
Aalborg University

Department of Computer Science

Selma Lagerlöfs Vej 300

9220 Aalborg Ø

Telephone 99 40 99 40

http://www.cs.aau.dk
Title:

E�cient Skyline Computation
for Large Volume Data in
MapReduce Utilising Multiple
Reducers

Theme:

Database Technology

Semester:

Software Engineering
10th semester
Feb. 4th, 2013 - June 7th, 2013

Group:

sw106f13

Members:

Kasper Mullesgaard
Jens Laurits Pedersen

Supervisor:

Hua Lu

Copies: Four

Paper - pages: 33

Appendices: 1

CD-ROM: 1

Total pages: 35

Abstract:

A skyline query is useful for extract-

ing a complete set of interesting tuples

from a large data set according to mul-

tiple criteria. The sizes of data sets

are constantly increasing and the archi-

tecture of backends have switched from

single node environments to cluster ori-

ented setups. Previous work has pre-

sented ways to run the skyline query

in these setups using the MapReduce

framework, but the parallel possibilities

are not taken advantage of since a sig-

ni�cant part of the query is always run

serially. In this paper, we propose the

novel algorithm Grid Partitioning Mul-

tiple Reducers Skyline (GPMRS) that

runs the entire query in parallel. This

means that GPMRS scales well for large

data sets and large clusters. We demon-

strate this using experiments showing

that GPMRS runs several times faster

than the alternatives for large data sets

with high skyline percentages.

Summary

The purpose of this master thesis project is to develop and implement an
e�cient skyline query algorithm in the MapReduce framework. The project
is documented in the form of a scienti�c article and the focus is on utilising
multiple reducers to process large data sets.

Two algorithms are proposed, one being an extension of the other. The
�rst one is called MR-GPSRS and it was primarily developed during last
semester. It is an e�cient skyline query processing MapReduce algorithm.
The second algorithm is called MR-GPMRS. It is an extension to MR-
GPSRS, and unlike MR-GPSRS, it utilises multiple reducers to compute
the global skyline.

To evaluate MR-GPSRS and MR-GPMRS, both algorithms are com-
pared to two other algorithms from the literature, MR-Angle and MR-BNL.
The experiments show that MR-GPSRS performs better than MR-Angle and
MR-BNL in all tests, and that MR-GPMRS is better than MR-GPSRS when
the skyline percentage of the data set is high.

The proposed algorithms perform better than the algorithms from the
literature because of two reasons. The �rst being that by utilising grid
partitioning they are able to prune a large part of the domination checks
between tuples. The second being that MR-GPMRS scales better with the
skyline percentage as it allows the entire skyline computation to be performed
parallelly. In addition, a cost estimation is made that provides a worst case
number of partition comparisons in MR-GPMRS.

To conclude the paper, some future research directions are suggested.
The evaluation conducted in the paper was performed on a relatively small
cluster, and in order to properly test the algorithms performance on big data,
a bigger cluster is needed. Another direction is to �nd methods for further
reducing the communications cost between the mappers and reducers while
load balancing the reducers.

Kasper Mullesgaard

Date: June 7th, 2013

Jens Laurits Pedersen

3

Contents

1 Project Overview 7

1.1 1st Semester . 7
1.2 2nd Semester . 8
1.3 Re�ection . 9

2 Scienti�c Article 11

3 Implementation 25

3.1 MR-GPSRS and MR-GPMRS 25
3.1.1 Bitstring Generation 25
3.1.2 Skyline Computation 26

3.2 MR-BNL . 29
3.2.1 Phase 1 . 29
3.2.2 Phase 2 . 31

3.3 MR-ANGLE . 32
3.3.1 Phase 1 . 32
3.3.2 Phase 2 . 33

A CD-ROM 35

5

Chapter 1

Project Overview

This project is the culmination of the work across two semesters. The
1st semester lasted from September 2012 to January 2013, and the 2nd

from February 2013 to June 2013. This paper documents the work in this
semester. This paper consists of three chapters. This chapter contains an
overview of the entire project: A summary of the two semesters and a project
re�ection. Chapter 2 contains the scienti�c article that is the main contribu-
tion of this paper, and Chapter 3 contains a description of how the algorithms
associated with this project have been implemented.

1.1 1st Semester

The initial problem statement was to develop an e�cient skyline query pro-
cessing algorithm for MapReduce. The current research into this area has
room for improvement as all previous work relies on having the �nal sky-
line computed at a single node. The �nal goal was therefore to develop
an algorithm where the �nal skyline is computed parallelly across multiple
nodes.

The �rst goal in the previous semester was to establish a foundation
for the skyline query processing in MapReduce. This included establishing
familiarity with the Hadoop MapReduce framework and how it implements
the MapReduce framework.

The second goal was to implement a skyline query processing algorithm.
The initial idea was to solve utilise multiple reducers by copying the data
for calculating the �nal skyline to multiple nodes, each node having respon-
sibility for a part of the data set. In this way, multiple nodes were able to
calculate the �nal skyline parallelly. This method, however, was very naive
and even with the multiple reducers, it lacked the e�ciency to compete with
the current research. The reason was a lack of the ability to prune any
domination checks between tuples.

The project focus then moved on to improve pruning power. In skyline

7

1.2. 2ND SEMESTER

query processing, grid partitioning is an e�cient way of pruning domina-
tion checks between points. Implementing grid partitioning requires that
the mappers and reducers are aware of which partitions are empty and non-
empty globally. This is problematic since mappers and reducers cannot com-
municate with each other. The solution to this was to generate a bitstring
that represented the empty and non-empty status of partitions across the
entire data set, in a MapReduce job before the skyline computation. The
MapReduce job that computed the skyline was then initialized with the gen-
erated bitstring, allowing the mappers to make pruning decisions where the
entire data set is taken into account. The algorithm that resulted from this
is called MR-GPSRS.

The next goal was to �nd a new way to utilise multiple reducers that
made e�ective use of the grid partitioning scheme. MR-GPSRS only uses a
single reducer, since the original method for using multiple reducers found in
the start of the semester was too naive to continue using, as simply copying
the data set across all reducers caused an unnecessary high communication
cost. Computing the global skyline e�ciently using multiple reducers was
not solved by the end of the 1st semester. A method was found for the
mappers to send individually processable data to multiple reducers, but the
method caused the communication cost to become extremely high. This was
named the multiple reducers problem. Another problem with the algorithm
at the end of the 1st semester was that the Partitions Per Dimension (PPD)
had to be manually set. The most e�cient PPD could only be determined
by having intricate knowledge of the data set, or by running the algorithm
multiple times with di�erent values. This was named the tuning problem.

1.2 2nd Semester

The previously identi�ed problems from the 1st semester was the focus of the
work during the 2nd semester. The multiple reducer problem was the main
focus since solving it would be a novel and valuable contribution to skyline
query processing in MapReduce. A solution was found, and further time
went into re�ning and improving certain aspects of it. The solution to the
problem was a method that allowed for identifying groups of partitions that
could be processed independently at the reducers. These groups are then
merged into a number of groups equal to the number of reducers, and the
groups are send to the reducers where they each compute a part of the global
skyline. This method was implemented as a new algorithm MR-GPMRS, an
extension to MR-GPSRS.

Experiments have shown that, for large data sets with large skylines,
MR-GPMRS is e�cient at utilizing multiple reducers to compute the global
skyline. For some large skyline data sets, it is even able to return the skyline
with a relatively low runtime of a few minutes, where the single reducer

8

CHAPTER 1. PROJECT OVERVIEW

solution, MR-GPSRS, can not complete in a reasonable amount of time. For
data sets with low skyline percentages, the extra overhead in MR-GPMRS,
however, is not worth it, meaning that the original method with one reducer
in MR-GPSRS has a lower runtime.

A simple and e�ective solution has also been found to the tuning problem.
The algorithm makes a guess of a good PPD and does the initial work of
generating and pruning the bitstring multiple times for di�erent bitstrings
based on the PPD the algorithm guessed, and other PPDs close to it. After
�nishing the bitstrings, the algorithm determines the best one and continues
with it. This solution is not especially elegant, relying on approximation and
redundant work. However, the redundant work, generating and pruning the
bitstring, is computationally light and it is barely noticeable on the runtime.
The method is e�ective in that it works well enough to be able to, for each
of several tested data sets, choose the optimal PPD. The method was used
for all experiments. Whether the PPDs it produced for the algorithm were
optimal was not tested for in all data sets. Considering how the runtime
scaled, however, the produced PPDs were at least good estimates, never
being bad enough for it to be noticeable.

Throughout the semester, general optimisations and re�nements of the
algorithms were made. Some of the implementation of MR-GPSRS, and by
extension MR-GPMRS, was improved to be more e�cient, and several places
were identi�ed where improvements could be made in the algorithm design.
Algorithms from the literature was implemented to use for comparison, and
an e�ort was made to implement them to be as e�cient as possible.

A cost estimation for the algorithm was made. The original purpose of
the cost estimation was to estimate how many dominance checks between
tuples the algorithm makes. It proved to be problematic because of the high
number of variables in the algorithm. A method was found to calculate the
worst case number of times dominance checks between partitions are made.
The most important factor for the runtime in the algorithm, the number
of tuples per partition, could not be accounted for, given its unpredictabil-
ity. The consequence of this is that a lower estimated number of partition
dominance checks does not necessarily translate to a lower runtime. The
cost estimation was compared with measured numbers and it is shown to be
accurate for data sets with uniform data distribution.

1.3 Re�ection

With regards to the balance of time usage, what could have been better is
how much time was spent �ne tuning the algorithm after it was practically
�nished and ready for use. Less time spent on that could have been used
to make more experiments. Speci�cally, more testing on how many reducers
were optimal to use. Throughout the experiments, a number of reducers

9

1.3. REFLECTION

equal to the number of nodes in the cluster was used. Some testing with
varying number of reducers was performed, which revealed that using more
reducers than the number of nodes could actually provide a better runtime,
the nodes being able to process more than one reducer at a time by utilis-
ing multiple cores. The experiments only showed a very small reduction in
runtime when more reducers were used than there were nodes, but further
investigation is warranted to �nd out what the optimal number of reducers
is for di�erent data sets.

Future work on the algorithm could be to further investigate the way re-
ducer groups are generated. Currently it is done by balancing the workload
of the reducers. An alternative method was found that optimised communi-
cation cost, but it was consistently showing worse runtimes than the method
based on workload balancing. It would be interesting to �nd a more e�ec-
tive way to balance reducer groups. The reducer groups produced did end
up being quite well balanced, only causing a di�erence in runtime between
reducers of a few percent. This does not leave a lot of room for improvement
on that area. What could be improved is the communication cost. As men-
tioned, an alternative method optimised communication cost, but maybe a
method that compromises between load balancing and communication cost
optimization can be found.

The current solution to the tuning problem is naive in the way that it
assumes a uniform distribution among the partitioning when deciding on
a grid con�guration. In the case of a uniformly distributed data set this
might be optimal, but it is not optimal for anti-correlated data sets. A
future direction for research could be to develop a more intelligent way of
deciding the grid con�guration based on the total amount of partitions and
the possibilities of pruning using the grid. It would also be interesting to
further investigate how the current method performs. Manually �nding the
optimal PPD to a data set is very time consuming, given that multiple PPDs
must be tested for. This was done for some data sets to gauge the precision
of the method for choosing the PPD. It would, however, be interesting to
manually �nd the optimal PPD for more data sets to verify that the PPD
the method chooses is consistently optimal.

10

Chapter 2

Scienti�c Article

11

Efficient Skyline Computation for Large Volume Data in
MapReduce Utilising Multiple Reducers

Kasper Mullesgaard
Aalborg University
Aalborg, Denmark

kmulle08@student.aau.dk

Jens Laurits Pedersen
Aalborg University
Aalborg, Denmark

jlpe08@student.aau.dk

ABSTRACT
A skyline query is useful for extracting a complete set of in-
teresting tuples from a large data set according to multiple
criteria. The sizes of data sets are constantly increasing and
the architecture of backends are switching from single node
environments to cluster oriented setups. Previous work has
presented ways to run the skyline query in these setups using
the MapReduce framework, but the parallel possibilities are
not taken advantage of since a significant part of the query
is always run serially. In this paper, we propose the novel al-
gorithm MapReduce - Grid Partitioning Multiple Reducers
Skyline (MR-GPMRS) that runs the entire query in paral-
lel. This means that MR-GPMRS scales well for large data
sets and large clusters. We demonstrate this using experi-
ments showing that MR-GPMRS runs several times faster
than the alternatives for large data sets with high skyline
percentages.

1. INTRODUCTION
Skyline queries have a wide application domain ranging

from e-commerce and quality based service selection, to
stock trading and, generally speaking, any process involv-
ing multi-attribute decision making. Skyline query process-
ing is computationally intensive. In order to handle this
high computation cost, commodity computing can be used.
Commodity computing is a paradigm where a high number
of low cost computers are connected in a cluster to run de-
manding computations across multiple nodes. Commodity
computing is deployed by several notable companies [1, 7,
8, 9, 11].

When using commodity clusters, the idea is to to take ad-
vantage of the high number of nodes by processing queries
parallelly. High fault tolerance is a requirement since ma-
chines can fail, and a larger cluster have a higher probability
of machines faulting. MapReduce is designed specifically for
high fault tolerance parallel computing.

The problem of this article is to develop a MapReduce
algorithm that finds the skyline of a large volume data set

efficiently. Similar work on this subject has been done be-
fore but previous work presents solutions that uses only a
single reducer to find the global skyline, failing to utlilise the
MapReduce framework to its full potential. To the best of
our knowledge, applying multiple reducers to find the global
skyline is unprecedented when finding the skyline for large
data sets, and it is the focus of the work presented here.

As a solution to the problem, the MapReduce - Grid Parti-
tioning Multiple Reducers Skyline (MR-GPMRS) algorithm
is proposed. The basis of the MR-GPMRS algorithm is, as
the name suggests, to partition the input data set using a
grid. A bitstring is used to keep track of which partitions
in the grid are non-empty, which makes it possible to make
decisions based on the distribution of the entire data set.
How dominance in the skyline query works combined with
the grid partitioning scheme allows splitting the data into
parts that can be processed independently of each other,
which means that these parts can be processed by different
reducers. The goal of MR-GPMRS is to minimise the query
response time for data sets with high skyline percentages.
To measure this, it is compared to other skyline query pro-
cessing algorithm that applies the MapReduce framework.

The rest of this paper is organized as follows: Section
2 contains the preliminaries. In Section 3 we introduce
MapReduce - Grid Partitioning Single Reducers Skyline
(MR-GPSRS): Our bitstring based grid partitioning algo-
rithm for skyline query processing in the MapReduce frame-
work. In Section 4 we introduce MR-GPMRS, a novel exten-
sion to MR-GPSRS that allows processing skyline queries in
MapReduce using multiple reducers. In Section 6 we present
experimental evaluation of the proposed solutions compared
with algorithms from the litterature, and finally, in Section
7, we conclude the paper and propose future directions for
research.

2. PRELIMINARIES
In this section, the skyline query and the MapReduce

framework is described. A table of common symbols used
throughout this paper is shown in Table 1.

2.1 The Skyline Query
Given a set of multi-dimensional tuples R, the skyline

query returns a set of tuples SR, such that SR consists of all
the tuples in R that are not dominated by any other tuple
in R [3].

Definition 1. A tuple ri dominates another tuple rj , de-
noted by ri ≺ rj , if and only if, for all dimensions, the value

13

Table 1: A list of common terms.

Symbol Interpretation
R A set of tuples
SR The skyline of the set of tubles R
t A tuple
n Partitions per dimension (PPD)
d Dimensionality
p A partition of the data
P A set of partitions
BS A bitstring
IG A group of independent partitions

Reduce1

Map1

Reduce2

Map2

Reducek

Mapn...

...

Input

Output

Figure 1: This figure shows the MapReduce process. The
input is split between the mappers. The mappers pro-
cess their input split and output the results to the reduc-
ers. The reducers process the results from the mappers,
generating the final output.

of ri is not worse than the corresponding value of rj , and
for at least one dimension, the value of ri is better than the
value of rj [3].

Whether a value is better or worse than another value is
determined by the configuration of the skyline query. Typ-
ically, a value v1 has to be either larger or smaller than
another value v2 for v1 to be better than v2. In this paper
it is assumed that a smaller value is better.

2.2 The MapReduce Framework
MapReduce is a framework for distributed computing. It

is based on a Map and a Reduce function [6]. The Map
function is invoked for each record in the input file and it
produces a list of key-value pairs. The Reduce function is
then invoked once for each unique key and the associated
list of values. This produces key-value pairs that are the re-
sult of the MapReduce job, i.e., Map(k1, v1) → list(k2, v2)
and Reduce(k2, list(v2)) → list(k3, v3). Several MapRe-
duce jobs can be chained together, later phases being able
to refine and/or use the results from earlier phases. The
MapReduce process is illustrated in Figure 1.

A distributed file system is used to store the data pro-
cessed and produced by the MapReduce job. The input
file(s) is split up, stored, and possibly replicated on the dif-
ferent nodes in the cluster. The nodes are then able to access
their local splits when processing data. When the data from
the Map function has been processed by the different nodes,
the results are shuffled between the nodes so the required
data can be accessed locally when the Reduce function is
invoked.

It can be necessary to replicate some data across all nodes.
In Hadoop [2], the implementation of MapReduce used for
this paper, the Distributed Cache can be used for this pur-
pose. In the beginning of a MapReduce job, data written

to the Distributed Cache is transferred to all nodes, making
it accessible in the Map and Reduce functions. This paper
assumes that the Distributed Cache, or something similar,
is available.

2.3 Skyline Query Processing in MapReduce
In an article by Zhang et al. [12] skyline algorithms

are adapted for the MapReduce framework. Three differ-
ent algorithms are presented: MapReduce - Block Nested
Loop (MR-BNL), MapReduce - Sort Filter Sort (MR-SFS),
and MR-Bitmap. MR-BNL uses BNL and grid partitioning.
The second algorithm, MR-SFS, modifies MR-BNL with
presorting, but it is shown to perform worse than MR-BNL.
MR-Bitmap is based on a bitmap which is used to determine
dominance. It is fast computationally but requires a large
amount of disk space and is only viable for data sets with few
distinct values. A single reducer is used to calculate the fi-
nal resulting skyline in MR-BNL and MR-SFS. MR-Bitmap
does use multiple reducers, and is the only MapReduce al-
gorithm for finding the skyline of a data set we know of to
do so. However, as mentioned, it can only handle data sets
with low data distinction. In [12], it was not tested on data
sets with more than ten thousand distinct values, which is
below the threshold for data sets used for testing in this
article.

Angular partitioning is a different partitioning technique
proposed by Vlachou et al. [10]. Angular partitioning is
based on making partitions by dividing the data space up
using angles. The idea is based on the observation that
skyline tuples are located near the origin. So by dividing
the data space up using angles, skyline tuples should be
distributed into several partitions while non-skyline tuples
should be grouped with skyline tuples that dominates them.
The technique is shown to be effective but the global skyline
is found using a single node. In an article by Chen et al. [4]
the angular partitioning technique is adapted to MapReduce
resulting in the algorithm MapReduce - Angle (MR-Angle).
The results are comparable to those in [10], and the global
skyline is found using a single reducer.

3. GRID PARTITIONING BASED SINGLE
REDUCER SKYLINE COMPUTATION

In this section, a skyline algorithm for MapReduce is pro-
posed. The algorithm utilises grid partitioning and bit-
strings in order to prune dominance checks between tuples.

3.1 Grid Partitioning
Grid partitioning is a method of splitting up a space where

each dimension is divided into n parts, referred to as the Par-
titions per Dimension (PPD). This gives a regular grid of nd

partitions, termed as P , where d is the dimensionality of the
data set. In the context of skyline queries, the dominating
relationship between the partitions p1, p2, . . . , pnd ∈ P can
be exploited to exclude dominance checks between tuples.
Partitions have a dominating relationship with each other
similar to that between tuples. The main difference is that
a dominating relationship between two partitions pi and pj
is based on their maximum corners pi.max and pj .max, and
minimum corners, pi.min and pi.min. The maximum cor-
ner of a partition is defined as the corner of the partition
that has the highest (worst) values. Similarly, the minimum
corner of a partition is defined as the corner of the partition
that has the lowest (best) values.

14

Figure 2: An example of partitions and their offsets.
Non-empty partitions are marked with crosses and the
dominating (dark grey) and anti-dominating (light grey)
regions of the partition with offset 4 (circle) are shown.

Definition 2. A partition pi dominates another partition
pj , denoted by pi ≺ pj , if and only if pi.max dominates
pj .min. This ensures that all tuples in pi dominates all
tuples in pj .

pi ≺ pj ⇔pi.max ≺ pj .min (1)

If this is not the case, pi does not dominate pj , denoted by
pi ⊀ pj .

The dominating relationships between the partitions can
be expressed using their individual dominating (Cui et al.
[5]) and anti-dominating regions.

Definition 3. Given a partition pi, its dominating region
pi.DR contains all partitions dominated by pi:

pi.DR = {pj | pj ∈ P ∧ pi ≺ pj} (2)

Meanwhile, pi’s anti-dominating region pi.ADR contains all
partitions that can have tuples that dominates pi.max:

pi.ADR = {pj | pj ∈ P ∧ pj .min ≺ pi.max} (3)

Figure 2 shows an example of the dominating and anti-
dominating region of the partition marked as 4 in a two
dimensional data set. The non-empty partitions are marked
with a cross. The dominating region of partition 4 contains
partition 8 and the anti-dominating region contains parti-
tions 0, 1, and 3.

3.2 Bitstring Representation
In grid partitioning, the only partitions of interest are

those that are non-empty, i.e. {pi | pi ∈ P ∧ pi 6= ∅}.
The partitioning scheme can be represented as a bitstring
BS(0, 1, 2, . . . , nd − 1) where for 0 ≤ i ≤ nd − 1:

BS[i] =

{
1 if p 6= ∅
0 otherwise

(4)

The resulting bitstring can be constructed using either
row-major order or column-major order, the only difference
being how the offset of a partition in the bitstring is calcu-
lated. Column-major order is used in this paper. For exam-
ple, the offset of the partitions of the two dimensional data
set in Figure 2 is indicated by the digit in their lower left
corner of the partitions, resulting in the bitstring 011110100.

...

R

BSR

R1 BSR1 R2 BSR2 Rn BSRm

BSR1∪BSR2∪...∪BSRm BSR

Figure 3: The data flow of the bitstring generation phase
of MR-GPSRS with the data set R.

...

R, BSR

SR

R1 SR1 R2 SR2 Rn SRm

BSR

SR1∪SR2∪...

SRm SR

BSR BSR BSR

Figure 4: The data flow of the skyline computation phase
of MR-GPSRS with the data set R and the bitstring BSR.

The bitstring can be traversed to prune partitions such
that fewer partitions and data tuples are involved in the
skyline computation. This can be done by using the domi-
nating relationships between partitions. If pi ≺ pk for pi,
pk ∈ P then the value of pk in the bitstring is set to 0,
thereby eliminating it from further consideration. If n sub-
sets R1, R2, . . ., Rn ⊂ R are partitioned with the same grid
scheme, this will result in n bitstrings BS(R1), BS(R2), . . .,
BS(Rn). Two or more of these bitstrings can be merged us-
ing bitwise or, and if R1 ∪ R2 ∪ . . . ∪ Rn = R then BS(R1)
∨ BS(R2) ∨ . . . ∨ BS(Rn) = BS(R).

3.3 MR-GPSRS Algorithm
The algorithm is divided into two phases: The bitstring

generation phase and the skyline computation phase.
In the mappers of the bitstring generation phase, shown

in Algorithm 1, a bitstring BSRi is initialized (line 1), the
status of the partitions of the tuples in Ri are set to 1 in
BSRi (lines 2-5), and all mappers send their BSRi to a single
reducer (line 6. In the reducer (Algorithm 2) the global bit-
string BSR is initialized (line 1). A logical OR operation is
then performed on the global bitstring BSR and each of the
bitstrings received from the mappers BSS (lines 2-4). The
bitstring is then traversed and pruned (lines 5-7) for domi-
nated partitions. The data flow of the bitstring generation
phase of MR-GPSRS is represented in Figure 3 where it is
shown how the data set R is split into subsets [R1, Rm] that
are processed by the mappers into local bitstrings [BSR1,
BSRm]. The reducer then finds the global bitstring BSR

using [BSR1, BSRm] and outputs BSR.
In the skyline computation phase, shown in Algorithm 3,

the mappers partition their subset Ri of the data set R (lines
1-2). By using the bitstring BSR from the bitstring genera-

15

Algorithm 1 Mapper of the bitstring generation phase

Input: A subset Ri of the data set R, the dimensionality
of the data set d, and the PPD n.

Output: A bitstring BSRi of the empty and non-empty
status of the partitions in the data set RS.

1: Initialize a bitstring BSRi with length nd where all bits
are set to 0

2: for each t ∈ Ri do
3: Decide the partition p that t belongs to
4: Set the bit that represents the status of p in

bitstring BSRi to 1
5: end for
6: Output(null, BSRi)

Algorithm 2 Reducer of the bitstring generation phase

Input: A set of local bistrings BSS, the dimensionality of
the data set d, and the PPD n.

Output: BSR, the bitstring of the data set R.
1: Initialize a bitstring BSR with length nd where all bits

are set to 0
2: for each BSRi ∈ BSS do
3: BSR ← BSR ∨ BSRi[i]
4: end for
5: for each partition p with status 1 in BSR do
6: set status of partitions in p.DR to 0 in BSR

7: end for
8: Output(null, BSR)

tion phase, the tuples belonging to partitions that have been
pruned are discarded (line 3). The InsertTuple function (Al-
gorithm 5) is then called on the remaining tuples (line 4),
where a tuple t is inserted into a partition p and t is com-
pared with all tuples in p, such that only the local skyline
of p is maintained. The mappers, after all tuples have been
partitioned, compute their local skyline (lines 7-9) by call-
ing the ComparePartitions function (Algorithm 4), where
the dominating relationships of the partitions, as specified
in Definition 3 (Section 3.1), are used to remove any tuples
dominated by other tuples local to that mapper. Each map-
per then outputs their set of local partitions P to a single
reducer (line 10). At this point in the algorithm, P is equal
to SRi, the skyline of the mappers local subset Ri of the
data set R.

In Algorithm 6, the reducer receives the local skylines, in
the form of a set of partition sets LS, from the mappers
and merges them (lines 1-8). Merging the partitions uses
the same function for inserting tuples into partitions as in
Algorithm 3, where only the local skyline is maintained in
each partition. The reducer then calculates and outputs
SR, the skyline of R, by iterating through the partitions and
comparing them with the partitions in their anti-dominating
regions (lines 9-11).

The data flow of the skyline computation phase of
MR-GPSRS is represented in Figure 4 where it is shown how
the data set R is split into subsets [R1, Rm] that are pro-
cessed by the mappers into local skylines [SR1, SRm]. The
reducer then finds the global skyline SR using [SR1, SRm]
and outputs SR.

Algorithm 3 Mapper of MR-GPSRS
Skyline Computation

Input: A subset Ri of the data set R and the bitstring
BSR.

Output: A set of local partitions SRi where each partition
contains local skyline tuples.

1: for each t ∈ Ri do
2: decide the partition p in the set of local

partitions P that t belongs to
3: if status of p in BSR is 1 then
4: p← InsertTuple(t, p)
5: end if
6: end for
7: for each p ∈ P do
8: p← ComparePartitions(p, P)
9: end for

10: Output(null, P)

Algorithm 4 ComparePartitions(partition p,
set of partitions P)

Input: A partition p and a set of partitions P
Output: Returns p such that all tuples in p dominated by

a tuple in any partition in P are removed.
1: ADR = p.ADR ∩ P
2: for each p′ ∈ ADR do
3: remove from p tuples that are dominated

by tuples in p′

4: end for
5: return p

Algorithm 5 InsertTuple(tuple t, partition p)

Input: A tuple t and a partition p
Output: Returns p such that it contains t if t is not dom-

inated by any tuples in p. If t dominates any tuples in
p, they are removed.

1: check = true
2: for each t′ ∈ p do
3: if t ≺ t′ then
4: remove t′ from p
5: end if
6: if t′ ≺ t then
7: check = false
8: break
9: end if

10: end for
11: if check then
12: add t to p
13: end if
14: return p

16

Algorithm 6 Reducer of MR-GPSRS
Skyline Computation

Input: The set of local skylines from all the mappers LS
in the form of a set of partition sets.

Output: The global skyline SR.
1: for each P ∈ LS do
2: for each p ∈ P do
3: for each t ∈ p do
4: decide the partition p′ in the set of global

partitions PG that t belongs to
5: p′ ← InsertTuple(t, p′)
6: end for
7: end for
8: end for
9: for each p′ ∈ PG do

10: ComparePartitions(p′, PG)
11: end for
12: for each p′ ∈ PG do
13: Output(null, p′)
14: end for

3.3.1 Choosing the Number of Partitions per Dimen-
sion

The PPD is a parameter that is significant for the per-
formance of the algorithm. The reason the PPD is impor-
tant is that it determines the number of Tuples per Parti-
tion (TPP). TPP is important since if there are too few
TPP, then the process of comparing each set of partitions is
not worthwhile compared to checking the tuples in the par-
titions. Conversely, if there are too many TPP, the grid is
too rough and the number of partitions that can be pruned
when comparing partitions becomes less than optimal.

What the optimal PPD is depends on the cardinality, dis-
tribution, and dimensionality of the data set, as well as the
number of active mappers. Without having extensive knowl-
edge of the algorithm and the data set, choosing the optimal
PPD, or even a good PPD, is guesswork. To avoid this, an
extension to MR-GPSRS is proposed where the algorithm
chooses the PPD itself.

The extension is based on a guess of a good PPD n made
in the mappers. This guess is based on the data sets cardi-
nality c, dimensionality d, and the desired TPP. The num-
ber of TPP in a given grid can be approximated with the
following expression:

c

nd
= TPP (5)

From this, n can be isolated:

d

√
c

TPP
= n (6)

It is then necessary to determine the desired TPP. For the
data sets in this article, 100/d was found to be a good num-
ber. This takes into account the number of dimensions,
which affects the time it takes to compare them. What
this number should be in different setups might vary. From
the guess n, several bitstrings are generated. For example,
a bitstring based on n and then four more bitstrings based
on PPD values 1 and 2 higher and lower than n. The values
should only be used if 2 ≤ n ∧ nd < c.

The set of bitstrings generated by each mapper, as well as
the number of points each mapper processed, is then send

...

...

R, BSR

S1∪S2∪...

∪Sn SR

R1 SR1
BSR R2 SR2

BSR Rn SRn
BSR

SR1.2∪SR2.2∪...

∪SRn.2 S2
BSR

SR1.r∪SR2.r∪...

∪SRn.r SnBSR

SR1.1∪SR2.1∪...

∪SRn.1 S1
BSR

Figure 5: The data flow of the second phase of
MR-GPMRS with the bitstring BSr of the data set R

to a reducer. To get the global bitstrings, the reducer runs
a logical OR operation on the bitstrings from the different
mappers that are based on the same n. The reducer then
makes an estimate on the number of TPP for each bitstring
by dividing the number of non-empty partitions, taken from
the bitstring, with the number of tuples processed by each
mapper. The reducer can then estimate the remaining tu-
ples each bitstring would have after pruning by using the
estimated TPP and the difference in the number of set bits
in the bitstrings before and after pruning. The remaining
number of tuples and the number of non-empty partitions
in each bitstring after pruning are then used by the reducer
to make a final estimate of the TPP in each bitstring after
pruning. The one that is closest to the desired TPP is then
chosen as the final global bitstring used in the rest of the
algorithm. This extension is used for the experiments in
Section 6.

4. GRID PARTITIONING BASED
MULTIPLE REDUCERS SKYLINE
COMPUTATION

In this section, an extension to MR-GPSRS is proposed
that utilises multiple reducers. MR-GPSRS relies on a single
reducer for computing the global skyline, which increasingly
becomes a bottleneck when the skyline of the data set be-
comes larger.

This bottleneck is alleviated by utilising the fact that the
grid partitioning technique can be used to identify subsets
of partitions for which the skyline can be computed inde-
pendently, allowing the use of multiple reducers.

4.1 Skyline Query Processing Using Grid
Partitioning With Multiple Reducers

In the current methods of computing skyline in MapRe-
duce, the final step of the algorithms require the local sky-
lines from the mappers to be merged into the global skyline
by a single reducer. This is due to the inability of map-
pers to communicate with each other, thereby not having a
global awareness of the data set, and that with some par-
titioning methods, it is not possible to distribute partitions
into groups that can be processed independently.

The issue of communication between the mappers is ad-
dressed by utilising the bitstring to ensure that the neces-
sary information is available to the mappers. The issue of
identifying independent groups of partitions is addressed by

17

Figure 6: An example showing the distribution of non-
empty partitions on two mappers (cross and circle), the
partitions belonging to an independent group (grey), and
the replicated partitions (dark grey).

utilising the anti-dominating relationship between the par-
titions in the grid partitioning scheme. The combination of
these methods allows the mappers in the algorithm to unan-
imously decide how the partitions are to be sent to multiple
reducers. In order for the mappers to output their parti-
tions to reducers they need to be aware of which partitions
are non-empty. A single mapper mapper1 is aware of which
partitions are non-empty in its subset. This is, however, not
enough for the mapper to decide how the partitions are to be
sent, as the distribution of non-empty partitions in another
mapper mapper2 might be different. The decision on how
to send the partitions made by mapper1 might be different
than that made by mapper2, which results in a partition
p not being compared with all the partitions in its global
anti-dominating region p.ADR.

For example, Figure 6 illustrates the non-empty parti-
tions of the mappers mapper1 = {p1, p2, p6} and mapper2 =
{p2, p3, p4, p6}. A decision is made by mapper1 to send
the partitions p1 and p2 to reducer1 and partition p6 to
reducer3. Meanwhile, mapper2 decides to send partition p2
to reducer1, partitions p3 and p4 to reducer2, and partitions
p3 and p6 to reducer3. In this example, reducer2 would need
partition p1 because p1 ∈ p4.ADR. Since mapper1 does not
know that p4 is non-empty, however, it has no way of know-
ing that it should send p1 to reducer2. A global bitstring is
a way to resolve this problem, since it allows the mappers
to know the empty or non-empty status of all partitions.

4.1.1 Grouping Partitions
The grid partitioning scheme allows for identifying inde-

pendent groups: Sets of partitions that can be processed
independently to obtain the skyline of those partitions.

Definition 4. A set of partitions IG is independent if and
only if the following holds:

{∀p ∈ IG | p.ADR ⊆ IG} (7)

Independent groups makes it possible for the combined out-
put of multiple reducers to be the global skyline while only
having each reducer process a subset of the data set. The
following lemma provides a general way to identifying inde-
pendent groups.

Lemma 1. Any group of partitions that consists of a par-
tition p, and the partitions in p.ADR, is independent.

Proof. Consider three partitions p1, p2, p3 that are part
of the same regular grid for which the following statements
hold:

p2.min ≺ p1.max (8)

p3.min ≺ p2.max (9)

Since the grid partitions p1, p2, p3 belong to is regular, from
Statements 8 and 9, it follows that:

p3.min ≺ p1.max (10)

Considering Definition 3 (Section 3.1), from Statements 8,
9, and 10 it follows that:

p2 ∈ p1.ADR ∧ p3 ∈ p2.ADR⇒ p3 ∈ p1.ADR (11)

which can be generalized as:

p2 ∈ p1.ADR⇒ p2.ADR ⊆ p1.ADR (12)

Considering Definition 4, it follows that the set of partitions
P is independent if:

P = p1.ADR ∪ p1 (13)

Generating independent groups should not be done us-
ing arbitrarily chosen partitions and their anti-dominating
regions, since this does not exclude the possibility of the in-
dependent groups being subsets of each other. One way to
identify independent groups from a set of partitions P , that
cannot be subsets of each other, is by using the maximum
partitions in P .

Definition 5. A partition pmax ∈ P is a maximum parti-
tion if and only if the following holds:

{∀p ∈ P | pmax /∈ p.ADR} (14)

When a group of partitions consists of a maximum parti-
tion pmax, and the partitions in pmax.ADR, it is indepen-
dent and it cannot be a subset of another independent group.

For example, consider Figure 6. The partition p2 is a
maximum partition because it is not in the anti-dominating
region of another partition . Making an independent group
IG1 from p2 and p2.ADR gives IG1 = {p1, p2}. Similarly,
partitions p4 and p6 are also maximum partitions and mak-
ing independent groups IG2, IG3 from p4 and p4.ADR and
p6 and p6.ADR respectively, gives IG2 = {p1, p3, p4} and
IG3 = {p3, p6}. Since these groups are made based on max-
imum partitions, they are not subsets of each other.

It is necessary to replicate some partitions among the in-
dependent groups as they lie in the anti-dominating regions
of partitions in multiple groups, e.g. p1, p3. The skyline tu-
ples in a replicated partition are only output by one of the
reducers to which the partition is sent. The mappers decides
which reducers are responsible for outputting the replicated
partitions.

4.1.2 Merging Independent Groups
The number of maximum partitions in a data set can be

high, and therefore the number of independent groups that
can be generated will also be high. If the number of inde-
pendent groups is higher than the number of cluster nodes,
multiple independent groups will be send to the same nodes,

18

and because partitions can be present in multiple indepen-
dent groups, this will cause partitions to be sent to the same
nodes multiple times.

Consider the previous example from Figure 6 with
the three independent groups IG1 = {p1, p2}, IG2 =
{p1, p3, p4}, IG3 = {p3, p6}. In a scenario where IG1 and
IG2 are sent to the same node, for example, partition p1
is send twice. It is notable that the overlap between parti-
tions becomes more prominent in higher dimensions where
the number of replicated partitions increases, since the di-
mensionality of the anti-dominating regions of the partitions
also increases.

The independent groups can be merged, however, to avoid
sending the same partitions to the same nodes multiple
times. The two groups IG1 and IG2 can be merged to form
the group IGmerged ={p1,p2,p3,p4}. These merged groups
are then able to be send to reducers without any duplication
in their list of partitions, and are called reducer groups. The
merging of independent groups influences both the commu-
nication cost and the balancing of computation cost between
the reducers. One method of merging is based on optimizing
the communication cost: Independent groups that have the
most partitions in common are merged. This method, how-
ever, does not guarrenty any balance of the computations
among the reducers as this could leave some reducer groups
with more unique partitions than other groups. Consider
the previous example, the reducer group IGmerged consists
of 3 unique partitions and IG3 consists of 1 unique par-
tition. This would result in a larger amount of computa-
tions for IGmerged, assuming uniform amount of tuples in
the partitions, as it is forced to compute the skyline for
the 3 partitions as they are not present in any other reducer
group. Preliminary tests have shown that a merging method
based on balancing the computations cost between the re-
ducers performed the best, and it was therefore the one used
throughout this paper.

How many reducer groups that should be generated de-
pends on the size of the data set, the size of the cluster,
and the available memory in the nodes. The reducer part of
the skyline generation phase requires that the skyline of the
local data set is kept in memory.

This means that if the number of reducer groups is set
too low compared to the size of the data set, the memory
may overflow which will cause the runtime to increase sig-
nificantly. If the number of reducer groups is set too high,
the same partitions can be sent to the same node several
times, or be sent to multiple nodes unnecessarily, causing
additional communication. A balance between the two is
desirable, such that memory does not overflow and commu-
nication cost is not unnecessarily high. In this paper, the
number of generated reducer groups is set to be equal to the
number of nodes in the cluster r. This is fitting since the
local skylines of the data sets tested for fits in the mem-
ory of the nodes and any unnecessary communication cost
is avoided. For larger clusters or larger data sets, generating
a number of reducer groups equal to the number of nodes
might not be optimal.

4.1.3 Outputting Replicated Partitions
Since partitions are replicated in different reducer groups,

it is necessary to control which reducers output the repli-
cated partitions. When a reducer is responsible for out-
putting the skyline tuples in a partition, the reducer group

of that reducer is referred to as being responsible for that
partition. A reducer group is responsible for all the parti-
tions unique for that reducer group. If a partition is present
in more than one reducer group, one of the reducer groups in
which it is present is designated as being responsible for that
partition. The reducer group chosen to be responsible for a
replicated partition is based on a calculation of how many
comparisons are made between the partitions it contains.
The number of comparisons necessary for each partition the
reducer group is responsible for is calculated based on the
bitstring and added up. In order to balance the computa-
tion cost for each reducer group, the reducer group with the
lowest number of calculated partition comparisons is made
responsible for a replicated partition until responsibility of
every partition has been given to some reducer group. Since
the mappers use the bitstring to form reducer groups, the
allocation of responsibility is identical across all mappers.

4.2 GPMRS Algorithm
The MR-GPMRS algorithm has two phases; the bitstring

generation phase and the skyline computation phase, where
the bitstring generation phase is the same as in MR-GPSRS.
The skyline computation phase of MR-GPMRS, Algo-
rithm 7, is the same as the skyline computation phase of
MR-GPSRS until line 9. There after the independent groups
are found (line 10), grouped together (line 11), and responsi-
bility of replicated partitions are assigned (lines 12-16). The
reducer groups are then sent to the reducers (lines 17-21).

Algorithm 7 Mapper of MR-GPMRS
Skyline computation

Input: A subset Ri of the data set R, the bitstring BSR,
and the number of reducers r.

Output: A set of reducer groups RG containing local par-
titions with the local skyline.

1: for each t ∈ Ri do
2: Decide the partition p in the set of local partitions

P that t belongs to
3: if status of p in BSR is 1 then
4: p← InsertTuple(r, p)
5: end if
6: end for
7: for each p ∈ P do
8: p← ComparePartitions(p, P)
9: end for

10: IG← IndependentGroups(P,BSR)
11: RG← ReducerGroups(IG, r)
12: while BSR contains set bits do
13: rgmin ← a reference to rg ∈ RG with

the lowest amount of computations
14: Assign responsibility of a single p ∈ rgmin

to rgmin

15: Set index of p in BSR to 0
16: end while
17: i = 0
18: for each rg ∈ SRi ← RG do
19: Output(i, rg)
20: i + +
21: end for

In order to maintain consistency throughout the mappers,
the bitstring is used to generate the independent groups.
In Algorithm 8, the independent groups are generated by

19

traversing the bitstring BSR in reverse in order to find the
maximum partitions (line 2). For each maximum partition
pmax an independent group is created consisting of pmax and
the partitions in pmax.ADR (lines 3-4). The independent
group ig is then added to the set of independent groups IG
(line 5) and the bitstring indexes of the partitions in the
independent group ig are cleared from the bitstring BSR

(lines 6-7), so that the next traversed bit will be a new max-
imum partition. The result is a set of independent groups
IG (line 9). Consider the previous example of Figure 6 with
the independent groups IG1 = p1, p2, IG2 = p1, p3, p4 and
IG3 = p3, p5, the result of the algorithm is the set of inde-
pendent groups IG = IG1, IG2, IG3.

Algorithm 8 IndependentGroups(P, BS˙R)

Input: A set of partitions P and a bitstring BSR.
Output: A set of independent groups IG.
1: while BSR contains set bits do
2: pmax ← the p ∈ P represented by the last set bit in

BSR

3: ig ← pmax

4: add pmax.ADR to ig
5: add ig to IG
6: BSR ← BSR ∧ ¬ bitstring of pmax

7: BSR ← BSR ∧ ¬ bitstring of pmax.ADR
8: end while
9: return IG

Algorithm 9 ReducerGroups(IG, r)

Input: A set of independent groups IG and the required
number of reducer groups r.

Output: A set of reducer groups RG.
1: RG← r number of empty reducer groups
2: while IG 6= ∅ do
3: rgmin ← a reference to the rg ∈ RG with

the lowest amount of unique partitions
4: move the partitions in the largest igmax ∈ IG

to rgmin, ignoring duplicate partitions
5: end while
6: return RG

In Algorithm 7 the independent groups IG are grouped
together into r reducer groups, where r is the number of
reducers (line 11). In Algorithm 9, the r reducer groups are
constructed by continually moving independent groups from
IG to the reducer group rigmin with the lowest amount of
unique partitions (lines 2-5). In the start r empty reducer
groups are initialized as the reducer groups (line 1). Then
rgmin is found and the largest (in number of partitions)
indepdent group igmax is moved from IG to rgmin (lines 3-
4). The procedure then returns the set of reducer groups RG
(line 6). Continuing the previous example, with the set of
independent groups IG = {IG1, IG2, IG3}. In this example,
2 reducer group are generated, so 2 empty reducer groups rg1
and rg2 are initialized. The reducer group with the lowest
number of partitions is chosen, which can be either one,
so the first RG1 is chosen. The independent group with
the highest number of partitions, IG2, is then added to the
reducer group, rg1 = {p1, p3, p4}. Then the reducer group
with the lowest number of partitions is chosen again, rg2,
and the independent group with the most partitions is added

to it. This can be either IG1 or IG3 since they contain
the same number of partitions, so the first one is chosen,
rg2 = {p1, p2}. The reducer group with the lowest number
of partitions is still RG2 so it is chosen again and the last
independent group is added to it, rg2 = {p1, p2, p3, p6}. The
set of independent groups IG is empty so the reducer groups
are finished being generated, RG = {rg1, rg2}.

Responsibility of tuples are assigned to reducer groups in
Algorithm 7 (lines 12-16). This is done by calculating the
increase in number of required dominance checks between
partitions the partition would cause if added to the reducer
groups, which is how many more times line 3 in Algorithm 4
would be run. The partition is then assigned to the reducer
group with the lowest number of added partition compar-
isons, rgmin.

Algorithm 10 Reducer of MR-GPMRS
Skyline computation

Input: A set of reducer groups LS containing subsets of the
local skylines send to the same reducer from different
mappers.

Output: The partitions the reducer groups in LS are re-
sponsible for.

1: for each RG ∈ LS do
2: for each p ∈ RG do
3: for each t ∈ p do
4: decide the partition p′ in the set of global

partitions PG that t belongs to
5: p′ ← InsertTuple(t, p′)
6: end for
7: end for
8: end for
9: for each p ∈ Pg do

10: if p is responsible then
11: p← ComparePartitions(p, PG)
12: end if
13: end for
14: for each responsible p ∈ PG do
15: Output(null, p)
16: end for

Consider the previous example RG = {rg1, rg2}. Reducer
group rg1 starts with taking responsibility of the partition
it contains that adds the lowest amount of partition com-
parisons. The number of comparisons a partition requires
is equal to the number of partitions in its anti-dominating
region. So the partitions in rg1 with the lowest amount of
comparisons are p1 and p3, and it chooses the first one p1.
Partition p1 requires no comparisons so it chooses again and
takes responsibility for p3, which also does not require any
comparisons. So rg1 chooses again and takes responsibility
for partition p4 that requires 2 comparisons. Reducer group
rg1 has no more partitions to take responsibility for, so rg2
takes responsibility of its partitions in order p2, p6 and ends
up requiring 2 comparisons.

In Algorithm 10, each reducer receives a set of reducer
groups LS, containing their subset of the local skyline from
one or more mappers, which are then merged into a single
group MRG (lines 1-8). The reducers then calculates their
subset of the skyline of R, by iterating through the partitions
they are responsible for and comparing them with the par-
titions in their anti-dominating regions (lines 9-11). The re-
sult is then output (lines 14-16). The data flow of the skyline

20

Table 2: A list of common terms.

Symbol Interpretation
ptotal(n, d) Partitions in a grid
prem(n, d) Remaining partitions in a grid after

pruning dominated partitions
pdom(n, d) Partition dominance checks for a

single partition
s(n, d) Partition dominance checks for a

single surface in a grid
gmapper(n, d) Partition dominance checks for a

single mapper
greducer(n, d) Partition dominance checks for the

reducer with the most partition
dominance checks

computation phase of MR-GPMRS is represented in Figure
5 where it is shown how the data set R is split into subsets
R1, R2, . . . Rn that are processed by the mappers into local
skylines SR1, SR2, . . . SRn. The reducers then find subsets
of the global skyline S1, S2, . . . Sn using subsets of the local
skylines {{SR1.1, . . . , SR1.n},{SR2.1,. . . ,SR2.n},{SRn.1,. . . ,
S1,. . .Sn}} which are then combined to produce the global
skyline SR as output.

5. COST ESTIMATION
In this section estimations of the cost of MR-GPMRS are

made. A table of common terms is shown in Table 2.

5.1 Partition-wise Dominance Tests Estimate
The purpose of this section is to estimate the number

of dominance checks performed between partitions in the
MR-GPMRS algorithm. Specifically, what is estimated is
how many times the line 3 in Algorithm 4 is executed. Due
to several uncertainties of the algorithm, it is necessary to
make some assumptions.

• Every partition in every mapper is non-empty.
The data distribution is an important factor of the
estimation. It is necessary to assume that there are
no empty partitions in order to predict the required
number of comparisons. It is comparable to uniform
data distribution where it can be expected that most
partitions are non-empty.

• The dominance checks between partitions in
the mappers do not lower the number of non-
empty partitions. In practice, the partition checks
in the mappers are likely to leave some partitions
empty. This is unpredictable and is therefore not ac-
counted for.

These assumptions mean that the scenario for which the
estimations are made is a worst case scenario for a data
set with a uniform data distribution. When every partition
is non-empty, after the grid has been pruned, the location
and amount of the remaining partitions is predictable us-
ing the dimensionality d and the PPD n. A d dimensional
grid has a number of d − 1 dimensional surfaces equal to
d × 2. Half of these surfaces, i.e. d surfaces, are filled with
remaining partitions. The remaining part of the other half
of the surfaces, as well as the rest of the partitions, are

dominated. For example, consider Figure 6. In this 2 di-
mensional, 3 PPD grid, there are d × 2 = 4 surfaces with
a dimensionality of d − 1 = 1. These four surfaces consists
of the partitions surf1 = {p2, p1, p0}, surf2 = {p0, p3, p6},
surf3 = {p6, p7, p8}, and surf4 = {p8, p5, p2}. If every
partition were non-empty, the partitions p4, p5, p7, and p8
would be dominated and pruned. This would leave d = 2 in-
tact surfaces, surf1 and surf2. There is an overlap between
the surfaces that must be considered. In this case, the over-
lap between the remaining surfaces surf1 and surf2 is p0.

The number of remaining partitions after pruning a grid
where every partition is non empty prem(n, d) can be cal-
culated by finding the total number of partitions in a grid
parttotal(n, d) and subtracting a grid one PPD smaller:

ptotal(n, d) = nd (15)

prem(n, d) = parttotal(n, d)− parttotal(n− 1, d) (16)

From the previous example, the pruned partitions, p4, p5,
p7, and p8, can be contained by a d = 2 dimensional n −
1 = 2 PPD grid. This means the the number of remaining
partitions after pruning a 2 dimensional, 3 PPD grid can be
calculated as 32−22 = 5. The dominance checks to be done
by a single partition p depends on its anti-dominating region.
A partition pi performs dominance checks against another
partition pj if pj ∈ pi.ADR. The number of dominance
checks pdom(n, d) for a partition p is equal to its grid position
values multiplied with each other minus one:

pdom(n, d) = p.pos.d1 × p.pos.d2 × . . .× p.pos.dd − 1 (17)

The position of a partition in a grid is how many parti-
tions, including itself, from the origin a partition is located
in the different dimensions.

For example, in Figure 6 the partition p2, for the first
dimension, has the position p2.pos.d1 = 3, and for the second
dimension it has the position p2.pos.d2 = 1. Summing this
up to get the number of partition checks for every partition
in a surface s(n, d) yields the following expression:

s(n, d) =
n∑

i1=1

n∑

i2=1

. . .
n∑

id=1

(i1 × i2 × . . .× dn − 1) (18)

To get the number of partition checks for all surfaces, the
overlap between surfaces, where they meet on the axes, has
to be considered. The first surface is calculated as above.
The second surface is also calculated as above but with the
overlap between the first and the second surface removed.
The overlap between the first and the third surface and the
overlap between the second and the third surface has to be
subtracted from the third surface, and so on. To account
for this, the start index i of one of the summations is incre-
mented for each surface that is calculated. So the number of
dominance checks gmap(n, d) between partitions in a single
mapper for all surfaces of a grid is as follows:

s1(n, d) =
n∑

i1=1

n∑

i2=1

. . .
n∑

id−1=1

(i1 × i2 × . . .× id−1 − 1) (19)

21

s2(n, d) =
n∑

i1=2

n∑

i2=1

. . .
n∑

id−1=1

(i1 × i2 × . . .× id−1 − 1) (20)

s3(n, d) =
n∑

i1=2

n∑

i2=2

. . .
n∑

id−1=1

(i1 × i2 × . . .× id−1 − 1) (21)

. . .

sd(n, d) =
n∑

i1=2

n∑

i2=2

. . .
n∑

id−1=2

(i1 × i2 × . . .× id−1 − 1) (22)

gmap(n, d) =
d∑

i=1

si(n, d) (23)

For the reducer, only a single surface has to be considered.
The reason for this is that each surface is an independent
group that can be calculated individually by the reducers.
The reducer with the most dominance checks is the one that
has the biggest surface, which is the one where no overlap
is considered. This allows the surface calculation from be-
fore to be reused when calculating the number of partition
dominance checks greducer(n, d) in the reducer with the most
dominance checks:

greducer(n, d) = s1(n, d) (24)

6. EXPERIMENTS
In this section, the results from experimental runs of the

algorithms are presented. A cluster of thirteen commodity
machines have been used for the experiments. Twelve of the
machines have an Intel Pentium D 2.8 GHz Core2 proces-
sor. Three of these have a single gigabyte of RAM, four of
them have two, and five of them have three. The last ma-
chine has an Intel Pentium D 2.13 GHz Core2 processor and
two gigabytes of RAM. The machines are connected with a
100 Mbit/s LAN connection. The operating system used is
Ubuntu 12.04 and the version of Hadoop is 1.1.0. The algo-
rithms are implemented in Java. Tests are performed on the
algorithms MR-GPMRS, MR-GPSRS, MR-BNL from [12],
and MR-Angle from [4]. The tests are performed on several
different data sets, with varying cardinality, dimensionality,
and data distribution.

1 5 9 13 17
Reducers

0

100

200

300

400

500

Ru
nt

im
e

[s
]

8 Dimensions (Anti-Correlated)
8 Dimensions (Uniform)

Figure 7: The graph shows the runtime of the algorithm
MR-GPMRS run on an anti-correlated data set with a
dimensionality of 8 and with a cardinality of 1×106. The
number of reducers used is varied. The result for one
reducer is the runtime of MR-GPSRS.

2 3 4 5 6 7 8 9 10
Dimensionality

0

1

2

3

4

5

6

Co
m
pa

ris
on

s

1e6

Mapper(Anti−correlated)
Mapper(Uniform)

Estimate(Anti−correlated)
Estimate(Uniform)

(a) Mappers

2 3 4 5 6 7 8 9 10
Dimensionality

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Co
m
pa

ris
on

s

1e6

Reducer(Anti−correlated)
Reducer(Uniform)

Estimate(Anti−correlated)
Estimate(Uniform)

(b) Reducers

Figure 8: The estimated and actual number of domi-
nance checks between partitions for data sets when run
on a data set with a cardinality of 1 × 106 and varying
dimensionality.

The cardinalities are 1×105, 5×105, 1×106, 2×106, and
3 × 106. The dimensionality range is [2 . . . 10]. The distri-
butions are anti-correlated and uniform. For the test runs
of MR-GPMRS for comparison with the other algorithms,
MR-GPMRS is set to use one reducer per node, i.e. thirteen.
To see the effect of the number of reducers, MR-GPMRS has
been run on select data sets with varying number of reduc-
ers.

6.1 Effect of Dimensionality
The runtime results for uniform data sets with varying

dimensionality are shown in Figure 9. The results for anti-
correlated data sets are shown in Figure 10.

As can be seen from the uniform data set results (Figure
9), the MR-GPMRS algorithm runs a little slower for the
lower dimensions (2 − 5). For the rest of the dimensions
(6 − 10), however, the runtime of MR-GPMRS increases
linearly, while the runtime of the other algorithms increases
exponentially. The exception is MR-GPSRS that runs faster
than MR-GPMRS even for higher dimensions. The differ-
ence is marginal but consistent. The reason for these results
are that for the low dimensionalities, the skyline percentage
is so low that the runtime of the algorithms is dominated
by the communication cost and the time it takes to read the
data set. This overhead in MR-GPMRS is slightly larger
than the other algorithms, which is why the runtime is a bit
higher. For the higher dimensions, when the skyline percent-
age becomes more significant, MR-GPMRS is able to obtain
the skyline more efficiently than MR-Angle and MR-BNL.
MR-GPSRS is the fastest algorithm for all uniform data
sets, which shows that the pruning power of the grid parti-
tioning scheme used in both MR-GPSRS and MR-GPMRS
is superior, and that using multiple reducers is not worth
the extra communication cost when the skyline percentage
is low.

For the anti-correlated data sets (Figure 10), MR-GPMRS
is superior for all dimensions, except to MR-GPSRS which
is better for the dimensionalities less than 5. It is clear that
MR-GPMRS scales well for higher dimensionalities even for
large cardinalities, having a runtime of less than ten minutes
for a data set with a cardinality of 2×106 and 10 dimensions.
Results for MR-Angle and MR-BNL are not shown for the
higher dimensionalities since they are not able to terminate
in a reasonable amount of time. MR-GPSRS is running sig-
nificantly slower than MR-GPMRS for the low cardinality
and high dimensionality data sets. For the higher cardinal-
ity, the difference is more clear and MR-GPSRS does not

22

2 3 4 5 6
Dimensionality

50

55

60

65

70

75

80

Ru
nt

im
e

[s
]

MR−BNL
MR−Angle
MR−GPSRS
MR−GPMRS

(a) 2-6 dimensionality
1× 105 cardinality

7 8 9 10
Dimensionality

0

100

200

300

400

500

600

Ru
nt

im
e

[s
]

MR−BNL
MR−Angle
MR−GPSRS
MR−GPMRS

(b) 7-10 dimensionality
1× 105 cardinality

2 3 4 5 6
Dimensionality

50
60
70
80
90

100
110
120
130
140

Ru
nt

im
e

[s
]

MR−BNL
MR−Angle
MR−GPSRS
MR−GPMRS

(c) 2-6 dimensionality
2× 106 cardinality

7 8 9 10
Dimensionality

100

200

300

400

500

600

700

Ru
nt

im
e

[s
]

MR−BNL
MR−Angle
MR−GPSRS
MR−GPMRS

(d) 7-10 dimensionality
2× 106 cardinality

Figure 9: Each graph shows the run time of the algorithms MR-BNL, MR-Angle, MR-GPSRS, and MR-GPMRS run
on uniform data sets with varying dimensionality.

2 3 4 5 6
Dimensionality

0

100

200

300

400

500

600

Ru
nt

im
e

[s
]

MR−BNL
MR−Angle
MR−GPSRS
MR−GPMRS

(a) 2-6 dimensionality
1× 105 cardinality

7 8 9 10
Dimensionality

100

150

200

250

300

Ru
nt

im
e

[s
]

MR−BNL
MR−Angle
MR−GPSRS
MR−GPMRS

(b) 7-10 dimensionality
1× 105 cardinality

2 3 4 5 6
Dimensionality

0
100
200
300
400
500
600
700
800
900

Ru
nt

im
e

[s
]

MR−BNL
MR−Angle
MR−GPSRS
MR−GPMRS

(c) 2-6 dimensionality
2× 106 cardinality

7 8 9 10
Dimensionality

200

400

600

800

1000

1200

1400

1600

1800

Ru
nt

im
e

[s
]

MR−BNL
MR−Angle
MR−GPSRS
MR−GPMRS

(d) 7-10 dimensionsilty
2× 106 cardinality

Figure 10: Each graph shows the run time of the algorithms MR-BNL, MR-Angle, MR-GPSRS, and MR-GPMRS
run on anti-correlated data sets with varying dimensionality.

terminate in a reasonable amount of time for the highest
dimensionalities. The reason here is that in anti-correlated
data sets, the skyline is significant even when the dimen-
sionality is low, and it increases quickly for higher dimen-
sionalities.

This means that the ability of MR-GPMRS to find the
skyline more efficiently outweighs its increased overhead.
For higher dimensionalities, this is even more evident. That
MR-GPSRS performs better than MR-GPMRS for the lower
dimensionalities continues to show that using multiple re-
ducers is not worth the extra communication cost when the
skyline percentage is below a certain point.

6.2 Effect of Cardinality
The results for varying cardinality is shown in Figure 11.

For uniform data, MR-GPMRS is slowest for all cardinal-
ities when the dimensionality is 3, almost 20 seconds at a
cardinality of 3 × 106. MR-GPSRS has the best runtime
for all cardinalities, MR-Angle tying with it for the cardi-
nalities 1 × 106 and 3 × 106. For the higher dimensional-
ity of 8, MR-GPMRS and MR-GPSRS has the fastest run-
times, MR-GPSRS being a bit faster given the small skyline
percentage of the uniform data where the multiple reduc-
ers are not an improvement given the extra communication
cost. What these results show is that using multiple reduc-
ers consistently causes a slower runtime when the skyline
percentage of the data set is low.

For anti-correlated data, MR-GPMRS and MR-GPSRS
is superior for all cardinalities and both dimensionalities.
For the lower dimensionality of 3, MR-GPSRS is marginally
better than MR-GPMRS, but for the higher dimensionality
of 8, MR-GPSRS fails to terminate in a reasonable amount
of time for the highest cardinality and is consistently worse
than MR-GPMRS.

6.3 Effect of Number of Reducers
Figure 7 shows how the runtime of MR-GPMRS changes

when the number of reducers used is varied. What can be
seen from the runtimes of the anti-correlated data set is
that it lowers when the number of reducers is increased.
For this particular data set the runtime is best when the
number of reducers is at the highest. It is better even when
the number of reducers is higher than the number of nodes.
The reason for this is that Hadoop is able to utilise the
multiple cores in the nodes to parallelize multiple reducers
on the same node. This is not necessarily the case for other
data sets, as evident from the results where MR-GPSRS
outperforms MR-GPMRS. The skyline percentage needs
to be high enough for the extra communication cost the
multiple reducers causes for the high number of reducers
to be useful. The runtime for the data set with uniform
distribution almost does not change when the number of
reducers is increased. There is a small increase, caused by
the additional overhead of multiple reducers. This uniform
data set has a much smaller skyline than the anti-correlated
one, which means that the use of multiple reducers is not
worthwhile given the extra overhead.

6.4 Evaluation of Estimate
Figure 8 shows the estimated number of dominance checks

between partitions, as described in Section 5, compared
with the measured number of partition comparisons in
MR-GPMRS. The measured numbers has been taken from
the mapper and the reducer that had the highest number
of comparisons. The results for the mappers show that the
estimate does not deviate far from the measured number
when the data distribution is uniform, and in some cases
there is no deviation. The estimate, however, is inaccurate

23

0.1 0.5 1.0 2.0 3.0
Cardinality 1e6

40

50

60

70

80

90

Ru
nt

im
e

[s
]

MR−BNL
MR−Angle
MR−GPSRS
MR−GPMRS

(a) Uniform
3 dimensionality

0.1 0.5 1.0 2.0 3.0
Cardinality 1e6

0

100

200

300

400

500

600

700

Ru
nt

im
e

[s
]

MR−BNL
MR−Angle
MR−GPSRS
MR−GPMRS

(b) Anti-correlated
3 dimensionality

0.1 0.5 1.0 2.0 3.0
Cardinality 1e6

0
100
200
300
400
500
600
700
800
900

Ru
nt

im
e

[s
]

MR−BNL
MR−Angle
MR−GPSRS
MR−GPMRS

(c) Uniform
8 dimensionality

0.1 0.5 1.0 2.0 3.0
Cardinality 1e6

0

200

400

600

800

1000

Ru
nt

im
e

[s
]

MR−BNL
MR−Angle
MR−GPSRS
MR−GPMRS

(d) Anti-correlated
8 dimensionality

Figure 11: The graphs show the runtime of the algorithms MR-BNL, MR-Angle, MR-GPSRS, and MR-GPMRS run
with a dimensionality of 3 and with varying cardinality.

when estimating the number of partition dominance checks
for mappers run on the anti-correlated data set. This is to be
expected as the estimation was done on the premise that the
data set is uniform. It is notable that the estimated num-
ber of dominance checks is above the measured one in every
case, which means that the estimate can be still be used as a
worst case estimate for anti-correlated data sets. The results
for the reducers show that the estimate is inaccurate for the
reducers, both for the uniform and the anti-correlated data
set. The reason that the estimate is inaccurate even for the
uniform data set, is that no way was found to mathemati-
cally predict the way the reducer groups are generated, so
instead a number was used that was ensured to be the worst
case.

7. CONCLUSION
In this paper, two novel algorithms, MR-GPSRS and

MR-GPMRS, for skyline query processing in MapReduce
are proposed. The main feature of the algorithms are that
they allow decision making across mappers and reducers.
This is accomplished by using a bitstring describing the par-
titions empty and non-empty state across the entire data set.
In addition, the common bottleneck of having the final sky-
line computed at a single node is avoided in the MR-GPMRS
algorithm by utilizing the bitstring to partition the final sky-
line computation among multiple reducers.

The experiments conducted show that the algorithms pro-
posed in this paper consistently outperforms existing algo-
rithms and they scale well with the skyline and data set
size. Which of the two proposed algorithms performs bet-
ter depends on the data set. When the skyline percent-
age is high, MR-GPMRS performs significantly better while
MR-GPSRS performs marginally better when the skyline
percentage is low. Running test on a large cluster would be
interesting in order investigate how well MR-GPMRS scales
for large numbers of reducers.

The increased communication cost incurred by having re-
ducers receive replicated partitions is a consequence of the
method that allows for the utilization of multiple reducers.
One research direction, therefore, is to develop a scheme
that balances the reducer groups in MR-GPMRS such that
the computations is balanced across the reducers and the
communication cost is minimized at the same time.

As the results show, using multiple reducers is not the
best option when the skyline percentage is low. So for the
algorithm to perform optimally for any data set, it is neces-
sary to develop a scheme that allows MR-GPMRS to intel-
ligently decide how many reducers to use. It is possible that

the method for choosing the PPD in the proposed algorithm
can be improved.

The method does not incur a noticeable amount of extra
runtime, and it chose a viable PPD for all the data sets
tested for. It did not necessarily choose the optimal PPD,
however, so finding a method that is guaranteed to choose
the optimal PPD for any data set would be a significant
improvement.

8. REFERENCES
[1] Amazon. Amazon elastic compute cloud.

http://aws.amazon.com/ec2/.

[2] Apache. Welcome to apacheTMhadoop R©!
http://http://hadoop.apache.org//.

[3] S. Brzsnyi, D. Kossmann, and K. Stocker. The skyline
operator. 17th Internation Conference on Data
Engineering, 2001.

[4] L. Chen, K. Hwang, and J. Wu. Mapreduce skyline
query processing with a new angular partitioning
approach. 26th International Parallel and Distributed
Processing Symposium Workshops & PhD Forum,
2012.

[5] B. Cui, H. Lu, Q. Xu, L. Chen, Y. Dai, and Y. C.
Zhou. Parallel distributed processing of constrained
skyline queries by filtering. 24th ICDE, 2008.

[6] J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. OSDI, 2004.

[7] Facebook. Hive - a petabyte scale data warehouse
using hadoop. https://www.facebook.com/note.php?
note_id=89508453919.

[8] LinkedIn. A professional network built with java
technologies and agile practices.
http://www.slideshare.net/linkedin/

linkedins-communication-architecture.

[9] Twitter. Hadoop at twitter. http://engineering.
twitter.com/2010/04/hadoop-at-twitter.html.

[10] A. Vlachou, C. Doulkeridis, and Y. Kotidis.
Angle-based space partitioning for efficient parallel
skyline computation. SIGMOD ’08, 2008.

[11] Yahoo. Hadoop at yahoo!
http://developer.yahoo.com/hadoop/.

[12] B. Zhang, S. Zhou, and J. Guan. Adapting skyline
computation to the mapreduce framework: Algorithms
and experiments. DASFAA Workshops, 2011.

24

Chapter 3

Implementation

3.1 MR-GPSRS and MR-GPMRS

The purpose of this section is to describe how the two algorithms Grid Par-
titioning Single Reducers Skyline (GPSRS) and Grid Partitioning Multiple
Reducers Skyline (GPMRS) are implemented in Java for the Hadoop MapRe-
duce framework.

3.1.1 Bitstring Generation

In this section, the implementation of the bitstring generation phase is de-
scribed. The phase consists of a single MapReduce task consisting of multiple
mappers and a single reducer. The mappers construct bitstrings BS1 , BS2

, . . . , BSi of subsets R1 ∪ R2 ∪ . . . ∪ Rn = R where R is the data set
being processed. The mappers output their bitstrings to a single reducer
that concatenates them into a single bitstring BSR, i.e. BS1∨BS2∨ . . . ∨
BSi = BSR representing empty and non-empty partitions of the R.

3.1.1.1 Mapper

The map function (Listing 3.1) of the bitstring generation phase translates
the coordinates of a tuple into an index of its partition in the bitstring (line
3). The Map function does this for a number of di�erent grid con�gurations
in order for the reducer to make the best choice among several di�erent grid
con�gurations (lines 2-4)

Listing 3.1: Map function of the bitstring generation phase

1 public void map(LongWritable key, Text value, Context context)
... {

2 for (int i = 0; i < cBitSet.length; i++) {
3 cBitSet[i].set(value.toString());
4 }
5 cLocalPoints++;

25

3.1. MR-GPSRS AND MR-GPMRS

6 }

3.1.1.2 Reducer

The Reduce function of the bitstring generation phase takes a set of bitstrings
BS1, BS2, . . . , BSi from the mappers map1,map2,. . . , mapi. The set of the
bitstrings from the mappers are then to be merged, e.g. a grid con�guration
bsi ∈ BS1 and bsi ∈ BS2 is to merged into a single bitstring. The reducer
then prunes the merged bitstrings bsR.1,bsR.2,. . . ,bsR.i for dominated par-
titions. The pruning is done by iterating through the set bits (partitions)
of the bitset and getting the indexes of dominated partitions (lines 5-11 of
Listing 3.2). The partitions at the edge of the grid is not able to prune
any other partitions and they do not have to be processed (line 6). When
the iteration is done, every dominated partition is marked with a 1 in the
bitstring tAntiDominatingOffsets, and by executing an AND NOT oper-
ation on the bitstring cBitString the dominated partitions are pruned (line
13). Finally, the reducer chooses the grid con�guration that is the closest to
the optimal average points per partition and outputs it.

Listing 3.2: Pruning

1 public void prune() {
2 BitSet tempBitSet = (BitSet) cBitString.clone();
3 BitSet tAntiDominatingOffsets = new BitSet();
4

5 for (int tOffset = tempBitSet.nextSetBit(0); tOffset >= 0;
tOffset = tempBitSet.nextSetBit(tOffset + 1)) {

6 if (isAtEdge(tOffset))
7 continue;
8

9 getDominatingOffsets(tOffset, tAntiDominatingOffsets);
10 tempBitSet.andNot(tAntiDominatingOffsets);
11 }
12

13 cBitString.andNot(tAntiDominatingOffsets);
14 }

3.1.2 Skyline Computation

In this section, the implementation of the skyline computation phase is de-
scribed. The phase consists of a single MapReduce task consisting of multiple
mappers and reducers. The mappers are initialized with the bitstrings which
they use for pruning tuples in dominated partitions and pruning comparisons
between tuples in partitions. The bitstring is also used to decide which re-
ducers the partitions are sent to. The reducers merge the partitions from
di�erent mappers, and calculates its part of the skyline.

26

CHAPTER 3. IMPLEMENTATION

3.1.2.1 Mapper

The Map function of the skyline computation phase inserts each tuple into
its corresponding partition. The tuple t is inserted into a partition p by
calling the BitList method insert(t) (Listing 3.3). The index of the tuples
partition is computed and used to check against the bitstring to see if it
belongs to a pruned partition, discarding it if it does (lines 2-5). The tuple
is then inserted into its partition which is stored in a HashMap with the
index of the partition in the bitstring as a key (lines 7-10).

Listing 3.3: Map function of skyline computation

1 public void insert(String pTuple) {
2 int tOffset = getOffset(pTuple);
3

4 if (!cBitString.get(tOffset))
5 return;
6

7 if (!cPartitionList.containsKey(tOffset))
8 cPartitionList.put(tOffset, new Partition(tOffset));
9

10 cPartitionList.get(tOffset).insert(new Tuple(pTuple));
11 }

The mapper, however, cannot begin to output before every tuple has been
sorted into its partition and the partitions have had their tuples pruned
against the tuples of the partitions in their anti-dominating regions. The
pruning of tuples in partitions is done by looping through every partition
in the HashMap comparing them with any other partition in the HashMap

which is in their anti-dominating region (lines 2-12 of Listing 3.4).

Listing 3.4: computeSkyline()

1 public void computeSkyline() {
2 for (Partition iPartition : cPartitionList.values()) {
3 BitSet antiDominating = getAntiDominatingOffsets(iPartition

.getcOffset());
4 antiDominating.clear(iPartition.getcOffset());
5

6 for (int i = antiDominating.nextSetBit(0); i >= 0; i =
antiDominating.nextSetBit(i + 1)) {

7 if (cPartitionList.containsKey(i)) {
8 Skyline.debugDominanceChecksBetweenPartitions++;
9 cPartitionList.get(i).check(iPartition);

10 }
11 }
12 }
13 }

The independent groups are found by iterating through a reverse copy
of the global bitstring (lines 1-3 of Listing 3.5) and taking the �rst parti-

27

3.1. MR-GPSRS AND MR-GPMRS

tion and its anti-dominating partitions as an independent group (line 4-5).
The independent group is then cleared from the bitstring and the iterations
continue until it is empty (line 6).

Listing 3.5: Independent Groups

1 BitSet pTempBitString = (BitSet) cBitSet.getBitString().clone()
;

2 PartitionHandler pPartitionHandler = new PartitionHandler(
cNumberOfReducers);

3 for (int i = pTempBitString.length(); (i = pTempBitString.
previousSetBit(i - 1)) >= 0;) {

4 BitSet cPartitions = cBitSet.getAntiDominatingOffsets(i);
5 pPartitionHandler.add(cPartitions);
6 pTempBitString.andNot(cPartitions);
7 }

The reducer groups are then constructed from the independent groups

where the number of reducer groups is decided by the number of reducers as
speci�ed by a paramater value provided by the user. When the number of
reducer groups is one, the algorithm is GPSRS. When the number of reducer
groups is more than one, the algorithm is GPMRS.

However, in order for the mappers to output these reducer groups, re-
sponsibility of every partition has to be given to a reducer group (lines 2 and
5 of Listing 3.6). A reducer group requires an increased number of compar-
isons (partition comparisons) each time it has been made responsible for a
partition. The reducer groups have to be balanced in terms of comparisons
to balance the global skyline computation among the reducers. To balance
the reducer groups, the group with the minimum number of computations
is chosen to take responsible of a partition (lines 3-4). The reducer groups

then take the non-responsible partitions that are within the anti-dominating
region of the partitions they are responsible for (lines 8-10)

Listing 3.6: Assigning Responsibility

1 public void getPartitions(BitList cBitSet) {
2 while (cBitString.cardinality() != 0) {
3 ReducerGroup minReducerGroup = getMinimumGroup(cBitSet);
4 int responsiblePartition = minReducerGroup.takeResponsible(

cBitSet);
5 cBitString.clear(responsiblePartition);
6 }
7

8 for (ReducerGroup item : cCollection) {
9 item.getNonResponsible(cBitSet);

10 }
11 }

The mappers serialize the reducer group objects and outputs them to the
reducers.

28

CHAPTER 3. IMPLEMENTATION

3.1.2.2 Reducer

The purpose of the Reduce function of the skyline computation phase is to
compute the global skyline of partitions its reducer groups are responsible
for.

It begins when it has received the output from all its mappers. Since a re-
ducer receives output from multiple mappers it is necessary to merge identical
partitions, i.e. partitions describing the same space from di�erent mappers
(lines 9 and 13 of Listing 3.7). The merging is done such that only the tuples
belonging to the partitions local skyline is maintained. The responsible and
non-responsible partitions are kept separate and computeSkyline() is called
on the responsible partitions while the non-responsible is used to prune the
responsible partition to ensure that the tuples in the responsible partitions
are a part of the global skyline.

Listing 3.7: Merging Inputs

1 public void reduce(IntWritable key, Iterable<BytesWritable>
values, Context context) ... {

2 ...
3 for (BytesWritable item : values) {
4 ...
5 ReducerGroup reduceGroup;
6 reduceGroup = kryo.readObject(input, ReducerGroup.class);
7 ...
8 for (Partition partition : reduceGroup.responsible()) {
9 cResponsible.merge(partition);

10 }
11

12 for (Partition partition : reduceGroup.nonResponsible()) {
13 cNonResponsible.merge(partition);
14 }
15 }
16 ...

The reducer then outputs the tuples of the responsible partitions as the
result.

3.2 MR-BNL

The purpose of this section is to describe how the algorithm MapReduce
- Block Nested Loop (MR-BNL) from [12] is implemented in Java for the
Hadoop MapReduce framework.

3.2.1 Phase 1

In this section, the implementation of the �rst phase of the MR-BNL algo-
rithm is described. The purpose of the �rst phase is to calculate the local

29

3.2. MR-BNL

skyline of the subspaces generated by utilizing a grid partition scheme with
two subspaces per dimension, i.e. 2d subspaces where d is the number of
dimensions.

3.2.1.1 Mapper

The purpose of the mappers in the �rst phase is to partition the dataset to
multiple reducers based on their subspace �ag, e.g. 01, 00, 10, and 11 in
case of a 2 dimensional data set. The subspaces are split into higher (1) and
lower (0) based on the mean of the data range. In Listing 3.8 the tuples are
read and partitioned according to their subspace (lines 3-5)

Listing 3.8: Phase 1 - Map

1 public void map(LongWritable key, Text value, Context context)
2 ... {
3 Tuple tuple = new Tuple(value);
4 keyOut.set(tuple.getFlagString());
5 context.write(keyOut, value);
6 }

3.2.1.2 Reducer

The Reduce function (Listing 3.9) calculates its local skyline of its assigned
subspace, which have been partitioned by the mapper. This is done by
keeping a window of skyline points (line 3-5) and inserting new skyline tuples
while removing dominated tuples from the window. The window itself is a
self organising list which moves frequent dominating tuples to the top. The
reason for this is that less iterations through the list has to be made if the
most dominating tuples are at the top.

Listing 3.9: Phase 1 - Reduce

1 public void reduce(Text key, Iterable<Text> values, Context
context) ... {

2 Window cSkylineWindow = new Window();
3 for (Text value : values) {
4 cSkylineWindow.judge(new Tuple(value));
5 }
6

7 for (Tuple tuple : cSkylineWindow) {
8 context.write(new IntWritable(1), new Text(tuple.toString()

));
9 }

10 }

30

CHAPTER 3. IMPLEMENTATION

3.2.2 Phase 2

In the following section, the implementation of the second phase of MR-BNL
algorithm is described. The purpose of this phase is to calculate the global
skyline from the set of local skylines produced by the reducers in the previous
phase.

3.2.2.1 Mapper

The global skyline has to be calculated in a single task (map task or reduce
task), as the algorithm needs to be aware of all the points to compute the
global skyline. This algorithm computes its global skyline in a single reducer,
which is done by having the mappers output the local skylines of the previous
phase to a single reducer.

3.2.2.2 Reducer

The reducer partitions the tuples based on their subspace �ag, while keeping
the local skyline of the partition updated. The tuples belonging to the
dominated partition, i.e. the partition higher in every dimension, is discarded
if there is tuples in the dominating partition, i.e. the partition lower in every
dimension. In Listing 3.10, the partitioning of the tuples is done by keeping
a window for each partition in a HashMap (line 4-8).

Listing 3.10: Phase 2 - Reduce

1 public void reduce(IntWritable key, Iterable<Text> values,
Context context) ... {

2 for (Text item : values) {
3 Tuple newTuple = new Tuple(item);
4 if (!cPartitions.containsKey(newTuple.getFlagString())) {
5 cPartitions.put(newTuple.getFlagString(),
6 new Window(newTuple.getFlag()));
7 }
8 cPartitions.get(newTuple.getFlagString()).judge(newTuple);
9 }

10

11 ...

The global skyline is computed by comparing comparable partitions and
pruning dominated points from each partition (lines 2-5 of Listing 3.11). The
reducer is then able to output the �nal skyline.

Listing 3.11: Phase 2 - Skyline Computation

1 public void insert(Window value) {
2 for (Entry<String, Window> mWindow : cWindow.entrySet()) {
3 if (isComparable(mWindow.getValue().getFlag(), value.

getFlag()))
4 mWindow.getValue().check(value);

31

3.3. MR-ANGLE

5 }
6

7 cWindow.put(Arrays.toString(value.getFlag()), value);
8 }

3.3 MR-ANGLE

The purpose of this section is to describe how the algorithm MapReduce
- Angular (MR-Angular) from [4] is implemented in Java for the Hadoop
MapReduce framework.

3.3.1 Phase 1

In this section, the implementation of the �rst phase of the MR-Angular
algorithm is described. The purpose of the �rst phase is to partition the data
set according to their angular coordinates and compute the local skyline of
the angular partition.

3.3.1.1 Map

The Map function translates the cartesians coordinates of the tuples into
n-sphere coordinates, using the formula in [10], and partitions the tuples
based on the equi-volume partitioning scheme as described in [10] (lines 2-4
of Listing 3.12).

Listing 3.12: Map of �rst phase

1 public void map(LongWritable key, Text value, Context context)
... {

2 Tuple vT = new Tuple(value.toString());
3 keyOut.set(vT.getPartition());
4 context.write(keyOut, value);
5 }

The implementation of the formula is shown in Listing 3.13 where a
coordinate x = [x1, x2, ..xd] is iterated through using x1 to xd−1 as the
divisor (lines 3). The dividend tC is constructed by iterating backwards
through the cartesian coordinates starting with xd and ending with xi, the
current dividend (lines 5-15. A special case is when calculating the last n-
sphere coordinate where the translation is done di�erently (lines 7-11 and
17-21).

Listing 3.13: Translation of coordinates

1 public int getPartition() {
2 Double[] tNSphereCoord = new Double[cTuple.length - 1];
3 for (int i = 0; i < cTuple.length - 1; i++) {

32

CHAPTER 3. IMPLEMENTATION

4 double tC = 0;
5 for (int j = cTuple.length - 1; j > i; j--) {
6 if (j == cTuple.length - 1) {
7 if (i == cTuple.length - 2) {
8 tC += cTuple[j];
9 } else {

10 tC += Math.pow(cTuple[j], 2);
11 }
12 } else {
13 tC += Math.pow(cTuple[j], 2);
14 }
15 }
16

17 if (i == cTuple.length - 2) {
18 tC = tC / cTuple[i];
19 } else {
20 tC = (Math.sqrt(tC)) / cTuple[i];
21 }
22 tNSphereCoord[i] = Math.atan(tC);
23 }
24 ...

3.3.1.2 Reduce

The Reduce function is responsible for calculating the skyline of a single
partition. The skyline computation is implemented by using BNL with a
window and a self organizing list as described in [4]. The resulting skyline
tuples are then output.

3.3.2 Phase 2

In the following section, the implementation of the second phase of the
MR-Angular algorithm is described. The purpose of the second phase is
to compute the global skyline by having the mappers read the local skylines
from the previous phase and output it to a single reducer.

3.3.2.1 Map

As for MR-BNL, this algorithm computes its global skyline in a single reducer
by having the mappers output the local skylines of the previous phase to a
single reducer.

3.3.2.2 Reduce

The global skyline computation is performed like the local skyline computa-
tion in the reducers of the �rst phase. The Reduce function takes the tuples
from the mappers as input and calculates the global skyline using BNL.

33

Appendix A

CD-ROM

The CD-ROM contains the following:

• A folder called Report containing the project report.

• A folder called Algorithms containing the source code for the algo-
rithms.

35

	Project Overview
	1st Semester
	2nd Semester
	Reflection

	Scientific Article
	Implementation
	MR-GPSRS and MR-GPMRS
	Bitstring Generation
	Skyline Computation

	MR-BNL
	Phase 1
	Phase 2

	MR-ANGLE
	Phase 1
	Phase 2

	CD-ROM

