AAU Student Projects - visit Aalborg University's student projects portal
An executive master's programme thesis from Aalborg University
Book cover


Balancing Privacy and Accuracy in Machine Learning Models with Differential Privacy

Term

4. semester

Publication year

2025

Submitted on

Pages

89

Abstract

This thesis studies how to keep personal data safe in machine learning by using Differential Privacy (DP). It tests several models Logistic Regression, Decision Trees, Naive Bayes, and Neural Networks on the Adult Income dataset. The models are trained on both original and DP protected data with different privacy budgets. Naive Bayes works well with DP because it is sim- ple and uses probability. Ensemble mod- els also keep good accuracy across privacy levels. Neural Networks with DP-SGD bal- ance accuracy and privacy, helping reduce privacy attacks. The study suggests using Naive Bayes, ensemble models, and DP- SGD for real world use where both privacy and accuracy matter.