AAU Student Projects - visit Aalborg University's student projects portal
A master thesis from Aalborg University

Design of a Blast Resistant Armour Plate

Author(s)

Term

4. term

Education

Publication year

2017

Submitted on

2017-06-01

Pages

156 pages

Abstract

Formålet med det foreliggende speciale er at foreslå et design for en sprængningsresistent panser gulvplade for køretøjer i militære applikationer. Projektet er udført i samarbejde med Composhield A/S, en panserproducent for militære applikationer, som søger at udvide deres allerede omfattende produktkatalog indenfor letvægtsbeskyttelsespaneler til beskyttelse af deres klienter i verdensomspændende militære brændpunkter. Det foreslåede design er et panser gulvpanel med specifikationer, der tilbyder beskyttelse imod en sprængningslast fra en eksplosiv placeret direkte under køretøjet bestående af en ækvivalent TNT-vægt på 0,12 kg i en afstand af 0,5 m, m.a.o. case-lasten. Panelet modstår større sprængningslaster med få modifikationer. En tredelt fremgangsmåde i forhold til problemet er taget, og består af en analytisk, en numerisk og en eksperimentel del. Kun den analytiske og numeriske del er færdiggjort, men den eksperimentelle del er planlagt for den nære fremtid. Den analytiske del er udført for at opnå en solid forståelse af de bestemmende sprængningsparameter og et indledende gæt på designparametrene. Denne del er hovedsagelig medtaget grundet akademiske overvejelser. Den faktiske designproces er udført rent numerisk. Et af de signifikante problemer i specialet er at bestemme eller kvantificere sprængningslasten virkende på køretøjets gulvpanel fra en eksploderende DM51 håndgranat, hvilket producerer case-lasten. Et udførligt studie af sprængningseffekter er derfor udført for at bestemme designlasten virkende på køretøjet, som bruges igennem hele projektet. Dette er efterfulgt af et materialestudie i et tilgængeliggjort aluminiumsskum med det formål at bestemme de energiabsorberende egenskaber og ultimativt dettes anvendelighed i et panserpanel. Analytiske studier er anvendt for at bestemme deformationen i dette skum under last, og den optimale fordeling af masse i henholdsvis frontpladen og skummet for maksimal energioptag er ligeledes bestemt. Fremstillingsparametrene er dog meget krævende at kontrollere mens omkostningerne stadig holdes nede, og dette resulterer i et skum, der til tider er meget uhomogent, hvilket i en række designapplikationer er uacceptabelt. Et alternativ, der gør brug af en gitterkonstruktion, er derfor undersøgt resulterende i et design, der er yderst modificerbar til specifikke behov. En numerisk designproces, ved hydrocodes, er anvendt i forsøget på at finde et kompetent sprængningsresistent design, hvilket også er hovedfokusset for dette speciale. Det kompetente design er fundet igennem et parameterstudie over en række iterationer med optimeringskriteriet at minimere restlasten i strukturen efter deformation af panserpanelet. Det eksperimentelle arbejde er ikke udført, men en plan for den nære fremtid er beskrevet i rapporten. Dette inkluderer en verifikation af de observerede afvigelser imellem de analytiske og numeriske modeller samt en fuldskala test af panserpanelet for validering af hvorvidt panelet er i stand til at modstå sprængningstruslen.

The objective of the present M.Sc thesis is to propose a design for a blast resistant armour floor panel for vehicles in military applications. The project is conducted in cooperation with Composhield A/S, a military armour manufacturer, who aim to enhance their already extensive product portfolio within lightweight protection panels supplying greater protection of their clients in theatres of operation around the world. The proposed design is an amour floor panel with specifications offering protection against a blast load from an explosive placed directly beneath the vehicle of equivalent 0,12 kg TNT at a distance of 0,5 m, i.e. the case-load. The panel does resist greater blast loads with slight modifications. A three-way approach to the problem is taken consisting of an analytical, a numerical and an experimental approach. Only the analytical and numerical approach are finished in the following report, while the experimental approach is planned for the near future. The analytical approach is utilised for obtaining a solid understanding of the governing blast parameters and an initial guess of different design parameters. This approach is mainly academical. The actual design of the armour panel is conducted purely numerically. One of the significant problems in the thesis is to determine or quantify the blast load acting on the floor of the vehicle originating from an exploding DM51 hand grenade of 0,12 kg TNT at a distance of 0,5 m. An extensive study of blast effects is therefore conducted in order to determine the design load on the structure acting as a load case for the remaining of the project. This is followed by a study of the material parameters of foamed aluminium in order to determine the energy absorbing properties and ultimately the applicability in armour panels. Analytical studies in determining the deformation and the optimum distribution of front panel and foam mass for maximum energy absorption are conducted. However, the manufacturing methods of aluminium foams are very difficult to control while remaining cheap resulting in a, at times, highly inhomogeneous material which is unacceptable in some applications. An alternative using a lattice structure is therefore investigated, resulting in a highly modifiable structure which can be re-engineered for specific needs. A numerical design procedure using hydrocode is utilised in search of a capable design concept for blast loads which is the main focus of the thesis. The capable design is reached through a parametric study of multiple iterations minimising the residual load in the structure following the deformation of the armour panel. The experimental approach has not been conducted, but a plan for near future experimental work is described in the report. This includes verification of discrepancies between the analytical and numerical approach, and a full-scale test of the armour panel for validation of the ability of the panel to withstand the specified blast threat.

Keywords

Documents


Colophon: This page is part of the AAU Student Projects portal, which is run by Aalborg University. Here, you can find and download publicly available bachelor's theses and master's projects from across the university dating from 2008 onwards. Student projects from before 2008 are available in printed form at Aalborg University Library.

If you have any questions about AAU Student Projects or the research registration, dissemination and analysis at Aalborg University, please feel free to contact the VBN team. You can also find more information in the AAU Student Projects FAQs.