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Introduction 1
In the field of cryptographic protocols there exist at least two main paradigms (or views) for
abstract high-level description of such protocols, namely the formal and the computational para-
digms. They do not consider the specifics of cryptographic functions and instead considers them
as black box functions that provide key generation and performs encryption and decryption etc.,
in order to focus on the modeling of cryptographic protocols.

This paper studies the theory of the formal and computational paradigms of cryptographic pro-
tocols and provides a survey of a small part of the research, that has focused on relating these. A
vast amount of research has made an effort of showing how to perform formal analysis of security
properties such as secrecy and authenticity.

The following section will discuss these two paradigms in more detail and present some of the
related research in these fields.

1.1 Cryptographic Paradigms and Related Work

Inspired by [Kemmerer, 1989] we define a cryptographic protocol as follows:

A cryptographic protocol is a set of rules or procedures for using a cryptographic
algorithm to send and receive messages in a secure manner over a network.

1.1.1 The Formal Paradigm

By formal, we mean symbolic in the sense of formal languages. As an example, consider the
expression {M}K that may represent the encryption of a plaintext M using the encryption key
K, where {M}K, M and K are formal expressions. Encryption and key generation algorithms are
assumed to exist and the details of these are not considered. Furthermore, within this assumption,
it is not possible for an adversary to obtain M given only the encrypted message {M}K. Thus, the
formal model is used for describing ideal protocols, with respect to security.

The Formal Paradigm has its origin in the work of Dolev and Yao [Dolev and Yao, 1983], which was
motivated by the need for semantic models that allowed for a precise account of security issues of
cryptographic protocols, in the presence of an adversary. The notion of formal models has come
to be synonymous with the Dolev-Yao model. It is an approach for analyzing cryptographic
protocols formalized with symbolic expressions in abstract formal languages similar to the π-
calculus. The purpose is to give formal verification of the security properties that the protocol
provides in the presence of an attacker. This includes the preservation of secrecy in transmitted
messages as well as ensuring authenticity.
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CHAPTER 1. INTRODUCTION

The groundbreaking work of Dolev and Yao has spawned a considerable amount of research.
Woo and Lam [Woo and Lam, 1993] defined a semantic model for authentication protocols, devel-
oped a syntax for correspondence and secrecy assertions and defined semantics for their semantic
model, as a foundation for analysis techniques. Especially relevant for this paper is the work of
Abadi and Gordon [Abadi and Gordon, 1997] who introduced the spi-calculus, an extension of
the π-calculus, to include cryptographic primitives, as a tool to describe and analyze authenti-
cation protocols. Based on the work of [Woo and Lam, 1993; Abadi and Gordon, 1997], Gordon
and Jeffrey [Gordon and Jeffrey, 2003] proposed a method for checking authenticity properties of
cryptographic protocols with the means of correspondence assertions and typechecking.

Abadi and Blanchet [Abadi and Blanchet, 2001] developed a process calculus in order to define
formal secrecy and they show, under certain conditions, how a process preserves the secrecy of
data in the presence of an adversary. In [Blanchet, 2001], Blanchet presents ProVerif1, a software
tool for automatic verification of secrecy properties of cryptographic protocols in formal models.
In further work [Blanchet, 2002], Blanchet shows that authenticity can be proved using secrecy.
This work relates to Woo and Lam’s [Woo and Lam, 1993] notion of correspondence assertions.

However, the formal model does not take into account the complexity or the probability of an
attacker to obtain a secret message. Even though this could be considered as a weakness, the
simplicity of the formal model provides an ease of use for protocol designers and it is therefore
desirable to model protocols in this view.

1.1.2 The Computational Paradigm

As hinted above; one might think that the formal model lacks a real-world perspective of cryp-
tographic protocols. The approach in the computational paradigm is to consider protocols as ac-
ceptable if an adversary faces a challenge that is computationally infeasible when attempting to
"‘break"’ a protocol. The computational view takes these considerations into account and tries to
reason about the probability of a successful attack as well as the computational cost.

As in [Abadi and Rogaway, 2002] and [Bellare et al., 1997] a symmetric encryption scheme is
a tuple Π = (K, E ,D) of three algorithms. The key generator algorithm K maps a randomly
flipped coin to a string k. The encryption algorithm E uses a random coin flip r to map the strings
k and m into a new string Ek(m, r). The decryption algorithm D maps strings k and c into Dk(c)
such that Dk(Ek(m, r)) = m i.e. decryption of a ciphertext reveals the original message.

An adversary for the encryption scheme above is a Turing machine with the capability of query-
ing an oracle. The oracle may be constructed in two ways.

1. An oracle chooses a fixed random key k, which is used for all queries. For each query x it
performs the encryption Ek(x) using new random coins.

2. An oracle chooses a fixed random key k, which is used for all queries. When given a query
x it encrypts a string containing 0 bits of length |x| using new random coins.

The probability that the adversary outputs 1 in the first case minus the probability that the adver-
sary outputs 1 in the second case is called the adversary’s advantage. If the adversary’s advantage
grows slowly, with increased computational resources, the encryption scheme is considered to be
good.

The formal and the computational views of cryptographic protocols are well-founded research
fields, however, they have mainly been separate areas of research. Since both views are meth-
ods for describing cryptographic protocols, interest in reconciling these have gained increasing
attention. Establishing such a connection is thus a fairly new and active area of research.

1ProVerif: Cryptographic protocol verifier in the formal model, http://prosecco.gforge.inria.fr/personal/
bblanche/proverif/
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1.2. OUTLINE

Some of the initial work was given by Abadi and Rogaway [Abadi and Rogaway, 2002], whose fo-
cus was on relating the two paradigms. They define equivalence of formal expressions, where ex-
pressions are data, as used in security protocols, and equivalence is a relation that states whether
two pieces of data “look the same”. For relating equivalence of formal expressions to the compu-
tational view, they introduce the notion of ensembles, that are probability distribution on strings
and defines that two ensembles are indistinguishable when the probability, that the adversary
“guesses“ the two ensembles, is negligible. They then show that equivalent expressions in the
formal view implies indistinguishable ensembles in the computational view.

Backes and Pfitzmann [Backes and Pfitzmann, 2005] define computational secrecy (or payload
secrecy) by introducing two views of a user: One that includes a machine that randomly replaces
messages and another that simply forwards all message. If the view of the user, in a configu-
ration that includes a replacement machine, is indistinguishable from the view of the user, in a
configuration that includes a forwarding machine, then computational secrecy is implied for all
polynomial-time users and adversaries.

Laud [Laud, 2005] developed a process calculus similar to the spi-calculus with a semantics that
makes use of the computational model and further develops a type system for his calculus. Laud
was then able to show, that if a protocol typechecks, then it preserves the secrecy of messages
and proceeds to show, that if secrecy properties is satisfied by the formal semantics, then it is also
satisfied in the computational semantics.

A result which directly relates the work of Laud to that of the formal paradigm, is that of [Abadi
et al., 2006]. Abadi, Corin, and Fournet introduce a version of the π-calculus to establish formal
secrecy properties. They extend the calculus with a type system, translate their calculus to Laud’s
calculus and show that their translation is type-preserving. Thus, Laud’s language is used as an
intermediate language in order to obtain computational secrecy guarantees with respect to their
calculus.

As already suggested by [Abadi et al., 2006] (and [Laud, 2005]), we expect that authenticity in
the formal paradigm implies authenticity in the computational paradigm. Such a result should
be analogous to the result of [Abadi et al., 2006], namely that secrecy properties that are satisfied
in the formal paradigm implies secrecy in the computational paradigm. It seems, to the best of
our knowledge, that no such result has been achieved. To obtain this, we provide a survey of the
theories of formal and computational security of cryptographic protocols and examine how our
expected result may be achieved.

1.2 Outline

We divide this paper into two main themes: Secrecy (Chapter 2) and authenticity (Chapter 3).

Section 2.1 presents, based on [Abadi et al., 2006], a process calculus and its reduction semantics
to establish a definition of formal secrecy in the presence of an adversary. A type system for
the calculus is introduced and we present The Secrecy Theorem by [Abadi and Blanchet, 2001],
that shows, how a well-typed process preserves the secrecy of messages in the presence of an
adversary. Section 2.2 provides a precise definition of computational secrecy based on the work of
[Backes and Pfitzmann, 2005] and in Section 2.3 we present a significant theorem by [Abadi et al.,
2006] showing, that a secrecy preserving and well-typed process preserves computational secrecy.
Section 3.1 defines formal authenticity as in [Blanchet, 2002] and extends the process calculus with
correspondence assertions. We relate these to the notion of non-injective agreement and add to
Theorem 1 in [Blanchet, 2002], that if non-injective agreement is satisfied then formal secrecy is
preserved. Section 3.3 relates non-injective correspondence to computational authenticity. Finally,
in Section 3.4 we propose a method of showing that formal authenticity implies computational
authenticity.
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Secrecy 2
This chapter studies the notion of formal as well as computational secrecy in terms of crypto-
graphic protocols and present some of the important results obtained. Especially that of [Abadi
et al., 2006], which shows that a type system for formal secrecy in fact captures computational
secrecy.

2.1 Formal Secrecy

Abadi et al. informally defines secrecy as follows:

A process P preserves the secrecy of a piece of data M if P never publishes M, or any-
thing that would permit the computation of M, even in interaction with an attacker.

This section introduces a formal process calculus, based on [Abadi et al., 2006], providing the
foundation for a definition of formal secrecy. Furthermore, a type system from [Abadi et al.,
2006] is introduced and we state an important result – that a process (under certain conditions)
preserves the secrecy of secret data from public data and public channels.

2.1.1 The Process Calculus

For establishing the formal secrecy property, we make use of the Source Process Calculus of [Abadi
et al., 2006]. It is actually similar to the polyadic π-calculus, which means that it allows the com-
munication of multiple terms in a single step, contrary to the monadic nature of the π-calculus.
The calculus is asynchronous, thus allowing pending output processes in parallel with other run-
ning processes. The syntax of this calculus is given in Table 2.1 on the following page.

The Source Process Calculus defines two categories. The terms represent data and can be either
variables or names. Note how there is a distinction between names and variables contrary to the
traditional π-calculus, which only considers names to represent communication ports, variables
or data values. The processes, which represent programs, are defined by formation rules similar
to those of the π-calculus.

• A process may output data M1, . . . , Mn through M defined by M〈M1, . . . , Mn〉and similarly
a process P may receive (input) data x1, . . . , xn via M defined by M(x1, . . . , xn).P, after which
it continues as P.

• Replication, denoted !P, allows an unbounded supply of copies of P in parallel. Thus a
process is always able to start a new copy of itself with the same data as input. When
replication is optional ! = M(x1, . . . , xn) may be used.

• The nil process (0) is the process that performs no action.

5



CHAPTER 2. SECRECY

Let a, b, c, k, s be names from an infinite set of names N and let x, y, z be variables from an
infinite set of variables V , then the syntax is given by

Terms M, N ::= x, y, z Variable
a, b, c, k, s Name

Processes P, Q ::= M〈M1, . . . , Mn〉 Output
M(x1, . . . , xn).P Input
!M(x1, . . . , xn).P Replicated input
0 Nil
P | Q Parallel composition
(υa)P Restriction
if M = N then P else Q Conditional

Table 2.1. Syntax of the Source Process Calculus

• A parallel composition P | Q allows two processes P and Q to run in parallel, which, com-
bined with input and output rules, enables interaction between P and Q through common
channels.

• The restriction (υa)P creates a new name a that is scoped within P. Thus P is the only
process, that is allowed to make use of a.

• Lastly the conditional process (if M = N then P else Q) defines how a process may continue
depending on the boolean statement M = N. If Q is nil, the conditional rule corresponds to
a match rule in the π-calculus.

Both the input and the restriction rules bind terms to a process P such that they are local to the
process P. For example, in the input process M(x).P, x is bound in P and for (υa)P, the name a is
restricted and thus bound in P. In a process P, the set of bound variables are denoted by bv(P) and
the set of bound names by bn(P). Conversely, the set of variables and the set of names that are not
bound in P are called free and are denoted fv(P) and fn(P) respectively. Free names are globally
known, also to an adversary, and free variables represent uninstantiated data. In case a process
has no free variables, it is said to be closed. It may, however, still have free names.

The notation P{M/N}, performs a substitution in the process P, such that the term M is substi-
tuted with the term N. Since the calculus is polyadic, a substitution of multiple terms
{x1, . . . , xn/y1, . . . yn} substitutes each yi with xi for i ∈ {1, . . . , n}.

2.1.2 Reduction Semantics for the Source Process Calculus

A reduction P −→ Q is a transition denoting that P can be reduced to Q in a single step and
P −→∗ Q that P can be reduced to Q in any number of finite steps. I.e. that there exist some
natural number k ≥ 0 such that P −→k Q. Structural congruence, denoted P ≡ Q, means that
there is a structural equivalence between P and Q. E.g. P | Q ≡ Q | P denotes that, even though P
and Q may have different behavior, the parallel composition on the left is structurally equivalent
to the parallel composition on the right. Alpha-conversion means P ≡ Q if Q can be obtained from
P by renaming bound names in P

The behavior of the processes in table 2.1 is defined by the reduction semantics given in Table 2.2
on the next page. The semantics for parallel composition (PAR), restriction (RES) and structural
congruence (STR) should be straightforward, however, the remaining rules may require elabora-
tion.

6



2.1. FORMAL SECRECY

Let M and N be terms, M̃ and Ñ sequences of n terms, a a name and P, P′, Q and Q′ processes,
then the reduction semantics for the Source Process Calculus is given by the rules:

COMM M〈Ñ〉 | M(M̃).Q −→ Q{M̃/Ñ}

REP M〈Ñ〉 | !M(M̃).Q −→ Q{M̃/Ñ} | !M(M̃).Q

PAR
P −→ P′

P | Q −→ P′ | Q

RES
P −→ P′

(υa)P −→ (υa)P′

STR
P ≡ P′ P′ −→ Q′ Q′ ≡ Q

P −→ Q

IF TRUE
P −→ P′

if M = M then P else Q −→ P′

IF FALSE
Q −→ Q′

if M = N then P else Q −→ Q′

Table 2.2. Rules of the reduction semantics of the Source Process Calculus

The communication rule (COMM) shows that in a communication between two processes P and
Q, Q receives Ñ from P via the common channel M, which reduces to a substitution in Q such that
Ñ is substituted with M̃. When a communication between processes, where the receiving process
has an unbounded number of copies, the replication (REP) rule results in two processes running
in parallel: The output process M〈Ñ〉 reduces to nil and is therefore left out, the input process
!M(M̃).Q reduces to Q, where M̃ is substituted with Ñ while the replicated input process persists
!M(M̃).Q. When the terms that are compared are in fact syntactically identical, i.e M = M, which
is obviously true for the IF TRUE case, the result is P which in turn is reducible to P′. For the IF
FALSE rule, the two terms are distinct, i.e. M = N, and therefore the conditional process enters
the else case, resulting in Q which in turn reduces to Q′.

2.1.3 Definition of Formal Secrecy

Using the process calculus above, we are now able to give a precise definition of secrecy in the
formal view.

As informally stated by [Abadi et al., 2006] the concept of secrecy in the formal view is that a
process P preserves the secrecy of datum M, if P never discloses M or any other information, that
may be used to derive M. Even when communicating with an adversary, this notion of secrecy
must hold.

Adopted from [Abadi et al., 2006; Abadi and Blanchet, 2005], we introduce a formal definition of
secrecy based on the syntax and semantics of the process calculus described in section 2.1.1. The
following definitions give precise notions of output and secrecy.

7



CHAPTER 2. SECRECY

DEFINITION 2.3
A closed process P outputs M on a if and only if P −→∗ a〈M〉.R | R′ for some processes R
and R′.

Thus, if a process P that has no free variables can be reduced to a process, that reveals an output
action on a with M as a parameter, it is said to output M. Conversely, if P outputs M there exists
a number of reductions from P to R such that R eventually outputs M.

DEFINITION 2.4
Let S be a finite set of names. The closed process Q is an S-adversary if and only if fn(Q) ⊆ S.

As Q is a closed process, it does not have any free variables. If Q draws its set of names from the
finite set of names S, Q is called an S-adversary and conversely if Q is an S-adversary, the free
names of Q are contained in S

DEFINITION 2.5
Let S be a finite set of names. The closed process P preserves the secrecy of M from S if and
only if P | Q does not output M on a for any S-adversary Q and any a ∈ S.

Now the intuition is, that a closed process P preserves the secrecy of M from Q, if P does not
output M over any of the names in S. This ensures that Q cannot receive M through any of its
free names, since they are contained in S.

2.1.4 A Local Type System

To give a precise definition of formal secrecy, we use the local type system of [Abadi et al., 2006]
– a reduced version of type system presented in [Abadi and Blanchet, 2001].

The types are given by the grammar in table 2.3.

T ::= DSecret | CSecret[T1, . . . , Tn] | CPublic[T1, . . . , Tn] | Public

Table 2.3. The type language of [Abadi et al., 2006]

Hence a type T can be either of four types:

• DSecret: A type where the secrecy of the data is intended to be preserved.
• CSecret[T1, . . . , Tn]: A secret channel for which tuples of n terms of type T1, . . . , Tn may be

communicated. Adversaries cannot communicate through this channel.
• CPublic[T1, . . . , Tn]: A public channel for which tuples of n terms of type T1, . . . , Tn may be

communicated. Adversaries may send data through, but cannot receive data from from
channels that have this type.

• Public: A type that represents all public data.

8



2.1. FORMAL SECRECY

We form a relation between the grammar above and the process calculus of Section 2.1.1 by intro-
ducing additional notations:

The subtyping relation T ≤ T′ denotes that any term of type T may safely be used when a term of
type T′ is expected. The least reflexive subtyping relation is the least relation on types which satisfies
that CPublic[T1, . . . , Tn] ≤ Public for all types Ti. Thus a type CPublic[T1, . . . , Tn] can safely be used
when a Public type is expected. See the type rules for names and variables below. That a term M
is of type T, i.e. a term that has been declared as T, is denoted M : T.

A type environment E is a function that maps terms in processes to types. A type judgement E ` P
denotes the connection between processes and environment which states that a process P is well-
typed with respect to E. This means that for each term in a process P its type has been declared
in E. An environment E is said to be well-formed if and only if E is a list of typed terms, M : T,
where each M is distinct in E. To denote that E is a well-formed environment, we write E `�.
Combining the above, we may define M to be a term of type T in the environment E by E ` M : T
and use E `�M : S to denote that S is the set of possible types of M in environment E.

The Type Rules

The type rules for the local type system above are defined in Table 2.4.

Let M be a term, u a name or a variable, a a name and P, Q processes. Let any variants of x, E and
T be variables, environments and types respectively. Public and Secret are the types of data that
are public and secret respectively and let L ∈ {Public, Secret}.

Well-formed environments:

∅ `�
E `� u /∈ dom(E)

E, u : T `�

Terms:

E `� (u : T) ∈ E
E ` u : T

(Atom)
E ` M : T T ≤ T′

E ` M : T′
(Subsumption)

Sets of types of terms:

E `� (x : T) ∈ E
E `�x : {T′|T′ ≤ T} (Name)

E `� (x : T) ∈ E
E `�x : {T′ | T′ ≤ T} (Variable)

Processes:

E ` M : Public E ` Mi : Public, ∀i ∈ {1, . . . , n}
E ` M〈M1, . . . , Mn〉

(Output Public)

E ` M : CL[T1, . . . , Tn] E ` Mi : Ti, ∀i ∈ {1, . . . , n}
E ` M〈M1, . . . , Mn〉

(Output CL)

(a : Public) ∈ E E, x1 : Public, . . . , xn : Public ` P
E ` ! = a(x1, . . . , xn).P

(Input Public)

(a : CPublic[T1, . . . , Tm]) ∈ E E, x1 : Public, . . . , xn : Public ` P
E, x1 : T1, . . . , xm : Tm ` P if m = n

E ` ! = a(x1, . . . , xn).P

(Input CPublic)

9



CHAPTER 2. SECRECY

(a : CSecret[T1, . . . , Tn]) ∈ E E, x1 : T1, . . . , xn : Tn ` P
E ` ! = a(x1, . . . , xn).P

(Input CSecret)

E `�
E ` 0

(Nil)
E ` P E ` Q

E ` P | Q
(Parallel)

E, a : T ` P T 6= DSecret

E ` (υa)P
(Restriction)

E `�M : S1 E `�N : S2 DSecret /∈ S1 ∪ S2 if S1 ∩ S2 6= ∅ then E ` P E ` Q
E ` if M = N then P else Q

(Cond)

Table 2.4. Type rules for the local type system in Table 2.3

To provide a better understanding of the typing rules, we give a brief elaboration:

Well-formed environment: The empty environment is well-formed and if a term u is not in the
domain of a well-formed environment E, then E extended with u is well-formed.

Atom: A name or variable u is of type T in environment E if E is well-formed and any tuple u of
type T is contained in E.

Subsumption: If M is term of type T in an environment E and T is a subtype of T′ then M is also
a term of type T′ in E.

Name: If a name u has type T in E then the set of all types that u may have, subtypes of T.
Variable: If a variable x has type T in E, then the set of all types that x may have, subtypes of T.
Output Public : Any set of public terms in E may be sent over a public channel in E.
Output CL: A list of n terms with expected type T1, . . . , Tn contained in E, can be sent over either a

public or secret channel also in E. By the subtyping relation and combined with the previous
rule, any type of public data can be sent over a public channel.

Input Public : An input process (which may be replicated), well-typed in E, can receive a list of
public data via a public channel contained in E and an optional number of replications (one
or more) of such process is allowed.

Input CPublic: In communication via a public channel a where m variables of type T1, . . . , Tm is
sent, a process that expects n 6= m variables may only receive variables via a, if they are
public, or if the number of variables and types in a are the same. In either case, the process
is well-typed and it may be replicated an optional number of times.

Input CSecret: If data is communicated via a secret channel, no adversary could have initiated the
communication. Thus, if the secret channel accepts n terms of type T1, . . . , Tn a process may
receive n public or secret variables of matching type.

Nil: The 0 process is well-typed.
Parallel: The parallel composition of two well-typed processes is also well-typed.
Restriction: A process is not well-typed, if it can restrict a name, that is typed as secret data.
Cond: For two terms to be compared, it must be ensured that none of these are typed to DSecret.

Otherwise, information about the secret data could be revealed. Furthermore, P is only
well-typed in E if the terms to be compared are typed from sets S1 and S2 that have common
types, S1 ∩ S2 6= ∅. This way, the Cond process may be well-typed even though P is not, as
P is never be executed, when S1 and S2 are disjoint sets.

Abadi et al. are the first to introduce the (Restriction) and (Cond) rules. They are present as a
requirement to payload secrecy, that is presented in section 2.2.

The type system allows us to perform static analysis by type checking a process with respect to
computational secrecy. Typechecking a process provides us with valuable information about the
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intended usage of the process, enabling us to reject an ill-typed processes that otherwise preserves
secrecy. Type checking is inexpensive in terms of time complexity as the type rules are compo-
sitional: to type check a composite process, we simply type check its immediate constituents. In
this case, this means that type checking can be done in time linear in the size of the process.

To illustrate some applications of the type rules, we finish this section with two examples. Ex-
ample 2.7 illustrates that a process can preserve secrecy, while the type system rejects it and the
finally Example 2.8 presents a poorly designed and ill-typed process, that fails to preserve secrecy.

EXAMPLE 2.7 (An ill-typed process that preserves secrecy)
Consider the process

P1 = (υa)a(s).P

and assume that the process P has type errors in an environment E. Since a is a new local channel,
a(s) will never execute as no reduction can happen. Thus P1 preserves the secrecy of any datum.

This is an example that shows, how a type system can reject processes that otherwise preserve
secrecy. 4

EXAMPLE 2.8 (An ill-typed process that does not preserve secrecy)
Cosider the process

P2 = a〈s〉

where a is a public channel and s is the data intended to be kept secret. Obviously P2 does not
preserve the secrecy of s, as it allows output of s on a. We define the type environment as follows:

E = s : DSecret,

c : Public

By applying the (Output Public) rule we require, that

E ` c : Public E ` s : Public
E ` c〈s〉

which is a contradiction with the fact that s is typed as DSecret in E. Thus, P1 is rejected by the
type system. 4

The Secrecy Theorem

The following theorem is a reduced version of the main secrecy theorem of [Abadi and Blanchet,
2001]. We present the theorem, however, the proof is omitted. First two sets of names are intro-
duced:

RW (“Read-Write”): The set of all names declared as type Public in E. Using the names of RW
an adversary is able to output and input.

W (“Write”): The set of all names that has been declared type CPublic[T1, . . . , Tn] in E. Using the
names of W an adversary is able to output only.

An adversary is a process, that has access to, while also restricted to, the terms in both RW and
W. Using these, he is able to perform computations as well as sending and receiving data, that
may reveal additional information.

Take a closed process P (a process with no free variables) that is well-typed in an environment E
and the set of all names s declared as type DSecret in E.

11
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THEOREM 2.9 (The Secrecy Theorem, [Abadi and Blanchet, 2001])
Let P be a closed process. Suppose that E ` P and E ` s : DSecret and let

RW = {a | E ` a : Public}
W = {a′ | E ` a′ : CPublic}

Then P preserves the secrecy of s from RW ∪W.

Thus the theorem states, that P preserves the secrecy of s from names in both RW and W. In other
words, a closed process P that is well-typed in an environment E preserves the secrecy of a name
s declared as secret data in E from the set of public names and public channels in E.

2.2 Computational Secrecy

The notion of computational secrecy is often related to the notion of payload secrecy. By a payload,
we here mean a message, that is meant to be secret. An adversary may try to get access to a
payload by means of communication with any other participant. Thus, by other routes he may
be able to get access to secret data through e.g. communication. Therefore, it must be ensured,
that payload secrecy is preserved throughout the system.

2.2.1 Overview

The first general definition of computational secrecy was provided by [Backes and Pfitzmann,
2005], using a model of machines with input and output. Thus, their definition does not build
upon the π-calculus and instead builds on a cryptographic library as an abstract view of cryptog-
raphy. This section studies their definition of computational secrecy in more detail.

Backes and Pfitzmann introduce a replacement machine R, running between the system of ma-
chines S and the user machine H, that takes parts of secret input messages (payloads) sent by H
and replaces them with random messages. This means, that in every run, variables with ran-
dom values are introduced to the system, when messages pass through the replacement machine.
Even if an adversary A communicates with user H using secret channels, a system of machines
S preserves payload secrecy if A cannot distinguish the system S, that has no replacement ma-
chine R, from the system S that has a replacement machine. Thus, if a system does not leak any
information about the secret messages, the messages replaced by the replacement machine are
indistinguishable from actual messages leaked by a user.

Expanding the idea of indistinguishable messages, [Backes and Pfitzmann, 2005] obtain perfect
payload secrecy, by requiring that any user cannot distinguish whether it is communicating with
a arbitrary adversary,

• in a system, that includes a replacement machine, or
• in a system with a machine F, that only forwards messages (no replacement or modification

occurs) between the user and the system.

Backes and Pfitzmann finally define that computational secrecy is preserved with respect to mes-
sages if, for all adversaries, the viewpoint of the user, where R is placed between H and S is
indistinguishable to a viewpoint, where F is placed between H and S. What can be observed in a
system, is the value of input and output variables as well as the state of the machines. When every
value is dependent on the payload and the payload may be replaced by a random payload of the
same length, every variable passed through the system, will be a random variable. In this sense,
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computational secrecy in a system is established, if there is no observable difference between a
real system and a system where payloads are replaced with random data.

Neither [Abadi et al., 2006] nor [Laud, 2005] provides the formal definition of computational
secrecy. It seems appropriate, to examine the details of the original definition from [Backes and
Pfitzmann, 2005], in order to provide stronger ties between several of the sources used in this
paper. The rest of this section will address this and is consequently primarily based on [Backes
and Pfitzmann, 2005].

Denote by Sys a real cryptographic system represented by a set of structures (M̂H,SH) containing
the sets of real cryptographic machines M̂ and a set of ports S for which the set of users H may
communicate through. In formal notation, denote the real cryptographic system by

Sys =
{
(M̂H,SH) | H ⊆ {1, . . . , n}

}
where n is the number of users. Note that Sys also includes cryptographic schemes used for
asymmetric encryption, signatures, symmetric authentication, and symmetric encryption.

We introduce some additional terminology: The View of a machine holds a snapshot of informa-
tion about the current state of the machine. This includes the current in- and outputs the machine
can see as well as its internal states. A configuration Conf is a tuple (M̂,S , H, A) of machines, the
users service ports, a user and an adversary, respectively. Furthermore, let ViewConf(M) denote
the view of a machine M in a configuration.

2.2.2 Computational Indistinguishability

Both [Abadi and Rogaway, 2002] and [Backes and Pfitzmann, 2005] adopt the definition of com-
putational indistinguishability from [Yao, 1982], with the main difference being that Abadi and
Rogaway define computational indistinguishability in terms of probabilistic distributions, while
the definition of [Backes and Pfitzmann, 2005] deals with random variables. Since the two def-
initions are essentially the same, we adopt the earliest of the two and provide the details of the
definition in the following.

Let η ∈ N be a security parameter, such that the string of 1 bits 1η is the actual system input, i.e.,
the input to the system is of length η. Furthermore, let η−ω(1) be some sufficiently small upper
bound. Then we say that a function ε : N→ R is negligible if ε(η) ∈ η−ω(1). More precisely,

η−ω(1) =
{

ε(η) | ∀ c > 0 ∃ Nc such that ε(η) ≤ η−c ∀ η ≥ Nc
}

.

An ensemble or probability ensemble is a collection of probability distributions on strings D = {Dη}
for each security parameter η. Let x R←− Dn denote that x is a randomly sampled from Dη .
Then the probability of a realization of an event E, given that x is sampled from Dη , is denoted
Pr[x R←− Dη : E].

DEFINITION 2.10 (Computational Indistinguishability [Abadi and Rogaway, 2002])
Let D = {Dη} and D′ = {D′η} be ensembles. Then we say that D and D′ are indistinguishable
or computationally indistinguishable and write D ≈ D′ if for every polynomial-time adversary
A, the function

ε(η) :=
∣∣∣Pr[x R←− Dη : A(η, x) = 1]− Pr[x R←− D′η : A(η, x) = 1]

∣∣∣
is negligible.

13



CHAPTER 2. SECRECY

An adversary’s advantage ε(η) is the difference in the probabilities of the adversary “guessing” the
sample taken from Dη minus the probabilities of the adversary “guessing” the sample taken from
D′η . Thus, if the adversary’s advantage is negligible, then D and D′ are said to be indistinguish-
able. This implies that when ε(η) decreases, the computational load of the adversary increases.

Expanding the idea of computational indistinguishability, [Backes and Pfitzmann, 2005] obtains
computational secrecy by means of several definitions. The following sections provide an over-
view of these requirements in order to outline how this important definition is obtained.

2.2.3 Payload Selection Function

As briefly introduced in Section 2.2, parts of messages are replaced by the replacement machine.
If the same message is sent over multiple communications we need to make sure that the replace-
ment in this message is consistent. This is managed by a payload selection function that for each
message always divides the message into “chunks” (payloads) in exactly the same way.

DEFINITION 2.11 (Payload Selection Function [Backes and Pfitzmann, 2005])
A payload selection function is a function that assigns every string l a potentially empty set of
non-overlapping substrings of l.

Thus, two selection functions will select the same set of substrings for any given message.

2.2.4 The Replacement and Forwarding Machines

Let S be the set of ports (or service ports) that is available to the user, i.e. these ports are the user
interface and let SC denote the complement port set of S , i.e. the set of ports the machines use
for communication. Finally, in order to establish communication between the machines and the
replacement and forwarding machines we consistently redirect the ports in SC, by renaming, to
another set of ports S ′. To ensure that the user interface is not changed, when the replacement
and forwarding machine are introduced, both of these make use of the set of ports S and S ′.

The idea of the replacement machine as well as the forwarding machine, is that they are placed be-
tween the user and the set of machines in the system, letting them capture all messages sent from
the user through ports in S to the machines through ports in S ′ and vice versa. This enables
both machines to possibly modify messages before passing them on, while the interface remains
unchanged.

In the following two definitions, let S be a set of ports, f and g be payload selection functions and
define a function L : N → N ∪ {∞}, whose value determines the allowed number of inputs at a
certain port as well as the number of bits to be read from each input.

DEFINITION 2.12 (Replacement Machine [Backes and Pfitzmann, 2005])
The replacement machine RS , f ,g,L for S , f , g and L has the sets of ports S and S ′, an initially
empty set T called a replacement table and the following transition rules:

• For an input message l, at a port in S , assign {m1, . . . , mn} := f (l). For every tuple
(mi, ni) ∈ T, replace the payload mi in l with ni. For the remaining payloads mj, set

nj
R←− {0, 1}len(mj) \ {n | ∃ m : (m, n) ∈ T}
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Set T := T ∪ {(mj, nj)} and replace nj with mj in l. Output the resulting string l′ on the
corresponding port in S ′.

• For an input message l, at a port in S ′, assign {n1, . . . , nm} := g(l). For every tuple
(mi, ni) ∈ T, replace the payload ni in l with mi. Output the resulting string through
the corresponding port in S .

We further define that RS , f ,g,L accepts L(η) inputs at each port in S ∪ S ′, with η being the
security parameter, and that it reads the first L(η) bits of each input.

In the first case, every payload mi, that the user sends through S , is replaced by a predetermined
random payload ni, defined in the replacement table. If no such rule exists, a new tuple is created
containing mi and a new unique random ni, which is then added to the replacement table. In the
second case, for every tuple (mi, ni) in the replacement table, the payload nithat the machines in
the system sends though S ′ is replaced with its corresponding payload mi. All other payloads in
the message are left unchanged.

DEFINITION 2.13 (Forwarding machine [Backes and Pfitzmann, 2005])
The Forwarding Machine FS ,L for S and L has the sets of ports S and S ′. For an input message
l at a port in S or S ′, it forwards l to the corresponding port in S ′ or S respectively.

FS ,L accepts L(η) inputs at each port in S ∪ S ′, with η being the security parameter and that
it reads the first L(η) bits if each input.

The forwarding machine F is introduced to the original system, in order to make the operation of
such a system, identical to the system that includes a replacement machine. The idea is, that the
user should not be able to determine which of the systems it is communicating through.

2.2.5 Payload Secrecy and Computational Secrecy

The following definition defines perfect and computational secrecy of payloads.

DEFINITION 2.14 (Reactive Payload Secrecy [Backes and Pfitzmann, 2005])
Let a system Sys, be given. Let f and g be mappings from the set {S | ∃ (M̂,S) ∈ Sys} to the
set of payload selection functions. Let fS and gS replace f (S) and g(S). Let (M̂,S) ∈ Sys be
arbitrary and let (M̂′,S ′) be the structure where the port names of ports in S are consistently
replaced on the machines M̂ as for the set of ports S ′ in RS , fS ,gS ,L. Then we say that the
payload messages selected by fS and gS are

1. perfectly secret in (M̂,S), written (M̂,S) = [ fS , gS ](M̂,S), if and only if for all functions
L : N → N ∪ {∞} and for all configurations Conf = (M̂′ ∪ RS , fS ,gS ,L,S , H, A) and
Conf′ = (M̂′ ∪ {FS ,L},S , H, A) (i.e. with the same user H and adversary A), we have
ViewConf(H) = ViewConf′(H).

2. computationally secret in (M̂,S), written (M̂,S)[ fS , gS ](M̂,S), if and only if the above
holds for all polynomial bounded functions L, polynomial-time users H, polynomial-
time adversaries A and with equality of views replaced by indistinguishability of
views.
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We say that the payload messages selected by f and g are perfectly respectively computationally secret
in Sys, written

Sys = [ f , g]Sys, respectively Sys ≈ [ f , g]Sys

if and only if

(M̂,S) = [ fS , gS ](M̂,S) respectively (M̂,S) ≈ [ fS , gS ](M̂,S)

holds for all (M̂,S) ∈ Sys

Thus, we have perfect secrecy of payloads if and only if the view of the user in a configuration,
that includes a replacement machine, is the same as the view of the user in a configuration, that
includes a forwarding machine. This implies computational secrecy of payloads if and only if the
notion of perfect secrecy holds for polynomial-time users and adversaries.

Since the definitions of computational indistinguishability in [Abadi and Rogaway, 2002] and
[Backes and Pfitzmann, 2005] are the same, we are able to directly relate computational indistin-
guishability as defined by [Abadi and Rogaway, 2002] with computational secrecy as in [Backes
and Pfitzmann, 2005].

2.3 From Formal to Computational Secrecy

We now present the main result of [Abadi et al., 2006]. We skip the finer details leading up to it
and focus on the description of the theorem itself.

Abadi et al. makes use of the process calculus by [Laud, 2005] as an intermediate language by
translating their source calculus to his and then rely on the soundness of his type system with
respect to a cryptographic library, thus achieving payload secrecy.

Informally [Abadi et al., 2006] defines payload secrecy in the following sense: Let Cn = 〈S, H, A〉
denote a configuration, where

• S is a system of machines (Pi)i=1,...,n, that executes the actual instructions of a protocol. Each
machine Pi is connected to a library machine (Mi)i=1,...,n, i.e., a machine that manage and run
all cryptographic algorithms on behalf of Pi,

• H is a user machine with connections on the unconnected ports in S and
• A is an adversary machine with connections to the remaining pots.

Laud uses input processes Ii=1...n for programming the machines (Pi)i=1,...,n. By the definition of
payload secrecy by [Backes and Pfitzmann, 2005] as described in Section 2.2.5, Laud’s main result
states that if each input process Ii is well-typed in some environment, then the configuration Cn
preserves payload secrecy of messages sent from the user H to the system S.

Denote by ãi the set of all free names used as input in the process Pi, such that ã is the union of
all ãi and let b̃i = fn(Pi) \ ãi, such that b̃ is the set of all b̃i. The names in b̃ represent data from
either the attacker or the user. Let ãRW denote the set of all names that an adversary may output
and input on, such that ãRW ∩ ã = ∅ and denote by ãW ⊆ ã the set of names, that an adversary
only may output on. See Section 2.1.4 for the definition of RW and W. Finally, s̃ denotes the set
b̃ \ ãRW of names, that are user secrets.

The following theorem shows, that the translation presented by Abadi et al. is type-preserving.
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THEOREM 2.15 (Computational Secrecy by Local Typing, [Abadi et al., 2006])
Let P = ∏i=1...n Pi. Let the machines (Pi)0...n implement the source processes (Pi)1...n with
initialization parameters ã, ãRW , ãW and s̃.

Let E be the source typing environment that contains

• (s : DSecret) for each s ∈ s̃
• (a : CSecret[T]) for each a ∈ ã \ ãW

• (a : CPublic[T]) for each a ∈ ãW

• (b : Public) for each b ∈ ãRW

If E ` P, then the concrete system (Pi,Mi)i=0...n preserves payload secrecy of s̃.

This result is truly significant in relating the formal and computational paradigms, as it states that
secrecy preserving processes, that are well-typed in the formal settings, preserves computational
secrecy.
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Authenticity 3
An informal exemplification of authenticity from [Blanchet, 2002] states:

Intuitively, a protocol authenticates A to B if, when B thinks he talks to A, then he
actually talks to A.

This chapter takes a closer look at authenticity in the formal as well as the computational par-
adigms and studies a vital theorem, that shows a relation between formal secrecy and formal
authenticity.

3.1 Formal Authenticity

This chapter assumes, that the reader is familiar with the syntax and semantics of the process
calculus from Section 2.1.1.

In the formal view, authenticity is often formalized in terms of correspondence assertions. These
are special begin and end events, such that only when corresponding begin and end events have
been emitted, is authenticity satisfied. The initial idea of correspondence assertions was proposed
by [Woo and Lam, 1993], who developed a syntax and semantics for these. Based on the work of
[Woo and Lam, 1993; Abadi and Gordon, 1997], [Gordon and Jeffrey, 2003] proposed a method
for checking authenticity properties of cryptographic protocols represented in the spi-calculus,
with the means of correspondence assertions and typechecking.

As many of the following sections are based on [Blanchet, 2002], we also adopt how Blanchet
defines authenticity:

When B thinks he has run the protocol with A, he emits a special event end. When
A thinks she runs the protocol with B, she emits another event begin. Authenticity is
satisfied when B cannot emit his end event without A having emitted her begin event.

Blanchet shows that “it is easy to prove authenticity by using secrecy” [Blanchet, 2002]. We will
pursue this idea and give an overview of his approach.

3.1.1 Correspondence Assertions

To obtain authenticity in the formal sense, Blanchet developed a process calculus with correspon-
dence properties by including four event emitting processes not included in the Source Process
Calculus in Table 2.1 on page 6. In fact, our process calculus which is based on [Abadi et al., 2006]
is a reduced version of Blanchet’s calculus. Thus, we “reintroduce” the event emitting processes
in Table 3.1 on the following page.
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Let M be a term and P a process. The process calculus is extended with the processes:

Processes P ::= . . .
begin(M).P Begin event
end(M).P End event
begin ex(M) Executed begin event
end ex(M) Executed end event

Table 3.1. The extended syntax of the Source Process Calculus that includes event emitting processes

Blanchet extends the process calculus with emitting events to give specifications for authenticity.
The processes are divided into two groups:

• The processes begin(M).P and end(M).P execute the begin event or the end event respec-
tively and continue as P.

• The processes begin ex(M) and end ex(M) states that a begin(M).P or an end(M).P event
has been emitted.

Informally, we can consider a begin event as the start of an authentication between processes
where begin(M).P means that a process A within P initiates a session with the parameter M.
Another process B within P may then perform computations on M and if it believes that it has
initiated a communication with B it emits the end event to indicate that the authentication has
been achieved. In practice this may be an initiation of communication using some public- or
shared-key cryptographic algorithm If the protocol is correct, B only emits the end event when A
has emitted the begin event. .

3.1.2 Reduction Semantics for Correspondence Assertions

The reduction rules of the processes in Table 3.1 are given in Table 3.2.

Let M be a term and P a process, then the reduction semantics for the emitting events is given
by the rules:

BEGIN begin(M).P −→ begin ex(M) | P

END end(M).P −→ end ex(M) | P

Table 3.2. Rules of the reduction semantics of the emitting events

Once the begin or end event has been emitted and the processes continue as P, we may emit
begin ex(M) or end ex(M), to indicate that a begin or an end event, at some point, has been
executed.

3.1.3 Injective and Non-injective Agreement

Recall that a closed process has no free variables, yet, it may have free names. We extend the
definition of an S-adversary (see Definition 2.4 on page 8) to include Blanchet’s event emitting
processes.
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DEFINITION 3.3 (S-adversary, [Blanchet, 2002])
Let S a finite set of names. The closed process Q is an S-adversary if and only if fn(Q) ⊆ S
and Q does not contain begin, end, begin ex or end ex events.

The set S is the set of public names including those that a possible target process has made freely
available. Hence, an S-adversary is a process that is able to communicate with other processes
using the names in S. Since the names in S are public, none of the free names, that the adversary
has access to, are restricted to other processes. To avoid that an S-adversary violates non-injective
agreement, he is disallowed from emitting events. Otherwise, he would be able to emit an end
event, with some arbitrary parameter, that has no prior begin event. This would not constitute an
actual attack, since the adversary would gain no information of value in this way. In other words,
we consider the adversary to be an outside process, that has access to the free names in a process
that defines the protocol. Since the actual authentication happens within this process, it would
make little sense to give the adversary the ability to emit events, as this would have no effect on
the execution inside protocol process.

There are two ways in which we consider the correspondence between begin and end events

1. Non-injective agreement: Every execution of end(M).P has a corresponding execution of
begin(M).P. Thus, if an end event has been emitted, then the corresponding begin event has
been emitted. However, one end(M) event may be emitted as a response to several begin(M)

events, which means that there may be fewer end(M) events than there are begin(M) events.
See Figure 3.1.

2. Injective agreement: For an injective agreement, the number of end events is smaller than
or the same as the number of begin events. Thus, we can assume that each end(M) is
matched by a distinct begin(M). In addition, if a begin(M) event has been emitted, there
is no guarantee that an end(M) event will be emitted. See Figure 3.2.

begin(M1)

begin(M2)

begin(M3)

end(M1)

end(M2)

end(M3)

end(M3)

Figure 3.1. Non-injective agreement. Ev-
ery end(M) event implies that
begin(M) has been emitted.

begin(M1)

begin(M1)

begin(M2)

end(M1)

Figure 3.2. Injective agreement. The num-
ber of end events are at most
the number of begin events.

How a process satisfies non-injective agreement is defined in the following manner:

DEFINITION 3.4 (Satisfying Non-Injective Agreement, [Blanchet, 2002])
The closed starting process P satisfies non-injective agreement with respect to S-adversaries
if and only if for any S-adversary Q, for any P′ such that P | Q (→ ∪ ≡)∗ P′, for any M, if
end ex(M) occurs in P′, then begin ex(M) also occurs in P′.
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Consider the process P to be a process that handles the authorization. Now, for any process P′

that has seen both a begin and an end event, and P, by a reduction sequence can reach P′, then
we know that P′ is in a state where authorization has completed. Consequently, P satisfies non-
injective agreement. Blanchet’s definition is said to be robust, since P runs in parallel with any
given S-adversary Q.

A process satisfying injective agreement is defined in the following way:

DEFINITION 3.5 (Satisfying Injective Agreement, [Blanchet, 2002])
The closed starting process P satisfies injective agreement with respect to S-adversaries if and
only if for any S-adversary Q, for any P′ such that P | Q (→ ∪ ≡)∗ P′, for any M, the number
of occurrences of end ex(M) in P′ is at most the number of occurrences of begin ex(M) in P′.

This definition is similar to Definition 3.4 with the main difference, that if P′ does not emit
more end ex(M) events than begin ex(M) events, then P satisfies injective agreement. Though, it
should be noted that each end event corresponds to only one begin event.

In both of the above definitions, the restrictions in P′ are renamed such that they bind pairwise dif-
ferent names, and names different from free names. This simply to avoid name clashes between,
for example, a free name x and another restricted name x. This can be done using renaming such
that

begin(x).a〈x〉| (υx)x(y).end(y)

by alpha conversion becomes

begin(x).a〈x〉| (υz)z(y).end(y)

3.2 Relating Formal Secrecy and Formal Authenticity

A context C[] is a process with “holes”, i.e., with placeholders for unknown processes. Contexts
allows us to replace a process within the context with another version of the process.

With the following theorem, we extend the theorem by [Blanchet, 2002], that originally showed,
that authenticity can be verified by application of formal secrecy. Our version supports the re-
versed implication, namely that formal authenticity implies formal secrecy.

THEOREM 3.6
Let

P = C[begin(M).P1, end(M′).P2]

be a closed starting process (where C[] is any context) and assume that these are the only
begin and end events in P. Let

P′(N) = C[if M = N then 0 else P1, c
〈
(auth, M′)

〉
.P2]

where auth is a new term. For all closed terms N, P′(N) preserves the secrecy of (auth, N)

from S, where c ∈ S if and only if P satisfies non-injective agreement with respect to S-
adversaries.
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We give the proof below, but first we study the original theorem itself. The important thing to
understand is the transformation from P to P′ and especially what is obtained by P′. We start by
defining a process P, as a context of two processes, begin(M).P1 and end(M′).P2, with uninstanti-
ated terms M and M′. If the terms M and M′ are instantiated to the same, both begin(M).P1 and
end(M′).P2 is emitted, which implies a successful authentication. P is transformed into the pro-
cess P′, such that P′ behaves in the same way as P, if M is not instantiated to N, while preserving
the secrecy of N. There are two ways P′ can behave for any N:

• If N has been instantiated to the same as M, the conditional process reaches 0, implying
that a begin(M) is never emitted by P, since P1 is never reached in P′. Consequently, P
never reaches P2, since end(M′) cannot be emitted. As Therefore, P′ preserves the secrecy
of N, as N is never published on c.

• If N is different from M, the conditional process reaches P1, which means that begin(M)

must have been emitted by P. Since this is the case, an end(M′) is also by P emitted, imply-
ing that M and M′ have been instantiated to the same term. Thus, P′ publishes auth(M′) on
c while the secrecy of N is preserved.

In both cases (for any N), P satisfies non-injective agreement with respect to S-adversaries, as
there are two cases: Either the both the begin and end event are emitted or none of them are
emitted.

PROOF

In the following, we denote by N the payload of the process P′(N). We need to show two cases:
1. If P′(N) preserves the secrecy of N, then P satisfies non-injective agreement and 2. P′(N) pre-
serves the secrecy of N, only if P satisfies non-injective agreement.

1. (if) Assume that P′ preserves the secrecy of N for every payload N. We then show, by
contradiction, that P satisfies non-injective agreement with respect to S-adversaries Q. Con-
sider a sequence of reductions, where P does not reach a begin(M). Then, in order to satisfy
non-injective correspondence, no end(M) is allowed to be emitted. If this is the case, it must
have been executed by the sequence of reduction:

P −→∗ (υn)(end ex(M′) | Q)

where M′ is instantiated to some value N′. This is not possible, since P′ satisfies secrecy
for any payload N′, as P′ will either not output anything on c ∈ S or output something
other than the payload on c. However, by choosing the payload to what N′ was instan-
tiated to, we reach a contradiction, as it is not possible for P′ to output the payload N′,
while outputting something that is not N′. Hence, P′ cannot output anything at all on c.
Consequently, the original process P is never able to emit the end event, thus satisfying
non-injective agreement with respect to S-adversaries.

2. (only if) Let N be an arbitrary payload. Assume that P satisfies non-injective agreement
with respect S-adversaries Q and that P′(N), for that sake of contradiction, does not pre-
serve the secrecy of N. Then, for any sequence of reductions, where P at some point will
emit an end event:

P −→∗ (υn)(end ex(M′)) | Q

there has previously been emitted a begin(M) event in P, such that

P −→∗ (υm)(begin ex(M′)) | Q −→∗ (υm)(end ex(M′)) | Q

where M and M′ has been instantiated to the same term. However, as P′(N), by assump-
tion, does not preserve the secrecy of N, at the point where P would emit an end event,
P′(N) will emit N on c. This implies that M′ was instantiated to the same as N. As the re-
ductions for P and P′ are equivalent, i.e. P emits an end event, when P′ outputs on c, M and
M′ must have been instantiated to N. This implies that M′ = N is true, which means that P
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never emits the begin event, followed by P1, since P′ never reaches P1. This contradicts, that
M′ was instantiated to the same as N. Thus, our assumption that P′(N) does not preserve
the secrecy of N is false. �

The last part of the proof shows, that if non-injective agreement is satisfied by a closed process P,
i.e. that P satisfies authenticity then the transformed process P′(N) preserves the secrecy of N.

To further elaborate on Theorem 3.6, we give an example, in which the theorem is applied to a
minimal process.

EXAMPLE 3.7
Consider the process

begin(x).a〈x〉 | a(y).end(y)

The left event initiates authentication with parameter x and transmits x on a. The right process
receives x on a and completes the authentication. It must be ensured that, if the begin event never
takes place, then neither does the end event. By transforming the process above using Theorem
3.6, we get

if x = N then 0 else a〈x〉 | a(y).c〈(auth, y)〉

for any term N and a new channel c. If begin cannot be emitted, the conditional process ends
in a 0 state and never outputs N on a. Consequently the secrecy of N is preserved as nothing is
transmitted on c, thus the original process satisfies non-injective agreement. 4

A much extended work in this area, also composed by Blanchet, is presented in [Blanchet, 2009,
Theorem 4], while the proof is provided in [Blanchet, 2008, Theorem 3] only.

3.3 Computational Authenticity

In the computational paradigm we use the same notion of authenticity, as in Section 3.1. Namely
that “if some events have been executed, then some other events have been executed” as Blanchet
expresses it in [Blanchet, 2007]. In order to achieve computational authenticity, we make use of
this particular work, which defines computational authenticity based on non-injective correspon-
dences (see Section 3.1.3 for the definition of non-injective agreement). Informally non-injective
correspondences means that “if some events have been executed, then some other events have
been executed at least once”. Computational authenticity is then defined, such that if the prob-
ability that a correspondence is not satisfied, is negligible (see Section 2.2.2 on page 13), then a
process satisfies the correspondence. This section provides a brief overview of, how this defini-
tion is obtained in [Blanchet, 2007].

3.3.1 Non-injective Correspondences

We introduce the notion of an event e(M1, . . . , Mm), where M1, . . . , Mm is a sequence of terms,
such that we may denote by event(e(M1, . . . , Mm)), the observation that an event has been ex-
ecuted. Denote by E a sequence of events e(a1, . . . , an), where a1, . . . , an are bitstrings. To state
that a term M evaluates to a bitstring a, we write ρ, M ⇓ a, where ρ is a mapping from terms to
bitstrings.

Logic formula are introduced in order to express non-injective correspondence in terms of impli-
cation, denoted ψ ⇒ φ, where ψ and φ are formulae that may contain events. Informally, this
notation means, that if a formula ψ evalutes to true, then the formula φ also evaluates to true. A
logic formula is defined in Table 3.3 on the next page.
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Formula φ ::= M Term
event(e(M1, . . . , Mm)) Event
φ1 ∧ φ2 Conjunction
φ1 ∨ φ2 Disjunction

Table 3.3. Logic formulae

Each of the terms M, M1, . . . , Mm in a formula represent a single term, i.e., sequences of terms
may not be derived from a term. When defined to be variables, they are distinct from variables
in processes (variables in processes might be private to the process). We say that the formula
event(e(M1, . . . , Mm)) holds when the event e(M1, . . . , Mm) has been executed and in general
denote by M ⇓ true that the formula M holds when M evaluates to true.

The satisfaction relation for logic formulae, denoted by ρ, E ` φ 1, states that a mapping, ρ from
terms to bitstrings and a sequence of events E satisfies a formula φ. This s defined as follows:

• ρ, E ` M if and only if ρ, M ⇓ true. Thus, if the formula M holds ρ, E evalutes to M.
• ρ, E ` event(e(M1, . . . , Mm)) if and only if for all j ≤ m such that ρ, Mj ⇓ aj and

e(a1, . . . , am) ∈ E . If a subset of the bitstrings a1, . . . , am in any sequence of events E is
reduced from corresponding terms by ρ, then ρ and E satisfies that these events have been
executed.

• ρ, E ` φ1 ∧ φ2 if and only if ρ, E ` φ1 and ρ, E ` φ2. If a conjunction of formulae is satisfied,
then each of the formulae are satisfied.

• ρ, E ` φ1 ∨ φ2 if and only if ρ, E ` φ1 or ρ, E ` φ2. If a disjunction of formulae is satisfied,
then at least one of the formulae are satisfied.

Note that the following definitions only rely on a process calculus with a reduction semantics that
captures events, since the notion of correspondence can be defined independently of the process
calculus. We define such an extended event capturing semantics as follows:

P E−→ P′ where |E | > 1, if

P −→∗ P1
e1−→ P2 · · · Pk−1

ek−→ Pk −→∗ P′ where E = e1 . . . ek

In the following, let ψ denote a conjunction of events and let var(ψ) denote the set of variables
that occurs in ψ.

DEFINITION 3.9 (Satisfying Correspondence for Events, [Blanchet, 2007])
The sequence of events E satisfies the correspondence ψ⇒ φ, denoted E ` ψ⇒ φ, if and only if
for all ρ defined on var(ψ), such that ρ, E ` ψ, there exists an extension ρ′ of ρ to var(φ), such
that ρ′, E ` φ.

Informally, the definition states that if ρ, E satisfies ψ and ρ′, E satisfies φ then E satisfies ψ ⇒ φ,
where ρ′ extends the domain of ρ to cover the variables of both ψ and φ. The idea is that, if we
can construct a function ρ′ that extends ρ (for all ρ) such that ρ, E satisfies ψ and ρ′, E satisfies φ

then E satisfies the correspondence ψ⇒ φ.

1Please note, that we adopt this particular notation from [Blanchet, 2007] and that it is not to be confused with the
notion of type judgment from Section 2.1.4
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We denote by C a probabilistic reduction relation on semantic configurations, i.e., a reduction relation
where each reduction from one configuration to another is assigned a probability. Denote by
initConfig(Q) the initial configurations of the process Q. Let C denote an evaluation context, with a
“hole” representing an adversary. By replacing the process Q with the hole in C we obtain the
process C[Q], to denote a process Q in the presence of an adversary. Both Q and the adversary are
processes that run in probabilistic polynomial time. Denote by V a set of variables. We say that
C is acceptable for (Q, V), where V is the set of variables in the process Q, if and only if C contains
no events.

If there exists a semantic configuration C and a sequence of events E , then

Pr[∃(C, E) such that initConfig(C[Q])
E−→ C∧ E 0 ψ⇒ φ]

is the probability, that the reduction sequence E−→ (that tracks events as reductions are per-
formed), where the initial configuration of Q, in the presence of an adversary, initConfig(C[Q])

is reduced to C and E does not satisfy the correspondence ψ ⇒ φ. Informally, this is probability
that a process, by a sequence of events from its initial state, does not satisfy the correspondence
ψ ⇒ φ. The following definition relates non-injective correspondence with computational au-
thenticity.

DEFINITION 3.10 (Satisfying Correspondence for Processes, [Blanchet, 2007])
The process Q satisfies the correspondence ψ ⇒ φ with public variables V if and only if for all
evaluation contexts C acceptable for (Q, V),

Pr[∃(C, E) such that initConfig(C[Q])
E−→ C∧ E 0 ψ⇒ φ]

is negligible.

Thus, a process Q satisfies the correspondence ψ ⇒ φ, if the probability that it does not satisfy
ψ⇒ φ, is negligible.

3.4 From Formal to Computational Authenticity

As outlined in Section 1.2, we expect that authenticity properties, that are satisfied in the formal
paradigm, implies authenticity in the computational paradigm. From the presented theory in
Chapter 2 and 3 we are confident, that this is achievable using the following strategy:

Assume a process P with suitable pairs of begin and end correspondences, such that non-injective
agreement is satisfied. Since it is required, by Theorem 3.6, that such pairs must be the only begin
and end events in P, reduce each correspondence pair separately by application of Theorem 3.6.
Thus, we have terms M and M′, implying that P′(N) preserves the secrecy of N. Give P′(N)

types by application of the type system in Section 2.1.4 and verify the secrecy of N in P′(N).
If the secrecy by typing is preserved, we know by Theorem 2.15 that P′(N) also preserves the
secrecy of the payload N i.e. computational secrecy is verified. Then it needs to be shown that
the obtained computational secrecy is equivalent to the notion of computational authenticity, for
example, by showing that computational authenticity is satisfied if and only if P′(N) preserves
the secrecy of N. However, we leave this for future work.

In essence, we reduce from formal authenticity to formal secrecy by application of Theorem 3.6
and from formal secrecy to computational secrecy using Theorem 2.15, which poses the final
challenge of showing, that this implies computational authenticity.
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Conclusion 4
In Chapter 2 we studied the syntax and semantics of a process calculus in order to give a pre-
cise definition of formal secrecy in the presence of an adversary. The process calculus has been
extended with a type system and we present a result that states that a closed well-typed process
preserves the secrecy of data from public names and public channels accessible by an adversary.
The notion of computational indistinguishability provides the foundation for a precise defini-
tion of computational secrecy and we present an important result that shows how formal secrecy
implies computational secrecy.

In Chapter 3 we present definitions of formal and computational authenticity in terms of corre-
spondence assertions and show how formal authenticity can be verified by a reduction to formal
secrecy.

In Section 3.4, we finally present an informal approach for relating formal authenticity to com-
putational authenticity and pave the way for showing a reduction from formal authenticity to
computational secrecy, rigorously. As future work, we leave the final challenge of verifying the
relation between computational authenticity and computational secrecy, such that a connection
between formal and computational authenticity can be established.

4.1 Discussion

The next step would of course be to either verify or reject our hypothesis and we suspect that
there is still a substantial amount of work left, in order to reach this goal. Most importantly, an
approach for verifying “the missing link” as described above, should be the primary focus.

If our method fails to produce a result, an alternative approach might be to use a similar approach
as that of [Abadi et al., 2006]. This would require a formulation of a different type system with
respect to authenticity, with the purpose of translating this into the type system of [Laud, 2005].
Then it would be necessary to show, that well-typedness in this new type-system implies well-
typedness in Laud’s. However, we suspect that this approach would require more work, than
our proposed “shortcut”.
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Appendix A
A.1 The π-calculus

The π-calculus is a formal model for describing inter-process communication through channels.
Originally presented by [Milner et al., 1992] as an extension of the Calculus of Communicating
Systems (CCS), it enables various processes to interchange channels of communication. Thus,
a process in the π-calculus is able to send a channel of communication to another process. The
other process may thereby interact with a third process directly without having to send the com-
munication through the original process. One of the advantages of the π-calculus is the ability for
a process to pass internally scoped channels to other processes. The following definition makes
heavy use of [Parrow, 2001].

Agents are usually considered as processes, implying that P, Q, . . . may perform various actions
depending on the their context.

To gain a better understanding of the definition, the following provides an elaboration of the
syntax.

Let N be a set of countably infinite names in the range; a, b, . . . , z, representing communica-
tion channels, variables or data values. Let A be a set of agents with nonnegative arity, where
agents range over P, Q, . . .. Then the syntax of π-calculus is defined as

Prefixes α ::= āx Output
a(x) Input
τ Silent

Agents P ::= 0 Nil
α.P Prefix
P + P Sum
P | Q Parallel
if x = y then P Match
if x 6= y then P Mismatch
(υx)P Restriction
A(y1, . . . , yn) Identifier

Definitions A(x1, . . . , xn)
def
= P where i 6= j⇒ xi 6= xj

Table A.1. Syntax of the π-calculus
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Output: The prefix āx defines that an agent may send a name (typically data or a channel) x via
the channel a.

Input: The input prefix defines how an agent can receive a name x (typically data or a channel)
through the channel a.

Silent: The silent prefix defines how an agent is able to perform a silent action, i.e. it has no
communication with the environment and afterwards continues.

Nil: The agent 0 is the empty agent i.e. the agent that does not perform any actions i.e. an agent
that has completed.

Prefix: The notation α.P shows how the prefixes are applied to an agent. The output prefix āx.P
for a process P means that a name x is received via the channel a after which the agent P
continues. Similarly for a(x).P, the agent P receives x via a and then continues. Finally τ.P
denotes how no names are sent or received and that P thus continues without an form of
interaction.

Sum: The sum P + Q represents an agent that can continue as either P or Q.
Parallel: The agent P | Q denotes that the agents P and Q run in parallel, where P and Q may

interact through a common channel. If no such channel exists, P and Q will continue re-
gardless of each other.

Match: The agent if x = y then P is a conditional statement that will continue as P if the names
x an y are the same. If the conditional statement is false, no actions will be taken.

Mismatch: Similar to the match a mismatch if x 6= y then P continues as P if x and y are two
different names, otherwise no action is taken.

Restriction: A restriction (υx).P defines how a name x is restricted to the agent P. This means
that x is a local to P or in other words, only within the scope of P. However, with some non-
restricted channel, P may send x to another agent, thereby enabling two agents to share a
restricted name, sending the name out of scope.

Identifier: An agent may also be an identifier A(y1, . . . , yn) with parameters y1, . . . , yn. The iden-
tifier is said to have arity n.

Definition: A definition A(x1, . . . , xn)
def
= P exists for each identifier where every xi must be

pairwise distinct. The definition states that A(x1, . . . , xn) behaves like P where each xi is
substituted with yi. Furthermore, A may exist in P allowing recursion.

A substitution is a function {x/y} that maps a name y to the name x. For renaming multiple
names, the notation {x1, . . . , xn/y1, . . . , yn}, where yi is pairwise distinct, is used.

The main idea in the π-calculus is to give processes the ability to pass links to other processes.
The π-calculus has given rise to other formal languages that extends its capabilities. One of these
is the Spi-calculus, that will be discussed in the following section.
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