen om lineær variation af den inverse Jacobi matrice gennem tykkelsen muliggøres eksplicit tykkelsesintegration. Som følge heraf kan elementmatricerne evalueres beregningsmæssigt effektivt for skaller med mere end fire lag. For skaller med endnu flere lag resulterer formuleringen i betydelige besparelser med hensyn til beregningstid sammenlignet med den eksisterende lagvise integration. Den eksplicitte tykkelsesintegrations lighedspunkter med integrationerne udført for at bestemme ABD-matricerne i klassisk laminat pladeteori afslører en relation til laminatparametre. På baggrund heraf kan stivhedsmatricen udtrykkes i et udvidet sæt af laminatparametre hvilket viser sig anvendeligt i optimeringsøjemed. Grundlæggende begreber indenfor strukturel designoptimering introduceres og maksimum stivhed og maksimum bulingslast optimeringsproblemerne formuleres. For de ovennævnte formuleringer udledes sensitiviteter med hensyn til generaliserede designvariable. Dette specialiseres til optimering af kompositlaminater. Problemer med ikke-konveksitet ved anvendelse af en fibervinkel parametrisering illustreres ved to eksempler. For at opnå konveksitet i stivhedsoptimering foreslås en alternativ parametrisering i form af laminatparametre, hvorefter brugen af disse i en eksisterende optimeringsprocedure skitseres. Numeriske eksempler anvendes til at verificere implementeringen af 9- og 16-knuders skalelementerne. Konvergens og nøjagtighed for de "nye" formuleringer viser sig at være meget tæt på de eksisterende isoparametriske degenererede skalelementers ditto. For tykke skaller får approksimationerne, som er indført for at udføre tykkelsesintegrationen eksplicit, indvirkning på nøjagtigheden af resultaterne. For krumningsradius-tykkelsesforhold over 25 er afvigelserne fra den eksisterende isoparametriske formulering mindre end 4%. Slutteligt påvises elementformuleringens effektivitet for elementer med mange lag ved to optimeringseksempler.
Documents
Colophon: This page is part of the AAU Student Projects portal, which is run by Aalborg University. Here, you can find and download publicly available bachelor's theses and master's projects from across the university dating from 2008 onwards. Student projects from before 2008 are available in printed form at Aalborg University Library.
If you have any questions about AAU Student Projects or the research registration, dissemination and analysis at Aalborg University, please feel free to contact the VBN team. You can also find more information in the AAU Student Projects FAQs.