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Abstract. We present min-max graphs; a technique to encode the model
checking problem of weighted Computation Tree Logic (CTL), with non-
negative constraints on the modalities, against weighted Kripke struc-
tures. We outline previous efforts to encode this problem using depen-
dency graphs and their symbolic extension. We demonstrate how to
model check weighted CTL through fixed-point computation on a graph
that encodes the problem, using global and local/on-the-fly fixed-point
algorithms. Moreover, we have implemented the algorithms and evalu-
ated their performance through experiments. In turn, we conclude that
the local approach is often very advantageous.

1 Introduction

Model checking is a technique for automatically determining whether a model of
a system adheres to a specification. For instance, there are often certain safety,
correctness and performance requirements associated with the development of
complex hardware and software systems. To this extent model checking offers a
means to verify whether the model of some system satisfies the constraints of
a specification. Such specifications may be defined formally as propositions in
temporal logic and validated against the model through a model checker. If there
is a violation of the specification, a counter-example is provided and the model
can then be redesigned. Hence, certain functional properties of the system may
be verified in a precise, unambiguous and rigorous way.

Although it is possible to express functional properties of systems using tem-
poral logic, other aspects such as timing and resource constraints (e.g. bandwith,
memory, power usage, etc) should also be captured. In particular, for embedded
systems, these constraints must necessarily be adressed. A number of modeling
formalisms have been proposed in an effort to accomodate the need for expressing
such quantitative properties. Notably, timed automata (TA) [1] and variants of
weighted timed automata (WTA), with cost information both on locations and
edges [6,2], have received considerable interest, including tool support [20,25,12].

Well-established temporal logics such as branching time (CTL) and linear
time (LTL) temporal logic permit natural weighted extensions, making it is
possible to describe quantitative behavorial properties such as cost constraints on



modalities. Moreover, CTL and LTL have been extended with time-constrained
modalities in the form of TCTL and MTL, respectively. WCTL and WMTL
are similar extensions weighted, yet interpreted over WTAs. Unfortunately, the
addition of weight to TAs has a severe limitation. While the model checking TAs
using TCTL and MTL is decidable, it has been proved to be undecidable for
WTAs (with at least three clocks) with respect to WCTL [8].

We direct our attention to model checking untimed models with the addition
of weights. Specifically, models are described using weighted Kripke structures
and behavioural properties are expressed in weighted CTL with bounded con-
straints on the weights. Our main contributions are an efficient symbolic encod-
ing of the WCTL model checking problem, and a local/on-the-fly model checking
algorithm. In addition, we show that our approach is in PTIME.

The results of this paper are based off ideas from Liu and Smolka’s depen-
decy graphs (DG) [22]. They essentially encode boolean equation systems using
DGs and describe local and global algorithms for computing alternation-free
fixed-points on DGs in linear time. However, DGs lead to a pseduo-polynomial
encoding with the addition of weights to the formulas. To remedy this, DGs are
lifted to the weighted setting with a symbolic extension, called symbolic depen-
dency graphs (SDG), to encode the WCTL (negation-free and with upper-bound
constraints) model checking problem more efficiently in [13]. Still, this approach
is limited to an alternation- and negation-free WCTL sub-logic.

In this paper we take the idea of a symbolic encoding a step further in the
shape of min-max graphs (MMGs). The advantage of this technique is that we
can support a more expressive WCTL logic, a polynomial encoding, and still
solve the model checking problem using on-the-fly fixed-point evaluation. We
provide experimental results that compare MMGs to the previously attempted
techniques and evaluate their performance on a large set of models. These results
demonstrate that the local MMG algorithm is generally just as efficient as the
symbolic local algorithm. Furthermore, the algorithm preserves the desirable
property of the symbolic local one in that is often an order of magnitude faster
for positive outcomes.

Related Work

Laroussinie, Markey and Oreiby [17] consider the problem of model checking
durational concurrent game structures with respect to timed ATL properties.
They describe a PTIME procedure for verifying formulae with non-punctual
constraints, i.e. without equality. By limiting the game structure to a single
player we are essentially left with WCTL. Nevertheless, the approach in [17] is
limited to non-zero transition weights, has no weak until modality and the algo-
rithm is global, requiring a full state-space exploration. We do, however, allow
zero-weights in the model, resulting in the need for fixed-point evaluation. Hence,
our approach subsumes regular unweighted CTL model checking, in constrast to
[17]. Moreover, [17] provide no implementation nor any local algorithm, which
our experiments show is often superior.
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Lauroussinie, Schnoebelen and Turuani [16] study the expressive power of
CTL extended with discrete time. The elapse of time is encoded with a propo-
sition tick. Extending this technique for the general weighted setting results in
a pseudo-polynomial algorithm.

Buchholz and Kemper [9] propose a valued computation tree logic (CTL$)
that is interpreted over a general set of weighted automata. Regular CTL is
included as a special case over the boolean semiring. Model checking CTL$ is
then carried out through a matrix-based approach. Their algorithm supports a
fully nested logic, including negation and all of the comparison operators with
respect to the bounds in the formula. However, no local algorithm is provided.

Laroussinie, Meyer and Petonnet [18] demonstrate P-completeness of TCTL
model checking against durational Kripke structures with additive transition
weights belonging to {−1, 0, 1}. The until modality with upper- and lower-bound
constraints is supported by checking the unconstrained CTL formula and running
the Floyd-Warshall algorithm to compute the all-pairs shortest paths over those
states that satisfy the formula. This approach can be extended to handle weights
in Z, but has cubic complexity and is inherently global, requiring a complete
state-space exploration.

A number of techniques for local model checking of the modal mu-calculus
have been proposed. A local procedure running inO(n·log(n)) for model checking
the modal mu-calculus with alternation depth one is described in Andersen [3].
Liu and Smolka [22] improve with a linear-time local algorithm (in the size of the
input graph) for evaluating alternation-free fixed points on dependency graphs.
We adopt the ideas of [22] and tailor them for WCTL model checking.

Liu, Ramakrishnan and Smolka introduce a local and efficient algorithm for
the evaluation of alternating fixed-points in [21]. As a result, this can be applied
to model checking of the full modal mu-calculus. The central idea is partition
the vertices of a dependency graph into blocks, labelled with the fixed-point
operator µ or ν, where the ith block represents the ith-most nested fixed-point.
The fixed-point is then computed iteratively, avoiding a priori construction of
the state space. Nevertheless, this framework is subject to a exponentially large
graphs with the addition of weights (as for dependency graphs).

Consequently, we employ a different strategy to handle both the weights and
the nesting of fixed points. Rather, weights are handled with a symbolic encoding
and alternation is achieved with special “cover”-edges. The nesting is handled
by ensuring that the bottom-most fixed-points have been established before the
values are propagated upwards. Despite this restriction we are still able to offer
an efficient local algorithm.
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Outline. Weighted Kripke structures and Weighted CTL (WCTL) are presented
in Section 2. In Section 3 dependency graphs are introduced and a reduction
from a negation-free subset of the WCTL model checking problem is covered.
We expand upon dependency graphs in the form of symbolic dependency graphs,
present a local algorithm and discuss this approach in terms of negation-free
WCTL model checking in Section 4. A more general technique in the form of
min-max graphs is proposed in Section 5. Section 6 introduces a global algorithm
for fixed-point computation on min-max graphs, and Section 7 provides details
for a local algorithm. A reduction from the full WCTL model checking problem
is then described in Section 8. Section 9 presents a weighted variant of CCS.
Experimental results are presented in Section 10 and Section 11 concludes the
paper. Section 12 includes bibliographical remarks.

2 Weighted Kripke Structure

We use Kripke structures, well-known model for temporal logic, to derive a model
for the weighted setting. Weighted Kripke structures extends this model with a
weighted transition relation. A natural interpretation is to consider the weights
as the cost associated with taking transitions. This extension is similar to that
in [19], yet the weights in our version are nonnegative, rather than real-valued.
In addition, we provide a definition of weighted computation tree logic and its
semantics. Let N0 denote the set of natural numbers including zero, a weighted
Kripke structure is defined as follows.

Definition 1 (Weighted Kripke Structure). A Weighted Kripke Structure
(WKS) is a quadruple K = (S,AP, L,→), where

– S is a finite set of states,
– AP is a finite set of atomic propositions,
– L : S → P(AP) is a mapping from states to sets of atomic propositions, and
– →⊆ S × N0 × S is a transition relation.

Whenever (s, w, s′) ∈→ for some WKS K = (S,AP, L,→), we say that there

is a transition from s to s′ with the weight w, denoted s
w→ s′. A WKS is said to

be non-blocking if for every s ∈ S there exists s′ ∈ S such that s
w→ s′ for some

weight w ∈ N0. From now on we shall only consider non-blocking structures.

Remark 1. A blocking WKS can be transformed to a non-blocking WKS by
introducing an auxiliary state s⊥, such that s⊥ has no atomic propositions, a
zero-weight self-loop and an ingoing zero-weight transition from every blocking
state.

A run in a WKS K = (S,AP, L,→) is an infinite computation σ = s0
w0→

s1
w1→ s2

w2→ s3 . . ., where si ∈ S and (si, wi, si+1) ∈→ for all i ≥ 0. Given a
position p ∈ N0 in the run σ, let σ(p) = sp. The accumulated weight of σ at
position p is then

Wσ(p) =

p−1∑
i=0

wi
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We now define Weighted Computation Tree Logic (WCTL) with weight
upper- and lower-bounds. The set of WCTL formulas over the set of atomic
propositions AP is given by the abstract syntax

ϕ ::= true | false | a | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | QX ./k ϕ |
Q ϕ1 U≤k ϕ2 | Q ϕ1 W≥k ϕ2 | ¬ϕ

where Q ∈ {E,A}, k ∈ N0 ∪ {∞}, a ∈ AP, and ./ ∈ {≤,≥}.
Note that we omit the “=” operator, as the model checking problem for tem-

poral formulas with “=” is EXPTIME-complete [17]. We denote the negation-
free WCTL fragment, without the weak until modality, and which only permits
upper-bounds as WCTL≤.

The standard abbreviated CTL operators are derived: EF≤k ϕ ≡ E true U≤k ϕ,
AF≤k ϕ ≡ A true U≤k ϕ, EG≤k ϕ ≡ ¬AF≤k ¬ϕ and AG≤k ϕ ≡ ¬EF≤k ¬ϕ,
as shown for unweighted CTL in [11]. Note that the usual CTL operators are
included, since U is equivalent to U≤∞.

Given a WKS K = (S,AP, L,→), a state s ∈ S and a WCTL formula ϕ over
AP, we write s |= ϕ if the state s satisfies ϕ. The semantics of WCTL is given
inductively as follows.

s |= true

s |= a if a ∈ L(s)

s |= ϕ1 ∧ ϕ2 if s |= ϕ1 and s |= ϕ2

s |= ϕ1 ∨ ϕ2 if s |= ϕ1 or s |= ϕ2

s |= E ϕ1 U≤k ϕ2 if there exists a run σ starting from s s.t. σ |= ϕ1 U≤k ϕ2

s |= A ϕ1 U≤k ϕ2 if for any run σ starting from s we have σ |= ϕ1 U≤k ϕ2

s |= E ϕ1 W≥k ϕ2 if there exists a run σ starting from s s.t. σ |= ϕ1 W≥k ϕ2

s |= A ϕ1 W≥k ϕ2 if for any run σ starting from s we have σ |= ϕ1 W≥k ϕ2

s |= EX ./k ϕ if there exists s′ s.t. s
w→ s′ands′ |= ϕ with w ./ k

s |= AX ./k ϕ if for all s′ s.t. s
w→ s′ with w ./ k it holds that s′ |= ϕ

s |= ¬ϕ if s 6|= ϕ

σ |= ϕ1 U≤k ϕ2 if there is a position p ≥ 0 s.t.

σ(p) |= ϕ2,Wσ(p) ≤ k and σ(p′) |= ϕ1 for all p′ ≤ p
σ |= ϕ1 W≥k ϕ2 if σ(p) |= ϕ1 for all p, or if there is a position p ≥ 0 s.t.

σ(p) |= ϕ2,Wσ(p) ≥ k and σ(p′) |= ϕ1 for all p′ ≤ p
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Fig. 1. A simple WKS model of a three-state controller

Example 1. Figure 1 illustrates a simple WKS K = (S,AP, L,→), where

S = {s, t, r}
AP = {off, on, standby}
L = {w 7→ {on}, r 7→ {standby}, s 7→ {off}}
→ = {(w, 10, w), (w, 0, r), (r, 1, r), (r, 10, w), (r, 0, s), (s, 30, r)}

The WKS models a simple three-state controller. It may alternate between three
states. Intuitively, it may either be performing work in state w, idle in r or
powered down in s.

There is a cost in resources associated with doing work in state w. Also, there
is a relatively high cost of 30 resource units incurred when transitioning from
the off -state s to the standby-state r, because the controller is entirely powered
down in s.

Finally, there is a small cost associated with polling for tasks in state r.
Hence, there is a trade-off between having the controller in the idle state or
turning it off, depending on the amount of work that arrives.

For the WKS in Figure 1 we can express the property that we can transition
from off to on using less than 50 resource units as s |= EF<50 on. While WCTL
as introduced above does not allow for strict comparison operators, this has no
practical limitations, because weights are discrete, hence, the statement s |=
EF<50 on is equivalent to s |= EF≤49 on.
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3 Dependency Graph

In this section we shall introduce Liu and Smolka’s dependency graph framework
for alternation-free fixed-point computation, as presented in [22]. An applica-
tion of dependency graphs is model checking of the alternation-free modal mu-
calculus. We demonstrate that the framework can be straightforwardly adapted
to CTL model checking with the addition of weights.

Definition 2 (Dependency Graph). A dependency graph (DG) is a pair
G = (V,E) where V is a finite set of configurations, and E ⊆ V × P(V ) is a
finite set of hyper-edges.

Let G = (V,E) be a dependency graph. A hyper-edge e = (v, T ) consists of a
source configuration v and target set T . The set of successors of a configuration
is succ(v) = {(v, T ) ∈ E}. An assignment A : V → {0, 1} is a mapping from
configurations in G to boolean values. A pre fixed-point assignment of G is an
assignment A, such that for every v ∈ V , if (v, T ) ∈ E and A(u) = 1 for every
u ∈ T , then also A(v) = 1.

By the standard component-wise ordering v (with 0 < 1) on assignments,
where A v A′ if and only if A(v) ≤ A′(v) for all v ∈ V , we have by the
Knaster-Tarski fixed-point theorem that there exists a unique minimum pre
fixed-point assignment, denoted Amin . We denote the set of all assignments by
Assign. It can be computed by repeated application of the monotonic function
F : Assign → Assign, listed below. The function is evaluated with the initial
assignment A0(v) = 0 for all v ∈ V .

F (A)(v) =
∨

(v,T )∈E

(∧
u∈T

A(u)

)

We write F i(A) to denote the ith application of F on A, that is F i(A) =
F (F i−1(. . . F 1(A))). Because F is evaluated on a finite complete lattice, we al-
ways to reach a fixed-point after a finite number of applications. Thus, we have
that Fm(A0) = Amin for some m ∈ N0, such that Fm(A0) = Fm+1(A0). We
shall refer to repeated application of the functor F as the global algorithm.

3.1 Local Minimum Fixed-Point Algorithm

Often we are only interested in the minimum fixed-point for a specific con-
figuration v0, e.g. in many model checking questions. For this reason Liu and
Smolka [22] propose a local algorithm to compute the value of Amin(v0) on-
the-fly. Algorithm 1 lists the slightly modified1 pseudo code of their algorithm.

1 At line 1 we added the current hyper-edge e to the dependency set D(u) of the suc-
cessor configuration u, i.e. D(u) = {e}. The original algorithm sets the dependency
set to be empty here, leading to incorrect propagation.
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Algorithm 1: Liu-Smolka Local Algorithm

Input: Dependency graph G = (V,E) and initial configuration v0 ∈ V
Output: Minimum fixed-point assignment of v0, Amin(v0)
let A(v) := ⊥ for all v ∈ V
A(v0) := 0
D(v0) := ∅
W := succ(v0)
while W 6= ∅ do

let e := (v, T ) ∈W
W := W \ {e}
if ∀u ∈ T it holds that A(u) = 1 then

A(v) := 1
W := W ∪D(v)

else if ∃u ∈ T where A(u) = 0 then
D(u) := D(u) ∪ {e}

else if ∃u ∈ T where A(u) = ⊥ then
A(u) := 0
D(u) := {e}
W := W ∪ succ(u)

return A(v0)

The basic idea is to compute the minimum fixed-point assignment of the depen-
dency graph for a specific configuration v0, by only exploring those configura-
tions actually needed in order to establish the value of Amin(v0). Three data-
structures are maintained in the algorithm, the assignment A, the dependency
set D : V → P(V ) and the waiting list of hyper-edges W .

To begin with the assignment of the inital configuration v0 is 0, as it is
assumed to be false. The outgoing hyper-edges of v0 are then added to the
waiting list W . Every configuration except v0 has the initial assignment ⊥ to
indicate that the value is unknown, but assumed to be 0. Once a hyper-edge
e = (v, T ) is removed, T is examined to see if A(v) can be forced to become 1
for the source configuration v. This is the case when A(u) = 1 for all u ∈ T , as
a hyper-edge intuitively represents a disjunction of conjunctions.

If a configuration u with the assignment⊥ is encountered, then its assignment
is updated to 0 and its outgoing hyper-edges (u, T ) are added to W , moreover
the hyper-edge e = (v, T ) is added to D(u). Hence, if A(u) ever becomes 1, the
dependencies (hyper-edges) are re-evaluated to check if it is possible to force
the respective source configurations to be assigned 1. Moreover, if there is some
u ∈ T such that A(u) = 0 is encountered, the hyper-edge is also added to its
dependency set. If A(v0) = 1 at some point during execution, then it is possible to
terminate early, because the initial configuration is satisfied and the assignment
cannot become 0 again.

Given an input dependency graph G = (V,E) and initial configuration v0 ∈
V , the algorithm runs in O(|G|) time, where |G| = |V | +

∑
(v,T )∈E(|T | + 1).

Correctness and complexity of Algorithm 1 is proved in [22].
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3.2 Model Checking with Dependency Graphs

Here we propose a reduction from the model checking problem of WCTL≤
on WKS to minimum fixed-point computation of assignments on dependency
graphs. Let K be a WKS, a state s in K and ϕ be a WCTL≤ formula. A de-
pendency graph G is constructed, such that every configuration represents a
state-formula pair, denoted 〈s, ϕ〉. With the initial pair 〈s, ϕ〉, the dependency
graph constructed using the rules illustrated in Figure 2.

Theorem 1 (Encoding Correctness). Let K = (S,AP, L,→) be a WKS,
s ∈ S a state, and ϕ a WCTL≤ formula. Let G be the constructed dependency
graph rooted with 〈s, ϕ〉. Then s |= ϕ if and only if Amin(〈s, ϕ〉) = 1.

Proof. By structural induction on the formula ϕ. See Appendix A.1 for details.
ut

Note that the model checking reduction to dependency graphs is performed
on-the-fly in a need-driven fashion as the local algorithm requests successor
states (lines 1 and 1 of Algorithm 1), during fixed-point computation. This is an
important point, as in order to benefit from local exploration, we want to avoid
creating the entire dependency graph up-front. Section 10 presents experimental
results demonstrating that the local algorithm is often more efficient than the
global algorithm.
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〈s, true〉

∅
(a) True

〈s, a〉

∅

if a ∈ L(s)

(b) Proposition

〈s, ϕ1 ∧ ϕ2〉

〈s, ϕ1〉 〈s, ϕ2〉

(c) Conjunction

〈s, ϕ1 ∨ ϕ2〉

〈s, ϕ1〉 〈s, ϕ2〉

(d) Disjunction

〈s,E ϕ1 U≤k ϕ2〉

〈s, ϕ2〉 〈s, ϕ1〉 〈s1,E ϕ1 U≤k−w1 ϕ2〉 〈sn,E ϕ1 U≤k−wn ϕ2〉· · ·

let {(s1, w1), . . . , (sn, wn)} = {(si, wi) | s
wi→ si and wi ≤ k}

(e) Existential until

〈s,A ϕ1 U≤k ϕ2〉

〈s, ϕ2〉 〈s, ϕ1〉 〈s1,A ϕ1 U≤k−w1 ϕ2〉 〈sn,A ϕ1 U≤k−wn ϕ2〉· · ·

if wi ≤ k for all wi s.t s
wi→ si

let {(s1, w1), . . . , (sn, wn)} = {(si, wi) | s
wi→ si}

(f) Universal until

〈s,EX≤k ϕ〉

〈s1, ϕ〉 〈sn, ϕ〉· · ·

let {s1, s2, . . . , sn} = {si | s
wi→ si, wi ≤ k}

(g) Existential next

〈s,AX≤k ϕ〉

〈s1, ϕ〉 〈sn, ϕ〉· · ·

let {s1, . . . , sn} = {si | s
wi→ si, wi ≤ k}

(h) Universal next

Fig. 2. Dependency graph encoding of state-formula pairs
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s 1

{a}

〈s,E a U≤1000 b〉

〈s,E a U≤999 b〉 〈s, a〉〈s, b〉

∅

〈s,E a U≤998 b〉

〈s,E a U≤997 b〉
...

〈s,E a U≤0 b〉

Fig. 3. A WKS and its dependency graph for the formula E a U≤1000 b

Still, the dependency graph technique has a downside. We can easily con-
struct exponentially large dependency graphs, in terms of the weight bound in
the formula, as shown in Figure 3. A single-state WKS with a self-loop is shown
to the left and a large dependency graph to the right in the figure. Notice that
the size of the dependency graph depends on the bound in the formula. Hence,
we are left with a pseduo-polynomial algorithm for model checking WCTL≤. In
the sequel we shall present a more efficient technique, allowing us to perform
model checking in polynomial time.
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4 Symbolic Dependency Graph

In the previous section we saw that the dependency graph method for WCTL≤
model checking has a drawback. Namely, it suffers from an exponential blow-up
as the graph grows in proportion to the bounds in the provided formula. The
unfolding of the until modality is the cause of this undesirable circumstance.
However, we can make use of the basic observation that the validity of s |=
E ϕ1 U≤k ϕ2 also implies s |= E ϕ1 U≤k+1 ϕ2. In the following section we
propose a symbolic extension of dependency graphs that capture this implication,
which in turn reduces the size of the constructed graph. This extension, called
symbolic dependency graphs, enables us to perform efficient (polynomial time)
model checking of WCTL. Finally, this technique also lends itself well to on-the-
fly model checking.

Definition 3 (Symbolic Dependency Graph). A symbolic dependency graph
(SDG) is a triple G = (V,H,C), where V is a finite set of configurations,
H ⊆ P(N0 × V ) is a finite set of hyper-edges, and C ⊆ V × N0 × V is a fi-
nite set of cover-edges.

SDGs differ from ordinary DGs in the way edges are defined. First of all
every element in the target set of a hyper-edge is a pair composed of a weight
and a configuration. Secondly, a new kind of edge is introduced which we refer
to as a cover-edge. Finally, SDGs operate over the complete lattice N0 ∪ {∞} in
contrast to DGs, where the domain is boolean.

Let G = (V,H,C) be an SDG. A hyper-edge e = (u, T ) consists of a source
configuration u and target-set T . An element (w, v) ∈ T is called a hyper-edge
branch with weight w pointing to v. The set of successors of configuration u is
succ(u) = {(u, T ) ∈ H} ∪ {(u, k, v) ∈ C}.

Figure 4(a) illustrates an example of an SDG. A hyper-edge is drawn using
a solid line and every hyper-edge branch is annotated with its weight (which is
omitted whenever the weight is zero). A cover-edge is depicted with a dashed
line and a cover-condition.

ab

c d ∅

5

3

(a) A symbolic dependency graph

i a b c d

A0 ∞ ∞ ∞ ∞
F (A0) ∞ ∞ ∞ 0
F 2(A0) ∞ ∞ 0 0
F 3(A0) ∞ 3 0 0
F 4(A0) 0 3 0 0
F 5(A0) 0 3 0 0

(b) Fixed-point computation

Fig. 4. Computation of the minimum pre fixed-point assignment of an SDG
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An assignment A : V → N0∪{∞} of G is a function that maps configurations
to values. The set of all assignments is denoted Assign. Let F : Assign → Assign
be a function defined as follows.

F (A)(v) =

0 if ∃(v, k, v′) ∈ C s.t. A(v′) ≤ k <∞, or A(v′) < k =∞
min

(v,T )∈H

(
max{w +A(v′) | (w, v′) ∈ T}

)
otherwise.

(1)

An assignment A ∈ Assign is a pre fixed-point assignment if A = F (A).
Let v be a partial order over assignments of G, such that A v A′ if and only
if A(v) ≥ A′(v) for all v ∈ V . Then F is clearly monotonic on the complete
lattice (Assign,v). By the Knaster-Tarski fixed-point theorem, there is a unique
minimum pre fixed-point assignment of G, denoted Amin .

Note that we write A v A′ if for all v ∈ V , it holds that A(v) ≥ A′(v),
in reversed order. Also, the smallest element in the lattice is A0(v) = ∞ for
all v ∈ V . The lattice is finite and there is no infinite increasing sequence of
weights w.r.t. v (they are elements of N0). Thus, the minimum pre fixed-point
assignment Amin can be obtained in a finite number of steps using F with
the initial assignment A0 as the bottom element. Consequently, we have that
Fm(A0) = Fm+1(A0) for some m ∈ N0, and hence Fm(A0) = Amin is the
minimum pre fixed-point assignment of G.

Again, we shall refer to F as the global algorithm for computing fixed-points
on SDGs. Figure 4 shows the sequence of assignments computed before reach-
ing the minimum pre fixed-point assignment of the example SDG. The global
algorithm runs in polynomial time, as stated by the following theorem.

Theorem 2. Computing the minimum post fixed-point assignment of an SDG
G = (V,H,C) by repeated application of F takes time O(|V | · |C| · (|H|+ |C|)).

Proof. Details are provided in appendix A.2. ut

4.1 Local Algorithm for Symbolic Dependency Graphs

In this section we describe a local algorithm for computing Amin of an SDG.
Here we show an algorithm where the search originates from some initial config-
uration of interest and which generates the state-space in a need-driven fashion.
The interest for local exploration is spurred by the fact that for many model
checking questions we are only interested in the fixed-point assignment of a sin-
gle configuration. Depending on the formula we want to verify, we may in some
cases be able to explore a smaller fraction of the reachable state space.

Algorithm 2 takes an SDG G = (V,H,C) and an initial configuration v0 ∈ V
as input and computes Amin(v0). The algorithm expands upon the idea behind
Liu and Smolka’s local algorithm [22]. The data-structures are similar, yet the
algorithm is adapted to handle assignments that range over N0 ∪ {⊥,∞}. Here
⊥ is a special element used to indicate that the value of the assignment of a
particular configuration is currently unknown.
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Algorithm 2: Symbolic Local Algorithm

Input: A SDG G = (V,H,C) and a configuration v0 ∈ V
Output: Amin(v0)
Let A(v) := ⊥ for all v ∈ V
A(v0) :=∞; W := succ(v0)
while W 6= ∅ do

Pick e ∈W
W := W \ {e}
if e = (v, T ) is a hyper-edge then

if ∃(w, u) ∈ T where A(u) =∞ then
D(u) := D(u) ∪ {e}

else if ∃(w, u) ∈ T where A(u) = ⊥ then
A(u) :=∞; D(u) := {e}; W := W ∪ succ(u)

else
a := max{A(u) + w | (w, u) ∈ T}
if a < A(v) then

A(v) := a; W := W ∪D(v)

let (w, u) := arg max
(w,u)∈T

A(u) + w

if A(u) > 0 then
D(u) := D(u) ∪ {e}

else if e = (v, k, u) is a cover-edge then
if A(u) = ⊥ then

A(u) :=∞; D(u) := {e}; W := W ∪ succ(u)
else if A(u) ≤ k <∞ or A(u) < k =∞ then

A(v) := 0
if A(v) was changed then

W := W ∪D(v)

else
D(u) := D(u) ∪ {e}

return A(v0)

i A(a) A(b) A(c) A(d) W D(b) D(c) D(d)

1 ∞ ⊥ ⊥ ⊥ (a, 5, b)
2 ∞ ∞ ⊥ ⊥ (b, {(0, c), (3, d)}) (a, 5, b)
3 ∞ ∞ ∞ ⊥ (c, {(0, d)}) (a, 5, b) (b, {(0, c), (3, d)})
4 ∞ ∞ ∞ ∞ (d, ∅) (a, 5, b) (b, {(0, c), (3, d)}) (c, {(0, d)})
5 ∞ ∞ ∞ 0 (c, {(0, d)}) (a, 5, b) (b, {(0, c), (3, d)}) (c, {(0, d)})
6 ∞ ∞ 0 0 (b, {(0, c), (3, d)}) (a, 5, b) (b, {(0, c), (3, d)}) (c, {(0, d)})
7 ∞ 3 0 0 (a, 5, b) (a, 5, b) (b, {(0, c), (3, d)}) (c, {(0, d)})
8 0 3 0 0 (a, 5, b) (b, {(0, c), (3, d)}) (c, {(0, d)})

Table 1. Execution of Algorithm 2 on the SDG in Figure 4(a)

Example 2. Table 1 shows that values of assignment A, the waiting list W and
the dependency set of each configuration throughout execution of Algorithm 2
on the SDG from Figure 4(a). Every row lists the state of these data-structures
for the ith iteration of the while-loop. The column for D(a) has been omitted
because it stays empty.

14



Correctness of Algorithm 2 can be established by extending the loop-invariants
for the local algorithm for dependency graphs, shown in [22], by also taking
weights into account.

Lemma 1. The while-loop in Algorithm 2 satisfies the following loop-invariants
(for all configurations v ∈ V ):

1) If A(v) 6= ⊥ then A(v) ≥ Amin(v).
2) If A(v) 6= ⊥ and e = (v, T ) ∈ H, then either

a) e ∈W ,
b) e ∈ D(u) and A(v) ≤ x for some (w, u) ∈ T s.t. x = A(u) + w, where

x ≥ A(u′) + w′ for all (w′, u′) ∈ T , or
c) A(v) = 0.

3) If A(v) 6= ⊥ and e = (v, k, u) ∈ C, then either

a) e ∈W ,
b) e ∈ D(u) and A(u) > k, or
c) A(v) = 0.

Correctness of the local algorithm can be established using these loop-invariants,
as shown in [13].

Theorem 3. Algorithm 2 terminates and computes an assignment A such that
A(v) 6= ⊥ implies A(v) = Amin(v) for all v ∈ V . In particular, the return value
A(v0) is equal to Amin(v0).

Proof. Correctness is proved in [13]. ut

We point out that the termination argument is not entirely clear-cut. The
algorithm may require more than a polynomial number of steps before termina-
tion. This is exemplified in Figure 5. For convenience, we name the hyper-edges
a1, . . . , an, b1, . . . , bn and z. Suppose we consider an execution of Algorithm 2,
where s0 is the initial configuration and edges are picked from W in line 2 in
agreement with the following strategy:

– if z ∈W then pick z, else
– if ai ∈W for some i then pick ai (there will be at most one such ai), else
– pick bi ∈W with the smallest index i.

Then the assignment of s0 decreases bit by bit as the sequence A(s0) = ∞,
2n − 1, 2n − 2, 2n − 3, . . ., 1, 0.

s0 s1 s2 s3 sn ∅. . .

0

b1

0

b2

0

b3

0

b4

0

bn

20

a1

21

a2

22

a3

23

a4

2n−1

an
z

Fig. 5. An SDG where the local algorithm may take exponential running time
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Thus, it is possible for Algorithm 2 to take an exponential number of steps be-
fore terminating, despite the SDG being polynomial in the size of n. In contrast,
the global algorithm is guaranteed to terminate in polynomial time. Nevertheless,
experimental results (see Section 10) demonstrate that the local algorithm is in
practice significantly more efficient than the global algorithm, notwithstanding
its theoretically high complexity. Finally, we believe that the local algorithm is
unlikely to exhibit this degenerate behavior if the edges are picked in FIFO or
FILO order.

4.2 Model Checking with Symbolic Dependency Graphs

Now we present a symbolic encoding of the WCTL≤ model checking problem.
Once again the problem is reduced to that of computing the minimum pre fixed-
point assignment. In this case, however, we construct a symbolic dependency
graph. Given a WKS K, a state s of K, and ϕ a WCTL≤ formula, the SDG is
constructed as shown in Figure 2, except the until formulas follow the rules in
Figure 7.

Theorem 4 (Encoding Correctness). Let K = (S,AP, L,→) be a WKS,
s ∈ S a state, and ϕ a WCTL≤ formula. Let G be the constructed symbolic
dependency graph rooted with 〈s, ϕ〉. Then s |= ϕ if and only if Amin(〈s, ϕ〉) = 0.

Proof. By structural induction on ϕ. See appendix A.2. ut

〈s,E a U≤1000 b〉 〈s,E a U≤? b〉

〈s, b〉 〈s, a〉 ∅

1000

1

Fig. 6. SDG for the formula s |= E a U≤1000 b and the WKS in Figure 3

Figure 6 shows an SDG encoding of the formula that was used earlier as an ex-
ample to demonstrate that the dependency graph encoding is pseduo-polynomial
in the bound of a formula, see Figure 3. Notice that the SDG encoding, shown
in Figure 6, is much more compact than the dependency graph encoding. In this
case we reach the minimum fixed-point assignment after just two iterations of
F (see Equation (1)).
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〈s,E ϕ1 U≤k ϕ2〉

〈s,E ϕ1 U≤? ϕ2〉

k

(a) Existential until

〈s,A ϕ1 U≤k ϕ2〉

〈s,A ϕ1 U≤? ϕ2〉

k

(b) Universal until

〈s,E ϕ1 U≤? ϕ2〉

〈s, ϕ2〉 〈s, ϕ1〉 〈s1,E ϕ1 U≤? ϕ2〉 〈sn,E ϕ1 U≤? ϕ2〉· · ·

w1

wn

let {(s1, w1), . . . , (sn, wn)} = {(si, wi) | s
wi→ si}

(c) Existential until

〈s,A ϕ1 U≤? ϕ2〉

〈s, ϕ2〉 〈s, ϕ1〉 〈s1,A ϕ1 U≤? ϕ2〉 〈sn,A ϕ1 U≤? ϕ2〉· · ·

w1

wn

let {(s1, w1), . . . , (sn, wn)} = {(si, wi) | s
wi→ si}

(d) Universal until

Fig. 7. SDG encoding of existential and universal ‘until’ formulas

We notice that for a WKS K = (S,AP, L,→) and a formula ϕ, the size of the
components of the constructed SDG G = (V,H,C) is |V | = O(|S| · |ϕ|), |H| =
O(|→| · |ϕ|) and |C| = O(|ϕ|). Due to Theorem 2 and because |C| ≤ |H| (this
follows from the rules used to construct G), we are able to present the following
theorem, stating that global model checking of WCTL≤ takes polynomial time.

Theorem 5. Given a WKS K = (S,AP, L,→), a state s ∈ S and a WCTL≤
formula ϕ, the model checking problem s |= ϕ is decidable in time O(|S|·|→|·|ϕ|3).

In the section to follow, we expand upon the idea of symbolic dependency
graphs and introduce min-max graphs, which enable us to encode are more
expressive properties, i.e. full WCTL.
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5 Min-Max Graph

In this section we introduce min-max graphs. With this extended framework, it
is possible to handle nested fixed-points and thus model check the full nested
WCTL logic. All the same, we are able to perform verification in polynomial
time.

Let N∞ = N0∪{∞,−∞} be the set of nonnegative integers including positive
and negative infinity. We define the minimum and maximum value over the
empty set as min(∅) = ∞ and max(∅) = −∞. In the following we have two
kinds of edge-types: weighted edges, annotated with a weight w ∈ N0 and cover-
edges annotated with a triple (k,w1, w2) ⊆ (N∞ × N∞ × N∞).

Intuitively, ∞ corresponds to true and −∞ corresponds to false. This essen-
tially enables us to encode the boolean values as the bottom and top elements
of the lattice, respectively. In between, the domain of N0 is be interpreted based
on the application of the framework. A weighted edge has a potential increase in
cost associated with propagating a value back through it. In this way, additive
weights can be modelled. Whereas a cover-edge is used to check if the value of
the target node is less than some k. One of two values is then offered to the
target node, depending on the validity of the inequality.

The intention here is to be able to handle nested fixed points. As mentioned
in the following, we only operate in terms of maximum fixed-points. Minimum
fixed-points are instead emulated through the usage of these cover-edges, as they
give us the ability to swap the monotonicity of assignments. Note that this forces
us to impose an ordering on nodes for the fixed-point to be well-defined, hence
the notion of cover-level being related to the alternation-depth of the fixed-point
operator.

Definition 4 (Min-Max Graph). A min-max graph (MMG) is a directed
graph G = (Vmin, Vmax, E, T, c`), where

– Vmin is a finite set of min-nodes,
– Vmax is a finite set of max-nodes,
– E ⊆ (Vmin ∪ Vmax)× (Vmax ∪ Vmin) is a set of edges,
– T : E → N0 ∪ (N∞ × N∞ × N∞) is a mapping from edges to types, and
– c` : Vmin ∪ Vmax → N0 is a mapping from nodes to cover-level, where
• for all (u, v) ∈ E we have that c`(u) ≤ c`(v), and
• whenever T (u, v) ∈ (N∞ × N∞ × N∞) it holds that c`(u) < c`(v).

Let G = (Vmin, Vmax, E, T, c`) be an MMG. We write u → v whenever
(u, v) ∈ E. When T (u, v) = w we say that the edge from u to v has weight

w, denoted u
w→ v. Similarly, if T (u, v) = (k,w1, w2), we say that the edge from

u to v is a cover-edge, written as u
k 7→w1;w2−−−−−−→ v, where the triple (k,w1, w2) is

a ternary operator that returns w1 if the cover-condition k is satisfied and w2

otherwise.
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a1

a2

a3

4

2 b1

b2

b3

5 7→ 0; 8

3

4

2 c1

c2

c3

0 7→ ∞; 0

Fig. 8. Example of a min-max graph

Example 3. Figure 8 illustrates an MMG, where min/max nodes are depicted as
squares with double border in the bottom or top, respectively. Edges are drawn
as solid lines where the weight is omitted if it is zero, while cover-edges are
drawn with a dashed line annotated with the cover-condition. For example, we

have a1
0→ a2 and a2

57→0;∞−−−−−→ b1.
Cover-levels of the nodes in Figure 8 may be given as follows.

c`(a1) = c`(a2) = c`(a3) = 0

c`(b1) = c`(b2) = c`(b3) = 1

c`(c1) = c`(c2) = c`(c3) = 2

The set of nodes with a cover-level of at least j is denoted CLj , formally
written

CLj = {u ∈ Vmin ∪ Vmax | c`(u) ≥ j}

An assignment Aj : CLj → N∞ of a cover-level j is a mapping from nodes
with a cover-level of at least j to values. The set of all assignments over cover-
level j is denoted Assignj . We define the partial order v over Assignj such that
Aj v A′j , if Aj(v) ≤ A′j(v) for all v ∈ CLj .

An assignment Aj ∈ Assignj is a post fixed-point assignment if Aj v Fj(Aj),
where Fj is defined in the following and Amax

j+1 is the maximum post fixed-point
assignment of cover-level j + 1. Notice that for the maximum cover-level m, we
have that CLm+1 = ∅, thus, Amax

m+1 is the empty mapping, and Fj is well-defined.

wgtj(u, v,A) =


w +A(v) if u

w→ v and c`(v) = j

w +Amax
j+1 (v) if u

w→ v and c`(v) > j

w1 if u
k 7→w1;w2−−−−−−→ v and Amax

j+1 (v) < k

w2 if u
k 7→w1;w2−−−−−−→ v and Amax

j+1 (v) ≥ k

(2)

Fj(A)(u) =


Amax
j+1 (u) if c`(u) > j

min{wgtj(u, v,A) | u→ v} if u ∈ Vmin
max{wgtj(u, v,A) | u→ v} if u ∈ Vmax

(3)
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Because (Assignj ,v) is a complete lattice and Fj is a monotonic function,
we have by the Knaster-Tarski fixed-point theorem that there exists a unique
maximum post fixed-point assignment, denoted Amax

j .
Furthermore, we have that the maximum post fixed-point assignment Amax

j

of CLj can be computed by repeated application of the function Fj , starting with
the assignment A0

j (v) = ∞ for all v ∈ CLj . Because CLi ⊆ CLj for i ≤ j we
have that Amax

0 is precisely the maximum post fixed-point assignment of every
cover-level i. For convenience we write Amax rather than Amax

0 .
Intuitively, computation of the maximum fixed-point assignment Amax

0 , is
carried out in a bottom-up fashion, starting with Amax

m where m is the highest
cover-level. A global algorithm based off the functor is introduced in Section 6.

Amax
2

i c1 c2 c3
0 ∞ ∞ ∞
1 ∞ ∞ −∞
2 ∞ ∞ −∞

Amax
1

i b1 b2 b3
0 ∞ ∞ ∞
1 ∞ 0 ∞
2 ∞ 0 2
3 6 0 2
4 6 0 2

Amax
0

i a1 a2 a3

0 ∞ ∞ ∞
1 ∞ 8 ∞
2 12 8 10
3 10 8 10
4 10 8 10

Table 2. Fixed-point computation of the three cover-levels in Example 3

Example 4. Table 2 lists the computation steps for determining the maximum
post fixed-point assignment of the MMG in Example 3. As presented in Example
3, there are three cover-levels: CL2 = {c1, c2, c3}, CL1 = {b1, b2, b3} ∪ CL2 and
CL0 = {a1, a2, a3} ∪ CL1.

We start with Amax
2 , as we require Amax

2 in order to compute Amax
1 , which

in turn is needed to compute Amax
0 . In the tables for Amax

1 and Amax
0 , we omit

nodes that were already computed in Amax
2 and Amax

1 , respectively, since the
assignments of these nodes do not change.
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6 Global MMG Fixed-Point Algorithm

In this section we present a global algorithm for fixed-point computation on
MMGs. The algorithm is based on the functor defined in Equation (3) and it
makes use of an auxiliary function wgt, shown below in Equation (4). It may be
observed that this function is similar to the function wgtj in Equation (2), which
is used in the functor Fj .

wgt(u, v,A) =


w +A(v) if u

w→ v

w1 if u
k 7→w1;w2−−−−−−→ v and A(v) < k

w2 if u
k 7→w1;w2−−−−−−→ v and A(v) ≥ k

(4)

Algorithm 3: MMG Global Algorithm

Input: MMG G = (Vmin, Vmax, E, T, c`)
Output: Amax

for v ∈ Vmin ∪ Vmax do
A(v) :=∞ // Assignment

Let j be the maximum cover-level
Main-loop: while j ≥ 0 do

W := {u ∈ Vmin ∪ Vmax | c`(u) = j}
Repeat: repeat

for u ∈W do

Assign: A(u) :=

{
min{wgt(u, v,A) | u→ v} if u ∈ Vmin
max{wgt(u, v,A) | u→ v} if u ∈ Vmax

until A is unchanged ;
j := j − 1

return A

Algorithm 3 takes as input an MMG G and outputs the maximum fixed-
point assignment of G. Initially every node is assigned the value ∞, we then set
j = m where m is the maximum cover-level for any node in G. Subsequently, the
maximum post fixed-point assignment is computed for all nodes one cover-level
at the time.

In each iteration of the Main-loop, the waiting list W is instantiated to
contain the set of nodes at cover-level j. The repeat-loop then applies Fj until a
fixed-point is reached. At this point the the maximum fixed-point assignment of
the nodes in W has been computed, and j is decremented before the Main-loop

repeats.
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Example 5 (Global Algorithm). Table 3 shows the execution of Algorithm 3 on
the MMG in Example 8. The column labelled i shows the iteration number of
the Repeat loop, for each cover-level j during execution of the algorithm.

j A(u)

i a1 a2 a3 b1 b2 b3 c1 c2 c3
2 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
2 1 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ −∞
2 2 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ −∞
1 0 ∞ ∞ ∞ ∞ 0 2 ∞ ∞ −∞
1 1 ∞ ∞ ∞ 6 0 2 ∞ ∞ −∞
1 2 ∞ ∞ ∞ 6 0 2 ∞ ∞ −∞
0 0 ∞ 8 10 6 0 2 ∞ ∞ −∞
0 1 10 8 10 6 0 2 ∞ ∞ −∞
0 2 10 8 10 6 0 2 ∞ ∞ −∞

Table 3. Execution of the global algorithm on Example 8

Lemma 2 (Global Algorithm Invariant). It holds invariantly in Algorithm 3
that whenever j < c`(u), we have that A(u) = Amax (u) for any node u.

Proof. We show j < c`(u) implies A(u) = Amax (u) for every node u by induction
in the cover-level c`(u) of u, starting from the maximum cover-level m.

Initialization (c`(u) = m): In this case we show that when j becomes less than
m, it holds that A(u) = Amax (u) for every node u with cover-level c`(u) = m.
We quite simply observe that when j becomes less than m, after the Repeat

loop, we have that Assign has been executed for every node with cover-level
m, until no changes occur in A.
It is easy to see that an execution of Assign for each node with cover-level
m is equivalent to an application of the functor Fj (Equation (3)). Notice
that the auxiliary function wgtj (Equation (2)), as used in the functor, may
reference Amax

i (v) of a node v with a greater cover-level i > m, however,
because m is the maximum cover-level, no such node v exists.

Maintenance (c`(u) < m): This case follows by arguments similar to the base
case. Yet, in this case the auxiliary function wgtj may reference Amax

i (v) of
nodes v with a greater cover-level i > c`(u). But in this case it follows by
induction that A(v) = Amax (v), for any node v with cover-level i > c`(u).
Thus, the execution of Assign for every node u with cover-level c`(u) is
equivalent to an application of the functor. By repeated application of the
functor, as ensured by the guard of the Repeat loop, the maximum post
fixed-point must be reached in a finite number of iterations.

ut

Theorem 6 (Global Algorithm Correctness). Given an MMG G, Algo-
rithm 3 returns Amax of G.

Proof. Correctness follows from Lemma 2, since j < 0 upon termination. ut

22



Theorem 7 (Global Algorithm Complexity). The running time of Algo-
rithm 3 in a MMG G = (Vmin, Vmax, E, T, c`) takes O(n2 + n · |E|) time, where
n = |Vmin ∪ Vmax|.

Proof. Let cj = |CLj \ CLj+1| denote the number of nodes u with cover-level
c`(u) = j. We have n nodes partitioned into m cover-levels, hence, n = c0 +
c1 + . . . + cm. We have m iterations of the Main-loop, and in the jth iteration
we have cj iterations of Repeat each taking O(cj + |E|) time. This gives us a
complexity as given in Equation (5), which we may rewrite as in Equations (5)
through (7). Because n = c0 + c1 + . . .+ cm, we may also write Equation (8).

O

 m∑
j=0

cj · (cj + |E|)

 (5)

O

 m∑
j=0

c2j + cj · |E|

 (6)

O

 m∑
j=0

c2j

+

 m∑
j=0

cj

 · |E|
 (7)

O

 m∑
j=0

c2j

+ n · |E|

 (8)

Obviously, we may write as in Equation (9), which gives us Equation (10),
as cj is nonnegative for any cover-level j. m∑

j=0

cj

2

=

 m∑
j=0

c2j

+ 2 ·

 m∑
j=0

cj

 (9)

m∑
j=0

c2j ≤

 m∑
j=0

cj

2

(10)

We now substitute Equation (10) into Equation (8) giving us Equation (11).
Again, we have that n = c0 + c1 + . . .+ cm, which gives us Equation (12), thus,
proving Theorem 7.

O


 m∑
j=0

cj

2

+ n · |E|

 (11)

O(n2 + n · |E|) (12)

ut
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7 Local MMG Fixed-Point Algorithm

In this section we present a local algorithm for fixed-point computation on min-
max graphs. The basic idea behind the algorithm is related to the local algo-
rithms presented earlier. As we saw for the global MMG algorithm, the fixed-
point was computed in a bottom-up manner. The strategy of the local algorithm
is to perform a top-down search, starting from the initial node v0. The intent
is to only explore as little as possible, or rather, only explore the nodes in the
graph that are actually needed in order to compute the value for v0.

Algorithm 4: Local Fixed-Point Algorithm for Min-Max Graphs

Input: MMG G = (Vmin, Vmax, E, T, c`), node v0 ∈ Vmin ∪ Vmax
Output: Amax (v0)

Init: for v ∈ Vmin ∪ Vmax do
A(v) :=∞ // Assignment

X(v) := ff // Explored

D(v) := ∅ // Dependency set

Wi := {v0} , where i = c`(v0) // Waiting list at top level

X(v0) := tt
Main-loop: while Wi 6= ∅, where i = c`(v0) do

Pick u ∈Wj for some j // Heuristic choice of j and u
Case min: if u ∈ Vmin then

A(u) := min{weight(u, v) | u→ v}
for v s.t. u→ v do

explore(u, v)

if ∀v s.t. u→ v we have finished(u, v) = tt then
Wj := Wj \ {u}

Case max: else if u ∈ Vmax then
A(u) := max{weight(u, v) | u→ v}
if ∃v s.t. u→ v then

Pick v, s.t. weight(u, v) = A(u)
explore(u, v)
if finished(u, v) = tt then

Wj := Wj \ {u}
else

Wj := Wj \ {u}

Propagate: if A(u) was changed then
for v ∈ D(u) do

Wi := Wi ∪ {v} , where i = c`(v)

return A(v0)

However, because we are dealing with nested fixed-points, it is not as straight-
forward to derive an efficient local algorithm as for the unnested setting. Namely,
we must ensure that the assignments are only propagated upwards when it is
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safe to do so. On the other hand, it is desirable to propagate assignments as early
as possible, as this may lead to early termination. Due to these aspects, the al-
gorithm becomes slightly more elaborate than, for instance, the local symbolic
algorithm. Therefore, correctness of the algorithm is not immediately apparent,
so we provide a rigorous proof of correctness.

Algorithm 4 lists the pseduo code for the local algorithm for min-max graphs.
Just as for the local symbolic algorithm, nodes are picked according to some
pre-defined heuristic or regular search strategy, e.g. depth-first or breadth-first
search. Moreover, Algorithm 4 can perform an exponential number of steps, as it
is easy to construct an example similar to that discussed in Section 4.1. Further,
the algorithm may not terminate if a degenerate strategy is used to select nodes
from the waiting list. Nevertheless, we shall prove that the algorithm does indeed
terminate, provided that a fair strategy is used.

The algorithm maintains a number of data-structures throughout execution.
A(u) is the current assignment of a node u. It is initialized to ∞ and may
decrease to −∞. To ensure monotonicity, the value of A(u) may only decrease.
D(u) is the dependency set of node u keeps track of the nodes that must be re-
processed whenever the assignment of u changes. X(u) is a marking indicating
whether or not node u has been explored. Wi is the waiting list containing nodes
at cover-level i.

Listing 5: Auxiliary Functions for Algorithm 4

Aux. 1: function explore(u, v):
D(v) := D(v) ∪ {u}
if X(v) = ff then

X(v) := tt
Wj := Wj ∪ {v} , where j = c`(v)

Aux. 2: function weight(u, v):

if u
w→ v then

return A(v) + w

else if u
k 7→w1;w2−−−−−−→ v then

return
w1 if A(v) < k

w2 if A(v) ≥ k,X(v) = tt and Wi = ∅ , where i = c`(v)

max{w1, w2} otherwise

Aux. 3: function finished(u, v):

return


tt if u

w→ v and c`(v) = c`(u)

tt if u
k 7→w1;w2−−−−−−→ v and A(v) < k

tt if X(v) = tt and Wi = ∅ , where i = c`(v)

ff otherwise
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The algorithm starts with the initialization of the data-structures in the
Init-loop. Every node u is assigned the value∞, marked as unexplored and the
dependency set is initially empty. The top-most waiting list is instantiated with
the initial node v0, which is also marked as explored. Afterwards the Main-loop

is entered and a node u is picked from some waiting list Wj . Depending on
whether u is a min- or max-node, the control enters Case min or Case max,
respectively. The first statement executed for node u is then the assignment of
the minimum or maximum value (resp.) of the function weight, over the set of
edges originating from u.

This auxiliary function is defined in Listing 5. Given a source node u and a
target node v, it essentially returns the value offered by v, depending on the type
of u→ v. If it is simply a weighted edge, the assignment of v, plus the weight is
returned.

Whereas, if it is a cover-edge, there are three cases to consider. The first case
corresponds to the cover-condition being satisfied, and hence w1 is returned.
The second returns if the conver-condition is not satisfied, with the additional
requirement that the target node v has been explored and there are no nodes
in the waiting list for nodes at the same cover-level as v. This ensures that by
returning w2 the monotonicity requirement is not violated, since there are no
nodes that can satisfy the cover-condition at a later point.

The third case returns the maximum of w1 and w2, as the final value offered
is at least as large either of the two values. The important point here is that
it should not offer the smallest value, as this could potentionally violate the
monotonicity of A, since there is no way to predict that the final value offered
by the cover-edge is, in fact, the smallest.

If we consider Case min, then after A(u) has been assigned a value, every
outgoing edge from u is explored, using the auxiliarly function explore in List-
ing 5. Note that all nodes v, where u→ v must be explored since every node is
initially assigned the maximum value (∞), and it is not possible to know which
node results in the smallest assignment, thus u must depend on every such node
v. The function explore adds the source node u to the dependency set of the
target node v, hence u ∈ D(v), which ensures that u is reprocessed if A(v)
changes. If v is not marked as explored, it is marked and added to the waiting
list corresponding to its cover-level.

After having invoked explore(u, v) on every node v connected to u, the
algorithm checks if every edge u→ v is finished, according to the value returned
by the boolean function finished(u, v). The function finished(u, v) returns tt
if the fixed-point assignment of u does not depend on a further decrease of A(v)
for a node v at a greater cover-level. In the positive case, the node u is removed
from the waiting list.

The function finished is also provided in Listing 5. We now examine its
return cases. First of all, a node v, such that u

w→ v, is finished if both u and
v are on the same cover-level. In this case Wc`(u) = ∅ ensures that neither u

or v will be reprocessed. Secondly, given the cover-edge u
k 7→w1;w1−−−−−−→ v, a node

v is finished if the value assigned to it is less than k, i.e. the cover-condition is
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satisfied. Because assignments are strictly decreasing, it can never be falsified.
Consequently, changes to v cannot affect u, hence, v is finished w.r.t u. In the
third case, we have that node v is finished if it has been explored, or rather, it
has been in the waiting list Wi at least once and the waiting list is now empty. In
other words, there are no more nodes for the algorithm to process at the given
cover-level i. If none of these cases are satisfied, the node v is regarded to be
unfinished, so the source node u is not yet ready to be removed from the waiting
list, since u is waiting for more information regarding the fixed-point assignment
on a greater cover-level.

Case max is slightly different than Case min. After the node u is assigned
a value (possible −∞ if u 6→ v for any node v), the algorithm checks if there
is a node v, such that u → v. If this is the case, some node that assigns the
maximum value to A(u) is picked and explored. It is sufficient to just consider
the node v, as it gives rise to the largest assignment, hence the maximum value
of A(u) can only become smaller if the value of v decreases. Should the value
of v change, then u will at some point be re-assigned and another ‘largest’ node
may be explored. If the node v is finished, it is safe to remove u from queue, as
we are guaranteed that the maximum value assigned to u remains the same. If
u has no outgoing edges, it is simply removed from the queue because its value
can never change. Note also that in this case A(u) = −∞.

Finally, Propagate is the part of the algorithm responsible for propagating
values in the graph whenever the assignment of the node u under consideration
is changed. Observe that every node v that depends on the value of u is added to
the waiting list corresponding to its respective cover-level. Now the Main-loop

may perform another iteration. Once the top-most queue Wc`(v0) is empty, the
maximum post-fixed point assignment of v0 is returned.

Lemma 3 (Local Algorithm Invariants). the following invariants holds for
any node u, where i = c`(u).

A) Amax (u) ≤ A(u),
B) if u ∈ Vmin and X(u) = tt, then either

1) u ∈Wi, or
2) A(u) = min{wgti(u, v,A) | u→ v} and u ∈ D(v) for all v s.t. u→ v.

C) if u ∈ Vmax and X(u) = tt, then either
1) u ∈Wi,
2) A(u) = wgti(u, v,A) and u ∈ D(v) for some v where wgti(u, v,A) = x

and such that x ≥ wgti(u, v
′, A) for all u→ v′, or

3) A(u) = −∞ and @v s.t. u→ v.
D) if X(u) = tt and Wi = ∅ then A(u) = Amax

i (u),
E) wgti(u, v,A) ≤ weight(u, v), and
F) if finished(u, v) = tt then wgti(u, v,A) = weight(u, v).

where wgti is the auxiliary function used in the functor (See Equation (2)).

Proof. To show that invariants (A) through (F) hold for every iteration of the
Main-loop, we show that these invariants hold initially, and that they are pre-
served by Main-loop.
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The invariants hold initially: From the section of Algorithm 4 labelled Init

it is easy to see that invariant (A) holds, as Amax (u) ≤ ∞ for all nodes v.
Furthermore, we observe that invariants (B), (C) and (D) hold vacuously,
for all nodes other than v0, since we have X(v) = ff for all v s.t. v 6= v0.
If v0 ∈ Vmin then Invariant (B) holds by the first case, the same argument
applies for Invariant (C) if v0 ∈ Vmax.
As finished(u, v) = ff for all nodes u → v, we have that invariant (F)
holds vacuously. It is also easy to observe that weight(u, v) = ∞ for all
u → v that are weighted edges. And through simple case analysis it can be

observed that weight(u, v) = max{w1, w2} if u
k 7→w1;w2−−−−−−→ v. Hence showing

that invariant (E) holds. Thus, we conclude that invariants (A) through (F)
hold initially.

The invariants are preserved: Assuming that invariants (A) through (F) hold
before an iteration of the Main-loop we now show that they also hold after.

Invariant (A) To show that Invariant (A) holds after an iteration of the
Main-loop, assuming invariants (A) through (D) holds before the itera-
tion, we consider the following two cases.

Case min In this case we must show thatAmax (u)≤min{weight(u, v) |
u→ v}. From Invariant (E) we observe that wgtj(u, v,A)≤ weight(u, v),
which substituted into the functor from Equation (3), gives us Fj(u,A) ≤
min{weight(u, v) | u→ v}. Thus, it must be the case thatAmax (u) ≤
A(u), since Fj is a monotonically decreasing function.

Case max This case is similar to the Case min, and Amax (u) ≤ A(u) is
easily verified using Invariant (E).

Invariant (B) Again we consider the Case min and Case max from the
Main-loop to prove that Invariant (B) is preserved.

Case min In this case we show that Invariant (B) is preserved for any
node v. To do this we let u be the node picked in the Main-loop and
consider the four following cases.
If v = u: In this case v is in Wj , so initially Invariant (B) must

hold by the first case. If for all successors v′, we have that
finished(u, v’) = tt, then u will be removed from Wj . However,
if finished(u, v’) = tt for all successors v′, then it follows from
Invariant (F) that wgtj(u, v

′, A) = weight(u, v’, A). Which by
substitution into the second case of Invariant (B) shows that this
case holds.

If v → u: In this case we have that if v is satisfied by the first case
of Invariant (B), then this is preserved. However, if v is satisfied
by the second case, and A(u) is changed, then v may not satisfy
the second case of Invariant (B) anymore. However, if A(u) is
changed and v was satisfied by the second case, then v ∈ D(u)
and v will be added to Wi, where i = c`(v), in the Propagate

section following Case min. Thus, if v satisfies Invariant (B) by
the second case, then either this is preserved, or v will satisfy
Invariant (B) by the first case.
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If u→ v: In this case we have that explore(u, v) may changeX(v).
However, if this happens explore(u, v) will also add v to Wj ,
in which case v would satisfy Invariant (B) by the first case. If
X(v) is unchanged, then Invariant (B) will be preserved trivally.

Otherwise: In this case neither A(v) or X(v) is changed, and v is
not removed from Wj . Thus, Invariant (B) is preserved for v.

Case max In this case we again have to consider different nodes v and
show that Invariant (B) is preserved for v. As before, we let u be the
node picked in the Main-loop and consider the four following cases.
If v = u: In this case we have that v ∈ Vmax, thus, Invariant (B)

holds vacuously.
If v → u: This case is the same as the v → u case for Case min, as

Invariant (B) is preserved by the Propagate section.
If u→ v: This case is the same as the u→ v case for Case min, as

changes to X(v) in explore(u, v) will also add v to Wj .
Otherwise: In this case neither A(v) or X(v) is changed, and v is

not removed from Wj . Thus, Invariant (B) is preserved for v.

Invariant (C) Again we consider the Case min and Case max from the
Main-loop to prove that Invariant (C) is preserved.

Case min In this case we show that Invariant (C) is preserved for any
node v. Let u be the node picked in the Main-loop, we now consider
the four following cases.
If v = u: In this case we have that v ∈ Vmin, thus, Invariant (C)

holds vacuously.
If v → u: This case is the same as the v → u case for Case min, as

Invariant (C) is preserved by the Propagate section.
If u→ v: This case is the same as the u→ v case for Case min, as

changes to X(v) in explore(u, v) will also add v to Wj .
Otherwise: In this case neither A(v) or X(v) is changed, and v is

not removed from Wj . Thus, Invariant (C) must be preserved for
v.

Case max As before we now show that Invariant (C) is preserved for any
node v. Let u be the node picked in the Main-loop, we now consider
the four following cases.

If v = u: In this case v is in Wj , so initially Invariant (C) must
hold by the first case. If for some successor v′, where v′ =
arg max
u→v′

weight(u, v’, A), we have that finished(u, v’) = tt,

then u may be removed from Wj . However, if finished(u, v’)
= tt, then it follows by Invariant (F) that wgtj(u, v

′, A) =
weight(u, v’, A). Which by substitution into the second case of
Invariant (C) shows that this case holds. If u has no successors,
then A(u) = −∞ and Invariant (C) holds by the third case,
which allows us to remove u from Wj .

If v → u: This case is the same as the v → u case for Case min, as
Invariant (C) is preserved by the Propagate section.
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If u→ v: This case is the same as the u→ v case for Case min, as
changes to X(v) in explore(u, v) will also add v to Wj .

Otherwise: In this case neither A(v) or X(v) is changed, and v is
not removed from Wj . Thus, Invariant (C) is preserved for v.

Invariant (D) To show that Invariant (D) is preserved, we show that it
holds for any node u with cover-level i = c`(u).
If Wi 6= ∅ or X(u) 6= tt, then Invariant (D) holds vacuously. This leaves
us to show that if Wi = ∅ and X(u) = tt, then A(u) = Amax (u). We
already have from Invariant (A) that Amax (u) ≤ A(u), leaving us to
show that A(u) is also a post fixed-point assignment.
To show that A(u) is a post fixed-point assignment. We must show that
A(u) = Fi(A)(u). From the definition of the functor (Equation (3)) we
have following three cases to show.

i) if c`(u) > i then A(u) = Amax
i+1 (u),

ii) if u ∈ Vmin then A(u) = min{wgti(u, v,A) | u→ v}, and
iii) if u ∈ Vmax then A(u) = max{wgti(u, v,A) | u→ v}.
Case (i): This case holds vacuously as Invariant (D) only mentions

nodes u with cover-level i = c`(u).
Case (ii): As we have X(u) = tt and Wi = ∅, Invariant (B) must be

satisfied by the second case, which says A(u) = min{wgti(u, v,A) |
u→ v}.

Case (iii): Again, we have that X(u) = tt and Wi = ∅, which gives us
that Invariant (C) must be satisfied by either the second or third
case. If satisfied by the third case, then A(u) = −∞ = max(∅),
hence (iii) must hold. If Invariant (C) is satisfied by the second
case then we have some v′, s.t. A(u) = wgti(u, v

′, A) and v′ =
arg max
u→v

wgti(u, v,A). It is now easy to see thatA(u) = wgti(u, v
′, A) =

max{wgti(u, v,A) | u→ v}. Thus, we have that (iii) must hold.

Invariant (E) and (F) Given Invariant (A) and (D), we have that Invari-
ants (E) and (F) follow from straightforward case analysis, comparing
weight(u, v) and finished(u, v) in Algorithm 5 with wgtj(u, v,A) in
Equation (2).

Thus, we have proved that the invariants hold. ut

Theorem 8 (Local Algorithm Correctness). Given an MMG G and an
initial node v0, Algorithm 4 returns Amax (v0) if it terminates.

Proof. Algorithm 4 terminates with A(v0) if Wi = ∅ where i = c`(v0). By
Invariant (D) from Lemma 3 we have that Wi = ∅ and X(v0) = tt implies that
A(v0) = Amax (v0). Thus, the algorithm must return the maximum post fixed-
point assignment of v0, since X(v0) is set to tt in the Init section. ut
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Theorem 9 (Termination under Fairness Assumption). Let H be the
heuristic strategy for choosing u and j in the Main-loop of Algorithm 4, if H
infinitely often chooses any j then Algorithm 4 always terminates.

Proof. We prove Theorem 9 by observing that if u is picked from Wj , where j
is the largest cover-level j, such that Wj 6= ∅, then there are two possible cases.

i) some v, s.t. u→ v is added to Wi, where i > j, or
ii) u is removed from Wj .

Case (i): This case occurs when v is unexplored, X(v) = ff, and v has a cover-
level higher than u, c`(v) > c`(u). In this case we have that X(v) is set to
tt and as there is a finite number of nodes and cover-levels, this case cannot
happen indefinitely.

Case (ii): If there is no v, s.t. u→ v, X(v) = ff and c`(v) > c`(u), as in (i), then
finished(u, v’) = tt for all successors v′. This follows from the fact that j
is the largest cover-level for which Wj 6= ∅, so Wi = ∅ for all i considered in
finished(u, v’).
When finished(u, v’) = tt for all successors v′, then clearly, u is removed
from Wj . And as A(v) is decreased or X(v) changed to tt for some node v,
whenever, u is added to Wj , then this case cannot happen indefinitely.

Thus, as neither case (i) or (ii) can happen indefinitely, a heuristic strategy H
that picks the largest j for which Wj 6= ∅ infinitely often must lead to a situation
where the algorithm terminates. ut

Remark 2. It is easy to see that Algorithm 4 does not terminate if the heuristic
strategy always picks a node u from some Wj , such that u

w→ v and v ∈Wi, where
i = c`(v). Because finished(u, v) will not return tt as long as Wi 6= ∅, node
u is never be removed from Wj . Thus, the algorithm can continue to pick the
same u from Wj indefinitely. However, in practice using round-robin approach
to pick j remedies this situation.
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8 Model Checking with MMGs

In this section we introduce a reduction from the WCTL model checking problem
over WKS to maximum post fixed-point computation on MMGs.

Definition 5 (Encoding of Formula Satisfiability). Given a WKS K, a
state s and a WCTL formula ψ, we encode the model checking problem as a min-
max graph. Every node, with the exception of intermediate nodes, is labelled with
a satisfaction triple 〈s,∇, ϕ〉 consisting of a state s ∈ S, assertion ∇ ∈ {|=, 6|=}
and formula ϕ. The MMG is expanded from the initial node labelled 〈s, |=, ψ〉
using the rules illustrated in Figures 9 through 17. Min/max nodes are also
distinguished in Figures 9 through 17. Nodes may be assigned any cover-level
that satisifies the conditions outlined in Definition 4.

Remark 3. While Definition 5 does not specify any particular assignment of
cover-levels for an MMG expanded from an initial node, labelled 〈s, |=, ψ〉, it
is possible to assign cover-levels for any MMG constructed using Definition 5.
Equation (13) is one such possible assignment of cover-levels. In Equation (13),
a node 〈s,∇, ϕ〉 is assigned cover-level `ψ(ϕ), where ψ is the root formula as
given in Definition 5. Intermediate nodes, i.e. unlabelled, are assigned the same
cover-level as their parent.

The cover-level of a node, as defined with `ψ, is well-defined because the
annotation of formula ϕ on a node is a sub-formula of the formula ψ from which
the MMG was constructed. There are a few exceptions to this in Figures 12 and
15, but simple case analysis of `ψ in Equation (13) will reveal that these cases
are taken into account.

`ψ(ϕ) =



0 if ψ = ϕ

1 + max{`ψ1
(ϕ), `ψ2

(ϕ)} if ψ = ψ1 ∧ ψ2 or ψ = ψ1 ∨ ψ2

1 + `ψ′(ϕ) if ψ = QX ./k ψ
′ or ψ = ¬ψ′

1 if ψ = Q ϕ1 U≤k ϕ2 and ϕ = Q ϕ1 U<? ϕ2

1 if ψ = Q ϕ1 W≥k ϕ2 and ϕ = Q ϕ1 W≥? ϕ2

2 + max{`ψ1(ϕ), `ψ2(ϕ)} if ψ = Q ϕ1 W≥k ϕ2 or ψ = Q ϕ1 U≤k ϕ2

−∞ otherwise

(13)
Consider an MMG constructed using Definition 5, Figures 12 and 15 in-

troduce formulas containing “?” as the bound, and Figure 12 uses strict upper
bound < instead of ≤. This slight abuse of notation is used to introduce symbolic
nodes. Let ϕ be a formula in this extended form, i.e. with the abuse of notation
introduced above, we then write ϕ[k/?] whenever the symbol “?” is substituted
for k ∈ N0.

The encoding also introduces unlabelled intermediate nodes. Intuitively, they
serve the purpose of minimizing/maximizing values between nodes labelled with
a satisfaction triple, in order to correctly capture our semantics.
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s |= true

(a) Assertion that true
holds in s is true

s 6|= true

(b) Assertion that true
does not hold in s is false

s |= false

(c) Assertion that false
holds in s is false

s 6|= false

(d) Assertion that false
does not hold in s is true

s |= a if a ∈ L(s)

(e) Assertion that proposi-
tion a holds in s is true

s |= a if a /∈ L(s)

(f) Assertion that proposi-
tion a holds in s is false

s 6|= a if a ∈ L(s)

(g) Assertion that proposi-
tion a does not hold in s is
false

s 6|= a if a /∈ L(s)

(h) Assertion that proposi-
tion a does not hold in s is
true

Fig. 9. Boolean encodings

s |= ϕ1 ∧ ϕ2

s |= ϕ1 s |= ϕ2

(a) Conjunction

s 6|= ϕ1 ∧ ϕ2

s 6|= ϕ1 s 6|= ϕ2

(b) Conjunction w. nega-
tive assertion

s |= ϕ1 ∨ ϕ2

s |= ϕ1 s |= ϕ2

(c) Disjunction

s 6|= ϕ1 ∨ ϕ2

s 6|= ϕ1 s 6|= ϕ2

(d) Disjunction w. nega-
tive assertion

Fig. 10. Logical connectives

s |= ¬ϕ

s 6|= ϕ

(a) Assertion that negated
formula holds

s 6|= ¬ϕ

s |= ϕ

(b) Assertion that negated
formula does not hold

Fig. 11. Logical negation
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s |= Q ϕ1 U≤k ϕ2

s 6|= Q ϕ1 U<? ϕ2

k + 1 7→ ∞;−∞

(a) Existential until w. upper
bound

s 6|= Q ϕ1 U≤k ϕ2

s 6|= Q ϕ1 U<? ϕ2

k + 1 7→ −∞;∞

(b) Assertion that existential
until w. upper bound does
not hold

Fig. 12. Existential and universal until path quantifiers with upper bound

s 6|= E ϕ1 U<? ϕ2

s 6|= ϕ2 ∧1 ∧n

s 6|= ϕ1 s1 6|= E ϕ1 U<? ϕ2 . . . sn 6|= E ϕ1 U<? ϕ2

Let {(s1, w1), . . . , (sn, wn)} = {(si, wi) | s
wi→ si}∞ 7→ 0;∞

w1
wn

Fig. 13. Symbolic existential until w. upper bound

s 6|= A ϕ1 U<? ϕ2

s 6|= ϕ2 ∧

s1 6|= A ϕ1 U<? ϕ2 . . . sn 6|= A ϕ1 U<? ϕ2s 6|= ϕ1

Let {(s1, w1), . . . , (sn, wn)} = {(si, wi) | s
wi→ si}0 7→ 0;∞

w1

wn

Fig. 14. Symbolic universal until w. upper bound

s |= Q ϕ1 W≥k ϕ2

s |= Q ϕ1 W≥? ϕ2

k 7→ −∞;∞

(a) Weak until w. lower
bound

s 6|= Q ϕ1 W≥k ϕ2

s |= Q ϕ1 W≥? ϕ2

k 7→ ∞;−∞

(b) Weak until w. lower
bound and negative as-
sertion

Fig. 15. Existential and universal weak until path quantifiers with lower bound
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s |= E ϕ1 W≥? ϕ2

s |= ϕ2 ∧1 ∧n

s |= ϕ1 s1 |= E ϕ1 W≥? ϕ2 . . . sn |= E ϕ1 W≥? ϕ2

Let {(s1, w1), . . . , (sn, wn)} = {(si, wi) | s
wi→ si}∞ 7→ −∞; 0

w1
wn

Fig. 16. Symbolic existential weak until w. upper bound

s |= A ϕ1 W≥? ϕ2

s |= ϕ2 ∧

s1 |= A ϕ1 W≥? ϕ2 . . . sn |= A ϕ1 W≥? ϕ2s |= ϕ1

Let {(s1, w1), . . . , (sn, wn)} = {(si, wi) | s
wi→ si}∞ 7→ −∞; 0

w1

wn

Fig. 17. Symbolic universal weak until w. upper bound

Let {s1, s2, . . . , sn} = {si | s
w→ si and w ./ k}

s |= EX ./k ϕ

s1 |= ϕ sn |= ϕ. . .

(a) Existential next

s 6|= EX ./k ϕ

s1 6|= ϕ sn 6|= ϕ. . .

(b) Existential next w.
negative assertion

Fig. 18. Existential next

Let {s1, s2, . . . , sn} = {si | s
w→ si and w ./ k}

s |= AX ./k ϕ

s1 |= ϕ sn |= ϕ. . .

(a) Universal next

s 6|= AX ./k ϕ

s1 6|= ϕ sn 6|= ϕ. . .

(b) Universal next w.
negative assertion

Fig. 19. Universal next
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Definition 6 (Semantic Assignment). Let G be an MMG constructed ac-
cording to Definition 5 we define the semantic assignment Asem(u) of a non-
intermediate node u = 〈s,∇, ϕ〉 as

Asem(〈s,∇, ϕ〉) = max{k ∈ N0 | s∇ϕ[k/?]}

where max(∅) = −∞ and max(N0) =∞.

The semantic assignment of an intermediate node v is defined as Fj(Asem)(v),
i.e. the min/max combination of the successors of v. This is well-defined as all
successors of an intermediate node are non-intermediate (i.e. contain a satisfac-
tion triple).

Remark 4. The semantic assignment of a non-symbolic node, i.e. a node where
ϕ does not contain the symbol “?”, is well-defined. Because ϕ does not contain
any “?” symbols, then substituting “?” for k does affect ϕ, so ϕ = ϕ[k/?]. There
are two cases for the semantic assignment, depending on the assertion ∇.

For a node with a positive assertion v = 〈s, |=, ϕ〉, then Asem(v) = ∞ if
s |= ϕ and Asem(v) = −∞, otherwise. Conversely, for a node containing a
negative assertion v = 〈s, 6|=, ϕ〉, then Asem(v) = ∞ if s 6|= ϕ and otherwise
Asem(v) =∞.

Thus, {k ∈ N0 | s∇ϕ[k/?]} = {k ∈ N0 | s∇ϕ}, which is then either N0 or
∅, depending on whether or not the statement s |= ϕ is true.

8.1 Example Encoding of Weak Until

Figure 21 illustrates the expanded MMG encoding of the formula ϕ = A a W≥1 b
with the intial state s of the WKS shown in Figure 20. The formula asks if for
all paths, we always observe a’s or after a non-zero transition, b is observed.

s t
1

0

{a} {b}

Fig. 20. Weighted Kripke structure with states S = {s, t} and AP = {a, b}

According to the semantics, we see that s |= ϕ. For any run σ = s
1→ t

0→ t . . .,
the property a is initially satisfied, as σ(0) |= a and for any position p > 0, it
holds that σ(p) |= b and Wσ(p) ≥ 1.

In Figure 20 the root node v0 of the MMG is labelled with the state s
and formula ϕ. Node v0 is connected by a cover-edge to the symbolic node
v1 immediately below it, according to Figure 15(a). Informally, the cover-edge
states: If A(v1) is strictly less than 1, the value offered is −∞, in this case
signifying that that s 6|= ϕ. On the other hand, if A(v1) ≥ 1, the formula ϕ is
satisfied, so the value ∞ is offered.

The symbolic node v1 is expanded according to Figure 17. It has a cover-
edge to the max-node v2 and an edge to the intermediate node v3. The reason
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s |= A a W≥1 b

s |= A a W≥? b

1 7→ −∞;∞

s |= b
∧

t |= A a W≥? bs |= a

∞ 7→ −∞; 0

1

t |= b
∧

t |= a

∞ 7→ −∞; 0

v0

v1

v2

v3

v4 v5

v6

v7

v8

Fig. 21. Unfolding of the weak until formula for the WKS in Figure 20

for v2 being a max-node is because b /∈ L(s), and as a consequence s 6|= b. The
semantic assignment should therefore be Asem(v2) = −∞. This corresponds to
the negative case, shown in Figure 9(f). When the fixed-point is computed, A(v2)
thus yields the correct negative value −∞, due to the fact that max(∅) = −∞.

The cover-edge from v1 to v2 checks if the assignment of v2 is less than ∞,
in which the case is interpreted as −∞. If the value is at least ∞, the value 0 is
offered, which happens if b is observed in s.

The intermediate node v3 minimizes the assignments of from v4, correspond-
ing to the sub-formula s |= a and the symbolic node v5 for successor state t.

For the state s, we have that a ∈ L(s), so the statement s |= a is true. The
semantic assignment of v4 must be Asem(v4) = ∞. Node v4 encodes this fact
accordingly as a min-node, as illustrated in Figure 9(e). Because min(∅) = ∞,
the value of A(v4) is consistent with our observations.

Opposite statements can be made for the successor nodes encoded for state
t. Note that the successor nodes of v5 are due to the recursive application of the
rules in Figure 17.

Finally, we see that the value of Amax (v5) becomes 0, due to the assignments
of the nodes below it. As mentioned before this value can be viewed as the weight
for which the formula ϕ is satisfied in state t. Thus, the atomic proposition b is
observed within a weight of 0. As the assignment of v5 is propagated backwards,
the weight (1) it takes to transition to t from s is added to this value.

Table 4 lists the cover-levels and maximum fixed-point assignment of the
nodes in the expanded MMG.

Node u v0 v1 v2 v3 v4 v5 v6 v7 v8

c`(u) 0 1 2 1 2 1 2 1 2
Amax (u) ∞ 1 −∞ 1 ∞ 0 ∞ −∞ −∞

Table 4. Cover-levels and fixed-point assignments for the MMG in Figure 21
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Theorem 10 (Encoding Correctness). Let G be an MMG constructed ac-
cording to Definition 5, Amax be the maximum post fixed-point assignment of G
and Asem be the semantic assignment of G, then it holds that

Asem = Amax

Proof. Let Asemj (v) = Asem(v) for all v ∈ CLj be the projection of Asem to
nodes with cover-level greater than or equal to j. We now prove Theorem 10 by
showing Asemj = Amax

j for every cover-level j. This is equivalent to Theorem 10,
since Asem0 = Asem and Amax

0 = Amax . We show Asemj = Amax
j by induction in

j starting from the maximum cover-level m.

Base Case (j = m): In this case we show that Asemm = Amax
m . This amounts to

showing that Asemm (u) = Amax
m (u) for any node u = 〈s,∇, ϕ〉 where c`(u) =

m, which we shall do by structural induction in ϕ.
Case ϕ = true: For nodes u on the form u = 〈s, |=, true〉 we have from

Figure 9(a) that u is a min-node with no successors. Thus, Amax
m (u) =∞,

which clearly proves the case Asemj (u) = ∞. Also observing that nodes
on the form 〈s, 6|=, true〉 are max-nodes proves the rest of this case.

Case ϕ = false: This is follows by similar arguments as those given for the
previous case, observe that min/max modality is reversed in Figures 9(c)
and 9(d).

Case ϕ = a: For nodes u on the form u = 〈s,∇, a〉 we have that Amax
m (u) =

Asemm (u) follows by the observation that u is encoded as 〈s,∇, true〉 if
a ∈ L(s) and otherwise u is encoded as 〈s,∇, false〉.

Case ϕ = ϕ1 ∨ ϕ2: For nodes u on the form u = 〈s, |=, ϕ1 ∨ ϕ2〉 we have
from Figure 10(c) that u is a max-node with successors v1 = 〈s, |=, ϕ1〉
and v2 = 〈s, |=, ϕ2〉. By structural induction we have that Amax

m (v1) =
Asemm (v1) and likewise for v2. Thus, as Asemm (v1) = ∞ implies s |= ϕ1,
we have that Amax

m (u) = ∞, if and only if s |= ϕ1 or s |= ϕ2, which in
turn is the same as s |= ϕ1 ∨ ϕ2, hence, proving the case.

Case ϕ = ϕ1 ∧ ϕ2: This case follows by arguments similar to those given
for the previous case.

Case ϕ = ¬ϕ′: For nodes u on the form u = 〈s, |=,¬ϕ′〉 we have from Figure
11(a) that Amax

m (u) = Amax
m (v), where v = 〈s, 6|=, ϕ′〉. By structural

induction we have that Amax
m (v) = Asemm (v), thus, Amax

m (u) = ∞ if and
only if s 6|= ϕ′. For nodes u on the form u = 〈s, 6|=,¬ϕ′〉 we have that
Amax
m (u) = Asemm (v) follows by similar arguments.

Case ϕ = EX ./k ϕ
′: For nodes u on the form u = 〈s, |=,EX ./k ϕ

′〉 we have
from Figure 18(a) that u is a max-node with successor on the form

vi = 〈si, |=, ϕ′〉 where s
wi→ si and wi ./ k.

We now consider the following cases.
i) si |= ϕ′ for some si where s

wi→ si and wi ./ k

ii) si 6|= ϕ′ for some si where s
wi→ si and wi ./ k

Case (i): In this case we have that there is some vi = 〈si, |=, ϕ′〉 for
whichAsemm (vi) =∞, by structural induction it follows thatAmax

m (vi) =
∞. With this fact and because u is a max-node, we have thatAmax

m (u) =
∞, proving the case as s |= EX ./k ϕ

′ and, hence, Asemm (u) =∞.
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Case (ii): In this case we clearly have that s 6|= EX ./k ϕ′, hence,
Asemm (u) = −∞. We also observe that for all successors vi, we
have that Asemm (vi) = −∞. By structural induction it follows that
Amax
m (vi) = −∞. Thus, it must be the case that Amax

m (u) = −∞ as
Amax
m is a post fixed-point assignment.

For nodes u with on the form u = 〈s, 6|=,EX ./k ϕ
′〉 we have thatAmax

m (u) =
Asemm (v) follows by similar arguments.

Case ϕ = AX ./k ϕ
′: This case follows by arguments similar to those given

for the previous case.
As it is easy to see from Figures 13, 14, 16 and 17 that symbolic and inter-
mediate nodes always have a successor that has a cover-edge, no symbolic or
intermediate node can have the maximal cover-level m. Thus, we have that
Asemm = Amax

m .
Inductive Step (j < m): In this case we show that Asemj = Amax

j , assuming
that Asemi = Amax

i for all i > j. We do this in two steps by showing that the
following statements hold.
A) Asemj v Fj(Asemj ) and
B) Amax v Asemj
We first show (A) that Asemj is a post fixed-point assignment of G. We then
proceed to show (B) that Asemj is greater than or equal to Amax . From
these two statements it follows that Asemj is the maximal post fixed-point
assignment, thus, Asemj = Amax

j .
We now show statement (A), by showing Asemj (u) ≤ Fj(Asemj )(u) for all
nodes u with cover-level c`(u) ≥ j. Since all successors of intermediate nodes
are non-intermediate, the case for intermediate nodes is a technicality that
follows by definition, once we have showed the case for all non-intermediate
nodes. For nodes u with a cover-level i strictly greater than j, i.e. c`(u) =
i > j, this follows by induction in the cover-level, as we know that Asemi is
the maximal post fixed-point assignment on cover-level i > j. This leaves us
to consider nodes u = 〈s,∇, ϕ〉 with cover-level c`(u) = j.
If u is 〈s,∇, true〉, 〈s,∇, false〉 or 〈s,∇, a〉 then Asemj (u) = Amax

j (u) fol-
lows from the same arguments as in the base case. Thus, it must be the
case that Asemj (u) = Fj(Asemj )(u), since u has no successors.

If u = 〈s, |=, ϕ1 ∧ ϕ2〉 then we have two cases to consider (i) s |= ϕ1 ∧ ϕ2,
hence, Asemj (u) =∞, and (ii) s 6|= ϕ1 ∧ ϕ2, hence, Asemj (u) = −∞.
If (i) is the case, then we observe from Figure 10(a) that u is a min-node
with successors v1 = 〈s, |=, ϕ1〉 and v2 = 〈s, |=, ϕ2〉. Since s |= ϕ1 ∧ϕ2 in
case (i), it follows from the semantics that s |= ϕ1 and s |= ϕ2. Thus, it
must be the case that Asemj (v1) =∞ and Asemj (v2) =∞, which clearly
gives us Fj(Asemj )(u) = ∞. This proves that Asemj (u) ≤ Fj(Asemj )(u)
for case (i).
If (ii) is the case, then clearly Asemj (u) ≤ Fj(Asemj )(u) holds since
Fj(Asemj )(u) cannot obtain a value less than −∞.

If u = 〈s, 6|=, ϕ1 ∧ ϕ2〉 then Asemj (u) ≤ Fj(Asemj )(u) follows from arguments
similar to those given for the previous case, with the observation that
either Asemj (v1) =∞ or Asemj (v2) =∞ is enough for Fj(Asemj )(u) =∞
to be the case.
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If u = 〈s,∇, ϕ1 ∨ ϕ2〉 where∇ is either |= or 6|= thenAsemj (u) ≤ Fj(Asemj )(u)
follows from arguments similar to those given for nodes on the form
〈s,∇, ϕ1 ∧ ϕ2〉.

If u = 〈s, |=,EX ./k ϕ〉 then we consider the following cases.

i) si |= ϕ for some si where s
wi→ si and wi ./ k

ii) si 6|= ϕ for some si where s
wi→ si and wi ./ k

Case (i): In this case we have from Figure 18(a) that vi = 〈si, |=
, ϕ〉 is a successor of u. Furthermore, it follows from si |= ϕ that
Asemj (vi) = ∞, which in turn shows that Fj(Asemj )(u) = ∞. Thus,
clearly Asemj (u) ≤ Fj(Asemj )(u) holds.

Case (ii): In this case it is easy to see that s 6|= EX ./k ϕ, thus, it must
be the case that Asemj (u) = −∞ by which Asemj (u) ≤ Fj(Asemj )(u)
holds trivially.

If u = 〈s, 6|=,EX ./k ϕ〉 then Asemj (u) ≤ Fj(Asemj )(u) follows by arguments
similar to those given for the previous case.

If u = 〈s,∇,AX ./k ϕ〉 thenAsemj (u) ≤ Fj(Asemj )(u) follows from arguments
similar to those given for nodes on the form 〈s,∇,EX ./k ϕ〉.

If u = 〈s, |=,Q ϕ1 U<k ϕ2〉 then we observe that with u being a non-symbolic
node we have Asemj (u) is either −∞ or∞. If Asemj (u) = −∞ then clearly
Asemj (u) ≤ Fj(Asemj )(u), as Fj(Asemj )(u) cannot be less than −∞.
If Asemj (u) = ∞ then we have that s |= Q ϕ1 U<k ϕ2. From Fig-
ure 12(a) we have that Fj(Asemj )(u) < ∞ if and only if Asemj (〈s, 6|=
,Q ϕ1 U<? ϕ2〉) ≥ k. However, as s |= Q ϕ1 U<k ϕ2 it must be the case
that Asemj (〈s, 6|=,Q ϕ1 U<? ϕ2〉) < k. Thus, Fj(Asemj )(u) = ∞, proving
that Asemj (u) ≤ Fj(Asemj )(u) holds in this case.

If u = 〈s, 6|=,Q ϕ1 U<k ϕ2〉 then Asemj (u) ≤ Fj(Asemj )(u) follows from ar-
guments similar to those given for the previous case.

If u = 〈s,∇,Q ϕ1 W≥k ϕ2〉 then Asemj (u) ≤ Fj(Asemj )(u) follows from ar-
guments similar to those given for nodes on the form 〈s,∇,Q ϕ1 U<k ϕ2〉.

If u = 〈s, 6|=,E ϕ1 U<? ϕ2〉 then we recall from the semantics that s |=
E ϕ1 U<k ϕ2 if and only if there exists a run σ and position p ≥ 0
satisifying conditions 14, 15 and 16 for some c < k.

σ(p) |= ϕ2 (14)

σ(q) |= ϕ1 , for all q < p (15)

Wσ(p) ≤ c (16)

We now observe that s 6|= E ϕ1 U<0 ϕ2 always holds, as there is no run
σ and position p such that Wp(σ) < 0. Thus, we have that Asemj (u) ≥ 0,
leaving us to consider the following cases.

i) Asemj (u) =∞, and
ii) Asemj (u) = k for some k ∈ N0

Before considering Cases (i) and (ii) we observe from Figure 13 that u is
a min-node with successors v = 〈s, 6|=, ϕ2〉 and intermediate max-nodes

combining v′ = 〈s, 6|=, ϕ1〉 and vi = 〈si, 6|=,E ϕ1 U<? ϕ2〉, where s
wi→ si.
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Case (i): If Asemj (u) = ∞ then clearly s 6|= ϕ2, leaving us to consider
the two following cases.

1) s 6|= ϕ1, or
2) si 6|= E ϕ1 U<k ϕ2 for any s→ si and k ∈ N0.

Case (1): From s 6|= ϕ1 we have that Asemj (v′) =∞. It is now easy
to see from Figure 13 that all the intermediate max-nodes after
u become ∞. Furthermore, as s 6|= ϕ2 we get that Asemj (v) =
∞. And with the cover-edge from v returning ∞, whenever,
Asemj (v) =∞, it is easy to see that wgtj(u, u

′,Asemj ) =∞ for all
successors u′ of u. Thus, it must be the case that Fj(Asemj )(u) =
∞.

Case (2): This case follows by the same arguments as Case (1),
with the observation that intermediate max-nodes becomes ∞
because for all successors vi we have that Asemj (vi) =∞. Recall

that vi = 〈si, 6|=,E ϕ1 U<? ϕ2〉, where s
wi→ si, thus, Asemj (vi) =

∞ follows from si 6|= E ϕ1 U<k ϕ2 for any s→ si and k ∈ N0.

Case (ii): In this case we show that Asemj (u) ≤ Fj(Asemj )(u) when
Asemj (u) = k for some k ∈ N0. We prove this by contradiction,
assume that Fj(Asemj )(u) < k.
From the definition of Fj (Equation (3)) and Figure 13 it also follows
that there are two cases which can give rise to Fj(Asemj )(u) < k.

1) Asemj (v) = −∞ giving us Fj(Asemj )(u) = 0 < k, or
2) Asemj (v′) = −∞, for some Asemj (vi) = k′ and Fj(Asemj )(u) =

k′ + wi < k.

If (1) is the case, then clearly σ = s . . . and position p = 0 is a
run and position satisfying conditions 14, 15 and 16 for c = 0.
Hence, k = 0 is the largest k for which s 6|= E ϕ1 U<k ϕ2. Thus,
Fj(Asemj )(u) = 0 cannot be strictly smaller than k.

If (2) is the case, then clearly it follows from Asemj (vi) = k′ that k′

is the largest k′ for which si 6|= E ϕ1 U<k′ ϕ2 holds. So we have
that si |= E ϕ1 U<k′+1 ϕ2 must hold. From this we have that
there is a run σ and a position p satisfying conditions 14, 15 and
16 for c < k′ + 1.
We now consider the extension σ′ = s

wi→ si . . . of σ and position
p′ = p + 1, and observe that σ′ is a run and p′ is a position
satisfying conditions 14, 15 and 16 for c < k′ + 1 + wi.

– Condition 14 holds because σ′(p′) = σ(p) and σ(p) |= ϕ2,
– Condition 15 holds as σ(0) = s, and s |= ϕ1 follows from
Asemj (v′) = −∞, and for all q < p we have that σ′(q+1) = σ(q)
and σ(q) |= ϕ1.

– Condition 16 holds since W ′σ(p′) = Wσ(p) + wi and Wσ(p) <
k′ + 1.

It now follows from the semantics that s |= E ϕ1 U<x ϕ2 holds
for all x > k′+wi. Thus, the largest y for which s 6|= E ϕ1 U<y ϕ2

holds must be y ≤ k′ + wi. From the definition of the semantic
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assignment we get that Asemj (u) ≤ k′ + wi, and consequently,
Asemj (u) = k > k′ + wi cannot be the case.

If u = 〈s, 6|=,A ϕ1 U<? ϕ2〉 thenAsemj (u) ≤ Fj(Asemj )(u) can be shown with
arguments similar to those given for nodes on the form 〈s, 6|=,E ϕ1 U<? ϕ2〉.

If u = 〈s, |=,E ϕ1 W≥? ϕ2〉 then we recall from the semantics that s |=
E ϕ1 W≥k ϕ2 if and only if there exists a run σ such that σ(p) |= ϕ1 for
all p or there is a position p ≥ 0 where conditions 17, 18 and 19 holds
for k′ ≥ k.

σ(p) |= ϕ2 (17)

σ(q) |= ϕ1 , for all q < p (18)

Wσ(p) ≥ k′ (19)

We also observe from Figure 16 that u is a max-node with successors
v = 〈s, |=, ϕ2〉 and intermediate min-nodes combining v′ = 〈s, |=, ϕ1〉
and vi = 〈si, |=,E ϕ1 W≥? ϕ2〉 for each si where s

wi→ si.
We now consider the following cases for Asemj (u).

i) Asemj (u) = −∞,
ii) Asemj (u) = k for some k ∈ N0, and

iii) Asemj (u) =∞.

If (i) is the case then clearly Asemj (u) ≤ Fj(Asemj )(u) holds. This is
because Fj(Asemj )(u) cannot be less than Asemj (u) = −∞.

If (ii) is the case then s |= E ϕ1 W≥k ϕ2 follows from Asemj (u) = k. By
the semantics we get that there is a run σ such that σ |= ϕ1 W≥k ϕ2.
We now consider the different cases by which σ |= ϕ1 W≥k ϕ2 may
hold.
1) σ(p) |= ϕ1 for all positions p,
2) position p = 0 satisfies conditions 17, 18 and 19 for k′ ≥ k and

k = 0, and
3) some p > 0 satisfies conditions 17, 18 and 19 for k′ ≥ k.

If (1) is the case then clearly s |= ϕ1 as σ(0) = s. From s |= ϕ1 we
get that Asemj (v′) =∞. We now observe that σ may be written

as σ = s
w→ si . . . for some si where s

w→ si. It then follows that
the suffix σ′ = si . . . of σ proves that si |= ϕ1 W≥k′′ ϕ2 for any
k′′ ∈ N0. Thus, we have thatAsemj (vi) =∞ for the corresponding
node vi, combining this with Asemj (v′) = ∞ from previous and
we get that Fj(Asemj )(u) =∞. Hence, proving case (1).

If (2) is the case clearly s |= ϕ2, which gives us that Asemj (v) =
∞. It is then easily observed that wgtj(u, v,Asemj ) = 0, hence,
as u is a max-node, Fj(Asemj )(u) ≥ 0. Thus, as k = 0 in this
case, it follows that Fj(Asemj )(u) ≥ k, which proves Asemj (u) ≤
Fj(Asemj )(u) for case (2).

If (3) is the case then s |= ϕ1 as k > 0 and from this we get that
Asemj (v′) =∞. As in case (1) we observe that σ may be written

as σ = s
w→ si . . . for some si where s

w→ si. It then follows that
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the suffix σ′ = si . . . of σ proves that si |= ϕ1 W≥k−wi ϕ2. Thus,
we have that Asemj (vi) ≥ k − wi for the corresponding node vi,
combining this with Asemj (v′) = ∞ from previous and the fact
that the edge from intermediate min-node to vi has weight wi,
we get that Fj(Asemj )(u) ≥ k.

Thus, we conclude that Asemj (u) ≤ Fj(Asemj )(u) for case (ii).
If (iii) is the case it follows from Asemj (u) =∞ that s |= E ϕ1 W≥k′′ ϕ2

holds for all k′′ ∈ N0. By the semantics this is only possible if there
is a run σ such that σ(p) |= ϕ1 for all positions p. As before we now

write σ as σ = s
w→ si . . . and observe that the suffix σ′ = si . . .

of σ proves that Asemj (vi) = ∞ for some vi. In addition, we have
s |= ϕ1, as σ(0) = s which gives us Asemj (v′) = ∞. Thus, even
though vi and v′ are combined with an intermediate min-node we
get Fj(Asemj )(u) =∞ as Asemj (vi) =∞ and Asemj (v′) =∞.

If u = 〈s, |=,A ϕ1 W≥? ϕ2〉 then Asemj (u) ≤ Fj(Asemj )(u) can be shown
with arguments similar to those for nodes on the form 〈s, 6|=,E ϕ1 W≥? ϕ2〉.

If u = 〈s, |=,¬ϕ〉 then we observe that u is a non-symbolic node, hence,
Asemj (u) is either −∞ or ∞. If Asemj (u) = −∞, then clearly Asemj (u) ≤
Fj(Asemj )(u) must hold.
If Asemj (u) =∞ then we have that s |= ¬ϕ which implies that s 6|= ϕ. We
then observe from Figure 11(a) that u is a min-node with the successor
v = 〈s, 6|=, ϕ〉, which tells us that Fj(Asemj )(u) = Asemj (v). However, as
s 6|= ϕ we have thatAsemj (v) =∞, thus, it follows that Fj(Asemj )(u) =∞
which proves that Asemj (u) ≤ Fj(Asemj )(u) holds in this case.

If u = 〈s, 6|=,¬ϕ〉 then Asemj (u) ≤ Fj(Asemj )(u) follows from arguments sim-
ilar to those given for the previous case.

Having shown (A) that Asemj is a post fixed-point assignment, we now show
(B) that Asemj is also maximal, i.e. Amax

j v Asemj . This amounts to demon-
strating that Amax

j (u) ≤ Asemj (u) for every node u. For nodes u with a cover-
level c`(u) = i strictly greater than j, i.e. i > j, we have that this follows by
induction in the cover-level. For intermediate nodes v, Amax

j (v) ≤ Asemj (v) is
a technicality that follows trivially, once we have showed Amax

j (u) ≤ Asemj (u)
for all non-intermediate nodes u. This leaves us to show Amax

j (u) ≤ Asemj (u)
for nodes u = 〈s,∇, ϕ〉 with cover-level c`(u) = j. We do this by structural
induction in ϕ as follows.

If ϕ is true, false, a, ϕ1 ∨ ϕ2, ϕ1 ∧ ϕ2, ¬ϕ′ or QX ./ ϕ
′ then we have for

nodes u on the form u = 〈s,∇, ϕ〉 that Amax (v) = Asemj (v) follows by
arguments similar to those given in the base case with j = m. Thus,
Amax
j (u) ≤ Asemj (u) must be the case for any such node u.

If ϕ = E ϕ1 U≤k ϕ2 then for any node u on the form u = 〈s, |=,E ϕ1 U≤k ϕ2〉
we observe from Figure 12(a) that u has a cover-edge to v = 〈s, 6|=
,E ϕ1 U<? ϕ2〉 such that Amax

j (u) = ∞ if Amax
j (v) ≤ k + 1, and other-

wise Amax
j (u) = −∞.

Clearly, if Amax
j (u) =∞, then Amax (u) ≤ Asemj (u) holds. If Amax

j (u) =
∞ then we have that Amax

j (v) ≤ k + 1 which by induction in the cover-
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level gives us that Asemj (v) ≤ k + 1. From Asemj (v) ≤ k + 1 we get that
s |= E ϕ1 U≤k ϕ2, hence, Asemj (u) =∞, proving the case.
For nodes u on the form u = 〈s, 6|=,E ϕ1 U≤k ϕ2〉 we have from Figure
12(b) that output of the cover-edge is reversed, thus, Amax (u) ≤ Asemj (u)
follows by similar arguments as before.

If ϕ = A ϕ1 U≤k ϕ2 then for any node u on the form u = 〈s,∇,A ϕ1 U≤k ϕ2〉
we have that Amax (u) ≤ Asemj (u) follows by arguments similar to those
given for nodes with formulas on the form E ϕ1 U≤k ϕ2.

If ϕ = E ϕ1 U<? ϕ2 then we show Amax (u) ≤ Asemj (u) by contradiction for
nodes u on the form u = 〈s, 6|=,E ϕ1 U<? ϕ2〉.
AssumeAsemj (u) < Amax (u), clearly this cannot be the case ifAsemj (u) =
∞, moreover, we recall that Asemj (u) ≥ 0 as s 6|= E ϕ1 U<0 ϕ2 always
holds. This leaves us to show that Asemj (u) < Amax (u) cannot be the
case when Asemj (u) = k ∈ N0.
We now recall thatAsemj (u) = k is the largest k for which s 6|= E ϕ1 U<k ϕ2

holds. Thus, it follows that s |= E ϕ1 U<k+1 ϕ2, from the semantics we
have that this implies the existence of a run σ and a position p satisfying
conditions 14, 15 and 16 for some c < k + 1.
The existence of a run and position satisfying the conditions from the
semantics, also implies the existence of a run σ′ and minimal position
ρ, s.t. ρ is the smallest position for which there exists a run σ′ where σ
and ρ satisfies conditions 14, 15 and 16 for some c < k + 1.
We now proceed to show that Asemj (u) < Amax (u), where Asemj (u) =
k ∈ N0, cannot hold for any node u on the form 〈s, 6|=,E ϕ1 U<? ϕ2〉 by
induction in the smallest position ρ for which there is a run σ satisfying
conditions 14, 15 and 16 for some c < k + 1.
Base Case (ρ = 0): In this case we have from condition 14 that s |= ϕ2

as σ(ρ) = s. Clearly, this implies that Asemj (u) = 0 as any run
σ′ = s . . . satisfies conditions 14, 15 and 16 for c = 0.
By induction in the cover-level we also have from s |= ϕ2 that
Amax
j (v) = −∞ for v = 〈s, 6|=, ϕ2〉. We now see from Figure 13 that

u is a min-node with cover-edge to v, such that Amax
j (v) = −∞

makes Amax (u) ≤ 0 as Amax is a post-fixed point assignment. Thus,
Asemj (u) < Amax (u) cannot hold in this case.

Inductive Step (ρ > 0): In this case we may write σ as σ = s
wi→ si . . .

for some successor si. Since ρ > 0 we have from condition 15 that
s |= ϕ1, hence, it follows by structural induction that Asemj (v′) =
−∞ where v′ = 〈s, 6|=, ϕ1〉. Furthermore, it is easy to see that the
suffix σ′ = si . . . of σ and position ρ′ = ρ − 1 satisfies conditions
14, 15 and 16 for c < k + 1 − wi. From the semantics it easy to
see that Asemj (vi) = k − wi, as Asemj (vi) < k + wi contradicts the
existence of σ′ and ρ′, and Asemj (vi) > k + wi contradicts the fact
that Asemj (u) = k.
From Figure 13 that u is a min-node with an intermediate max-node
combining v′ and vi. As ρ′ < ρ it follows by induction in the minimal
position that Asemj (vi) < Amax (vi) cannot hold, hence, Amax (vi) ≤
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Asemj (vi) = k + wi. As Amax is a post fixed-point assignment, it
follows from Figure 13 that Amax (u) ≤ k, as the intermediate max-
node will be assigned k. Thus, Asemj (u) < Amax (u) cannot hold in
this case either.

If ϕ = A ϕ1 U<? ϕ2 then Amax (u) ≤ Asemj (u), for nodes u on the form
u = 〈s, 6|=,A ϕ1 U<? ϕ2〉, follows from similar arguments as those given
for the previous case.

If ϕ = Q ϕ1 W≥k ϕ2 then for any node u on the form u = 〈s,∇,Q ϕ1 W≥k ϕ2〉
we have that Amax (u) ≤ Asemj (u) follows by arguments similar to those
given for nodes with formulas on the form Q ϕ1 U≤k ϕ2.

If ϕ = E ϕ1 W≥? ϕ2 then we show Amax (u) ≤ Asemj (u) for nodes u = 〈s, 6|=
,E ϕ1 W≥? ϕ2〉 by contradiction. Assume Asemj (u) < Amax (u), clearly
this cannot be the case if Asemj (u) = ∞. This leaves us to show that
Asemj (u) < Amax (u) cannot hold in the following cases.

i) Asemj (u) = −∞, and
ii) Asemj (u) = k.

Before we show Cases (i) and (ii) we observe from Figure 16 that u is a
max-node with successors v = 〈s, |=, ϕ2〉 and an intermediate min-node
combining v′ = 〈s, |=, ϕ1〉 and vi = 〈si, |=,E ϕ1 W≥? ϕ2〉 for each si
where s

wi→ si.

Case (i): We observe from the semantics that Asemj (u) =∞ is the case
if and only if there is a run σ = s . . . such that σ(p) |= ϕ1 for every
position p. Thus, we know from Asemj (u) = −∞ that there is no such
run σ. This leads us to conclude that for any run σ = s . . . there must
be a position p for which σ(p) 6|= ϕ1 holds.
Further, it follows from Asemj (u) = −∞ that there is no k ∈ N0 for
which s |= E ϕ1 W≥k ϕ2 holds. From the semantics this implies that
for any run σ there is no position p for which it holds that σ(p) |= ϕ2

and σ(p′) |= ϕ1 for all p′ < p.
Combining this with the previous observation, that for any σ = s . . .
there must be a position p for which σ(p) 6|= ϕ1, we get that for any
run σ = s . . . there must be a position p for which σ(p) 6|= ϕ1 and
σ(p′) 6|= ϕ2 for all p′ ≤ p. This in turn, implies the existences of a
smallest ρ such that for any run σ there is a position p ≤ ρ such that
σ(p) 6|= ϕ1 and σ(p′) 6|= ϕ2 for all p′ ≤ p.
We now show for any node u on the form u = 〈s, 6|=,E ϕ1 W≥? ϕ2〉
that Asemj (u) = −∞ implies Amax

j (u) = −∞. We do this by induc-
tion in the smallest ρ for which any run σ = s . . ., there is a position
p ≤ ρ such that σ(p) 6|= ϕ1 and σ(p′) 6|= ϕ2 for all p′ ≤ p.
Base Case (ρ = 0): In this case we have that s 6|= ϕ1 and s 6|= ϕ2

which by structural induction and induction in cover-level, re-
spectively, implies thatAsemj (v′) = Amax

j (v′) = −∞ andAsemj (v) =
Amax
j (v) = −∞. From here it is easy to see that with Amax

j

being a post fixed-point assignment, it must be the case that
Amax
j (u) = −∞.
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Inductive Step (ρ > 0): Again, we have that s 6|= ϕ2 impliesAsemj (v) =
Amax
j (v) = −∞ by induction in the cover-level. Furthermore, we

have that s |= ϕ1 as otherwise ρ = 0 would have been the small-
est ρ for which any run σ = s . . . there is a position p ≤ ρ such
that σ(p) 6|= ϕ1 and σ(p′) 6|= ϕ2 for all p′ ≤ p.
Hence, it follows from Asemj (u) = −∞ that for all successors si

of s, ie. s
wi→ si, we have s 6|= E ϕ1 U≥k ϕ2 for all k ∈ N0. This

implies Asemj (vi) = −∞, and that the ρ′ which proves this must
be strictly smaller than ρ. Thus, by induction in ρ′ we get that
Amax
j (vi) = Asemj (vi) = −∞.

Which with Amax
j being a post fixed-point assignment shows that

Amax
j (u) = −∞ must be the case.

Having shown that Asemj (u) = −∞ implies Amax
j (u) = −∞ for any

node u on the form u = 〈s, 6|=,E ϕ1 W≥? ϕ2〉, it is easy to see that
Asemj (u) < Amax (u) cannot hold in case (i).

Case (ii): Again we have that that Asemj (u) <∞, thus, there is no run
σ = s . . . such that σ(p) |= ϕ1 holds for all positions p. Which, once
more leads us to conclude that for any run σ = s . . . there must be
a position p for which σ(p) 6|= ϕ1 holds.
Furthermore, it follows from Asemj (u) = k that there is no k′ > k
for which s |= E ϕ1 W≥k′ ϕ2 holds. From the semantics this implies
that for any run σ there is no position p for which it holds that
Wσ(p) > k, σ(p) |= ϕ2 and σ(p′) |= ϕ1 for all p′ < p.
Combining this with the previous observation, that for any σ = s . . .
there must be a position p for which σ(p) 6|= ϕ1, we get that for
any run σ = s . . . there must be a position p such that σ(p) 6|= ϕ1

and either Wσ(p) < k or σ(p′) 6|= ϕ2 for all p′ ≤ p. This in turn,
implies the existence of a smallest ρ such that for any run σ there
is a position p ≤ ρ satisfying conditions (20) and either (21) or (22)
for k′ = k.

σ(p) 6|= ϕ1 (20)

σ(p′) 6|= ϕ2 for all p′ ≤ p (21)

Wσ(p) < k′ (22)

We now show for any node u on the form u = 〈s, 6|=,E ϕ1 W≥? ϕ2〉
that Asemj (u) = k implies Amax

j (u) ≤ k by induction in the smallest
ρ for which any run σ = s . . . there is a position p ≤ ρ satisfying
conditions (20) and either (21) or (22) for k′ = k.

Base Case (ρ = 0): In this case we have that s 6|= ϕ2 which im-
plies Asemj (v′) = −∞, and by structural induction we get that
Amax
j (v′) = −∞. From this is follows that all the intermediate

min-nodes after u get −∞ in Amax
j . As u has a cover-edge from

v = 〈s, |=, ϕ2〉 which does not allow wgtj(u, v,A
max
j ) > 0, and

Amax
j (u) cannot get a value higher than −∞ from the interme-
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diate min-nodes it can be observed that Amax
j (u) ≤ 0, hence,

proving the case.
Inductive Step (ρ > 0): We have that s |= ϕ1 as otherwise ρ = 0

would have been the smallest ρ for which any run σ = s . . . there
is a position p ≤ ρ satisfying conditions (20) and either (21) or
(22) for k′ = k.

We now observe that for all successors si of s, i.e. s
wi→ si, we have

any run σ′ = si . . . is a suffix of some run σs
wi→ si . . .. Hence,

there must be a ρ′ < ρ such that for any run σ′ = si . . . there
is a position p ≤ ρ′ satisfying conditions (20) and either (21) or
(22) for k′ = k − wi.
From the existence of ρ′ we have Asemj (vi) ≤ k−wi for any node
vi = 〈si, |=,E ϕ1 W≥? ϕ2〉. As ρ′ < ρ it follows by induction
in ρ′ that Amax (vi) ≤ Asemj (vi) ≤ k − wi. Since Amax

j is a post
fixed-point assignment, it is now easy to see from Figure 16 that
Amax
j (u) ≤ Asemj (vi) +wi. Thus, Amax

j (u) ≤ k which proves this
case.

Having showed that Asemj (u) = k implies Amax
j (u) ≤ k for any

node u on the form u = 〈s, 6|=,E ϕ1 W≥? ϕ2〉, it is easy to see
that Asemj (u) < Amax (u) cannot holds in case (ii).

If ϕ = A ϕ1 W≥? ϕ2 then Amax (u) ≤ Asemj (u), for nodes u on the form
u = 〈s, 6|=,A ϕ1 W≥? ϕ2〉, follows from similar arguments as those given
for the previous case.

Thus, we have shown that Asem = Amax . ut

Corollary 1 (Encoding Correctness). Let K be a WKS, s be a state of K,
ϕ be a WCTL formula and G be an MMG expanded from 〈s, |=, ϕ〉 following
Definition 5. Then s |= ϕ if and only if Amax (〈s, |=, ϕ〉) =∞.

Proof. Correctness follows trivially from Theorem 10. ut

We note that for a WKS K = (S,AP, L,→) and a formula ϕ, the size of
the components of the constructed MMG G = (Vmin, Vmax, E, T, c`) is |Vmin ∪
Vmax| = O(|S| · |ϕ|) and |E| = O(|→| · |ϕ|). Due to Theorem 7 and Corollary 1
we are able to state the following theorem, declaring that global model checking
of full WCTL takes polynomial time.

Theorem 11 (Complexity of WCTL Model Checking). Given a WKS
K = (S,AP, L,→), a state s ∈ S and a WCTL formula ϕ, the model checking
problem s |= ϕ is decidable in time O(|S| · |→| · |ϕ|2).
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9 Weighted Calculus of Communicating Systems

In this section we present a high-level process algebra for WKS. The motivation
for this is to have compact way of modelling weighted processes through the
usage of parallel composition. This calculus is essentially a weighted variant of
Milner’s Calculus of Communicating Processes (CSS) [24].

Definition 7 (WCCS Process). A WCCS processes over a set of actions
α ∈ Act, atomic propositions x ∈ AP, and process names M ∈ M, is given by
the following grammar.

P ::= M | 〈α,w〉.P | P ‖ Q | P +Q | P \ L | P [f ] | x : P | 0

where w ∈ N0 and f : Act → Act ∪AP → AP is a relabelling function satisfying
f(τ) = τ and f(ᾱ) = f(α).

9.1 Semantics of WCCS

Let ] denote the union operation over multisets. A WCCS process can be trans-
lated into a WKS using the semantics and the rules given in the following defi-
nition.

Action
〈α,w〉.P a,w−→ P

Choice P
α,w−→ P ′

P +Q
α,w−→ P ′

Par1
P

α,w−→ P ′ Q
ᾱ,w′−→ Q′

P ‖ Q τ,w+w′−→ P ′ ‖ Q′

Par2 P
α,w−→ P ′

P ‖ Q α,w−→ P ′ ‖ Q

Restrict
P

α,w−→ P ′ α, ᾱ 6∈ L
P \ L α,w−→ P ′ \ L

Label P
α,w−→ P ′

x : P
α,w−→ P ′

Rename P
α,w−→ P ′

P [f ]
f(α),w−→ P ′[f ]

Fig. 22. Structural Operational Semantics of WCCS

Definition 8 (Translation). Given a WCCS process P we translate it into

a WKS K = (Proc,AP, L,→′), where (P,w, P ′) ∈→′ if P
α,w−→ P ′, for some

α ∈ Act, using rules in Figure 22, and L is defined as follows.

L(x : P ) = {x} L(P [f ]) = {f(x) | x ∈ L(P )}
L(P \ L) = L(P ) L(M) = L(P ), where M = P

L(P ‖ Q) = L(P ) ] L(Q) L(0) = ∅
L(P +Q) = L(P ) ] L(Q) L(〈α,w〉.P ) = ∅

Remark 5. Note that the labelling function of atomic propositions uses multisets
in the translation. This enables us to count and compare the number of atomic
propositions using arithmetic expressions in the logic.
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Example 6 (Translation of WCCS Process).
The following WCCS definition models a ring-based leader election protocol

consisting of three processes in the network. For convenience we write 〈mi→j〉 to
denote that a message is sent to process Pi with rank j. A process changes its
state whenever receives a rank higher than observed so far. If a process receives
its own rank, it can declare itself the winner of the election. The highest ranking
process eventually becomes the leader.

P1 := 〈m3→1, 1〉.P1 + 〈m1→1〉.leader : 0 + 〈m1→2〉.P1,2 + 〈m1→3〉.P1,3

P1,2 := 〈m3→2, 1〉.P1,2 + 〈m1→1〉.leader : 0 + 〈m1→2〉.P1,2 + 〈m1→3〉.P1,3

P1,3 := 〈m3→3, 1〉.P1,3 + 〈m1→1〉.leader : 0 + 〈m1→2〉.P1,3 + 〈m1→3〉.P1,3

P2 := 〈m1→2, 1〉.P2 + 〈m2→1〉.P2 + 〈m2→2〉.leader : 0 + 〈m2→3〉.P2,3

P2,3 := 〈m1→3, 1〉.P2,3 + 〈m2→2〉.leader : 0 + 〈m2→1〉.P2,3 + 〈m2→3〉.P2,3

P3 := 〈m2→3, 1〉.P3 + 〈m3→1〉.P3 + 〈m3→2〉.P3 + 〈m3→3〉.leader : 0

Ring := (P1 ‖ P2 ‖ P3)\{mi→j | 1 ≤ i, j ≤ 3}

The model is then translated to the WKS shown in Figure 23. State s0 corre-
sponds to the process named Ring. Whenever a process sends a message there is
a cost of one associated it. State s5 is the final state, where P3 wins the election
and becomes the leader.

s0

s1

s2

s4

s3

s5τ, 1

τ, 1

τ, 1

τ, 1

τ, 1

τ, 1

τ, 1

τ, 1

τ, 1

τ, 1

τ, 1

τ, 1 {leader}

Fig. 23. A WKS for the leader election example with 3 processes
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10 Experiments

In order to evaluate the performance of the three different approaches to WCTL
model checking described in this paper, we have implemented a tool. A web-based
front-end written in CoffeeScript (which compiles to JavaScript) is available at

http://wktool.jonasfj.dk

The tool permits the definition of systems using WCCS, the extended CCS-
like [23] syntax presented in Section 9. A screenshot of the tool is shown in Figure
24. This allows us to easily define scalable models for use in the benchmarks.
We carry out experiments on the following well-known models.

– Leader Election [10],
– Alternating Bit Protocol [5], and
– Task Graph Scheduling problems for two processors [15].

In the first two models the weight represents cost associated with the transmis-
sion of messages, while the weights in the task scheduling models represents the
clock ticks of the processors.

Fig. 24. A screenshot of WKTool as hosted on http://wktool.jonasfj.dk.

Experiments were carried out on laptop (Intel Core i7) running Ubuntu 12.04.
Node.js (v. ≥ 0.8), an efficient JavaScript runtime environment, was used to run
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the program from a command-line interface. The heap of the runtime environ-
ments garbage collector was limited to 1 GB memory, aborting verification if
more memory was needed.

The experiments are structured as follows. First we provide results for a com-
parison between the three different encodings presented in this paper. That is,
we analyze the performance of DG (dependency graph), SDG (symbolic depen-
dency graph) and MMG (min-max graph) encodings as we scale the bound of
a formula. The, we compare the local and global SDG algorithms. Afterwards,
the performance of the local and global MMG algorithms is studied. For these
experiments we will only be using WCTL≤ formulas so that we are able to com-
pare the results. Finally, we evaluate the local and global algorithms for MMGs
using the full WCTL logic, to determine if local search still provides a speed-up
for mixed-modality formulas.

10.1 DG, SDG and MMG Compared

Tables 5 and 6 show the results for a comparison between direct (DG), sym-
bolic and min-max algorithms. Execution times are in seconds and entries with
“OOM” state that verification runs out of memory. For both problems the mod-
els are set to a fixed size, while the bound k in the formulas is scaled. For the
leader election protocol fixed to eight processes two formulas are used. The first
formula is satisfiable and asks whether a leader can be elected within k message
exchanges, while the second formula is unsatisfiable, asking if there can be more
than one leader within k message exchanges.

Leader Election w. 8 Processes

Direct Symbolic Min-Max

k Global Local Global Local Global Local

200 3.90 0.23 0.26 0.02 0.31 0.02 S
a
tisifed

400 8.53 0.24 0.26 0.02 0.31 0.02
600 OOM 0.25 0.26 0.02 0.31 0.02
800 OOM 0.25 0.26 0.02 0.31 0.02

1000 OOM 0.26 0.26 0.02 0.31 0.02

200 7.64 8.11 0.25 0.25 0.27 0.30 U
n
sa

tisfi
ed

400 16.87 20.03 0.26 0.26 0.27 0.30
600 OOM OOM 0.26 0.26 0.27 0.30
800 OOM OOM 0.26 0.26 0.27 0.30

1000 OOM OOM 0.25 0.26 0.27 0.30

Satisfied: EF≤k leader
Unsatisfied: EF≤k leader > 1

Table 5. Scaling of bounds in formula for leader election (time in seconds)
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For the alternating bit protocol with a four-entry communciation buffer, a
satisfiable and an unsatisfiable formula is used. The first formula asks if a message
can be delivered within k communication steps and the second formula asks if it
is possible for the sender and receiver to get out of sync within k communciation
steps.

Alternating Bit Protocol w. Buffer Size 4

Direct Symbolic Min-Max

k Global Local Global Local Global Local

100 3.96 0.05 0.23 0.03 0.26 0.02 S
a
tisifed

200 8.48 0.06 0.23 0.03 0.26 0.02
300 OOM 0.08 0.21 0.03 0.26 0.02
400 OOM 0.11 0.23 0.03 0.26 0.02
500 OOM 0.13 0.23 0.03 0.26 0.02

100 3.72 4.00 0.27 0.23 0.28 0.31 U
n
sa

tisfi
ed

200 7.51 10.07 0.27 0.23 0.28 0.30
300 OOM 16.26 0.26 0.23 0.27 0.31
400 OOM OOM 0.28 0.22 0.28 0.31
500 OOM OOM 0.27 0.23 0.28 0.31

Satisfied: EF≤k delivered = 1
Unsatisfied: EF≤k (send0 ∧ deliver1) ∨ (send1 ∧ deliver0)

Table 6. Scaling of bounds in formula for alternating bit protocol (time in seconds)

For the satisfiable formulas, the global direct algorithm quickly runs out of
memory as the bound in the formula is increased. It is apparent that the local
direct algorithm (using DFS) is advantageous over the global direct algorithm
for the satisfiable formulas, as it performs similarly to the global symbolic and
min-max algorithms. Still, the global direct algorithm runs out of memory for
the unsatisfiable formulas when the bound exceeds a certain threshold. It is
clear that the local symbolic and min-max algorithms are the best performing.
Furthermore, their execution times are closely correlated as the bound k is scaled.

Similar observations have been made for other models during testing, where
the symbolic and min-max encodings repeatedly outperformed the direct en-
coding. For this reasion, we shall direct our attention to just the local/global
symbolic and min-max algorithms for the remaining experiments.
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10.2 Local vs. Global Model Checking on SDG

Now we examine the performance of the local and global SDG algorithms in
more detail. Once again, we use the leader election and alternating bit protocol
models, shown in Table 7. Only this time, the instances are scaled, i.e. number
of processes and buffer size, respectively, instead of the bound in the formula.
The formulas are the same as in the previous experiments.

Leader Election

k = 200

n Global Local

7 0.08 0.01

S
a
tisifed

8 0.30 0.02
9 1.12 0.02

10 5.14 0.03
11 23.07 0.03
12 OOM 0.04

7 0.07 0.07 U
n
sa

tisfi
ed

8 0.26 0.26
9 1.01 1.02

10 4.94 4.93
11 24.67 22.81
12 OOM OOM

Alternating Bit Protocol

k = 10 k = 20 k =∞
n Global Local Global Local Global Local

5 0.34 0.10 0.34 0.07 0.34 0.04

S
a
tisifed

6 0.76 0.19 0.77 0.10 0.77 0.05
7 1.92 0.34 1.93 0.14 1.83 0.05
8 4.55 0.78 4.59 0.71 4.65 0.09
9 13.24 9.99 12.39 1.71 12.35 0.18

10 OOM OOM OOM 5.72 OOM 0.23

4 0.26 0.22 0.28 0.24 0.32 0.28 U
n
sa

tisfi
ed

5 0.51 0.40 0.54 0.43 0.65 0.47
6 1.21 0.91 1.29 0.97 1.42 1.09
7 2.98 2.42 3.11 2.31 3.17 2.81
8 6.41 4.79 6.68 4.97 7.55 5.52
9 OOM OOM OOM OOM OOM OOM

Table 7. Scaling the model size to compare global and local algorithms for symbolic
dependency graphs

For the leader election protocol we observe that the local algorithm is signif-
icantly faster than the global algorithm for satisfiable formulas. Though for the
unsatisfiable formulas the execution times are roughly the same.

For the alternating bit protocol the bound k in the formula is also scaled to
10, 20 and∞. The execution times for the unsatisfiable formulas are more or less
the same regardless of the bound. On the other hand, for the satisfiable formula
the bound k = 10 is narrow in the sense that there are only a few runs that
satisfy the property. When the bound is increased, the solution space becomes
larger, and the local algorithm is therefore able to find a witness much faster.
This is particularly apparent for k =∞, as there is essentially no constraint on
the accumulated weight of a candidate run s.t. a message is finally delivered.

The SDG algorithms were also tested on a set of task graph scheduling prob-
lems [4]. Given a collection of parallel tasks, the multiprocessor scheduling prob-
lem asks, whether there is a non-preemptive schedule such that all tasks can
complete given their constraints and processing times on a fixed number of ho-
mogenous processors [15].

The benchmark consists of 180 automatically generated models from the
standard task set for two processors. Each task graph is scaled by the number of
parallel tasks n included in the schedulability analysis. We present results for the
first three task graphs in Table 8. Two nested formulas are used for this test; one
satisfiable and the other unsatisfiable. The satisfiable formula asks if within 90
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T0 T1 T2

n Global Local Global Local Global Local

3 3.14 0.01 0.15 0.08 0.19 0.01

S
a
tisifed

4 4.70 1.11 0.16 0.08 0.88 0.19
5 6.05 0.03 2.62 0.01 6.96 0.02
6 OOM OOM 5.18 0.92 OOM 1.32
7 OOM 0.02 OOM 0.01 OOM 0.01
8 OOM 0.03 OOM OOM OOM 2.49
9 OOM OOM OOM OOM OOM 1.80

10 OOM 0.03 OOM OOM OOM OOM

2 0.22 0.19 0.05 0.05 0.07 0.01 U
n
sa

tisfi
ed

3 2.89 2.54 0.14 0.13 0.20 0.01
4 5.50 2.16 0.15 0.14 0.90 0.19
5 7.37 4.97 2.26 1.69 7.10 0.02
6 OOM OOM 4.64 4.10 OOM 1.34
7 OOM OOM OOM OOM OOM 8.04

Satisfied: EF≤90 (tready
n−2 ∧AF≤80 done = n)

Unsatisfied: EF≤10 (tready
n−2 ∧AF≤5 done = n)

Table 8. Scaling task graphs by number of tasks to compare global and local algorithm
for symbolic dependency graphs

clock ticks, task tn−2 can be released and the entire schedule always terminates
within 80 clock ticks. The formula becomes unsatisfiable for all instances when
the bounds are reduced to 10 and 5, respectively. Once more, we see that local
outperforms global for the positive formulas, in terms of execution time and the
problem size for which available memory is exhausted.

10.3 Local vs. Global Model Checking on MMG

In this section we repeat the experiments from the previous section, but now for
the local and global MMG algorithms.

Results for the leader election and alternating bit protocol problems are listed
in Table 10. Again we see that the local and global algorithms exhibit the same
characteristics as for the SDG algorithms. Namely, local clearly outperforms
global for positive instances. While both algorithms take about as long to verify
the negative instances.

The execution times for the three different task graphs are shown in Table 9.
For the task graphs the local and global MMG algorithms scale approximately
to the same problem size as for SDG before running out of memory.

We now provide a more comprehensive benchmark to compare the SDG and
MMG algorithms. Towards this end we tested the SDG and MMG algorithms
on all of the 180 task graphs for values k = 30, 60 and 90 on the formula
EF≤k done = n, as shown in Table 11. The asks if the entire task graph can
be scheduled within k clock ticks. The number of complete verification tasks
was measured (i.e. those that did not run out of memory), including the total
accumulated time it took to verify the cases where both the local and global
algorithm were able to finish.
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T0 T1 T2

n Global Local Global Local Global Local

2 0.35 0.17 0.08 0.05 0.09 0.05
S
a
tisifed

3 5.70 2.30 0.19 0.11 0.26 0.13
4 11.02 4.17 0.21 0.12 1.51 0.61
5 15.15 4.39 6.25 2.01 15.42 4.54
6 OOM OOM 16.84 3.48 OOM 10.79
7 OOM OOM OOM OOM OOM OOM

2 0.34 0.29 0.07 0.06 0.09 0.06 U
n
sa

tisfi
ed

3 5.48 4.04 0.18 0.16 0.26 0.13
4 13.33 7.59 0.26 0.18 1.56 0.75
5 17.65 8.12 5.12 3.63 16.30 5.71
6 OOM OOM 14.58 5.82 OOM 14.04
7 OOM OOM OOM OOM OOM OOM

Satisfied: EF≤90 (tready
n−2 ∧AF≤80 done = n)

Unsatisfied: EF≤10 (tready
n−2 ∧AF≤5 done = n)

Table 9. Scaling task graphs by number of tasks to compare global and local algorithms
for min-max graphs

Leader Election

k = 200

n Global Local

7 0.10 0.01

S
a
tisifed

8 0.32 0.02
9 1.39 0.03

10 6.38 0.04
11 31.03 0.04
12 OOM 0.05

7 0.08 0.12 U
n
sa

tisfi
ed

8 0.28 0.31
9 1.22 1.37

10 5.98 6.40
11 27.72 33.53
12 OOM OOM

Alternating Bit Protocol

k = 10 k = 20 k =∞
n Global Local Global Local Global Local

5 0.67 0.03 0.54 0.03 0.54 0.02

S
a
tisfi

ed

6 1.53 0.02 1.30 0.02 1.31 0.02
7 3.65 0.03 3.15 0.03 3.01 0.03
8 8.64 0.04 7.43 0.04 7.24 0.04
9 OOM OOM OOM 0.04 OOM 0.04

10 OOM OOM OOM 0.05 OOM 0.05

4 0.27 0.31 0.28 0.31 0.28 0.30 U
n
sa

tisfi
ed

5 0.54 0.57 0.55 0.57 0.54 0.57
6 1.35 1.26 1.35 1.27 1.36 1.27
7 3.05 3.58 2.92 3.54 2.93 3.64
8 7.51 7.43 7.37 7.41 7.47 7.40
9 OOM OOM OOM OOM OOM OOM

Table 10. Scaling the model size to compare global and local algorithms for min-max
graphs
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The results from this table support the claim that the local algorithm benefits
from situations where the number of solutions (i.e. schedules) grows due to a
relaxation in the bound k. Furthermore, we see that the MMG algorithms are
slightly slower than those for SDG. However, this only looks to be a constant
factor slowdown, ≈ 2 for the global algorithm and far less for the local algorithm.
A plausible explanation for this is that the MMG encoding needs roughly twice
as many configurations to encode the formulas due to the intermediate nodes,
which also have a memory footprint.

Symbolic

180 task graphs for k = 30 k = 60 k = 90

Algorithm Global Local Global Local Global Local

Number of finished tasks 32 85 32 158 32 178
Accumulated time (seconds) 50.9 13.2 45.9 2.3 45.5 0.45

Min-Max

180 task graphs for k = 30 k = 60 k = 90

Algorithm Global Local Global Local Global Local

Number of finished tasks 32 83 32 158 32 178
Accumulated time (seconds) 119 20 115 3.4 115 0.67

Table 11. Summary of task graph benchmarks (180 cases in total)

In conclusion of the experiments thus far, we argue that the MMG algo-
rithms can handle the models just as well as the SDG algorithms. So, despite
the fact that we are dealing with two different encodings, local verification is still
advantageous for MMGs and the extra overhead of the MMG encoding is only
by a constant factor. With that being said, it is important to establish whether
the local MMG algorithm is still benefitial for mixed-modality formulas. In the
section to follow we test the MMG algorithms on the full WCTL logic in order
to evaulate their performance on such formulas.
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10.4 Full WCTL Local vs. Global on MMG

To evaluate the performance of local vs. global for mixed-modality formulas, we
once again ran experiments on the three task graph models (T0,T1 and T2).
The problem size is scaled as before and both a positive and negative nested
formula is used.

The positive one asks if it is possible for task tn−2 to be released within 10
clock ticks and at the same time the entire schedule cannot always complete
within 5 ticks. The negative formula asks if it is always possible for task tn−2 to
be released within 10 ticks and there is also no way for a schedule to complete
within 5 ticks. Table 12 lists the results. Note the usage of negation in the
formulas, so they are no longer simple reachability properties.

T0 T1 T2

n Global Local Global Local Global Local

2 0.41 0.16 0.08 0.05 0.10 0.06

S
a
tisifed

3 6.19 2.39 0.21 0.11 0.28 0.13
4 9.91 4.24 0.27 0.12 1.84 0.62
5 16.09 5.01 6.90 2.99 15.20 6.33
6 OOM OOM 14.04 7.72 OOM 8.22
7 OOM OOM OOM OOM OOM OOM

2 0.40 0.23 0.08 0.05 0.09 0.07 U
n
sa

tisfi
ed

3 8.38 3.91 0.25 0.14 0.25 0.17
4 8.37 6.03 0.32 0.17 1.36 0.87
5 11.56 5.55 7.89 3.37 11.24 8.87
6 OOM OOM 14.84 6.02 OOM OOM
7 OOM OOM OOM OOM OOM OOM

Satisfied: EF≤10 (tready
n−2 ∧ ¬AF≤5 done = n)

Unsatisfied: AF≤10 (tready
n−2 ∧ ¬EF≤5 done = n)

Table 12. Scaling task graphs by number of tasks to compare global and local algo-
rithms for min-max graphs

The local algorithm is roughly twice as fast as the global algorithm in most
of the positive and negative cases. Despite it beeing the case that the formulas
cause an extensive exploration, the local algorithm is able to exploit the structure
of the underlying MMG. The local algorithm performs a partial exploration of
the successors of max-nodes. A max node is only put back into the waiting list
if the node with the largest assignment is updated. Hence, nested formulas with
mixed modalities may still benefit from the local algorithm.

57



11 Conclusion

We have described three different approaches to WCTL model checking and
discussed their limitations. Our previous efforts for the verification of the frag-
ment WCTL≤, i.e. negation-free and restricted to upper-bound constraints, has
been covered in the form of a reduction to fixed-point computation on depen-
dency graphs and the proposed symbolic extension. These techniques permit
local model checking, but are limited to alternation-free fixed-points, and thus
in their expressive power with respect to the logic.

We expanded on these ideas and proposed min-max graphs as a technique
to verify the full weighted CTL logic. Opposite to these techniques for WCTL
model checking, min-max graphs support alternating fixed-points and hence a
more expressive logic, e.g. invariant properties and the definition of weak until
with lower-bound constraints. We described a global and local algorithm for the
computation of fixed-points in order to solve model checking problems for the
logic.

The algorithms were implemented in an online tool that makes WCTL model
checking on WCCS models readily available. Through experiments with our
implementation, we have demonstrated the advantages of local model checking
for all three approaches. The principal conclusion is that the local approach can
provide an order of magnitude speed-up when the bounds and logical formula
permit a large number of possible witnesses of the satisfiability of the property.

11.1 Future Work

For future work it is of interest to study whether it is possible to adapt the tech-
nique to permit lower-bound constraints on the until modality. We believe that
the use of the Floyd-Warshall all-pairs shortest path algoritmh for {−1, 0, 1}-
weighted structures, presented in [18], can be extended to facilitate Z-weighted
structures. The approach is, however, inherently global, yet it would be worth-
while to further investigate this idea.

Both the local algorithm for symbolic dependency graphs and the local algo-
rithm for min-max graphs presented here, rely on unspecified heuristics. For our
experiments a depth-first search was used. Still, it would be interesting to study
more elaborate heuristics. Our preliminary findings on this aspect suggest that
the heuristic choices have a significant impact on performance.

Another interesting topic of future work would be the investigation of partial
min-node exploration. The local algorithm for min-max graphs presented here
always explores every successor of a min-node. This could potentially be avoided
by back-propagating a special value for when the fixed-point assignment of a
node is believed to be ∞, such that another successor of a min-node may be
chosen for exploration. Obviously, this would be another heuristic, though this
could facilitate further exploitation of the min-max graph structure.

In this work we present min-max graphs as a framework for solving weighted
model checking problems. The reduction of other problems, e.g. games, to min-
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max graphs is certainly also interesting. Along the same lines we can explore
further abstraction and generalization of this approach to local model checking.

12 Bibliographical Remarks

The results presented in this paper are a continuation of our pre-specialization
project [14]. For completeness, some definitions and results, that were also pre-
sented in [14], have been included in Sections 2, 3 and 4, though these are not
excerpts. Proof of Theorem 1, as attached in appendix A.1, is an excerpt from
[14] with minor changes. Proof of Theorem 4, presented in appendix A.2, was
not a part of [14], but was also submitted as an appendix to the initial draft
of [13]. The experiments presented in Section 10 were not part of [14], but the
models and formulas were used for the experiments in [13].
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A Appendix

A.1 Proofs Related to Dependency Graph

This section is a slightly modified excerpt from our pre-specialization project [14].
Proof of Theorem 1

Let K = (S,AP, L,→) be a WKS, s ∈ S a state, ϕ a WCTL formula. Let G be
the constructed dependency graph rooted with 〈s, ϕ〉. Then s |= ϕ if and only if
Amin(〈s, ϕ〉) = 1.

Proof. We prove Theorem 1 by structural induction on ϕ.

(I) For ϕ = true we show that for all s ∈ S we have Amin(〈s, true〉) = 1
if and only if s |= true. But as s |= true always holds, it is sufficient to
show that Amin(〈s, true〉) = 1 for any pre fixed-point assignment A of
G. In Figure 2(a) we add a hyper-edge from the configuration 〈s, true〉,
to the empty target set. Thus, we have that A(v) = 1 for any pre fixed-
point assignment A of G, because all vertices in the empty set satisfy any
property vacuously.

(II) For ϕ = a we prove that Amin(〈s, a〉) = 1 if and only if s |= a for all
s ∈ S. If a ∈ L(s) we have s |= a and by Figure 2(b), there is a hyper-edge
from the configuration 〈s, a〉 to the empty target set. As in (I) this means
that Amin(〈s, a〉) = 1, which leaves us to consider a /∈ L(s). In this case
we obviously have s 6|= a and by the side-condition in Figure 2(b), we can
conclude that there is no hyper-edge from the configuration 〈s, a〉 when
a /∈ L(s). Thus, we have Amin(〈s, a〉) = 0 because Amin is the minimum
pre fixed-point assignment.

(III) For ϕ = ϕ1 ∧ ϕ2 we show that Amin(〈s, ϕ1 ∧ ϕ2〉) = 1 if and only if
s |= ϕ1 ∧ ϕ2 for all s ∈ S. By Figure 2(c), a configuration 〈s, ϕ1 ∧ ϕ2〉
has a single hyper-edge with the target set {〈s, ϕ1〉, 〈s, ϕ2〉}. With this
observation it is easy to see that Amin(〈s, ϕ1 ∧ ϕ2〉) = 1 if and only if
Amin(〈s, ϕ1〉) = 1 and Amin(〈s, ϕ2〉) = 1. By the induction hypothesis
this is equivalent to s |= ϕ1 and s |= ϕ2, which following the semantics
implies s |= ϕ1 ∧ ϕ2.

(IV) For ϕ = ϕ1∨ϕ2 we show that Amin(〈s, ϕ1∨ϕ2〉) = 1 if and only if s |= ϕ1∨
ϕ2 for all s ∈ S. By Figure 2(d), a configuration 〈s, ϕ1∧∨2〉 has two hyper-
edges with the target sets {〈s, ϕ1〉} and {〈s, ϕ2〉}. With this observation,
we have that Amin(〈s, ϕ1 ∨ ϕ2〉) = 1 if and only if Amin(〈s, ϕ1〉) = 1
or Amin(〈s, ϕ2〉) = 1. By the induction hypothesis this is equivalent to
s |= ϕ1 or s |= ϕ2, which following the semantics implies s |= ϕ1 ∨ ϕ2.

(V) For ϕ = E ϕ1 U≤k ϕ2 we show that Amin(〈s,E ϕ1 U≤k ϕ2〉) = 1 if and
only if s |= E ϕ1 U≤k ϕ2 for all s ∈ S. Recall the semantics for the
satisfaction of formula E ϕ1 U≤k ϕ2, requires that for some k′ ≤ k, there
exists a run σ and a position p ≥ 0 that satisfy the following conditions.

σ(p) |= ϕ2 (23)

σ(j) |= ϕ1 , for all j < p (24)

Wσ(p) ≤ k′ (25)
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⇒: Assume that Amin(〈s,E ϕ1 U≤k ϕ2〉) = 1, we now show that this
implies s |= E ϕ1 U≤k ϕ2.
We denote the iteration in which a configuration v was first assigned the
value 1, as Z(v), formally we write the auxiliary function Z as follows.

Z(v) =

{
i if F i(A0)(v) 6= F i−1(A0)(v)

∞ otherwise
(26)

For any configuration v it holds that Z(v) <∞ if and only if Amin(v) = 1,
as a pre fixed-point assignment must be reached in a finite number of
iterations. Considering Z(v) for a configuration v = 〈s,E ϕ1 U≤k ϕ2〉,
where Amin(v) = 1, we see that in iteration Z(v) − 1, the assignment
of some configuration in the target-set for a hyper-edge to v must have
been changed to 1. In Figure 2(e) we observe that there are two kinds of
hyper-edges, leading us to conclude that at least one of the following two
cases must hold.

A) Z(〈s, ϕ2〉) = Z(v)− 1, or
B) max{Z(〈s, ϕ1〉), Z(〈s′,E ϕ1 U≤k−w ϕ2〉)} = Z(v)−1, for some

s′, s.t. s
w→ s′.

We now show that Amin(〈s,E ϕ1 U≤k ϕ2〉) = 1 implies the existence of a
run σ and a position p satisifying conditions 23, 24 and 25 for k′ ≤ k, by
induction on Z(〈s,E ϕ1 U≤k ϕ2〉).
First we observe that Z(〈s,E ϕ1 U≤k ϕ2〉) is always greater than 1, as
only configurations v having trivial hyper-edges (v, ∅) are assigned 1 in
the first iteration of F .
Base Case (Z(〈s,E ϕ1 U≤k ϕ2〉) = 2): In this case we know that case
(A) must hold, seeing that no configuration u = 〈s′,E ϕ1 U≤k−w ϕ2〉 can
have Z(u) = 1. From case (A), we have that Z(〈s, ϕ2〉) = 1, which means
that Amin(〈s, ϕ2〉) = 1. By structural induction, Amin(〈s, ϕ2〉) = 1 gives
us s |= ϕ2. Thus, any run σ = s . . . and position p = 0 satisfy conditions
23, 24 and 25 for k′ = 0, hence, it also holds for k′ ≤ k.
Inductive Step (Z(〈s,E ϕ1 U≤k ϕ2〉) > 2): Again, we consider cases (A)
and (B). If case (A) holds we can construct a run σ = s . . . and position
p = 0 as before. If (B) is the case, we have that Amin(〈s, ϕ1〉) = 1 and
Amin(〈s′,E ϕ1 U≤k−w ϕ2〉) = 1. By structural induction it follows from
Amin(〈s, ϕ1〉) = 1 that s |= ϕ1.
Because Z(〈s′,E ϕ1 U≤k−w ϕ2〉) < Z(〈s,E ϕ1 U≤k ϕ2〉) it follows by
induction that there is a run σ = s′ . . . and a position p that satisfy
conditions 23, 24 and 25 for k′ ≤ k − w. Considering the extension σ′ =
s

w→ s′ . . . of σ and position p′ = p + 1, we observe that σ′ and p′ also
satisfy the conditions for k′ ≤ k.
– Condition 23 holds because σ′(p′) = σ(p) and σ(p) |= ϕ2.
– Condition 24 holds since σ(0) = s, s |= ϕ1 and for all j < p we have
σ′(j + 1) = σ(j) and σ(j) |= ϕ1.

– Condition 25 holds due to the fact that Wσ(p) ≤ k − w implies
Wσ′(p

′) ≤ k, because Wσ′(p
′)−Wσ(p) = w.

62



We have now shown that Amin(〈s,E ϕ1 U≤k ϕ2〉) = 1 implies that there
exists a run σ starting from s and a position p satisfying conditions 23,
24 and 25 for k′ ≤ k. Thus, given the semantics it follows that s |=
E ϕ1 U≤k ϕ2.
⇐: Assume that s |= E ϕ1 U≤k ϕ2, we now show that this implies
Amin(〈s,E ϕ1 U≤k ϕ2〉) = 1. From the semantics it follows that there
is a run σ and position p satisfying conditions 23, 24 and 25 for k′ ≤ k
Let s = s0, then we can write σ as follows.

σ = s0
w1→ s1 . . . sp−1

wp→ sp . . .

We show that Amin(〈si,E ϕ1 U≤k−Wσ(i) ϕ2〉) = 1 by induction on i
starting from p.
Base Case (i = p): By condition 23 of the semantics, sp |= ϕ2, which
by structural induction on ϕ implies Amin(〈sp, ϕ2〉) = 1. In Figure 2(e),
we observe that there is a hyper-edge from 〈sp,E ϕ1 U≤k−Wσ(i) ϕ2〉 to
〈sp, ϕ2〉, thus,Amin(〈sp, ϕ2〉) = 1 impliesAmin(〈sp,E ϕ1 U≤k−Wσ(i) ϕ2〉) =
1, which proves our base case.
Inductive Step (i < p): By condition 24 of the semantics, si |= ϕ1, which
by structural induction on ϕ implies Amin(〈si, ϕ1〉) = 1. By induction on
i, we know that Amin(〈si+1,E ϕ1 U≤k−Wσ(i+1) ϕ2〉) = 1 holds. In Figure
2(e), we observe that there is a hyper-edge e from 〈si,E ϕ1 U≤k−Wσ(i) ϕ2〉
to the target-set 〈si, ϕ1〉 and 〈si+1,E ϕ1 U≤k−Wσ(i+1) ϕ2〉, as Wσ(i+1)−
Wσ(i) = wi+1, which is exactly the transition weight between si and si+1.
Since we know that Amin(v) = 1 for all configurations v of the target-set of
the hyper-edge e, then it must follow thatAmin(〈si,E ϕ1 U≤k−Wσ(i) ϕ2〉) =
1 for all i ≤ p.

(VI) For ϕ = A ϕ1 U≤k ϕ2 we have that Amin(〈s,A ϕ1 U≤k ϕ2〉) = 1 if and only
if s |= A ϕ1 U≤k ϕ2 for all s ∈ S. Recall the semantics for the satisfaction
of formula A ϕ1 U≤k ϕ2, requires that for any run σ there exists a position
p ≥ 0 satisfying the following conditions for k′ ≤ k.

σ(p) |= ϕ2 (27)

σ(j) |= ϕ1 , for all j < p (28)

Wσ(p) ≤ k′ (29)

⇒: Assume that Amin(〈s,A ϕ1 U≤k ϕ2〉) = 1, we now show that this
implies s |= A ϕ1 U≤k ϕ2.
We denote the iteration in which a configuration v was first assigned 1, as
Z(v), formally we write the auxiliary function Z as in Equation 26, shown
in the previous case.
For any configuration v it holds that Z(v) <∞ if and only if Amin(v) = 1,
as a pre fixed-point assignment must be reached in a finite number of
iterations. Considering Z(v) for a configuration v = 〈s,A ϕ1 U≤k ϕ2〉,
where Amin(v) = 1, we see that in iteration Z(v) − 1, the assignment of
some configuration in the target-set for a hyper-edge to v must have been
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changed to 1. In Figure 2(f) we see that there are at most two hyper-edges,
leading us to conclude that at least one of the following two cases must
hold.

A) Z(〈s, ϕ2〉) = Z(v)− 1, or

B) Z(v) - 1 = max

{
Z(〈s, ϕ1〉)
Z(〈s′,A ϕ1 U≤k−w ϕ2〉) for all s′ , s.t. s

w→ s′

For any configuration v = 〈s,A ϕ1 U≤k ϕ2〉, we now show by induction
on Z(v) that Amin(v) = 1 implies that for any run σ = s . . ., there is a
position p satisfying conditions 27, 28 and 29 for k′ ≤ k. We observe that
Z(v) is always greater than 1, seeing that v does not have a trivial hyper-
edge (v, ∅), and only configurations with trivial hyper-edges are assigned
the value 1 in F 1.
Base Case (Z(〈s,A ϕ1 U≤k ϕ2〉) = 2): It must be the case that (A) holds,
as it is not possible for any configuration on the form u = 〈s′,A ϕ1 U≤k−w ϕ2〉
to have Z(u) = 1. From case (A), we have that Z(〈s, ϕ2〉) = 1 which im-
plies that Amin(〈s, ϕ2〉) = 1. Hence, by structural induction it follows that
s |= ϕ2. For any run σ = s . . . we have that p = 0 is a position that satisfies
conditions 27, 28 and 29 for k′ ≤ k.
Inductive Step (Z(〈s,A ϕ1 U≤k ϕ2〉) > 2): Once more, we consider
cases (A) and (B). If case (A) holds then for any run σ = s . . . we
have position p = 0 that satisifes the conditions as before. If (B) is

the case, we have that Amin(〈s, ϕ1〉) = 1 and for all si s.t. s
wi→ si,

it holds that Amin(〈si,A ϕ1 U≤k−wi ϕ2〉) = 1, which by induction on
Z(〈si,A ϕ1 U≤k−wi ϕ2〉) implies that si |= 〈si,A ϕ1 U≤k−wi ϕ2〉. By
structural induction it follows from Amin(〈s, ϕ1〉) = 1 that s |= ϕ1.
Considering any run σ starting from s, we see that this run must be
on the form σ = s

wi→ si . . . for some si, s.t. s
wi→ si. For any postfix

σ′ = si . . . of σ, there exists a position p′ satisfying conditions 27, 28 and
29 for k′ ≤ k − wi, as si |= A ϕ1 U≤k−wi ϕ2. Thus, given σ we have that
p = p′ + 1 is a position satisfying conditions 27, 28 and 29 for k′ ≤ k.

– Condition 27 holds because σ(p) = σ′(p′) and σ′(p′) |= ϕ2.
– Condition 28 holds since σ(0) = s, s |= ϕ1 and for all j < p′ we have
σ(j + 1) = σ′(j) and σ′(j) |= ϕ1.

– Condition 29 holds due to the fact that W ′σ(p′) ≤ k − wi implies
Wσ(p) ≤ k, because Wσ(p)−W ′σ(p′) = wi.

We have now shown that Amin(〈s,A ϕ1 U≤k ϕ2〉) = 1 implies that for any
run σ starting from s, there is a position p satisfying conditions 27, 28 and
29 for k′ ≤ k. Thus, it follows from the semantics that s |= A ϕ1 U≤k ϕ2.
⇐: Assume that s |= A ϕ1 U≤k ϕ2, we now show that this implies
Amin(〈s,A ϕ1 U≤k ϕ2〉) = 1.
Considering the formula ϕ = A ϕ1 U≤k ϕ2 and state s, if s |= ϕ then
it follows from the semantics that for any run σ starting from s, there
is a position p that satisfies conditions 27, 28 and 29 for k′ ≤ k. Given
σ = s . . ., the existence of p also implies the existence of some smallest
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p′. By ρ(s, ϕ), we denote maximum such smallest p′ for any run starting
from s.

ρ(s,A ϕ1 U≤k ϕ2) = max

{
smallest p satisfying

27, 28 and 29 for k′ ≤ k

∣∣∣∣ for all σ = s . . .

}
Considering the state s and formula ϕ = A ϕ1 U≤k ϕ2, we now show that
s |= ϕ implies Amin(〈s, ϕ〉) = 1 by induction on ρ(s, ϕ).
Base Case (ρ(s, ϕ) = 0): In this case we have that for any run σ =
s . . ., the position p = 0 satisifies conditions 27, 28 and 29 for k′ ≤ k.
Condition 27 implies that s |= ϕ2 which by structural induction implies
Amin(〈s, ϕ2〉) = 1. In Figure 2(f) we see that 〈s, ϕ〉 has a hyper-edge to
〈s, ϕ2〉. Thus, it must hold that Amin(〈s, ϕ〉) = 1.
Inductive Step (ρ(s, ϕ) > 0): In this case we have that for any run
σ = s . . ., there is a position p ≤ ρ(s, ϕ) which satisifies conditions 27, 28
and 29 for k′ ≤ k. We also know that p > 0, because if p were 0 for some
run σ = s . . ., then this would imply s |= ϕ2, in which case the smallest
p would be 0 for any run σ = s . . .. Thus, as ρ(s, ϕ) > 0 this cannot be
the case and p > 0, which from condition 28 implies that s |= ϕ1 and by
structural induction we have that Amin(〈s, ϕ1〉) = 1.
In Figure 2(f) we see that 〈s, ϕ〉 has a hyper-edge to the target-set con-

taining 〈s, ϕ1〉 and 〈si,A ϕ1 U≤k−wi ϕ2〉 for all si s.t. s
wi→ si. Thus, to show

thatAmin(〈s, ϕ〉) = 1 we need only show thatAmin(〈si,A ϕ1 U≤k−wi ϕ2〉) =

1 for all si s.t. s
wi→ si.

Consider some si s.t. s
wi→ si, then any run σ′ = si . . . starting from si

must be a postfix of some run σ = s
wi→ si . . . starting from s. We know

that given σ, there exists a position p ≤ ρ(s, ϕ) satisifying conditions 27,
28 and 29 for k′ ≤ k. Now considering σ′ we have that position p′ = p− 1
also satisifies these conditions for k′ ≤ k − wi.
– Condition 27 holds because σ′(p′) = σ(p) and σ(p) |= ϕ2.
– Condition 28 holds since σ′(j− 1) = σ(j) and σ(j) |= ϕ1 for all j < p.
– Condition 29 holds due to the fact that Wσ(p) ≤ k implies Wσ′(p

′) ≤
k − wi, because Wσ(p)−W ′σ(p′) = wi.

As the p′ constructed is strictly smaller than p, we have that
ρ(si,A ϕ1 U≤k−wi ϕ2) < ρ(s, ϕ). Thus, by induction it follows from si |=
A ϕ1 U≤k−wi ϕ2 that Amin(si,A ϕ1 U≤k−wi ϕ2) = 1. As all configurations
in a hyper-edge for 〈s, ϕ〉 are assigned the value 1, it must hold that
Amin(〈s, ϕ〉) = 1.

(VII) For ϕ = EX≤k ϕ we show that Amin(〈s,EX≤k ϕ〉) = 1 if and only if
s |= EX≤k ϕ for all s ∈ S.
⇒: Assume that Amin(〈s,EX≤k ϕ〉) = 1, then it holds that s |= EX≤k ϕ.
In Figure 2(g), the configuration 〈s,EX k ϕ〉 has a hyper-edge for every

si ∈ {si | s
wi→ si and wi ≤ k}. Clearly, Amin(〈s,EX≤k ϕ〉) = 1 if and

only if Amin(〈si, ϕ〉) = 1 is the case for any such si. By the induction
hypothesis this is equivalent to si |= ϕ, which following the semantics
implies that s |= EX≤k ϕ.
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⇐: Assume that s |= EX≤k ϕ, then it holds that Amin(〈s,EX≤k ϕ〉) = 1.
From the semantics, it must be the case that there exists an si, such that
s
wi→ si, with wi ≤ k, it holds that si |= ϕ. By the induction hypoth-

esis, this implies that Amin(〈si, ϕ〉) = 1 for any such si. Since Amin is
a pre fixed-point assignment, a hyper-edge in Figure 2(g) ensures that
Amin(〈s,EX≤k ϕ〉) = 1.

(VIII) For ϕ = AX≤k ϕ we show that Amin(〈s,AX≤k ϕ〉) = 1 if and only if
s |= AX≤k ϕ for all s ∈ S.
⇒: Assume that Amin(〈s,AX≤k ϕ〉) = 1, then it holds that s |= AX≤k ϕ.
In Figure 2(h), the configuration 〈s,AX≤k ϕ〉 has a single hyper-edge
with a target set on the form {〈s1, ϕ〉, . . . , 〈sn, ϕ〉}, for every si, such that

s
wi→ si and wi ≤ k. It is clear that Amin(〈s,AX≤k ϕ〉) = 1 if and only if

Amin(〈si, ϕ〉) = 1 for all such si. Given the induction hypothesis, we have
that si |= ϕ for 1 ≤ i ≤ n, which implies that s |= AX≤k ϕ.
⇐: Assume that s |= AX≤k ϕ, then it holds that Amin(〈s,AX≤k ϕ〉) = 1.
By the semantics it must be that case that si |= ϕ, for all si such that

s
wi→ si, where wi ≤ k. By the induction hypothesis this implies that

Amin(〈si, ϕ〉) = 1 for all such si. As Amin is a pre fixed-point assignment,
the hyper-edge in Figure 2(h) ensures that Amin(〈s,AX≤k ϕ〉) = 1.

ut
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A.2 Proofs Related to Symbolic Dependency Graph

This section is a slightly modified excerpt from our pre-specialization project [14].
We begin with a technical lemma.

Lemma 4. Let G = (V,H, ∅) be an SDG without cover-edges and ci denote a
configuration which assignment changed to the smallest value in the i’th iteration
of the functor, formally written as follows.

ci = arg min
v∈{v∈V |F i−1(v)>F i(v)}

F i(v)

It holds that F i(ci) = Amin(ci).

Proof. To prove that Amin(ci) = F i(ci), we show that Equation (37) holds. It
then trivially follows that F i(ci) is the minimum pre fixed-point assignment of
ci, because no future smallest assignment in any iteration j > i becomes less
than F i(ci).

To show that Equation (37) holds, we observe that when the assignment of
configuration ci+1 is changed to the smallest value in the i+ 1’th iteration, then
its assignment must have become smaller in iteration i+ 1, written as Equation
(30).

F i(ci+1) > F i+1(ci+1) (30)

F i+1(ci+1) = max{w′ + F i(u′) | (w′, u′) ∈ T} (31)

F i−1(u) > F i(u) (32)

F i(u) ≥ F i(ci) (33)

This implies that there exists a hyper-edge (ci+1, T ) ∈ H such that Equation
(31) holds. Because the value F i+1(ci+1) was not reached in the i’th iteration,
there must be a hyper-edge branch (w, u) ∈ T such that the assignment of
configuration u changed from the i − 1’th to the i’th iteration, which yields
Equation (32).

We know that the smallest assignment changed from the i− 1’th to the i’th
iteration is F i(ci). Hence, we get Equation (33), because no other assignment
made in the i’th iteration is smaller than F i(ci).

max{w′ + F i(u′) | (w′, u′) ∈ T} ≥ w + F i(u) (34)

F i+1(ci+1) ≥ w + F i(u) (35)

F i+1(ci+1) ≥ w + F i(ci) (36)

F i+1(ci+1) ≥ F i(ci) (37)

As the hyper-edge branch (w, u) for which the value of u changed is in T ,
we observe that w + F i(u) must be less than equal to the right hand side of
Equation (31) giving us Equation (34). Substituting this back into Equation
(31) and we get Equation (35). We now recall the lower-bound on F i(u) from
Equation (33) in order to write Equation (36). Thus, we get Equation (37) as w
must be non-negative. ut
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Proof of Theorem 2
Computing the minimum pre fixed-point assignment of G = (V,H,C) by repeated
application of the functor F takes O(|V | · |C| · (|H|+ |C|)) time.

Proof. Let us first realize that a single iteration of F takes O(|H| + |C|) as
we go through all the edges and and for each such edge update the value of
the source configuration. Note that from the construction we have that there
are always more configurations than cover-edges. After we establish that the
algorithm terminates after no more than |V | · |C| iterations, the claim is proved.

If we consider a symbolic dependency graph without cover-edgesG = (V,H, ∅),
we have that the minimum pre fixed-point assignment is reached within |V | iter-
ations. This follows from Lemma 4 that states that after each iteration, there is
at least one configuration that reaches its minimum pre fixed point assignment.

Assume now that the symbolic dependency graph contains cover-edges. It is
clear that once the value of a source configuration for a cover-edge is updated,
it takes the value 0 and cannot be improved any more. Hence, after at most |V |
iterations at least one cover-edge sets the value of its source configuration to 0
and then we need to perform at most |V | iterations before the same happens for
another cover-edge, etc. Hence the total number of iterations is O(|V | · |C|) as
required for establishing the claim of the theorem. ut

Proof of Theorem 4
Let K = (S,AP, L,→) be a WKS, s ∈ S a state, ϕ a WCTL formula. Let G be
the constructed symbolic dependency graph rooted with 〈s, ϕ〉. Then s |= ϕ if and
only if Amin(〈s, ϕ〉) = 0.

Proof. We prove Theorem 4 by observing that there is two kinds of config-
urations in the symbolic dependency graph rooted with 〈s, ϕ〉. We have that
configurations on the form 〈s,E ϕ1 U≤? ϕ2〉 or 〈s,A ϕ1 U≤? ϕ2〉 may have
non-zero hyper-edge weights. We shall refer to these configurations as symbolic
configurations, and all other configurations as concrete configurations.

Notice that the bound for symbolic configurations is “?”, while 〈s,E ϕ1 U≤k ϕ2〉
is a concrete configuration. With the introduction of concrete and symbolic con-
figurations, we now present two invariants for the symbolic encoding.

i) Concrete configurations 〈s, ϕ〉 can only obtain the values 0 or ∞, where
Amin(〈s, ϕ〉) = 0 if and only if s |= ϕ.

ii) For a symbolic configuration v = 〈s,E ϕ1 U≤? ϕ2〉 it holds that Amin(v) = k
if and only if s |= E ϕ1 U≤k′ ϕ2 for any k′ ≥ k.
(A similiar invariant applies to configurations for the universal until-formula).

It is easy to see that Theorem 4 follows trivially from Invariant (i). Thus, we
need only show that these invariants hold by structural induction on ϕ.

(I) For ϕ = true we show that Invariant (i) holds for all configurations
〈s, true〉. Because s |= true always holds we need only show that
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Amin(〈s, true〉) = 0. In Figure 2(a) there is a hyper-edge from the config-
uration 〈s, true〉 to the empty target set. Hence, we have that A(v) = 0
for any pre fixed-point assignment A of G.

(II) For ϕ = a we prove Invariant (i), i.e. Amin(〈s, a〉) = 0 if and only if s |= a
for all s ∈ S. If a ∈ L(s) we have s |= a and by Figure 2(b), there is
a hyper-edge from the configuration 〈s, a〉 to the empty target set. Like
in the previous case this means that Amin(〈s, a〉) = 0, which leaves us
to consider the case when a /∈ L(s). In this case it is clear that s 6|= a
and by the side-condition in Figure 2(b), we can conclude that there is
no hyper-edge from the configuration 〈s, a〉 when a /∈ L(s). Thus, we have
Amin(〈s, a〉) =∞ since Amin is the minimum pre fixed-point assignment.

(III) For ϕ = ϕ1 ∧ ϕ2 we show that Invariant (i) holds. First we show that
Amin(〈s, ϕ1∧ϕ2〉) is either∞ or 0, and Amin(〈s, ϕ1∧ϕ2〉) = 0 if and only
if s |= ϕ1 ∧ ϕ2. Since sub-configurations 〈s, ϕ1〉 and 〈s, ϕ1〉 are concrete
(Figure 2(c)) it follows by structural induction that their assignments only
evaluate to either 0 or ∞. Furthermore, we have Amin(〈s, ϕ1〉) = 0 and
Amin(〈s, ϕ2〉) = 0, if and only if s |= ϕ1 and s |= ϕ2, which following the
semantics implies s |= ϕ1 ∧ ϕ2.

(IV) For ϕ = ϕ1 ∨ ϕ2 Invariant (i) can be shown with arguments similar to
those used previously for conjunction.

(V) For ϕ = E ϕ1 U≤k ϕ2 we show Invariant (i), i.e. Amin(〈s,E ϕ1 U≤k ϕ2〉) =
0 if and only if s |= E ϕ1 U≤k ϕ2 for all s ∈ S. From Figure 7(a) we see that
any configuration 〈s,E ϕ1 U≤k ϕ2〉 has a single cover-edge with the cover-
condition k leading to the symbolic configuration v = 〈s,E ϕ1 U≤? ϕ2〉.
By structural induction we have from Invariant (ii) that Amin(v) ≤ k if
and only if s |= E ϕ1 U≤k ϕ2. Thus, we have shown Invariant (i), as
cover-edges can only assign the value 0.

(VI) For ϕ = E ϕ1 U≤? ϕ2 we show Invariant (ii), i.e. thatAmin(〈s,E ϕ1 U≤? ϕ2〉) =
k if and only if s |= E ϕ1 U≤k′ ϕ2 for any k′ ≥ k.
Recall the semantics for the satisfaction of the formula E ϕ1 U≤k ϕ2,
requires that for some k′ ≤ k, there exists a run σ and a position p ≥ 0
satisfying the following conditions.

σ(p) |= ϕ2 (38)

σ(j) |= ϕ1 , for all j < p (39)

Wσ(p) ≤ k′ (40)

⇒: Assume that Amin(〈s,E ϕ1 U≤? ϕ2〉) = k, we now show that this im-
plies the existence of a run σ and position p satisfying conditions 38, 39 and
40 for k′ ≤ k. By the semantics this obviously implies s |= E ϕ1 U≤k′ ϕ2

for any k′ ≥ k.
We denote the iteration in which a configuration v was first assigned the
value k, as Zk(v). Formally we write the auxiliary function Zk as follows.

Zk(v) =

{
i if F i(v) ≤ k and F i−1(v) > k

∞ otherwise
(41)
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For any configuration v it holds that Zk(v) <∞ if and only if Amin(v) ≤ k,
as a fixed-point must be reached in a finite number of iterations. Consid-
ering Zk(v) for a configuration v = 〈s,E ϕ1 U≤? ϕ2〉, where Amin(v) ≤ k,
we see that in iteration Zk(v) − 1, the assignment of some configuration
in the target-set for a hyper-edge to v must have been changed to k. From
Figure 2(e) we see that there are two kinds of hyper-edges, leading us to
conclude that at least one of the following two cases must hold.

A) Zk(〈s, ϕ2〉) = Zk(v)− 1, or
B) max{Zk(〈s, ϕ1〉), Zk−w(〈s′,E ϕ1 U≤? ϕ2〉)} = Zk(v) − 1, for

some s′, s.t. s
w→ s′.

We now show that Amin(〈s,E ϕ1 U≤? ϕ2〉) = k implies the existence of a
run σ and a position p satisifying conditions 38, 39 and 40 for k′ ≤ k, by
induction on Zk(〈s,E ϕ1 U≤? ϕ2〉).
First we observe that Zk(〈s,E ϕ1 U≤? ϕ2〉) is always greater than 1, as
only configurations v having trivial hyper-edges (v, ∅) are assigned 0 in
the first iteration of F .
Base Case (Zk(〈s,E ϕ1 U≤? ϕ2〉) = 2): In this case we know that case
(A) must hold, seeing that no configuration u = 〈s′,E ϕ1 U≤? ϕ2〉 can
have Zk−w(u) = 1. From case (A), we have that Zk(〈s, ϕ2〉) = 1 and as this
is a concrete configuration, it holds that Amin(〈s, ϕ2〉) = 0 by Invariant
i. From here it also follows that Amin(〈s, ϕ2〉) = 0 implies s |= ϕ2. Thus,
any run σ = s . . . and position p = 0 satisfy conditions 38, 39 and 40 for
k′ = 0, hence, it also holds for k ≥ k′.
Inductive Step (Zk(〈s,E ϕ1 U≤? ϕ2〉) > 2): Again, we consider cases
(A) and (B). If case (A) holds we can construct a run σ = s . . . and
position p = 0 as before. If (B) is the case, we have that Zk(〈s, ϕ1〉) ≤ ∞
which implies Amin(〈s, ϕ1〉) = 0 as 〈s, ϕ1〉 is a concrete configuration.
Futhermore, it follows from Invariant (ii) by structural induction that
s |= ϕ1.
Because Zk−w(〈s′,E ϕ1 U≤? ϕ2〉) < Zk(〈s,E ϕ1 U≤? ϕ2〉) it follows by
induction that there is a run σ = s′ . . . and a position p that satisfy
conditions 38, 39 and 40 for k′ ≤ k − w. Considering the extension σ′ =
s

w→ s′ . . . of σ and position p′ = p + 1, we observe that σ′ and p′ also
satisfy the conditions for k′ ≤ k.

– Condition 38 holds because σ′(p′) = σ(p) and σ(p) |= ϕ2.
– Condition 39 holds since σ(0) = s, s |= ϕ1 and for all j < p we have
σ′(j + 1) = σ(j) and σ(j) |= ϕ1.

– Condition 40 holds due to the fact that Wσ(p) ≤ k − w implies
Wσ′(p

′) ≤ k, because Wσ′(p
′)−Wσ(p) = w.

⇐: Assume that s |= E ϕ1 U≤k ϕ2, we now show that this implies
Amin(〈s,E ϕ1 U≤? ϕ2〉) ≤ k. From the semantics it follows that there
is a run σ and position p satisfying conditions 38, 39 and 40 for k′ ≤ k
Let s = s0, then we can write σ as follows.

σ = s0
w1→ s1 . . . sp−1

wp→ sp . . .
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We show that Amin(〈si,E ϕ1 U≤? ϕ2〉) ≤ k −Wσ(i) by induction on i
starting from p.
Base Case (i = p): By condition 38 of the semantics, sp |= ϕ2, which by
structural induction on ϕ implies Amin(〈sp, ϕ2〉) = 0 because 〈sp, ϕ2〉 is a
concrete configuration. In Figure 7(c), we observe that there is a hyper-
edge from 〈sp,E ϕ1 U≤? ϕ2〉 to 〈sp, ϕ2〉, thus, Amin(〈sp, ϕ2〉) = 0 implies
Amin(〈sp,E ϕ1 U≤0 ϕ2〉) = 0, which proves our base case.
Inductive Step (i < p): By condition 39 of the semantics, si |= ϕ1, which
by structural induction on ϕ implies Amin(〈si, ϕ1〉) = 0. By induction on
i, we know that Amin(〈si+1,E ϕ1 U≤? ϕ2〉) ≤ k −Wσ(i+ 1) holds.
In Figure 7(c), we observe that there is a hyper-edge e from 〈si,E ϕ1 U≤? ϕ2〉
to the target-set 〈si, ϕ1〉 and 〈si+1,E ϕ1 U≤? ϕ2〉. We also notice that e
has the transition weight between si and si+1, wi+1, on the hyper-edge
branch to 〈si+1,E ϕ1 U≤? ϕ2〉. Thus, from the semantics of hyper-edges
it follows that Amin(〈si,E ϕ1 U≤? ϕ2〉) ≤ k −Wσ(i + 1) + wi+1. But as
Wσ(i)+wi+1 = Wσ(i) we have that Amin(〈si,E ϕ1 U≤? ϕ2〉) ≤ k−Wσ(i),
which proves our inductive case.

(VII) For ϕ = A ϕ1 U≤k ϕ2 we have that Amin(〈s,E ϕ1 U≤k ϕ2〉) = 0 if and
only if s |= A ϕ1 U≤k ϕ2 for all s ∈ S. The proof strategy here is similar
to the previously shown case for ϕ = E ϕ1 U≤k ϕ2.

(VIII) For ϕ = A ϕ1 U≤? ϕ2 it can be shown that Amin(〈s,E ϕ1 U≤? ϕ2〉) = k
if and only if s |= A ϕ1 U≤k′ ϕ2 for all k′ ≥ k. The proof strategy is an
adaptation of the approach for ordinary dependency graphs. In particular
it is similar to the proof strategy applied for E ϕ1 U≤? ϕ2, which was
adapted from the proof for ordinary dependency graphs.

(IX) For ϕ = EX≤k ϕ we observe in Figure 2(g) that all successor configura-
tions are concrete. It is straightforward to adapt the proof strategy used
for ordinary dependency graphs for this case.

(X) For ϕ = AX≤k ϕ, shown in Figure 2(h), all successor configurations are
again conrete. Once again, it is easy to adapt the proof strategy for this
case.

ut
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A.3 Resumé

I denne afhandling introduceres tre teknikker til verifikation af vægtet CTL
(WCTL). Dertil afdækkes begrænsinger af de henholdsvise tilgange til prob-
lemet. Tidligere løsningsforslag til verifikation af fragmentet WCTL≤, uden nega-
tion, samt begrænset til øvre grænser p̊a modaliteterne gengives i form af en
reduktion til fikspunktberegning af afhængighedsgrafer og deres symbolske ud-
videlse. Disse teknikker muliggør lokal model checking, men er begrænset til al-
terneringsfrie fikspunkter, hvilket indskrænker udtrykskraften i forhold til logikken.

Vi udvider disse ideer i form min-max grafer som en teknik til verikation af
den fuldstændige vægtet CTL logik. I modsætning til de førnævnte teknikker,
understøttes alternerende fikspunkter ved denne tilgang. Derved kan der for-
muleres en mere udtryksrig logik, hvor invariante egenskaber, samt den svage
’until’ modalitet med nedre grænser kan benyttes. Vi beskriver endvidere b̊ade
en global og lokal algoritme til fikspunktsberegning, med henblik p̊a at verificere
logiske udsagn med min-max grafer.

Algoritmerne er implementeret i et online værktøj, som gør WCTL model
verifikation af vægtet CCS modeller let tilgængeligt. Gennem eksperimenter med
vores implementering demonstrerer vi fordelene ved lokal fikspunktsberegning
til verifikation af egenskaber med de tre løsningsforslag. P̊a denne baggrund
konkluderes det at en lokal tilgang kan give anledning til en dramatisk forbedring
af verifikationstiden, n̊ar b̊ade grænser og de logiske egenskaber tillader mange
mulige vidner om sandheden af udsagnet.
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