AAU Student Projects - visit Aalborg University's student projects portal
A master thesis from Aalborg University

Diffuse ceiling ventilation - Experimental and numerical analysis based on variation of room geometry and heat load distribution

Author(s)

Term

4. term

Education

Publication year

2014

Submitted on

2014-06-06

Pages

76 pages

Abstract

Større fokus på reducering af energiforbruget og forbedring af indeklimaet giver udfordringer i bygningers designfase. I rum med store personbelastninger skal store ventilationsmængder til, for at opretholde en god luftkvalitet, ofte med det resultat at træk eller høje temperaturgradienter opstår. Diffus loftindblæsning er et ventilationssystem, hvor frisk luft blæses ind gennem loftet, hvilket giver en lav indblæsningshastighed, selv ved høje luftmængder. Luftstrømningerne i rummet er derfor kontrolleret af den termiske belastning. Typisk genererer systemet god opblanding og de lufthastigheder, der opleves i opholdszonen på virkes ikke af hvor stor luftmængde, der tilføres rummet. Tidligere undersøgelser har vist, at diffus loftindblæsning har evnen til at fjerne store termiske belastninger uden at forringe indeklimaet. Nyere forsøg har dog indikeret, at problemer kan opstå ved store rumhøjder og ved visse fordelinger af varmebelastninger. Den eksperimentelle del af denne afhandling er en undersøgelse af vigtigheden af tre parametre: rumhøjde, fordeling af varmebelastninger og indblæsningsgeometri. Resultaterne består af målte lufthastigheder og temperaturer i testrummet og er evalueret vha. en metode hvor det termiske indeklima angiver systemets køleevne. Resultaterne viste at både rumhøjde og placering af varmebelastninger havde en stor på virkning på systemets evne til at fjerne varmebelastninger uden at skabe træk, men også at lufthastighederne steg, når luftmængden til rummet blev større, modsat tidligere undersøgelser. CFD simuleringer er foretaget i programmet FloVENT for at uddybe forståelsen for luftstrømningerne i nogle af eksperimenterne. En referencemodel med ens randbetingelser som et af forsøgene blev lavet, og validering med de eksperimentelle resultater viste god sammenhæng. Referencemodellen var herefter modificeret for at teste nogle af de tendenser, der blev oplevet under målingerne. Modellerne skulle hjælpe til at forstå, hvad der skete ved ændring af luftmængde, rumhøjde eller indblæsningsgeometri. CFD simuleringerne viste god sammenhæng mellem målinger og numeriske modeller. Lufthastighederne i rummet var afhængige af luftmængden, og rumhøjde havde en stor betydning på indeklimaet. Ændring af indblæsningsgeometri havde ikke nogen særlig virkning i det omfang den blev ændret.

A continuously growing focus on lowering the energy consumption and improving the indoor climate gives challenges when designing buildings. In densely occupied spaces, large amounts of fresh air must be supplied to keep a good indoor air quality, often with the result that draught or high temperature gradients occur. Diffuse ceiling ventilation is an air distribution system in which the air is supplied from the entire ceiling surface, giving a low supply velocity. Therefore the flow pattern in the room is controlled by the present heat sources. The system typically generates high mixing and the air velocities in the room are expected not to be influenced by the flow rate to the room. Previous studies have shown that diffuse ceiling ventilation has an ability to remove large heat loads without compromising the indoor climate, however recent experiments indicate that problems can occur at large room height and with certain heat load distributions. The experimental part in this thesis is an investigation of the importance of three parameters: room height, heat load distribution and air supply geometry. Results consist of measured air velocities and temperatures in the test room and are evaluated using a method where the thermal climate in the room determines the cooling capacity of the system. The results of the measurements showed that both room height and heat load distribution had great importance on the performance of the system, but also that air velocities in the room increased when increasing the flow rate opposite previous experimental investigations. CFD simulations were set up in the program FloVENT to either further investigate the nature of the flow in some experimental situations. A reference model with conditions similar to one of the experiments was created, and validation showed good accordance between experiments and CFD model. The reference model was modified to test some tendencies experienced in the experiments, namely what happens when changing flow rate, room height or supply geometry. The CFD predictions showed very similar results as the experiments. Air velocities in the room was dependent on the flow rate, and room height had a great significance on the thermal indoor climate in the room. It also showed very vague changes when changing supply geometry from small slot diffusers to a fully diffuse ceiling.

Keywords

Documents


Colophon: This page is part of the AAU Student Projects portal, which is run by Aalborg University. Here, you can find and download publicly available bachelor's theses and master's projects from across the university dating from 2008 onwards. Student projects from before 2008 are available in printed form at Aalborg University Library.

If you have any questions about AAU Student Projects or the research registration, dissemination and analysis at Aalborg University, please feel free to contact the VBN team. You can also find more information in the AAU Student Projects FAQs.