Author(s)
Term
4. term
Publication year
2014
Submitted on
2014-06-03
Pages
112 pages
Abstract
Prostatakræft, der er kræft i blærehalskirtlen, er den hyppigste kræftform blandt mænd. I dag diagnosticeres prostatakræft på baggrund af mistanke for kræft fra resultater fra blodprøve og rektal eksploration. Før en endelig diagnose kan stilles, skal mistanken bekræftes ved fund af ondartede celler i vævsprøver. Disse tages fra områder i prostata via endetarmen, enten på vilkårlig vis eller med visuel vejledning fra transrektale ultralydsbilleder. Det er dog uhensigtsmæssigt, at nålen, som vævsprøverne tages med, nemt kan undlade at ramme en kræftknude, og ligeledes uhensigtsmæssigt, at kræftknuder kan være svære at identificere på ultralydsbilleder. Dette foranlediger et højt antal af falske negative diagnoser, hvilket betyder, at mange kræftsyge mænd forbliver udiagnosticerede. Et non-invasivt diagnosticeringsgrundlag med større detektionsrate og færre falske negative er derfor ønskeligt. Magnetic resonance imaging (MRI) har vist lovende egenskaber i diskrimination af sygt prostatavæv fra raskt prostatavæv, og flere studier foreslår brug af multiparametrisk MRI data som basis for diskriminationen for at inkludere mest mulig viden om forskellige væv. Multiparametrisk MRI data består af både anatomiske og fysiologiske MR billeder, der hver især afbilleder og fremhæver forskellige egenskaber ved samme væv. Disse billeder fortolkes ofte kvalitativt ved manuel visuel identification af anormale egenskaber, eksempelvis forskelle i billedintensiteter eller strukturelle irregulariteter. Det kan dog være en stor arbejdsbyrde at skulle fortolke så store datasæt, og derfor er udvikling af kvantitative og reproducerbare metoder til analyse af multiparametrisk MRI data meget attraktiv. Dette projekt opstiller en procedure for automatiseret lokalisering af prostatakræft på basis af multiparametrisk MRI data bestående af T2-vægtede, diffusions-vægtede og T1-vægtede dynamisk kontrast-forstærkede billeder. Den opstillede procedure for automatiseret lokalisering af prostatakræft består af tre processeringstrin: Som det første segmenteres prostata i billederne. Dernæst klassificeres hver prostatavoxel til at være enten en kræftkandidat voxel eller en voxel, der repræsenterer normalt prostatavæv. Denne voxelklassificering baseres på den enkelte voxels fremtoning med hensyn til billedintensitet og tekstur i de multiparametriske MRI data. I det tredje processeringstrin inddeles alle kræftkandidat voxels i regioner ved hjælp af enten LoG kantdetektion eller watershed transformation, og hver region klassificeres efterfølgende til at være enten en kræftregion eller en region bestående af normalt prostatavæv. Et billedområde, som identificeres som kræftregion i flere forskellige MR billedtyper, betragtes som en lokaliseret kræftknude. Gennem validering mod reference data fastslået ud fra ekspert påvisninger af sande kræftknudelokationer vurderes det at den indledende voxelklassifikation virker som tilsigtet. Antallet af mulige kræftvoxels indsnævres uden at sande kræftvoxels udelades. Valideringen viser ydermere, at den bedste kræftknudelokalisering opnås ved at bruge dels LoG kantdetektion til inddeling af kræftkandidat voxels fra voxelklassifikationen i regioner, og dels ved at basere den opstillede procedure på sammenstilling af resultater fra flere af de forskellige slags MR billeder til rådighed. Den opstillede procedure for automatiseret lokalisering af prostatakræft baseret på multiparametrisk MRI er et lovende værktøj for hele processen for håndtering af prostatakræft. Den kan hjælpe til tidlig og præcis diagnosticering ved at målrette biopsiproceduren, på sigt kan den potentielt fungere som et screeningsværktøj, og endeligt kan den hjælpe i planlægning og opfølgning af strålebehandling.
Prostate cancer is the second most frequently diagnosed cancer worldwide. Suspicion of prostate cancer is usually based on results from a prostate-specific antigen blood test and a digital rectal examination. However, a definite prostate cancer diagnosis can only be stated from cancer positive results from needle biopsy. This diagnostic procedure carries a risk of serious complications for the patient and has been proved to have poor sensitivity, i.e. the needle may easily miss a tumour. At present, visual guidance using transrectal ultrasound most often aids in targeting the needle positions, however, still many prostate cancer cases remain undiagnosed after the first biopsy. Magnetic resonance imaging (MRI) has shown promising results in the differentiation of healthy and cancerous prostate tissue. To integrate as much information as possible, more studies support the use of multiparametric MRI, i.e. a set comprising both anatomical and physiological MR images of the same prostate tissue but corresponding to different acquisition conditions, thereby reflecting different tissue properties. However, the interpretation of these images is typically performed in a qualitative manner by manual visual detection and classification of abnormal features such as intensity differences and structural irregularities. A more quantitative and reproducible approach for analysis of the multiparametric MRI is desired. This project proposes a framework for automated localisation of prostate cancer using multiparametric MRI data comprised of images from T2-weighted, diffusion-weighted, and T1-weighted dynamic contrast-enhanced MRI. The proposed framework consists of three processing steps: In a first step, the prostate is segmented. Each voxel within the prostate is then in a second step classified either as a cancer candidate voxel or a voxel representing normal tissue, based on a set of voxel features of intensity and texture extracted from the set of multiparametric MRI data. In a third step, the set of found cancer candidate voxels is segmented into regions by means of one of two segmentation methods, LoG edge detection and watershed transform. Based on a subsequently extracted region feature, each region is classified as a cancer region or a region most probably representing normal prostate tissue. A cancer region identified at equivalent image location within more types of MR images is considered a localised tumour. Validation of the tumour localisation results against ground truth established by statements from an expert of true tumour locations shows promising results. The best localisation performance in terms of correct localisation of true tumours with minimum of falsely localised tumours was achieved applying LoG edge detection for the region segmentation in the step of identification of cancer regions, with 9 of 11 true tumours correctly localised and a mean number of 2.67 false positive tumours. On the other hand, use of watershed transform for the region segmentation in the step of identification of cancer regions produced correct localisation for 8 of 11 true tumours and a mean number of only 1.33 falsely localised tumours. The proposed framework for automated prostate cancer localisation using multiparametric MRI is a promising tool in the management of prostate cancer. As a diagnostic tool it could readily aid in targeting biopsy procedures. In the long term, after a few refinements and more research, automated prostate cancer localisation using multiparametric MRI may, on its own, serve as a screening tool and totally replace the need for biopsy.
Documents
Colophon: This page is part of the AAU Student Projects portal, which is run by Aalborg University. Here, you can find and download publicly available bachelor's theses and master's projects from across the university dating from 2008 onwards. Student projects from before 2008 are available in printed form at Aalborg University Library.
If you have any questions about AAU Student Projects or the research registration, dissemination and analysis at Aalborg University, please feel free to contact the VBN team. You can also find more information in the AAU Student Projects FAQs.