
1

Department of Computer Science

Selma Lagerlöfs Vej 300

DK-9220 Aalborg East

http://www.cs.aau.dk
Title:

Distributed and Fault-Tolerant
Home Automation System

Project period:
SS10, Spring Semester 2013

Project group:

Members:

Donatas Poteli	unas

Tihomir Georgiev

Sami Zahran

Supervisor:
Associate Professor Dr. Arne Skou

Pages: 109

Finished: 11 June 2013

Abstract:

The �eld of Home Automation Systems

has been researched for a long time and

it still receives a lot of focus today. It

is believed that it will constitute a main

part of the home of the future. Most of

the current systems look at the problem

from a local point of view and place basic

functionality as the �rst priority. While

a very comprehensible choice, these sys-

tems are however very vulnerable to fail-

ure problems and do not scale very well.

Our goal is to create a solution for a fault-

tolerant and distributed home automa-

tion system. We will focus on render-

ing failures transparent to users so they

will not have to intervene themselves on

the system. On the other hand, our com-

pletely distributed system will be able to

scale on a large number of users and ar-

eas to address the problem of the deploy-

ment of very large home automation sys-

tems.The industry can leverage this solu-

tion as well. We will not limit ourselves

to a theoretical solution but will also pro-

vide a functioning prototype to demon-

strate the result of our work.

The content of the report is freely available, but publication (with source indication) may only be

done with the accept of the authors.

Contents

1 Introduction . 4
1.1 Overview of Domotics . 4
1.2 Objectives . 7
1.3 Motivation . 8
1.4 Example . 10
1.5 Hypothesis . 11
1.6 Methodology . 11

2 Related work . 14
2.1 UPnP . 14
2.2 AMIGO . 16
2.3 DomoNet . 17
2.4 EPIC . 18
2.5 DomoEsi . 20
2.6 OSGi . 21
2.7 Jini . 24
2.8 HomePort . 25
2.9 SCADA . 29

3 Requirements . 32
4 Prerequisites . 33

4.1 Failures and Failure Remedies 33
4.2 Redundancy . 36
4.3 Distribution of Nodes . 40
4.4 Group communication . 47
4.5 Security . 48
4.6 Design Choices . 51

5 Design of the Distributed Middleware for Large Scale Automation
Domains (DMLSAD) . 59
5.1 Overview . 59
5.2 Components . 60
5.3 Component Interaction . 71

6 Implementation . 75

2

CONTENTS 3

6.1 Chimera DHT library . 76
6.2 HomePort API . 77
6.3 Distributed and Fault Tolerant HomePort 80
6.4 Start-up . 81
6.5 The Pinging process . 83
6.6 The Registration procedure 86
6.7 Restore Component . 88

7 Experiments . 94
7.1 Service Discovery Experiment 94
7.2 Restoration Experiment . 94
7.3 From Node Down to Adapter Restored 96

8 Conclusion and Further Work . 98
8.1 Conclusion . 98
8.2 Further Work . 99
8.3 Final Words . 100

A Taxonomy and Terminology 107

Introduction 4

1 Introduction

1.1 Overview of Domotics

General introduction

Home automation or the so called domotics refers to the automation of the home
and some of its domains, such as consumer electronics, lightning, heating and so on.
The aims of a domotic system are, among other things, providing increased comfort
and energy preservation to a household. Usually high prices and vendor speci�c
incompatible home automation devices are among the most common reasons why
the home automation domain has not been massively adopted on a global scale.
In our previous report called "Seamless Integration of Devices into HomePort",
we have described all of the bene�ts and drawbacks of using a home automation
system, which we are going to discuss about in the next part. Below we are listing
the bene�ts and disadvantages of the current home automation systems cited from
our previous semester project [18].

Bene�ts

By considering that most of contemporary houses in industrialized countries pos-
sess facilities like electrical power, telephones, TV sets, etc, one can easily see how
big the bene�ts would have been if there was an automatic system able to con-
trol all these things at the same time in an integrated manner. Through a few
examples, we will actually demonstrate real possibilities and advantages of such
systems. The simplest example would be simple actions such as a remote controller
for lighting or heating. These are actually quite popular and used, especially in
places like hotels or modern o�ce buildings. A level higher would be relationship
between di�erent elements of the home automation. Appliances sending noti�ca-
tions one way or another when a task is �nished or there is a need to take actions
or decision concerning them. One of the most classical examples would be in-
telligent rooms, which would be able to sense if a person is present in the room
and set the light on or o� depending on the information gained from the sensors.
Another similar but more sophisticated example would be that the room would
have (through the data coming from several di�erent sensors) enough information
to know who exactly the person in the room is, enabling possible settings such as
appropriate lighting, temperature, music levels, TV channels, turning on speci�c
appliances or even greeting the person and asking for vocal input of setting pref-
erences. Another possibility would be to use blinking lights to alert about a �re
detected by a smoke detector, or some changes like stopping the TV or the radio
to render the user more aware of the situation. Other possible interests would be
in energy saving, for example using sensors to detect human presence and adjust

Introduction 5

light, heating, ventilation level, etc. Applying such a method widely could result
in enormous �nancial savings in places such as large urban areas.

Drawbacks of current home automation systems

According to [4], there are four great barriers that need to be overcome before
home automation might become widely adopted:

• High cost of ownership. Even If one uses the cheapest hardware and builds
the system on his/her own and thus reducing the expenses (a few hundred
dollars), this still implies a high cost in time invested and a need for great
expertise. For people installing a home automation system by themselves,
although a lot of time has to be spend to implement it, most of the time
cost are still not negligible: from a few thousand dollars to tens of thousands
dollars. As for people using an outsourced service from a company, prices
are even more important. Most of the time it never goes under ten thousand
dollars, going as high as more than a hundred thousand dollars. From this, we
can deduce that today's home automated systems are clearly not accessible
to the largest part of the population.

• In�exibility. The market of the home automation system's hardware is com-
prised of a large number of brands and vendors. The main problem is that
while this large number of di�erent devices only covers one speci�c part of
the home automation (e.g. the lighting system, the media system), they are
not made to be integrated easily with other systems. From that, it is easier
most of the time to have several independent systems, each for one speci�c
use, instead of a single integrated system managing everything. Current sys-
tems also provide either monitoring or control functionality, but not both.
In this case a user again needs to buy and install systems from two di�erent
companies. It should be noted that most existing systems are proprietary
and closed. This implies that they are not very customizable and the user
is constrained to use it the way it has been thought of, without taking into
account case to case users and households. Another problem would be the
need of structural changes in the household necessary for installing hardware
and wires used for the home automation.

• Poor Manageability It is quite di�cult to make hard rules of automation
because people and users change their preferences over time. Moreover, the
system could have more then one user with unique needs. The music they
programmed to be played everyday during the time they are taking a shower
might become a bother on a day when the user isn't in the mood to listen to
music or if he takes his shower at a di�erent time from the supposed one. It

Introduction 6

is also hard to integrate guests into the system and most of the time guests or
casual users are afraid of a system they don't understand and don't want to
come close to it in fear of disturbing the system. Although it isn't a speci�c
problem to domotics, bugs are one of the reasons why home automation is
unreliable, because it is harder to correct errors in this domain. Complex
user interfaces and the necessity to have a knowledgeable consultant available
are also part of the poor manageability of these systems.

• Security. One of the most interesting features of home automation is the
possibility of remote control of the system. But this poses a big security
issue because software and Internet processes are hackable. Most of the time
users are afraid of using their system to automate door locks and cameras
since they are highly security sensitive aspects. Giving temporary access to
other people, for example nurses or grandparents, is also di�cult with the
current existing systems.

Aside from these surface problems, some deeper ones remain. The problems arising
from multi-users for one home automation system are to be taken into considera-
tion. Since the system contains more than one set of preferences, scripting con�icts
and ambiguities in expected behaviour will arise [28]. A di�erent issue would be
what is called the "Good Mom" syndrome. The concept is that members of the
household have speci�c jobs that give them the feeling that they are useful, produc-
tive and valuable within the family. Thus, they might not want a simple electronic
system taking away their jobs and values from them [51]. Finally, some researchers
argue that even solving the above-mentioned problems wouldn't be enough as they
believe that there are no compelling use cases for domotics. To be clearer, it is
the fact that most people don't really mind getting up and turning a switch o�
manually instead of using an automated system or a remote controller device.
On top of all of these drawbacks listed above, we can say that most of the available
systems are not capable of integrating new devices after deployment. Moreover
most of them do not provide a mechanism for safe and secure execution of each
system.

Because of all of these drawbacks, home automation middleware systems have
been developed, which solve the interoperability issues between vendor speci�c
protocols. Moreover, these middleware systems provide additional bene�ts to the
end users, as they eliminate the binding of a user to a speci�c vendor. This en-
riches users' choice on devices, as they can purchase devices from di�erent vendors,
install and con�gure them through their home middleware system.
Cited from our previous project [18], we have listed the bene�ts and disadvantages
of current home automation systems. Now we are going to further elaborate on

Introduction 7

the disadvantages of the centralised home automation systems.

Currently, most of the existing home automation middleware systems are cen-
tralised [25] [7] [54]. The ones that could be deployed in distributed fashion [57] [21]
do not provide fault tolerance mechanisms. On one hand, existing centralized sys-
tems imply single point of failure. What is more, centralized systems su�er from
scalability issues. On the other hand, the distributed solutions available on the
market can only be deployed on the local network and what is more important,
they do not provide any fault-tolerance mechanisms for dealing with unpredicted
phenomena and situations. Furthermore, these distributed solutions do not point
out the principle of their operation in a distributed environment and how they coor-
dinate their actions in order to shape up an uniform business process. This reduces
the scope of home automation systems which can be used only in environments
without any critical requirements. Currently, industrial companies are investing
solid amounts of money in order to implement solutions that can meet their needs.
Such needs usually are related to the automation of the entire industrial production
process and the coordination of software applications running on some personal
computers and embedded devices. Because a lot of aspects are highly critical
in these industrial applications, they require solid solutions which can deal with
extreme situations. One category of these industrial systems is the Supervisory
Control And Data Acquisition (SCADA) [55] systems. Such a SCADA solution
usually is quite expensive for the companies to implement, and some companies
invest enormous amounts of money in order to implement it. Home automation
middleware solutions could potentially be thought of substitutes to SCADA sys-
tems, only if they could prove to be a solid alternative. In order to do so, they need
to be capable of providing fault-tolerant solutions which will �rstly trigger correct
outputs based on their logic and secondly would be capable of providing hardware
fault-tolerance. This is why, a new approach to interoperability is needed, which
can provide a cheaper, �exible, fault-tolerant and customisable solution through
high level policies, which could also potentially be used in other domains than the
home automation domain, such as the industry as we have already described in
the use case of substituting SCADA systems with a home automation system.

1.2 Objectives

The goal of our project is to develop a distributed home automation system which
will provide mechanism for participation of potentially isolated physical subsys-
tems. These subsystems could become isolated due to the failure of an intermediate
device a.k.a. as bridge in the world of home automation, or home automation mid-
dleware. Furthermore, distributed home automation middleware will enable the
inclusion of new services in the home automation on demand regardless of scala-

Introduction 8

bility concerns and also will provide a mechanism for execution of certain business
logic in a fault-tolerant way. Here are the main objectives of distributing home
automation middleware:

• To make home automation systems more reliable. In order to do this, we
will implement fault-tolerance features in home automation systems. These
are already known in distributed systems but we will need to apply these to
domotic systems. We can apply software fault-tolerance techniques together
with hardware fault-tolerance techniques, in order to build robust distributed
home automation systems providing high level of reliability and extensibility.

• To make it scalable. We will distribute the load of the system among par-
ticipating nodes, which is not possible in centralised systems. In this sense,
a node is an entity which can participate in a home automation middleware
by communicating with other nodes.

• Find a suitable architecture for a distributed home automation system. A lot
of distributed architectures exist currently. We will need to �nd something
which could �t into the concept of home automation system and adapt it
correctly.

• Address security issues. We want to avoid third party malicious entities to be
able to connect to our distributed home automation system, read or tamper
information sent and received by the nodes within the network.

• Orchestrating all the nodes participating in the distributed home automation
system, such that they can form a whole business process.

1.3 Motivation

A lot of e�ort has been put on adding interoperability between proprietary pro-
tocols operating in di�erent home automation systems manufactured by di�erent
vendors. This has been done for the sake of reducing the overall cost of instal-
lation of a home automation system, increase the ease of use of such a system,
and providing the end user with rich collection of home automation devices from
di�erent vendors. Thus the end user could a�ord to buy and set up on its own
or with little help of averagely skilled professional a home automation system and
customise its behaviour. Most of these systems have been designed and developed
just for providing interoperability between components at home, and others have
more features, such as an engine executing certain constraints or a state machine,
in order to automate the home through a home automation speci�c language.
Some of the home automation inter-operable systems present on the market to-
day are AMIGO [17], DomoNet [60], DomoEsi [25], HomePort [24], Extendible

Introduction 9

Protocol Independent unit Controller (EPIC) [54] and Open Services Gateway
initiative (OSGi) [7] . These systems can connect subsystems operating di�erent
proprietary or open source protocols. Some of these protocols are Universal Plug
and Play (UPnP) [21], LonWork , X-10 [66], ZigBee [9], Zwave [10], UPB [59],
etc. Even though such systems bring a lot of advantages, they bring with them
their shortcomings correspondingly. DomoNet, DomoEsi and AMIGO, HomePort,
EPIC, OSGi all have centralised components. The only exception to the centralised
approach is HomePort [24], but in its latest release [57], it is has a centralised com-
ponent as well. In this case the centralised component could yield the following
negative implications:

• Single Point of Failure - If the middleware system fails, this brings down the
communication and the overall interaction between the di�erent subsystems.
The accessibility of these devices via the central component is becoming
practically impossible. Even in case of a distributed solution such as the
HomePort [57] , a failure in one instance of the middleware node could isolate
its associated physical subsystems.

• Lack of Fault Tolerance - A fault tolerance mechanism related to middle-
ware failures is not supported, since there is only one central component.
Furthermore, some of these systems, such as HomePort and EPIC, provide a
run-time engine for execution of a home automation logic. This means that
if a node or the middleware (if centralised) does not execute the composition
logic correctly, this might not trigger the correct output, or even worse, it
can trigger an inappropriate actuator at an inappropriate time. For instance,
an alarm system could be turned o� while a family is enjoying their holiday
or a burner could be switched on while there is nobody in the house, which
sometimes might have disastrous consequences. Or if such a system is to be
used in the industrial or medical world, it can have even worse consequences
for the intended users as it could even lead to a disaster.

• Potential performance bottleneck - Centralised solutions, such as DomoEsi
and OSGi, can not scale up to provide a high degree of Quality of Service
(QoS) to the end user. For instance, let us imagine a scenario where such
a system is deployed in a huge corporation with thousands of devices simul-
taneously running. If these devices are to be accessed very frequently by a
large number of users, the centralised component can slow down the access
to a certain device.

• Scalability issue - Such a centralised approach, evident in some of the already
mentioned home automation middleware systems, can bound the maximum
number of devices that can participate in the system.

Introduction 10

Based on all of these shortcomings of a centralised approach in the home automa-
tion middleware systems, it is apparent that a decentralised solution would �t
better in a home automation interoperability middleware system. Our motiva-
tion is to design and build a distributed home automation middleware system,
which will be capable of dealing with all of the above mentioned issues related
to a centralised approach and provide the end user with a scalable, fault-tolerant
inter-operable home-automation middleware system.

1.4 Example

Let us consider few situations where the need for a fault-tolerant distributed home
automation system would arise. First is a situation where a home automation
system would be a critical part of a global system. This could be the case in the
medical �eld for example, where it would not be acceptable for the system to com-
pletely shut down, be it due to a software problem or a hardware problem. This
implies that if the central control part of the system fails, there would be a mean to
recover from the failure without having to shut down anything and without isolat-
ing a part of this home automation system. Let us assume that a medical system is
using subsystems manufactured by di�erent vendors and their own speci�c vendor
communication protocols are interfaced through a home automation middleware
system. If the system is centralised, a fault in the middleware could isolate the
di�erent subsystems, and thus they would not be able to communicate and turn
on some important actuator in case of change of state of a certain device. Even in
the case of a distributed home automation middleware system, the consequences
would be slightly more favourable, but there still would be at least one vendor
speci�c subsystem isolated from the rest. While in a regular household, this could
not lead to very severe consequences, in the industrial world, this is not acceptable.
This is where the fault tolerant part of the system would be necessary to let the
isolated device participate to another node of the system, without a�ecting the
normal operation of the rest of the subsystems.
Let us take the same example of a medical system running di�erent vendor speci�c
subsystems interfaced and connected through a home automation middleware. In
this example we will not distinguish between centralised and distributed solutions,
since the example considers a scenario where both are behaving pretty much in the
same way. Let us imagine that the already mentioned home automation middle-
ware has the capability to execute a certain logic, applied over the entire system.
In this case, if a hardware failure occurs in the node executing the logic, it could
trigger the incorrect actuator and in the medical or industry worlds this is not ac-
ceptable. Now let us look at another example. In that case, the home automation
is comprised of a very large system with a considerable amount of nodes. Only
one central control part would not be able to handle the large number of nodes.

Introduction 11

The system would need to possess several control parts, this is where a distributed
system would become interesting. Instead of relying on a very powerful central
part, the fact of distributing the control system would allow to reduce the load on
each of them and even distribute the load depending on the situation. In case of
failure of one central part, another one could take on the load of the failed one for
the system to continue to function.

1.5 Hypothesis

All of the negative implications coming from a centralised solution or coming from
the distributed solutions available on the market have led us to think about a
distributed solution to address the home automation interoperability issue and
provide fault-tolerance. By developing a fault-tolerant distributed home automa-
tion system, we can provide a scalable, fault-tolerant and self-con�gurable solution
to the home automation interoperability issue. Firstly, we claim that a distributed
home automation middleware system can provide a very �exible solution, where
the user can join and release home automation middleware nodes on demand.
Secondly, the distribution of the middleware can provide a foundation for the
development of a mechanism that will mask or eliminate a potential hardware
failure or software error in one of the distributed nodes. Thirdly, providing a
distributed mechanism for fault-tolerance and removing the upper bound of po-
tential devices that can be added to a home automation middleware system can
change the intended use of these existing systems which can become applicable
even in the industry. And last but not least, implementing hardware and software
fault-tolerance mechanism over a distributed home automation system could even
change the intended use of such systems and allow them to be used for instance
in the industry or in the medical world.

1.6 Methodology

Our goal is to provide a solution for distributing a home automation system and
rendering it fault-tolerant. We will �rst answer the question about the interest of
this subject. After this, we are going to put together the di�erent questions we
need to answer during this study. First of all, is it possible to distribute a home
automation system and can we make it fault-tolerant? Then, what are the best
existing methods to do this currently? Finally, how can we use what we learned
to adapt it to a home automation system?
To address these problems, our methodology will be the following:

• We will �rst start by introducing the subject of home automation, its interest

Introduction 12

and our goal in more details.

• In a second step, we will analyse works related to our subject. We will search
for other similar projects or projects having some common points with our
study, analyse their research, the techniques they used and their results.

• From that point, we would get a better overview over the state of the art
related to our subject. That would allow us to de�ne clearly our requirements
for accomplishing our goal.

• After having determined our requirements, we would have to study the cur-
rent existing technologies, techniques and methods related to our subjects.
Studying this will enable us to determine what is interesting, and what is
really possible in the concept of home automation systems, and how the
strengths of distributed systems could be accommodated in the context of
home automation.

• After these global theoretical studies, we would get into a more practical
part of our work where we would design our solution, including all of what
we learned before based on the analysis and the related work.

• From this design, we would be able to start implementing a prototype of our
distributed home automation system. We will describe and document our
implementation in detail to make it as open and easy to use as possible.

• This prototype would let us do some experiments to con�rm that we are
meeting our requirements.

• Finally, after concluding that our solution meets our goal, we will make a
general conclusion about our work, its result and our contribution to the
home automation domain.

We have already described the reasons why the home automation interoperabil-
ity middlewares have not been intended to be used in a domain di�erent than the
home automation and we have already described what needs to be done in order
to suit them in domains where they initially have not been intended to be used in.
In our Master's Thesis, we will analyse what needs to be done in order to suit the
home automation systems into other domains and we will provide a design and an
open source implementation of such a system. The report is organised as follows:
In the next chapter 2, we shall proceed by describing the works related to our
project available in the world of home automation. Next, we shall set the neces-
sary requirements 3 in order to develop a fault-tolerant distributed inter-operable
middleware. In 4, we will analyse existing fault-tolerance techniques and means for

Introduction 13

distribution of the system. 5 captures the design of our system. 6 documents imple-
mentation details about our project. Finally, we will perform some experiments 7
and make a conclusion 8 about our project.

Related work 14

2 Related work

In this section, we will evaluate and compare home automation middleware systems
available on the market or developed by non-pro�t organisations. The section will
elaborate on each of them individually and it will summarise their advantages and
corresponding shortcomings.

2.1 UPnP

The UPnP [21] or the Universal Plug and Play is an architecture for adding inter-
operability between devices manufactured by di�erent vendors compliant to the
UPnP standard. The UPnP follows peer-to-peer distributed architectural pattern
and works over IP, so each UPnP device needs to be capable of communication over
TCP/IP protocol. Furthermore, each device needs to run a Dynamic Host Control
Protocol (DHCP) client and upon start-up needs to look for a DHCP server. If
a DHCP server isn't present on the network, the device alternatively must use a
technology called AUTOIP, which is a server-less method for enabling devices to
obtain a unique IP address within a local network. Basically, the standard consists
in exchange of messages between UPnP peers taking part of the network.
In order to produce devices compliant to the UPnP standard, the vendors need
to implement the so called UPnP Device Architecture, consisting of the following
communication protocol stack depicted in �gure 1:

• UPnP Vendor - These are messages having vendor speci�c information.

• UPnP Forum and UPnP Device Architecture - Envelops the vendor speci�c
message with wrapper de�ned by the UPnP forum.

• Simple Service Discovery Protocol (SSDP), Simple Object Access Protocol
(SOAP), General Event Noti�cation Architecture (GENA). Each UPnP de-
vice can have multiple services available and a state domain. SSDP de�nes
a procedure for device's service discovery. SOAP is chosen as the protocol
for exchanging device speci�c information in a structured way. Thus it is
readable to other UPnP devices. GENA's role in this picture is to provide a
mechanism for event-�ring and event-noti�cation of interested devices. Usu-
ally the devices noti�ed about a �red event are the so called control points,
which are UPnP devices capable of getting the state of a certain device in a
UPnP network.

• UDP/TCP, IP, HTTP - HTTP is used as a data transfer format. Then the
message is wrapped in User Datagram Protocol datagrams or TCP segments
and �nally the message is chopped and wrapped into IP packets and is sent
over the IP network.

Related work 15

UPnP Device Architecture
(Addressing, Discovery, Description, Control, Eventing, Presentation)

SSDP

HTTP

TCPUDP

IP

GENA SOAP

HTTPU HTTPMU

Figure 1: UPnP Protocol Stack

Devices in the UPnP architecture can be controlled devices or control points. Now
let's describe how the interaction between a controlled device and a control point is
conducted and what are the sequence of actions that are performed by the parties
for a device to be attached in order to participate in a UPnP network and then
manipulated by a control point.

• Upon boot-up of a UPnP device A, it is assigned an unique IP address.

• If A is a controlled device, it advertises its available services over the network
or if A is a control point, it searches for services available on the network.
In this message, a URL is provided to the control point.

• This URL is used by a control point device in order to acquire relevant
information about a device's actions and feasible states. Other relevant in-
formation included in the device's description is expressed in XML, which
might be a description of other embedded devices contained by the controlled
UPnP device, vendor ID, product ID, etc.

• Then a control point is up and ready to send actions over SOAP to the

Related work 16

controlled devices. An action forces changes in the local state of the device
and the device in response sends the result back to the control point.

• The devices can send events to subscribed control points.

• The control point is capable of retrieving a device's User Interface modelled
as a web page. Of course, the device itself needs to provide the user interface
presentation to the controlled point.

The UPnP supports only devices that have IP capabilities on board. However,
most of the home automation devices do not have any IP capabilities, because
they usually are devices with very restricted resources. In this case, these home
automation devices require an additional bridge component which can add the IP
capabilities and implements the UPnP stack. Now let's see how UPnP serves as a
base to some of the existing inter-operable middleware.

2.2 AMIGO

The �rst of systems that we are going to discuss about and leverage the UPnP
standard is called AMIGO [17]. It stands for Ambient Intelligence for the Net-
worked Home Environment. AMIGO is a middleware trying to link di�erent types
of devices at home in one large network. It is a very general piece of software
enabling networked devices to inter-operate with each other. The devices can be
from di�erent domains such as home automation, consumer electronics, personal
computing and so on. AMIGO consists of the parts depicted in �gure 2:

• Service Discovery Protocol (SDP) Detection and Interoperability (SDI) -
This component makes it possible for multi service advertising and access,
regardless of the service discovery procedure used by the network services.

• Service Interaction Interoperability - Enables interaction between services
regardless of the broker advertising it. In this sense, a broker is a device that
advertises services compatible with speci�c protocols.

In a sense, the AMIGO inter-operable middleware is a middleware for enabling
interaction between services advertised by di�erent brokers. Considering the home
automation domain, it does not provide solution to it. In the paper presenting
AMIGO, an example is given, where the home automation domain is participated
in the AMIGO network through implementation of an UPnP bridge.
In any case, in the AMIGO architecture there are two centralised components
which are the AMIGO core and the potential bridge between home automation
domain and UPnP. Thus the system could experience scalability problems and on
top of that if one of the centralised components fails, the devices attached to it
will remain isolated from each other.

Related work 17

A

SDP
Detection

SDP
Interoperability

SII Interoperability

B

SLP Requests

UPnP

Figure 2: The Amigo interoperable middleware core

2.3 DomoNet

Yet another architecture presented is the architecture of DomoNet [60]. In gen-
eral, the DomoNet architecture leverages the Service Oriented Architecture (SOA)
to home automation. In order to use DomoNet, one would need to model each
device as a web service and thus one could access it as simply as calling a web
service. The components in the DomoNet architecture are having the so called
TechManagers a.k.a. application gateways for di�erent kind of protocols. More-
over, if N di�erent protocols need to incorporated into the design of DomoNet,
then only N TechManagers are required. The TechManagers are the components
linking the domotic speci�c protocols to web services corresponding to the devices
that need to be accessed. According to the design of DomoNet, the web services
need to be installed on one or more web servers. Each of the TechManagers needs
to register at all web services available on the home network. The web services
in turn provide information about other TechManagers that have been registered
at them. Thus all TechManagers can command any device, just by knowing what
kind of web services they are advertising in the network.
Each device can be manipulated by a TechManager with the means of the DomoML
language. It is an XML SOAP [62] based language, used for sharing messages be-

Related work 18

tween a TechManager and the device web services.
Now let's follow up with the sequence of operations, that are executed upon Tech-
Manager's boot-up:

• Get a list of all device web services available on the network using Universal
Description, Discovery and Integration [63].

• Register with all devices of interest.

• Publish all devices, available at its own subsystem, as web services.

• Get all devices available in the registered device web services.

It is worth mentioning that each TechManager also makes sure that it creates
virtual devices in the subsystems where it is required. For example, the UPnP
architecture is distributed and each UPnP device is having its own IP address and
port. This means that the UPnP TechManager needs to create virtual devices
within the UPnP network of all other devices existing in the other subnetworks.
The DomoNet provides an interesting architecture for Domotic middleware.
Firstly, scalability issues are not present as more web servers can be added on
demand.
Secondly, as it can be inferred from the description of DomoNet architecture, the
single point of failure problem here is mostly overcome but the architecture does
not provide any means for execution of run-time logic, which could potentially
model the system as one big home network and set some constraints and relations
to the components of all subnetworks.
Thirdly, as a run-time engine for the execution of the home automation logic is
not present, software fault-tolerance is not applicable in this system.
And �nally we can state that, as we previously mentioned, the single point of
failure problem is mostly eliminated but not quite. If a web server hosting a web
service's device crashes, this would isolate the web services and their corresponding
devices from the home network. DomoNet does not provide any mechanism for
re-participation of devices to a new TechManager, in case of a failure of their
TechManager.

2.4 EPIC

EPIC stands for Extensible Protocol Independent unit Controller [54], and it is a
project initiated by the Aarhus University, Denmark. The project relies on user
driven innovation in its foundation. The aims of the projects are to achieve easy
addition of new components from di�erent subsystems manufactured by di�erent
vendors and running di�erent protocols. The main idea behind this framework is

Related work 19

to provide the end user with an easy way of using home automation devices at
a�ordable prices, which should be easy to install and con�gure. The developers
of home automation devices can use this framework for easy development of new
components.
The main components of the EPIC platform are visualized in �gure 3:

• GUI - The GUI is implemented using Windows Presentation Foundation
(WPF) [42] and Windows Communication Foundation (WCF) [41] technolo-
gies. All the underlying devices available at home are captured and modelled
in a protocol independent way by the core and further propagated up to the
GUI, which displays the available home facilities to the end user and their
states.

• Core - The relations between devices are represented as tasks and evaluated
upon physical devices' change of state. The core consists also of: a GUI
manager which interacts with the GUI, a Device List and a Task Manager.

• Sensor System - The sensor system is similar to a DomoNet's TechManager.
Its role is to bridge a subsystem's speci�c protocol to EPIC's core.

WCF Factory

View Manager

Device View

Task View

Device List

Task Manager

Subsystem
Manager

GUI Manager

Device List

Coordinator

Device Creator

Protocol API

WPF GUI Core Sensor System

Figure 3: The EPIC system overview

The EPIC system is a home automation middleware system that provides inter-
operability between devices manufactured by di�erent vendors and taking part of
systems running vendor speci�c protocols. EPIC's target, as we said, is to provide
the end user with a friendly way of setting up a home automation system. The
system characterizes itself by its run-time task execution engine. In other words,

Related work 20

it provides a mechanism for de�ning a logic and composition logic execution upon
device's state change event. However, the system is not capable of software-fault
tolerant execution of the composition logic. The system could potentially have its
core as a single point of failure, or its core could turn to be a performance bot-
tleneck if the system is to be deployed in an industrial corporation having many
devices and each of them is accessed more often than what the core component
is capable of dealing with. The system has been designed with scalability and se-
curity in mind, as it decouples the middleware core and the sensor systems. This
means, the sensor systems and the core could run on di�erent physical machines.
This eliminate scalability concerns that we take into consideration to some extent.
Finally, the system does not provide any means for re-participation of devices that
have previously been attached to a failed sensor system.

2.5 DomoEsi

DomoEsi[25] is a project initiated by the department of Automation and System
Engineering at the University of Seville, Spain. The aims are providing a low
cost home automation solution to the ordinary people, where one could set up a
home automation system. The project is exclusively based on the UPnP standard.
It basically provides a UPnP control point and software bridges between some
existing vendor speci�c systems and UPnP standard. Thus it makes compatible
some vendor speci�c systems to the UPnP standard. The project characterises
itself with allowing the end user to install a low cost home automation system.
The software bridges provided by the DomoEsi system to the UPnP standard
include:

• X-10 [66] - The bridge is very �exible in its use, as it can work on its own,
without the need of UPnP control point to control it.

• Infrared interface - This interface lets the user turn on and o� a device
through interaction with the GC-100 device [14], which is a device which can
link consumer electronics and even alarm systems in a home network. Thus
the GC-100 device can receive commands by a UPnP control point and resend
these commands to a device that has an Infrared interface. This device can
accept commands through its Infrared interface and these commands can be
relayed to the UPnP network. Thus events can be �red in the UPnP network
and the subscribed control points can handle these events.

• Nintendo Wiimote [43] - This remote controller device can be used for con-
trolling devices running in the DomoEsi network. The device is interesting
because there are multiple ways to control something with it, as it has ac-

Related work 21

celerometers. This can for example be used by handicapped people to easily
control their home appliances.

• ZigBee [9] - It is an alliance of companies de�ning a set of standards for
low cost wireless communication. The ZigBee compatible devices have been
invented and applied in the health care, telecommunications, home automa-
tion domains and more. Furthermore, the ZigBee standard operates in the
open 2.4 GHz frequency range and de�nes three types of nodes taking part
in a wireless mesh network:

� ZigBee Coordinator

� ZigBee Router

� ZigBee End-Device

• IPDomo - All of its components work under the UPnP standard and the
system consists of a UPnP control point and cards interfaced through Eth-
ernet UTP cables for controlling lights, videophone, alarm, etc. This is a
system that is readily used in the DomoEsi as it is UPnP based. It allows
a DomoEsi control point to control the above mentioned IPDomo cards and
the other way around - the IPDomo control point can control the DomoEsi
devices.

• Voice recognition - The user can enter voice commands to the system and
this will raise UPnP events.

In short, the DomoEsi is a system which needs to run on a single computer and this
approach, as previously mentioned, su�ers from the single point of failure problem.
Another disadvantage of DomoEsi is the lack of a composition logic execution en-
gine. This means that software fault-tolerance techniques are not applicable. If the
DomoEsi daemon fails, this will isolate some of the UPnP integrated components
through the DomoEsi system.

2.6 OSGi

Standing for Open Services Gateway initiative [6] [7], OSGi is a Java based archi-
tecture, which aids software engineering activities by providing a framework for
building loosely-coupled Java architectures. OSGi has emerged as a solution to
the home automation vendor interoperability issue, but later has been adopted as
a general framework for building component based software. In its nature OSGi
represents a framework for building software systems with reusable components.
Of course, as the volume of a software system grows, the number of component
dependencies grows as well, so this model by itself does not guarantee the success

Related work 22

of a software project. Furthermore, these reusable components hide their imple-
mentation to the rest of the components available in a system and communicate
with them based on service calls.
Before we go into architectural details about the OSGi architecture, let's �rst de-
scribe a couple of important components related to the Java platform, and to the
OSGi framework:

• Java Archive (JAR) �le - A �le that puts together many Java classes and
meta data associated with these classes. Important note about JAR �les is
that a JAR �le is visible to all other JAR �les.

• Bundle [23] - They are building units of OSGi based software system. They
are dynamic components as they can be loaded and unloaded at any point
in time. A bundle is just an ordinary JAR �le and the bundle's manifest
describes the bundle with attributes such as: version, Import and Export
Java packages, bundle name, etc. OSGi JAR �les are called bundles.

OSGi provides a layered architecture consisting of the following layers which can
be seen on �gure 4:

• Execution Environment - determines what classes are available to be used.

• Modules - In an ordinary Java program, a JAR �le is visible to all other
JAR �les. The Modules' layer hides bundles, and bundles share only the
components that they explicitly point that they want to be shared. On the
other hand, modules layer imports automatically all needed components in
a Bundle.

• Life Cycle - This layer takes care of dynamical addition, removal, activation
and deactivation of bundles.

• Services - The services layer is facilitating the interoperability between bun-
dles. In the service layer there is a component called service registry. When a
bundle is loaded, it registers its services within the service registry. A bundle
can also get services from the service registries, based on some interface or
even listen for registration of services.

The OSGi architecture has emerged as a centralised system, where the bundles
are running in the same virtual machine. According to the latest speci�cation [8],
OSGI could distribute the services and use them as they were on the same machine
with the help of newly introduced distribution provider component. The distribu-
tion provider is capable of creating the so called proxy which can import a service
hosted on a remote OSGi instance. The distributed provider of the remote host

Related work 23

Operating System

Java Virtual Machine

OSGi Execution Environment

OSGi Modules

S
E
C
U
R
I
T
Y

Life Cycle

ServicesBundles

Figure 4: OSGi Architecture

in turn must create the so called endpoint in order to be capable of exporting ser-
vices. The endpoint describes the local services that need to be invoked remotely
through WSDL.The endpoint and the proxy wrap each call as SOAP messages
according to the WSDL description of the service to be invoked.This leverages the
Remote Method Invocation (RMI) [45] inter-process communication approach.
To sum-up, OSGi provides a dynamic system which �nds its role as a home au-
tomation middleware. If all vendors were to build translation bridges as OSGi
bundles, then the vendor speci�c interoperability problems would be eliminated.
However, the traditional OSGi architecture su�ers from a single point of failure is-
sue. On the other hand, the distributed OSGi architecture eliminates this problem
to some extend. However, there are certain issues associated with the Distributed
OSGi. First of all, there is no mechanism for automatic re-participation and auto-
recovery of a set of OSGi frameworks, i.e. in this system it is not clari�ed how
one could set-up a distributed home environment, where all devices could partic-
ipate in one big home network and new framework nodes can be participated on
demand. Secondly, the OSGi platform does not provide a run-time composition
logic execution engine. This implies that a software fault-tolerance mechanism for
redundant execution of the composition logic is not applicable and this imposes a
risk of unintentionally triggering an incorrect actuator at home. Furthermore, if a
bundle being a bridge to a subsystem experiences a permanent fault, the subsys-

Related work 24

tem will remain isolated without human intervention. Even though a distributed
implementation of OSGi exists, this distributed architecture is still centralised. If
the centralised OSGi component fails or even if a distributed bundle fails, this
could isolate bundle's corresponding devices, or isolate all the devices from each
other.

2.7 Jini

Jini [52] is a very interesting networking concept. The goal is to push some of the
OS functionalities onto the Jini network while being as transparent as possible for
the user.
With Jini, the user is able to plug any device (printer, scanner, etc) into the
network and Jini will take care to inform any other device in the network of the
presence of a new element. This new element will also immediately be ready for
use. This is possible because Jini stores each device's driver within its network.
When a machine needs to use a speci�c device within the network, the driver of
this device will automatically be downloaded to the machine. This means that the
OS of the machines connected with the Jini network do not need to possess drivers
for external devices anymore.
The network also allows for interoperability between operating systems: a new
device within the network will be shared and accessible from any operating system.
Jini is divided into four di�erent parts:

• Directory Service.

• JavaSpace.

• Remote Method Invocation (RMI).

• Boot, Join and Discover Protocol.

The Discovery Service is used to register new devices within the network. As it
can be seen in the list before, Jini uses Java, which means that the devices that
wish to be connected to the Jini network need to support Java. Objects of devices
are placed in the JavaSpace and accessed with the Remote Method Invocation.
The Boot, Join and Discover Protocol is used by devices and users to advertise
themselves within the network which allows them to then register themselves.
Jini was a very brilliant idea and it worked very well. However, it was never widely
adopted because of some elements like oppressive licensing, the fact that is was
completely based on Java and RMI and its complexity. It has also a small issue
of scalability because it was a centralized model although it doesn't appear so.
That is because one of the components, the lookup service, which handles the

Related work 25

communication between the service and the client, is a centralized element and so
do not scale. However the communications themselves are certainly decentralized.
Within the scope of our project, Jini could become really useful with the fact
that it stores each device's driver within the network. In case of a node failure
in our network, we could make use of this functionality to rapidly transfer all
devices attached to the failed node to another node very easily. This would be
an interesting choice for the fault-tolerance part in our solution, while Jini also
provides some distributed properties, like its communication part.

2.8 HomePort

HomePort is yet another home automation middleware solving the "vendor pro-
tocol heterogeneity" issue. The �rst version of HomePort [24] gives an overview
of the system and its architecture, and its second version [57] slightly di�ers from
the �rst one as it provides more details about the design and the di�erent parts
in it.
In the design of the �rst version of HomePort which can be seen on �gure: 5, there
were four layers:

• Device layer - This layer is device speci�c and the other Layers in HomePort
do not make any assumptions about it. More speci�cally, this is the layer
which withholds the physical devices themselves.

• Bridge layer - This layer provides a link between the vendor speci�c devices
and the upper layers. In other words, it converts vendors speci�c commands
into HomePort understandable commands and the other way around. A
physical device is accessible via the bridge layer over IP.

• Service layer - This layer acts as a gateway for a number of bridges. Its
responsibility is to play a web server role, to model the devices and expose
them to the Internet through HTTP using a Restful architecture. Each
physical device is modelled as a web resource using the HTTP protocol. It
can be manipulated by performing a HTTP PUT request on it or its state
can be checked by performing a HTTP GET request. For example one can
perform a PUT request and can turn the heating 30 minutes before it enters
the room and thus the room will already be warm when he or she enters
their front door.

• Composition Layer - In this layer the home automation devices are grouped
using a composition speci�c language to represent the full set of devices in
a household. Furthermore, some sort of dependencies and constraints could
be applied and this could aid the automation of the modern home.

Related work 26

Device Layer

Bridge Layer

Service Layer

Composition Layer

Figure 5: Initial HomePort Architecture

It is worth mentioning that this architecture could be further �ne tuned if needed.
It can work either without a bridge layer or without a service layer. In the for-
mer scenario, the gateway (running the service layer) could "talk" directly to the
physical devices. In the latter scenario, the bridge could be removed from the
architecture and the service discovery mechanism would need to be incorporated.
The second version of the HomePort [57] has a slightly di�erent design and all
the functionalities mentioned in this report have been implemented. Furthermore,
all the details about how goals are accomplished are fairly well described and the
project implementation also has an open source repository [58], where more insight
could be gained.
The latest design of the HomePort project can be seen on �gure: 6. It consists in
the following modules:

• Adapters module - The goal of the adapters module is to provide a bidirec-
tional mapping between vendor speci�c protocols and the HomePort core.
For each vendor speci�c subsystem, there is a corresponding adapter which
handles the communication and translation between the HomePort itself and
the vendor speci�c subsystems. This module corresponds to the bridge layer
in the initial HomePort architecture. However, there are some di�erences
between them such as that the adapter module is intended to be run on
the same physical machine. The bridge layer in turn is accessible via the

Related work 27

TCP/IP protocol stack and it could be run on a di�erent machine. Another
di�erence is that the adapter layer is mandatory while the bridge layer is
optional and could be eliminated in some instances.

• Con�guration module. It allows the user to �nd some of HomePort param-
eters.

• Events module - It takes care of notifying interested parties upon a change
in a device's or service's state. The current implementation exhibits from a
W3C Server Send Events [61] draft. An interesting observation about this
module is that it can notify even a HomePort client upon a service's state
change.

• Local Service Discovery - This module makes possible the advertisement and
discovery of services in the local network. Two di�erent discovery protocols
are available on this module and namely these are the DNS Service Discovery
(DNS-SD) and the Simple Service Discovery Protocol (SSDP).The use of
DNS-SD means that HomePort can discover the ZeroConf described services
on the local network. It can also discover the services available on the local
network and participate them into the services available on HomePort. UPnP
supports ZeroConf compatible devices as well.

• Web Server - This module makes it possible for clients to get and modify
device states out of the local network through the HTTP protocol.

• HomePort Services - These are all services contained in HomePort daemon
which are advertised on the local network and can also be accessed through
the web server. Each service is described with a unique name, ID, vendor
ID, device ID associated with the service, etc.

• Access Control - This module consists of a look-up table withholding infor-
mation for di�erent clients about their corresponding rights and restriction
in terms of getting's and setting's service's state.

• Log module - This module is present on the system for the sake of providing
the application developer with the necessary information in order to debug
the application. The log information can also be accessed through the web
browser, but the use of a secure connection is recommended if data in it is
considered to be sensitive.

In the latest release of HomePort as well as in its initial release the single point of
failure problem has been addressed. In the latest release of HomePort, one could
instantiate multiple HomePort instances which can work together if run in the

Related work 28

….Adapter
1

Adapter
2

Adapter
3

Adapter
N

Configuration

Events

Webserver Service Discovery Log

Services Secure Services Access Control Services

Client
1

Client
N

Client
2

Subsystem
3

Subsystem
3

Subsystem
2

 Subsystem
1

Figure 6: Latest HomePort Architecture

same local network. However, neither the initial HomePort architecture nor the
latest one addresses the issues of the re-participation of devices in case an instance
of HomePort fails. In this case the devices interfaced through the failed instance
of HomePort will be practically isolated from other devices connected to other
HomePort instances run in the same local network. Furthermore, none of them
provide any mechanism for software fault tolerance. By software fault tolerance in
this sense, we mean a mechanism for redundant execution of composition logic. Of
course, as it can be seen from the latest release of the HomePort architecture, the
composition logic is not mentioned as it was in its initial architecture. Nevertheless,
we give the deserved credit to the authors, as such a module is currently being
under development.

Related work 29

2.9 SCADA

Standing for Supervisory Control And Data Acquisition, SCADA [55] is a widely
spread industrialised used architecture for monitoring remote objects through sen-
sors and triggering remote actuators. Moreover, a SCADA system gathers data
from sensors and presents these data to an operator through a Human Machine In-
terface (HMI). Sometimes some SCADA deployments could even take some actions
according to the state of sensed objects. These data are presented in a compre-
hensive form to the operator, depending on the meaning and the interpretation of
the sensing data.
A typical SCADA system consists of the following components which are shown
in �gure 7:

• Main Terminal Unit (MTU) [15] - This is the "heart" and the "main brain"
of the SCADA system. This component also acts as a central repository for
the sensed data from the micro-controllers

• Remote Terminal (Telemetry) Unit (RTU)/ Programmable Logic Controller
(PLC) - A SCADA system typically has several of these components, which
in a sense act as the "arms" and the "legs" of a SCADA system.The PLCs
and the RTUs are mutually replaceable components and they need to follow
the set of industry standards according to whom they communicate through
potentially diverse media with the MTU.

� PLC [19] - These devices are micro-controllers, having multiple sensors,
actuators and Real-Time Operating System (RTOS) [12]. The RTOS
executes the simplest type of task scheduling and in particular the exe-
cution of the so called ladder logic in an in�nite loop. In the beginning
of each iteration, a procedure called sanity check is performed in order
to examine all the available hardware for potential hardware faults. If
the sanity check passes, then the states of I/Os are examined and �nally
the ladder logic is executed.

� RTU [65] - There are two subdivisions of RTU: Remote Telemetry Unit
and Remote Terminal Unit. The former kind of RTU is a very simple
I/O multiplexed device with almost no computation abilities and is used
as a slave device capable of interfacing its sensors and actuators to a
remote master controller, which determines the logic of the particular
application. The latter kind of RTU is a more �exible device, as it can
interface the I/Os to a controller, execute some local logic and triggers
some actuators based on the local logic. What is more, such kind of
devices can examine I/Os through interrupts.

Related work 30

All of these devices are interchangeable and the choice of which one to use
in a certain case depends on what one wants to achieve.

• Communication infrastructure - This component determines the underlying
physical medium and the protocol used for communication between a RTU/-
PLC and the MTU.

• Human Machine Interface - It corresponds to the MTU data gathered and is
represented to an operator who can monitor the state of sensed phenomena
or objects and take some actions.

Some SCADA deployments provide fault tolerance in a number of ways. A MTU
central server can be duplicated and end-devices could potentially have back-up
links connected to both the master and the back-up MTUs. The master MTU is
capable of executing some logic and triggering some actuators based on the logic
while the back-up MTU provides only a back-up storage for the acquired data.
Another type of fault-tolerance used in SCADA is the RTU fault tolerance shown
in [39], where a control point uses 2 or more redundant multiplexers with the same
set of sensors to interface the I/Os to a main controller, which gathers the data
from the redundantly deployed sensors and sends it wrapped as Controller Area
Network communication protocol packets to the main controller.
We can make a certain analogy between the centralised component presented in
most of the protocols and architectures described above and the MTU component
in a SCADA system. As we already described, none of the above mentioned cen-
tralised components has a feature ensuring centralised component fault-tolerance.
However, there is such kind of mechanism that can be employed in the MTU of
some SCADA instances. A back-up SCADA MTU together with back-up links will
ensure that the data acquisition process will not stop in cases where the master
MTU fails. However this technique does not provide any means for load balanc-
ing of end-devices. Even though recently open industry standards have emerged
related to development and deployment of SCADA systems, another major dis-
advantage of SCADA systems still is the vendor speci�c communication protocols
used for communication between a MTU and a PLC/RTU. This is another reason
why we believe that a cheap and �exible home automation inter-operable middle-
ware could potentially have its impact on the way that engineers design industrial
solution for remote monitoring and data acquisition.

Related work 31

DAS

HMI

MTU

RTU RTU RTU

Figure 7: The SCADA architecture

Requirements 32

3 Requirements

The mandatory requirements that a home automation middleware system must
meet are:

• Provide interoperability between vendor speci�c subsystems.

• Each subsystem must interact with the middleware system in a safe way e.g.
if the subsystem crashes this must not a�ect the middleware system.

• Centralised Point of Access - The system must provide at least one centralised
access point. Via this interface any subsystem can be prompted to turn on or
o� one or more of its actuators. Furthermore, this centralised point of access
must have an engine which can execute certain composition logic and take
some actions when an actuator in any system is triggered or some speci�c
information is read via a sensor.

Along with these requirements that are inherent to a home automation middleware
system, a distributed one, that could potentially be used in the industry, must meet
the following additional requirements:

• Continuity - The system must be able to operate continuously even in case
of marginal failures.

• Self-recovery - If a failure in one of the distributed nodes of the system
occurs, the system must be capable of self-recovery and participate isolated
subsystems to a new node, such that the overall behaviour of the system
stays una�ected.

• Fault-tolerance - The system must ensure that transient hardware or software
errors do not a�ect the correct execution of the composition logic available
in the system. An error in the execution of the composition logic can result
in disastrous consequences as it can trigger a critical actuator incorrectly.

• Security - As the system must be secure and not allow for unauthorised nodes
to get the information and commands transmit back and forth in the system.

• Scalability - This means that the system must remain stable even when the
number of its elements changes. It should not a�ect the performance under
a pre-de�ned threshold.

Prerequisites 33

4 Prerequisites

In this chapter, we will analyse and present what of the existing concepts and
methods will be needed in our project, based on our requirements.
In the Taxonomy and Terminology appendix A we present a taxonomy, according
to which we will express fault-tolerant concepts and architectures. Firstly, we
will start by discussing about di�erent means for dealing with faults, then we
will analyse various strategies for failure remedies. Thirdly, we analyse means for
building a distributed system that could be utilized by our design. Finally, we
conclude the chapter by taking various decisions about out design.

4.1 Failures and Failure Remedies

In this chapter, we will analyse potential types of faults that could cause a service
failure and the types of failures that can occur in a system. Then we shall pro-
ceed by describing what fault tolerance means, and what fault removal and fault
forecasting are.

Failures

Before speaking about fault tolerance, we must �rst explain what is a failure in an
information system. [5] classi�es the types of failures in the following groups:

• Service Failure - Delivered service is not correct. As we are mainly go-
ing to analyse service failures, we are going to describe the di�erent sub-
classi�cations of service failures:

� Content and Timing Failures - Content is not as expected or it has not
been delivered on time.

� Halt and Erratic Failures - A service has either been temporarily halted
or has been delivered in an irregular state.

� Consistent and Inconsistent Failures - The former types of failures de-
livers the same wrong service to all of its consumers, and the latter
types deliver di�erent type of services, including correct service to its
consumers, a.k.a. Byzantine Failures.

� Minor and Catastrophic Failures - Catastrophic failures could even re-
sult in fatal consequences, and the minor failures usually does not have
a large scale of impact on the surroundings.

• Development Failure - A fault made in the development stage can occur
in the use phase. We are not going to go into details about these type of

Prerequisites 34

failures, as elimination of failures should be subject to the engineering team
developing a system.

• Dependability Failure is when a very frequent service failure is presented.

We are mostly going to analyse a service and dependability failures and remedies to
these failures. As we are analysing fault-tolerance applicable in a home automation
interoperable middleware, we are going to present failures, which are also referred
to as service failures.
Di�erent sources present di�erent taxonomy for classifying failures. There are two
di�erent kinds of component failures [64]:

• Byzantine Failures. "The component can exhibit arbitrary and malicious
behaviour, perhaps involving collusion with other faulty components".

• Fail-stop Failures. "In response to a failure, the component changes to a
state that permits other components to detect that a failure has occurred and
then stops" .

As we have investigated that type of failures that can occur in a system and
we have already classi�ed and built a failure taxonomy, we are going to discuss
in more details about failure protective measures categories that we have brie�y
mentioned above. As we consider fault prevention to be more of an engineering
task that needs to be taken into account when a system is implemented, we are
going to elaborate more on the other three types of categories.

Fault Tolerance

- It is a mechanism for detection of errors and system recovery from these errors.
A fault-tolerant mechanism consists of:

• Error detection - Detecting an error process takes place simultaneously along
with the regular system's operation.

• Recovery - This procedure takes place upon detection of a service failure.
It puts the system in a previous most recent non-faulty state. In turn, it
consists of:

� Error Handling - This procedure executes in turn the following proce-
dures:

∗ Rollback - Brings the system to the most recent non-fault state.

∗ Rollforward - The system takes the current state, eliminates the
errors and moves to the next state.

Prerequisites 35

∗ Compensation - The mechanism which systematic usage aids error
masking.

� Fault Handling - It consists in the execution of the following procedures:

∗ Diagnosis - A fault is diagnosed �rst in order to detect the errors.

∗ Isolation - The faulty components are excluded from the system.

∗ Recon�guration - New components to replace the faulty ones are
taken from a set of redundant components.

∗ Reinitialisation - The system is updated to the new state forced by
the recon�guration phase.

Fault Removal

The fault removal can be applied during Development phase and during use phase.
The Fault removal strategy is achieved via the veri�cation of certain system proper-
ties. If an important fault tolerant property has not been satis�ed, the component
causing this needs to be identi�ed and �nally it needs to be corrected. Such kind of
veri�cation could be performed for instance via model-checking tools such as [22]
and [36]. If an error needs to be corrected during use phase, a system maintenance
is used, which could be:

• Preventive - Prevents a system from experiencing a system fault.

• Corrective - Removes errors that had caused a system fault already.

Fault Forecasting

Fault forecasting is achieved by means of qualitative and/or quantitative evaluation
of a system's fault occurrence.

• Qualitative - Classi�es and ranks the event that lead a component to a failure
state.

• Quantitative - Probabilistically determines what the likelihood of a failure
occurrence is.

The aim of our project is the design and development of a distributed, reliable, and
fault-tolerant home automation middleware. Thus we are ultimately interested in
analysing existing fault-tolerant mechanisms and architectures rather then fault
forecasting. It would also be a good point to verify that the design of our system
satis�es certain fault-tolerant properties such as guaranteed delivery of a viable
result of a logic execution in the distributed home automation core components
to the vendor speci�c devices. This is why in this chapter we will analyse existing
fault-tolerant mechanisms and architectures.

Prerequisites 36

4.2 Redundancy

Redundancy mechanism could be applied over hardware and/or software compo-
nents.

Hardware Redundancy

A component is duplicated or triplicated, so it provides a high probability of
hardware component availability and software logic execution accuracy. Common
hardware fault-tolerant architectures implemented on a multi-chip architectures
are revised in [35], applicable in the automotive industry, but these can be used
elsewhere as well. Then all these architectures are considered for providing fault
tolerance in systems on a single chip (SoC). We list, analyse and compare these
techniques in terms of economical impact, performance and reliability:

• Lock-Step Dual Processor Architecture. Two processors execute the same
code, where one of them drives all the calculations and outputs and the
other one executes the code on the background. Both of them use the same
memory and bus. The results are compared by a comparing logic module.
If there is a di�erence in the output result, an error is detected.

� Advantages:

∗ Performance is really fast in case that all tasks are critical. A
critical task is a task with a strict deadline.

� Disadvantages:

∗ Bus and Memory errors are not checked. So additional technique
needs to be applied to insure the system against bus and memory
corruptions.

∗ The faulty processor can not be determined without the use of an
additional mechanism.

∗ Reduced performance in case that only a few tasks are critical, since
the processors are executing the same code.

• Loosely Synchronized Dual Processor Architecture. Two processors running
on di�erent chips and using di�erent memory. Both of the systems are run-
ning Real Time Operating System (RTOS), which synchronizes and com-
pares their output. The output is compared by means of cross-checking
the results. Sanity check is applied in case of a mismatch. It checks the
hardware and determines the failed one. Critical tasks are duplicated, while
non-critical ones are executed in parallel.

� Advantages:

Prerequisites 37

∗ Only a small subset of all tasks are to be critical, increased perfor-
mance.

∗ Buses and memory failures do not require additional failure detec-
tion techniques.

� Disadvantages:

∗ If most of the tasks are critical, then this method is less e�ective
than the Lock-Step architecture, because of the sanity check and
the cross check.

� Triple Modular Redundant Architecture. This architecture is similar to
the Loosely Synchronized Dual Processor Architecture but with three
processors, running in a lock-step in order to determine the correct re-
sult which is based on a majority voting. This can be used to determine
when a single CPU fails. The bus and memory failures require another
mechanism for ensuring fault tolerance.

∗ Advantages:

· Performance is pretty much as fast as the Lock-Step architec-
ture.

∗ Disadvantages:

· Bus and memory errors are not checked. So additional tech-
niques need to be applied to insure the system against bus and
memory corruptions.

· Expensive, since it requires three processors.
� Dual Lock Step Architecture. This architecture takes characteristics
from the Loosely synchronized and the Lock-step architecture. On top
of the loosely synchronized architecture, in each of the systems a CPU
checker is added, which runs the same code as the master CPU and a
monitor component checks the validity of the result.

∗ Advantages:

· Sanity check is no longer needed.

· Software design errors can be prevented.

· Fail silence capabilities.
∗ Disadvantages:

· Expensive solution, since it requires two autonomous systems,
each of them having two processors and memory.

· If most of the tasks are not critical they can not be executed in
parallel. However in our case, non-critical tasks can be executed
in parallel, since the three CPU's in our scenario will be actually
distributed nodes of the system.

Prerequisites 38

� SoC Fault-Tolerant Architecture. 2-sets of 2 CPU, which are Master
and checker correspondingly. The memory consists of 4 banks - 2 for
code and 2 for data. Instead of a bus, a cross bar [47] is used which
ensures availability of memory access.

∗ Advantages:

· Shared memory at lower cost.

· Fail-operational capability is an option.

· Fail-silent mode is available, which can increase performance as
critical tasks can be executed in parallel.

∗ Disadvantages:

· Error-correcting code is required for the cross bar and for the
memory fault tolerance.

[37] gives an example of a general fault-tolerance mechanism combining the TMR
with watchdogs. A watchdog in this sense is a mechanism where a third party
component monitors a program's execution �ow for the sake of detecting faults
or errors. Here is the methodology and the steps taken to develop this kind of
mechanism.
We have one component which is a single point of failure. First of all, we need to
replicate this element within the system. Then there are three classical kinds of
faults.
The �rst one is when the element enters a deadlock state in which the element
cannot take any action. In this case the solution is to put a watchdog on each ele-
ment that is activated periodically (kicked) as long as nothing abnormal happens.
When a fault occurs, the element deadlocks and stops kicking its watchdog. As a
consequence, the watchdog timer grows until it exceeds a prede�ned value (we say
that the watchdog overows) and that will trigger the element to restart.
A fault of the second sort would cause the element to output incorrect data. To
detect such a value fault, we need to use a component called a voter. We assume
that at any time only a small amount of the elements fail (in the case of three
elements, only one could be faulty), the voter will detect which element has failed
and trigger a restart. It is also possible for the voter to mask the incorrect output
from the element which failed.
In the third case, a element fails by going into a livelock state. In this state, the
element is not able to output any result; but it still keeps kicking its watchdog
from time to time. As such, the watchdog timer does not overows and the element
failure cannot be detected by the watchdog. That is why in this case, the fault
detection can be done by the voter that will see an empty value from the element
which had a failure. Thus we are converting an omission fault into a value fault.
We also do not want that the voter become a single point of failure, which would

Prerequisites 39

diminish the global fault tolerance of the component. To avoid this, we can use
more voters. That is why we need to design a component, called the arbiter, to
detect a fault in a voter and pull out the result from the voter that has not failed.
In this situation, the arbiter is also able to take responsibility to trigger the restart
of failed elements.

All of these architectures are designed for the sake of providing a reliable end
result of execution of certain logic. However, hardware redundancy could also be
applied on replicating communication links. By replicating the communication
links between system components, we can make sure that a component will not
become isolated from the rest of the components.

Software Redundancy and Software Fault Tolerance

In the the previous subsection, we have discussed about a variety of hardware
faults and means for remedying these faults. In contrast to the physical faults
that occur, because of a di�erent reason and usually a�ecting only one component
at a time, software faults are time invariant and in most of the cases for the
same input, the same result is output. This means that the use of one of the
methods for providing hardware fault-tolerance can not ensure against service
failures triggered by software faults. In other words, for any input N, the same
output X will be produced by the same software executed on a di�erent hardware.
In this subsection, we will explore how this issue can be overcome and how the
application can provide mechanisms for handling faults caused by software entities.
Another issue that a system could experience is when a component is put in a crash
state. Such kind of states are irreversible and a component can not be reverted to
a safe state if such a fault occurs. In this subsection, we address this issue as well.

Software Fault Tolerance Software fault tolerance manages faults occurring
on a software level. One source of a software's fault are software bugs, another
source of software fault could be a software vulnerability. The former source of
software bugs can be overcome with the use of the programming methodology
called N-version Programming [33]. In its nature, it represents di�erent versions
of software logic or task, made by di�erent independent software teams and this
logic is redundantly executed. The software teams are possibly coming from dif-
ferent background and they have nothing in common, except that they develop
applications based on the same requirements. The �nal applications, developed by
the teams, are all executed and a majority voter element compares their output
and accepts the majority of equivalent outputs as the correct result. However, a
number of experiments have been made in order to verify the e�ectiveness of this
method and the results gathered have not been very encouraging [34]. Neverthe-

Prerequisites 40

less, we are considering this method as the only alternative that could increase the
probability of delivery of a reliable system.

Software Redundancy Software Redundancy could be applied in order to repli-
cate applications on di�erent physical machines for the sake of recovering an ap-
plication in case of failure.
It is a method which completely removes failed components and dynamically loads
new ones instead at run-time. For this sake, all elements are duplicated across other
components and then loaded on demand.

Dynamic Recovery

[44] Software and hardware redundancy provides one way for building a robust
fault-tolerant system. Another way of building such system addressing di�erent
use case scenarios, is dynamic recovery.
The biggest advantage of this technique is that it does not require any redundant
elements, like in the hardware redundancy. Instead, there is only one component
running without back-up and obviously this solution is less expensive. However, it
requires special fault-detecting techniques. When a subcomponent of a component
fails, the component should be able to detect the fault before it has negative con-
sequences to the overall system and potentially replace the failed subcomponent
with a spare one, or isolate the component and continue working without it.
In the previous section, we have analysed various hardware and software fault-
tolerance mechanisms and architectures. In the next section, we are going to
analyse existing approaches for distribution of system components that could po-
tentially be utilised by our design in order to build a reliable, self-recoverable and
fault tolerant distributed home automation middleware.

4.3 Distribution of Nodes

In this section, we will analyse di�erent approaches to build a distributed fault-
tolerant system. The distributed system that we are going to build needs to be
completely scalable, secure and fault tolerant to hardware and/or software failures
as we have described in 3. The most scalable solutions known these days are
the peer-to-peer distributed systems. In these systems, a single point failure is
not present. This is the reason why we are going to analyse various peer-to-peer
solutions that we could utilise in our design. We start by explaining basic concepts
used in building a distributed peer-to-peer system.

Prerequisites 41

Peer-to-Peer Systems

Peer-to-Peer networks consist of a dynamic set of distributed components a.k.a.
nodes. Each node o�ers a certain set of services and/or resources to all other
nodes and all nodes are equal. Examples of peer-to-peer systems are Skype [49],
Gnutella [67], Napster[53] and KaZaA [26]. All of these systems are Peer-to-Peer
based systems, each of them having its own architecture. Three kinds of peer-to-
peer systems can be distinguished:

• Centralised - These systems, which are Napster-like, have a centralised ded-
icated server keeping information about the shared content by the peers.
When a peer wants to access a certain type of resource, its query is sent to
the centralised server and the server replies with all the information needed
by the query initiator. This information is used by a peer in order to connect
to another peer providing the resource and to access this resource.

• Hybrid - This approach represents a hierarchical peer network, where there
are two kinds of nodes: ordinary peers and super-peers. The network of
super-peers is organized in a decentralised way and all the ordinary peers are
participated to a certain super-peer. An example of an application exhibiting
this architectural pattern is Skype [49].

• Decentralised - In this approach, advertising and searching for resource is
done in a completely decentralised way. In addition, applications employing
this architecture are capable of participating new nodes automatically and
recovering from nodes leaving the network automatically as well.

Distributed Hash Table (DHT)

General Description of DHTs and their properties A Distributed Hash
Table [32] is one example of decentralized distributed system. It is based on a ser-
vice similar to hash tables in order to look for information or participating nodes,
with a classical (key, value) pair system. The system is build so that any node can
easily �nd the value corresponding to a speci�c key. However, the mapping from
the keys to the di�erent values is distributed in the nodes. This means that the
system is a lot more adaptable to changes in participants and as such can scale to
a very important number of nodes while handling without trouble all new arrivals,
departures and failures which could happen.
DHTs are often used to build complex and e�cient services. One of the most suc-
cessful example is the distributed peer-to-peer �le sharing network BitTorrent [27].
Due to their concept, DHTs allow for a certain number of interesting properties:

• The system is autonomous and decentralized. There is no node which acts
as a central coordinator.

Prerequisites 42

• The system is fault tolerant. Incoming, leaving or failing nodes do not impede
the functionality of the system.

• The system is highly scalable. It is possible to function well even with mil-
lions of nodes participating.

To achieve these results, the DHTs use the fact that each node only need to coor-
dinate with a certain number of nodes, which are often its neighbours. This means
that with each change in the system, only a small amount of work is necessary to
be done by a single node for the system to still function e�ciently.
The way DHTs are working is the following:

• At the basis is an abstract keyspace. Most of the time this is done in the
form of a set of 160-bit or 128-bit strings.

• This keyspace uses a partitioning scheme to split its ownership between all
nodes included in the system.

• The di�erent nodes are then linked by an overlay network, which makes it
possible for them to �nd the owner of any key within the keyspace.

The di�erent steps when a DHTs is used are the following:

• When a value is stored, the DHT often uses the SHA-1 hash function [16]
to generate the 160-bit or 128-bit key, while a message is dispatched to all
nodes participating.

• This message is forwarded from node to node by using the underlying archi-
tecture of the overlay network. This is done until the node responsible for
the key is reached.

• The reached node then keeps the key and data and this allows other members
to retrieve the contents through another hashing of the name of the �le. With
the result obtained by the hashing, the client asks the DHT to �nd the data
corresponding to it via a get message, which is a query for the network to
get some return value.

• This message is routed through the overlay network until it reaches the cor-
responding node which has responsibility for the key. This node will then
reply with the data that the client was searching for.

The largest part of DHTs are using a variant of consistent hashing [30] to direct
the keys to the corresponding nodes. Consistent hashing uses a function δ(k1, k2).
This is corresponding to an abstract distance between the keys k1 and k2. Each

Prerequisites 43

node possesses a single unique key which is its ID. As such, a node with an ID
of ix will possess every keys km where ix is the closest ID, using the the δ(km, ix)
function to determine the distance.
Consistent hashing is very useful because it means that removing or adding a
node in the system will only cause a speci�c set of nodes with neighbouring IDs
to change. This allows all the other nodes to remain unchanged, thus limiting the
e�ect to a very small part of the system. This is a big di�erence to normal hash
tables where such a change induce most of the keyspace to be remapped. With
this system, consistent hashing allows for a large number of arrivals, departures
and failures with an e�cient support.
DHTs are using an overlay network to connect their nodes. The way the overlay
network is working is the following: all nodes in the system keep a certain num-
bers of links to some other nodes. The sum of these links constitutes the overlay
network. For any key k, there exist a node ID owned by a node such that this
node possesses k or possesses a link to another node which is closer to k, using the
keyspace distance described before.
A greedy algorithm is then used to route a message to the node possessing a key
k. A greedy algorithm uses the problem solving heuristic to do the locally optimal
choice at each step in order to �nd a global optimum. As such, each step will send
the message to a neighbour closer to k. The destination is known when there is no
closer neighbour to send the message to: the current node is then per de�nition
the owner of k. This system ensures that the maximum route length is minimal
and that the maximum number of neighbours for a node is also minimal. This al-
lows the request to be handled fast, which is the biggest advantage of this network.

Pastry Pastry [3] is a distributed overlay network handling automatic object
location in a decentralised peer-to-peer manner. It consists of dynamically joining
and leaving peers, that we shall call nodes. It is a self-organising network, which
handles itself nodes joining and leaving the network automatically.
Each Pastry node A characterises itself with the following attributes:

• Node ID - This is an unique number which is randomly chosen and usually
is formed by applying a hash function over a node's public key or its IP
address. The node ID is 128 bits long and it is randomly chosen. This
ensures a very high probability for uniform distribution of nodes in node
ID space and consequently a very high probability for the geographically
randomised distribution on Node IDs. This is very bene�cial for keeping
the virtual network alive even in cases of unpredicted emergencies in certain
geographical area.

• Routing table - A node's routing table consists of O(log 2bN) rows and 2b−1

Prerequisites 44

records in each row. In the �rst row, A stores nodes' IDs which have the
same �rst digit as A. In the second one, the records have the �rst two digits
in common and so on. b is a con�guration parameter which determines the
digit encoding and it usually is 4, which means that the digit encoding is
2b = hexadecimal.

• List of immediate neighbours. An immediate neighbour B to the node A in
this sense, is a node which is close to node A in terms of proximity metric,
which usually is expressed in IP-based routing hops. In order to form the list
of its immediate neighbours, a node A is using some sort of heuristics. Each
node has 2b or 2 · 2b immediate neighbours. Ultimately, the neighbourhood
table is not used in routing messages, but it is maintained for the sake of
determining node A's relative physical location.

• Leaf set - This set contains K nodes in the Pastry network whose node IDs
are numerically closest to the node ID of node A. Moreover, this set consists
of an equal number of nodes with bigger and with smaller node IDs compared
to A. Each node has 2b or 2 · 2b nodes participated in its leaf set.

As we have described what attributes a Pastry node possesses, now we shall discuss
what happens when a message needs to be sent from one node to another one.

Pastry's Message Routing When a node A receives a message M, it �rst
looks-up in its leaf set and checks whether the node is there. If the node is within
its leaf set, it is redirected to its destination, which is the node which node ID is
numerically closest to the key of the message. If M 's key does not fall within the
range of A's leaf set, A looks in its rooting table and forwards M to the node
which shares longest common pre�x with M 's key. This way, each time when
M is redirected to a node B from node A, M is getting closer and closer to its
destination until it reaches it. Pastry rooting complexity expressed in routing hops
is O(log 2bN), where N is the number of peers within the network, 2b as mentioned
earlier is the the digit encoding. Usually the digits encoding is hexadecimal so
b=4.

Tapestry Tapestry DHT [2] is yet another structured peer-to-peer overlay. It
has 160 bit ID space, which allows for multiple applications coexistence and each
application is assigned a unique identi�er AID. The nodes and objects in the
network in turn are assigned identi�ers as well - node IDs and Global Unique
Identi�ers(GUID) respectively. It is a Pastry-based DHT and it is very similar to
Pastry, but on the other hand there are some di�erences between them which we
shall discus here.
Here are the points in which the Tapestry DHT di�ers from Pastry:

Prerequisites 45

• Backup neighbours. As in Pastry, the node ID's are assigned in a randomised
manner. However, Tapestry maintains multiple node ID's for each of its
entry in its routing table. Furthermore, these nodes are sorted according
to proximity metric. Thus when a message M has a common pre�x with
multiple nodes in an entry in its routing table, M is routed to the node with
the least proximity metric e.g. IP routing hops.

• Lack of Neighbourhood set. While Pastry has a set of nodes which are its
neighbours in terms of geographical location and this is measured with IP
routing hops, Tapestry does not possesses such a thing.

• Lack of Leaf set. Tapestry does not have a leaf set. Instead, it provides
two distinct types of functions in its API, where the �rst one seeks for an
object which is hosted at a certain node and the second one routes a message
directly to a node with a node ID.

Tapestry's Message Routing Tapestry's Routing Algorithm is exactly the
same as Pastry's routing algorithm and we are not going to discuss it again. The
performance is the same as in Pastry O(log 2bN), in case of consistent routing
tables without any blanks. However, in the general case Tapestry would be more
e�cient than Pastry since it keeps backup links for each entry in the nodes' routing
tables. The second reason why we �nd Tapestry more e�cient is because it sorts
out the links for each entry in its routing table according to the Round Trip Delay
metric. A relative disadvantage of Tapestry could be its bigger routing table which
has size of O(c · d · log 2bN), where c is a the maximum number of backup links
that an entry could have and d is the same con�guration parameter as we have
described in the description of Pastry.

Chimera Chimera [13] is a light weight implementation of a Structured Overlay
implemented in C. It �rst has emerged as an implementation of Tapestry and
it eventually changed its name to Chimera. In its latest implementation it uses
some properties from both Pastry and Tapestry DHTs. In its implementation it
combines the strengths of both DHTs as it has Pastry's leaf set and Tapestry's
back-up links sorted according to a proximity metric.
Considering the fact that we are aiming at the development of a middleware which
will be applied in the home automation domain, Chimera would be an excellent
choice for us to apply in our project, since it is implemented in C and this means
that no extra e�ort needs to be put there in order to apply it to our design.
Another bene�t of using Chimera would be that it uses the strengths of the above
revised DHTs. Now let's move on and revise another DHT called PGrid.

Prerequisites 46

P-Grid P-Grid [31] is a peer-to-peer lookup system which is based on a virtual
distributed search tree. It is structured in a way similar to standard distributed
hash tables. Each node contains a part of the complete tree. The positions of the
nodes participating are determined by their paths, which correspond to binary bit
strings. These binary bit strings represent a sub-part of the overall tree and that
sub-part is what the node is responsible for. Fault-tolerance is implemented by
the fact that several nodes can be responsible for the same path.
Each node also contains data about a minimum of one another node which pos-
sesses the other side of the binary tree at the corresponding level. Thus in case one
node cannot ful�l a speci�c request, it will forward the request to a node that is
closer to what is being researched. For example if node 1 possesses a binary pre�x
of 00, it will redirect all requests starting with 1 to a node possessing a binary
pre�x of 10 or 11, which is in its routing table. If a request starts with 0 then it
will check the next binary number, if it is 0 then this node will be responsible for
it and if it is 1 then it transfers it to a node owning the binary pre�x of 01.
Another interesting point of P-Grid is that nodes' paths are not determined from
the start but change dynamically by negotiating them with other nodes part of
the network. P-Grid can then be considered as a decentralized and self-organizing
structure adapting to nodes incoming, leaving or failing. This allows for great load
balancing within the network, where imbalance can be detected and corrected by
dynamic replication of data.
While most P2P systems do not possess update mechanisms which are functioning
with data replication because the data shared is static, P-Grid tries to correct this
with its update algorithm. This algorithm is based on rumour spreading, which
can give a probabilistic guarantee that data will continue to be consistent and
compatible without destroying the self-organizing nature of P-Grid. The algo-
rithm is e�ective and based on push/pull gossiping schemes. It takes into account
very unreliable and replicated environments and can deal with realistic situations
where we have most of the nodes not connected to the network.
To handle changes due to dynamic IP within the system, P-Grid designed a de-
centralized and self-maintained peer identi�cation service, which is working even
on environments which have a low availability of the nodes. The way it is working
is that P-Grid stores the IP mapping in itself and update it when the IP address
is changed. This way P-Grid is able to have an updated view of IDs/IPs at any
time.
P2P systems are also subject to a lot of frauds, because participants are mostly
strangers to each other. To thwart this, P-Grid built a decentralized trust manage-
ment model. This model is able to analyse past actions between participants and
issue a probabilistic assessment of whether some participant cheated before. This
enable the use of the trusting grade, which other participants can use to determine

Prerequisites 47

if someone is trustful or not, with a system similar to a reputation.

4.4 Group communication

Introduction to the concept

Group communication [29] is the process of using a network to allow for one-to-
many communication. A lot of distributed systems are based on Remote Procedure
Call (RPC) [11]. However RPC only allows for one-to-one communication. We
could simulate one-to-many communication with RPC by sending a single message
several time to several di�erent receivers. But this solution has some �aws. What
happens in a situation where some group members are not reachable? How do we
deal with the latency between the �rst message sent and the last one? That is
how group communication is di�erent from RPC:

• It is possible to organize groups in di�erent ways.

• Groups can be contacted in multiple ways.

Another interesting point is that groups are dynamic. Groups can be created
when needed and can be deleted after that. As for processes, they enter the group
through a membership request and can then later leave it. It is also possible for a
process to be a member of di�erent groups at the same time. Groups can also be
overlapped.
The important facts are that messages are sent to groups without knowing the
number of members in the group and the address of the members in the group.
When a packet is sent to a group address, all members in the group get to receive
it (multicasting). In case multicasting is not available to the network, then it is
possible to use a broadcasting solution, which allows to contact every member of
the network. If both options are not available, it is possible to send messages
with unicasting: multiple packets are sent to multiple receivers in the group and
it is necessary to know the address of each members, contrary to multicasting and
broadcasting where one packet is sent to several receivers.
There are di�erent kinds of groups:

• Closed groups: only the members of the group are able to have communica-
tion with the group.

• Open groups: anyone can communicate with the group.

• Peer or �at groups: all members of the group are equal and it is completely
symmetric. There is no single point of failure but it is more complex to take
decisions, with the need of voting algorithms.

Prerequisites 48

• Hierarchical groups: there exists one master in the group which is taking
simple decisions for the group (coordinator). However in this case, the loss
of the master stops the group from working, with the necessity of electing a
new coordinator for the group.

Fault-tolerance in group communication

Let us see now how group communication can be applied for fault-tolerance prin-
ciples. Group communication allows for failure masking and replication, because
the group will replicate some of its members/processes and if some of them fail,
the rest will still work.
It is also possible to implement reliable multicast like for example RMTP [50] with
the help of group communication. As the name implies, reliable multicasting is to
implement a protocol to provide a reliable way of using multicast.
What is more, to avoid issues of scalability in reliable multicast, it is possible
to only ask for negative acknowledgements from the receivers, or to use non-
hierarchical feedback control, as it was done in the Scalable Reliable Multicasting
(SRM) protocol [20]. In this protocol, receivers only send negative acknowledge-
ments, not only to the sender but to the entire group. This means that any other
process intending to send a negative acknowledgement can stop it, presuming that
since there was already a negative acknowledgement, the multicast will be sent
again. To make it work even better, all receivers use a random delay before send-
ing their negative acknowledgements. This allows for easiest suppression of the
other negative acknowledgements which didn't get send yet. In this protocol, all
receivers are treated equally: they all have the same chance to send their negative
acknowledgements, hence the appellation non-hierarchical feedback protocol.

4.5 Security

In this subsection we will discuss about general security techniques that we would
need to accommodate in our project, in order to make the project feasible to use
in reality. First, we will start by discussing about di�erent means for authentica-
tion of newly attached distributed middleware nodes and then we will proceed by
providing an analysis of existing approaches to securing data, sent from one node
to another.

Authentication

We would need to accommodate an authentication protocol in our system, such
that a distributed node attempting to perform an operation over a resource, like
requesting a home automation service, can acquire a permission to do so. The

Prerequisites 49

second reason why we would need to accommodate such a mechanism is to ensure
that only trusted nodes can participate to the network.

Authentication of New Nodes The authentication of nodes attempting to
join an instance of our distributed home automation system is essential. One
approach to authenticate joining nodes, is to ask them for a shared network name,
network password and then let them access a resource or request a service etc.
This approach has the disadvantage of transmitting the networks password upon
each resource request and communication between two nodes. Another approach
would be to have a dedicated centralised server taking care of the authentication
process and issuing certi�cates to the successfully logged nodes. These certi�cates
can be used to ensure that a node has successfully logged-in and it is trusted.
Indeed, such an approach can verify that a node has valid permissions to request
a speci�c resource e.g. a service in our case. An example of protocol using such
an approach is the Needham-Schroeder authentication protocol [46].

End-to-End Security

Each sensitive piece of information, send from one node to another, must be un-
read, untampered and unmodi�ed by a third party malicious node. This is where
end-to-end security mechanisms comes into play. There are a number of ways that
can be used to provide end-to-end security such as:

• Stenography. With this approach, sensitive data is hidden in insensitive data
and transmitted over the network by a sender node. The receiver in turn
knows that the received insensitive data contains within itself the sensitive
data. Moreover, the receiver knows exactly how to �nd it, and what the
meaning of the data is. For example, sensitive authentication credentials
can be hidden within insensitive data, e.g. an audio .mp3 �le. The sender
inserts the credentials at a speci�c place in the .mp3 �le, known by the
receiver. The receiver in turn knows where the password has been inserted
by the sender and thus it extracts from the contents of the .mp3 �le. The
obvious disadvantage in this mechanism is, that the data can be altered by
a third party malicious node.

• Anonymity-based networks. This mechanism relies on the fact that sensitive
data can be chopped up into pieces and transmitted over the network using
di�erent routes. Thus a third party malicious node would not know exactly
who the receiver is, and what the data is. This approach is often used in
anonymous peer-to-peer networks. In this case, if a node A wants to transmit
a piece of sensitive information to node B, it chops the information into many
random pieces. These pieces of information are forwarded to node B using

Prerequisites 50

di�erent routes. This way a third party malicious node is unaware of what
the content of the whole message is and who the receiver is. Obviously this
method su�ers from the same issue as the stenography as it is vulnerable to
malicious altering of information.

• Security through obscurity. This method relies on the unawareness of mali-
cious nodes that a sensitive information is transmitted. Usually this concepts
has been often used in vendor speci�c protocols. Typical example of the use
of security through obscurity are the previous generation speci�c SCADA
systems, where vendors used to develop their own protocols and potential
attackers were unaware of the internal structure, encoding, etc. However, this
method proved to be not very e�cient as an attacker can gain knowledge of
the transmittance protocol used by means of tra�c analysis, for instance.

• Symmetric Key Encryption. This mechanism is based on shared secret be-
tween a sending node S and a receiving node R. When a message M needs
to be transmitted from S to R, S encrypts M with the shared key and sends
it to R and R in turn decrypts it with the same key using an inverse func-
tion. The advantages of this approach is that it has been widely used for a
number of decades and that it is lightweight compared to Asymmetric Key
Encryption algorithms

• Asymmetric Key Encryption. The disadvantage of symmetric cryptographic
algorithms is that a mechanism for the secret key exchange is needed. In
reality this is di�cult to accomplish. The asymmetric encryption algorithm
is capable of encrypting a message M with a public key Pu known by ev-
erybody. The other communication end point will decrypt it with Private
key Pr and thus can restore the original message M. The main disadvan-
tage of this approach is that it is about 100-1000 time computationally more
expensive compared to a symmetric key encryption algorithm. Example of
algorithms based on the asymmetric key encryption are the RSA [48] and the
Elliptic Curve Digital Signature Algorithm (ECDSA) [38]. Some protocols,
such as the Transport Layer Security Protocol (TLS) [56], are using a hybrid
approach. The TLS in particular uses an asymmetric key encryption only for
secret key exchange and afterwards, the transmitted messages are encrypted
and decrypted using a symmetric key encryption algorithm.

From all of these methods we are going to use a hybrid approach between asym-
metric and symmetric approach in order to ensure end-to-end security between
two communicating end point nodes. Thus we will guarantee reduced computa-
tion cost and at the same time we are going to take advantage of the asymmetric
cryptography's bene�ts.

Prerequisites 51

Digital Signatures and Digital Certi�cates

Digital Signature Digital signature is a mechanism for verifying a message's
authenticity. It relies on asymmetric cryptography algorithms, such as the RSA
and the ECDSA are. The algorithm works as follows: a message M is given as
an input to hash function F (M) and F (M) produces a hash value Mdigest a.k.a.
message digest. Then an entity E1 encrypts Mdigest using its private key and
produces an encrypted message digestMdigestenc. This value is calledM 's signature
Msign and it is transmitted along with the messageM. Another entity E2 can verify
that the message M is authentic in the following way: �rstly, it decrypts Msign

with E1's public key and this produces Mdigest. Secondly, E2 calculates Mdigest2

using the same hash function F (M). Finally, it compares Mdigest and Mdigest2 and
if the values are equal, the message is authentic, otherwise it is not.

Digital Certi�cate The digital certi�cate [40] a is short written statement
signed by a trusted certi�cation authority 's (CA) private key. CA's public key
is available to everybody, so anyone can verify a message signed by CA, by using
CA's public key. We have already described the procedure of signing a message
using the digital signature mechanism.

4.6 Design Choices

In this section, we are going to discuss about the design choices that need to
be made. We will take a variety of decisions such as the scale of the network,
the way of devices participate to a middleware node, software fault-tolerance of
composition logic execution, static or dynamic distribution of middleware nodes,
what level of security needs to be applied and so on.

Method for Physical Device Participation

Methods for physical device participation could vary depending on the physical
media used for communication between the physical devices themselves and their
corresponding bridges (adapters). For instance, if a vendor speci�c subsystem is
interfaced to the home automation middleware system, through a Universal Serial
Bus (USB), the vendor gateway to the middleware could be connected only to one
node at a time. This implies that if a device is connected to a middleware node
and the node crashes or leaves the network at some point, the vendors subsystem
itself needs to take some actions to switch between the adapters. We need to
provide a clean and easy to use Application Programming Interface (API) to the
developers of the bridges (adapters). This API can be used to switch between di-
rectly connected devices. In the general case scenario, point-to-point connections

Prerequisites 52

need to be avoided. If we assume that the vendors of adapters avoid to use such
kind of point-to-point physical connections, then all the decisions on which middle-
ware node needs to used, can be taken in the middleware nodes themselves. For
instance, if a physical device is interfaced to its corresponding adapter through
Ethernet or Wi-Fi, the decision on which node is handling the interaction with
the physical device could be taken by reaching a consensus among the distributed
nodes. For the sake of providing the developers with an uniform way of handling
the point-to-point connection issue we would need to provide an API which will
apply abstraction to hide all the details around the physical media used. This API
must be used in an uniform way regardless of the physical media used, in order to
provide a mechanism for context switching in the physical nodes themselves.

Means for Adapter Mobility

As we mentioned in the previous design choice 4.6, the physical devices need to
be participated to an alternative node B in case of failure or unavailability of its
primary node A. In this case, we could use the approach where all the adapters are
available on all nodes. This solution, in fact could be applied only in small-scale
home automation middleware systems. In case of a system deployed on a large
scale, this solution is practically applicable only if expensive servers are dedicated
for this task. Another solution could be to store the adapters only at a subset of all
the nodes available in the system. This solution is more �exible, more scalable and
cheaper. In the ideal case scenario, all the networked nodes will be homogeneous
and the adapters' executable binaries will be backed-up on some nodes; they can
be serialised and sent to a node that needs it on demand. In the general case,
our design would need to deal with heterogeneous nodes. In this scenario, there
are two choices. The �rst one has been widely adopted in the world of software
development, and is the use of virtual machines such as Java Virtual Machine and
.NET's Common Language Runtime (CLR). In this case the adapters' code could
be compiled to a machine independent code (Java bytecode or Microsoft Interme-
diate Language (MSIL)) and an adapter could be sent to a node on demand and
compiled by a just-in-time (JIT) compiler. However, we need to consider a home
middleware solution which could potentially be ported to devices with restricted
pieces of hardware and these machine independent solutions are computationally
demanding, since a virtual machine needs to be ported on these devices. The ideal
implementation of such a system will use a C language implementation, which is
less demanding than the above mentioned virtual machines. The only reasonable
option left is to use a mechanism which will back-up the adapters compiled with
a cross-compiler and targeted at di�erent platforms. Even though requiring ex-
tra memory space, we �nd this approach mandatory. This is why we are going
to use the latter approach for the adapter mobility where we will store various

Prerequisites 53

pre-compiled adapter versions targeted at di�erent platforms.

Use of Group Communication

Sometimes a node would need to communicate with a group of other nodes. For
instance, it might want to send the state of an actuator modelled as a service in
the context of home automation middleware to a group of nodes. In this case,
it will be more e�cient if the node sends a multicast to a reserved IP address,
to whom the group of nodes have already subscribed to. To be more precise, the
node which possesses the service, that the other nodes want to subscribe to, should
�rst create a multicast address. After this, it will broadcast the service and the
multicast address within the network. The nodes which want to subscribe for the
event would just need to tell the network that they are interested in receiving the
messages from this multicast address. This way, the next time the service node
needs to inform its subscribers, it will just need to send it to the multicast address
and all of the nodes subscribing will receive it.
However, multicast is very unreliable and messages can often get lost. We want to
avoid this in our project and that is why we are going to use reliable multicast. In
particular, the Scalable Reliable Multicasting (SRM) protocol [20] that we describe
in 4.4 seems to be the best solution because it only uses negative acknowledgements
and this does not overload the network with a lot of acknowledgements. This can
be very useful in cases where the network comprises a very large number of nodes
and wide multicast groups.

Adapters Redundancy Factor

As we have mentioned in the previous section 4.6, we need to provide a mechanism
for adapters redundancy and we have made our choices related to the means for
adapters redundancy. In this case, factor corresponds to the number of replicas of
the adapter. Now we need to decide on the adapters redundancy factor. On one
hand, the redundancy factor must not be too large. Large factor implies a lot of
space taken by the adapters' storage. On the other hand, the factor does not need
to be to small either. A very small factor might make an adapter unavailable at
some point. This is why we need to have a mechanism for adjusting this factor
dynamically at run-time, through an interface. This feature could "�ne-tune"
this parameter in order to employ a variety of deployments. In one deployment
scenario, this middleware system could be used in an environment with dedicated
home automation computing devices. Obviously, in this case the redundancy factor
needs to be very small. In another deployment scenario, the middleware system
could consist of unstably participated devices, joining and leaving the network
all the time (high churn rate). In this case, the redundancy factor needs to be

Prerequisites 54

very big, in order to provide availability of all the adapters at any moment with a
probability very close to 100%.

Static versus Dynamic Distributed Home Automation

The home automation middleware system could be assembled from statically al-
located designated nodes or dynamically joining and leaving self-organising set of
nodes. In the �rst case each node needs to know the IP addresses of the other
nodes in the network and the available services of the other nodes. The dynamic
approach in turn provides a very �exible solution as one can connect random num-
ber of low-end computing devices to play the role of home automation middleware
and these devices could be used for something else as well. The main drawback
of the former solution is that it does not scale. It is obvious that such a solution
will not scale in case that a network is initially intended to have a small number
of bridges in it but having its number of bridges progressively increasing. This
implies that this system would not be able to perform as usual and it might not
be able to take the demanded load. This is why we are going to use the Dynamic
Distributed approach of middleware nodes. For this sake we will take advantage
of the Overlay networks that we have described in 4.3.

End-to-End Security Mechanism

We must decide on the approach that we shall use for securing the communication
between two communicating nodes. As the symmetric and asymmetric encryption
algorithms have proven to be the most robust types of end-to-end security, widely
used in the industry, we are going to reduce our design choice to choosing a method
between these two.
An hybrid encryption protocol will be our choice. As the network will consist of a
number of peers and the peers will share a secret e.g. network name and network
password, symmetric encryption algorithm could be easily facilitated with the use
of the shared key known by all nodes in the network. Such an approach could be
bene�cial in a way that it is 100 to 1000 times computationally cheaper than an
asymmetric encryption algorithm. However, encrypting all of the exchanged mes-
sages using the network name and the network password is not a good approach,
as tra�c analysis tools can analyse the transmitted messages and break the pass-
word. This is why a hybrid approach will be a very robust solution. With such
an approach, a node will store other nodes' public keys in its routing table along
with their node IDs and IP addresses. The public keys will be used to establish
the secure channel with which the nodes can exchange a shared key. This shared
key will be used to encrypt/decrypt subsequent data exchanges between the two
parties. This approach can be used when a node A needs to send very large pieces

Prerequisites 55

of information to node B. Asymmetric key exchange algorithm will be used in case
that the exchanged information is not large e.g. a simple service request.

Centralised or Distributed Authentication

The second security aspect that we need to decide on is which security method we
will use in our system in order to ensure that only trusted middleware nodes can
join the network, retrieve and alter information from it. This can be done either
by a dedicated authentication server or by the so called "chains of trust".
The �rst approach obviously is not very scalable, as it also su�ers from single
point of failure which could be avoided by means of using a back-up authenti-
cation server. Even in this case, this solution is quite expensive. On the other
hand, a centralised solution could be a very robust solution, as the authentication
server could issue certi�cates to the newly participated nodes, verifying their public
keys (We have given our arguments for choosing a protocol in which a public key
cryptographic algorithm will be used). Moreover, the authentication server could
sign these certi�cates and other nodes could verify the authenticity of any node
within the distributed middleware using the Needham-Schroeder authentication
protocol [46]. The bene�t of having a dedicated server is obvious, since any node
could verify the authenticity of other nodes and the private key used for signing
certi�cates will be known only by the authentication server.
The second approach is to use an authentication service running at each node.
With this approach, any node A could be authenticated at any other node B
which is already part of the network using a secure authentication service avail-
able at any node. The credentials used are common for all of the nodes in the
network. These credentials could be the home automation network name and
password and the public key of the adjoining node. Then B will store A's public
key on multiple distributed nodes using hashing and DHT's services. A's key will
be used when A becomes part of the Distributed Hash Table of another node.
Each entry in the distributed hash table of each node has a Node ID, node's IP
address and node's public key. So when something is to be transferred from a
random node R to A, R is using A's public key to encrypt the data. If A needs
to return a service state or some data stored in the network, it needs to verify R's
public key, which was received by A along with the data sent by R. In order for a
public key to be veri�ed, a query is sent, whose routing complexity is log 2bN hops.
This point is the �rst disadvantage. Of course, only the node having a resource
needs to verify R's public key. The second disadvantage of having a distributed
authentication service is that it will double the routing complexity in terms of
hops. An ordinary query's routing complexity is log 2bN and the query complexity
with a public veri�cation by an end node will become log 2bN

2 . So if an ordinary
query takes 5 hops to arrive at its destination, for a query with a public key veri-

Prerequisites 56

�cation it will take 10 hops. From this perspective a centralised log-in server is a
way better approach. It should be noted that a node can not be issued a certi�cate
on its public key. The algorithm presented compares the actual public keys, which
is a su�cient check to verify the public key's validity. The biggest advantage of
a distributed authentication service is that it eliminates the single point of failure
which is presented in the former solution. In the end, the doubled number of extra
hops is not going to a�ect the scalability of the distributed hash table while the
use of a centralised authentication server could a�ect the scalability of the system,
if a lot of nodes are presented on the network. There is another disadvantage of
using such a distributed authentication service.
Even though A's public key is stored in the network, a certi�cate could not be
issued for its public key since someone needs to sign the certi�cate verifying A's
public key and thus this solution does not eliminates all security risks. A malicious
node Ma could send a faked public key to a node R within the network. Even
though R could query the network in order to verify that Ma's public key is not
trusted, there is the risk thatMa could fake the veri�cation, sinceMa itself could
sent a veri�cation to R.
This is why we need to emulate the Needham-Schroeder's centralised authentica-
tion protocol on a distributed scale. With this approach, a shared private key Pr
available at all nodes' authentication service could sign a certi�cate CeA verifying
A's public key using Pr. Then this certi�cate could be returned to A. A is going
to provide this certi�cate in subsequent data exchanges with other nodes available
in the distributed middleware service. Then any node in the network would be
able to verify the certi�cate itself in 0 routing hops. A's public key along with its
certi�cate will be used by other nodes to verify resources requests signed by A with
its public key. Moreover, Pr will be disclosed to A as well upon authenticating
A. Thus A's secure service will be able to sign certi�cates to newly joined nodes
as well. The advantages of using such an approach are obvious:

• The authentication service will be highly distributed, self-organised and will
eliminate the single point of failure presented at the centralised solution.

• The additional hops required to verify someone's public key evident in the
second approach are eliminated.

• A node's public key could be certi�ed and then sign requests checked by any
node as well. Which also will be bene�cial when a node is attempting to
change something in the network.

• The network authentication public key will be disclosed to anybody. This
public key can be used by a node attempting to connect to the network, in
order to encrypt its credentials and sent it securely.

Prerequisites 57

• Each node will have its own public/private key pair, which will eliminate
the need of using the network name, network password pair as a key for
symmetric encryption between two nodes in the network. Even though slower
compared to a symmetric approach, this method will be bene�cial in the
way that the network's name/password will not be used as an encryption
key every time that two nodes want to interact with each other. This in turn
will reduce the thread of having a program that can analyse the tra�c in
the network and thus infer the network name/password.

Of course, there is an obvious disadvantage when using such an approach. If
a malicious node Mallory somehow steals the network name and the network
address, this could compromise the whole network, since the private key of the
authentication service will be disclosed to Mallory 's authentication service and
eventually Mallory could issue public key certi�cates to in�nitely many malicious
nodes. However, this thread is existing in all of the three approaches. In the �rst
approach, if Mallory knows the network name/network password, it can share it
with in�nitely many malicious nodes as well. It is obvious that the latter approach
is the most suitable choice, since it combines the strengths of the former two
approaches and eliminates some of their disadvantages. This is why we are going
to use the latter authentication protocol described.

Composition Logic Fault-Tolerance Method

We have analysed various fault tolerance architectures in 4.2. From all of above
described architectures, the one that would best �t our needs is the Triple mod-
ular redundancy. Some of these architectures provide only checks for result accu-
racy. The triple modular redundancy software fault-tolerance scheme could provide
checks for result accuracy. Moreover, it can decide which result is the correct one
based on a majority voting component.

Overlay Network Decision

We have revised a variety of overlay networks in 4.3 and in 4.6 we have given
our arguments for choosing a dynamic node distribution with the use of overlay
networks. Now we would need to decide on which overlay network we are going
to use in our design 5. Chimera seems to be the most decent choice in our case,
since it combines the useful features from Pastry and Tapestry that we need to
accommodate in the distributed middleware. First of all, Chimera has the leaf
set feature which characterizes the Pastry protocol, and secondly and most im-
portantly it has redundant links under each rooting table entry and these links
are sorted according to a proximity metric, which is inherent from Tapestry. This

Prerequisites 58

means that the routing will consider IP hops and this is very important as we
would like to ensure quick service discovery.

Design of the Distributed Middleware for Large Scale Automation
Domains (DMLSAD) 59

5 Design of the Distributed Middleware for Large

Scale Automation Domains (DMLSAD)

In this chapter, we are presenting the design of DMLSAD. We will �rst introduce
the high-level view of the distributed home automation middleware and then we
shall proceed by describing each components in details and the high level interac-
tion between the various system components.

5.1 Overview

Service discovery and usage

The backbone of the DMLSAD is the overlay network. As we have argued our
choice in 4.6, we are going to use Chimera DHT. Each of the nodes in Chimera is a
home automation middleware itself. Therefore each of the nodes is responsible for
handling the communication between some vendor speci�c devices and the front
end of the system. Instead of having a dedicated front end component, each of
the nodes in DMLSAD can be used as a home automation entry point for client
applications. Moreover, requests to the overlay network can be performed via
di�erent nodes simultaneously.
When a new node "applies" for joining the network, it contacts an existing node in
the network. The applicant node is asked to provide its credentials. Once logged-
in, the node is assigned a node ID and it advertises its services in the network. Its
services are digested using a hash function applied over their names and the pair
<service hash value, node's IP address> is stored in other N nodes whose node IDs
are numerically closest to it. When a service request S is performed over a node A
in the DMLSAD network by a client application, node A calculates a digest value
Sd over the requested service name and queries the network in order to discover
the node hosting the service. This node is one of the N nodes numerically closest
to Sd which host the service node's IP address or DNS - name. Once a node B
from the set of nodes N is discovered, it replies to node A with the IP address of
node C hosting S. Sequentially, node A forwards the query to node C, C in turn
performs the request over S and returns the result back directly to the client.

Adapters Distributed Back-up and Subsystems Fault-Tolerance

The overlay network is also used for backing-up adapters in a decentralised fash-
ion. When an adapter is loaded, a hash value is calculated over its name, and it
is forwarded to the N numerically closest nodes to the adapter's hash value in the
network. When an adapter is needed, a hash value is calculated by the node A that
needs the adapter and then the network is queried in the same way as it is for the

Design of the Distributed Middleware for Large Scale Automation
Domains (DMLSAD) 60

service discovery. As a result, A receives the suitable adapter and loads it as we
have mentioned in 4.6. Using our clean and easy to use API, the newly installed
adapter at node A attempts to participate the free vendor speci�c subsystem to
it.
There is a Chimera extension in our design that we are accommodating in order to
notify the nearby nodes in case of node A's failure. We are going to use Pastry's
neighbourhood table as the above mentioned Chimera extension and thus when a
node A fails, all of its neighbours will detect that it has failed. Furthermore, they
will query the network for the adapters that the failed node had before. Using the
newly installed adapters, the neighbourhood nodes will then try to participate the
adapters' corresponding devices to the set of devices accommodated by them. Fig-
ure 8 graphically illustrates the distributed high-level design of DMLSAD. Figure 9

Node ID:
00AD45BC89

Node ID:
5678121F00

Node ID:
00A555BC89

Node ID
E456D0149F

Node ID:
56781AD45B

Node ID:
D4558BC89

Client 5

Client 6

Client 7

Client 8

Client 1

Client 2

Client 3

Subsystem 9

Client 4

Subsystem 8

Subsystem 4
Subsystem 7

Subsystem 6

Subsystem 5

Subsystem 3

Subsystem 2Subsystem 1

Figure 8: Distributed Middleware for Large Scale Automation Domains High Level Ar-

chitecture

shows the layers and components available at each node

5.2 Components

In this subsection, we will describe the role of each component in DMLSAD. We
will take a look at each logical component in the system. As all the nodes are

Design of the Distributed Middleware for Large Scale Automation
Domains (DMLSAD) 61

End-to-End Security

Chimera DHT Overlay Network

Front End

Authentication

Service
Advertisement

Service
Lookup

Adapter Back-
up/Restore

Event
Subscription and

Noti�cations

Fault-
Tolerance

Composition
Logic

Figure 9: Distributed Middleware for Large Scale Automation Domains Nodes Layered

Design

equal, the logical components could be deployed at any node.

Front End Component

As it can be exhibited from �gure 8, clients can interact with the network, using
any node in the network that has such capabilities. One DMLSAD deployment
option is to incorporate front end capabilities in all the nodes participated in the
overlay.
The �rst role of the front end is to provide an entry point for the "outside world" to
the services provided by the system. Moreover, when a client requests a service, the
front end is the one responsible for locating the node handling the communication
with the vendor speci�c subsystem, providing the service and propagating the
result back to the requester. Furthermore, through a session based approach, the
front end can send events back to the clients attached to it in case of having a client
subscription for an event of service state change. In order to do so, the node that
acts as the front end for one or more clients must subscribe to the node hosting
the service for receiving service change state event noti�cations on the behalf of
one of its clients interested in receiving such noti�cations.

Authentication Component

The authentication protocol used in our design uses a distributed authentication
service running at each node. We have given our supportive arguments for choos-
ing such an approach and not using a centralised authentication server in 4.6.
This approach is applied in such a design, in order to overcome the dedicated

Design of the Distributed Middleware for Large Scale Automation
Domains (DMLSAD) 62

single point of failure, presented on a dedicated authentication server. Moreover,
the authentication component needs to be present at all the nodes in instance of
DMLSAD. The authentication is the component verifying that a newly partici-
pated node is coming from a viable source and it makes sure that only certi�ed
nodes can read and change the state of DMLSAD. The following �gure 10 repre-
sents the authentication mechanism upon a node joining the network.
First, when a node A attempts to join an existing instance of DMLSAD, it

Send(JPuk's certificate)

Joining node "J" - public/
private keys - JPuk/

JPrk

Authenticate(EncyptedCredentials)

Node "A" , public/private
key - APuk/APrk

Authenticate()

[If J’s credentials are valid]

[else J’s reject Join request]

J knows A’s IP, Port
and Secure Service’s
Public key SSPuk Encrypt(APu, Net Name, Net Password, SSPuk)

Connect(A's IP, A's port)

Connect Acknolegement

Decrypt(EncryptedCredentials, SSPrk)

Send(SSPrk)

Secure Service Private
Key will be used by J to

sign other nodes’
Public Key certificates

J’s Puk certificate

1. J’s nodeID
2. JPuk
3. (digest(JnodeID + JPuk))SSPrk

Figure 10: Authentication of new nodes

needs to provide its credentials to a DMLSAD's existing node B. A logs-in with a
DMLSAD's name/password and provides its public key encrypted with network's
authentication public key Pu. Following this approach, a new node A can be added
to an instance of DMLSAD as easily as providing an existing DMLSAD node B 's
IP address, network name, and network password. On top of the network name
and network password, A provides its public key to B as well. B, in turn issues a
public key certi�cate APuCe

to A, verifying that A has already successfully logged

Design of the Distributed Middleware for Large Scale Automation
Domains (DMLSAD) 63

within the network. B also sends the authentication private key to A which is
used for signing public key certi�cates. This private key will be used by A's au-
thentication service, when a new node attempts to connect to the network, using
A's authentication service. Furthermore, A's public key certi�cate is used every
time when it wants to interact with DMLSAD. This process is further used and
explained in End-to-End security component.

End-to-End Security Component

All the communication between communicating nodes is encrypted, such that no
unauthorised third party can tamper or read the information transmitted. In 4.6,
we have provided our arguments for choosing a hybrid protocol using both asym-
metric and symmetric encryption algorithms. A prerequisite for using such an
algorithm is that each node has public/private key pairs issued by the authen-
tication component. All the information transmitted from node A to node B is
encrypted. In order to do so, Chimera's distributed hash table needs to be up-
graded. The upgrade concerns the addition of an attribute that will be stored in
each of the routing table's entries. In the original implementation of Chimera, each
routing table entry consists of a node id and a node IP address. We are adding a
third attribute, which will be the node's public key. This public key is used by a
node A when something needs to be transmitted to a particular node B. Indeed B
is in A's routing table and A has B 's public key.
In this design, there are two scenarios. Di�erent types of protocols are used in
both of them. The �rst scenario is when a message needs to be routed from node
A to node B e.g. a service request. In this case, all the intermediate nodes that get
the message before the message arrives at B are using only asymmetric encryption
algorithm. This is so because the message that needs to be routed would usually
be very short, e.g. a service name. The second scenario is when A requests an
adapter from B. A hybrid protocol is used to transfer the adapter in this case. The
hybrid protocol uses asymmetric key encryption only for establishing the commu-
nication session and exchanging the secret key. Sequentially, this secret key is used
by both parties for encrypting the pieces of information when sending the actual
adapter.

Public Key Veri�cation Figure 11 shows the overall process of public key
veri�cation upon a request. When a node A wants to interact with DMLSAD, its
public key needs to be veri�ed. This is why we are incorporating a mechanism for
veri�cation that a public key belongs to a node that is already within the network.
In order to do so, a node R, which receives a request by another node S, veri�es
the identity of S by using its authentication service's public key. To accomplish
this, a node calculates a digest value of the concatenated string of the node ID

Design of the Distributed Middleware for Large Scale Automation
Domains (DMLSAD) 64

Node J

Chimera

Node H

Retrive request S's IP address and port

Send(H's IP address and port HPuk)

SignRequest(request)

J’s Puk certificate

1. J’s nodeID
2. JPuk
3. (digest(JnodeID + JPuk))SSPrk

Signed Request SRe

1. J’s nodeID
2. JPuk
3. (digest(JnodeID + JPuk))SSPrk
4. Request e.g. GET SERVICE S
5. Time Stamp e.g. 5506611123
6. (digest(Re + Rts))JPrk

Send(Encrypted_SRe)

Encrypt(SRe , HPuk)

Authenticate(SRe, SSPrk)

Decrypt(Encrypted_SRe , HPrk)

Execute(Re)

Send(Encrypted_request_Res)

Decrypt(Encrypted_request_Res,JPrk)

Encrypt(request_Res,JPuk)

request_Result

Figure 11: Request Authentication

Design of the Distributed Middleware for Large Scale Automation
Domains (DMLSAD) 65

and node's public key. Then it decrypts the certi�cate's signature and compares
the two values. If they match, then the certi�cate is valid, otherwise it is not. A's
public key certi�cate has the following attributes:

• A's node ID.

• A's public key APu .

• A's public key certi�cate signature - (digest(AnodeID + APu))SSPr
. This is a

secure digest value which is a result of applying a secure hash function SHA2
over the concatenated string of the node ID's and node's public key and this
value is encrypted by the authentication services' private key.

The veri�cation mechanism is applied every time when something is requested
e.g. service or adapter. Moreover, every network request is signed by A. A's
signed request, in this sense, is a certi�cate signed by A's private key. Indeed, the
signature of each operation can be veri�ed by any other node using A's public key.
We have shown above that any node can verify A's public key as well. In this case,
we have a message signed by A's private key, which can be veri�ed by another
node, using A's public key. The signed request, issued by A, has the following
attributes:

• A's node ID.

• A's public key APu - A's public key is used for veri�cation request and also
for backward encryption of returned result to A.

• A's public key certi�cate signature - (digest(AnodeID + APu))SSPr
.

• A's request - Re - Request from Chimera e.g. a service request, an adapter
request, etc.

• Request time stamp - Rts - This time stamp is checked by the node that
executes the actual service. The time stamp is a number, based on A's local
time. It protects against "replaying" attacks. If there is no time stamp, a
malicious node Mallory could intercept a signed request and send it again at
a later stage. Once A's request is executed, the node executing the request
will store the time stamp and A's node ID. Every time when a request is to
be executed, the time stamp will be used to determine that a request has
not been executed before.

• Return result public key ClPu - This attribute is optional and can be used if
a client requests a service and has established a secure communication. This
key can be used by an end node to encrypt a service result and return it to
the client which initiated the request.

Design of the Distributed Middleware for Large Scale Automation
Domains (DMLSAD) 66

• Return result node's IP address - It is used by the node B having the re-
quested resource. B uses this address for backward communication purposes.
If this �eld is blank, then B uses A's IP address for returning the service
result to A. Moreover, if this �eld is blank, A's public key is used as well and
the return result public key is ignored.

• Request signature - (digest(Re+Rts + ClPu))APr
. A hash function applied

over the concatenated string of the time stamp, client's public key and the
operation itself, encrypted with A's private key. Note that this signed request
can be decrypted using A's public key which is the third attribute in the
signed request. In turn, A's public key is signed with the network secure
service's private key and can be veri�ed using the secure service's public key
available at any node.

The signed request will ensure that only trusted nodes can use network's services.
Note that only the nodes having a resource are verifying the request. This is
very e�cient, since the intermediary nodes which are visited upon request, do
not need to parse the certi�cate's contents and verify its signature, which is a
computationally expensive operation.

Service Advertisement Component

This component propagates node A's services into the network upon A joining
DMLSAD middleware network. To do so, A's primary task is to calculate a hash
value K over each of its services' names. This hash value K is in fact called key in
the context of routing overlays. Then A forms a <K, A's IP address> key-value
pair. Using K, A propagates its IP address into DMLSAD and associates this IP
address with K.
In order to store the metadata about a service in DMLSAD, A uses its routing
table to �nd N numerically closest nodes in the network where a service metadata
will be stored. N is a con�guration parameter, which can be �ne tuned in order to
determine the number of replicas. On one hand, N must be big enough to provide
availability of the already mentioned services metadata with a probability very
close to 100%. We gave our supporting arguments to this point in 4.6. On the
other hand, it must not be very big since it will require more space for storing the
service metadata.
In order to store <K, A's IP address>, A �nds N numerically closest nodes in the
following way.

1. A determines whether K is within the range of its leaf set, and if so <K,
A's IP address> is forwarded to the node B in the leaf set, whose node ID

Design of the Distributed Middleware for Large Scale Automation
Domains (DMLSAD) 67

is numerically closest to K. B in turn saves <K, A's IP address> and re-
forwards it to N nodes in its leaf set where half of these N nodes are smaller
than B 's node ID and the other half are bigger than B 's node ID.

2. If K is not within the range of A's leaf set, it looks in its routing table and
�nds the routing table entry E which has the longest common pre�x with
K. Then A forwards <K, A's IP address> to the node stored in E that is
closest to A in terms of IP hops.

3. This procedure is recursive and it converges when a node X �nds that K is
within the range of its leaf set. Then the node X executes the �rst step of
this procedure.

4. The procedure is individually executed for each service o�ered by A.

Following this procedure, all the services' metadata will be stored in DMLSAD.

Service Lookup Component

The service lookup component takes care of �nding a service's location on the
network. This component needs to be accommodated by all the nodes in the
network. It queries the distributed middleware system using Chimera's message
routing mechanism. When a service S needs to be found by node A, A �rst looks-
up in its locally available services. If the service is available in its local set of
services, the procedure is over. Otherwise, it calculates a hash value Mv of the
service based on the service name. It is important to note that the services need
to be given the so called "strong" names, and these names will uniquely identify
a service which will aid the service discovery mechanism. Next, A determines
whether Mv is within the range of its leaf set. If so, it forwards the message to
the node in its leaf set L, which is numerically closest to Mv. L in turn replies
with the node H 's IP address, which hosts the service requested by A. Otherwise
A looks in its routing table and tries to �nd an entry in its routing table with the
longest shared pre�x between a routing table entry and the calculated service hash
value Mv. There are multiple node IDs stored at a particular entry in A's routing
table. Node A forwards Mv to the node B whose ID shares the longest common
pre�x with Mv and is closest to A in terms of IP hops. This procedure is recursive
and node B will repeat it. In each step, the longest common pre�x between the
current node C and Mv will increase with at least one digit until it reaches a node
where Mv is within the range of its leaf set.

Design of the Distributed Middleware for Large Scale Automation
Domains (DMLSAD) 68

Adapter Back-up/Restore Component

This component ensures that an adapter is available in DMLSAD with a proba-
bility close to 100%. When an adapter D is loaded in DMLSAD via node A, this
component takes care of storing a replica of the adapter in N other nodes. Once
again, N is a con�guration parameter determining the replication factor and we
have given our supportive arguments for using such a parameter in 4.6.
It is part of our requirements, that an adapter is named uniquely. The algorithm
for storing an adapter is the same as storing service metadata. The only di�erence
is that the key-value pair is formed from the adapters name's hash value, which
in fact is the key and the adapter name itself as the value in the pair. When
the numerically closest node R, receives the key-value pair, it �rst establishes a
communication session with the node A, advertising the adapter and downloads
the adapter. R in turn stores the <adapter name, IP address and port> key-value
pair, which can be queried by other nodes that need to load the adapter. Further-
more, for each adapter A stores a hash value of adapter's name as a key and IP
address of the node storing backed-up adapter's binary as its value. The adapter
restoration is taking place when a node A is announced dead by its neighbourhood.
Each node is pinged by the nodes in its neighbourhood set. If a node dies out, the
nodes within its neighbourhood set will detect this. Then the nodes will hash the
dead node's node ID and will query the overlay network. They will get response
from Chimera, containing all the adapters that the dead node had hosted. Then
all of the neighbourhood set nodes will try to participate the free device. The
nodes capable of attaching a device interfaced by the same adapter will negotiate
which one will �nally participate it by using a load balancing algorithm.

Load Balancing Algorithm Sometimes a DMLSAD instance could be de-
ployed in an environment with very intensive service requests. Some nodes in
particular could experience a relatively high load because of a high number of re-
quests for the services they o�er. In this case, a mechanism for ensuring a service
availability needs to be applied. The distribution of the middleware to multiple
locations does not guarantee that all nodes will be available and that the system
will be strong enough to take incoming requests' load. It needs to �nd a way to
balance the incoming requests. This can be achieved in the following way:

1. Initially all devices are assigned a weight of 1 and attach themselves to the
nodes having the least weight sum.

2. A node weight is simply a sum of all the weights of the devices attached to
it.

3. At a certain point, e.g. once a day, the weight of each device is recalcu-

Design of the Distributed Middleware for Large Scale Automation
Domains (DMLSAD) 69

lated based on statistics such as performed device requests, used CPU at
the node side, etc. the calculated total sum of all devices' weights is di-
vided by the number of nodes participating in the middleware and this
equals the node average weight of X. Each node must have a weight in
the range of RANGE = X − MAX (collection of devices' weights) to X +
MAX (collection of devices' weights). This means that the nodes must agree
on RANGE numbers and all of them need to be aware of this. Secondly,
the nodes having a weight larger than RANGE need to release devices and
nodes with less weight than RANGE need to set an adoption mechanism on.

4. From now on all new devices participating in the network are assigned a
weight of X on join.

5. If a node fails, perform step 3.

Fault-Tolerance Composition Logic Component

As we have mentioned in 2, some existing home automation systems have the so
called "Composition Logic" component, which executes a set of rules or makes
transition between system states upon service state change of a subsystem device.
In 4.2, we have analysed existing fault-tolerance architectures which we could apply
for guaranteed delivery of correct composition logic execution. In 4.6, we have
given our arguments for choosing the Triple Modular Redundancy fault-tolerance
architecture. In this subsection, we will clarify how exactly this is going to be
accomplished.
There are three phases in accomplishing this:

• Choosing composition logic nodes.

• Subscription to service's state change events.

• Result voting and election.

Choosing composition logic nodes Because of the nature of such kind of
networks, the nodes chosen to have a composition logic components are chosen
dynamically. Initially, there are no nodes in the network. The �rst three nodes
that have joined a DMLSAD instance are chosen to be the composition logic nodes.
Each of them is aware that the other 2 logic nodes exist and they know how to
�nd each other. They exchange heartbeat messages on a regular basis. Thus each
of them shall verify that the other two nodes are still available. In case that one of
them does not respond to the heartbeat messages anymore, the other nodes agree
on the absence of the 3rd node and each of them query its neighbourhood set to

Design of the Distributed Middleware for Large Scale Automation
Domains (DMLSAD) 70

�nd the node that has been on the network for the longest period and then they
decide on which one to participate. Querying the neighbourhood set and not the
leaf set results in participating a node that is proximally close to one of the other
two nodes in term of IP hops. After a certain period of time, this procedure will
result in that nodes in the same neighbourhood set become the composition logic
nodes in the network. This is bene�cial, because �rst of all, the nodes will receive
the event noti�cations at pretty much the same time, and secondly, the probability
for faster algorithm convergence will become higher than in the scenario in which
random nodes are chosen.

Subscription to service's state change events Each composition logic com-
ponent subscribes to all the nodes in the system to receive noti�cation upon service
state change. The event subscription/noti�cations component was discussed in 5.2.
The composition event noti�cation delivery "picture" is illustrated in 12

Logic Component

Logic Component

Logic Component

Node ID
E456D0149F

Node ID:
56781AD45B

Node ID:
D4558BC89

Subsystem 8

Su
bs

yt
em

 1
 S

ta
te

 C
ha

ng
e

Su
b

sy
te

m
 1

 S
ta

te
 C

h
an

ge

Subsytem 1 State Change

Subsystem 9

Subsystem 2Subsystem 1

Subsystem 3

Subsystem 5

Subsystem 6

Subsystem 4Subsystem 7

Figure 12: Event Noti�cations Delivery

Result voting and election The composition logic nodes receive service change
states noti�cations and execute the composition logic. After executing the logic,
the three logic execution nodes vote and elect the correct result. Thus service

Design of the Distributed Middleware for Large Scale Automation
Domains (DMLSAD) 71

states are changed only once and the result's correctness is guaranteed with a
very high probability. Moreover, the risks of an incorrect result and of potentially
triggering wrong actuators are negligibly small.
The algorithm for voting and electing the correct result is based on majority voting.
Now let assume that the three composition logic nodes are A, B, C. Upon a service
state change, a noti�cation is delivered to the three nodes and their composition
logic component execute the composition logic. Let's assume that node A �nishes
its execution �rst. In this case, A calculates a hash value based on all of the
services' states. A sends the hash value to B and C. B and C receive A's hash
value. When they output a result from the composition logic execution, they
calculate a hash value over their output as well. Then B and C compare their
services' hash values with A's hash value. If the values are equal, they return
to A an acknowledgement that the hash values are identical. If both B and C,
are di�erent from A's result, A inform B and C that they need to decide on the
correctness of the result on their own. Then B sends its hash value to C and asks
it whether its result is the same as C 's result. If so, B acknowledges C and it will
take care of delivering the service updates to the appropriate nodes.
If A, B and C results are all di�erent, new nodes need to be elected as execution
engine nodes. This is accomplished by having A, B and C pick a node in their
neighbourhood that has been part of the network for longest period.
This component makes the DMLSAD not very scalable, since it needs to keep
track of the states of all services. This is why this component is for optional
use. Furthermore, it can even be exported and could be run on several client
applications.

Event Subscription and Noti�cations Component

A node X in DMLSAD can subscribe for other nodes' services state change and
receive noti�cations by them upon a change of state. Using 5.2, a node Y 's IP
address can be discovered having a particular service . Having the IP address of
node Y, X can subscribe at Y for a service S state change. Node Y will store
X 's IP address and it will notify X upon S state change. If the number of nodes
subscribed for a particular service become large and DMLSAD is deployed on the
same local network, we can use multicast 4.4 to disseminate the change of state
to the subscribed nodes. The node hosting a service of interest noti�es the nodes
subscribed for a service, to listen to a speci�c multicast address.

5.3 Component Interaction

In this subsection, we are going to describe the component dependencies and in-
teraction. We are going to clarify the interaction, using four scenarios which are

Design of the Distributed Middleware for Large Scale Automation
Domains (DMLSAD) 72

found to be the essential in DMLSAD.

Use of Authentication and end-to-end security All the interactions be-
tween components are encrypted and we are not going to discuss the authentica-
tion and encryption part in the component interaction here, as the authentication
process was discussed in details in 4.6 and 5.2. We are not going to describe the
process of authenticating a signed request which was also described in 5.2.

Node Join When a Node A joins the network, it �rst contacts the Authentication
component, and is asked for its credentials. If A provides a valid network name and
network password, the Authentication Component 5.2 allows newly joined nodes
to become a part of the network. After that, A can use its service advertisement
component to make its services available to the other nodes in the DHT network,
using the procedure described in 5.2. Then the Adapter Backup component is used
as well. The latter component will distributively store the adapter on multiple
nodes in the network. Node join use case scenario is illustrated on �gure 13

Service Request A client application can request a service in DMLSAD. In
order to so, it "contacts" the Front End 5.2 component. The Front End in turn
redirects the client request to the Service Lookup component . Using the procedure
described in 5.2, the requested service is discovered, the signed request is �rst
veri�ed and then performed over the service. If the veri�cation procedure fails,
the request is ignored. Finally, the result is returned back to the client application
using its public key and its IP address included in the certi�cate. Service request
use case scenario is illustrated on �gure 14

Node Fail/Leave When a node F fails or leaves, theAdapter Back-up/Restore 5.2
component takes over in order to participate the devices orphaned by F. In order
to do so, a statistics by the Load Balancing component 5.2 is used. This will
ensure that the freed devices will be participated to the nodes having the least
service requests.

Service State Change For deployments of DMLSAD with Composition Logic
Fault-Tolerance Component 5.2, it should be clear to the reader that composition
nodes need to subscribe for service change events using the Event-Subscription and
Noti�cations component 5.2.

Design of the Distributed Middleware for Large Scale Automation
Domains (DMLSAD) 73

Authentication

A
u

th
en

ti
ca

te
d

Not
Authenticated

Node is castoff

Service
Advertisement

Adapter Backup

Node is
Participated

Node Join

Figure 13: Node Join Scenario Components Interaction

Design of the Distributed Middleware for Large Scale Automation
Domains (DMLSAD) 74

Client
Application

Se
rv

ic
e

R
eq

u
es

t

Verify request

A
u

th
en

ti
ca

te
d

N
o

t
A

u
th

en
ti

ca
te

d

Request is castoff

Service Lookup

Front End

ResultExecute
Service

Service
Retreived

Figure 14: Service Request Scenario Components Interaction

Implementation 75

6 Implementation

In this section, we are going to discuss about the implementation that we have
conducted in order to prove our design 5. As our underlying platform, we are
using the already existing home automation interoperability system HomePort 2.8
and in particular - its latest design. Moreover, we add the extra layers in order
to distribute it. Figure 15 shows how the DMLSAD's architecture is incorporated
into the HomePort's architecture. The greyed components and layers have not
been implemented yet. In this chapter we will discuss about the components
and the layers in DMLSAD, that have already been implemented and how it is
incorporated into HomePort.

 ..Adapter
1

Adapter
2

Adapter
N

Configuration

Events

Webserver Service Discovery Log

Services Secure Services Access Control Services

Client
1

Client
N

Client
2

Subsystem
3

Subsystem
2

 Subsystem
1

Adapter Manager

End-to-End SecurityEnd-to-End Security

Chimera DHT Overlay Network

Service
Advertise

ment

Service
Lookup

Adapter
Back-up/
Restore

Fault-
Tolerance

Composition
Logic

Fault-
Tolerance

Composition
Logic

Event
Subscription

and
Noti�cations

Event
Subscription

and
Noti�cations

AuthenticationAuthentication

Figure 15: DMLSAD embedded into HomePort's architecture

Firstly, we will start by describing the Chimera DHT library 6.1. Secondly, we

Implementation 76

will proceed by describing the HomePort functions 6.2 that are directly related to
DMLSAD. Finally, we are going to describe the implementation of DMLSAD in
the context of HomePort 6.3.

6.1 Chimera DHT library

As we previously mentioned, our implementation will make use of the Chimera's
distributed hash table. The Chimera library exists implemented in the C language
and this is the library used in the implementation of our project. This library
gives a basis to create and work with a distributed hash table. In this part, we
will provide more details about the library itself to give a better understanding of
the way it is working.
The entry point of the library is the function:

• ChimeraState chimera_init(int port)

This function is used to start an overlay network. It also starts the routing system
of Chimera, its job queue, message layer, etc. After the network is started and is
running, it becomes possible for nodes to join it. This is done with the function:

• void chimera_join(ChimeraState state, ChimeraHost bootstrap)

The �rst node has to initialize the network, so no bootstrapping is needed, however
the other joining nodes have to know at least one node in the network and use it
as a bootstrap host by specifying its IP address and port.
Chimera also allows to set a custom node ID if needed.

• void chimera_setkey(ChimeraState state, Key key)

For it Chimera uses a 160 bit key which corresponds to the SHA1 hash of the
string "name:port" (computer name and port of the running Chimera node).
We have to use following function to register every custom message type that is
necessary for our application purposes.

• void chimera_register(ChimeraState* state, int type, int ack)

Only registered message types will be recognized and routed appropriately by the
messaging system of Chimera.

• void chimera_send(ChimeraState state, Key key, int type, int size, char ×
data)

This function routes a message through the Chimera network containing size bytes
of data. Data will be send via the Chimera network to be delivered to the host
closest to the key. When there is necessity to �nd a host within the network, the
following function is used:

Implementation 77

• ChimeraHost host_get(ChimeraState state, char hn, int port)

It will return a ChimeraHost structure for the name which was searched. Chimera
also allows for ways to add custom actions when certain event occurs. The �rst
one occurs when a host leaves or joins the leaf set of a local node :

• void chimera update(Key key, ChimeraHost host, int joined)

The second is called before the routing layer forwards a message toward a desti-
nation key through some intermediate host:

• void chimera forward(Key key, Message msg, ChimeraHost host)

This allows the application to intercept the message and change the parameters to
override the routing choices done by the Chimera routing layer or to modify the
content of the message on the way.
The last one is triggered when the current node receives a message destined for a
key that is within its leaf set:

• void chimera deliver(Key key, Message msg)

This indicates that the message has arrived at its �nal destination.
It might also be important to know about the neighbours of a node. This can

be checked with the function:

• ChimeraHost route_neighbors(ChimeraState state, int count)

This will return an array containing the nodes that are closest to the current node
and in its leaf set.

6.2 HomePort API

The HomePort is a big project, containing a lot of elements. That is why we will
concentrate here on what is the most interesting part for us: the adapter loading
API, which was built in our previous work [18]. Currently, the HomePort adapter
loading sequence is working this way:

• First, the function needs to know the path of the adapter that needs to be
loaded. In our case, this can be provided manually or automatically in case
of recuperation after node crash.

• Secondly, it uses this path to �nd and execute the adapter's binary �le.

• This creates a new process that is placed into a so called sandbox to prevent
it from doing any harm to the system or overusing its resources.

Implementation 78

• After this, three communication pipes between the HomePort and the adapter
are created. Two of them are used for communication between HomePort
and the adapter. The last pipe is used to send the messages about new
services that has to be registered with the HompePort.

• At this point adapter binary is loaded and all available services can be reg-
istered with HomePort.

It can be inferred from �gure 15, that DMLSAD is used by the Adapter Manager
layer which is not presented on latest HomePort architecture 6, since it was devel-
oped in our previous project and it has not been re�ected on the latest HomePort
architecture [18]. In this subsection, we are going to describe the main functions
of the Adapter Manager component in HomePort, since it is the only layer that
directly interacts with DMLSAD. On one hand, the Adapter manager loads and
unloads adapters from the local machine. On the other hand, it directly inter-
acts with the components available at DMLSAD. For instance, when an adapter
is loaded by the Adapter Manager, it also stores the adapter binary at other
remote nodes using the Adapter Back-up/Restore component available at DML-
SAD. Complete description of all functions available at the Adapter Manager can
be found in our previous project and here we are going to provide only a brief
description about some of the Adapter Manager's essential functions. Firstly,
we will describe the function involved in dynamically loading of an adapter 6.2.
Secondly, we will proceed by providing a description of the functions involved in
service registration 6.2. Finally, we shall describe the functions that are responsi-
ble for forwarding a GET/PUT request message from the HomePort daemon to a
particular adapter 6.2.

Loading Adapter

• void load(char) - It loads an adapter, which is speci�ed by the input formal
parameter of this function. It creates a separate process for the adapter,
which is also sandboxed to run with restricted system permissions and re-
stricted set of resources. Three communication pipes are created between the
adapter and the Adapter Manager processes: two of them for communication
between these two and one for registering new services by the adapter.

Service Registration

• ServiceMsg crServMsg(char description, char ID, char type, char unit,char
device, char get_function, char put_function, char parameter) - Creates a
data structure which describes a service. The essential formal parameters are
the names of the put_function and the get_function. These function names

Implementation 79

are eventually used by the HomePort daemon to �nd and call the actual put
and get functions in a particular adapter upon a HomePort service request.
Device and Parameter structures are created analogically. They are also
describing some important parameters needed to register a service with the
HomePort daemon.

• void wait() - It is called at the Adapter Manager process and runs in an
in�nite loop in the separate thread waiting for an adapter to send messages
containing the service information for registration. These services are further
registered within HomePort.

• void regService(ServiceMsg s, DeviceMsg d, ParameterMsg p, char (get)(ServiceMsg),
char (put)(ServiceMsg)) - Is called when a service registration message ar-
rives from the adapter. It registers the newly created service within the
HomePort.

PUT/GET requests processing HTTP PUT and GET requests received from
the client application on a service are processed in pretty much the same way,
so we are going to describe only the GET request and mention the di�erences
between PUT and GET requests processing. The process stars when HomePort
daemon receives a PUT/GET request, then the corresponding adapter is found
and informed about this request. After that the appropriate PUT/GET function is
executed in the adapter process. The result is then returned back to the HomePort
daemon. Here are the functions that are executed after receiving the request.

• get (Service service, char bu�er, size_t max_bu�er_size) - Main function
for handling all GET requests locally (at HomePort daemon process) and
forwarding them to the adapter process.

• char �ndGet(char ID) - Finds the name of the get function to be executed
in the adapter process.

• int �ndPID(char ID) - Finds the process ID of the adapter that has to
execute the requested "get" function.

• void send_service(ServiceMsg s, int pipe) - Sends the processed request to
the adapter process using the appropriate communication pipe and waits for
a response from the adapter. As soon as it gets the response, it returns
the result to the HomePort daemon which in turn forwards it to the client
application where the request originated.

Here are the functions executed on the adapter's side.

Implementation 80

• void waitForMsg(int pipes[2]) - Waits for incoming PUT/GET requests from
the HomePort deamon.

• ServiceMsg receive_sr() - Receives service's (on which the request was per-
formed) description from the HomePort daemon and initialises local Ser-
viceMsg structure.

• void �ndFun(char name) - Finds the local function that has to be executed
to satisfy the request.

• Executes function returned by void �ndFun(char name) and returns the re-
sult to the HomePort process.

The only di�erence between a PUT and a GET request processing is that a PUT
request requires the client application to send one more parameter that de�nes the
value, that has to be set on the service, to the adapter process and the adapter
process in turn executes a PUT function on its side.

6.3 Distributed and Fault Tolerant HomePort

In this part, we will explain our actual implementation of a distributed and fault
tolerant home automation system using HomePort as a basis for the home automa-
tion part and Chimera for the network part. First, we will describe the essential
functions of the distributed HomePort and then we will illustrate and explain the
event �ow in our system in the actual order of happening to be as clear as possible.

Here is an explanation of the most essential functions used in the implementa-
tion of the distributed HomePort.

• int message_send (void chstate, ChimeraHost host, Message message, Bool
retry)

• void chimera_send (ChimeraState state, Key key, int type, int len, char
data)

These two functions are used to send messages through Chimera. The �rst one
delivers a message directly to the destination using the IP address of the destination
node. The second one routes it through Chimera using only the key.

• void delivery_handler(Key key, Message msg)

Implementation 81

This is the main message handling function of Chimera messaging system. It
is called each time when the message reaches its destination. It allows to take
appropriate actions to handle each message type.

• void startPing()

This is the function that starts the thread responsible for keeping track of the
other nodes. It helps to �nd out when the node in the network dies and needs to
be replaced. This is done by sending periodical "pings" to a few random nodes.
If the counter exceed the predetermined allowed number, the node is considered
down and the program will start looking for a replacement for that node, which
should host its devices by taking over and running appropriate adapters. This is
done in the function:

• void lookForReplacement(char deadHost)

This function, which is called after a node goes down, starts the procedure to
reconnect adapters of the dead node to some other suitable host.

• void ReceiveFile(char ip,int portno, char ServerFilename[],char ClientCopy-
FileName[])

This function is responsible for the transfer of an adapter's binaries. It is used
when backing up or restoring an adapter after the crash.

We have provided an explanation of a few essential functions implemented and
used in the distributed HomePort middleware. Now we are going to describe the
execution work�ow of the main tasks performed by the distributed HomePort,
sequentially. First, any node boots-up and this is explained in the start-up sec-
tion 6.4. The startup process creates a pinging thread and the pinging work�ow
itself is explained in 6.5. A service component is responsible for advertising new
services and this is explained in 6.6. Finally, we provide a description of the
adapter restoration procedure in 6.7.

6.4 Start-up

This procedure initialises a node that is joining the distributed HomePort system.
Figure 16 illustrates the execution �ow.

Now let describe the set of functions executed upon start-up.
First of all, the HomePort daemon is launched using the function:

• HPD_start(HPD_USE_CFG_FILE, "HomePort", HPD_OPTION_CFG_PATH,
"./hpd.cfg")

Implementation 82

Main Thread

startDHT(HOST,PORT, PORT, KEY)

DHT thread

StartPing(...)

Pinging thread

WaitForFileReq thread

WaitForFileReq(...)

chimera_init(port)

chimera_setkey(...)

chimera_register(messages)

loop

startSearchServ()

HPP_start(...)

Alt

[infinite]

[Load Menu – User Input]

[If user input == 1]
load(path)

Figure 16: Startup Message Sequence Diagram

Then we are launching the so called search service adapter described in the design
chapter 5.2. It is a very simple HomePort adapter where a GET function returns

Implementation 83

the status of the node and a PUT function allows to look-up for the address
(metadata) where a speci�c service is hosted. (The service metadata advertisement
procedure is described in our design 5.2). Finally, the search service is registered
within HomePort.

From this point in, the execution �ow is divided into two threads. The main
thread displays a menu that allows users to load adapters on the local node and the
other thread will start executing functions necessary for joining and participating
in Chimera P2P network (DHT thread).

Distributed Hash Table (DHT) thread This thread executes a function
called startDHT(Chimera_IP, Chimera_Port, local_port, nodeID) . Here the �rst
two arguments are an IP address and a port of an existing Chimera node (used for
bootstrapping), and local_port is the port that the newly joining node will listen
to for incoming subsequent requests from other HomePort nodes. The nodeID
speci�es the key which will identify the node in the peer-to-peer network. Here
is a chronological explanation of the set of actions executed by the startDHT(...)
function:

• A listening port is opened and Chimera host structure is initialised by using
the function chimera_init (port).

• The node ID is set in Chimera using the function chimera_setkey (state,
key).

• All the message types needed for identifying messages used by our applica-
tion are registered within Chimera. Such messages are PUT_COMMAND,
GET_COMMAND, ADAPTER_RESTORE, etc.

• Pinging thread is started. It will be explained 6.5

• An adapter binary transfer (WaitForFileReq) thread is started. It is used
for sending an adapter, upon request, to a remote location. Further details
about the adapter transfer procedure will be discussed in 6.7.

6.5 The Pinging process

In our project, "friends" is the term to call the nodes that the current node keeps
track of. In our implementation each node has three friends that can ping it
and up to four that it can ping (of course these numbers can be �ne tuned if
necessary). This di�erence is made to always leave some room for new nodes to
join the network. These friends are established through the pinging procedure.
The sequence diagram of the pinging procedure can be found in �gure 17. Let us
start with the main thread.

Implementation 84

Main Pinging thread

The execution of this thread goes in the in�nite loop which starts by checking if we
still need more nodes to ping the current node. If we still need some (MyPingers
list is not full), then the steps to add a new node, that will ping the current one,
are started. First, we will call this function:

• void searchForPinger()

It corresponds to the main function which will be used to search for pinging nodes
(pingers of the current one). We will then generate a random key. Next, we will
create and send a ping request message to the node responsible for the random
key we just generated:

• void chimera_send (ChimeraState state, Key key, int type, int size, char
_*data)

After this, we will send pings to all the nodes which are already in the current
node's pinging list. The main function for this is:

• void pingFriends()

As we know the direct addresses of the nodes that we are pinging, we can use the
following function to send pings.

• int message_send (void chstate, ChimeraHost host, Message message, Bool
retry)

Each time we ping someone, we have to increase a counter for that friend. This
counter is used to keep track of unanswered pings. So if it reaches a certain limit
(threshold), the friend is declared dead. The counter is reset only when we get a
ping response from that friend.
Back in the main loop, the next step will involve checking if any counter reached
the threshold. The function used is:

• void check()

We start by going through the list of friends to ping. We have two di�erent cases
here: if the counter value is more than zero (but less than the threshold), then we
will just display a warning. But if the counter exceeds the de�ned threshold, then
the node whose counter we checked should be declared dead and we have to start
searching for a replacement for that node. This is done with the function:

• void lookForReplacement(char deadHost)

Implementation 85

This part is explained in the restoration process 6.7.
Then we will sleep for a de�ned time (10 seconds in our case), and then start
the next iteration of the main loop. Every Nth iteration of the main loop, the
neighbourhood set will be refreshed with the function:

• void storeNeighbours()

The �rst step in storeNeighbours() is to get a fresh list of neighbours. To do this
we are using the following function:

• ChimeraHost route_neighbors (ChimeraState state, int count)

And calculate a hash of the localhost key + "neigh". Next, we remove the old
neighbourhood set entries from the DHT using a DHT_RM message together
with the hash value that we just calculated:

• void chimera_send(state, newKey, RM_COMMAND, sizeof(HPMessage),
(char)new)

After that we can store the new neighbourhood set entries using a DHT_PUT
message. This �nishes the tasks of the main pinging thread. Further tasks are
done on the node that actually receives the ping message.

Message handling DHT thread

This is the thread responsible to receive and handle incoming messages and pings.
The main function in this thread is:

• void delivery_handler(Key key, Message msg)

This function handles all the message types that are received by a node. Now
we will analyse the part responsible for handling DHT_PING messages as we
want to show what happens when a "ping" arrives at the node. This part of the
mentioned function consists in two di�erent cases. If the value of the message is
equal to "REQ" (the request to become a pinging friend), then we will try to add
the source of the message in the friends to ping list with the following function:

• int addFriend(char name, char address, int port)

To do this, we check if the source is suitable as a friend to ping (it could be not
suitable if, for example, it is already within the list). We then check if we have
any more room in the friends to ping list. If indeed there is some more space,
then we will add data about the source of the message to the list of friends to
ping. So during the next iteration of the main loop in the pinging thread, this
node will be pinged during the execution of the PingFriend() function. Otherwise,

Implementation 86

if the addFriend(..) function was not successful, we will forward the message to a
random host using getRandomKey() and chimera_send().

The second case is if the message value is equal to "PING" (indication that
the friend is checking if this node is still alive). In this case we are calling:

• void gotPing(char name, char address, int port)

In this function, �rstly we will check if the source of the message is not already in
MyPingers list and if the MyPingers list has any room left. If the conditions are
satis�ed, the source of the message will be added to MyPingers list. After this,
we will just send a DHT_PING_RESPONSE message directly back to the source.

The other part of the void delivery_handler(Key key, Message msg) function
is responsible for handling DHT_PING_RESPONSE messages. Here we will show
what happens when a message is received. We will try to �nd the source of the
message in the friends to ping list and after �nding it, we will only have to reset
its counter to zero. This indicates that the friend is alive and no further action
should be taken.

6.6 The Registration procedure

This is the procedure which is initiated when a new service or adapter needs to
be registered. It starts when a service registration request is received from the
adapter process. Figure 18 shows the sequence diagram of this procedure. Let us
start with an explanation of the �rst part of a procedure that is carried out in the
thread that is waiting for messages coming from adapter.

Communication thread

This thread is the one which is waiting for some message coming from the adapter.
There are two di�erent cases but both are part of the following function:

• void wait()

In the �rst case, the received message will correspond to a new service registration.
In that case, we will �rst calculate the hash of the service name with the function:

• char sha1_keygen1 (ID, digest, KEY_SIZE/BASE_B, power(2,BASE_B))

Then we will put this hash in the DHT together with the IP address and the port of
the local node by sending a DHT_PUT message. This way the service's metadata
is stored in DHT. We are also using a function HPD_register_service(service) to

Implementation 87

<<N1-Thread>> Pinging

[until pinging list is full]

[if counter >= threshold]

[sleep(SLEEP_TIME)]

<<N2-Thread>> DHT message
handling

[if "PING"]

[if "REQ"]

[if there is some space]

[if addFriend was unsuccsessful]

[if conditions satisfied]

startPing()

searchForPinger()

[if need more node to ping
us]pingFriends()

[friendsToPing[i].cnt++]

display_warning()

lookForReplacement()

check()

[Every Nth iteration]

route_neighbors(state, 5)

storeNeighbours()

delivery_handler()

addFriend()

l_avialable(myPingers)

[loop]

getRandomKey()

chimera_send(DHT_PING, ..)
DHT_PING-"PING"

Alt

[if counter > 0]Alt

Alt

chimera_send(state, newKey, RM_COMMAND, sizeof(HPMessage), (char*)new)

chimera_send(PUT_COMMAND, ..)

Alt

l_checkFriendSuitability(name)

l_avialable(friendsToPing)

addSuorce()

Alt

getRandomKey()

Alt

Alt

l_exists(myPingers, name)

l_avialable(myPingers)

gotPing()

add_source()

Alt

<<N1-Thread>> DHT message
handling

message_send(DHT_PING_RESPONSE)

gotResponse(msg->payload)

l_exists(friendsToPing, name)

reset_counter()

DHT_PING-"REQ"

ADAPTER_RESTORE

DHT_RM

DHT_PUT

DHT_PING-"REQ"

Figure 17: The Pinging Process

register the same service with HomePort daemon.
The second case is when we receive a new adapter ID. In that case, we will �rst
calculate a hash value of the local node's key with the function:

• char sha1_keygen1 (MY_KEY, digest, KEY_SIZE/BASE_B, power(2,BASE_B))

Implementation 88

This hash value will then be put into the DHT together with the name of the
adapter by sending a DHT_PUT message again. The next task is to store the
adapter's binary and DHT entry about the binary's location in the same node.
This is done in:

• void storeAdapter(char ID)

In this function, we are calculating a hash value of the adapter's name:

• char sha1_keygen1 (ID, digest, KEY_SIZE/BASE_B, power(2,BASE_B))

And this hash value is placed into the DHT with an indication that this is an entry
about an adapter's location. This step marks the end of the tasks in this thread,
but they continue on the node N that stores the mentioned DHT entry and the
binary �le of the adapter.

Message handling DHT thread on N

This thread is executed on the node that is storing the key value pair sent in the
previous message. It executes a part of message handling the function responsible
for DHT_PUT messages:

• void delivery_handler(Key key, Message msg)

In this step, we �rst test if the message received is an entry about an adapter's
location. Once this is con�rmed, we will download the adapter binary from the
source of the message with the function:

• void ReceiveFile(dhtmsg->OrgAddress, dhtmsg->OrgPort, loc, loc)

This part is explained in more details in the �le transfer section 6.7. After this, we
can �nally put the entry about the binary location to the local hash table. The
key of this entry is the one received in the message and the value is the local IP
and port number. The following function void dht_put(char block, char value) is
used to store the entry (key, value pair).

6.7 Restore Component

We have already described in 6.4 how a pinging thread is started and we have
described the execution work�ow of the pinging thread in 6.5. The set of actions
in the restore component are initiated by the "pinging" thread in its check() func-
tion after a node is declared dead. The check() function in turn calls the function
lookForReplacement(), and this is how the adapter restore procedure is initiated.
A digest of the dead host key is calculated and a message structure is initialised,

Implementation 89

<<N1 - Thread>> Waiting
for communication

<<N2 - Thread>> DHT message
handling

DHT_PUT

[infinite loop]

[else if new adapter id received]

wait()

[if new service registration]

sha1_keygen1 (headGet->ID, digest, KEY_SIZE/BASE_B, power(2,BASE_B))

chimera_send(PUT_COMMAND, ..)

Alt

Alt

sha1_keygen1 (MY_KEY, digest, KEY_SIZE/BASE_B, power(2,BASE_B))

chimera_send(PUT_COMMAND, ..)

sha1_keygen1 (ID, digest, KEY_SIZE/BASE_B, power(2,BASE_B))

chimera_send(PUT_COMMAND, ..)

<<N1 - Thread>> file
request handling

ReceiveFile(Address, Port, loc, loc)

dht_put()

delivery_handler()

File Request
send_file()

Adapter

DHT_PUT

DHT_PUT

Figure 18: The Registration Process

which contains the newly calculated hash value, the key of the dead node and some
additional parameters used for backward communication with the pinging node.

Implementation 90

This message is propagated via Chimera to �nd meta-information about a dead
node. The meta information consists of a list of devices that used to be connected
to the dead node.
Then a node that has the relevant meta-information will receive a request and
the "pinging" node will wait for a response in the blocking function waitFor-
RespList(device_List, random_nodeID. This response will contain all descrip-
tions of all devices (actually the names of device`s adapters) that were connected
to the dead host just before dying. Then the restoration procedure should be
started for each device in the list. The restoration procedure is started by sending
an ADAPTER_RESTORE message. This message is used to notify a node in
Chimera that an adapter restoration must take place.
We have described what actions a pinging node will take in order to start the
restoration procedure. Now let's describe the set of actions taken by the nodes re-
ceiving an ADAPTER_RESTORE request. When a message arrives at any node,
a delivery hander is called which handles the message arrive event in Chimera.
These events are handled on a separate thread that we call the DHT message
thread. Some of the important types of messages that we use in Chimera are:

• PUT_COMMAND

• GET_COMMAND

• DHT_PING

• DHT_PING_RESPONSE

• ADAPTER_RESTORE

• ADAPTER_RESTORE_FWD

• ...

Message ADAPTER_RESTORE As we are describing the adapter restora-
tion execution work�ow, we are going to discuss about what happens when
ADAPTER_RESTORE and ADAPTER_RESTORE_FWDmessages are received.
First of all, when an ADAPTER_RESTORE message is received, it is decoded.
This will be bene�cial as the receiving node will be capable to get information
about a failed node such as its neighbours. A concatenated string is created from
the dead node's key and the string "neigh". Then chimera_send(GET_COMMAND,
digest(deadNode+"neigh"),...) is used in order to get the list of dead node's neigh-
bours using the function waitForRespList(...). The next step taken here is to send
an ADAPTER_RESTORE_FWD message to the �rst (closest) neighbour in the
list using the chimera_send(...) function.

Implementation 91

Message ADAPTER_RESTORE_FWD Such a message will be received
by a neighbour of a dead node. First of all, an acknowledgement is sent to the
originator of the message. Secondly, if the node is capable of running the adapter,
it parses the message content and gets the IP and port of the node hosting the
binary �le of an adapter. Then a procedure for adapter restoration is continu-
ing with the function ReceiveFile(...). This is described in details in 6.7. Once
the �le is copied locally, it is loaded by the HomePort plug-in manager with the
function load(adapterPath). If the node is not capable of running the adapter
and the message hops are less than 5 (this means that we still have some unvis-
ited neighbours in the list), the node executes the same set of actions as in the
ADAPTER_RESTORE handler to forward the message further. If hop count is
more than 5 but less than 70 (the limit that we set for a maximum length of
restoration procedure), the request is propagated to a random node which is de-
termined by a function which generates random nodeIDs getRandomKEY(). Then
the function goes in a loop and waits for an acknowledgement. However, if an
acknowledgement is not received, an ADAPTER_RESTORE_FWD message is
sent to a di�erent node. If an acknowledgement is received, the function returns.
In case when the hop count is more than 70, the message is simply discarded and
the e�ort to restore the adapter is abandoned. The whole procedure illustrating
the interaction between end point nodes is illustrated on �gure 19.

Adapter Transfer

In this subsection, we are going to describe the implementation of the Adapter
Back-up/Restore Component. Note that this in fact is only one part of the adapter
back-up/restore component and namely, that is the part waiting for incoming �le
requests.

Adapter Request Listener As we have mentioned in 6.4, this component runs
in a separate thread which we call the WaitForFileReq thread. In order to set-
up a procedure for �le transfer, the following set of functions are executed in
the WaitForFileReq(port) function running in the component waiting for adapter
transfer requests:

• First a function initSoc() is called which sets-up and binds the process to
a socket where the thread will listen for incoming messages from nodes re-
questing a �le.

• Then the function executes an in�nite loop. In each iteration of this loop,
it waits for a new connection from the client that intends to receive a �le.
A function SendFile() is called for this reason. This function blocks by

Implementation 92

ADAPTER_RESTORE

N5 - message handling
threadN1 - Pinging thread

N2 - message handling
thread

List of Adapters Names

GET_COMMAND Handler

check()

sha1_keygen(...)

lookForRplacement()

N4 -message handling
thread

ADAPTER_RESTORE handler

decodeReq(...)

ADAPTER_SEND_FWD

getNeighbours

TokenizeMessage(...)

ReceiveFile(...)

load(adapter)

[If hops < 5]
decodeReq(...)

getNeighbours

[if capable]

ADAPTER_RESTORE_FWD

[else if hops<70]

[else discard message]

waitForRespList()

Alt

getRandKey(...)

ADAPTER_RESTORE_FWD

[Loop]
[Until ACK is received]

getRandKey(...)

ADAPTER_RESTORE_FWD

ADAPTER_RESTORE_ACN

N3 - message handling
thread

GET_COMMAND Handler
GET_COMMAND,hash(adapter[1] name)

Adapter meta information

waitForResp()

File request

Adapter

GET_COMMAND,hash(dead_node)

Figure 19: Adapter Restoration Message Sequence Diagram

executing the accept() function which makes the node to start listening for
incoming messages from clients. If an incoming connection is initiated, it

Implementation 93

receives the name of the �le to upload, calculates its size and starts to send
this �le, cut in chunks, to the client.

The description of this component so far has dealt with procedure for opening a
socket which will listen for an incoming adapter requests from clients. Now let see
how a client initiates a sent adapter request.

Adapter Requester This is the component that requests a �le and this is called
when the node needs to get an adapter. Determining when an adapter is needed is
discussed in 6.7. The function is called ReceiveFile(char serverIP, int server_port,
char �lepath[], char localCopy[]). This function uses the serverIP and server_port
in order to connect to a server that listens for �le requests. Indeed, this server
is the one having an adapter that is needed by the process calling this function.
Then an adapter that is described by the �lepath[] parameter is transferred and
copied into a localCopy[] �le on chunk by chunk basis.

Experiments 94

7 Experiments

In this chapter, we are going to describe the experiments that we have performed,
in order to evaluate the implementation of DMLSAD. First of all, we will evaluate
the service discovery overhead, caused by chimera DHT and messaging system.
Secondly, we will evaluate the performance delay upon adapter restoration process.

7.1 Service Discovery Experiment

This experiment shows the average time taken for a node to retrieve information
about a service metadata stored in the DHT with respect to the nodes participated
in the network. Theoretically, the complexity of retrieving data stored in Chimera
based on key is log 2bN hops. b is a con�guration parameter which determines
the digit encoding and it usually is 4, which means that the digit encoding is
2b = hexadecimal. If there are 1,000,000 nodes in the network, the hops needed
for data to be retrieved based on its key is log16(1, 000, 000), which equals around
5 hops. We are going to show the realistic delay caused by the routing overlay
expressed in seconds. Figure 20 shows the delay caused by the network for 5, 10,
25, 50 nodes respectively.

5 nodes 10 nodes 25 nodes 50 nodes 100 nodes
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Average Service Discovery Request Propagation Time w.r.t. number of nodes in the network

Figure 20

From this �gure we infer that the delay caused by the network for 50 nodes is
not signi�cant. So a service can be discovered and executed in the same way as it
was locally available with a relatively small overhead of about 0,15 seconds.

7.2 Restoration Experiment

In this experiment, we tried to measure the time between the di�erent events
happening after a node goes down. Also we checked the in�uence of the network

Experiments 95

size to the process of �nding a suitable replacement node. The network sizes
for this experiment were again 5, 10, 25, 50 nodes. First of all, we will take the
experiment with 25 nodes as an example in �gure 21 and point out di�erent events
during this experiment. Here E1 corresponds to the moment where the dead node

0 10 20 30 40 50 60 70 80
0

20

40

60

80

100

120

Restoration Experiment (25 nodes)

Events

T
im

e
(s

)

E
1

E
2

E
3

E
4

P
3

P
4

P
1

P
2

Figure 21: Restoration Experiment with 25 nodes

failed to respond to the ping for the �rst time. From here until the point E2 that
corresponds to the third time the node fails to respond, we have period P1. This
period is dedicated to �nd out if the node in question is actually dead. In our
implementation, three pings which didn't receive any response to one node are
the maximum allowed amount. And since we set the time between pings to 10
seconds, P1 is a little bit over 20 seconds (time for two more pings). So from this
point E2 on, the node in question is considered as dead in the system and the
system will start the restoration process at E3. The con�guration of the nodes
participating in this experiment is that no node can actually restore the adapter
so in theory restoration process would be in�nite (but we have set a limit after
which the process is terminated). The main reason for this is to see how long
it takes to check each additional node for suitability and forward the message.
Results show that this time linearly increases with the number of "visited" nodes.
The period P2 is the time spent for searching for a suitable node . To keep the
restoration process more reliable, we introduced acknowledgements that are sent
back to the origin of restoration request. E4 marks a point where we failed to
get such acknowledgement for some time P3 (3 seconds), which implies restoration
request was not received or processed correctly. In this case after P3 the restoration
request is resent to another node. Finally, P4 is the total time of the restoration

Experiments 96

process in this experiment.
Now we can take a look at the comparison between the same experiment with
di�erent network sizes to see if the number of nodes in the network is a relevant
factor to the time taken within the restoration process. The result from this
comparison can be seen in the following graph 22. We can see from the graph that

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40

41
42

43
44

45
46

47
48

49
50

51
52

53
54

55
56

57
58

59
60

61
62

63
64

65
66

67
68

69
70

71
72

73
74

75
76

77
78

79
80

0

20

40

60

80

100

120

6 nodes

10 nodes

25 nodes

50 nodes

Events

T
im

e
(s

)

Figure 22: Restoration Experiment with di�erent number of nodes

the number of nodes used in the network doesn't have a lot of in�uence on the
time taken during the restoration process and should not be considered as a major
factor. This is a good point because it proves that the system is scalable.

7.3 From Node Down to Adapter Restored

0 10 20 30 40 50 60 70 80 90 100

launching adapter downloading looking for replacement detect to dead crash to detect

Figure 23: From Node Down to Adapter Restored 1

Figure 23 and �gure 24 show the time taken for certain operations to be per-
formed from a node crash to complete adapter restoration. For both of the exper-
iments we use a network of 50 nodes and only one node was capable of hosting
an adapter from crashed host. Furthermore, in both of the experiments, the node
capable of hosting an adapter is not among the nodes in the neighbourhood set.
Checking whether a node is capable of hosting an adapter takes around 1 second.
If the neighbourhood set consists of about 30 nodes, then the procedure will take

Experiments 97

0 5 10 15 20 25 30 35 40 45 50

launching adapter downloading looking for replacement detect to dead crash to detect

Figure 24: From Node Down to Adapter Restored 2

about 80 seconds in the worst case, with a not-so-big adapter binary (e.g. 1MB) and
includes the time taken for announcing the death of a node, looking for a replace-
ment node that can host the adapter, downloading the adapter itself, launching
an adapter and waiting for it to register its services with HomePort.
In both cases we use a small neighbourhood set consisting of 5 nodes. This means
that around 5 �rst seconds in the "looking for replacement" part of the diagram
are spend to traverse the list of the nodes in the neighbourhood set. We are using
a heuristics where after we do not �nd a suitable node among the nodes in the
neighbourhood set of the dead node, we start to "shoot" at random and we choose
the next node to be checked at a random basis. Indeed this is the reason why
our results does not look as what they would look if a node capable of hosting an
adapter will be within the neighbourhood set of a dead node. But as mentioned
before we can consider only the �rst �ve seconds of "looking for replacement part,
if we are sure that a suitable replacement node is in the neighbourhood set of a
dead node.
Other time slices can also vary. "Crash to detect" should be no more than the
pinging period. "Detect to dead" should be a little bit more than two pinging
periods, because we have to count three unanswered pings in the row from the
same node, to declare it dead. "Downloading" time strongly depends on adapter`s
binary size and should linearly increase with it. "Launching adapter" time actually
depends on the implementation and it is hard to speculate. But in the adapter
that is registering its services as soon as it is ready to do that this should not take
more than 10 seconds.
Finally, we can see that the complete restoration time is very dependant on various
factors, but we can state that the service outage period starts somewhere at 30
seconds and can be as high as 2 minutes or more depending on the number of
suitable nodes in the network.

Conclusion and Further Work 98

8 Conclusion and Further Work

8.1 Conclusion

In this project, we worked on providing fault tolerance feature and increasing the
scalability of home automation systems. We �rst made a home automation system
distributed in order to make it more scalable. The distribution of home automation
nodes have become involved in rendering it fault-tolerant. We also consider some
important aspects linked to security in order to provide a secure system which can
be used in critical or business contexts.

Firstly, we decided to use a distributed hash table as the basis of our solution, in
order to distribute the home automation services, remove single points of failure,
add self-con�gurability and self-recoverability properties to the system, and most
importantly providing a mechanism for modelling the entire set of nodes to work
as a whole. Along with all of these bene�ts coming from the use of an overlay
network, some shortcomings are evident as well. The biggest disadvantage of an
overlay network is that it adds a delay to the time taken for an execution of a service
request. This time delay stems from the service discovery procedure, evident in
DMLSAD. Nevertheless, our service discovery experiment 7.1 shows that the delay
caused by the service discovery is very small and a peer-to-peer solution seems to
�t extremely well in our design.

Secondly, a distributed hash table is further used also to store the so called
adapter, which aids the node fault-tolerance feature. The adapter restoration
process used in DMLSAD adds some overhead 7.2 compared to a static restoration
process, but indeed such an approach has its bene�ts such as self-con�guration,
scalability, low price and most importantly, easy to use.

Finally, DMLSAD considers using a fault tolerance composition logic compo-
nent. Such an element can be applied in industrial or home automation systems
only with lightweight set of relations between various services, since such a com-
ponent having a lot of constraints could make DMLSAD not very scalable system.
This is so, because, it needs to keep track of the states of all services. This is
why this component is for optional use and can be even run outside DMLSAD
as a client application. Even though not very scalable, composition logic com-
ponent is sometimes mandatory in systems having dependencies between vendor
speci�c subsystems. Adding a TMR 4.2 fault-tolerance over the execution of the
composition logic is not very expensive in terms of computation complexity. No
matter how modelled (with a timed automata or with set of constraints), solving
such a task is a NP problem in its nature. In this sense, the TMR module adds

Conclusion and Further Work 99

only linear overhead to the already existing computation complexity of solving set
of rules. Therefore, a fault tolerance component would not reduce the scalability
property of such a system. If a system, having a composition logic is scalable, it
will remain scalable after adding a TMR component as well.

Our main requirements to build a working secure and fault-tolerant distributed
home automation system, have been ful�lled in this project. Our prototype is
proof that our solution can be applied not only from a theoretical point of view
but also on a practical basis. Finally, we can state that all of the features avail-
able in DMLSAD makes the system, not just a solution that can be used in the
home automation domain, but it is also a realistic alternative to the existing in-
dustrial SCADA systems, since it possess scalability, fault-tolerance, security and
interoperability (essential for every home automation middleware system) between
di�erent vendor speci�c devices. Indeed, these features are essential for a system
that is to be used in large buildings or real industrial environments.

8.2 Further Work

Our project is divided in a theoretical part of our solution and in its implemen-
tation. Both parts do not contain the same components, because part of the
theoretical solutions has not been implemented yet. Such a project appears to be
a massive one and if one is to make it to be used in reality, one needs to put a lot
of e�ort on making it usable. Since the aim of the implementation was to prove
the concept introduced in the design, we have implemented some of the concepts
in a slightly di�erent way than the one proposed in the design, which was forced
by the deadlines that we had to deal with. That is why we divide the further work
part in the theoretical and implementation work to be done.

Theoretical Work

Although our project implements some security elements, it does not possess any
safety measure. This could be a good aspect to work on further works. While se-
curity is an important aspect in order to protect our system from external attacks,
it would be good not to neglect its safety either. For example, our system could be
responsible for �re monitoring. In this case, it would be interesting that if the node
responsible for this were to fail, another node would automatically take the role of
previous node, in order to keep �re monitoring up at any time. Indeed, DMLSAD
provides such a functionality but as it can be inferred from our experiment 7, the
delay caused by adapter discovery and transfer needs to be eliminated. This can
be accomplished by, �nding a back-up node that can host an adapter for each
node existing in DMLSAD in advance, such that when a node crashes the back-up

Conclusion and Further Work 100

nodes can attach the freed devices immediately. Thus the overall communication
between a device and DMLSAD can work continuously.

A second consideration for future work could be development of an API, dealing
with point to point connections as it was discussed in 4.6.

Implementation Work

While we have an authentication and an end-to-end security solution for securing
our network, these solutions have not been implemented yet. Security is an im-
portant aspect of any system that is to be used in reality, especially in business
or critical environments. Moreover, authentication and encryption are necessary
steps to build a secure distributed home automation system that can be used in
the industry as well. This is why this needs to be implemented before the system
can be used in reality.
We currently have the service advertisement and service lookup implemented but
we do not have any event subscriptions and noti�cations. Since our system is
distributed, it should be possible for any node within the network to subscribe for
any event and then receive noti�cations. Finally, one more theoretical component
needs to be further developed and this is the adapter heterogeneity issue that we
have theoretically addressed in 4.6.
We could conclude that the DMLSAD system could become widely adopted by
households, o�ces and the industry, only after successful further development of
the above mentioned features.

8.3 Final Words

This project was conducted at Aalborg University under the supervision of Asso-
ciate Professor Dr. Arne Skou. We want to express our appreciation to him for
his guidance. We are also grateful to Petur Olsen and Thibaut Le Guilly, PhD
students at Computer Science Department, Aalborg University.

Bibliography

[1] T.R.Gopalakrishnan Nair A. Christy Persya. Fault Tolerant Real Time Sys-
tems . In International Conference on Managing Next Generation Software
Application, 2008.

[2] P. Druschel A. Rowstron. Tapestry: A Resilient Global-Scale Overlay for
Service Deployment . In IEEE Journal on Selected Areas in Communications,
volume 22, pages 41�53.

[3] P. Druschel A. Rowstron. Pastry: Scalable, decentralized object location and
routing for large-scale peer-to-peer systems* . In IFIP/ACM International
Conference on Distributed Systems Platforms, volume 18, November 2001.

[4] Ratul Mahajan-Sharad Agarwal Stefan Saroiu Colin Dixon A.J. Bern-
heim Brush, Bongshin Lee. Home Automation in the Wild: Challenges and
Opportunities . In ACM Conference on Computer-Human Interaction, May
2011.

[5] Carl Landwehr Algirdas Avizienis, Brian Randell. Basic Concepts and Tax-
onomy of Dependable and Secure Computing . In IEEE Transactions on De-
pendable and Secure Computing, volume 1, pages 11�33, January-March 2004.

[6] OSGi Alliance. Open Service Gateway initiative. http://www.osgi.org/

Technology/WhatIsOSGi.

[7] OSGi Alliance. Open System Gateway Initiative. In OSGi Service Platform
Core Speci�cation, Release 4, Version 4.3, pages 1 � 123, Bishop Ranch 6
2400 Camino Ramon, Suite 375, San Ramon, CA 94583 USA, April 2011.

[8] OSGi Alliance. Open System Gateway Initiative Remote Services . In OSGi
Service Platform Core Speci�cation, Release 4, Version 4.3, pages 125 � 135,
Bishop Ranch 6 2400 Camino Ramon, Suite 375, San Ramon, CA 94583 USA,
April 2011.

[9] Zigbee Alliance. Zigbee wireless technology (ieee 802.15.4). http://www.

zigbee.org.

101

http://www.osgi.org/Technology/WhatIsOSGi
http://www.osgi.org/Technology/WhatIsOSGi
http://www.zigbee.org
http://www.zigbee.org

BIBLIOGRAPHY 102

[10] Zwave Alliance. Z-wave protocol . http://www.z-wave.com.

[11] Br. J. NELSON An. D. Birrell. Implementing Remote Procedure Calls . In
ACM Transactions on Computer Systems, volume 2, pages 39�59, ACM New
York, NY, USA, February 1984.

[12] Daniel D. Gajski Andreas Gerstlauer, Haobo Yu. RTOS Modeling for System
Level Design. In Design, Automation and Test in Europe Conference and
Exhibition, number 1530-1591, pages 130 � 135, 2003.

[13] U.C. Santa Barbara. Chimera: Light-Weight and E�cient Implementation of
a Structured Peer-to-Peer overlay Network . http://current.cs.ucsb.edu/
projects/chimera/.

[14] Global Caché. GC-100 Network Adapter . Number 032706-01, June 2008.

[15] Jiankun Hu Zahir Tari Xinghuo Yu Carlos Queiroz, Abdun Mahmood. Build-
ing a SCADA Security Testbed . In Network and System Security, number
978-0-7695-3838-9, pages 357 � 364, Oct 2009.

[16] Christian Rechberger Christophe De Cannière. Finding SHA-1 Characteris-
tics: General Results and Applications . In Lecture Notes in Computer Science,
Advances in Cryptology � ASIACRYPT, volume 4284, pages 1�20, 2006.

[17] Nikolaos Georgantas Valérie Issarny Jorge Parra Remco Poortinga
Daniele Sacchetti, Yérom-David Bromberg. The Amigo Interoperable Mid-
dleware for the Networked Home Environment .

[18] Sami Zahran Donatas Poteli	unas, Tihomir Georgiev. Seamless Integration of
Devices into HomePort .

[19] Kelvin Erickson. Programmable logic controllers . In Potentials, volume 15,
pages 14 � 17, Feb 1996.

[20] Jacobson V. Liu C. McCanne S. Zhang L. Floyd, S. A Reliable Multicast
Framework for Light-weight Sessions and Application Level Framing . In
IEEE/ACM Transactions on Networking, volume 5, pages 784�803, December
1997.

[21] UPnP Forum. UPnP Device Architecture 1.0 . http://www.upnp.org/specs/
arch/UPnP-arch-DeviceArchitecture-v1.0-20080424.pdf.

[22] Kim G. Larsen Gerd Behrmann, Alexandre David. A Tutorial on Up-
paal 4.0 . http://www.it.uu.se/research/group/darts/papers/texts/

new-tutorial.pdf.

http://www.z-wave.com
http://current.cs.ucsb.edu/projects/chimera/
http://current.cs.ucsb.edu/projects/chimera/
http://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.0-20080424.pdf
http://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.0-20080424.pdf
http://www.it.uu.se/research/group/darts/papers/texts/new-tutorial.pdf
http://www.it.uu.se/research/group/darts/papers/texts/new-tutorial.pdf

BIBLIOGRAPHY 103

[23] IBM. OSGi bundles . http://publib.boulder.ibm.com/infocenter/

radhelp/v8/index.jsp?topic=%2Fcom.ibm.osgi.common.doc%2Ftopics%

2Fcbundles.html.

[24] A. Skou R. Torbesen J. Brønsted, P. Printz Madsen. The HomePort System.
In Consumer Communications and Networking Conference (CCNC), number
978-963-311-369-1, Las Vegas, NV, Jan 2010.

[25] E. F. Camacho J. M. Maestre. Smart home interoperability: the DomoEsi
project approach. In International Journal of Smart Home, volume 3.

[26] Keith W. Ross Jian Liang, Rakesh Kumar. Understanding KaZaA.

[27] Dick Epema Henk Sips Johan Pouwelse, Paweª Garbacki. The Bittorrent
P2P File-Sharing System: Measurements and Analysis . In Lecture Notes in
Computer Science, Peer-to-Peer Systems IV, volume 3640, pages 205�216,
2005.

[28] Brian Jones Ed Price Elizabeth D. Mynatt Gregory D Julie A. Kientz, Shwe-
tak N. Patel. The Georgia Tech Aware Home. In Extended Abstracts on Hu-
man Factors in Computing Systems, number 978-1-60558-012-8, New York,
NY, USA, 2008.

[29] M.F. Kaashoek. Group Communication in Distributed Computer Systems . In
Computer Communications, Amsterdam, 1992.

[30] Lehman E. Leighton T. Panigrahy R. Levine M. Lewin D. Karger, D. Con-
sistent hashing and random trees: distributed caching protocols for relieving
hot spots on the World Wide Web. In STOC '97 Proceedings of the twenty-
ninth annual ACM symposium on Theory of computing, number 0-89791-888-
6, pages 654�663, ACM New York, NY, USA, 1997.

[31] Anwitaman Datta Zoran Despotovic Manfred Hauswirth Magdalena Punceva
Roman Schmidt Karl Aberer, Philippe Cudré-Mauroux. P-Grid: a self-
organizing structured P2P system. In ACM SIGMOD Record, volume 32,
pages 29 � 33, ACM New York, NY, USA, September 2003.

[32] Simon Rieche Klaus Wehrle, Stefan Götz. Distributed Hash Tables . In Lecture
Notes in Computer Science, Peer-to-Peer Systems and Applications, volume 5,
pages 79�93, 2005.

[33] A. Avizienis L. Chen. N-Version Programming : a Fault-Tolerance Approach
to Reliability of Software Operation. In Proceedings of FTCS-25, volume 3,
pages 3�9, 1996.

http://publib.boulder.ibm.com/infocenter/radhelp/v8/index.jsp?topic=%2Fcom.ibm.osgi.common.doc%2Ftopics%2Fcbundles.html
http://publib.boulder.ibm.com/infocenter/radhelp/v8/index.jsp?topic=%2Fcom.ibm.osgi.common.doc%2Ftopics%2Fcbundles.html
http://publib.boulder.ibm.com/infocenter/radhelp/v8/index.jsp?topic=%2Fcom.ibm.osgi.common.doc%2Ftopics%2Fcbundles.html

BIBLIOGRAPHY 104

[34] W. Allen L. Nagy, R. Ford. N-Version Programming for the Detection of
Zero-day Exploits . In The 2006 IEEE Topical Conference on Cybersecurity,
April 2006.

[35] L. Mangeruca A. SangiovanniVincentelli M. Peri S. Pezzini M. Baleani, A. Fer-
rari. FaultTolerant Platforms for Automotive SafetyCritical Applications .

[36] David Parker Marta Kwiatkowska, Gethin Norman. Probabilistic
model checking in practice: Case studies with PRISM . http://www.

prismmodelchecker.org/papers/acmper_prism.pdf.

[37] Charles Morisset Anders P.Ravn Miaomiao Zhang, Zhirning Liu. Design and
Veri�cation of Fault-Tolerant Components .

[38] Victor S. Miller. Use of Elliptic Curves in Cryptography . http://link.

springer.com/content/pdf/10.1007%2F3-540-39799-X_31.pdf, 1986.

[39] S. Misbahuddin. Fault Tolerant Remote Terminal Units (RTUs) in SCADA
Systems . http://www.researchgate.net/publication/224143321_Fault_
tolerant_remote_terminal_units_(RTUs)_in_SCADA_systems.

[40] R. Morrison. Digital Certi�cate Vulnerabilities . http://www.cs.ucsb.edu/

~koc/ns/projects/02Reports/M.pdf.

[41] MSDN. Windows Communication Foundation. http://msdn.microsoft.

com/en-us/library/dd456779.aspx.

[42] MSDN. Windows Presentation Foundation. http://msdn.microsoft.com/

en-us/library/ms754130.aspx.

[43] Nintendo. Wii Operations Manual . 2009.

[44] University of California. Fault-Tolerant Computing . http://www.cs.ucla.

edu/~rennels/article98.pdf.

[45] Oracle. RMI . http://docs.oracle.com/javase/tutorial/rmi/.

[46] M. Schroeder R. Needham. Using encryption for authentication in large net-
works of computers .

[47] Timothy M. Pinkston Rajeev Balasubramonian. Buses and Crossbars . 2011.

[48] L. Adleman R.L.Rivest, A. Shamir. A Method for Obtainig Digital Signatures
and Public-Key Cryptosystems . http://people.csail.mit.edu/rivest/

Rsapaper.pdf, 1978.

http://www.prismmodelchecker.org/papers/acmper_prism.pdf
http://www.prismmodelchecker.org/papers/acmper_prism.pdf
http://link.springer.com/content/pdf/10.1007%2F3-540-39799-X_31.pdf
http://link.springer.com/content/pdf/10.1007%2F3-540-39799-X_31.pdf
http://www.researchgate.net/publication/224143321_Fault_tolerant_remote_terminal_units_(RTUs)_in_SCADA_systems
http://www.researchgate.net/publication/224143321_Fault_tolerant_remote_terminal_units_(RTUs)_in_SCADA_systems
http://www.cs.ucsb.edu/~koc/ns/projects/02Reports/M.pdf
http://www.cs.ucsb.edu/~koc/ns/projects/02Reports/M.pdf
http://msdn.microsoft.com/en-us/library/dd456779.aspx
http://msdn.microsoft.com/en-us/library/dd456779.aspx
http://msdn.microsoft.com/en-us/library/ms754130.aspx
http://msdn.microsoft.com/en-us/library/ms754130.aspx
http://www.cs.ucla.edu/~rennels/article98.pdf
http://www.cs.ucla.edu/~rennels/article98.pdf
http://docs.oracle.com/javase/tutorial/rmi/
http://people.csail.mit.edu/rivest/Rsapaper.pdf
http://people.csail.mit.edu/rivest/Rsapaper.pdf

BIBLIOGRAPHY 105

[49] H. Schulzrinne S. Baset. An Analysis of the Skype Peer-to-Peer Internet
Telephony Protocol .

[50] John C.-H. Lin Supratik Bhattacharyya Sanjoy Paul, Krishan K. Sabnani.
Reliable Multicast Transport Protocol (RMTP). In Selected Areas in Commu-
nications, IEEE Journal on, volume 15, pages 407 � 421, April 1997.

[51] Charles Yiu-John Zimmerman Scott Davido�, Min Kyung Lee and Anind K.
Dey. Principles of Smart Home Control . In Proceedings of the 8th interna-
tional conference on Ubiquitous Computing, number 3-540-39634-9 978-3-540-
39634-5, Springer-Verlag Berlin, Heidelberg, 2006.

[52] Bruno Souza. The JiniTM Architecture. In JavaOne, Sun's 1999 Worldwide
Java Developer Conference, San Francisco, California.

[53] St. D. Gribble St. Saroiu, Kr. P. Gummadi. Measuring and analyzing the char-
acteristics of Napster and Gnutella hosts . In Multimedia Systems, volume 9,
pages 170�184�59, Springler, 2003.

[54] Kenneth Lausdahl Augusto Ribeiro Thomas Skjødeberg Toftegaard
Sune Wol�, Peter Gorm Larsen. Facilitating Home Automation Through
Wireless Protocol Interoperability . In Wireless Personal Communications:
An International Journal, volume 53, pages 465�479, May 2010.

[55] National Communications System. Supervisory Control and Data Acquisition
(SCADA) Systems . http://www.ncs.gov/library/tech_bulletins/2004/
tib_04-1.pdf.

[56] E. Rescorla T. Dierks. The Transport Layer Security (TLS) Protocol Version
1.2 . http://tools.ietf.org/html/rfc5246, 2008.

[57] A. P. Ravn J. Brix Rosenkilde A. Skou Th. Le Guilly, P. Olsen. HomePort:
Middleware for Heterogeneous Home Automation Networks . In Smart En-
vironments and Ambient Intelligence, number 0-89791-888-6, pages 654�663,
"San Diego California, EEUU", 2013 1997.

[58] Aalborg Univeristy. HomePort's Source Code Repository . github.com/

home-port/HomePort.

[59] Pulseworx UPB. . http://pulseworx.com/UPB_.htm.

[60] Maurizio Manca Gabriele Tolomei Vittorio Miori, Luca Tarrini. An Open
Standard Solution for Domotic Interoperability . In IEEE Transactions on
Consumer Electronics, volume 52, pages 97 � 103, 2006.

http://www.ncs.gov/library/tech_bulletins/2004/tib_04-1.pdf
http://www.ncs.gov/library/tech_bulletins/2004/tib_04-1.pdf
http://tools.ietf.org/html/rfc5246
github.com/home-port/HomePort
github.com/home-port/HomePort
http://pulseworx.com/UPB_.htm

BIBLIOGRAPHY 106

[61] W3C. Server-Sent Events . http://www.w3.org/TR/2009/

WD-eventsource-20090423/.

[62] w3schools.com. SOAP Tutorial . http://www.w3schools.com/soap/

default.asp.

[63] w3schools.com. WSDL and UDDI . http://www.w3schools.com/wsdl/

wsdl_uddi.asp.

[64] D. Wagner. Resilient aggregation in sensor networks . In Proceedings of the
2nd ACM workshop on Security of Ad Hoc Sensor Networks, page 78�87, San
Francisco, California, 2004.

[65] John Heidemann Wei Ye. Enabling Interoperability and Extensibility of Future
SCADA Systems . Number SI-TR-625� Oct 2006.

[66] X-10. . http://www.x10.com.

[67] Lee Breslau Nick Lanham Scott Shenker Yatin Chawathe, Sylvia Ratnasamy.
Making Gnutella-like P2P Systems Scalable. In SIGCOMM'03, Karlsruhe,
Germany, number 1-58113-735-4/03/0008, August 2003.

http://www.w3.org/TR/2009/WD-eventsource-20090423/
http://www.w3.org/TR/2009/WD-eventsource-20090423/
http://www.w3schools.com/soap/default.asp
http://www.w3schools.com/soap/default.asp
http://www.w3schools.com/wsdl/wsdl_uddi.asp
http://www.w3schools.com/wsdl/wsdl_uddi.asp
http://www.x10.com

Appendix A

Taxonomy and Terminology

Note: the listed taxonomy uses source [5] :

System - Hardware, software, humans, etc. A system interacts with other sys-
tems.

Environment - A system and all systems that it interacts with.

System Boundary - The border between a system and its Environment.

Function - A system's intentional purpose.

Behaviour - The way that a system implements its Function. A behaviour
characterizes itself with states.

Total State - A set of the computation, interconnection, networking ,etc states.

Structure - Makes it possible for a system to compose its behaviour (system of
systems).

Service - System behaviour from service consumer's perspective.

User - Service's consumer.

Failure - Incorrect service.

Service Outage - Time interval of incorrect service delivery.

107

108

Service Restoration - The transition from incorrect to correct service.

Failure modes - Ranked failure severities.

Error - Incorrect total state of a system that may lead to a service failure.

Fault - Reason for a system error.

System's Degraded Mode - When a system o�ers reduced set of services to
the service consumers. And the degraded mode can be further sub-classi�ed into

• Slow service - When a service does not provide a result in a timely manner.

• Limited service - A service does not o�er its full capabilities to the consumer.

• Emergency service - An alternative to the original version of a service. It is
used only in emergency situations.

Dependability - Not allowing service failures more than an acceptable limit. A
service is dependable if satis�es the following properties:

• Availability.

• Reliability.

• Safety.

• Integrity.

• Maintainability.

According to potential types of faults that can occur in a system, protective
measures ensuring dependability subdivide into the following categories:

• Fault Prevention - General engineering activities take care of fault preven-
tion.

• Fault Tolerance - Avoiding service failures when a fault occurs.

• Fault Removal - Decreasing severity of faults, when present.

• Fault Forecasting - Estimating the likelihood of fault occurrence and the
probable fault consequences.

According to [5] and [1], the types of faults could be:

109

Development faults - Made during development phase and occur during use
phase.

Operational Faults - Occur during the use phase.

Internal Faults - Caused by an internal error.

External Faults - Caused by external entities.

Natural Faults - Caused by a phenomenon. These faults can be eliminated if
a system is distributed over a large geographic area.

Human-Made faults - Faults caused by human actions.

Hardware faults - Service is not accessible due to a hardware problem.

Malicious faults - Made during system development or during system use and
occur during system use. These are intentional faults made to crash or alter the
system's functionality at run-time.

Deliberate faults - Caused because of misplaced decisions.

Non-Deliberate faults - Developer's unintentional faults, mistakes.

Permanent faults - Once occurred, they persist until human intervention.

Transient faults - A fault that occur for an interval of time.

Intermittent - It is a type of fault speci�c to periodic tasks, where the error
persists throughout the cycle of a periodic task.

	Introduction
	Overview of Domotics
	Objectives
	Motivation
	Example
	Hypothesis
	Methodology

	Related work
	UPnP
	AMIGO
	DomoNet
	EPIC
	DomoEsi
	OSGi
	Jini
	HomePort
	SCADA

	Requirements
	Prerequisites
	Failures and Failure Remedies
	Redundancy
	Distribution of Nodes
	Group communication
	Security
	Design Choices

	Design of the Distributed Middleware for Large Scale Automation Domains (DMLSAD)
	Overview
	Components
	Component Interaction

	Implementation
	Chimera DHT library
	HomePort API
	Distributed and Fault Tolerant HomePort
	Start-up
	The Pinging process
	The Registration procedure
	Restore Component

	Experiments
	Service Discovery Experiment
	Restoration Experiment
	From Node Down to Adapter Restored

	Conclusion and Further Work
	Conclusion
	Further Work
	Final Words

	Taxonomy and Terminology

