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Abstract

Design of modern multi-layered composite shell structures such as wind turbine blades is
a highly complex task due to the conflicting requirements of high strength and stiffness
at low weight and cost. In the development of such products, design optimization
methods have become an increasingly important tool in aiding the designer at obtaining
rational designs. Such optimization procedures rely on computationally efficient and
robust analysis tools.

The objective of the present project is to develop and implement efficient isoparametric
degenerated shell finite element formulations for analysis and optimization of laminated
composite shell structures.

On basis of preliminaries pertaining to the finite element analysis of laminated
composite shell structures, the governing equations for linear static stress analysis and
linearized buckling analysis are developed.

Formulation of degenerated isoparametric shell elements is shown and furthermore the
thickness dependency of the strain-displacement relation is expressed explicitly. In
combination with a linear approximation through the thickness of the inverse Jacobian
matrix, explicit thickness integration is enabled. Consequently, the evaluation of
element matrices may be performed efficiently for multi-layered shell elements with
more than four layers. For higher number of layers, the formulation is an order of
magnitude more efficient compared to layer-wise numerical integration schemes.

The explicit thickness integration scheme’s similarity with the integrations performed to
obtain ABD-matrices in Classical Laminated Plate Theory reveals a link to lamination
parameters. Thus, the stiffness matrix may be expressed in terms of an extended set
of lamination parameters which turns out to be convenient in stiffness optimization.

Structural design optimization is introduced and the maximum stiffness and the
maximum stability design problem is formulated. For these problems design sensitivity
analysis is shown for generalized design variables. From here, the focus is turned
towards design optimization of composite laminates. Problems of non-convexity of a
fibre angle parametrization is addressed by two simple examples. To provide convexity
in stiffness optimization an alternative laminate parametrization is presented in terms
of lamination parameters and the use with an existing laminate optimization procedure
is outlined.

A number of numerical examples are shown to validate the implementations of a 9-
and a 16-node version of the element formulation. Convergence and accuracy of the
‘new’ formulation is very similar to that of the existing isoparametric degenerated shell
elements. In the thick shell range, the approximations made to enable explicit thickness
integration cause some inaccuracy. For radius of curvature-to-thickness ratios above 25,
the deviation of displacements compared to the existing isoparametric formulation is
less than 4%. Eventually, two optimization examples confirm the performance gain in
multi-layered settings.
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Resumé

Design af kompositte skalstrukturer med mange lag, s̊asom vindmøllevinger er en
yderst krævende opgave grundet de modstridende krav om høj styrke og stivhed
ved lav vægt og pris. Udviklingen af s̊adanne komponenter baseres i stigende grad
p̊a designoptimering som et værktøj til at opn̊a rationelt forbedrede designs. Disse
optimeringsværktøjer er afhængige af beregningseffektive og robuste analyseværktøjer.

Formålet med dette projekt er at udvikle og implementere effektive isoparametriske
degenererede finite element skalelement-formuleringer til analyse og optimering af
laminerede kompositte skalstrukturer.

P̊a basis af indledende studier relateret til finite element analyse af laminerede komposit
skalstrukturer opstilles de styrende ligninger for lineær elastisk statisk spændingsanalyse
samt lineariseret bulingsanalyse.

Degenererede isoparametriske skalelementer formuleres og yderligere udtrykkes tøjnings-
forskydningsmatricens tykkelsesafhængighed eksplicit. Kombineres dette med an-
tagelsen om lineær variation af den inverse Jacobi matrice gennem tykkelsen muliggøres
eksplicit tykkelsesintegration. Som følge heraf kan elementmatricerne evalueres
beregningsmæssigt effektivt for skaller med mere end fire lag. For skaller med endnu
flere lag resulterer formuleringen i betydelige besparelser med hensyn til beregningstid
sammenlignet med den eksisterende lagvise integration.

Den eksplicitte tykkelsesintegrations lighedspunkter med integrationerne udført for
at bestemme ABD-matricerne i klassisk laminat pladeteori afslører en relation til
laminatparametre. P̊a baggrund heraf kan stivhedsmatricen udtrykkes i et udvidet
sæt af laminatparametre hvilket viser sig anvendeligt i optimeringsøjemed.

Grundlæggende begreber indenfor strukturel designoptimering introduceres og mak-
simum stivhed og maksimum bulingslast optimeringsproblemerne formuleres. For
de ovennævnte formuleringer udledes sensitiviteter med hensyn til generaliserede
designvariable. Dette specialiseres til optimering af kompositlaminater. Problemer
med ikke-konveksitet ved anvendelse af en fibervinkel parametrisering illustreres ved
to eksempler. For at opn̊a konveksitet i stivhedsoptimering foresl̊as en alternativ
parametrisering i form af laminatparametre, hvorefter brugen af disse i en eksisterende
optimeringsprocedure skitseres.

Numeriske eksempler anvendes til at verificere implementeringen af 9- og 16-knuders
skalelementerne. Konvergens og nøjagtighed for de ‘nye’ formuleringer viser sig at
være meget tæt p̊a de eksisterende isoparametriske degenererede skalelementers ditto.
For tykke skaller f̊ar approksimationerne, som er indført for at udføre tykkelsesintegra-
tionen eksplicit, indvirkning p̊a nøjagtigheden af resultaterne. For krumningsradius-
tykkelsesforhold over 25 er afvigelserne fra den eksisterende isoparametriske formulering
mindre end 4%. Slutteligt p̊avises elementformuleringens effektivitet for elementer med
mange lag ved to optimeringseksempler.





Nomenclature

⌊· · · ⌋ Row vector

{· · · } Column vector

[· · · ] Matrix

a Vector of design variables

a Node index

B Strain-displacement matrix

b Body force vector

C Compliance

C Constitutive matrix (in global coordinate system)

d Global displacement vector

E Young’s modulus

E Matrix of thickness integrated constitutive properties

F Shape function derivatives with respect to natural coordinates

f Objective function

G Shape function matrix derivatives with respect to global coordinates

g Covariant tangent base vector

H Auxiliary summation matrix

h Shell thickness

i, j,k Orthonormal global base vectors

J Jacobian matrix

K Stiffness matrix

M Matrix containing thickness integrated stresses
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m Material coordinate system base vector

N Shape function (interpolation) matrix

p Externally applied concentrated nodal loads

Q Constitutive matrix (in principal material coordinate system)

Q Constitutive matrix (in material coordinate system)

R Radius of curvature

r Work equivalent nodal loads

ri Natural coordinates (r, s, t) referring to ECS

S Stress matrix

T Transformation matrix

U Elastic strain energy

U Matrix of lamina invariants

u, ui Global displacement (u, v,w) in vector and tensor form, respectively

V Volume

vi Director coordinate system base vector

W External work

wi Vector of weight factors used in Gauss quadrature

x Global coordinates of reference surface

z Physical thickness coordinate

α, β Director rotation in shell element

∆ Square root of Jacobian matrix determinant

δ Kinematically admissible variation.

ε Green-Lagrange strain

γ Geometric property of reference surface; 2∆V

h∆A

Γuvw Matrix containing inverse Jacobian matrices

λ Eigenvalue, buckling load factor

ν Poisson’s ratio

Φ Surface traction
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φ Eigenvector, buckling mode

σ Cauchy stress

θ Fibre angle

ξ Lamination parameters
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1

Introduction

Recent years have seen an increasing use of laminated composite shell compo-
nents for high performance structures such as aircraft wings and fuselages, wind

turbine blades, ship hulls, etc. Common for these structures is a need for high stiffness
and strength to weight ratios. In general, complex structural geometries in combination
with the use of composite materials results in structures whose response is too complex
to analyse by means of classical analytical tools. For analysis of this type of structures
the method of finite elements has become the preferred tool.

Figure 1.1: Contemporary high performance composite shell structures. Courtesy of Emirates

Team New Zealand and Vestas Wind Systems A/S.

Analysis, however, does not give the answer to how a structure is designed rationally
in terms of favourable combinations of material and geometry. In order to synthesize a
rational design amongst the virtually endless number of possibilities that the designer is
faced with, systematic procedures that lead to an optimum solution, by some measure,
are needed. The answer to the quest of synthesizing and designing has been structural
design optimization which is a forward pointing iterative process towards a solution to
the design problem at hand. The iterative nature of optimization processes involves
numerous analyses and design improvements which make the optimization problem
exhaustive to solve. For the reason of the cost of solving optimization problems
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the technology has developed closely along with technological advances in computing
capabilities.

At the Department of Mechanical Engineering, Aalborg University, the group for
Computer-Aided Design has conducted research within the field through the last 15
years and developed numerous tools for design and optimization of mechanical systems.
For this purpose a design system is present in MUST (MUltidisciplinary Synthesis Tool).
The system is under continuous development headed by Professor Erik Lund.

It is beyond the scope of this text to give a complete overview of the capabilities of
MUST. The main interest of this project is the shell element module and thus a short
description of existing facilities is given. The original framework for shell elements in
MUST was developed and implemented by Jensen et al. (2002) and Stegmann (2005)
did a number of revisions and extensions to the implementations. The elements
implemented are mainly low-order elements (stabilized and non-stabilized) and a few
higher-order elements. The non-stabilized elements are denoted as the SHELLn family
whereas the stabilized elements are called MITCn referring to the stabilization scheme
applied (Mixed Interpolation of Tensorial Components).

The shell elements in MUST have multi-layer capabilities enabled by a layer-wise
integration scheme in the shell thickness direction. For multi-layered shell elements
with many layers this formulation is computationally expensive due to sampling points
in each layer. In practical applications with a large number of layers, efficiency becomes
an issue and in optimization it is crucial. Thus it is of interest to study how efficiency
of the existing SHELLn family of elements may be improved for situations involving a
large number of layers.

1.1 Theoretical background

This section gives an introduction to the fields that will be studied along with a
review of present work and state-of-the-art within each field. It is not the intention
to give a complete review but to address issues of importance for the present work.
First, a brief review of degenerated shell elements and their generalization to multi-
layered applications is given. Special attention is given to how integration through
the thickness is performed efficiently by explicit integration. Based on the findings on
explicit thickness integration, new possibilities for laminate optimization of generally
curved shell elements arise and thus the existing possibilities are reviewed.

1.1.1 Degenerated shell elements

Degenerated shell elements have been the work-horse among elements for finite element
analysis of shells. The reason for this is the relatively simple formulation similar
to that of the isoparametric solid element formalism. In fact, the degenerated shell
element formulation is obtained by imposing certain physically based constraints on
the behaviour of shell-like solid elements. This was first shown in a paper published by
Ahmad et al. (1970). Despite it’s attractive features the formulation is computationally
expensive which one of the fathers of degenerated shell elements already presented a
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remedy for in Zienkiewicz et al. (1971) which we will return to later.

Multi-layered shells

In order to accommodate for analysis of laminated composite shells, the degenerated
shell element was generalized to incorporate multi-layered elements by Panda and Natarajan
(1981). To integrate through the thickness, a transformation of the natural thickness
coordinate to a layer-wise natural thickness coordinate was introduced. This implies
that the numerical integration through the thickness is performed by sampling the
integrand at e.g. two positions in the thickness direction in each layer. For shells with
a large number of layers this formulation is computationally inefficient and with the
increased use of such structures combined with a need for efficiency in e.g. optimization
applications, interest in enhancing the computational efficiency emerged. Again, the
interest turned towards the use of explicit thickness integration which is described in
the next section.

Explicit thickness integration

The discussion above indicates that the degenerated shell element is inefficient for
multi-layered shells with many layers. To increase the performance of the degenerated
shell elements, explicit (exact) integration through the thickness is applied upon
approximations of the thickness variation of the inverse Jacobian. Use of explicit
integration through the thickness also reveals a link to the well-known ABD-approach
as applied to plates in Classical Lamination Theory, see e.g. Jones (1999).

The first steps of explicit thickness integration of degenerated shell elements were taken
by Zienkiewicz et al. (1971) who pointed out that the assumptions made in degenerated
shell elements are in fact the assumptions of classical first order shell theory enabling
explicit integration through the thickness. However, it seems that explicit thickness
integration did not receive much attention until Milford and Schnobrich (1986) put
some effort into applying explicit thickness integration to degenerated ‘thin’ shells with
focus on geometrically non-linear problems. The work by Yunus et al. (1989) showed
that explicit thickness integration could be used advantageously in the evaluation
of element matrices of doubly curved, multi-layered composite shells with a large
number of layers. In the same period also Vlachoutsis (1990) studied explicitly
thickness integrated shell elements and especially he investigated how the geometric
configuration influences the accuracy of the approximations introduced to enable
explicit thickness integration. Prema Kumar and Palaninathan (1997) investigated
the influence on accuracy and efficiency of different assumptions about the inverse
Jacobian matrix. For this purpose three integration schemes were proposed and
compared to the layer-wise integration scheme developed by Panda and Natarajan
(1981). The models contain the assumption of constant and linear variation of the
inverse Jacobian matrix and furthermore a modified model with linear variation with
further assumptions that increase the performance even more. The efficiency gain of
explicit thickness integration reported by Yunus et al. (1989) was confirmed for all three
models. In 1999 Prema Kumar and Palaninathan (1999) extended the formulation to
include geometrically non-linear problems and examples revealed substantial savings in
computational time without significant loss in accuracy.
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1.1.2 Laminate optimization

The task of designing a laminate encompasses a unique choice of material, orientation
and thickness for each layer of the laminate. It is definitely not a trivial task, partly due
to the complex coupling phenomena encountered, but also the nature of the problem in
terms of discrete design variables combined with non-convex design spaces renders the
problem difficult. Rational design of laminated composite plate and shell structures
has been subject to extensive research during the last three decades or so, and it is not
the intention to give a complete review of the research within the field but rather an
overview of the challenges encountered and some of the answers to these. For in-depth
reviews see e.g. Abrate (1994) or Venkataraman and Haftka (1999).

If the laminae material for all layers is given beforehand, the most natural parametriza-
tion is one that directly takes physical quantities such as layer orientation and thickness
of each layer as the design variables. Such a parametrization has a straightforward
physical interpretation and may be realized within the limitations due to manufacturing
considerations. The downside, however, is that the design space is non-convex and
consequently the popular gradient-based algorithms only guarantee local optimum
solutions. Alternatively, a re-formulation of the problem is introduced with the so-called
lamination parameters. The material properties of an orthotropic (or an anisotropic)
material may be described in terms of the lamina invariants that are invariant under
coordinate transformations. This has the result that the trigonometric functions causing
non-convexity are avoided. By use of lamina invariants, the constitutive relations for a
laminate consisting of layers of the same orthotropic material may be described in terms
of similar laminate invariants that make use of the so-called lamination parameters.
Such a description was first given by Tsai and Pagano (1968) and later extended from
Kirchhoff kinematics to FSDT by Grenestedt (1994). Up to 12 lamination parameters
were used as design variables in the design of discs and plates as shown by e.g. Miki
(1982) and Miki and Sugiyama (1993). These publications, however, only apply to
the design of plates for either in-plane or bending loads for which the feasible regions
of the lamination parameters are known analytically. For the more general setting of
simultaneous in-plane and bending loads the feasible regions have not been determined.
Instead of seeking closed-form expressions that yield angles and thicknesses for given
lamination parameters, Foldager et al. (1998) employed an identification procedure to
solve the inverse problem of identifying a physical lay-up from a set of lamination
parameters. This makes it possible to exploit the desirable convex properties of
lamination parameters in stiffness design. The method is of completely general nature
and should be extendible to any number of lamination parameters.
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1.2 Objective of project

Based on the findings above, the objective of the present project is to develop

and implement an efficient degenerated shell element formulation for analysis and
optimization of multi-layered composite structures. The platform of implementation is
the MUltidisciplinary Synthesis Tool.

The element is to be formulated for linear static stress and linearized buckling
analysis. It must handle laminated composite shell structures with a large number
of layers efficiently, and work as a biquadratic 9-node element and a bicubic 16-
node element. Performance and accuracy comparisons between existing and the ‘new’
element formulations are required in order to reveal advantages and limitations of the
new elements.

Furthermore, an extension of the applicability of lamination parameters is sought, such
that these can be used for generally curved degenerated shell elements.

1.2.1 Outline of thesis

The thesis is divided into a number of chapters organized as follows:

Chapter 2 introduces basic concepts needed in the remaining part of the thesis.
Chapter 3 develops the discrete governing equations of linear elastic finite element
analysis and those for linearized buckling followed by a brief outline of numerical
integration.
Chapter 4 contains the formulation of the degenerated shell elements and describes
explicit thickness integration schemes in detail.
Chapter 5 presents structural design optimization as a tool to obtain optimum stiffness
or optimum stability designs. More specifically, laminate optimization is treated for
the previously mentioned design objectives.
Chapter 6 gives numerical examples that verify the implementation and asses the
accuracy and performance of the new shell elements.





2

Basic concepts

T he purpose of this chapter is to present some preliminary basic concepts that
form the basis for the remainder of the report. First, the kinematic assumptions

of First order Shear Deformation Theory are addressed, leading to the idea of relating
shell geometry to a reference surface. Subsequently, the covariant tangent base vectors
related to the reference surface are introduced as a means of obtaining a unique
description of the Material Coordinate System applied in shell analysis. Eventually, the
constitutive properties of a composite material is addressed along with a description of
the transformations needed to analyze a shell structure.

2.1 Shells

In the following we shall use the term shell about a solid with one characteristic
dimension significantly smaller than the two other dimensions characterising the
extension of the geometry. In general, the bottom and top boundaries of the shell
will be curved, and thus the plate may be seen as a special case of a shell, i.e. plates
are regarded simply as shells with no curvature. With regard to structural efficiency,
the main advantage of shell structures are their ability to carry relatively large loads
compared to their weight if designed correctly, i.e. preferably the shell should carry
loads as membrane stresses. The analysis of shell structures could be performed by
full 3D theory of elasticity but since this would be time-consuming and cumbersome,
kinematic assumptions are applied to simplify the analysis.

Different kinematic assumptions have been applied in the derivation of shell theories,
leading to a large variety of theories. These are split into the following three groups:
Classical Shell Theory (CST), First order Shear Deformation Theory (FSDT) and
higher order shell theories. In the following the focus will be on FSDT since the
degenerated shell element is based on this theory.

The kinematic assumptions of FSDT are, that

1. normals remain straight, but not necessarily normal to the reference surface (in
order to include transverse shear strains)

2. normals are inextensible, i.e. ε3 = 0
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i, x
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k, z
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x

Figure 2.1: Illustration of a shell with position vector x(r, s, t) including reference surface with

curvilinear coordinates r and s.

Due to the kinematic assumptions stated above, the displacement field throughout
the shell is now described completely in terms of reference surface displacements and
rotations of shell normals. In order to describe the displacement field a unique geometry
description is required. The geometry of the shell is also related to the reference surface

along with a thickness at each point in the reference surface seen in Figure 2.1. Thus
the task of describing geometry and displacements of a shell structure is reduced to a
two-dimensional problem, namely that of describing geometry and displacements of the
reference surface. Consequently, we relate geometric properties throughout the shell to
properties of the reference surface.

2.2 Differential geometry

This section defines terminology used in the description of geometric properties of
surfaces. The presentation is not claimed to be rigorous or exhaustive but serves to
introduce the concepts needed in the formulation of shell elements.

For the purpose of obtaining a mathematical description of the shell shown in Figure 2.1,
we introduce a parametrization of the reference surface in the parameters r and s
as shown in Figure 2.1. Thus, each point contained in the reference surface may be
described uniquely from these parameters. For shells folding into themselves overlaps
will make the parametrization non-unique. In the following we presume that this does
not happen. Furthermore a parameter t is introduced to describe the position of points
located perpendicular to the reference surface. From the three parameters introduced
above, r, s and t, (termed ‘natural coordinates’ in FE terminology) we are able to
describe the position vector of the shell, x, provided that the direction of the thickness
is given.

x(r, s, t) = x0(r, s) + th
2v3(r, s) (2.1)

Here, h is the physical shell thickness and x0 is the reference surface for which the
parameter t equals zero. This implies that the top and bottom surfaces of the shell are
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obtained for t = ±1.

The unit normal vector, v3, is established from the reference surface covariant tangent

base vectors, gα, that are defined as

gα ≡ ∂x0

∂rα
(2.2)

Where rα denotes differentiation with respect to r or s. It is seen that g1 and g2 span
the tangent plane at each point of the reference surface and thus the unit normal vector,
v3, is calculated from the normalized cross product of the two base vectors

v3 = g3 =
g1 × g2

|g1 × g2|
(2.3)

Similarly to the definition used in equation (2.2), all three covariant tangent base vectors
at any point within the shell are defined by

gi ≡
∂x

∂ri
(2.4)

ri denotes differentiation with respect to r, s or t. Upon expansion the expressions of
the three tangent base vectors are

g1 =
⌊

∂x
∂r

∂y
∂r

∂z
∂r

⌋
g2 =

⌊
∂x
∂s

∂y
∂s

∂z
∂s

⌋
g3 =

⌊
∂x
∂t

∂y
∂t

∂z
∂t

⌋
(2.5)

As we will see in Section 3.5 these are equal to the entries of the Jacobian matrix.

In general, the tangent base vectors are non-orthonormal.

2.3 Coordinate systems

In this section various local coordinate systems are defined. These are utilized in setting
up element matrices which is done by numerical integration. Thus, at a number of
sampling points, geometric and constitutive properties of the shell are evaluated which
necessitates a number of unambiguously defined orthomormal coordinate systems.

2.3.1 Element coordinate system

The first coordinate system, that arises in a natural way, is the curvilinear Element
Coordinate System (ECS) equal to the covariant tangent base vectors gi defined in
equation (2.4), see Figure 2.2. Constitutive properties are most conveniently described
in a Cartesian coordinate system whereby the need for a such arises. For this purpose
the Material Coordinate System (MCS) is generated uniquely based on the ECS.

Remark that the ECS is dependent on node numbering and element orientation. Since
the MCS is based on the ECS, discontinuities between material coordinate systems
in adjacent elements may occur and thus an incorrect interpretation of orthotropic
material orientation, θ. The remedy is to create a user defined ECS as described in
Jensen et al. (2002).
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x

y

z

r

s

g1

g2
g3

Figure 2.2: Illustration of global Cartesian xyz-coordinate system and element coordinate

system defined by covariant tangent base vectors gi.

2.3.2 Material coordinate system

The material coordinate system is used as the natural system in which to describe
constitutive properties. As such, it is a Cartesian coordinate system closely related to
the element coordinate system. The Cartesian material coordinate system, mi, has two
axes tangent to the surface and it’s third axis normal to the surface. Thus it’s third
axis is identical to the thickness unit normal vector, i.e. m3 = g3 = v3.
The remaining two axes need to be set up in a unique way. The implementation in
MUST is based on the definition given by Hughes (2000) where it is ensured that the
angle between g1 and m1 is equal to the angle between g2 and m2. To do so, two
auxiliary vectors b and c are defined.

b =
1
2 (g1 + g2)
∣
∣1
2 (g1 + g2)

∣
∣

c =
m3 × b

|m3 × b| (2.6)

b may be interpreted as the unit vector that bisects the angle between the two tangent
base vectors, whereas c is normal to b and m3 and thus contained in the tangent plane,
see Figure 2.3.

m
1

m
2

b

c
bisec

tin
g direc

tio
n

g1

g2

Figure 2.3: Construction of in-plane part of material coordinate system, m1 and m2, through

auxiliary vectors and tangent base vectors.
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From the auxiliary vectors we define the remaining material coordinate system (unit
length) base vectors as

m1 =

√
2

2
(b − c) m2 =

√
2

2
(b + c) (2.7)

If the previous discussion was restricted to isotropic materials, the description of
coordinate systems could be ended here. However, this is not the case since the shell
elements are to be used for analysis of laminated composite shell structures. Thus we
need an additional coordinate system to complete the description of the local coordinate
systems. Namely, the principal material directions.

2.3.3 Principal material directions

The principal material directions are used in connection with orthotropic materials since
the constitutive properties of such materials are conveniently described in this basis
(this will be treated in more detail in Section 2.4). The principal material directions
are depicted in Figure 2.4 where the in-plane axes are denoted by 1 and 2. Direction 1
is aligned with the fibres and direction 2 is perpendicular to this direction. The third
axis is not shown at the figure since this is coincident with the m3 axis of the MCS. In
general, the principal material directions will not be coincident with the MCS but rather
they are rotated in the tangent plane by an angle θ around the common normal, m3.
Thus a plane transformation is applied to transform constitutive properties between
the two coordinate systems, this is treated in Section 2.4.1

1

2

m1

m2

m3

θ

Figure 2.4: A single ply with aligned fibres to illustrate the principal material coordinate

system (123-coordinate system) and the material coordinate system, mi.

The introduction of the various coordinate systems defined above naturally calls for
transformations to relate constitutive properties in the different coordinate systems to
each other. Thus the next section gives a description of the constitutive matrix in
different coordinate systems.

2.4 Constitutive relations

This section is devoted to a description of constitutive relations with focus on
orthotropic materials. A composite structure, in this case a laminate, is made up of
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orthotropic layers in some stacking sequence. To be able to determine the mechanical
response of a composite we first need to understand the behaviour of a single orthotropic
ply. We start out by stating the assumptions applied when analysing structures made
up of orthotropic materials.

For an orthotropic ply it is assumed that the fibres are uniformly distributed whereby
the constitutive relations may be simplified. Thus it is assumed that the properties
of each ply may be regarded as homogeneous at the macroscopic level despite the
inherently inhomogeneous nature of a composite.

When performing analysis by displacement based finite elements a way to relate stresses
to the determined displacement and thus strains is needed. By applying the assumption
of linear elastic material behaviour the constitutive law, known as Hooke’s generalized
law provides the sought relation.

σ = Cε (2.8)

Here the stresses σ are related to strains ε in a linear manner through the constitutive
matrix C.

With the above assumptions the constitutive matrix can be shown to contain 81 entries.
Exploiting symmetry conditions and making strain energy considerations it can be
shown that only 21 constants are needed in the description of anisotropic materials.







σx

σy

σz

τxy

τyz

τxz







=











C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66

















εx
εy
εz
γxy

γyz

γxz







(2.9)

The constitutive relations of orthotropic materials are simplified when described in the
principal material coordinate system.







σ1

σ2

σ3

τ12
τ23
τ13







=











Q11 Q12 Q13 0 0 0
Q21 Q22 Q23 0 0 0
Q31 Q32 Q33 0 0 0
0 0 0 Q44 0 0
0 0 0 0 Q55 0
0 0 0 0 0 Q66

















ε1
ε2
ε3
γ12

γ23

γ13







(2.10)

The constants Q may be described in terms of engineering constants as done by e.g.
Gürdal et al. (1999)

Q11 =
E1 (1 − ν23ν32)

ψ
, Q12 =

E1 (ν21 + ν23ν31)

ψ
, Q13 =

E1 (ν31 + ν21ν32)

ψ

Q21 =
E2 (ν12 + ν13ν32)

ψ
, Q22 =

E2 (1 − ν13ν31)

ψ
, Q23 =

E2 (ν12ν31 + ν32)

ψ
(2.11)

Q31 =
E3 (ν13 + ν12ν32)

ψ
, Q32 =

E3 (ν13ν21 + ν23)

ψ
, Q33 =

E3 (1 − ν12ν21)

ψ
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Q44 = G12 , Q55 = G23 , Q66 = G13 (2.12)

Where ψ = 1 − ν12ν21 − ν13ν31 − ν12ν23ν31 − ν13ν21ν32 − ν23ν32

Because of reciprocal relations, three of the engineering constants of equation (2.11)
are dependent. Hereby the constitutive relation between the applied stresses and the
resulting strains can be described by nine independent constants.

2.4.1 Transformation of constitutive properties

In Section 2.3 we defined two Cartesian coordinate systems in addition to the global,
namely the principal material directions and the Material Coordinate System. These
coordinate systems were introduced to simplify the constitutive description. The
price to pay for this simplification is the need for transformations of constitutive
properties. The transformations between the different coordinate systems are provided
through transformation matrices as depicted in Figure 2.5. In the following each of the
transformations are given some attention.

1

2

m1

m2

m3

Q = T T
θ QTθC = T T QT

QQCi, x
j, y

k, z

Figure 2.5: Transformation of constitutive properties between global, material and principal

material coordinate system.

The transformation of constitutive properties from the material coordinate system to
the global Cartesian coordinate system is achieved by the transformation shown in
equation (2.13), see e.g. Cook et al. (2002).

T =











a2
1 b21 c21 a1b1 b1c1 c1a1

a2
2 b22 c22 a2b2 b2c2 c2a2

a2
3 b23 c23 a3b3 b3c3 c3a3

2a1a2 2b1b2 2c1c2 a1b2 + a2b1 b1c2 + b2c1 c1a2 + c2a1

2a2a3 2b2b3 2c2c3 a2b3 + a3b2 b2c3 + b3c2 c2a3 + c3a2

2a1a3 2b1b3 2c1c3 a1b3 + a3b1 b1c3 + b3c1 c1a3 + c3a1











(2.13)

Here the entries of the transformation matrix are given by direction cosines based on
the shortest angle regardless of sign, between the global coordinate system and the
material coordinate system in the following way

a1 = cos(i,m1) b1 = cos(j,m1) c1 = cos(k,m1)

a2 = cos(i,m2) b2 = cos(j,m2) c2 = cos(k,m2) (2.14)

a3 = cos(i,m3) b3 = cos(j,m3) c3 = cos(k,m3)
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If the analysis is to be applied to an orthotropic material the constitutive properties are
most naturally given in principal material directions that are not necessarily oriented in
the same direction as the material coordinate system. The principal material directions
are rotated with respect to the material coordinate system by an angle θ around the
normal, m3, which constitutes a plane rotation. The transformation matrix of a plane
transformation is given by

Tθ =











c2 s2 0 cs 0 0
s2 c2 0 −cs 0 0
0 0 1 0 0 0

−2cs 2cs 0 c2 − s2 0 0
0 0 0 0 c −s
0 0 0 0 s c











(2.15)

Where the direction cosines for a plane rotation by use of trigonometric identities reduce
to

c = cos(θ) s = sin(θ) (2.16)



3

Finite elements in structural mechanics

T he aim of this chapter is to derive the governing finite element equations of
structural mechanics for linear static stress analysis. From the principle of virtual

work, the governing equations are derived, which upon discretization results in the linear
finite element equilibrium equations. Furthermore, a short introduction to linearized
buckling analysis is given. It is assumed that the reader is familiar with the theory of
elasticity and finite element theory and thus some of the basic concepts are stated and
used without further proof.

3.1 Preliminaries

For the purpose of deriving the FE-equations used in linear elastic stress analysis we
first recapitulate some of the basic definitions of linear elasticity. For an extensive
treatment of this theory the reader is referred to e.g. Sokolnikoff (1946).

The general boundary value problem in solid mechanics is illustrated in Figure 3.1.
Given some well-defined body whose geometry and material properties are known,
determine the deformed configuration, stresses and strains upon external actions in
terms of prescribed displacements and loads.

Φi

S

pi

bi

Figure 3.1: Boundary value problem in solid mechanics.

To solve the above we start by introducing the strain measure. When a body located in
three-dimensional space is acted upon by forces an initial straight line segment within
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the undeformed configuration will in general be subjected to translation, rotation
and elongation or compression. The result of these deformations is the deformed
configuration and a measure of deformation is given by the strain measure. An analysis
of deformation, described in the coordinate system of the undeformed configuration,
results in a second order tensor known as the Green-Lagrange strain tensor.

εij = 1
2 (ui,j + uj,i + uk,iuk,j) (3.1)

In linear elasticity deformations are assumed to be small and thus the deformation
of the elastic body may be related to the undeformed configuration. Assuming the
derivatives of the displacements, u, to be small compared to unity the last term of (3.1)
may be omitted and we arrive at the linearized Green-Lagrange strain tensor.

εij = 1
2 (ui,j + uj,i) (3.2)

The strains are associated to stresses by a constitutive relation, in this case Hooke’s
generalized law applies since the material is assumed to be linear elastic. This relation
was shown in Section 2.4 in matrix notation and is repeated here in index notation.

σij = Cijklεkl (3.3)

Here the constitutive matrix relates the Green-Lagrange strain to the Cauchy stress. In
general, this does not apply since the stresses and strains should be work conjugate, i.e.
the strain energy must be the same independent of the chosen stress/strain measure.
Thus if Green-Lagrange strain, is used the stress measure should be the second Piola-
Kirchoff stress tensor and similarly if the true strain measure is applied, stresses are
described by the Cauchy stress definition. In the case of small strains, the error
introduced by utilizing the Cauchy stress tensor in combination with Green-Lagrange
strain is negligible.

The stresses within the body must be in equilibrium according to Newtons second
law. Thus by observing an infinitesimal block at equilibrium, subjected to an arbitrary
three-dimensional stress state and body forces bi, it is found that equation (3.4) must
be fulfilled. The block is assumed to be in static equilibrium and thus the acceleration
term is omitted.

σji,j + bi = 0 (3.4)

Equations (3.2), (3.3) and (3.4) constitutes the problem to be solved. Thus we need to
determine three unknown displacements ui, six stresses σij and six strains εij that fulfil
the boundary conditions of the problem, i.e. prescribed displacements and tractions
at the boundary of the continuum. The surface tractions are related to the internal
stresses by

Φi = σjinj (3.5)

where nj is the surface unit normal.

Remark that the six strains are given in terms of three displacements, which requires
a set of compatibility equations also to be obeyed. The governing equations presented
above in combination with the boundary conditions are referred to as the strong form

of the BVP since the equations must be met at each point within the body.
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3.2 Energy considerations and variational methods

To derive the FE equilibrium equations the principle of virtual work is applied. The
principle of virtual work may be derived from the equilibrium equation (3.4) as done
in e.g Przemieniecki (1968) or Zienkiewicz (1977). It is often referred to as the weak

form, since the equilibrium equations are only satisfied in an integral sense.

Assuming the continuum to be at an equilibrium state (for simplicity assumed to be
quasi-static) a virtual kinematically admissible displacement δui is imposed and it is
stated that the equilibrium equations must be fulfilled in integral sense.

∫

V
σij,jδui dV +

∫

V
biδui dV = 0 (3.6)

Utilising the rules of product differentiation on the first term

∫

V
((σijδui) ,j −σijδui,j) dV +

∫

V
biδui dV = 0 (3.7)

By use of Gauss’ divergence theorem which relates a surface integral to a volume integral
and the fact that δui,j = δεij , the principle of virtual work arises

∫

V
σijδεij dV =

∫

V
biδui dV +

∫

S
Φiδui dS (3.8)

The principle of virtual work states that at equilibrium the work done by external
forces during a virtual displacement must equal the work done by internal forces. This
principle constitutes the most general statement of equilibrium and assumes no specific
constitutive law. In the next section we introduce a finite element discretization to
equation (3.8) and thereby obtain the equilibrium equations in FE form.

3.3 Discretization

For arbitrary boundary value problems equation (3.8) is not solvable analytically. To
circumvent this the continuum is discretized into a number of finite elements, see
Figure 3.2. The idea of discretizing the structure into finite elements is that instead of
seeking continuous functions for the displacement field throughout the domain we seek
a solution at discrete nodal points and interpolate geometry and displacements element-
wise between nodal points. To obtain the solution at the nodal point a sparse system
of linear equations must be solved which is done efficiently by a digital computer.

3.3.1 Interpolation and shape functions

To interpolate from nodal degrees of freedom within an element the concept of shape
functions is introduced. For an extensive description of shape functions the reader
is referred to e.g. Zienkiewicz (1977) or Cook et al. (2002). Shape functions used in
interpolating geometry and displacement of the 9- and 16-node isoparametric elements
are given in Appendix A.
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Φ

p

b

Figure 3.2: Discretized boundary value problem in solid mechanics.

The main idea is that each node within the element has a corresponding shape function
that evaluates to 1 (and all other to 0) at it’s node. For coordinates not belonging to a
node, each shape function will have a positive value and the sum of all shape functions
equals 1. Thus the shape functions may be seen as weight factors on the contribution
from each node.

If we by x denote the approximated geometry within a finite element, the geometry is
interpolated from the shape function matrix Na and the nodal coordinates xa by

x =







x
y
z






= Naxa (3.9)

Where a is a node index, indicating summation.

For isoparametric elements, geometry and displacements within the element are
interpolated by the same shape functions. Thereby internal displacements are
interpolated from discrete nodal displacements by

u =







u
v
w






= Nada (3.10)

The node index, a, is omitted in the following. Strains within each element may be
determined as derivatives of equation (3.10)

ε = ∂Nd ≡ Bd (3.11)

Where B is the strain-displacement matrix obtained as the derivatives of the shape
functions, with respect to global coordinates. Here denoted by the partial differential
operator, ∂.

The interpolations introduced above are used to discretize the governing equations.
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3.3.2 Discrete governing equations

To derive the discrete governing equations for an element, the principle of virtual work
from (3.8) is written in matrix notation.

∫

V
δεT σ dV =

∫

V
δuT b dV +

∫

S
δuTΦ dS + δdT p (3.12)

where the last appended term contains applied concentrated nodal loads.

Kinematically admissible variations of the interpolated displacements and strains within
each element, equation (3.10) and (3.11) are inserted in equation (3.12) and re-
arrangement yields.

δdT

(∫

V
BT σ dV −

∫

V
NT b dV −

∫

S
NT Φ dS − p

)

= 0 (3.13)

Since this must hold for arbitrary virtual displacements, δdT , the term within the
bracket must equal zero. Substitute Hooke’s law, equation (2.8) along with the strain-
displacement relation, equation (3.11), i.e. σ = Cε = CBde and re-arrange to obtain.

∫

V
BT CB dV de =

∫

V
NT b dV +

∫

S
NT Φ dS + p ⇒ (3.14)

Kede = re (3.15)

where the element stiffness matrix Ke and the equivalent nodal load vector re are given
by

Ke =

∫

V
BT CB dV (3.16)

re =

∫

V
NT b dV +

∫

S
NT Φ dS + p (3.17)

As described in e.g. Hughes (2000) the element stiffness matrix Ke and the equivalent
nodal load vector re can be assembled to form the global stiffness matrix and the global
vector of equivalent nodal loads

K =

Ne
∑

e=1

Ke r =

Ne
∑

e=1

re (3.18)

Whereby the global system of linear equations to be solved is

Kd = r (3.19)

Here d is a column vector containing all nodal degrees of freedom (with length equal
to nodal degrees of freedom nDOF ), r is a column vector of length nDOF containing
consistent nodal loads and K is the symmetric global stiffness matrix of dimension
nDOF × nDOF .
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3.3.3 Stress recovery

Having solved for nodal displacements in equation (3.19), strains within each element
are determined from equation (3.11). Thus stresses are obtained via Hooke’s law in
matrix form

σ = CBd (3.20)

In displacement based finite element solutions the accuracy of stresses and strains is an
order lower than that of the displacements since stresses are derived from displacements
via strains. It has been shown that at some points within the element stresses are
super convergent, i.e. of comparable accuracy to that of displacements. Stresses
are calculated at these point and inter-/extrapolated to the remaining domain of the
element. For isoparametric elements these super-convergent points are the Gauss points
of one quadrature order lower than that required for full integration.

3.4 Linearized buckling

So far, the presentation has been limited to linear static stress analysis and we implicitly
assumed that the structure comes to rest at a stable position of equilibrium. It is a well-
known phenomenon that slender members loaded in compression may fail in buckling by
sudden conversion of membrane strain energy to bending strain energy. In this section
we address the issue of linearized bifurcation buckling analysis which may be used in
case of small deformations and no imperfections. The critical load determined from
a linear buckling analysis will always be an upper limit on the load-carrying capacity
of the structure since inevitable imperfections in real structures tend to reduce the
actual capacity. It turns out that the linearized buckling problem constitutes a linear
eigenvalue problem.

Under the assumptions made in linear elastic analysis where equilibrium is set up for

the undeformed configuration of the structure, certain possibly important effects are not
accounted for. In linear analysis it is assumed that the stiffness is independent of the
state of deformation and stresses. A more thorough description, which is beyond the
scope of this presentation, accounts for a gradual change of stiffness with deformation
by describing the equilibrium of the deformed configuration. Such a description is given
within the framework of a fully geometrically non-linear theory, see e.g. Zienkiewicz
(1977). In this section we take a first step into the geometrically non-linear regime by
studying the linearized buckling problem. The basic idea in linearized buckling analysis
is that the net stiffness of a structure is composed of the stiffness from geometry and
material and some contribution (or reduction) stemming from the current state of
loading and deformation. The first stiffness is the one introduced above as the stiffness
matrix K whereas the additional contribution to the net stiffness is accounted for by
the so-called initial stress stiffness matrix, Kσ or the geometrical stiffness matrix. So,
the net stiffness of the structure is

Knet = K + λKσ (3.21)

where the stress stiffness matrix is

Kσ =

∫

V
GT SG dV (3.22)
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Here, G is a matrix with shape function derivatives with respect to global coordinates
and S is the initial stress matrix containing the stresses as obtained from a static stress
analysis of some reference load, r0

S =





σxI3 τxyI3 τxzI3

σyI3 τyzI3

sym. σzI3



 (3.23)

We shall not derive the general expression of the stress stiffness matrix. Instead, a
physical interpretation of the seemingly abstract mathematics is given.

From equation (3.21) and (3.22) it is seen that the contribution to the net stiffness from
Kσ depends on the amplification of the reference load, r = λr0. Compressive stresses
tend to reduce the net stiffness and at some critical load level, λcr, the net stiffness
becomes singular with respect to the eigenvector of deformations, φ. This corresponds
to an eigenvalue problem where we are interested in the critical amplification factor λcr

that causes the structure to buckle without any change in applied nodal loads, i.e. a
non-trivial solution to

(K + λjKσ) φj = 0; j = 1, 2, ..., nDOF (3.24)

where φ is the j’th eigenvector which defines the buckling mode shape but not the
magnitude of displacements in the buckled configuration.

3.5 Numerical integration of element matrices

In this section we introduce the concept of natural coordinates and Gauss quadrature
as used in evaluating element matrices. In the following we focus on evaluation of
the element stiffness matrix since it illustrates the principles used to evaluate element
matrices. For a more extensive treatment the reader is referred to Zienkiewicz (1977)
or Cook et al. (2002).

For the FE method to be useful in an industrial context it should be applicable to
all types of geometries and loading conditions. This does not comply with the fact
that convergence can not be ensured for distorted meshes. In fact, distorted meshes
are virtually unavoidable if elements are formulated in Cartesian coordinates. The
workaround to this problem is to introduce natural coordinates since this ensures
convergence Zienkiewicz (1977).

The natural coordinates are introduced as a mapping of the physical xyz-coordinates.
Figure 3.3 A) shows an arbitrary distorted element in the physical (x, y) Cartesian
coordinate system with a curved natural coordinate system, and B) shows the same
element in the natural (r, s)-coordinate system. It is important that the mapping is
unique, which poses some restrictions on allowable element distortion. Introduction of
natural coordinates also means that element boundaries are described very simple. All
element boundaries have one of their natural coordinates fixed equal to ±1 resulting in
simple limits of integration for element matrices that hereby run from −1 to 1. This is
the first step towards utilizing Gauss quadrature in the evaluation of element matrices.



22 3.5. Numerical integration of element matrices

A) B)

r r

s

s

(−1,−1) (1,−1)

(1, 1)(−1, 1)

s = −1

r = 1

s = 1

r = −1

x

y

Figure 3.3: Illustration of element in A) Cartesian coordinate system and B) the same element

in natural coordinates.

To change integration variables from global Cartesian coordinates to natural coordi-
nates, the Jacobian determinant |J | is introduced. The Jacobian determinant relates
the volume in the global coordinate system to the corresponding volume in the natural
coordinate system, i.e. dxdydz = |J |drdsdt.

Ke =

∫

V
BT CB dV =

∫ 1

−1

∫ 1

−1

∫ 1

−1
BT CB |J | drdsdt (3.25)

As introduced in equation (3.11) the strain-displacement matrix, B, contains deriva-
tives of the shape functions with respect to global coordinates. To proceed, the
derivatives with respect to natural coordinates are obtained by use of the chain rule
of differentiation which reveals a way to obtain derivatives with respect to global
coordinates. 
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(3.26)

Here it is seen that the entries of the Jacobian matrix J may be formed from the
covariant tangent base vectors, gi, defined in Section 2.2.

By rearranging equation (3.26) it is seen that the derivatives of the shape function
matrix with respect to global coordinates may be replaced by the inverse Jacobian
matrix multiplied by derivatives with respect to natural coordinates.
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∂N
∂r

∂N
∂s

∂N
∂t







(3.27)

Derivatives with respect to natural coordinates are readily available when the shape
functions are formulated in natural coordinates as shown in Appendix A.

Now, the integral in equation (3.25) can be evaluated by Gauss quadrature with which
an integral with integration limits from −1 to 1 can be replaced by a sum of integrand
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samplings multiplied by appropriate weight factors. Thus equation (3.25) is evaluated
as

Ke ≈
m∑

i=1

n∑

j=1

o∑

k=1

wiwjwkB
T CB |J | (3.28)

3.6 Summary

In this chapter the governing equations of linear static stress analysis by finite elements
have been presented. In addition, the linearized buckling problem is established followed
by an introduction to numerical evaluation of element matrices. In the next chapter
the formulation of degenerated shell elements is presented as a specialization of the
developments above.





4

Shell elements

Finite element analysis of shell structures is an active field of research
and continuing progress and development is evident. This chapter describes the

formulation of continuum based shell elements also called degenerated solid elements
first introduced by Ahmad et al. (1970). The geometry and displacement interpolation
of degenerated isoparametric shell elements is given along with a description of the
definition of the so-called director coordinate system. Subsequently, three integration
schemes are presented and it is shown how they are applied to obtain element matrices.
Eventually, the reduced constitutive relations for degenerated shell elements are
developed and lamination parameters are introduced as an alternative parametrization
of the element stiffness matrix. All of the above is valid for laminated shell elements
with layer-wise constant thickness layers.

4.1 Continuum-based shell elements

The idea of the degeneration concept is to eliminate nodes from a solid element
by imposing on it kinematic constraints and assumptions, that represent shell-like
behaviour.

In principle a shell structure is a special type of solid structure and one may be tempted
to model the structure by solid elements as shown in Figure 4.1, A). However, quadratic
displacement variation through the thickness seems unnecessary considering the fact
that normals virtually remain straight and undeformed even for thick shell structures.
Thus it is natural to model shell structures by solids whose top and bottom edges
are curved whereas edges in the thickness direction are straight lines as shown in
Figure 4.1, B). Both approaches pose difficulties in that stiffness in the thickness
direction for thin shells is considerably lower than in-plane stiffness which leads to ill-
conditioning. The remedy is to introduce another assumption, namely that of normals
being inextensible and consequently the displacement through the thickness of the shell
may be described in terms of displacements and rotations of nodes, see Figure 4.1 C),
on the reference surface. The assumptions introduced in the degeneration process
resemble the kinematic assumptions employed in FSDT plate theories as introduced in
Section 2.1.
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A) B) C)

Figure 4.1: Degeneration process of A) 20-node solid element to B) 16-node solid element to

C) 8-node shell element.

As we will show soon, the degeneration process leads to five degrees of freedom at
each node of the reference surface. Three translations of the node and two rotations of
the node director. In the attempt to model curved geometries with linear elements or
when modelling junctions, the node directors at a common node of adjacent elements
may differ. This has the consequence that node rotations α and β are defined different
in the common node of the adjacent elements. The result is a discontinuity in the
displacement field which is undesirable. The fix implemented in MUST is to average
adjacent node directors to obtain a single node director definition at each node. Of
course this is an approximation that is acceptable if the difference in adjacent node
director orientations is small. In case of modelling curved geometries, the common
averaged node director comes closer to each of the original node directors with mesh
refinement. For junctions, no improvement is gained in this way. The problem may
be solved by introducing a 6’th nodal degree of freedom. This 6’th degree of freedom,
however, is associated with a non-physical drilling stiffness. The issue may be solved in
various ways. In most commercial programs an artificial non-physically based stiffness
is associated to the drilling stiffness whereas other more theoretically based approaches
make use of e.g. the Hu-Washizu principle in the formulation of elements. So far, none
of these measures have been taken in MUST.

The remaining of this chapter is devoted to details of the isoparametric degenerated
shell element formulation and explicit integration through the thickness.

4.1.1 Geometry

In the element shown in Figure 4.2, a curvilinear coordinate system (r, s, t) is defined.
Having defined the element in Figure 4.2 in terms of global nodal coordinates the need
arises to describe the global coordinates of internal points given by natural curvilinear
coordinates.

The relation between the coordinates of a point given in a curvilinear basis (r, s, t)
and it’s corresponding coordinates in global Cartesian coordinates x = ⌊x, y, z⌋T is
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Figure 4.2: Degenerated shell element with curvilinear coordinate system and definition of

top and bottom node location.

interpolated from global nodal coordinates xa with the shape functions of Appendix A.

x (r, s, t) =
∑

a

Na(r, s)
(

1+t
2 xtop

a + 1−t
2 xbot

a

)

=
∑

a

Na

(
1
2

(

xtop
a + xbot

a

)

+ t
2

(

xtop
a − xbot

a

))

(4.1)

For the sake of brevity the indication of (r, s)-dependency has been omitted in the
resulting expression and will be so in the remaining of the text. The first inner term
corresponds to the coordinates of the reference surface nodes

xa = 1
2

(

xtop
a + xbot

a

)

(4.2)

The second inner term in equation (4.1) represents a vector from the bottom to the top
node. In each node this vector is normalized by the nodal shell thickness ha to define
the so-called node director va

3

va
3 = 1

ha

(

xtop
a − xbot

a

)

(4.3)

Consequently, the geometry has been degenerated and is now described in terms of
reference surface nodal coordinates, node directors and nodal shell thicknesses.

x =







x
y
z






=
∑

a

Na

(
xa + t

2hav
a
3

)
(4.4)

In practice node directors are not calculated by degeneration of top and bottom nodes
of solid elements. Rather node directors are determined on basis of the reference surface
geometry as shown below in equation (4.5).

4.1.2 Director coordinate system

In each node a local Cartesian coordinate system called the director coordinate system

is set up. The purpose of this coordinate system is to define axes of rotational degrees
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of freedom of the node director. Its third axis is the node director introduced above.
This section describes how the node director and the two other axes are established.

In each node of the element the node director (indicating the thickness direction of the
element) is defined as the unit normal of the reference surface tangent plane at the
node as defined in equation (2.3).

va
3 =

ga
1 × ga

2

|ga
1 × ga

2 |
(4.5)

where the covariant tangent base vectors are interpolated by ga
1 =

∑

aNa,rx
a
i and

ga
2 =

∑

aNa,sx
a
i .

To complete the local Cartesian coordinate system two other unit base vectors must
be determined uniquely. Several schemes for this task exist since the choice of the two
remaining base vectors is arbitrary as long as they form an orthonormal base with va

3 .
The following scheme is used by default in MUST, see Jensen et al. (2002). If va

3 = ±j

then the two other mutually orthogonal base vectors are given by va
2 = i and va

1 = k.

Otherwise the base vectors are determined as va
1 =

j×va
3

|j×va
3 | and va

2 = va
3 × va

1 .

va
1 and va

2 are used to define two rotational degrees of freedom of the director vector
va

3 as it is shown below.

4.1.3 Displacement field

By definition displacement is the difference between the position of a point in deformed
and undeformed configuration, respectively. If we by pre-subscript “∗” denote the
deformed configuration with respect to an undeformed configuration (no pre-subscript)
and introduce the degenerated description of the shell geometry from (4.4) we may
write

u = ∗x − x (4.6)

=
∑

a

Na (∗xa − xa) +
∑

a

Na
t
2ha (∗v

a
3 − va

3) (4.7)

=
∑

a

Naua +
∑

a

Na
t
2ha (∗v

a
3 − va

3) (4.8)

In the expression above the ua =’s are translational nodal degrees of freedom and
the last term represents the relative displacement of the node directors. Thus the
displacement of an arbitrary point within the shell is represented as an interpolation of
nodal displacements and relative displacements of node directors. Now we correlate the
relative displacement of the director vector to two rotational nodal degrees of freedom.
The two degrees of freedom are the rotations of the director vector va

3 around va
1 and

va
2 respectively, see Figure 4.3.

If rotations are assumed to be small, sin(α) ≈ α, a rotation of va
3 around va

1 by α results
in a relative global displacement

αua = −αva
2 (4.9)



Chapter 4. Shell elements 29

A small rotation β around va
2 results in a relative global displacement

βua = βva
1 (4.10)

i.e. a relative global displacement due to α and β of

∗v
a
3 − va

3 = βva
1 − αva

2 (4.11)

va
1

va
2

≈ −αva
2

≈ βva
1

va
3

β

α
h

a

∗v
a
3

x

y

z

Figure 4.3: Resulting global displacements due to nodal rotations of v3.

This result is inserted in equation (4.8)

u =
∑

a

Naua +
∑

a

Na
t
2ha (βva

1 − αva
2) (4.12)

Thus the displacement of each point in the shell is related to five degrees of freedom at
each node. As shown previously in equation (3.10) this is written as

u =







u
v
w






= Nd (4.13)

where the shape function matrix is

N =



· · ·

∣
∣
∣
∣
∣
∣

Na 0 0 −Na
ha

2 tv
a
21 Na

ha

2 tv
a
11

0 Na 0 −Na
ha

2 tv
a
22 Na

ha

2 tv
a
12

0 0 Na −Na
ha

2 tv
a
23 Na

ha

2 tv
a
13

∣
∣
∣
∣
∣
∣

· · ·



 (4.14)

and the nodal degrees of freedom are collected in a vector

d =
⌊
· · ·
⌊
ua va wa αa βa

⌋
· · ·
⌋T

(4.15)

Having described the displacement throughout the shell in terms of nodal displacements
the next step is to relate nodal displacements to displacement derivatives needed for
strain evaluation.
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4.1.4 Strain-displacement relations

Strains are given in terms of displacement derivatives

{ε} =
⌊
εx εy εz γxy γyz γzx

⌋T
=
⌊
εx εy εz 2εxy 2εyz 2εzx

⌋T

=
⌊
u,x v,y w,z u,y +v,x v,z +w,y u,z +w,x

⌋T
(4.16)

Now we need to express derivatives of the displacements with respect to global
coordinate axes.

By the chain rule of differentiation the displacement derivatives with respect to global
Cartesian coordinates are given by displacement derivatives with respect to natural
coordinates multiplied by the derivatives of natural coordinates with respect to global
coordinates, i.e. ∂u

∂x
= ∂u

∂r
∂r
∂x

. The first term on the right-hand side is given below in
(4.19) and the second term is obtained as the inverse Jacobian matrix.
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(4.17)

where J is the Jacobian matrix whose entries are evaluated from the geometry
interpolation in (4.4).

J =







∂x
∂r

∂y
∂r

∂z
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∂x
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∂y
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a
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Na,s
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a
32
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(
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Na
1
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a
31 Na

1
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a
32 Na

1
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a
33



 (4.18)

In (4.17) the derivatives of displacements with respect to natural coordinates are
obtained by differentiation of (4.13) with only the shape function matrix depending
on the natural coordinates (r, s).
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= F d

(4.19)
Now if we substitute (4.19) back into (4.17) we obtain the derivatives of the global
displacements with respect to the global coordinates. Pre-multiplying by matrix H

provides summation of displacement derivatives in order to obtain strains as shown in
equation (4.16), i.e.

ε = HΓuvwF d ≡ HGd ≡ Bd (4.20)

where the auxiliary summation matrix H is given by

H =











1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1
0 1 0 1 0 0 0 0 0
0 0 0 0 0 1 0 1 0
0 0 1 0 0 0 1 0 0











(4.21)

From equation (4.20) the strain-displacement matrix B is obtained by appropriate
matrix multiplications of matrices developed above.

In the next section we further develop the interpolation matrix derivatives in F to
obtain B’s explicit thickness dependency which is used in Section 4.2.2.

Thickness dependency

To enable explicit thickness integration of element matrices we need to express
B’s thickness dependency explicitly. To do so matrix F is decomposed into two
sub-matrices that are independent of the thickness coordinate. Furthermore the
thickness variation of the inverse Jacobian matrix is assumed to be linear as done
in Prema Kumar and Palaninathan (1997). Vlachoutsis (1990) showed that this
assumption is reasonable for thin shells, i.e.

∣
∣ h
R

∣
∣≪ 1. In Section 6.3.2 it is studied how

low this ratio should be in order to obtain acceptable results.

For reasons that will become obvious later, a change in thickness coordinate variable
from natural coordinate t to a physical thickness coordinate1, z, is introduced, i.e.
substitute z for ha

2 t in F . Thus it is possible to decompose F into F1 and F2 that are

1This z-coordinate should not be confused with the global z-coordinate. In the remaining, no
distinction is made between thickness and global z since the difference should be obvious from the
context.



32 4.1. Continuum-based shell elements

independent of z and consequently express the z dependency of F explicitly. In doing
so we also presume that the shell thickness ha is constant throughout the element and
denoted by h. This assumption, however, is not very restrictive since individual plies
physically have constant thickness.

F = F1 + zF2 (4.22)

with
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F2 =
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(4.24)

For the inverse Jacobian matrix the approximate explicit thickness dependency is
introduced as

J−1 ≈ J−1
A + tJ−1

V = J−1
A + z 2

hJ−1
V (4.25)

where

J−1
A = 1

2

(
J−1|t=1.0+J−1|t=−1.0

)

J−1
V = 1

2

(
J−1|t=1.0−J−1|t=−1.0

)
(4.26)

Both expressions in equation (4.26) are evaluated each time G or B are needed as
shown below.

For the sake of brevity subsequent relations are developed for the u-components of G

only, i.e. the first sub-matrix of

G =





Gu

Gv

Gw



 (4.27)
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By substituting into Gu the approximate explicit expression for the u-components of F

in (4.22) and the linear approximation for the inverse Jacobian (4.25) and re-arranging.

Gu = J−1F u (4.28)

=
(
J−1

A + z 2
hJ−1

V

)
(F u

1 + zF u
2 ) (4.29)

= J−1
A F u

1
︸ ︷︷ ︸

Gu
1

+z
(
J−1

A F u
2 + 2

hJ−1
V F u

1

)

︸ ︷︷ ︸

Gu
2

+z2 2
hJ−1

V F u
2

︸ ︷︷ ︸

Gu
3

(4.30)

Similarly Gv and Gw are obtained, i.e.

G = G1 + zG2 + z2G3 (4.31)

Recall that B = HG and hence the strain-displacement matrix attains the same form
as G.

B = B1 + zB2 + z2B3 (4.32)

Now we have decomposed the strain-displacement matrix into three sub-matrices that
are independent of the thickness coordinate which reveals the approximate explicit
thickness dependency. The explicit dependencies of equation (4.31) and (4.32) are
used in the further developments in obtaining element matrices, though, further
approximations may be introduced due to the fact that G3 and B3 contain entries
of negligible magnitude compared to the remaining matrices contained in G and B.
This is utilized in Section 4.2.2 to obtain further reductions in element formulation time
without little loss of information.

4.2 Thickness integration

In this section it is shown how thickness integrations to obtain element matrices
are performed for layered elements as shown in Figure 4.4. First, the usual layer-

wise thickness integration scheme of Panda and Natarajan (1981) is presented and
afterwards a more efficient explicit thickness integration is shown, see e.g. Yunus et al.
(1989) and Prema Kumar and Palaninathan (1997, 1999).

−
h
2

h
2

1
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NL
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zk−1

zk
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Figure 4.4: Layered shell with lay-up definition; coordinates and layer numbering.

The expression for the stiffness matrix from equation (3.25) is stated again here for
reference.

Ke =

∫ 1

−1

∫ 1

−1

∫ 1

−1
BT CB |J | drdsdt (4.33)
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4.2.1 Layer-wise thickness integration

For layered shell elements the thickness integration is performed by dividing the element
into a number of sub-elements each representing a layer and subsequently layer-wise

numerical integration is enabled by transforming the natural thickness coordinate into
natural layer coordinates. For full numerical integration of e.g. a 9-node shell element
this yields 3 × 3 × 2NL sampling points where shape functions and derivatives are
evaluated. For elements with a large number of layers this becomes computationally
expensive.

Stiffness matrix

To employ layer-wise numerical integration through the thickness the natural thickness
coordinate t is transformed into a layer-wise natural thickness coordinate, tl. The
layer-wise coordinate runs from −1 to 1 from the bottom to the top of each layer.

t = −1 +
1

h

(

2
l∑

k=1

hk − hl (1 − tl)

)

(4.34)

Here hk is the summed thickness of the preceding layers and hl is the l’th layer thickness,
see Figure 4.5.

−1

1

1
2

NL − 1

NL

... h

t

hl

tl

l’th layer

−1

1

Figure 4.5: Change from natural coordinate, t, to layerwise natural coordinate, tl.

Now to integrate the stiffness matrix of equation (4.33) the layer-wise coordinates are
substituted for the natural thickness coordinate which means that

dt = hl

h dtl (4.35)

Consequently the integration of equation (4.33) is evaluated as a sum over all layers,
with each layer integrated numerically from −1 to 1 in all three coordinate directions.

Ke =

NL
∑

k=1

∫ 1

−1

∫ 1

−1

∫ 1

−1
BT CB |J | hk

h drdsdtk (4.36)

4.2.2 Explicit thickness integration

In this section the approximate explicit thickness dependencies developed in Sec-
tion 4.1.4 are introduced to the element matrices. Consequently the approximate
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explicit thickness integration may be performed outside the in-plane integrations which
results in substantial savings on computational expense for elements with many layers.
In addition to this, a link is established to the ABD-matrices as known from Classical
Laminated Plate Theory. The definition of the lay-up is shown in Figure 4.4.

Stiffness matrix

In the expression for the stiffness matrix (4.33) a change of variable is performed by
substituting z = th

2 ⇒ dt = 2
hdz.

Ke =

∫ 1

−1

∫ 1

−1

∫ 1

−1
BT CB |J | drdsdt =

∫ 1

−1

∫ 1

−1

∫ h
2

−
h
2

BT CB |J | 2
h dzdrds (4.37)

Before we proceed with the evaluation of the integrals above we introduce the explicit
thickness dependency of the Jacobian determinant |J | as shown in Prema Kumar and Palaninathan
(1999). Let the square root of the Jacobian determinant at the top and bottom of the
shell be given by.

∆top =
√

|J |t=1.0 (4.38)

∆bot =
√

|J |t=−1.0 (4.39)

then the thickness average and slope of the determinant square roots are

∆A = 1
2 (∆top + ∆bot) (4.40)

∆V = 1
2 (∆top − ∆bot) (4.41)

Consequently the square root of the Jacobian determinant is given explicitly through
the thickness by the following linear expression

∆ = ∆A + 2
hz∆V (4.42)

Thereby the Jacobian determinant through the thickness is expressed explicitly in terms
of the Jacobian determinant square root at the bottom and the top of the shell.

|J | = ∆2 = ∆2
A

(
1 + 2zγ + z2γ2

)
(4.43)

where γ = 2
h

∆V

∆A
. Thus the Jacobian matrix is only set up in the reference surface based

on evaluations of the Jacobian matrix at the bottom and the top of the shell surface.
Compared to setting up the Jacobian matrix in each layer the previous developments
result in substantial efficiency gain for shells with many layers.

Now in (4.37) we introduce the integrand’s explicit dependency on z by substituting
(4.32) and (4.43) to obtain
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Ke =

∫ 1

−1

∫ 1

−1

∫ h
2

−
h
2

(
B1

T + zB2
T + z2B3

T
)
C
(
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)
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−
h
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+zB2
T CB1 + z2B2
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T CB3

+z2 B3
T CB1 + z3B3

T CB2 + z4B3
T CB3

)

(
1 + 2zγ + z2γ2

)
2
h∆2

A dzdrds (4.44)

The thickness integral in (4.44) is carried out separately for each term. Recall that
the B1,2,3-matrices are thickness independent and that the constitutive properties are
constant for each layer k, i.e. Ck is constant and thus we obtain

Ke =

∫ 1

−1

∫ 1

−1

(
B1

T E1B1 + B1
T E2B2 + B1

T E3B3

+B2
T E2B1 + B2

T E3B2 + B2
T E4B3

+ B3
T E3B1 + B3

T E4B2 + B3
T E5B3

)
2
h∆2

A drds (4.45)

where E-matrices are thickness integrated constitutive properties.

E1 =

NL∑

k=1

Ck

∫ zk

zk−1

(
1 + 2zγ + z2γ2

)
dz =

NL∑

k=1

Ck

(
var1 + 2γvar2 + γ2var3

)

k
(4.46a)

E2 =

NL∑

k=1

Ck

∫ zk

zk−1

z
(
1 + 2zγ + z2γ2

)
dz =

NL∑

k=1

Ck

(
var2 + 2γvar3 + γ2var4

)

k
(4.46b)

E3 =

NL∑

k=1

Ck

∫ zk

zk−1

z2
(
1 + 2zγ + z2γ2

)
dz =

NL∑

k=1

Ck

(
var3 + 2γvar4 + γ2var5

)

k

(4.46c)

E4 =

NL∑

k=1

Ck

∫ zk

zk−1

z3
(
1 + 2zγ + z2γ2

)
dz =

NL∑

k=1

Ck

(
var4 + 2γvar5 + γ2var6

)

k

(4.46d)

E5 =

NL∑

k=1

Ck

∫ zk

zk−1

z4
(
1 + 2zγ + z2γ2

)
dz =

NL∑

k=1

Ck

(
var5 + 2γvar6 + γ2var7

)

k

(4.46e)

var1 = (zk − zk−1) (4.47a)

var2 = 1
2

(
z2
k − z2

k−1

)
(4.47b)

...

var7 = 1
7

(
z7
k − z7

k−1

)
(4.47c)
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Thus we are able to integrate explicitly in the thickness direction much like it is done
in obtaining the ABD-matrices of CLPT. The sums in equation (4.46) are evaluated
once for each in-plane integration point in the reference surface while the in-plane
integrations (r, s) in (4.45) are performed by full numerical integration. Consequently,
the integration of e.g. the stiffness matrix requires 3 × 3 × 2 evaluations, where the
last 2 are inverse Jacobian evaluations at the bottom and the top of the shell as in
equation (4.26). In case of laminates consisting of a single (orthotropic) material with
different orientation in each layer, the stiffness matrix can be expressed linearly in terms
of the so-called lamination parameters which is shown in Section 4.2.3.

Stress stiffness matrix

Similarly as for the stiffness matrix the stress stiffness matrix is developed by
substituting the thickness dependencies and performing explicit integration through
the thickness. In natural coordinates the element stress stiffness matrix from
equation (3.22) reads

Ke
σ =

∫ 1

−1

∫ 1

−1

∫ 1

−1
GT SG |J | drdsdt (4.48)

It is rewritten by a change of thickness variable, substituting z = th
2 ⇒ dt = 2

hdz .

Ke
σ =

∫ 1

−1

∫ 1

−1

∫ h
2

−
h
2

GTSG |J | 2
h dzdrds (4.49)

G’s and |J |’s explicit dependencies on z are introduced by substituting (4.31) and
|J | = ∆2

A

(
1 + 2zγ + z2γ2

)
, where γ = 2

h
∆V

∆A
into (4.49) to obtain

Ke
σ =

∫ 1

−1

∫ 1

−1

∫ h
2

−
h
2

(
G1

T + zG2
T + z2G3

T
)
S
(
G1 + zG2 + z2G3

)

(
1 + 2zγ + z2γ2

)
2
h∆2

A dzdrds

=

∫ 1

−1

∫ 1

−1

∫ h
2

−
h
2

(
G1

T SG1 + zG1
T SG2 + z2G1

T SG3

+zG2
T SG1 + z2G2

T SG2 + z3G2
T SG3

+z2 G3
T SG1 + z3G3

T SG2 + z4G3
T SG3

)

(
1 + 2zγ + z2γ2

)
2
h∆2

A dzdrds (4.50)

Now, the explicit thickness dependency of the stresses, S is introduced. A layer-wise

linear distribution of stresses is assumed. Thus within the k’th layer

Sk = SA
k + zSV

k ; zk−1 ≤ z ≤ zk (4.51)

where the coefficients of the linear variation are determined from a stress evaluation at
the upper and lower Gauss point through the thickness, respectively.

SV
k =

S
up
k − Slow

k

zup
k − zlow

k

and SA
k = S

up
k − zup

k SV
k (4.52)



38 4.2. Thickness integration

Now introduce the above and the integration through the thickness is performed
separately whereby the resulting expression for the stress stiffness matrix becomes

Ke
σ =

∫ 1

−1

∫ 1

−1

(
G1

T MA
1 G1 + G1

T MA
2 G2 + G1

T MA
3 G3

+G2
T MA

2 G1 + G2
T MA

3 G2 + G2
T MA

4 G3

+G3
T MA

3 G1 + G3
T MA

4 G2 + G3
T MA

5 G3

+G1
T MV

1 G1 + G1
T MV

2 G2 + G1
T MV

3 G3

+G2
T MV

2 G1 + G2
T MV

3 G2 + G2
T MV

4 G3

+ G3
T MV

3 G1 + G3
T MV

4 G2 + G3
T MV

5 G3

)
2
h∆2

A drds (4.53)

where

MA
1 =

NL∑

k=1

SA
k

(
var1 + 2γvar2 + γ2var3

)

k
(4.54a)

MA
2 =

NL∑

k=1

SA
k

(
var2 + 2γvar3 + γ2var4

)

k
(4.54b)

MA
3 =

NL∑

k=1

SA
k

(
var3 + 2γvar4 + γ2var5

)

k
(4.54c)

MA
4 =

NL∑

k=1

SA
k

(
var4 + 2γvar5 + γ2var6

)

k
(4.54d)

MA
5 =

NL∑

k=1

SA
k

(
var5 + 2γvar6 + γ2var7

)

k
(4.54e)

MV
1 =

NL∑

k=1

SV
k

(
var2 + 2γvar3 + γ2var4

)

k
(4.54f)

MV
2 =

NL∑

k=1

SV
k

(
var3 + 2γvar4 + γ2var5

)

k
(4.54g)

MV
3 =

NL∑

k=1

SV
k

(
var4 + 2γvar5 + γ2var6

)

k
(4.54h)

MV
4 =

NL∑

k=1

SV
k

(
var5 + 2γvar6 + γ2var7

)

k
(4.54i)

MV
5 =

NL∑

k=1

SV
k

(
var6 + 2γvar7 + γ2var8

)

k
(4.54j)

Thus we may integrate through the thickness explicitly in obtaining the initial-stress
stiffness matrix.
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Internal force vector

To evaluate the internal strain energy efficiently in e.g. equation (5.4), it is expedient to
calculate the internal force vector. The internal force vector is obtained by integrating
the equilibrium stresses throughout the volume as shown in equation (3.13) to (3.15).

re =

∫

V
BT σ dV (4.55)

In natural coordinates this integral reads

re =

∫ 1

−1

∫ 1

−1

∫ 1

−1
BT σ |J | drdsdt (4.56)

Rewrite by a change of thickness coordinate, substituting z = th
2 ⇒ dt = 2

hdz .

re =

∫ 1

−1

∫ 1

−1

∫ h
2

−
h
2

BT σ |J | 2
h dzdrds (4.57)

Now we express the explicit thickness dependency of the stresses, σ. Again, we assume
a layer-wise linear distribution of stresses. Thus within the k’th layer we may write

σk = σA
k + zσV

k ; zk−1 ≤ z ≤ zk (4.58)

where the coefficients of the linear variation are determined from a stress evaluation at
the upper and lower Gauss point through the thickness, respectively.

σV
k =

σ
up
k − σlow

k

zup
k − zlow

k

and σA
k = σ

up
k − zup

k σV
k (4.59)

Now introduce the above and the remaining explicit thickness dependencies of the
integrand in equation (4.57), i.e. B = B1+zB2+z2B3 and |J | = ∆2

A

(
1 + 2zγ + z2γ2

)

whereby

re =

∫ 1

−1

∫ 1

−1

[
BT

1 MA
1 + BT

2 MA
2 + BT

3 MA
3

+ BT
1 MV

1 + BT
2 MV

2 + BT
3 MV

3

]
2
h∆2

A drds (4.60)
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with M ’s containing thickness integrated stresses that are evaluated separately as

MA
1 =

NL∑

k=1

σA
k

(
var1 + 2γvar2 + γ2var3

)

k
(4.61a)

MA
2 =

NL∑

k=1

σA
k

(
var2 + 2γvar3 + γ2var4

)

k
(4.61b)

MA
3 =

NL∑

k=1

σA
k

(
var3 + 2γvar4 + γ2var5

)

k
(4.61c)

MV
1 =

NL∑

k=1

σV
k

(
var2 + 2γvar3 + γ2var4

)

k
(4.61d)

MV
2 =

NL∑

k=1

σV
k

(
var3 + 2γvar4 + γ2var5

)

k
(4.61e)

MV
3 =

NL∑

k=1

σV
k

(
var4 + 2γvar5 + γ2var6

)

k
(4.61f)

Here vari’s still contain differences of the k’th top and bottom layer coordinates to the
i’th power as shown in (4.47).

Further approximations

In Section 4.1.4 we indicated a possibility of obtaining further reductions in element
formulation time by neglecting the contribution of G3 and B3 to G and B, respectively.
The rationale for doing so, is that matrices G3 and B3 contain only negligible terms for
most problems that are modelled as shells. If this is utilized we may neglect all terms
of the element matrices containing one of these matrices. For the stiffness matrix this
means that the number of integrand terms in equation (4.45) is reduced from 9 to 5.
For the stress stiffness matrix the same amount of terms is cut analogously as for the
stiffness matrix. These reductions result in further reductions in element formulation
time since costly matrix multiplications are saved by truncating these terms. The price
for these reductions is loss of the information contained in the G3 and B3 matrices.
Later, this loss is shown to be negligible compared to the efficiency gain.

Summary

In the previous sections three thickness integration schemes were presented. The layer-

wise through thickness integration scheme (SHELL9), the explicit thickness integration
scheme (SHELL9Expl) and the explicit thickness integration scheme with further
approximations (SHELL9ExplApp). The first scheme employs numerical integration
in all three spatial variables r, s and t meaning that the number of sampling points
is proportional to the number of layers i.e. (3 × 3 × 2NL) for full integration of
a 9-node shell element) and thus inefficient for multi-layered elements with a large
number of layers. The alternative formulation assumes a linear variation of the inverse
Jacobian matrix which reduces the number of sampling points to a top and bottom point
evaluation for each in-plane sampling point in the reference surface, i.e. (3 × 3 × 2).
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The through the thickness integration is carried out separately without shape function
evaluations which renders the method efficient for elements with many layers. A
comparison of the efficiency of the two approaches is given in Section 6.4.

In the next section we describe constitutive matrices and different ways of handling
them, eventually leading to a convex parametrization of the stiffness matrix.

4.2.3 Constitutive relations

In the following the reduced constitutive relations are described as they are applied
in the formulation of degenerated solid elements. Modifications of the constitutive
relations that enforce shell assumptions are presented along with necessary coordi-
nate transformations. In continuation of this the plane rotation transformation is
reformulated in lamina invariants and used to develop a laminate parametrization
in lamination parameters which is possible for laminates consisting of layers of the

same material. Parametrizing in lamination parameters renders the stiffness matrix
linear in the lamination parameters. This has advantages that are desirable in design
optimization.

Reduced constitutive relations

In Section 2.1 the FSDT assumptions were introduced. Namely, that mid surface
normals are inextensible which amounts to no transverse normal strains, i.e. ε3 = 0.
At the same time transverse normal stresses are assumed to be negligible for thin to
moderately thick shells, σ3 = 0. Obviously these assumptions are mutually conflicting
due to Poisson effects, so in order to enforce both assumptions the constitutive relations
are modified resulting in the so-called reduced constitutive relations. Also, the reduced
constitutive relations incorporate corrections of the transverse shear stiffnesses.

The zero transverse normal stress condition is enforced by writing out the expression
for the transverse normal stress σ3 in an orthotropic material, equation (2.10).

σ3 = Q13ε1 +Q23ε2 +Q33ε3 = 0 ⇔

ε3 = −Q13ε1 +Q23ε2
Q33

= 0 (4.62)

In order to meet the zero transverse normal stress condition and the zero transverse
normal strain for any strain state we see from the equations above that Q13 = Q23 =
Q33 = 0. Thus the orthotropic stress-strain relation, (2.10), in principal material
directions for a single ply in degenerated shell element becomes







σ1

σ2

σ3

τ12
τ23
τ13







=











Q11 Q12 0 0 0 0
Q21 Q22 0 0 0 0
0 0 0 0 0 0
0 0 0 Q44 0 0
0 0 0 0 Q55 0
0 0 0 0 0 Q66

















ε1
ε2
ε3
γ12

γ23

γ13







(4.63)

The transverse shear stiffness coefficients Q55 and Q66 are corrected in order to correlate
the strain energy of the constant through the thickness shear strain to the strain
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energy of the more correct parabolic shear strain distribution through the thickness.
For laminates consisting of layers with shear stiffness terms of approximately equal
magnitude, MUST corrects the transverse shear stiffness terms by an approximate shear
correction factor of k = 0.8 and for sandwich structures consisting of a compliant core
between thin stiff face sheets k = 1.0, i.e. no correction is applied due to the fact,
that sandwich structures actually do exhibit (almost) constant shear strain through
the core, whereas the thin face sheets do not contribute to the shear stiffness very
much, see Jensen et al. (2002) for a thorough discussion of these matters.

Lamina invariants

In Section 2.4.1 it was shown how to transform constitutive properties from principal
material coordinate system to the element coordinate system by a plane rotation, Q =
T T

θ QTθ. By this transformation the constitutive matrix in the MCS, Q, attains the
form

Q =











Q11 Q12 0 Q14 0 0

Q12 Q22 0 Q24 0 0
0 0 0 0 0 0

Q14 Q24 0 Q44 0 0

0 0 0 0 Q55 Q56

0 0 0 0 Q56 Q66











(4.64)

Here the entries of Q involve trigonometric functions to a power of up to four. These
trigonometric functions render e.g. the stiffness non-convex in fiber angles which is
undesirable in structural design optimization. Therefore an other parametrization is
sought, namely in terms of lamination parameters that make use of the so-called lamina
invariants.

Lamina invariants are material properties that are invariant under coordinate trans-
formations. The lamina invariants U1 to U6 are derived by employing trigonometric
identities and rearrangements of the expressions for the transformed constitutive matrix
Q, see e.g. Jones (1999). In terms of constitutive properties in the principal material
coordinate system, the invariants are

U1 = 1
8 (3Q11 + 3Q22 + 2Q12 + 4Q44) (4.65a)

U2 = 1
2 (Q11 −Q22) (4.65b)

U3 = 1
8 (Q11 +Q22 − 2Q12 − 4Q44) (4.65c)

U4 = 1
8 (Q11 +Q22 + 6Q12 − 4Q44) (4.65d)

U5 = 1
2 (Q55 +Q66) (4.65e)

U6 = 1
2 (Q55 −Q66) (4.65f)
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By use of the invariants the entries of Q are given by







Q11

Q22

Q12

Q55

Q66

Q56

Q44

Q14

Q24







=

















U1 U2 0 U3 0
U1 −U2 0 U3 0
U4 0 0 −U3 0
U5 U6 0 0 0
U5 −U6 0 0 0
0 0 −U6 0 0

1
2 (U1 − U4) 0 0 −U3 0

0 0 1
2U2 0 U3

0 0 1
2U2 0 −U3

















︸ ︷︷ ︸

≡U







1
cos 2θ
sin 2θ
cos 4θ
sin 4θ







(4.66)

This reformulation of constitutive properties is not of much use by itself but it paves
the road for an other way of explicitly integrating constitutive properties through the
thickness as needed in e.g. degenerated shell elements.

Lamination parameters in shell elements

In Section 4.2.2 it was shown how the thickness integration in degenerated elements
is carried out explicitly. To obtain the stiffness matrix a product of the strain-
displacement matrix and the constitutive matrix is integrated. For laminates that
consist of layers of the same material oriented at different angles, the thickness
integrated constitutive properties can be expressed in terms of the so-called lamination
parameters. In this section we develop the relation between thickness integrated
constitutive properties from equation (4.46) and the lamination parameters, ξ. First,
we define the various lamination parameters and then develop them into a form suitable
for use with the explicitly thickness integrated constitutive properties.

Let 28 lamination parameters be defined by

ξA
[1,2,3,4] =

1

2

∫ 1

−1

⌊
cos 2θk sin 2θk cos 4θk sin 4θk

⌋T
dt (4.67a)

ξB
[1,2,3,4] =

2

2

∫ 1

−1
t
⌊
cos 2θk sin 2θk cos 4θk sin 4θk

⌋T
dt (4.67b)

ξD
[1,2,3,4] =

3

2

∫ 1

−1
t2
⌊
cos 2θk sin 2θk cos 4θk sin 4θk

⌋T
dt (4.67c)

ξE
[1,2,3,4] =

4

2

∫ 1

−1
t3
⌊
cos 2θk sin 2θk cos 4θk sin 4θk

⌋T
dt (4.67d)

ξF
[1,2,3,4] =

5

2

∫ 1

−1
t4
⌊
cos 2θk sin 2θk cos 4θk sin 4θk

⌋T
dt (4.67e)

ξG
[1,2,3,4] =

6

2

∫ 1

−1
t5
⌊
cos 2θk sin 2θk cos 4θk sin 4θk

⌋T
dt (4.67f)

ξH
[1,2,3,4] =

7

2

∫ 1

−1
t6
⌊
cos 2θk sin 2θk cos 4θk sin 4θk

⌋T
dt (4.67g)
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A change from natural thickness coordinate, t, to physical thickness coordinate, z, is
made by substituting t = 2

hz ⇒ dt = 2
hdz.

ξA
[1,2,3,4] =

1

2

∫ h
2

−
h
2

⌊
cos 2θk sin 2θk cos 4θk sin 4θk

⌋T 2
hdz

=
1

h

NL
∑

k=1

(var1)k
⌊
cos 2θk sin 2θk cos 4θk sin 4θk

⌋T
(4.68a)

ξB
[1,2,3,4] =

2

2

∫ h
2

−
h
2

(
2
hz
) ⌊

cos 2θk sin 2θk cos 4θk sin 4θk

⌋T 2
hdz

=
4

h2

NL
∑

k=1

(var2)k
⌊
cos 2θk sin 2θk cos 4θk sin 4θk

⌋T
(4.68b)

ξD
[1,2,3,4] =

3

2

∫ h
2

−
h
2

(
2
hz
)2 ⌊

cos 2θk sin 2θk cos 4θk sin 4θk

⌋T 2
hdz

=
12

h3

NL
∑

k=1

(var3)k
⌊
cos 2θk sin 2θk cos 4θk sin 4θk

⌋T
(4.68c)

ξE
[1,2,3,4] =

4

2

∫ h
2

−
h
2

(
2
hz
)3 ⌊

cos 2θk sin 2θk cos 4θk sin 4θk

⌋T 2
hdz

=
32

h4

NL
∑

k=1

(var4)k
⌊
cos 2θk sin 2θk cos 4θk sin 4θk

⌋T
(4.68d)

ξF
[1,2,3,4] =

5

2

∫ h
2

−
h
2

(
2
hz
)4 ⌊

cos 2θk sin 2θk cos 4θk sin 4θk

⌋T 2
hdz

=
80

h5

NL
∑

k=1

(var5)k
⌊
cos 2θk sin 2θk cos 4θk sin 4θk

⌋T
(4.68e)

ξG
[1,2,3,4] =

6

2

∫ h
2

−
h
2

(
2
hz
)5 ⌊

cos 2θk sin 2θk cos 4θk sin 4θk

⌋T 2
hdz

=
192

h6

NL
∑

k=1

(var6)k
⌊
cos 2θk sin 2θk cos 4θk sin 4θk

⌋T
(4.68f)

ξH
[1,2,3,4] =

7

2

∫ h
2

−
h
2

(
2
hz
)6 ⌊

cos 2θk sin 2θk cos 4θk sin 4θk

⌋T 2
hdz

=
448

h7

NL
∑

k=1

(var7)k
⌊
cos 2θk sin 2θk cos 4θk sin 4θk

⌋T
(4.68g)

Now we will employ lamination parameters in the expressions for the thickness
integrated constitutive properties from equation (4.46). Below, we use the (layer
independent) transformation from material coordinate system to global coordinate
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system, T , to introduce the constitutive properties in material coordinate system, Q.
Next we use the assumption that all layers are of the same material and consequently
the lamina invariants are taken outside the layer summation. Note that, the step from
equation (4.70) to (4.71) is not correct since U [1, cos 2θ, sin 2θ, cos 4θ, sin 4θ] yields the
entries of matrix Q in a vector form as seen in (4.66), these are to be arranged as in
equation (4.64). In the implementation, however, this issue is solved by simply placing
the entries in a matrix of the correct size. The last step is to recognise the sums of
trigonometric terms as the lamination parameters defined above.

E1 =

NL∑

k=1

Ck

∫ zk

zk−1

(
1 + 2zγ + z2γ2

)
dz (4.69)

=T T
NL∑

k=1

Qk

∫ zk

zk−1

(
1 + 2zγ + z2γ2

)
dzT (4.70)

=T TU

NL∑

k=1

⌊
1 cos 2θk sin 2θk cos 4θk sin 4θk

⌋T
∫ zk

zk−1

(
1 + 2zγ + z2γ2

)
dzT

(4.71)

=T TU
(

h
⌊
1 ξA

1 ξA
2 ξA

3 ξA
4

⌋T
+ 2γ h2

4

⌊
0 ξB

1 ξB
2 ξB

3 ξB
4

⌋T
+

γ2 h3

12

⌊
1 ξD

1 ξD
2 ξD

3 ξD
4

⌋T
)

T (4.72)

Corresponding to the above, matrices E2, E3, E4 and E5 are obtained.

E2 =T TU
(

h2

4

⌊
0 ξB

1 ξB
2 ξB

3 ξB
4

⌋T
+ 2γ h3

12

⌊
1 ξD

1 ξD
2 ξD

3 ξD
4

⌋T
+

γ2 h4

32

⌊
0 ξE

1 ξE
2 ξE

3 ξE
4

⌋T
)

T (4.73a)

E3 =T TU
(

h3

12

⌊
1 ξD

1 ξD
2 ξD

3 ξD
4

⌋T
+ 2γ h4

32

⌊
0 ξE

1 ξE
2 ξE

3 ξE
4

⌋T
+

γ2 h5

80

⌊
1 ξF

1 ξF
2 ξF

3 ξF
4

⌋T
)

T (4.73b)

E4 =T TU
(

h4

32

⌊
0 ξE

1 ξE
2 ξE

3 ξE
4

⌋T
+ 2γ h5

80

⌊
1 ξF

1 ξF
2 ξF

3 ξF
4

⌋T
+

γ2 h6

192

⌊
0 ξG

1 ξG
2 ξG

3 ξG
4

⌋T
)

T (4.73c)

E5 =T TU
(

h5

80

⌊
1 ξF

1 ξF
2 ξF

3 ξF
4

⌋T
+ 2γ h6

192

⌊
0 ξG

1 ξG
2 ξG

3 ξG
4

⌋T
+

γ2 h7

448

⌊
1 ξH

1 ξH
2 ξH

3 ξH
4

⌋T
)

T (4.73d)

Thus we have obtained expressions for the thickness integrated constitutive properties
in terms of lamination parameters. Consequently, the stiffness matrix in equation (4.45)
may be expressed in lamination parameters as well.
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4.3 Summary

This concludes the chapter on degenerated shell elements. The steps in degenerating
solid elements to shell elements are shown by introducing the kinematic assumptions of
FSDT. The usual scheme for integrating layered degenerated shell elements completely
numerically, was shown. Afterwards an alternative scheme is shown by introducing
explicit thickness dependencies of the inverse Jacobian matrix. This enables explicit
integration through the thickness to evaluate various element matrices which increases
the efficiency in element formulation time for elements with many layers compared
to the conventional integration scheme. A further reduction in element formulation
time is obtained by further truncation of negligible terms of the strain-displacement
relations. Eventually, the reduced constitutive relations for shells are presented and
further developed to obtain expressions for the element stiffness matrix in terms of
lamination parameters.
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Structural design optimization

In the search for performance of engineering structures, optimization methods
are employed increasingly along with access to numerical processing power. Re-

stricting ourselves to structural design it is fair to say that any design task may be
formulated as an optimization problem. As soon as the design task has been formulated
as an optimization problem we may take advantage of mathematical methods developed
within optimization theory.

5.1 Classes of structural optimization problems

Optimization may aid the designer at different levels of the design phase. Ranging from
topology optimization applied at conceptual design stages over shape optimization that
returns the optimum shape for a given topology to sizing optimization which may be
used even at a detailed design level.

Yet another question in the design of a structure is the optimal choice of material and
if applicable also orientation. Depending on the specific design problem at hand the
available materials may be given in advance and in case of orthotropic materials being
used in a laminate, the optimal lay-up in terms of layer thicknesses and orientations
remains to be determined.

5.2 The optimization problem

Usually the structure to design has to fulfil one or multiple purposes. Obviously, by
some measure, some solutions are better than other feasible solutions. A measure of
how well or bad a given solution performs is evaluated through the objective function,
f that is evaluated on basis of an analysis. At the same time space, money, physics,
etc. may pose constraints, g and h, to our freedom of design. The objective and
the constraints are explicit or implicit functions of the current design parametrized in
terms of design variables, ai. The design variables are a set of quantities that together
constitute a certain configuration or design, and the task is to find the most favourable
set that does not violate the constraints and at the same time minimizes the objective
function. This task is solved by an optimization algorithm.

The objective function and the constraints are scalar functions of the vector of design
variables. The constraints may be expressed as equalities and/or inequalities. The latter
representing the most general case. This problem is usually expressed mathematically
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in the following way.

minimize f (a) (5.1)

subject to







hi (a) = 0 i = 1 . . .m

gj (a) ≤ 0 j = 1 . . . n

ak ≤ ak ≤ ak k = 1 . . . o

(5.2)

The last set of constraints are the side constraints that are upper and lower bounds
on the design variables. The objective function and the constraints may be explicit
or implicit. Implicit functions corresponds to being blindfolded in the search for an
optimum, significantly complicating matters. This is the situation for most constraints
within structural mechanics.

To solve the optimization problem an array of different techniques and algorithms exist
and it is not the scope of this text to go into detail of this aspect. As indicated above
the design variables may be of continuous or discrete nature. In general it is easier
to solve continuous design variable problems compared to equivalent discrete design
variable problems. This relates to the possibility of obtaining sensitivities or gradient
information for continuous problems which is invaluable in the search for an optimum.
This type of problem may be solved by gradient based methods that return a global
optimum solution if the design space is convex.

In short structural optimization is a tool to obtain efficient structures that perform well
taking into account the constraints posed. At the same time one should be aware that
a risk of introducing new and unexpected failure modes exists and that the optimizer
only does what it is asked to, namely to minimize the objective without violating any
constraints posed, whatsoever.

In the following we present two specific types of optimization problems encountered in
structural design optimization. The first one is that of designing a structure with the
maximum stiffness for a given amount of material. The second type of optimization
problem is the task of maximizing the lowest buckling load of a structure. Design
sensitivity analysis for both types of optimization problems is treated in terms of
generalized design variables first and subsequently we specialize to orthotropic laminate

optimization. Various parametrizations for laminate optimization are discussed and in
particular design sensitivity analysis with lamination parameters as design variables is
investigated.

5.3 Maximum stiffness design

In many high performance applications such as wind turbine blades, aircraft structures
and the like, stiffness is of major importance for the structural performance. Stiffness
in itself is not difficult to obtain if it was not for simultaneous call for low structural
weight. Thus, often we are faced with a multi-criterion problem, namely to maximize
structural stiffness while minimizing weight. As shown above, we must have a single
scalar objective function for the optimization problem to be meaningful. So, either an
objective function is formed as a weighted sum of the two objectives or alternatively one
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of the objectives is eliminated by choosing a satisfactory value for it and then include
this target value as a constraint instead.

The usual way of handling the maximum stiffness design of lightweight structures is to
agree on a maximum allowable weight and then gain as much performance as possible for
the chosen acceptable amount of material usage. In maximum stiffness design we want
to reduce displacements caused by externally applied loads. Therefore, the objective is
typically chosen to be the compliance. The compliance C is defined as the work, W ,

done by the applied forces in reaching an equilibrium deformed state.

C (a) ≡W (a) = rT d (5.3)

For a linear elastic structure the work done by the applied forces is related to the elastic
strain energy in the following way

W = rT d = dT Kd = 2U (5.4)

Thus the compliance is related to the elastic strain energy and consequently the
minimum compliance optimization problem may be expressed in terms of the internal
strain energy.

minimize U (a) (5.5)

subject to Kd = r (5.6)

5.4 Maximum stability design

Stiffness maximization tends to favour membrane states of stress since this gives the
best material utilization compared to bending dominated designs. It is a well-known
fact that structural members loaded in compression are prone to buckling failure and
therefore it may be important to cope with buckling failure in stiffness optimization
problems, equally. In practical design, although non-conservative due to unavoidable
manufacturing imperfections, the lowest linear buckling load may be used as a measure
of structural strength against stability failure. So in order to maximize the stability of
a structure, the task is to maximize the lowest buckling load. Formally this is stated as

maximize min {λ (a)} (5.7)

5.5 Design sensitivity analysis

The purpose of this section is to describe how design sensitivity analysis is applied in
obtaining optimized designs based on rational decisions.

Design sensitivity analysis relies on a parametrization of the analysis model which has
been treated above. With a parametrized model it is possible to obtain information on
how a small change of a design variable affects the objective function and thus the overall
performance of the structure. This may be carried out analytically or numerically by
finite differences. In the following we derive expressions for the sensitivities of the
compliance and the buckling load.
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5.5.1 Sensitivity of stiffness

As stated in Section 5.3 the compliance is related to the elastic strain energy and thus
the sensitivities with respect to compliance can be stated in terms of derivatives of
the elastic strain energy. The elastic strain energy of an FE-discretized structure at
equilibrium is given by

U = 1
2dT Kd (5.8)

To obtain the sensitivity, the expression is differentiated with respect to a design
variable, ai, from a vector of generalized design variables, a.

∂U

∂ai
=

1

2

(
ddT

dai
Kd + dT ∂K

∂ai
d + dT K

dd

dai

)

(5.9)

Exploiting symmetry of the stiffness matrix, K, we combine the first and last term in
the bracket

∂U

∂ai
=

1

2
dT ∂K

∂ai
d + dT K

dd

dai
(5.10)

To do further simplifications of the expression above, the FE equilibrium equation,
(5.6), is differentiated with respect to a design variable

∂K

∂ai
d + K

dd

dai
=
∂r

∂ai
(5.11)

By assuming design independent nodal loads, ∂r
∂ai

= 0, the following relation is obtained

K
dd

dai
= −∂K

∂ai
d (5.12)

This expression resembles the FE equilibrium equation, (5.6), now with the unknowns
being the displacement sensitivities, dd

dai
. The right hand side of this expression is called

the pseudo-load vector. The stiffness matrix sensitivities, ∂K
∂ai

, are readily evaluated at
element level either as analytical sensitivities or finite difference approximations. The
displacements are known from the solution of the equilibrium equation. With the
factorized stiffness matrix at hand (from the solution of the equilibrium equation) the
displacement sensitivities are simply obtained by solving the above system of equations
with the pseudo-load vector as the new right hand side, which is computationally
efficient since the solution only requires forward backward substitutions. This way
of obtaining the displacement sensitivities is used later in obtaining sensitivities of the
stress stiffness matrix in equation (5.21). In case of sensitivity analysis of the elastic
strain energy, the need for solving (5.12) is omitted in case of design independent loads.
This is seen by substitution of equation (5.12) into (5.10) whereby the sensitivities can
be expressed as

∂U

∂ai
= −1

2
dT ∂K

∂ai
d = −1

2

N∑

e=1

(de)T
∂Ke

∂ai
de (5.13)

Hereby the design sensitivity of the elastic strain energy with respect a design variable,
ai, is expressed as a sum of sensitivities at the element level. Until now the design
variables have been expressed as generalized and thus apply for any choice of design
variables. In Appendix B it is shown how the sensitivities of the stiffness matrix with
respect to lamination parameters are obtained analytically.
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5.5.2 Sensitivity of buckling load

As we want to maximize the buckling load of a structure we need to express the
sensitivity of the lowest buckling load with respect to some design variable as shown in
Lund (2007). If we for simplicity assume that the lowest buckling load (eigenvalue) is
distinct and thus not multiple, we obtain the sensitivity by simply differentiating the
expression for the linear buckling problem equation (3.24), that is repeated here for
reference.

(K + λjKσ) φj = 0; j = 1, 2, ..., nDOF (5.14)

Differentiation with respect to a design variable, ai, yields

d
dai

[(K + λjKσ)φj ] = 0 ⇔ (5.15)
(
∂K

∂ai
+

(
dλj

dai
Kσ + λj

dKσ

dai

))

φj + (K + λjKσ)
dφj

dai
= 0 ⇔ (5.16)

dλj

dai
Kσφj = −

(
∂K

∂ai
+ λj

dKσ

dai

)

φj − (K + λjKσ)
dφj

dai
(5.17)

If the eigenvectors φj are Kσ-orthonormalized (i.e. φT
j Kσφj = 1) pre-multiplication

by φT
j yields

dλj

dai
= −φT

j

(
∂K

∂ai
+ λj

dKσ

dai

)

φj − φT
j (K + λjKσ)

dφj

dai
(5.18)

If we utilize that (K + λjKσ) is symmetric, φT
j and

dφj

dai
can be interchanged in the

last term of equation (5.18) which together with equation (5.14) results in the following
expression for the sensitivity of the buckling load factor.

dλj

dai
= −φT

j

(
∂K

∂ai
+ λj

dKσ

dai

)

φj (5.19)

This expression for the sensitivity of the buckling load factor contains the derivatives of
the stiffness and the stress stiffness matrix with respect to a design variable. The
derivative of the stiffness matrix with respect to a design variable, dK

dai
, is readily

obtained on the element level either by finite differences or by analytical derivatives
obtained by symbolic differentiation of element matrices. In case of lamination
parameters acting as design variables it is shown in Appendix B. The sensitivity of
the stress stiffness matrix, dKσ

dai
, requires a bit more consideration. Recall that the

initial stress stiffness matrix is obtained on basis of the stresses determined by a static
analysis, i.e. it depends on the displacements. Thus the initial stress stiffness matrix
is an implicit function of the displacements, i.e. Kσ = Kσ (d (a) ,a). Formally, this
means that the sensitivity of the initial stress stiffness matrix attains the following form

dKσ

dai
=
∂Kσ

∂ai
+
∂Kσ

∂d

dd

dai
(5.20)

However, to evaluate this expression we need the partial derivatives of the stress stiffness
matrix with respect to the displacements, ∂Kσ

∂d
, which is not trivial. So, instead of

evaluating each term on the right hand side of equation (5.20), the stress stiffness



52 5.6. Laminate optimization

matrix sensitivity is obtained from a central finite difference approximation at the
element level.

dKσ

dai
≈ Kσ (ai + ∆ai,d + ∆d) − Kσ (ai − ∆ai,d − ∆d)

2∆ai
(5.21)

with ∆d ≈ dd
dai

∆ai where the displacement sensitivity dd
dai

is obtained by solving
equation (5.12) for the design variable, ai. For fibre angle design variables, a
perturbation of ∆ai = 10−3 turns out to be adequate.

5.6 Laminate optimization

So far, we have presented the optimization problems in terms of generalized design
variables. In this section we address the issue of laminate optimization with orthotropic
materials for which the design variables may be, for instance, layer orientation, thickness
or lamination parameters.

5.6.1 Non-convexity in fibre angle optimization

The major problem of a fibre angle parametrization is that the objective, e.g. the
compliance, is non-convex. That is, there may exist multiple local minima and we
cannot ensure that a gradient-based optimization algorithm leads to a global optimum
solution. In fact, as we will show below, we may even obtain solution ‘close’ to an
absolutely non-optimal solution if a local minimum and the initial guess is in the vicinity
of the global maximum.

Two-layer example

To illustrate problems concerning non-convexity of a fibre angle parametrization, we
study the design space of a simple problem with two design variables. We want to
minimize the compliance of a cantilevered plate loaded in shear or tension in the plane
of the plate, see Figure 5.1. The plate consists of two fixed thickness orthotropic layers
whose fibre orientations, θ1 and θ2, may be varied independently. In Figure 5.1 both
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Figure 5.1: Left: Sketch of cantilevered two-layer plate example with tensile and shear load

imposed. Dimensions: L = 1, layer thicknesses, h = 0.025. Right: one-element discretization

with boundary conditions and equivalent nodal loads.

load cases, tension and shear, are shown simultaneously. In the optimization, however,
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the two load cases are treated individually. In the following we investigate the design
space of each load case when both fibre angles are independent design variables. The
small size of the problem enables us to search the entire design space and thus visualize
the objective. Of course, this luxury is not an option in real life problems but for this
demonstration example it serves to gain insight into the problem.

From Figure 5.2 we see that the in-plane shear problem has two equally good global
optima. These are found for θ1 = −24.8725, θ2 = 24.8725 or θ1 = 24.8725, θ2 =
−24.8725. These optimum solutions are only found if the initial guess is close enough
to one of the optimum solutions. Otherwise, gradient-based algorithms will return local
minima as the solution.
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Figure 5.2: In-plane shear example: normalized compliance against fibre angles, θ1 and θ2.

Normalized against optimal compliance: 3.9075 · 10−9.

For the tensile load case the optimal fibre directions are, not surprisingly, θ1 = θ2 = 0.
This is readily recovered in Figure 5.3. From the figure we observe several local
minima including the minima at θ1,2 = ±90 that are close to the worst possible
compliance about four times as big as the optimum compliance! This result is somewhat
discouraging and calls for an alternative parametrization. The previous examples in a
simple manner illustrate some of the problems encountered in non-convex optimization
problems. Optimization results depend on the quality of the initial guess and the global
optimum may only be reached from initial guesses within some safe region. In the next
section we will show an extension of an existing laminate optimization scheme.
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Figure 5.3: In-plane tensile example: normalized compliance against fibre angles, θ1 and θ2.

Normalized against optimal compliance: 4.3747 · 10−9.

5.6.2 Optimization with lamination parameters

To circumvent the non-convexity of a continuous fibre angle parametrization several
approaches involving lamination parameters have been proposed as seen in Section 1.1.2
where an overview was given. In this section it is outlined how the laminate optimization
method proposed by Foldager et al. (1998) may be extended to general shell geometries
by use of the element formulations shown in this project. This step entails that the
number of lamination parameters is extended from the previous 12 to 28 as shown in
equation (4.67).

In Section 1.1.2 it was found that for combined in-plane and bending loads the feasible
regions of the lamination parameters have not been determined. Foldager et al. (1998)
approached the general laminate design problem from a different angle. Their idea is
to use fibre angles and laminae thicknesses as design variables while using lamination
parameters to provide convexity. This approach calls for a procedure that can identify
physical lay-ups in terms of orientations and thicknesses from an optimized set of
lamination parameters.

The procedure shown in Figure 5.4 is formulated as an optimization problem in the
layer angles, θ and thicknesses, h. The procedure consists of the following steps
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1. A conventional fibre angle optimization returns a set of (sub-)optimal angles and
thicknesses,

(
OPTθk,OPT hk

)
.

2. Ply angles and thicknesses
(
OPT θk,OPT hk

)
are converted to lamination param-

eters, OPTξ, by use of equation (4.68). At the current design point, sensitivities
of the objective with respect to lamination parameters are evaluated, ∂f

∂ξ
. For

compliance this amounts to evaluating equation (5.13) and for buckling (5.19).

3. Identification of a new starting point: This step is performed by an identification
procedure whose objective is to find a new set of angles and thicknesses
(
OPTθk+1,OPT hk+1

)
that minimize the difference between the current set of

lamination parameters, ξ∗ and those obtained on basis of the new angles and
thicknesses, ξ

(
OPT θk+1,OPT tk+1

)
, subject to the constraint that the new set of

angles and thicknesses must have a lower objective f than the previous set. If a
new starting point is found, the optimization loop is continued from step 1 else
the current design must be the global optimum and consequently the optimization
is terminated.

min f

Convert ply-angles to lamination parameters
`

OPT θk,OPT hk
´

,⇒OPT ξk

Calculate lamination parameter sensitivities

∂f

∂OP T ξk

Is it possible to identify

a new starting point
`

OPT θk,OPT hk
´

?

The global minimum

is found

θi, hk

No

Yes

Figure 5.4: Schematic flow diagram of the optimization procedure proposed by Foldager et al.

(1998).

These steps should lead to a physically realisable lay-up that is global optimum. In the
following we briefly describe some details of the identification procedure.

Identification

The identification procedure described in the last step of the optimization loop above
is based on an optimization itself. The aim is to find a new lay-up that minimizes
the difference between the lamination parameters corresponding to the previous design
and those obtained by the new lay-up subject to the constraint that it must improve
the objective function f . This ensures that the design sequentially is driven towards a
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global optimum solution. The identification objective is given by

I = 4f1 (ξ∗, ξ (θi, ti)) + f2

(

ξ∗, ξ (θi, ti) ,
∂f

∂ξ∗

)

(5.22)

Contrary to the original development it is our opinion that f1 should be the squared
difference between the current and the new design, i.e. we optimize in a least squares
sense.

f1 (ξ∗, ξ (θi, ti)) =

NLP∑

i=1

(ξ∗i − ξi (θi, ti))
2 (5.23)

The f2 function depends on derivatives with respect to lamination parameters, ∂f
∂ξ∗ and

is included to favour lay-ups with a lower objective f , for details about this function
see Foldager et al. (1998).

5.7 Summary

In this chapter structural design optimization was presented as a tool to rationally
design optimal structures for a given objective. The objective could be e.g. to design
for maximum stiffness or maximum stability and for these objectives it was shown how
to obtain sensitivities with respect to generalized design variables. For a layer angle
parametrization in laminate optimization, non-convexity of the stiffness was illustrated
by two simple examples. Eventually, a procedure is shown that provides convexity in
stiffness design based on lamination parameters.



6

Numerical examples

Knowing the limitations, shortcomings and advantages of a given element
formulation is essential when modelling by finite elements. The finite element

method approximates the originally continuous problem by discretizing the governing
equations and subsequently interpolates the solution obtained at discrete points within
elements. It is obvious that a finer discretization improves accuracy, however, this
accuracy comes at a price in terms of larger systems of equations to be solved. Therefore,
in a finite element context, a discussion of element accuracy is necessarily accompanied
by an assessment of computational efficiency. In addition, it is important to verify that
the implementations of the element routines are correct. This is naturally done prior
to and during the coding phase by thorough planning of the routines and subsequent
de-bugging. The tests are primarily focused on verification of the 9-node element.
The implementation is of general nature and also caters for the 16-node version of the
element, but this element is not tested as extensively as the 9-node element.

6.1 Test strategy

In order to verify the implementation of the new elements a number of standard tests
with known solutions are performed. The set of tests covers a variety of loading
situations and geometrical configurations which ensures that the elements are tested
comprehensively.

First, we perform so-called patch tests in order to demonstrate that the elements are
able to represent constant stresses throughout a distorted mesh which is important
for convergence. Next, accuracy and convergence is assessed in a number of standard
test examples for shell elements from MacNeal and Harder (1985). These tests should
reveal possible shortcomings and limitations of the elements.

To asses the influence of the approximations made to enable explicit thickness
integration, the results obtained with the new element formulations are compared to
those obtained with the existing 9-node isoparametric shell element. The isoparametric
9-node shell element formulations are denoted as follows:

• SHELL9: existing formulation with layer-wise numerical thickness integration,
see Section 4.2.1.

• SHELL9Expl: explicit integration through the thickness based on assumption of



58 6.2. Patch tests

the inverse Jacobian matrix through the thickness, see Section 4.2.2.

• SHELL9ExplApp: same integration scheme as SHELL9Expl with further approx-
imations (G3 = B3 = 0).

Also, the performances of the elements are compared. Tests with increasing numbers
of layers are carried out to asses the performance gain and to identify the break-even
number of layers with respect to element formulation time. Finally, a number of small-
scale optimization examples are shown in order to verify the efficiency gain in a multi-
layer setting.

6.2 Patch tests

Patch tests serve to demonstrate whether given elements are able to exhibit states
of constant strain and stress in distorted meshes, respectively. This property is
important in order to ensure well-behaved convergence characteristics since elements
should exhibit constant strain in the limiting case of infinitely small elements.

We want to investigate the ability to exhibit constant stresses in membrane loading and
the ability to show constant bending stresses in pure bending. The tests are performed
on a ‘patch’ of elements proposed by MacNeal and Harder (1985), shown in Figure 6.1.

1
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34
Coordinates, (x, y)

1 : (0.04, 0.02)

2 : (0.18, 0.03)

3 : (0.16, 0.08)

4 : (0.08, 0.08)

L
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x

y

Figure 6.1: Patch test geometry and coordinates of inner nodes. L = 0.24, w = 0.12 and

thickness, h = 0.001. Isotropic material properties: Young’s modulus, E = 106 and Poisson’s

ratio, ν = 0.25.

6.2.1 In-plane membrane patch test

In order to test the ability to demonstrate states of constant membrane stress
throughout a distorted mesh, the in-plane membrane patch test is applied. The test
prescribes a pure membrane displacement field that should result in constant in-plane
stresses throughout the distorted mesh.

u = 10−3
(
x+ y

2

)
(6.1)

v = 10−3
(
y + x

2

)
(6.2)

w = 0 (6.3)
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This should theoretically result in the following stresses

σxx = σy = 1333 σxy = 400 (6.4)

Results of the membrane patch tests are shown for SHELL9Expl in Figure 6.2 and for
SHELL9ExplApp in Figure C.1 in the Appendix.

Name: MUST9ExplPatchMembrane

Disp X

 3.000E-004

 2.786E-004

 2.571E-004

 2.357E-004

 2.143E-004

 1.929E-004

 1.714E-004

 1.500E-004

 1.286E-004

 1.071E-004

 8.571E-005

 6.429E-005

 4.286E-005

 2.143E-005

 0.000E+000

Name: MUST9ExplPatchMembrane

Sxx

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

Name: MUST9ExplPatchMembrane

Syy

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

Name: MUST9ExplPatchMembrane

Sxy

 4.000E+002

 4.000E+002

 4.000E+002

 4.000E+002

 4.000E+002

 4.000E+002

 4.000E+002

 4.000E+002

 4.000E+002

 4.000E+002

 4.000E+002

 4.000E+002

 4.000E+002

 4.000E+002

 4.000E+002

Figure 6.2: Membrane patch test results for the explicitly integrated 9-node formulation,

SHELL9Expl. From top left to bottom right: ux, σxx, σyy and σxy, respectively.

Both formulations pass the in-plane membrane patch test by exhibiting continuous
linear displacement contours and constant values of the stress components throughout
the mesh.
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6.2.2 Out-of-plane bending patch test

To demonstrate the ability to represent constant bending stresses throughout the mesh,
we impose a pure bending displacement field:

w = 10−3
(
x2 + xy + y2

)
/2 (6.5)

θx = 10−3
(
y + x

2

)
(6.6)

θy = −10−3
(
x+ x

2

)
(6.7)

This should theoretically result in the following constant stresses

σxx = σy = ±0.667 σxy = ±0.200 (6.8)

Results of the membrane patch tests are shown in Figure 6.3 and C.2.

Name: MUST9ExplPatchBending

Disp Rot X

 2.400E-004

 2.229E-004

 2.057E-004

 1.886E-004

 1.714E-004

 1.543E-004

 1.371E-004

 1.200E-004

 1.029E-004

 8.571E-005

 6.857E-005

 5.143E-005

 3.429E-005

 1.714E-005

 0.000E+000

Name: MUST9ExplPatchBending

Sxx

-6.667E-001

-6.667E-001

-6.667E-001

-6.667E-001

-6.667E-001

-6.667E-001

-6.667E-001

-6.667E-001

-6.667E-001

-6.667E-001

-6.667E-001

-6.667E-001

-6.667E-001

-6.667E-001

-6.667E-001

Name: MUST9ExplPatchBending

Syy

-6.667E-001

-6.667E-001

-6.667E-001

-6.667E-001

-6.667E-001

-6.667E-001

-6.667E-001

-6.667E-001

-6.667E-001

-6.667E-001

-6.667E-001

-6.667E-001

-6.667E-001

-6.667E-001

-6.667E-001

Name: MUST9ExplPatchBending

Sxy

-2.000E-001

-2.000E-001

-2.000E-001

-2.000E-001

-2.000E-001

-2.000E-001

-2.000E-001

-2.000E-001

-2.000E-001

-2.000E-001

-2.000E-001

-2.000E-001

-2.000E-001

-2.000E-001

-2.000E-001

Figure 6.3: Bending patch test results for the explicitly integrated 9-node formulation,

SHELL9Expl. From top left to bottom right: θx, σxx, σyy and σxy, respectively.

Again, both formulations pass the out-of-plane bending patch test by exhibiting
continuous linear rotation contours and constant values of the stress components
throughout the mesh.
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6.2.3 Layered patch tests

To verify the implementation of the explicit and the approximate explicit thickness
integration schemes, a bending and a membrane patch test is performed on a mesh
of layered elements. Material properties and total stack thickness is the same as for
single layer patch tests. The difference being that the stack is now made up of three
layers with thicknesses (0.00025, 0.0005, 0.00025). The results (given in Appendix C)
show that both formulations pass the patch tests and thus it is concluded that the
two explicit thickness integration schemes are implemented correct for evaluation of
the stiffness matrix. The stress recovery routines are also verified by the above. For
integration of the remaining element matrices we must resort to standard test problems
with known solutions which is shown below.

6.3 Numerical accuracy

In this section the previously mentioned standard tests are carried out. The tests
serve to verify whether the solutions obtained with the elements converge towards
known solutions. Also, the approximation introduced in obtaining an explicit expression
of the inverse Jacobian is assessed for varying radius of curvature-to-thickness ratios.
Furthermore it is tested whether the approximation makes the element more sensitive
to twist.

6.3.1 Pinched hemisphere

To test the shell elements’ convergence behaviour in mixed membrane and bending
situations, the doubly curved pinched hemisphere problem is employed. The pinched
hemisphere is loaded by two sets of pinching point loads at equator. The 18◦ opening in
the top is introduced in order to avoid triangular elements near the pole. The problem
is illustrated in Figure 6.4. Due to symmetry only one quarter is modelled.
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Figure 6.4: Geometry and boundary conditions for topless pinched hemisphere. Load: F = 2.

Dimensions: R = 10.0, t = 0.04, φ = 18.0◦. Isotropic material properties: E = 6.825 · 107,

ν = 0.3.

For comparison purposes we monitor the radial deflection of point A. A theoretical
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lower bound of 0.0924 is known from an exact solution for a closed pinched hemisphere.
A more realistic result for the open hemisphere is 0.0940, MacNeal and Harder (1985),
which is used for normalization in the following.

Convergence is studied by refining an N × N mesh applied to one quarter of the
hemisphere. The normalized radial displacement of point A is shown graphically in
Figure 6.5. Results are shown for all three element formulations and from the graph no
difference is seen. Convergence seems to be reached equally for all three formulations at
a mesh size of 32×32. Thus the approximations introduced do not alter the convergence
compared to the SHELL9 element.
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Figure 6.5: Pinched hemisphere: normalized radial displacement of point A vs. number of

elements in N ×N mesh. Normalized by: 0.0940.

Next, we study the influence of the curvature to thickness ratio.

6.3.2 Influence of R/h-ratio

To enable explicit thickness integration we assumed the radius of curvature to be
significantly larger than the shell thickness, Section 4.1.4. Now we use the pinched
hemisphere example to study the precision of this approximation for varying radius
of curvature-to-thickness ratios. The deflection of point A, obtained by the explicitly
integrated element formulations, is compared to the same displacement obtained by
the completely numerically integrated formulation, SHELL9. The relative difference is
defined as

D =

(

vExpl
A

vSHELL9
A

− 1

)

· 100% (6.9)

In Figure 6.6 the relative difference of the displacement of point A compared to the
SHELL9 solution is plotted against the radius of curvature-to-thickness ratio of the
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pinched hemisphere. For plates (i.e. R
h = ∞) the relative difference caused by the

approximation is zero. This is reflected in that the relative difference is less than 4%
for shells with a R

h -ratio larger than 5 and beyond, the error asymptotically approaches
zero. For shells in the thin shell range, that is, R

h > 25 virtually no difference is
observed, as expected.
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Figure 6.6: Relative difference of point A displacements of SHELL9Expl and SHELL9ExplApp

compared to complete numerically integrated 9-node shell element, SHELL9.

The plot shows that the approximation introduced to enable explicit thickness
integration is reasonable for radius-to-thickness ratios that are typically modelled as
shell structures. It is seen that SHELL9ExplApp is slightly more un-precise than the
SHELL9Expl formulation in the moderately thick shell range but still very close to the
SHELL9 formulation in the thin shell range. Though the plot displays R

h values below
10, it is questionable whether such structures are adequately modelled as shells.

6.3.3 Scordelis-Lo roof

The Scordelis-Lo roof example is a standard test to asses convergence in a combined
bending-membrane problem with the membrane action being dominant. The roof is
modelled as a cylindrical shell loaded by self-weight and supported by rigid diaphragms
at each end, see Figure 6.7. The roof is relatively shallow with a radius of curvature-
to-thickness ratio of R

h = 100. According to MacNeal and Harder (1985) the original
reference solution is a roof edge deflection at midspan of v = 0.3086, but v = 0.3024
seems to have become the reference solution for this problem and we will use the latter
value for normalization of our results. Convergence is assessed through consecutive
refinement of an N ×N mesh, from N = 2 to 64.



64 6.3. Numerical accuracy

A

B

C

DCoordinates, (x, y, z)

A : (−16.07, 19.15, 0)
B : (16.07, 19.15, 0)
C : (16.07, 19.15,−50)
D : (−16.07, 19.15,−50)

L

Fr
ee

Fr
ee

UX = UY = 0

UX = UY = UZ = 0

h

R

v

40◦

x

y

z

Figure 6.7: Scordelis-Lo roof with end diaphragms loaded by self weight. Dimensions: R = 25,

L = 50 and h = 0.25. Isotropic material properties: Young’s modulus, E = 4.32 · 108, and

Poisson’s ratio, ν = 0.

The loading pr. unit area is 90. With a gravity of 9.82 and a thickness, h = 0.25 this
yields a mass density of 36.66.

The results obtained with the three implementations of the 9-node element are
shown in Figure 6.8. The three formulations yield virtually identical results and
may not be distinguished from each other from the plot. All formulations exhibit
monotonic convergence towards the reference solution. Thus for equivalent meshes the
approximation introduced in the SHELL9Expl and SHELL9ExplApp do not influence
the results obtained. This supports the conclusions drawn in Section 6.3.2, namely
that the approximation only introduces notable deviations for shells with a radius of
curvature-to-thickness ratio below 25.
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Figure 6.8: Scordelis-Lo roof: normalized displacement vs. number of elements in N × N

mesh. Reference solution: v = 0.3024.

6.3.4 Pinched cylinder

Analysis of the singly curved pinched cylinder with end diaphragms is carried out in
order to evaluate the convergence behaviour in a singly curved structure subjected to
combined bending and membrane stresses. Geometry and boundary conditions of the
cylinder are shown in Figure 6.9.
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Figure 6.9: Pinched cylinder with end diaphragms with an applied load of, F = 1 at L
2
.

Geometrical properties of the cylinder: L = 600, R = 300 and h = 3, i.e. R
h

= 100. Isotropic

material properties: Youngs modulus, E = 3 · 106 and Poissons ratio, ν = 0.3.
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To asses the convergence of the elements one octant of the geometry is meshed by
an N × N mesh as shown at Figure 6.9, where N attains the values 2, 4, 8, 16, 25,
32 and 40. Values of normalized displacements based on these meshes are shown in
Table 6.1. The displacements are normalized by values given in Heppler and Hansen
(1986), i.e. uB = −164.24F

Eh = −5.2222 · 10−8, vC = −0.47F
Eh = −1.8248 · 10−5 and

wD = −4.114F
Eh = −4.5711 · 10−7.

Table 6.1: Pinched cylinder: normalized displacement at points B, C and D in the x, y and

z-direction respectively. N denotes the number of elements in an N ×N mesh.

Normalized uB Normalized vC Normalized wD

N 9 9Expl 9ExplApp 9 9Expl 9ExplApp 9 9Expl 9ExplApp

2 −5.95 −5.95 −5.95 0.05 0.05 0.05 0.12 0.12 0.12
4 10.80 10.80 10.80 0.16 0.16 0.16 0.30 0.30 0.30
8 17.15 17.15 17.15 0.56 0.56 0.56 0.76 0.76 0.76
16 −2.74 −2.74 −2.74 0.91 0.91 0.91 0.97 0.97 0.97
25 1.39 1.39 1.39 0.98 0.98 0.98 0.99 0.99 0.99
32 1.15 1.15 1.15 1.00 1.00 1.00 1.00 1.00 1.00
40 1.05 1.05 1.05 1.00 1.00 1.00 1.00 1.00 1.00

Convergence of the three element schemes seems to be identical. The normalized
displacements presented in Table 6.1 are plotted in Figure 6.10 to asses the convergence
at each point of interest. Due to coinciding values of normalized displacement only one
graph is shown for each of the points B, C and D.
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Figure 6.10: Pinched cylinder: Normalized displacement vs. number of elements in N × N

mesh. The graph is based on values for the SHELL9ExplApp element.

Displacements at points C and D converge nicely towards the values used for
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normalization and with a 40 × 40 mesh the displacements have converged. The
convergence history of the displacement at point B is oscillating, but it seems that
the displacement has converged at a 40 × 40 mesh. The apparent difficulties with
uB displacements may be due to the reference value being significantly smaller than
the remaining displacements and thus a minor absolute deviation will show as a large
relative deviation.

6.3.5 Twisted beam

The twisted beam test example is used to evaluate how elements perform in a twisted
situation. For explicitly integrated elements Vlachoutsis (1990) reports an increased
sensitivity to twist, compared to the completely numerically integrated equivalents. As
shown below, this tendency has not been recovered in our numerical tests of the present
implementation.

The beam is loaded by a unit in-plane and a transverse tip load applied as equivalent
nodal forces in each test case, and a sketch of the problem is shown in Figure 6.11.
MacNeal and Harder (1985) report theoretical solutions to the problem, however, no
reference is given to how the theoretical result is obtained and it was not possible in
the present work to recover the results. For this reason we take as a reference solution
a result obtained by Ansys with the use of their SHELL911 element on a 12 × 2-mesh.
This yields transverse tip deflections of the center node of 2.39 · 10−3 and 6.7 · 10−3 for
the out-of-plane and in-plane transverse load case, respectively.
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Figure 6.11: Twisted beam with fixed end. Dimensions: L = 12.0, w = 1.1, h = 0.32 and

twist = 90◦. Isotropic material properties; E = 29.0 · 106, ν = 0.22.

In Table 6.2 the normalized tip displacement in case of an out-of-plane shear load is
shown. It is seen that mesh refinement and thus less twisted elements yields more
precise results. The explicit and approximate explicit integration schemes, however,
only seem to have a minor influence on the results and virtually no difference exists
among the models. The 16-node version is seen to be less sensitive against twist and
again the explicit integration schemes do not seem to alter the results.

1SHELL91 is a quadratic degenerated shell element. It has layered capabilities and employs layer-
wise integration through the thickness.
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Table 6.2: Twisted beam: normalized tip displacement for out-of-plane shear load. Normalized

by: 2.39 · 10−3.

SHELL9 SHELL16

N Twist pr.
element, (◦)

9 Expl ExplApp 16 Expl ExplApp

2 45.0 0.74 0.74 0.74 N/A N/A N/A
3 30.0 0.89 0.89 0.89 0.99 0.99 0.99
4 22.5 0.95 0.94 0.94 1.00 0.99 0.99
6 15.0 0.98 0.98 0.98 1.00 1.00 1.00
12 7.5 1.00 1.00 1.00 1.00 1.00 1.00

For the in-plane transverse shear loaded beam we observe the same tendencies as for
the out-of-plane shear loaded twisted beam, see Table 6.3.

Table 6.3: Twisted beam: normalized tip displacement for in-plane shear load. Normalized

by: 6.70 · 10−3.

SHELL9 SHELL16

N Twist pr.
element, (◦)

9 Expl ExplApp 16 Expl ExplApp

2 45.0 0.78 0.78 0.78 N/A N/A N/A
3 30.0 0.90 0.90 0.90 0.99 0.99 0.99
4 22.5 0.95 0.95 0.95 1.00 0.99 0.99
6 15.0 0.99 0.98 0.98 1.00 1.00 1.00
12 7.5 1.00 1.00 1.00 1.00 1.00 1.00

In result, it seems that an element twist angle less than 15◦ yields acceptable results,
within 5% of the reference solution for the 9-node elements. The 16-node element is
less sensitive to twist. The influence of the integration scheme is regarded as being
insignificant since only minor differences are observed amongst the different schemes.

6.3.6 Buckling of axially compressed cylinder

To verify the implementation of the stress stiffness matrix (and thus also the stress
recovery calculation), we compare the critical stress obtained from finite element
solutions to an analytically obtained solution. For short (but not too short) simply
supported axially compressed circular cylinders Brush and Almroth (1975) report an
analytical solution for the critical stress of

σcr =
Et/r

√

3 (1 − ν2)
for Z =

L2

rt

(
1 − ν2

)1/2
> 2.85 (6.10)

For the example shown in Figure 6.12 the analytical critical stress is σcr = 788N/mm2.

To obtain reasonable results with the nine-node element formulation a relatively fine
discretization is required. The buckling problem is solved with a 96× 24 mesh of nine-
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Figure 6.12: Left: Axially compressed cylinder, 96 × 24 mesh. Geometry: length, L = 20.0,

radius, r = 15.9, thickness, h = 0.1. Isotropic material properties: Young’s modulus, E =

207GPa, Poisson’s ratio, ν = 0.3. Boundary conditions: both ends simply supported. One end

subjected to uniformly distributed axial compressive load. Right: 1st buckling mode shape.

node and 16-node elements, respectively. The critical stress from the solution with the
different element formulations are shown in Table 6.4.

Table 6.4: Critical stress for axially loaded circular cylinder as obtained from different element

formulations.

Element formulation σcr [N/mm2]

SHELL9 803.381723472207
SHELL9Expl 803.385218818312
SHELL9ExplApp 803.381057212717
SHELL16 790.015734798536
SHELL16Expl 790.021289723162
SHELL16ExplApp 790.016870315811

The critical stresses obtained from the nine-node finite element solutions are within
2% of the analytical solution, which is regarded as being satisfactory. The 16-node
solutions are seen to have converged almost to the exact result.

The virtually identical results indicate that the stress stiffness matrix and the stress
recovery calculations are implemented correctly.

6.4 Performance

Having assessed the accuracy, the next step is to investigate the performance, that
is, the computational efficiency of the implemented elements. In industry, laminated
shell structures with a few hundred layers are not uncommon. Such structures are
expensive to analyse both in terms of pre-processing and solution time and therefore it
is of interest to reduce element integration time.
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To asses the computational efficiency we perform a numerical example that illustrates
differences in formulation time of element matrices for the three formulations. These
performance assessments are carried out in a so-called release compiled version of MUST

in order to show the real potential and performance of the implementation.

The accuracy investigations shown above revealed that the SHELL9ExplApp element
is more or less as accurate as the SHELL9 and the SHELL9Expl formulations which
may favour use of the SHELL9ExplApp formulation, but for completeness we compare
the performance of all three formulations.

The performance assessment is carried out by investigating element matrix formulation
time as a function of layers for 100 rectangular plate elements including the time
for assembly, since this is performed within the same element loop. The use of
plate elements means that α = 2∆V

h∆A
vanishes since the variation ∆V of the Jacobian

determinant through the thickness is zero for plate elements. This means that many
of the terms that make up the E-matrices in theory disappear. In practice, however,
since the matrices are still present (but with all entries zero) this has no influence on
computation time, because the matrix products are still evaluated.
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Figure 6.13: Time of formulation and assembly of stiffness matrix for 100 elements by the

three formulations.

The first assessment concerns the time used to set up the element stiffness matrix.
This is shown in Figure 6.13 from which we for all formulations observe a linear
relation between the number of layers and the computation time for the stiffness
matrix. For elements with more than two-three layers the new SHELL9Expl and the
SHELL9ExplApp formulations are seen to be faster than the existing SHELL9 element
formulation. The comparatively flat curves of the two new element formulations mean
that substantial savings in formulation times are attained for high layer numbers. For
the stress stiffness matrix the same tendency is retrieved, except for the break-even
point which is encountered at four layers instead of two-three.
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In general it may be concluded that both new formulations result in substantial savings,
especially for models with a large number of layers, say, more than 10, which is not
uncommon in industry relevant problems.

6.5 Optimization examples

The purpose of this section is to compare the efficiency of 9-node shell elements in MUST

when performing optimization. For this purpose two different models are applied. The
first is concerned with optimization of structural stiffness and the second with structural
stability. Results of the two tests are reported in the following.

6.5.1 Maximum stiffness design

To enable a comparison of computationally efficiency when performing structural
stiffness optimization, the geometry and boundary conditions shown in Figure 6.14
are used. The quadratic plate with side lengths, L = 1m consists of 10 plies each with
a thickness of 0.001m and fibres aligned with the x-axis. Material properties of the plies
are: E1 = 3.4 · 1010, E2 = E3 = 8.2 · 109, ν12 = 0.29 and G12 = G23 = G13 = 4.5 · 109.
The plate is meshed by a 10× 10 mesh and clamped at one end while two out of plane
forces, P = 1N with opposite directions, are applied at each corner at the other end.
The choice of mesh is based on a convergence test, which revealed that the deflection
in the z-direction at the nodes of the applied forces deviates by less than 1% from a
10 × 10 mesh to a 40 × 40 mesh and thus the 10 × 10 mesh is chosen.
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Figure 6.14: Geometry and boundary conditions of the compliance optimization example.

The MMA optimizer is allowed to change the fibre angle within each element whereby
the number of design variables is 1000. The maximum number of iterations is set to
200. Results from the optimization are showed in Table 6.5.

All three element formulations converge to a compliance of 0.257592 · 10−3 in 116
iterations. Comparing the computational time of the two ‘new’ formulations to the
SHELL9 element reveals an efficiency improvement of approximately 17.3% for the
SHELL9Expl element and 30.1% for the SHELL9Expl element with no loss in accuracy.
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Table 6.5: Results from stiffness optimization with SHELL9, SHELL9Expl and

SHELL9ExplApp. Objective function denotes the compliance at the final iteration.

Formulation Iterations Total runtime [s] Objective function

9 116 329.3 0.257592 · 10−3

9Expl 116 272.5 0.257592 · 10−3

9ExplApp 116 230.2 0.257592 · 10−3

6.5.2 Maximum stability design

The stability optimization example is in many ways similar to the stiffness optimization.
Material properties, lay up and mesh are unchanged. A convergence test revealed a
deviation of less than 2% between the first eigenvalue of a 10 × 10 and a 40 × 40
mesh. Boundary conditions of the buckling optimization problem can be seen from
Figure 6.15. The right edge of the plate is subjected to a distributed load of, w = 1N

m .
Since the plate width is, L = 1m and the total thickness is, 0.01m the applied load
equals a stress of σx = 100Pa
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Figure 6.15: Geometry and boundary conditions of the buckling optimization example.

Again, the optimizer is allowed to change the fibre angles within each element, resulting
in 1000 design variables to be changed within 200 iterations. The result of the
optimization is from Table 6.6

Table 6.6: Results from stability optimization with SHELL9, SHELL9Expl and

SHELL9ExplApp. Objective function denotes the first eigenvalue, i.e. the lowest buckling

load.

Formulation Iterations Total runtime [s] Objective function

9 200 14120 75914.8
9Expl 200 6541 75974.4
9ExplApp 200 4277 75974.4

A small deviation of the optimized lowest buckling load is observed. This might be due
to small deviations in the critical stress as seen from Table 6.4. A comparison of the
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total runtime reveals a computational saving of approximately 53.7% or a factor 2.2 for
the SHELL9Expl element and 69.7% or a factor 3.3 for the SHELL9ExplApp element.

6.6 Summary

The patch tests showed that both new element formulations pass the patch tests. This
was shown for a non-layered and a layered configuration. The latter proves that the
explicit thickness integration scheme is implemented correct. In addition, the patch
tests verify that the stress calculation in itself is correct.

To the precision shown in the print, the results obtained regarding numerical accuracy
to a large extent seem identical. The raw data, however, yields minor differences below
the 6-7’th significant digit. The convergence studies show that the explicitly integrated
elements display convergence behaviour similar to the usual 9-nine node isoparametric
shell element.

Investigations of whether the approximations made to enable explicit integration
through the thickness show that the approximation is very accurate for shells in the
thin shell range

(
R
h ≥ 25.0

)
. For thicker shells

(
5.0 ≤ R

h ≤ 25.0
)

the approximation is
reasonable but a deviation of up to 4% is seen on the displacements. For even thicker
shells the approximation is rude and the error increases rapidly for increasing shell
thickness. This result is perfectly viable and should not cause any problems in practice,
since structures in this radius of curvature-to-thickness range should probably not be
regarded or modelled as shells anyway. Another test of the approximation showed that
the new elements are not more sensitive to twist of the elements than the previous
formulation.

The accuracy and performance assessments in combination demonstrate substantial
savings in computation time without virtually any sacrifice in accuracy. This
combination of properties is attractive and thus we see no reason for not using one of
the new formulations in multi-layered settings with more than 4 layers if the alternative
otherwise is a conventional 9-node isoparametric degenerated shell element. In fact, the
accuracy of the SHELL9ExplApp formulation appears to be as good as the two other
formulations which is good news seen in the light of the intended use for optimization
with lamination parameters as shown in Section 5.6.2.
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Conclusion

The primary objective of the present work was to develop and implement
an efficient degenerated shell element formulation for analysis and optimization of

multi-layered composite structures. Secondly, it was the intention to generalize the
applicability of lamination parameters to general curved degenerated shell elements.

The first goal was achieved through the development of an efficient explicitly thickness
integrated degenerated shell element formulation. The elements have been implemented
in a biquadratic 9-node and a bicubic 16-node version in MUST. The implementations
have been validated through a number of standard numerical test examples. Accuracy
and convergence behaviour is almost identical to that of the existing degenerated
isoparametric shell element formulation. The advantage of the new formulation is
it’s performance in connection with multi-layered shells consisting of many layers.
Specifically, it is found that for shells consisting of more than two layers in linear
static stress analysis and more than four layers in linearized buckling problems the new
formulation is superior in terms of computational efficiency. The geometric approxima-
tions enabling explicit thickness integration render the formulation inappropriate for
modelling structures with a radius of curvature-to-thickness ratio, R

h ≤ 5 for which the
deviation from the existing formulation exceeds 4%. A number of small optimization
examples confirm the potential savings obtainable with the new formulation.

The second objective of generalizing lamination parameters to be applicable for
generally curved shell geometries was accomplished by a few additional manipulations
of the expressions developed for explicitly integrating through the thickness to evaluate
element matrices. Furthermore it was outlined how these developments may be used
in laminate optimization with an existing procedure using lamination parameters to
enforce convexity.

As such, the objectives of the project have been reached and on basis of the promising
results it is interesting to pursue further developments into laminate optimization to
fully exploit the potential of the new element formulation.
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Further work

Based on the developments with lamination parameters it is interesting to endeavour
laminate optimization with lamination parameters to obtain global optimum solutions
for generally curved shell structures.

The substantial savings demonstrated for the new formulation, make it interesting for
geometrically non-linear analysis of laminated shell structures with a large number of
layers. This extension should be straightforward in view of the existing facilities for
geometrically non-linear analysis in MUST.

Another interesting direction of research could be to investigate the possibility of
stabilising explicitly thickness integrated elements. This could lead to highly efficient
stabilized lower-order explicitly thickness integrated elements for analysis of multi-
layered structures.
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A

Shape functions

In this appendix the shape functions of the plane 9- and 16-node isoparametric
Lagrangian elements are presented. The shape functions are described in terms of
two natural coordinates r and s.

9-node element

Shape functions of the 9-node element with node numbering as shown in Figure A.1
are given by

N1(r, s) = 1
4(1 − r)(1 − s) − 1

2(N5 +N8) − 1
4N9

N2(r, s) = 1
4(1 + r)(1 − s) − 1

2(N5 +N6) − 1
4N9

N3(r, s) = 1
4(1 + r)(1 + s) − 1

2(N6 +N7) − 1
4N9

N4(r, s) = 1
4(1 − r)(1 + s) − 1

2(N7 +N8) − 1
4N9

N5(r, s) = 1
2(1 − r2)(1 − s) − 1

2N9

N6(r, s) = 1
2(1 + r)(1 − s2) − 1

2N9

N7(r, s) = 1
2(1 − r2)(1 + s) − 1

2N9

N8(r, s) = 1
2(1 − r)(1 − s2) − 1

2N9

N9(r, s) = (1 − r2)(1 − s2)

(A.1)

r

s

1 2

34

5

6

7

8 9

Figure A.1: 9-node isoparametric Lagrange element with natural coordinates.
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16-node element

Shape functions of the 16-node element with node numbering as shown in Figure A.2
are given by the Lagrange polynomials

L0(x) = 9
16 (1 − x)

(
x+ 1

3

) (
x− 1

3

)

L1(x) = 27
16 (1 + x) (x− 1)

(
x− 1

3

)

L2(x) = 27
16 (1 − x) (x+ 1)

(
x+ 1

3

)

L0(x) = 9
16 (1 + x)

(
x+ 1

3

) (
x− 1

3

)

(A.2)

N1 = L0(r)L0(s) N2 = L3(r)L0(s) N3 = L3(r)L3(s) N4 = L0(r)L3(s)

N5 = L1(r)L0(s) N6 = L2(r)L0(s) N7 = L3(r)L1(s) N8 = L3(r)L2(s)

N9 = L2(r)L3(s) N10 = L1(r)L3(s) N11 = L0(r)L2(s) N12 = L0(r)L1(s)

N13 = L1(r)L1(s) N14 = L2(r)L1(s) N15 = L2(r)L2(s) N16 = L1(r)L2(s)

(A.3)

r
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34

5 6

7

8

9

Figure A.2: 16-node isoparametric Lagrange element with natural coordinates.



B

DSA

The purpose of this appendix is to show how analytical design sensitivities of the
stiffness matrix (equation (4.45)) with respect to lamination parameters are obtained.

B.1 Stiffness matrix sensitivities

In Section 4.2.2 the expression of the element stiffness were developed in terms of
integrated constitutive properties. The integrated constitutive properties may be
expressed in terms of lamination parameters as shown in equation (4.72) and (4.73)
whereby sensitivities are easily obtained by symbolic differentiation. The sensitivity
of the element stiffness matrix with respect to each of the lamination parameters is
written as

∂Ke

∂ξj
i

=

∫ 1

−1

∫ 1

−1

(

B1
T ∂E1

∂ξj
i

B1 + B1
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T ∂E5
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B3

)

2
h∆2

a dr ds (B.1)

where i = 1, 2, 3, 4 and j = A,B,D,E,F,G,H

In the following the sensitivity with respect to each of the lamination parameters are
developed. It should be remarked that the integrated constitutive properties E1 to E5
depend on the lamination parameters as follows

E1 = E1(ξ
A
i , ξ

B
i , ξ

D
i )

E2 = E2(ξ
B
i , ξ

D
i , ξ

E
i )

E3 = E3(ξ
D
i , ξ

E
i , ξ

F
i ) (B.2)

E4 = E4(ξ
E
i , ξ

F
i , ξ

G
i )

E5 = E5(ξ
F
i , ξ

G
i , ξ

H
i )
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B.1.1 Sensitivity wrt. lamination parameters A

∂Ke

∂ξA
i

=

∫ 1

−1

∫ 1

−1

(

B1
T ∂E1

∂ξA
i

B1

)

2
h∆2

a dr ds (B.3)

where

∂E1

∂ξA
1

= T T Uh
⌊
0 1 0 0 0

⌋T
T (B.4a)

∂E1

∂ξA
2

= T T Uh
⌊
0 0 1 0 0

⌋T
T (B.4b)

∂E1

∂ξA
3

= T T Uh
⌊
0 0 0 1 0

⌋T
T (B.4c)

∂E1

∂ξA
4

= T T Uh
⌊
0 0 0 0 1

⌋T
T (B.4d)

B.1.2 Sensitivity wrt. lamination parameters B
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B.1.3 Sensitivity wrt. lamination parameters D
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B.1.4 Sensitivity wrt. lamination parameters E
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B.1.5 Sensitivity wrt. lamination parameters F
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B.1.6 Sensitivity wrt. lamination parameters G
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B.1.7 Sensitivity wrt. lamination parameters H
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C

Patch test results

Results from the patch tests for the 9-node isoparametric elements not contained in the
report are contained within this appendix.
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 1.333E+003

 1.333E+003

 1.333E+003

Name: MUST9ExplAppPatchMembrane

Syy

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

Name: MUST9ExplAppPatchMembrane

Sxy

 4.000E+002

 4.000E+002

 4.000E+002

 4.000E+002

 4.000E+002

 4.000E+002

 4.000E+002

 4.000E+002

 4.000E+002

 4.000E+002

 4.000E+002

 4.000E+002

 4.000E+002

 4.000E+002

 4.000E+002
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Name: MUST9ExplAppPatchBending

Disp Rot X

 2.400E-004

 2.229E-004

 2.057E-004

 1.886E-004

 1.714E-004

 1.543E-004

 1.371E-004

 1.200E-004

 1.029E-004

 8.571E-005

 6.857E-005

 5.143E-005

 3.429E-005

 1.714E-005

 0.000E+000

Name: MUST9ExplAppPatchBending

Sxx

-6.667E-001

-6.667E-001

-6.667E-001

-6.667E-001

-6.667E-001

-6.667E-001

-6.667E-001

-6.667E-001

-6.667E-001

-6.667E-001

-6.667E-001

-6.667E-001

-6.667E-001

-6.667E-001

-6.667E-001

Name: MUST9ExplAppPatchBending

Syy

-6.667E-001

-6.667E-001

-6.667E-001

-6.667E-001

-6.667E-001

-6.667E-001

-6.667E-001

-6.667E-001

-6.667E-001

-6.667E-001

-6.667E-001

-6.667E-001

-6.667E-001

-6.667E-001

-6.667E-001

Name: MUST9ExplAppPatchBending

Sxy

-2.000E-001

-2.000E-001

-2.000E-001

-2.000E-001

-2.000E-001

-2.000E-001

-2.000E-001

-2.000E-001

-2.000E-001

-2.000E-001

-2.000E-001

-2.000E-001
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Name: must9explpatchmembranelayered

Disp X

 3.000E-004

 2.786E-004

 2.571E-004

 2.357E-004

 2.143E-004

 1.929E-004

 1.714E-004

 1.500E-004

 1.286E-004

 1.071E-004

 8.571E-005

 6.429E-005

 4.286E-005

 2.143E-005

 0.000E+000

Name: must9explpatchmembranelayered

Sxx

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

Name: must9explpatchmembranelayered

Syy

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

Name: must9explpatchmembranelayered

Sxy

 4.000E+002

 4.000E+002

 4.000E+002

 4.000E+002

 4.000E+002

 4.000E+002

 4.000E+002

 4.000E+002

 4.000E+002

 4.000E+002

 4.000E+002

 4.000E+002

 4.000E+002

 4.000E+002

 4.000E+002
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Name: must9explapppatchmembranelayered

Disp X

 3.000E-004

 2.786E-004

 2.571E-004

 2.357E-004

 2.143E-004

 1.929E-004

 1.714E-004

 1.500E-004

 1.286E-004

 1.071E-004

 8.571E-005

 6.429E-005

 4.286E-005

 2.143E-005

 0.000E+000

Name: must9explapppatchmembranelayered

Sxx

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

Name: must9explapppatchmembranelayered

Syy

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

 1.333E+003

Name: must9explapppatchmembranelayered

Sxy

 4.000E+002

 4.000E+002

 4.000E+002

 4.000E+002

 4.000E+002

 4.000E+002

 4.000E+002

 4.000E+002

 4.000E+002

 4.000E+002

 4.000E+002

 4.000E+002

 4.000E+002

 4.000E+002

 4.000E+002
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Name: must9explpatchbendinglayered

Disp Rot X

 2.400E-004

 2.229E-004

 2.057E-004

 1.886E-004

 1.714E-004

 1.543E-004

 1.371E-004

 1.200E-004

 1.029E-004

 8.571E-005

 6.857E-005

 5.143E-005

 3.429E-005

 1.714E-005

 0.000E+000

Name: must9explpatchbendinglayered

Sxx

 6.667E-001

 6.667E-001

 6.667E-001

 6.667E-001

 6.667E-001

 6.667E-001

 6.667E-001

 6.667E-001

 6.667E-001

 6.667E-001

 6.667E-001

 6.667E-001

 6.667E-001

 6.667E-001

 6.667E-001

Name: must9explpatchbendinglayered

Syy

 6.667E-001

 6.667E-001

 6.667E-001

 6.667E-001

 6.667E-001

 6.667E-001

 6.667E-001

 6.667E-001

 6.667E-001

 6.667E-001

 6.667E-001

 6.667E-001

 6.667E-001

 6.667E-001

 6.667E-001

Name: must9explpatchbendinglayered

Sxy

 2.000E-001

 2.000E-001

 2.000E-001

 2.000E-001

 2.000E-001

 2.000E-001

 2.000E-001

 2.000E-001

 2.000E-001

 2.000E-001

 2.000E-001

 2.000E-001

 2.000E-001

 2.000E-001

 2.000E-001
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Name: must9explapppatchbendinglayered

Disp Rot X

 2.400E-004

 2.229E-004

 2.057E-004

 1.886E-004

 1.714E-004

 1.543E-004

 1.371E-004

 1.200E-004

 1.029E-004

 8.571E-005

 6.857E-005

 5.143E-005

 3.429E-005

 1.714E-005

 0.000E+000

Name: must9explapppatchbendinglayered

Sxx

 6.667E-001

 6.667E-001

 6.667E-001

 6.667E-001

 6.667E-001

 6.667E-001

 6.667E-001

 6.667E-001

 6.667E-001

 6.667E-001

 6.667E-001

 6.667E-001

 6.667E-001

 6.667E-001

 6.667E-001

Name: must9explapppatchbendinglayered

Syy

 6.667E-001

 6.667E-001

 6.667E-001

 6.667E-001

 6.667E-001

 6.667E-001

 6.667E-001

 6.667E-001

 6.667E-001

 6.667E-001

 6.667E-001

 6.667E-001

 6.667E-001

 6.667E-001

 6.667E-001

Name: must9explapppatchbendinglayered

Sxy

 2.000E-001

 2.000E-001

 2.000E-001

 2.000E-001

 2.000E-001

 2.000E-001

 2.000E-001

 2.000E-001

 2.000E-001

 2.000E-001

 2.000E-001

 2.000E-001

 2.000E-001

 2.000E-001

 2.000E-001
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