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Abstract:
Emerging location based applications

like security, monitoring, tracking,

emergency and others require accuracy in

localization information anytime and
anywhere. This represents a great
challenge for researchers and industry.
We investigate a data fusion based on
SVM. Previous works have already bee

done. The innovation in this report com

n

ES

from the RSSI measurements that are the

SVM input, and from the indoor (with
AP, computers and MS) and specific
outdoor (only AP and MS) environment
considered. Algorithms were

implemented to improve the MS positio

estimations (SVM output). We obtain the

best results in indoor with 70% (60% in
outdoor) of MS well predicted thanks to|
computers and MS cooperation. More
cooperative algorithms can be associat
with the previous ones to reach peak

performance.
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1. Introduction

Until now a lot of work regarding geolocalizatioashbeen done. In wireless
networks the goal was to localize as accuratepoasible a sensor or a mobile
station. ldentifying the position of sensors nodemobile stations is really
interesting and useful for the resource allocasind also to manage the network in
term of efficiency.

Several techniques have been implemented. Theyndimadlifferent kind of
information TDOA, AOA or RSSI. Let us take GPS wh@OA measurements are
considered. This technology does not fit when wes@ter urban environment
because of the presence of buildings. Moreoverctiséis not negligible due to the
high battery consumption.

Other work has been done using the same kind afatainput. From those they can
estimate the location of the sensor nodes. Howdlvesge techniques are subject to
noise and to the cost of the localization. Indeéeastimate mobile locations for
instance we need BS which have to deal with seveadililes inside the coverage
area.

1.1 Related work:

Regarding localization using SVM there are 2 ddfdrinteresting works which
have already been done [1] [2].

The T'work deals with RSSI signals and AP dispatchettiénarea considered. An
SVM process is running in order to determine M&tmmn according to the RSSI
information. The output of this system, namely élseémation of the MS positions
depends on a weighting process in which each M8iposlepends on his
surrounding neighbors (AP). Probability calculai@nd weighting functions
attributed to the MS’s neighbors give a predictedifion.

The 2% work concerns a dispatch of a certain amountsRfrAa square area
running SVM according to hyperplans (more explaratiwill be found in the
SVM part 3.3). The project doest not handle RSSAsueements but distances
between the AP. Moreover the environment considdoes not include any
obstacle (walls, buildings).

1.2 Thesis contribution:




In our project, we deal with RSSI data as in tHexisting work but otherwise than
determining MS positions considering mathematicabpbilities and dealing with
a regression function our work is based on clasgifn of data.

Some of our Scenarios are based on fieddsting work in the sense that we
classify data but we do not distance as inputatt 2 signals received by a MS
from 2 AP which are at the same distance to thecEtShave 2 different RSSI. So
our project deals with on more constraint. Morepwer decide to use a more
realistic environment. Finally, the number of ARgm®s too high in the existing
work to fit with a real practical need.

We decide to take into consideration WLAN techngldg fact, we consider 2
different Scenarios. The first one is based onwdaor environment in which w
only consider LOS transmissions. The second isidodr Scenario where both of
LOS and NLOS transmissions are considered.

Above is the organization of the report:

* Chapter Il explains the project description, whietiudes the Scenarios, the
problem definition, the scope of the project amdliiy the necessary
assumptions.

» Chapter lll deals with the background theory regaydundamentals of
positioning, localization according to hyperplansi also SVM.

* In Chapter IV, we will talk about the protocols ametwork management,
namely who runs SVM, transmit the data, and homémage several APs in
the same area.

* In Chapter V, all the algorithms implemented, name&VM, MRA, OCA
and ICA are explained

* Chapter VI shows the simulation models, the resuitsthe discussion about
them.

* Finally, Chapter VII concludes the project by pragseg a sum-up of the work
that has been done plus an overview of the futunw



2. Project Description

2.1. Introduction

We use cooperative mobile localization in this pcbjto obtain a better localization.
Using ad-hoc system and RSSI measurements willipaetio get better accuracy
regarding the calculations of the positions. Butnged to devise an accurate and
efficient technique for fusing data.

SVM has proved over the last 10 years its efficgancsolving classification problem
[3] thanks to a strong mathematical theory and @dedact that it is adaptable to
several kinds of data which has to be classifiegt(image) [4]. From RSSI

measurements in ad-hoc network and thanks to SVMiM/be able to determine
locations.

2.2. Scenario
In this project we consider 2 different Scenarios:

Outdoor Scenario:

We consider an infrastructure link between the Béhtselves and also the same
infrastructure link between the mobiles and the AP.

So we consider 1 communication possible:

* Short range — WLAN (802.11g) between the accesgpand several
mobiles connected thanks to infrastructure-baséd¥MS) and
infrastructure-less (MS->MS) communications for 8wenario 1.

All the AP are placed in the cell such that eaclbibeacan communicate with the
other mobiles. Let us consider that we hawkfferent AP. We assume that the
positions ofk different APs k<n) are known in order to determine the locationhef t
(n-k) mobiles.

The environment and the communication are simulmdédatlab. Moreover the
calculations of the location are also done accgrthnMatlab and Borland C++.

Below comes a diagram (Figure 2.2.a) that repregéetoutdoor Scenario
considered in the project:
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Figure 2.2.a: Outdoor Scenario with AP

In Figure 2.2.a several access points are dispat@hever the 2D field.

Each of them belongs to the WLAN network whosediake represented by the
yellow flashes. Therefore, every access point cennounicate with all the others
within this network.

The position of all the APs is fixed so we assuha they are not moving in time.
We will refer to them as beacon nodes.

The second diagram (Figure 2.2.b) represents tttouScenario including some
mobiles whose locations are unknown.

The goal is to determine their position accordimghie signals they receive from the
beacon nodes. This is why we consider this WLANwvogk which permits to every
beacon nodes and other nodes to communicate.

More explanations regarding the localization wélfound in the part 3.2 of the
report.

11
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Figure 2.2.b: Outdoor Scenario of the project waitbbiles

Advantages of this Scenario:

We use an existing network with APs and mobiles.

Once the AP are placed they are staying in the sdace and the calculations
regarding them only have to be done once. Moreamgtions will be found in
the Chaper 5 which describes LSVM algorithm.

If at least one MS has been localized, then weusant in order to localize a
new mobile user moreover than taking into accolatexisting network
(cooperation). The accuracy will be better (a Kalrfilter can permit us to
reach this better accuracy).

No obstacles means LOS link.

Disadvantages:

A lot of AP have to be dispatched within a certainge such that each of
them can communicate with the others. We will $geminimum number of
beacon nodes needed to get correct estimatiohg i@lhapter 6 which
describes the results obtained.

12



» It costs a certain amount of money to implemeness@oints compared to
the second Scenario in which we use existing deskto

Assumptions:

1. We considen AP randomly dispatched or fairly placed in thedmatr
environment we consider.

2. The APs locations are know, only the MS ones ha\eetdetermined.
3. The communications between the different APs amdden the AP and the

MS are done thanks to respectively an infrastrechased and infrastructure-
less links.

Indoor Scenario:

We consider in that Scenario a floor where has laeleled a set of 3 AP fairly
dispatched. The latter is linked to a hub and tem server such as shown in Figure
2.2.c) which represents the Scenario. We also densi set of computers which are
placed in the middle of each room of the floor.

The aim is to predict in which room or where in togridor the MS is.

| HUE |
AP AP AP
@\@ e't’_'??.
‘@'; ..... adhoc @)
]

Figure 2.2.c: Indoor Scenario of the project
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In Figure 2.2.c is presented the floor considerét ®4 different offices equally
distributed on both sides. Namely, there are teffion each side. A corridor whose
length is 70m, and width 5m separate the 2 seaahs. We assume that each room
is a 10-by-10m square. Figure 2.2.d sums-up thewkinns of the floor considered
in this Scenario.

1
10m 10m
-+ -
10m Office 8 Office 14 | {10m
5m I Corridor
h 70m g
10m Office 1 Office 7 | [10m
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
10m 10m

Figure 2.2.d: Dimensions of the floor for Scen&io

Figure 2.2.e presents the indoor Scenario with AdPlaptops or desktop computers
and also the type of communication used.

@ @ @
0 ap U ap U ap
& Vs LB & &
Office 8 § Office 14

Corridor

3 8 v & s s L

Office 1 Office 7

——T=" WLAN ad-hoc mode

_—T7="" WLAN infrastructure-mode

Figure 2.2.e: Indoor Scenario with APs and laptmpdesktop computers
Advantages of this Scenario:
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* We use desktop computers, laptops and the APs Higmphaced in each room
or office of a building (university, company, etc).

* Thanks to the fact that the environment is not vayythe AP and computers
are fixed) we will see in the Chapter 5 (SVM destoin) that it will permit us
to save time in the localization process.

Disadvantages:

* Due to indoor environment the RSSI could not bbé in some cases due
to obstacles (e.g: doors, walls, etc). So we havtake into account it in the
model we use.

* We need a sufficient number of desktops to estimei@bly the location of a
mobile user.

Assumptions:

1. We consider 3 access points located in 3 diffeoéfides as shown in Figure
2.2.c.

2. The computer positions are known and do not mowegathe time.
3. The communications between computers and mobiéesad-hoc mode.

The simulations are done in matlab and C++ accgrttirMatlab software and
Borland C++ 5.5.

2.3. Problem Definition

1% Scenario:

According to the real distances between every ARaleulate the RSSI
measurements. This is done thanks to the pathlogglnSo let's take an example. If
we consider 30 AP, every AP is going to receivdR&5I values (30-1). The input
data for our SVM will be this RSSI information. TB&M is going to run once in
order to output the calibration parameters (deswayithe system) called support
vectors.

15



The latter, in a second time, will be associatethéoRSSI information received by
the MS from the APs in order to localize it. Thgsaciation will be done by SVM
again which is going to be run, therefore"atine.

2" Scenario:

One AP will act as a head AP which means thatafityeall the information will be
gathered by it. First of all, we use the real dists between all the beacon nodes in
order to calculate the RSSI information receivedtagh of them. As in the previous
Scenario the RSSI measurements come from the pathiodel which corresponds to
an indoor environment for this Scenario. So if they 20 beacon nodes, each of them
IS going to receive 20-1 = 19 RSSI measurementnrik the latter is stored in order
to work as input for the SVM. Based on this infotima SVM runs for the Etime

and outputs support vectors which corresponds tanpeters of the system which
depends on the number of beacon nodes, the way @hedispatched...Then when a
mobile is coming into the floor it receives 20 R$&ta coming from all the beacon
nodes. This information and the support vectoraiabt previously are input in the
SVM which runs for a' time in order to determine the location of the iteb

Procedure for both Scenarios which introduces caoioa:

We can use the estimated positions of some MSitbadnother one’s. We will see if
the use of cooperation (taking account estimatesitipas to find unknown ones)
improves or not our results.

2.4. Scope of the Project

The aim of this project is to obtain a very acoeatation for a mobile depending on
the RSSI measurements from beacon nodes (APs, ¢ersfuu other mobiles if we
consider cooperation). In order to do so we muselgacertain number of beacon
nodes. Our simulations will show some results umiféerent assumptions (number
of beacon nodes for instance) for SVM.

The different steps followed in this project are:

* To set the mobile in a certain range of the cedl determine its RSSI values
using the relevant communication in the netwoddsHoc, infrastructure).

» Describe the Support Vector Machine model and goinéi the one which fits
the best to our system and determine its parameters

* Implement an algorithm using cooperation which wrk for Scenario 1 and
2. It will work in addition to SVM and the goalts compare it with SVM.

16



* Implement an algorithm which will use cooperatiaraidifferent way than the
previous one and which can fit outdoor and indaonsirenment in an efficient
way (Scenario 1 and 2).

2.5. Assumptions

We assume in this project that the positions ofsecon nodes (including the base
station whose position is known in the outdoor emuinent) exist. From then we
calculate the locations of the unknown mobile users

1%' Scenario

* Allthe MS and access points are in LOS with eatieio

* The links AP->AP and AP->MS are infrastructure ones
* The link MS->MS is arad-hoc one

* We do not consider multipath

* We consider shadowing

2" Scenario

e The links AP->AP and AP->MS are infrastructure ones
e The link MS->MS is arad-hoc one

 We consider LOS and NLOS

* We consider shadowing

* We do not consider multipath

17



3. Background theory

3.1. Fundamentals of positioning

Positioning technigues:

We present a group of positioning techniques is $eiction. Basically, we can
differentiate 3 different categories:

Network-based
the AP performs both position measurements and atatipn of a
location estimate.

MS-based
the MS performs both position measurements and atatipn of a
location estimate

Mobile-Assisted

the MS provides position measurements to the né&tvesrcomputation of
a location estimated by the network. The networly pravide assistance
data to the MS to enable position measurement®aimdprove
measurement performance.

In this project the Mobile-assisted method willduopted. Above is the
explanation of the TDOA technique and RSSI techaidine latter is the one we
deal with in this project:

TDOA technique

TDOA can be estimated by doing the cross-corraidbetween 2 different
signals received by the MS from 2 different BSsistachnique will not
be used in this project because we have to edtadblt®nnection between
an AP and a MS or between 2 AP if we want to mea$irOA values.
With RSSI technique, only the SSID and the RSSIsuesanents are
required

RSSI technique

With short distances this technique is the one whits best. We based
our calculations on the RSSI (in dB or dBm) recdilag one AP or a
mobile from another AP or another mobile (in caecmperation).
The advantage of using this technique resultsanliing connected is
not an essential need.

18



3.2.Localization

There are several ways to localize one MS. At titpwt the aim is to obtain an
estimated position of the MS in 2D for instancem®dechniques permit us to
get directly an estimated location with 2 coordasatOthers give us an answer
according to an area [2]. Namely we have an answire question: “Does this
mobile belongs or not to this area”.

Now if we think about the interest of this methést of all we can divide quite
easily any cell, field into n several areas (A1, A&n) in order to determine if
our mobile belongs or not to A1, A2...till An.

The Figure 3.2.a shows a subdivision possible efamea into 4 equal rectangles.

Y‘ axis

A1

A2 A4

X axis

Figure 3.2.a: Localization using subdivided ardaa@the x-axis

The mobile 1 belongs to the area A1l and the mabitethe area A3. This cutting
out along the x-axis can also be done accordirigey-axis as well as the Figure
3.2.b shows:

19



Y‘ axis

B1

B2

B3

B4

X axis

Figure 3.2.b: Localization using subdivided ardas@the y-axis

In order to determine to which band (A1, A2 or Bt instance) each MS belongs
to we need of course a procedure and algorithnic#mawork under the
constraints of Scenario 1 and 2 explained in Fig@r2.b and 2.2.d.

The procedure we select is the one which correspthebest to that kind of
classification (classify the MS positions) accoglin signal strength
measurements [1]. The procedure is Support Vectahime.

3.3. Support Vector Machine

Introduction:

This method was invented in 1995 by Vapnik [5]. S\¥@womposed of SVC and
SVR. The former concerns classification while thiedr is a regression procedure. In
this project we only use SVC, namely SVM as a di@ssSVC is a classification
standard method which permits to classify some thatiaks to some complex
functions and calculations. We will see in thedaling section the theory behind
SVM.

20



So it is a matter of 2 states (binary) classifmafi5]. Indeed at the input of an SVM
we find real data which are going to be comparegréwious collected data. A binary
Figure is coming up at the output of this proc¥gigh that method we compare some
values in order evaluate the degree of similargyeen some of them.

Theory behind SVM

Among the kernels methods, coming from the statls@irning theory of Vapnik,
Support Vectors Machines are standard methods veneekhe most famous. It
consists of a binary classification within a supeed learning. Because it is a 2 states
classification matter this method calls a learrdatpset in order to learn the
parameters pf the system. It is based on the uadwfction called “kernel” that
permits an optimal data separation.

As we can see on from Figure 3.3.a the goal igpausate the collected data
according to a straight line, in order to creag@ups. The straight line is called a
hyperplan. The name of the closest points to the hyper@anpport vectors.

We consider an area E, that belongs to the cellidered. The binary classification
the SVM uses is done according to the fact thatitita belongs or not the specified
zone.

S classification

b
data belonging to E
|
| | |
|
|
] . L
. L " " =
- .- .: . . N
L . -
L ] . L ]
data not
belonging to E

Figure 3.3.a: SVM classification of data
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The data from Figure 3.3.a has to be classifiedraloeg to a binary process in which
we separate the one which belongs to the zone Ehanather not. We are now
looking at a hyperplan, that will permit us to sepea the data.

Figure 3.3.b shows the second step of this classifin process displaying a
hyperplan. This hyperplan works as a limit betwt#en2 sets of data (left and right
side).

Sy classification

b
+1 data belonging to E
-1
[ ]
[ ]
data not
belonging to E hyperplan

= cupport vectar

Figure 3.3.b: SVM binary classification and supp@ttors

The support vectors represented in red correspmtitetclosest points to the hyperplan
belonging to E. We highlight them because they nae an important role in the
classification process. However, there is not guaihyperplan which can subdivide all
the data into 2 groups. If we take the example agrfiom Figure 3.3.b we can see that
several hyperplans can fit regarding the binargsifecation we would like to do.

Figure 3.3.c which presents the SVM classificatelmws that several hyperplans can
correspond to the one we want.

Thereafter, we will see how we can manage thatempurent amount of hyperplans in
order to select one and only one of them.

22



Best hyperplan for SVM classification

i = support vectar

s data belonging to E
« data not belonging to E

possible hyperplans

b

Figure 3.3.c: SVM classification thanks to the degierplan

All of them can separate the data according tes#me 2 groups. So the goal from now is
to find the best hyperplan, also called “optimapésplan” [6]. To translate that "optimal
hyperplan" expression into geometrical aspectsametalk about maximizing the margin
between the hyperplan and the support vectors. Witigtermit us to find the optimal

one.

Previously in Figure 3.3.c we assume the hyperglanstraight line but this is only true
if it is a linear model. Indeed if some data whitglongs to one group are located
between other data belonging to the other group #henear classification is not
possible. In that case we need an unlinear model.

Unlinear classification:

We separate data thanks to one more dimensiondtarice. So, the goal is to evaluate
the data according 3 dimensions and not only 2 asdhe following example in Figure
3.3.d, which represents a kernel classificatioB dimensions, show us.
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O data belonging to E
Y axis
I data not belonging to E

Hyperplan

o O

X axis

Z axis

Figure 3.3.d: Classification using Kernel of n+B)dimensions

The classification process described in Figuredds3done by a kernel function which
can be a polynomial, Gaussian or also Laplaciantiomn.

Figure 3.3.e shows a classification example usipglgnomial kernel.

—_hyperplan
O data belonging to E

Y axis Il data not belonging to E

X axis

Figure 3.3.e: Classification thanks to a polynorkiinel function
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3.3.1. Training

In the training phase we consider a dataset condpafsgignal strength
measurements issued from the different beacon ndtiesgoal is to compare
these 2 different data for every couple of beaaudtes in order to evaluate the
parameters of the SVM such as shown in Figure &3.1

Y axis

()
AP2 [5

RSSI 24

RSSI 34
(¢
) W/ [5

(
RSSI 12 é

)
AP4 AP3

RSSI 13

(E

AP1

» X axis

Figure 3.3.1.a: RSSI measurements for the traipirage dataset

Figure 3.3.1.a assumes that all the RSSI informatan be obtained. If it is not
the case one solution will be followed. It consstsaking 2 mobiles, called MS1
and MS2. They are placed at the same positionea8Fh From then MS1 is
going to check such as a sniffer the RSSI receirnmd the MS2. Moreover the
SSID of MS2 will also be received with the RSShath data can be gathered.
We repeat the same procedure for all the links evkiiee RSSI cannot be
calculated

All the RSSI measurements collected are usefulnf@input of our SVM. We
take into account them for the training phase igh#te first part of the SVM
procedure. Thereafter, in the classification plaber RSSI values are going to
be gathered. Section 3.3.2 of the report goes wheeply in this classification
part.
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Let us see now the algorithm use in order to diadise training data, it is
explained in Figure 3.3.1.b

Training phase using SVM
Labels
(Y1,Y2)
Bataset (X1;X2) :
(RSSI SVM 1 —— {0} iepg
measurements)
SVM 2 — {0} iepg
I
| i
' |
I
I
+ > SVMN — {0} i
Maximize W(Q) Support vectors

Figure 3.3.1.b: SVM Training phase

First, we have some input called X1 and X2, whiakiehto be compared in order
to do a classification. These data could be TDORSBEI. In our project we only
take into account RSSI measurements. Second, tMeiSiérvenes in the process
in order to do the training. It means to look & tiata at the input such as for
instance, some distances between 2 nodes and &vtlaasupport vectors as
explained in the theory of SVM (section 3.3). SermZvSVM will deal with X1

and X2 but also with Y1 and Y2 which are binaryues equal to -1 or 1.

The number of SVM depends on the number of hypespdecording to both x-
axis and y-axis. Namely if we consider a field ded intop different bandsg(
integer >=1) according to the x-axis there willb8VM calculations for the
training phase. Regarding now the value of thell¥bee see at the top of the
Figure 3.3.1.b, it indicates if the beacon nod®hg$ or not to the hyperplan
considered. The goal of the SVM is to maximizerecfion callec W "#"'in order

to obtain support vectors which act like some kit the classification process.
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All this training phase is detailed according te #xample we took in the part
5.1.a titled “Training phase”.

3.3.2. Classification

The classification is done taking into accountghme kind of data as the input.
Namely we deal RSSI measurements coming from thedmenodes in the
training phase. In the classification one RSSI measents are also considered
but they are issued from the links between albia&con nodes to the MS. The
difference between the classification and trairphgse, regarding the input,
results in the first Lterm.

In the training phase we compare values such as R&8&urements between
nodes whose position are known. It is thereforeradf calibration. In the
classification phase we are interested in findingtbe position of one node
according to its RSSI values with respect to tleiohodes whose positions are
known (see Figure 3.3.2.a).

To sum-up we have first a calibration regarding sarodes whose location is
known in order to find the features (support vestaf the SVM system.
Thereafter, we can apply this SVM system one miare in order to localize a
new mobile coming up in the network.

Y axis
\

RSSI 2M

AP2

RSSI 4M
RSSI 3M

AP4

RSSI 1M AP3

AP1

» X axis

Figure 3.3.2.a: Input data for the classificatitrage
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The RSSI measurements issued from every AP->MSfdéinkach new mobile are
gathered and are used in the classification praeesluch as input data for the
SVM.

The entire classification process is describedguie 3.3.2.b:

Classification phase using SVM

Support vectors
{ai} iepr;

|

SvM > Sign (o)

0;1,6; 12 Oor1
Input data
(RSSI measurements) \
MRA
A
Localization
(Xest;Yest)

Figure 3.3.2.b: Classification process using SVM

SVM deals with the input data as explained abowkaso the support vectors in
order to classify new data (for instance, to lazak new mobile user in the
network). The support vectors work as limits in thessification. It is the reason
why we use the “sign” function which outputs a ljn@alue 0 or 1. Indeed if the
difference of signal between the mobile user andde A is almost the same as
the difference of signal between the node A andh@roode C then the output of
the “sign” function will be 1.

The Maximum Response Algorithm (MRA) is an algamtlwvhich is going to be

used in this project in order to localize the new Mhich belongs to the network
as efficient as possible. More explanations wilfinend in section 5.1.b.
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4. Protocols and networ k management

4.1.SVM calculation

The 2 phases included in the SVM process, hamelyr#ining and the classification
phase, are run by one and only one AP, that isideres] as a “head AP”. Indeed it is
more relevant to have one “leader” to manage ouAWhetwork.

Its job is to gather all the RSSI information cominom all the other APs (training
phase) in order to run the SVM once to outputsstigport vectors. Then, every time
a MS is coming up in the network the head AP sérnti® SVM parameters.
Afterwards, the MS has to do the calculationsfitsebrder to know where it is.

In each Scenario that we will present in this répgogre will not be any IP connection
between APs and APs. Otherwise there must be a&ectian between either APs and
MSs or computers and MSs'{Bcenario) because the head AP owns the parameters
of the system after the training phase. MoreovemRBSI values are only known by

the MS. Therefore the best solution will be for Head AP to send the features of the
system (support vectors) to the MS in order for tordo the ¥ classification phase

and find his location. This solution will avoid tilee MS to send all the RSSI values
obtained from the beacon nodes, to wait for theutations and the answer from the
head AP.

4.2.Interference problem

Another issue must be raised. How to deal with s#\V&P in the same area? The
answer is 3 taking into account the 802.119g statsddrhe use of the channel 1, 6 and
11 permits to avoid overlapping but it narrows 8aenario.

To deal with that problem we can order the n APsaered from 1 to n in order not
to transmit at different time slot. This will soltiee interference problems. Moreover
the training phase is only done once so this swiutiill rather be interesting during
the classification phase.
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5. Algorithms

We have implemented several algorithms based on.SWihis section all of them
will be presented. First of all we describe LSVMIavIRA (training phase of LSVM)
algorithms that will be used for the simulationkeh CSVM, which consists of SVM
added with a cooperative algorithm, will be presdniThe last section concern OCA
(for Scenario 1) and ICA (for Scenario 2) that lleCSVM, SVM as a first step and
then deal with cooperation between APs and MS foA@nd APs, computers and
MS for ICA.

5.1. LSVM and MRA

LSVM is a Support Vector Machine technique usingrd@ian coefficients. It is the
fastest technique for training SVM [7]. Concernthg testing phase we use the MRA
algorithm that permits to avoid running severalgghe training phase.

The environment:

We consider a 2D-grid geographic area with a aertaimber of cases (possible
square area locations). Along the x-axis and y-a®<hoose to have a longer
which will vary along our simulations. We takkdifferent locations possible along
each axis. So higher the valueMis, better will be the accuracy of the localization
(see Figure 5.1.a):

W-axis

ain

H-axis

o dim d

Figure 5.1.a: 2D-grish x m dimensions
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5.1.1 Training phase:

Firstly we consider several access points whoseios are known. Let us
assume that we hakdifferent ones. They are randomly placed in thedOx [O,

D] grid. The classification corresponds to a 2 séssbinary classification. The
point belongs to a s& or not. We consider training data points, which
correspond to beacon positioKsdata have to be taken into account;

namelyx,, x,...X, . We also considdq different labels, namely binary value [-1; 1].

y, =1 meansx, belongs to the set E. In the previous exampleakdst for one of
the square shown in the previous picture.

Second we define the relevant Kernel function [8]:

Kerf (S.S,) =expt-yfs -S| )

where i and | are values that range between kanhbey stand for the indices of
the beacon node consideredl.is a vector that contains tkelifferent shortest

distances between the beacon node i an#-it3 beacon neighborg. is a
positive constant that was determined during thitng phase.

Then, we have to maximize the following equation

Kk 1 k k
W (a) = Z a; _EZ Z aiajyiyjK(Xi'Xj)
i=1 i=1 j=1
under the 2 following constraints
k
D via =0|
i=1
O<a <C| (2

wherea,, iJ[L k] are the solutions of this optimization problenis a constant

that permits to take into account the points tlaainot be really well classified.
Namely, the more you increase the valu€pthe better the classification of the
data will be.
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Figure 5.1.b shows some examples of the same fatasisin but using different
values forC.
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Figure 5.1.b: Results of classification under ddfe values of C

As we can observe on the Figure 5.1.b, higherhetr will be the
classification. Indeed in thé"4liagram (down-right) all the red points which
stand for values y = +1 (the values y = -1 areimtie set) are gathered. The goal

is obtain the SVM model information, namely th @ :coefficients. The system
model is then applied to the mobiles in the celbadposition is unknown. The
aim of this process called the classification phagde localize them.

5.1.2 Classification phase: MRA algorithm

Now each mobile in the cell whose position is unkndias to gather the k
different RSSI measurements it receives. Let usagagonsider N different
mobiles. Once every mobile gets this informatioapplies the SVM in order to
localize itself. The algorithm used is called “Maxim Response Algorithm”.

This algorithm is described in the following diagrérom the input “support
vectors” and also the data X and Xi. The diagrathésFigure 5.1.c.
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Estimation =
middle (hyperplan)

Balance the responses

o L L ||

Support vectors |1 SVM1— SVM - SVM|—{SVM
(X Xi)

hyperplan| 1 | 2 | 3 | 4 | | »  axis

Figure 5.1.c: Maximum Response Algorithm

We just consider one axis but the procedure hag tepeated according to the
other axis (to get an answer foandy) as well. The cell has been divided into
several different rectangular zones (hyperplans).

According to SVM we determine if the new mobiledreds or not to each
hyperplan. Repeating this process several timesfdoh hyperplan) permits us to
get the area on the x-axis the mobile belongshgdjeally the zone where the
mobile is).

This binary calculation is done thanks to the failog equation

K
N :Zai YiK(X’X&)"'b
=

where b represents the bias, calculated in theitigiphase.§, } are the
lagrangian coefficients coming from the trainingapbK (x, X, Js the kernel

function, which includes the RSSI values betweearhdsacon node and the other
beacon nodes, and the ones between each mobiteebdacon points.
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L ocalization:

d d
At the output of the system we get a squ ;m by |1 because we take into

account the cross between the 2 hyperplans obtabes comes from the x-axis
and the other one from the y-axis. We take the taidéithis square in order to
determine thex andy coordinates of the MS we have to localize.

Remark: according to the valuerof we can increase or not the accuracy of the
localization. Indeed, smaller is the target zoretds will be the precision.

However after all the SVM procedure it happens tuae MS are not localized.
This can be due to the severe constraints of thiga@mment, to the parameters
that are too selective (strong value &)r In order to solve this problem another
algorithm was implemented. Its name is CSVM. Thet section describes it in
details.

5.2. Cooperative Support Vector Machine (CSVM)

This algorithm is based on SVM. It is applied afieteast one SVM runs in order to
increase if it is possible the number of prediciowe call it Cooperative Support
Vector Machine because cooperation appears amengd Indeed, in order to
localize accurately a MS, which has not been laedliby the first run of SVM, we
can use the MS which have been localized.

To sum up the MS well-localized are going to becd@racon nodes, namely we will
include them in the second training phase of th#1§process now called
Cooperative Support Vector Machine).

In Figure 5.2.a the algorithm CSVM is described:
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Training phase CSVM

New Labels
(Y1,Y2)
4
Dataset from (X1;X2)
SVM1+new beacon » SVM 1 —> {Gi} i€[1:K]
nodes (localized MS)

SVM 2 — {0} i

—— — — — —
y
(7))
<
=
4

—  {ai} ierik

New Support

Maximize W(Q) vectors

Figure 5.2.a: CSVM training phase

The SVM is going to run N+M several times; N cop@sds to the number of
hyperplans according to x-axis, M to the y-axis, tBere is no difference concerning
the number of SVM runs for SVM and CSVM process.

However, the number of beacon nodes increase batthe 2 runs (SVM and
CSVM) because the MS well localized after ticlassification phase (SVM) are
now input in the dataset as shown Figure 5.2.a.

So, the training phase of CSVM will take much mibmge than SVM’s one because
we have to run twice the training phase otherwhs@ trunning it only once.
Otherwise the classification phase will be fasbanks to a less amount of MS to
localize. The CSVM classification phase is expldineFigure 5.2.b.

All the analysis and performance of CSVM will benéan Chapter 6 which talks
about simulations, results and discussions.
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Classification phase of CSVM

Support vectors
{a} i1

I

0;1,6;12

XX > SVM > Slgn (fK(x))
A
Input data remaining from

the 1st SVM (RSSI) Oor1

A 4

MRA
Y
Localization

(Xest;Yest)

Figure 5.2.b: CSVM classification phase

5.3. Outdoor Cooperative Algorithm (OCA)

OCA algorithm is a part of the localization processutdoor environment. Its goal is
to better estimate the position of the MS afterSMM has been run once. In the
simulations, a lack of predictions appears for somiles even using CSVM so the
aim is to avoid getting no-predictions. In ordedtnso OCA deals with the RSSI
measurements obtained from the distances. Aftesyérdssesses and stores the
minimum RSSI value for each AP to MS links. Fortamee, if we put 50 APs and 10
MSs in the environment used in Scenario 1, OCA kakp track of 10 RSSI values,
which stand for the minimum measurement for eagh®fLO mobiles.

When the minimum RSSI value has been saved wanemeested in dealing with all
the MSs whose positions have not been predicted.i$kwhy when there is no
prediction according to the x and y-axis the OCdoathm will calculate the
estimated position taking into account the minimR8SI value that has been stored.
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Figure 5.3.a describes the OCA algorithm

()
) b

-30dB AP
AP -13dB

-10dB

MS

-20dB (®)
() A
é AP

AP -20dB Loss in dB over the link considered

i A>3

—/_—— Link AP=>MS with minimum RSSI
— 22— Link AP=>MS not interested (too much loss)

Figure 5.3.a: Outdoor Cooperative Algorithni' (art)

From this procedure OCA will consider that the M3acated in the hyperplan where
the AP is. This will give a better estimated pasiti

5.4. Indoor Cooperative Algorithm (ICA)

ICA works as OCA except that we use it in an indeavironment to predict the
MSs’ positions if there were no one. We apply itttee Scenario 2 represented in
Figure 5.4.a following which gives the process@Al
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& Computer -20dB  Loss in dB over the link considered
WLAN link —7.— Link AP=>MS reminded by OCA
— = in —2Z —— Link AP=>MS not interesting

Figure 5.4.a: ICA Algorithm (RSSI comparisons)

In this Scenario what is important is to forechstt the MS considered will be in the
right room. Knowing that there are 14 differenticdk it seems really important to
localize the mobile according to the computers thiedAP as well. We take the
minimum RSSI value and decide to estimate the jposdf the MS as inside the
room where the beacon node the most interesteddfe which sends the high
RSSI signal to the mobile). We then choose to chdlos middle of the room for the
prediction.

Next section: simulations and results:

Next section will present the analysis of the perfance of SVM first which is the
main aspect of this report and which takes pagwiery simulation. Then we will go
through CSVM in order to see the improvements démel. finally, OCA and ICA
results are going to be analyzed to see their otispeefficiency and understand how
important their contribution is.
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6. Simulation, results and discussion

6.1 Outdoor Scenarios

6.1.1. Scenario 1.A

In the Scenario, we consider a 100m-by-100m sca@@ in which we
dispatch several Access Points. [@therwise than dealing with the hop-
count distances our input information is the RS8asurements from every
AP to the other AP (training phase) or to the oti&:.

The following diagram (Figure 6.1.1.a) presentseéheironment of the
outdoor Scenario 1.A.

Square area 100m

100m

\

-
-

[] Building

Figure 6.1.1.a: Outdoor map, Scenario environmeht 1

The area corresponds to some main areas of aiteksas ones with city halls,
museums (Raadhuspladsen in Copenhagen, Le LouiAais). These squared
places are surrounded by buildings on each ofittes sMoreover their width and
length are important (around 100m). This is whyg tBcenario is interesting.
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In order to calculate the signal strength we basecalculations on the distance
between the 2 AP considered or the AP and the M&falow Scenario B1
presented in [9]We make a few modifications in order to take intoaunt only
the LOS case because we assume that no buildiolgsteicles are present in our
Scenario (except in the borders).

Here is the pathloss equation:

Pathloss_(dB) = 22.7log,,(d) + 41,

d stands for the distance between the 2 AP or thadPthe MS.

and the shadowing standard deviation:

Randomly gener ated Beacon nodes

We dispatch a certain amount of AP in the squaga eonsidered. In order to
localize the MS accurately we decide to base olgutaions on the environment
described as following (Table 6.1.1.b):

X-
Dimensions of the area axis 100
(m) y-
axis 100
X-
Number of hyperplan a;<_|s 16
axis 16
Number of AP generated 50
Number of simulations 20

Table 6.1.1.b: parameters of the Scenario 1.A

The Figure 6.1.1.c, below, represents the 50 ABawanty generated in the square
area.
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Figure 6.1.1.c: 50 AP randomly generated in a [1@Qxn] grid

D_10C_
The distance of each hyperplan is equi y~ 16 ~ 0 2°™

Fixed Beacon nodes:

We decide to set the parameters of the SVM foryewetoor and outdoor
simulations as shown in Table 6.1.1.d

SVM type multiclass
Kernel RBF
Scaling interval [0;1]
c 40
G 2

Table 6.1.1.d: SVM parameters for the Scenario 1.A

SVM type has to be multiclass (one class standerierhyperplan) because we
consider several hyperplans. The kernel functiasseh is the most optimal one
[6]. The SVM software choosen is libsvm [10] [1After the generation of the
APs. We also generate the MS on the map. Figuré.6.8hows an example of a
complete map including AP (beacon nodes) and M$dtmcalized).

41



y-dimension [m)

Graph of the square area considered

1DD T T T T T T T T T
o -
R o e Groeee
of o 5
) s ICEREE SEPS T T e
Tok----- e E ............ .;f}.....a; ..... - [ S (?) _____ .
eI 2 oig
) SR S AP L ML S NS .
i 1 Q;
EOf----- B
4|:| _______ PR S [ — % ______ J: ______ [ TR [ — [T —
A k----- {5}-"0“-(5""&? ------------ (T}-----q; ------ ¢. ............ (9 ..... .
o oo < beacon nodes
H } v 1 a H 2 new nodes
B e e e e
0 | | | | i i | | |
a 10 20 a0 40 il &0 70 80 a0 100

x-dimension (m)

Figure 6.1.1.e: AP and MS random generations f®/Stenario 1.A

In this Scenario we choose to fix the AP to a @etacation in order to study the
incidence regarding the localization. Namely weidieto place 50 beacon nodes
such as they are fairly dispatched in the squara @ee Figure 6.1.1.1)
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Figure 6.1.1.f: 25 AP fairly generated in the [100R] area
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6.1.2 Scenario 1.B

In this Scenario, we consider a 100m-by-50m sireethich we dispatch
several Access Point®©therwise than dealing with the hop-count distances
our input information is the RSSI measurements femery AP to the other
AP (training phase) or to the other MS. Using #msironment is important
because we can find several streets in differgigscivhich have a length of
at least 100m and whose width is around 50m (simgpgnd main streets
cities).

Figure 6.1.2.a presents the outdoor Scenario 1tBtwis main street whose
dimensions are 100m-by-50m.

Street 50m

100m

\J

-
-

[] Building

Figure 6.1.2.a: Outdoor map for the Scenario 1.B

In order to calculate the signal strength we basecalculations on the distance
between the 2 AP considered or the AP and the M&fallow the Scenario B1
presented in [9]We also make a few modifications in order to take account
only the LOS case because no building or obstackepresent in our Scenario.

Here is the pathloss equation:

Pathloss_(dB) = 22.7log,,(d) + 41

d stands for the distance between the 2 AP or tha®Pthe MS and the
shadowing standard deviation:
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Randomly generated Beacon nodes

In this 2% Scenario we dispatch a 25 AP in the area considérerder to

localize

the MS accurately we decide to base oleutaions on the environment

described in Table 6.1.2.b:

We notice that we keep the number of simulatioasely 20 different ones. That
means 20 different random regarding the AP. Letagsnow in Figure 6.1.2.c one
case in which 25 AP are generated randomly takitggaccount 100m of length

X-
Dimensions of the area axis 100
(m) y-
axis 50
X-
Number of hyperplan a;/<_|s 16
axis 8
Number of AP generated 25
Number of simulations 20

Table 6.1.2.b: Parameters of the Scenario 1.B

and 50m of width for our environment.
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Figure 6.1.2.c: 25 AP randomly generated in a [B00w] grid
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. L Dx_10C_ ¢ 55
Each hyperplan width (x-axis) is equal  — 16 0 <>

Dy _ 50

Each hyperplan width (y-axis) is equal \ ~ 16 > /2°M

Fixed Beacon nodes:

Here we exactly deal with the same Scenario 1.Br@gously but we fixed the
14 access points such that they are fairly disgatah the [100x50] grid.

Figure 6.1.2.d shows us the environment.

1
=t : : : : : : : : :

i) R A S A S S
J N N N S
T L .
e e
1 ENSB SRS S E S - SRS S T - FA—

0 i | | | | i | | |
0 10 2 30 40 50 B0 70 80 90 100
|

Figure 6.1.2.d: 14 AP fixed generation in a [100x$@rid

Afterwards, 20 MSs are generated. They are goifgetiocalized in the [100x50]
m Scenario which represents the main street enwvieon. Figure 6.1.2.e
represents the Scenario.
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Figure 6.1.2.e: Main street area with 14 fixed ARd 20 random MSs

Relevance of these 2 Scenarios:

Hanging around in a main street of a capitol fetamce permits us to focus on
the different area where we can get a WiFi connadtianks to one or more
access points.

The goal is to use as far as we can some netwodady built in order to exploit
the points to increase the localization accuratya iain street what is interesting
is the fact that several fast foods offer now a Mdigeess. Moreover, in some
café, currently there is an enhancement in thisesémincrease the number of
clients by attracting tourists who would like t&eaheir lunch and look through
the web if they can find a show for their nightorcheck if a museum is open in
the afternoon to avoid going there if it is clos€den we may also use the WiFi
connection from the hotels, which could be a goppootunity to decrease the
cost of the AP deployment.

Finally, in several cities such as London and R&vrsexample, internet providers
offer to their clients a low cost fare to shardrtlaecess points in order to allow
users in the street with VolP phones to communioatarowsering through the
web on a patio of a restaurant to find movies perénce in the surrounding
cinemas. Next section describes the results andahalysis
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6.1.3 Results, analysisand discussion
Scenario 1.A:

Figure 6.1.4.a presents the results for the out8eenario 1.A. It compares the
SVM with CSVM.

Cornparison between S%M and CSWM for outdoor scenario 1.4
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Figure 6.1.3.a: Comparison CSVM vs SVM for Scenarid

Analysis:

RMSE:
The RMSE (Root Mean Square Error) is assessed shartke following
formula:

RMSE = \/(Xe = X )+ (Ve = Yrem )2

wherex,, stands for the estimated position of the MS aldvegx-axis,y., the
one along the y-axis. Finallk, ., andy,, correspond to the real positions of the
MS along both axis.

The RMSE for the fixed generation of AP is aroursh?. If we compare that

figure to the 4.5m standing for the 50 randomlyribsited AP we note a
difference of 3m. This difference can be explaibedause it is better to dispatch
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fairly the AP in the environment. Indeed the chafucehe beacon nodes to get
close to the MS are more important than if we adersa random dispatch where
several beacon nodes can be gathered in a corhieh) i8 not efficient. For
instance using a random distribution will creatgpgnspace, namely without any
beacon nodes. This will be detrimental to the M&ese empty spaces that have
to be localized. The CSVM algorithm brings aboshart increase around 1m
because the MS estimations at the output of CS\évbased on beacon nodes
(former MS) which have some errors. So the errsuwasl from the output of the
first SVM run is propagating to th€2SVM run which characterizes CSVM
algorithm.

Predictions:

The 50 APs random distribution is not so efficieainpared to the 25 APs fair
dispatch in that we obtain 8 predictions for théelaand 6 for the former. This
can be explained because several APs can be aloget the other which is
useful to increase the number of good prediction&fMS close to them. But if
the MS is located in an empty area, SVM will notaiéde to predict where he is
because of a lack of information regarding the R88asurements in this area
(no AP). So some MSs far away from any beacon wadeaot be predicted.

As for the CSVM algorithm it turns out that the roen of prediction is soaring
up (2 times more predictions for the 25 fixed beagodes). However CSVM is
not so powerful regarding the random distributionly 2 more predictions). So
the random generation remains a handicap in théigtiens.

Good predictions:

Number included in the “Predictions” the word “g&wodeans that the MS are

well localized. Namely, the distance between thiereged position and the real
one does not exceed 10m. Both under SVM and CS\éulifierence between

the number of good predictions of the fixed AP #melrandomly generated ones
is not so big, around 1. Moreover, we notice 2 ngwed predictions for the
random distribution which permits to obtain a 50&ing So cooperation is
working in that a MS well localized can work asesmbon node to find out another
MS location (MS whose position was not estimatedraf' SVM procedure).

Conclusion:

Even though the difference is not so much, CSVMiatlgm improves the
localization in our outdoor Scenario 1.A. Over 2@ igenerated it permits to
obtain around one more good prediction which méd#f8sé of increase. Regarding
the difference between the fixed 25 beacon noddsren50 generated ones it
appears that the former benefits from their faspdich along the grid. The
localization performance is 33% better for them.

Let us compare SVM with OCA. Figure 6.1.4.b prese¢he results for the
outdoor Scenario 1.A. It compares the SVM use WIGA ones.
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Comparison between 3%M and OCA for outdoor scenario 1.4
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Figure 6.1.3.b: Comparison OCA vs SVM for Scenarid

The difference of values of OCA and SVM are indiigant (less than 0.5m). This
can be explained thanks to the fact that OCA omigrivenes for the case where
there is no prediction, so the predictions comnogithe SVM are not modified.
Moreover predictions added by OCA are good in #ress that the RMSE is not
varying while the number of predictions is soarnupyto reach 20. It permits us to
be confident in the efficiency of OCA. First of athanks to OCA all the 20 MS
have now an estimation of their position which goad point compare to
previously where SVM outputs a lack of informati@econd and most interesting
observation: for every different situation the nianbf good prediction is soaring
up to reach 10 for the 25 fixed beacon nodes amainak 7 for the random
generation. The increase is about 100%. It meatQlA associated with SVM
well performs by keeping the same RMSE as SVM anteasing the number of
good predictions.

Conclusion:

OCA permits to obtain better performances. The remolb good predictions is
more important (2 times better) wile the RMSE m@as$t not varying. To sum-up
the results for this Scenario 1.A we can orderdifferent algorithms in term of
efficiency.

1. OCA

2. CSVM
3. SVM
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Scenario 1.B:

Figure 6.1.4.c presents the results for the out@eaenario 1.B. It compares the
SVM use with CSVM.

Comparison between SWM and C3%M for the 2nd outdoor scenaria
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Figure 6.1.3.c: Comparison CSVM vs SVM for Scendri®

Contrarily to Scenario 1.A the RMSE for the fixe® As higher than the one
which characterizes the 25 randomly distributed Afis gap is due to the
difference in figure (14 against 25). Moreover wek a very small number of
fixed beacon nodes (14) compared to the size odutha considered. This
explains why the RMSE is higher is that case coegb#w the random
distribution. CSVM algorithm increases the RMSE evhiemains really small
(4m at the maximum). Moreover it permits to get@enmportant number of
predictions (6 otherwise than 4 for the simple SyMjleed we state a strong
increase (70%) between the SVM and CSVM. Howeweilirtbrease concerning
the predictions does not bring so many resultsrodga the well predicted MS.
Indeed we can notice only one more good predictidrich seems a low
improvement. Regarding the comparison betweenaheam and fair distribution
the better increase of predictions for the fornsenefficient for the good
predictions statistics. Namely the fair distributiaespite its lower amount of
predictions obtains more MS well predicted thanrdrelom distributed case. The
logic is respected in that the fixed distributiarntferforms the random one.

50



Conclusion:

The RMSE, issued from CSVM algorithm stays at & Vew value, namely 3 to
4m while CSVM permits to gain 66% of good predinsoMoreover the highest
amount of good predictions for the random distifrutioes not have the
expected impact on the good prediction statissswe did before for the
Scenario 1.A we are going now to analyze the OCGAilts.

The Figure 6.1.4.d presents the results for thdamrtScenario 1.B. It compares
the SVM use with OCA ones.

Comparison between 3% and OCA far the 2nd outdoor scenario
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Figure 6.1.3.d: Comparison OCA vs SVM for Scenari®

The RMSE value is changing for the fixed AP cassspay from 4m to almost
6m, otherwise for the random distribution it idlgtie same. The increase which
is not present in the Scenario 1.A can be explametihe little amount of beacon
nodes in this Scenario. As we observed in the ptsvScenario all the MS have
now a prediction regarding their respective logatidn important result: almost
14 good predictions and 8, respectively for thedixand random AP generations.
The number of well predicted MS soars up with dmacon nodes distributions.
We also notice the highest figure for the fixed.ofl@s explanation is the
following: even if there are just 14 beacon nodles fair distribution permits to at
at least a little amount of them to get close ®MS. Being surrounded by AP is
important to be well localized by SVM. It meansttdCA is efficient in this
Scenario.
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Conclusion:

OCA is more time better that SVM and the numbegadd prediction which

soars up let us think that the former is a goodtamhél algorithm to SVM.

Moreover, even if CSVM is not so performing comphaie OCA it remains a

nice alternative. First of all to conclude this &&go 1.B we have noticed that the
ranking is not modified in that we obtained bettsults regarding the number of
good predictions with OCA than CSVM. The lattesidl interesting compare to
the simple use of SVM. The RMSE remains interestingoth of the Scenarios.
Second, in both of the outdoor Scenarios we obdeamamportant advantage of
using OCA and an appreciable result regarding C@UMrithm. The next study

will be about the indoor environment.

6.2 Indoor Scenarios

6.2.1. Environment considered

In this Scenario we consider a floor with 14 diéfiet offices which dimensions
are 10 x 10m. The rooms are separated by a 70 coBnaor. Figure 6.2.1.a

reminds the environment considered.
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Figure 6.2.1.a: Indoor Scenario with APs and comsut




A MS is going to receive 17 different signals (8rfrthe AP and 14 from the
computers).

The aim is to estimate in which room the MS is.

Pathloss modd:

We based our Scenario on Scenario Al in [9]. Satowk into account the same
pathloss formulas, which are:

LOS case:

pathloss =18.7log,, (d) + 46.8

NLOS case:

pathloss = 36.8log,, (d) + 38.8

Respective shadowing standard deviations for bbtheocases:

LOS case:

o _(dB)=3.1

NLOS case:

o _(dB)=3.5

In order to decide if we are in LOS or not we foomsthe distancd between the
2 AP or the AP and the MS. Namely, if the distadee2.5m then we estimate
that we are in LOS. On the contrarydi$ 2.5m then we use the following
equation:

P=1-09x (1- (124- 061xlog,,(d))?)"?

The output of this equation gives the probabildye in LOS. So we generate a
uniform distributed value which ranges [0;1] andngare the latter with the value
of P obtained thanks to the distarttdf the former exceeds the latter we are in
NLOS, otherwise we use the LOS pathloss equationdocalculations and also
a standard deviation equals to 2.3dB.
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Pertinence of the Scenario:

Nowadays so many companies’ building are equippédawvireless internet
access. We took a map which already exista\|@feover we decide to add one
computer (which could be a desktop or a laptopooise) which is going to work
as an AP. For instance in Aalborg University therat least one computer in
each room or office. The desktops cannot be eemihoved and we can consider
that a laptop is put on a table and that this tebiet going to be moved
everyday. So this Scenario is relevant in that sethe network configuration
without adding any new object. We enter into tle@iflwith our mobile and we
are detected. In Sections 6.2.2 and 6.2.3 tworéifteenvironment are considered
for the simulations: only the 3 AP as beacon n@uhekin a second time the same
AP with one computer located in each office.

6.2.2. Scenario 2.A: Access Points and Mobile Stations

For the first scenario, which is called Scenari, 2ve deal with 7 hyperplans
along the x-coordinates which stands for the 7 ®omboth of the sides of the
floor. Regarding the y-axis we decide to dividmib 3 different hyperplans

which correspond to the 2 set of 7 rooms and fierg to the corridor.

Table 6.2.2.a summarizes the features of this Sicena

X_

Dimensions of the area axis 70
(m) y-
axis 25
X_
Number of hyperplan a;(js !
axis 3
Number of fixed AP generated 3
Number of simulations 20

Table 6.2.2.a: Features of the indoor Scenario 2.A

The environment, the AP and the 20 MS can (onh2&1S are generated
randomly) be distributed such as Figure 6.2.2.lwsho
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Figure 6.2.2.b: Map of the Scenario 2.A
The results are placed in Section 6.2.4 of thentegadled “Results and
discussion”.
6.2.3. Scenario 2.B: Access Points, computers and Mobile Stations
In this Scenario 2.B the number of hyperplans aloottp of the axes remains the
same. The sizes of the rooms and the corridorrmzbkanged. The only difference

results in the add of 14 computers (AP). One irhexdfice.

Table 6.2.3.a sums-up the feature of this Scenario.

Dimensions of the area X-axis 70
(m) y-axis 25
Number of hyperplan X-axis 7
y-axis 3

Number of AP generated 3+14
Number of simulations 20

Table 6.2.3.a: features of the indoor Scenario 2.B

55



The diagram following (Figure 6.2.3.b) presentse¢hgironment with the 3AP,
the 14 computers and the randomly generated 20 MS.
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Figure 6.2.3.b: map of the Scenario 2.B

As in the previous section the results are gatherdae following section 6.2.4
called “Results and discussion”.

6.2.4. Results, analysis and discussion
We are going in this section to compare SVM and MSplgorithms, SVM and
ICA, and finally CSVM and ICA for the Scenarios 2aAd 2.B. Figures 6.2.4.a

and 6.2.4.b gather all the results. Figure 6.Zdmpares SVM and CSVM
algorithm with Scenario 2.A and 2.B.
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Comparison between SWM and C5%M in the indoor scenario
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Figure 6.2.4.a: SVM and CSVM results for the indScenarios

Analysis:

The RMSE is not varying so much and stays aroungwierdecided to take the
middle of the office as a prediction, this is tkason why there is no change).
Regarding the number of predictions for the caitle the computers and without
them we notice a gap of 4.5. Namely when the coerpudre present in the rooms
SVM outputs more estimated locations which soundghl. But the fact that the
RMSE is not varying let us think that CSVM performell. Indeed it permits us

to pass from 6 to 14 predictions so more than 24ginf increase. It is important
to notice that the computers lead to 8 MS localiretthe good room compared to
the 3 MS well localized thanks to the only 3 APeTdifference is consequent and
remains important for the CSVM case. Concerningctiraparison between SVM
and CSVM an improvement can be observed specialthe AP+computers
environment which permits to reach almost 10 gaediotions over 20 MS.

With or without CSVM we have the same statementhins coherent: the 14
desktops or laptops are a benefit for our locabraprocedure. Indeed SVM
outperforms under that constraints compared to wienonly use 3 AP.

Conclusion:

CSVM outperforms SVM while the 3 AP are not suffiai to localize the 20 MS.
This is why we need at least one laptop or deskt@ach room and then the
result becomes interesting. Except an averagesoM& which are positioned
inside a wall or a door which can cause problemshie simulations the results
are important to show that with CSVM we get beiesdictions. So cooperation
is brings better results in this indoor environmi@in in the previous scenarios
1.A and 1.B.
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Let us focus now on the efficiency of ICA algorithRigure 6.2.4.b compares the
SVM and CSVM algorithm with Scenario 2.A and 2.B.

Comparizon between S%M and ICA in the indoar scenario
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Figure 6.2.4.b: SVM and ICA results for the ind&mwenarios

Analysis:

As in Figure 6.2.4.a the RMSE is not varying fog #ame reasons as explained
previously. Regarding the predictions without 1G#e note the benefit brought
by the computers. It results in an enhancementtonh@s the value (10
predictions compared to 5) obtained for the caseraithere are just the 3 APs. In
fact the APs are just useful if the MSs are inrthespective office. Otherwise
SVM will not be able to predict any positions. ICArries out a 100% prediction
regarding the 20 MS randomly generated in the enwirent as in Scenario 2.A
and as the OCA algorithm did in Scenarios 1.A am Adding the computers
leads to obtain 8 good predictions (great improvensempared to the 3 good
predictions we get without ICA). Even if ICA canmretlly increase the
localization with the 3AP because only a little henof MS is in the AP’s room
it outperforms CSVM and SVM in outputting 14 goaegictions for the AP +
computers case. Namely we reach 70 % of good grediscwith ICA.

Conclusion:

ICA outperforms CSVM in both indoor scenarios iattive observed an
important increase of good predictions while the $38is not varying. Moreover
an average of 4-5 MS is generated in unfair locafieside walls or doors) so the
results are subject to one more improvement. AC®YM we notice its
efficiency in both of the indoor Scenarios, effioag less visible in Scenario 1.A
and not really demonstrated by the results obtam&tenario 1.B.
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7. Conclusion and futurework

7.1 Conclusion regarding this project

We applied SVM in a localization procedure to fii& station positions. We
based our calculations on RSSI measurements issaradAP links fairly or
randomly distributed in both outdoor and indoonmsres. The parameters of the
SVM were chosen in order to fit with the differeamvironments considered along
our simulations. We expect to find out relevantpoi for each scenario but the
impact of the models chosen, and severe constra@dtsed the amount of
predictions. This is why other algorithms have beeplemented to deal with this
lack of estimations. It has permitted us to see @&VM, OCA and ICA have
improved localization in both of the environmend. @operation was a good
additional process to SVM which carried betterreations regarding the location
of MS. ICA and OCA outperformed CSVM. But the latt@proved SVM
estimations.

Good advantages of SVM such as
* Training phase to run once and only one
* A possible adaptation to every Scenario
* A short calculation time (maximum of 1min)

were really helpful and demonstrate to us the lbéitg and the efficiency of
Support Vector Machines.

7.2 Expectation concerning future work

Our work contribution is limited to a set of Sceparbut we can adapt the
required distances thanks to our simulation codiehvis dedicated to deal with

different kind of parameters (frequency of the srarssion, length and width of
the area considered, number of AP and MS, theieiggion model).

1% possible impr ovement (tracking): Kalman filter for the 1% Scenario:

Regarding cooperation for the first Scenario weiogorove the simulation taking
into account NLOS links between MS and the AP alet to solve this
transmission problem we predict first the locatidrthe MS and then thanks to a
Kalman filter we estimate the position of tH€ RIS in NLOS with the AP putting
it a lower weight compared to the AP.

Figure 7.a describes this new scenario of coopmerati
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Figure 7.a: SVM and Kalman filter cooperation icdbzation

2" possible improvement:practical part

It will be interesting to analyze in a real envinoent the behavior of SVM,
CSVM, OCA and ICA algorithms. For instance the iodenvironment stands for
a floor in many university or company buildings té&fscaling the hyperplans to
the environment and create the infrastructure aRldoz links to measure the
RSSI we can run the calculations.

3'Y possible improvement: Compar e our result with other algorithms

Compare the performance of SVM with the Non-Lineask Square Algorithm
and the Kalman filter should be done in order tmpare their respective
efficiency under the same environment.
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