
Recognizing North Atlantic right whale

up-calls using Gaussian Mixture Models

and Hidden Markov Models

Master’s Thesis by

Stine Back Larsen and Morten Albeck Nielsen

Supervisor: Thomas Dyhre Nielsen

Department of Computer Science

Aalborg University

Spring 2013

Summary in English

The modern society is dependent on the transportation by cargo ships, but the cargo ships can

cause a negative effect on the marine wild life. The North Atlantic right whale is an endangered

species which are especially threatened by cargo ships collisions. The right whales frequently

emits a characteristic sound known as an up-call. This can be used for detecting when a right

whale is in a particular area. A system using hydrophones for detecting whether a right whale

is in a particular area has therefore been constructed by Cornell University’s Bioacoustic Re-

search Program [5]. In connection to this, a classification system, which can recognize when an

audio recording of ocean sounds contains an up-call, is desired. For this purpose audio files

containing ocean sounds, recorded by this system, have been provided. Each of these has been

annotated with a label telling whether it contain an up-call or not [3]. In this thesis we make a

classification system which can classify whether an audio file contains an up-call or not.

In order to make the classification system, the audio files must first be preprocessed into data

which describe the source of the audio file content. We use the Mel-Frequency Cepstral Co-

efficients (MFCCs) as data which have been used often for speech recognition [23, 26] but also

for recognizing whale sounds [11, 29]. In order to get the MFCCs, the digital signal is extracted

form the audio files, and several transformations are made on the signal to get the features. In

this process the signal is divided into overlapping frames. The result of the prepossessing is a

feature vector for each frame of each audio file which consists of the MFCCs for that frame. The

first parts of the process makes it possible to construct a spectrogram of the audio file which

can be used for visualizing the frequencies of an audio file.

The classification system contains two models: A positive model which represents the feature

vectors of the audio files that contain an up-call, and a negative model which represents the

feature vectors of the audio files which do not contain an up-call.The system classifies an audio

file by calculating the ratio between the probability that the feature data for the audio file were

generated by the positive model, and the probability that the feature data for the audio file

were generated by the negative model. The result is compared with an threshold, and if it is

higher than the threshold, the audio files is classified as containing an up-call.

Three different model types are compared in order to investigate which performs best when

i

used in the classification system. The first model type uses a Gaussian Mixture Model (GMM),

and does not divide the audio files into frames. There is therefore only one feature vector per

audio file. The second model uses several GMMs. The audio files are divided into frames, and

each frame is considered as being generated by a GMM. The third model uses a Hidden Markov

Model (HMM) where each state of the underlying Markov process has an associated GMM.

The Expectation-Maximization (EM)-algorithm is used for learning the models. A general de-

scription of the EM-algorithm is given, and how the two steps of the algorithm can be derived

for GMM and HMM is described, where especially the E-step has been emphasized. The mod-

els, and the EM-algorithm for GMMs and HMMs has been implemented, and specifications of the

implementations are described.

We then compare how the three model types perform when used in the classification system.

The comparison is made by finding the Area Under Curve (AUC) of the Receiver Operating

Characteristic (ROC) curves, precision, recall, accuracy, and F1-measure. For all the measures,

the model type using one GMM, where the audio files are not divided into frames, scores the

highest values. The model type using several frames and a GMM for each frame scores the

second highest values, and the model type which uses an HMM scores the lowest values. A

confusion matrix is then constructed for each model type for the best threshold on the ROC

curve, and it turns out, that all three model types classifies a high number of audio files as

containing an up-call even though they do not contain an up-call. We had expected that the

HMM would score the highest values, so we investigated this model further. This was done by

looking at the spectrogram for some of the audio files which contains an up-call. Thereafter

the most probable path through the state space of a positive HMM for these audio files is found.

This is used to investigate whether there is a connection between the state of the HMM to a

given frame and the content of the frame. It turns out that the HMM, to some degree, can detect

the placement of the up-call in an audio file.

Stine Back Larsen Morten Albeck Nielsen

ii

Resumé på dansk

Det moderne samfund er afhængig af fragtskibe, men fragtskibene kan have negativ effekt på

marinelivet. Nordkaperen er en truet hvalart, og det ønskes derfor at minimere fragtskibes

negative indflydelse på denne hvalart. Nordkaperen udsender ofte en karakteristisk lyd kaldet

et up-call, som kan bruges til at detektere, om en Nordkaper hval er i et bestemt område. Et sys-

tem, som ved hjælp af hydrofoner kan detektere, om en Nordkaper er i et bestemt område, er

blevet konstrueret af Cornell University’s Bioacoustic Research Program [5]. I den forbindelse

ønskes et klassificeringssystem, som kan genkende up-calls i lydoptagelser fra andre havlyde.

Til dette formål er der stillet lydfiler af havlyde til rådighed. Disse er blevet annoteret med

en label, der angiver om lydfilen indeholder et up-call eller ej. I dette speciale laves der et

klassificeringssystem til at afgøre om en lydfil indeholder et up-call eller ej.

For at lave det omtalte klassificeringssystem skal lydfilerne først præprocesseres til data, som

beskriver lydkilden til indholdet af lydfilen så godt som muligt. Som data bruger vi MFCCs, som

er blevet brugt ofte til talegenkendelse [23, 26] men også til genkendelse af hvallyde [11, 29].

For at få MFCC udtrækkes der et digital signal fra hver lydfil, hvor på der laves adskillige

transformationer. I denne proces deles signalet op i overlappende tidsintervaller. Resultatet

for en lydfil er en datavektor for hvert tidsinterval, der består af MFCCs for det pågældende

tidsinterval. Desuden gør den første del af processen det muligt at lave et spektrogram over

lydfilen, som kan bruges til at visualisere hvilke frekvenser som lydfilen indeholder.

Klassificeringssystemet består af to modeller: En positiv model der repræsenterer datavektor-

erne for lydfiler, som indeholder et up-call, og en negativ model der repræsenterer datavek-

torerne for de lydfiler, som ikke indeholder et up-call. Systemet klassificerer en lydfil ved at

udregne forholdet mellem, hvor sandsynligt det er at datavektorerne fra lydfilen er generet af

den positive model, og hvor sandsynligt det er, at de er generet af den negative model. Re-

sultatet sammenlignes med en tærskelværdi, og hvis forholdet er større end tærskelværdien

klassificeres lydfilen som indeholdende et up-call.

Tre forskellige modeltyper sammenlignes, for at undersøge hvilken der fungerer bedst, når den

bruges i vores klassificeringssystem. Den første modeltype benytter en GMM, og opdeler ikke

lydfilen i tidsintervaller. Der er derfor kun en datavektor per lydfil. I den anden modeltype

iii

benyttes der flere GMMs. Her deles lydfilerne op i tidsintervaller, og hvert tidsinterval betragtes

som værende genereret af hver sin GMM. Den tredje modeltype bruger en HMM, hvor der til

hver tilstand af den underliggende Markov proces er associeret en GMM.

EM-algoritmen bruges til at lære modellerne. Der bliver givet en generel beskrivelse af EM-

algoritmen, og hvordan de to skridt i algoritmen udledes for GMM og HMM, hvor der især er lagt

vægt på E-skridtet. Modellerne og EM-algoritmen for GMMs og HMMs er blevet implementeret,

og specifikation omkring implementeringen er beskrevet.

Vi sammenligner derefter de tre modeltype ved at bruge dem i klassificeringssystemet. De

sammenlignes ved at finde arealet under ROC kurven, præcision (precision) og genkaldelse

(recall), samt nøjagtighed (accuracy) og F1-mål. For alle mål får modeltypen med GMM, hvor

lydfilens ikke opdeles i tidsintervaller, højst værdier, derefter kommer modeltypen, hvor der

er en GMM for hvert tidsinterval, og til sidst modeltypen der bruger HMM. En forvirrings (con-

fusion) matrice for hver modeltype konstrueres derefter for det bedste punkt på ROC kurven,

og det viser sig, at alle tre modeltyper har et højt antal lydfiler, modellerne klassificerer til at

indeholde et up-call, selvom filerne faktisk ikke indeholder et up-call. Da vi havde forventet

at HMM ville få de højeste værdier, kigger vi nærmere på denne model. Dette gøres ved at

kigge på spektrogrammet for nogle lydfiler som indeholder et up-call. Derefter finder vi for

en positiv HMM den mest sandsynlige vej igennem tilstandsrummet for disse lydfiler, og det

ses om tidsintervallerne, der dækker up-callene, er i nogle bestemt tilstande, og tidsintervaller

udenom er i andre tilstande, eller om det er tilfældigt. Det viser sig, at HMMen, til en vis grad,

er i stand til at detektere placeringen af et up-call i en lyd fil.

iv

Contents

1 Introduction 1

1.1 Problem Statement . 1

1.2 Related Work . 3

1.3 Approach . 5

2 Data 7

2.1 Feature Extraction . 8

2.1.1 Spectrograms . 8

2.1.2 Mel-Frequency Cepstral Coefficients . 11

2.2 Data analysis . 16

2.3 Data cleaning . 19

3 Models 21

3.1 Gaussian Mixture Model . 21

3.1.1 Multivariate Gaussian Distribution . 22

3.1.2 Mixture of Gaussians . 25

3.1.3 Representing our feature data using Gaussian Mixture Models 25

3.2 Hidden Markov Model . 26

3.2.1 Bayesian Network . 27

3.2.2 The structure of an Hidden Markov Model 28

3.2.3 Representing our feature data using Hidden Markov Models 30

4 Learning 32

4.1 General introduction to learning . 32

4.1.1 Maximum likelihood [15] . 32

4.1.2 The Expectation-Maximization algorithm 34

4.2 Gaussian Mixture Model . 35

4.2.1 Estimation of parameters . 36

4.2.2 Initial values of the parameters . 38

4.2.3 Illustrative example of learning a Gaussian Mixture Model 39

v

CONTENTS

4.3 Hidden Markov Model . 40

4.3.1 Forward message . 41

4.3.2 Backward message . 42

4.3.3 Smoothing . 43

4.3.4 Estimation of parameters . 44

4.3.5 Multiple audio files . 48

4.3.6 Initial values of the parameters . 49

5 Implementation 50

5.1 Pipeline . 50

5.2 Gaussian Mixture Model . 52

5.3 Hidden Markov Model . 54

5.3.1 Forward and backward message . 55

5.3.2 Learning . 59

5.4 Classification . 59

6 Experiments 61

6.1 Performance metrics . 62

6.1.1 ROC curves . 63

6.1.2 Precision, recall and accuracy . 64

6.2 Test setup . 65

6.3 Kaggle results . 66

6.3.1 Model selection . 68

6.3.2 Test . 69

6.4 Further analysis . 69

6.4.1 Our setup . 70

6.4.2 Model selection . 70

6.4.3 Tests . 71

6.4.4 Model investigation . 74

7 Conclusion 79

7.1 Future work . 80

A gaussian.h 83

B hmm.h 88

C Viterbi algorithm 92

Bibliography 94

vi

List of Figures

1.1 Illustration of the classification procedure. 6

2.1 Example of a discrete signal. 8

2.2 The overall procedure for generating a spectrogram. 8

2.3 Frame blocking of a digital signal. 9

2.4 Applying a Hamming window w(l) to signal st(l). 10

2.5 Computing the spectrum of a frame. 12

2.6 Example of a resulting spectrogram. 13

2.7 Pipeline for computingMFCCs. 13

2.8 Example of one filter. 14

2.9 Example of a mel-spaced filter bank with 5 filters. 15

2.10 Three spectrograms where frame length is 512 samples, and overlap is 2
3 of frame

length. 17

2.11 Average spectrograms with the used filter bank append to the vertical axis. . . . 18

2.12 The filter bank used for extracting features. 19

2.13 Spectrogram for an outlier audio file. 20

3.1 The effect of the covariance matrix. 24

3.2 Example of a serial connection. The figure is from [18]. 27

3.3 Example of a diverging connection. The figure is from [18]. 28

3.4 Example of a converging connection. The figure is from [18]. 28

3.5 A Hidden Markov Model with one observation variable. 29

3.6 Time slice t of the HMM for the problem in this thesis. 30

4.1 Illustrative example of learning a GMM. 40

5.1 The pipeline of handling data. The part of the process which are red is performed

for each model type. 51

5.2 Class-diagram for Gaussian Mixture Model. 52

5.3 Flow chart for learning a GMM. 54

5.4 Flow chart for learning a HMM. 60

vii

LIST OF FIGURES

6.1 Confusion Matrix. 63

6.2 Partitioning of the available data. 67

6.3 Partitioning the data for the further analysis. 70

6.4 ROC curves of the final models. 72

6.5 Precision-recall for final Models. 73

6.6 Confusion Matrix for GMM threshold found from ROC curve. 74

6.7 Confusion Matrix for GMMs threshold found from ROC curve. 74

6.8 Confusion Matrix for HMM threshold found from ROC curve. 74

6.9 Viterbi paths for the positive HMM from Table 6.8, and three different audio files

containing an up-call. 76

6.10 Viterbi paths for the three linear left-right HMMs having one to four components

and three different audio files containing an up-call. 78

viii

List of Tables

6.1 The different number of components and states used for the learned models. . . 67

6.2 The 5 best results for validation when modeling the signal as a single frame using

a GMM. 68

6.3 The 5 best results for validation when modeling the signal as 22 frames using a

GMM for each frame. 68

6.4 The 5 best results for validation when modeling the signal as 22 frames using an

HMM. 69

6.5 Test results for the Kaggle setup tests. 69

6.6 The 5 best results for validation when modeling the signal as a single frame using

GMM. 71

6.7 The 5 best results for validation when modeling the signal as 22 frames using a

GMM for each frame. 71

6.8 The 5 best results for validation when modeling the signal as 22 frames using

HMM. 71

6.9 Performance metrics for final models. 73

ix

Listings

5.1 Probability density function for Multivariate Gaussian Distribution. 53

5.2 Forward message. 58

5.3 Backward message. 59

A.1 Header file of implementation of Gaussian Mixture Model. 83

B.1 Header file of implementation of Hidden Markov Model. 88

x

Acronyms

AUC Area Under Curve

DAG Directed Acyclic Graph

DCT Discrete Cosine transform

DFT Discrete Fourier transform

EM Expectation-Maximization

FFT Fast Fourier transform

FN False Negative

FP False Positive

FPR False Positive Rate

GMM Gaussian Mixture Model

HMM Hidden Markov Model

i.i.d independently and identically distributed

MFCC Mel-Frequency Cepstral Coefficient

ROC Receiver Operating Characteristic

TN True Negative

TP True Positive

TPR True Positive Rate

xi

LISTINGS

List of symbols

R Number of audio files

T Number of frames for an audio file/number of time slices for an HMM

x Feature vector consiting of MFCCs

xt Feature vector for time slice/frame t

xt:t′ Feature vector for frame t to frame t′

x
(r)
t Feature vector for audio file r and time slice/frame t

Xt Variable for feature vector for time slice/frame t

X All T feature vectors for all R audio files

D Number of MFCCs for each feature vector, i.e. the size of the feature vectors

λ Parameters for a model

K Number of components for a GMM

ck Component k

wk Weight for component k

µk Mean vector for component k

Σk Covariance matrix for component k

N Number of states for an HMM

St Variable for a state of an HMM at time slice t

Ct Variable for component at time slice t for a HMM

wnk Weight for component k of the GMM to state n of an HMM

µnk Mean vector for component k of the GMM to state n of an HMM

Σnk Covariance matrix for component k of the GMM to state n of an HMM

Q(λ, λ(i−1)) Expected value of logP (X ,Y|λ) given X and λ(i−1)

αt Forward message to time slice t

βt Backward message to time slice t

γt Smoothing variable to time slice t

ct Scaling factor for forward and backward message to time slice t

ft Scaled forward message to time slice t

bt Scaled backward message to time slice t

A Matrix for state transition probabilities of an HMM

π Vector for the intial state distribution

Et Vector for the emision message at time slice t

xii

1
Introduction

The modern society depends on the shipping industry’s ability to transport goods across long

distances. This transport is often done by cargo ships because of their large shipping capacity,

and because they can transport goods across oceans. However the ships’ movements can have

a negative effect on the marine wild life. The North Atlantic right whale is particularly endan-

gered by the movement of cargo ships close to shore [3]. The goal of this thesis is to develop

a system which detects a call made by the North Atlantic right whale in audio files containing

underwater recordings, in order to prevent cargo ships from harming the whales. The system

will be based on machine intelligence methods.

1.1 Problem Statement

The world’s last 350 North Atlantic right whales live along the North American East Coast, and

the movement of ships in that region poses a deadly hazard for them. Colliding with a cargo

ship is one of the extremely serious hazards for the whales because a whale is not likely to

survive a collision with a cargo ship. However, if the ships slow down and post extra lookouts

it reduces the risk of collisions, but making all cargo ships slow down is not a sustainable

solution [5].

In order to prevent these collisions while achieving commercial sustainability, Cornell Univer-

sity’s Bioacoustic Research Program [1], in cooperation with the company Marinexplore [6], is

1

1.1. PROBLEM STATEMENT

developing a system that can detect the presences of right whales in a region and alert ships

heading for that region. During the development of this system a buoy network was deployed

in Massachusetts Bay [5]. The buoys are listening for a certain type of call known as an up-call

which is a contact call that the right whales use to let other whales know that they are nearby.

The system exploits the up-call because the whales are making these up-calls often, and the

sound of the up-call is characteristic. The buoys have an embedded system installed which

record sounds and determine if the recordings possibly contains an up-call based on some very

simple features i.e. the length of sounds. If the embedded system determine that the recorded

sound perhaps contain an up-call it is transmitted to a server at Cornell University for further

analysis. Human experts at Cornell University then decide whether the recorded sound really

does contain the sound of a right whale up-call. If this is the case, the ships in that region are

alerted otherwise no further actions are taken. When a ship is alerted it can slow down below

10 knots and post a lookout in order to avoid colliding with a right whale. This system cannot

determine the position of the right whales, but it can detect when they are in the region near a

buoy. The embedded system installed in the buoys are able to determine whether a recorded

sound is possibly a right whale up-call. However, verification by experts is necessary before

ships can be alerted in order to reduce the number of false alerts. The classification procedure

performed by the buoy’s embedded system is very simple, its purpose is to limit the amount

of audio recordings that should be transmitted from the buoy’s embedded system to the server

at Cornell University [31].

The full system should be working continuously such that ships are alerted in nearly real-time,

and since the final verification of the transmitted audio recordings are performed by human

experts, it is necessary to always have the system manned. In order to free the human experts

from their duties, an automatic verification system is desired. This system should be able to

classify an audio recording, transmitted from a buoy, as either containing or not containing a

right whale up-call, and thus it can be addressed as a classification problem.

To find an appropriate solution to this classification problem, a competition was held on the

Kaggle website [2] where participants were encouraged to present a method for performing

this classification. The final evaluation of this competition was based on the Area Under

Curve (AUC) of Receiver Operating Characteristic (ROC) curves 1 which were calculated from

test data. The labels for the test data were not published and thus hidden for the participants.

The participants’ submission should contain a real value for each audio file in this data set such

that a low value indicated that the audio file did not contain a right whale up-call, and a high

value indicated that the audio file did contain a right whale up-call. In addition to the test data,

Kaggle provided a data set for model learning where each audio file was labeled as containing

or not containing a right whale up-call.

1A description of ROC curves can be found in Section 6.1.1.

2

1.2. RELATED WORK

This thesis addresses the classification problem from the Kaggle competition by using methods

from the well studied problem of speech recognition where Hidden Markov Models (HMMs)

have been used extensively in the past [24, 26, 30]. We will investigate how Gaussian Mixture

Models (GMMs) and HMMs can be used for recognizing right whale up-calls, and what issues

that occur when implementing such a solution. The main focus of this thesis is on the machine

learning, and we will thus not investigate different types of features which are considered to

be in the domain of digital signal processing. To learn the parameters of each type of model,

the Expectation-Maximization (EM)-algorithm can be used. We will present an description of

the general theory behind the EM-algorithm and describe how the formulas for updating the

model parameters for GMMs and HMMs can be derived. Further we will investigate how well

the different model types perform when used in the classification system, and what they have

problem capturing.

1.2 Related Work

The task of recognizing marine animal sounds has been addressed by several articles in the

past using various methods.

Weisburn et al. [34] investigated two different methods for detecting bowhead whale calls in

audio recordings which were recorded in the Arctic. Besides bowhead calls they contained

noise, and, possibly interferences made by other animals, or by ice that was cracking. The

two different methods, that they used, were an HMM and a matched filter. The feature data

for the HMM was the three largest peaks in the frequency spectrum for each time frame. The

HMM had 18 states, and for each of these it had a Gaussian distribution over the feature data.

The matched filter was determined from 40 recordings that contained only whale calls and no

interferences. These recordings were also used to learn the HMM. In order to detect whale calls

in the recorded signals, they computed a score and compared it to a threshold. For the HMM

the score was the likelihood found by the Viterbi algorithm, and for the matched filter it was

the correlation between the signal and the filter. Weisburn et al. found that their HMM method

performed better than the method using a matched filter, but both methods identified a high

portion wrongly.

Mellinger and Clark [22] compared several methods for recognizing bowhead whale calls.

They suggested a method using spectrogram correlation and compared this to three other

methods, which used an HMM, a matched filter and a neural network, respectively. The HMM

method is similar to the one used by Weisburn et al. The input layer of the neural network

was an 11 × 22 array computed from the spectrogram. The hidden layer contained four units,

and the output layer contained a single unit. Each of the method returned a score which were

compared to a threshold for determining whether a call was detected. The first data set was

used for comparing the spectrogram correlation method to the method using an HMM and the

3

1.2. RELATED WORK

method using a matched filter while the second data set was used for comparing the spec-

trogram correlation method to the method using a neural network and the method using a

matched filter. Mellinger and Clark found that the spectrogram correlation method performed

marginally better than the method using an HMM, and that the method using a neural network

performed even better. However they also found that the neural network requires a relatively

large data set for learning. Further they found that the match filter performed poorly, and they

concluded that the matched filter method is not appropriate because the noise in the record-

ings were not Gaussian distributed, and the bowhead whale calls were too divergent from each

other.

Datta and Sturtivant [13] used HMMs to identify three different groups of dolphin whistles.

Their HMMs represented the contour of the shape of the dolphin whistle when drawn as a

spectrogram. For each of their audio recordings, the part that contained a dolphin whistle was

identified in the preprocessing, and a spectrogram representation of this was constructed. Then

a contour following algorithm was applied on the spectrogram to find the shape of whistle

sound. An HMM was learned for each whistle class. These were then used for classifying future

whistles by calculating the likelihood that a recorded whistle belongs to each class.

Roch et al. [29] used GMMs to determine the species of recorded dolphin whistles. The recorded

signal was split up into time frames from which the cepstral coefficients was calculated. These

were then used as feature data for the GMMs. A GMM was learned from the whistles for each

species. When the species for a recorded whistle was determined, the likelihood for each GMM

representing the feature data was calculated. The dolphin that made the whistle was then

assumed to belong to the species whose GMM had returned the highest likelihood. The number

of components of the GMMs was 64, 128, 256, and 512. The best results were found using GMMs

with 256 mixtures.

Brown and Smaragdis [11] classified calls from killer whales into seven different call types.

They investigated the use of GMMs and HMMs where the HMMs had a GMM for each state. Their

data set consisted of 75 recorded calls which each contained one and only one of the seven

call types. As feature data the Mel-Frequency Cepstral Coefficients (MFCCs) and their temporal

derivatives were used. These were calculated using the program melcepst from the Matlab

toolbox VOICEBOX [7]. Testing was performed using the leave-one-out method where each

recording from the data set in turn was classified while the remaining were used for learning

the models. To measure performance the percentage agreement was used. The GMMs were

learned with 1 to 6 components and 8 to 30 features. The best result was 92% agreement which

was obtained using GMMs with two components and 30 features. The HMMs was learned with 5

to 17 states, 1 to 4 components, and 8 to 42 features. The best results was 95% agreement, which

was obtained using HMMs with 24 to 30 features, 13 to 17 states, and one component.

4

1.3. APPROACH

Recognizing marine animal sounds is a problem that has great similarity to speech recogni-

tion. For both problems we are trying to classify audio signals by the source which generated

them. Thus it is the particular source, that we are trying to recognize, which distinguishes the

problems. For speech recognition we know that the source is a human vocal tract, and we are

trying to recognize the setting of this vocal tract. For the problem addressed by this project,

the source could have been a right whale which emitted an up-call. Otherwise it could also

be some other source e.g. other marine animals. For both problems we must extract feature

data which carry information about the process that generated the signal, and from this learn

models which capture the process that generated the signal. Speech recognition is a problem

that has been extensively studied in the past [24, 26, 30], and because of its similarity to our

problem it is reasonable to investigate how methods for speech recognition can be applied to

recognizing up calls. Roch et al. [29] and Brown and Smaragdis [11] used an approach very

similar to the one that was proposed for speech recognition by Rabiner in 1989 [26]. They also

used the cepstral coefficients which are used often in speech recognition because it carries much

information about the vocal tract [23].

1.3 Approach

The data set for this project consists of audio files which were recorded using hydrophones.

These can be divided into two classes: The positive class which are the audio files containing

up-calls, and the negative class which are the audio files not containing up-calls. The task is

therefore to make a classifier for the audio files in order to recognize which class each audio file

belongs to. In order to solve this, we take the approach described in the introduction chapter

of [15]. First feature data must be extracted from the audio files. How the audio files are

interpreted and the feature data are extracted is explained in Chapter 2.

Then we must decide on a type of model for representing the features. In this thesis we limit

ourselves to use the same type of model for both classes, and we can therefore compare how

well different model types perform, when they are used for making a classifier. The different

model types which are used in this project are based on GMMs and HMMs where the HMMs

have a GMM for each state. Thus we assume that the observed features are generated by some

hidden process, and the distribution of these can be described using Gaussian mixtures. For

the HMM, we further model the development of this process through time. We are trying to

recognize whether an up-call is present in an audio file, and by using GMMs or HMMs, we are

trying to model this source with the GMM components and the Markov process of the HMMs.

The different model types are described in Chapter 3.

Besides its structure, a model is also defined by some parameters λ. For the models used in

this project, these parameters are learned from annotated data. This we will refer to as learning

a model. The available data are divided into to three disjoint data sets. The first data set is used

5

1.3. APPROACH

for learning a model for representing the files in each class. How the models are learned is

explained in Chapter 4, and the implementation of the models and the learning procedure is

explained in Chapter 5.

When a model for both the positive and negative class have been learned they can be combined

to form a classification system. The classification procedure used here is inspired by the those

explained by Rabiner [26] and Roch [29]. The architecture for the classification system used in

this thesis is shown in Figure 1.1. The procedure for classifying an audio file is the following.

First the digital signal is read from the audio file. Then the feature data are extracted from the

signal returning an observation sequence. For both classes, we then compute the probability

of this observation sequence given the model for the class. To combine the two probabilities

values into a single scalar, we compute the ratio between the probability returned by the model

for the files in the positive class, and the probability returned by the model for the files in the

negative class. This returns a positive real number which is large when it is likely that the

audio file contain an up-call and small otherwise. In order to make the final classification, the

ratio is then compared to a threshold. By adjusting the threshold, we can change likelihood of

classifying an audio file as positive or negative.

Probability computation

positive model

Probability computation

negative model

Feature

extraction /
Compare with

a threshold

audio signal
observation

sequence ratio class

probability

probability

Figure 1.1: Illustration of the classification procedure.

Different models with different number of components and states are learned, and the second

data set can then be used to deciding which model for each class that performs best when

used in a classifier. The third data set is reserved for testing. Selection of models and tests are

explained in Chapter 6. In Chapter 7 we conclude on the conducted work and found results.

Further we discuss topics for future work.

6

2
Data

The available data set consists of 30000 underwater audio recordings which have been anno-

tated. There is a binary label for each recording; Positive if it is believed to contain a whale call

of interest i.e. an up-call from a North Atlantic Right whale, otherwise it is labeled negative.

For the annotated audio files the labeling where performed by whale experts who are able to

determine whether a recording contain an up-call or not by listening to the audio recording and

investigate a corresponding spectrogram1. In this thesis it is assumed that all the recordings

where labeled correct by the whale experts.

From each audio file a discrete signal can be extracted. An example of a discrete signal can be

seen in Figure 2.1. On the horizontal axis time is plotted, and on the vertical axis the amplitude

is plotted. Each point represent a sample of the recorded sounds, which is the amplitude at the

particular point in time. The number of samples pr. seconds is called the sampling rate, and this

is determined by the way the audio file was recorded. Let L be the number of samples in an

audio file, the signal can then be described as a function s(l) where l = 1, 2, . . . , L.

The available audio files all have a sample rate of 2000 Hz and a duration of two seconds which

therefore corresponds to 4000 samples [3]. As feature data for audio signals, the cepstral coef-

ficients have been used in the past both for speech recognition [23, 25, 26] and animal sound

classification [11, 27, 29], and therefore we also chose to use the cepstral coefficients as our fea-

1Spectrograms are explained in Section 2.1.1.

7

2.1. FEATURE EXTRACTION

0 5 10 15 20 25 30
Sample

A
m

p
lit

u
d

e

Figure 2.1: Example of a discrete signal.

ture data. This chapter gives a description of the feature data used in this thesis. In Section 2.1

the process of extracting the feature data is described, and in Section 2.2 an analysis of the

available audio files, and which considerations that have been made for feature extraction are

presented.

2.1 Feature Extraction

In order to get feature data which represent an audio file several transformations on the digital

signal are made. The first part is to compute a spectrogram. This is explained in Section 2.1.1.

From the spectrogram the Mel-Frequency Cepstral Coefficients can be derived. This is ex-

plained in Section 2.1.2.

2.1.1 Spectrograms

The discrete signal from each audio file is in the time domain where the audio signal has been

recorded. This can be transformed to the frequency domain where the signal can be represented

and understood, and by dividing the signal into intervals, and transforming each interval to the

frequency domain a joint time and frequency representation of the signal is obtained. The re-

sult of this is called a spectrogram [19]. The process of going from the discrete signal to a spec-

togram is illustrated in Figure 2.2. Each step is described in the following paragraphs.

Frame blocking Windowing
Discrete Fourier

transformation

s(l) st(l) st(l)·w(l) |St(f)|

l=1,...,L l=1,...,L'

t=1,...,T

l=1,...,L'

t=1,...,T

f=1,...,F

t=1,...,T

Figure 2.2: The overall procedure for generating a spectrogram.

Frame blocking A signal can change a lot over time, and therefore the first step is to divide the

discrete signal up into overlapping parts refereed to as frame. This is illustrated in Figure 2.3.

The signal in each frame is then assumed to be static which means that the frequency is not

changing or at least not changing too much [19, 23]. This is sometimes refereed to as blocking

a signal into frames [26]. Let T be the number of frames, and let L′ be the number of samples

8

2.1. FEATURE EXTRACTION

in each frame. Then the signal for frame t is st(l) where l = 1, . . . , L′ and t = 1, . . . , T . We must

therefore decide on the number of frames and the size of the overlap in order to compute the

feature data. This is presented in Section 2.2.

Figure 2.3: Frame blocking of a digital signal.

Windowing The second step is to apply a window to each frame [19, 23]. First a window

function must be chosen. The window function used in this project is the Hamming window

function [23] which is given in Definition 2.1.1.

Definition 2.1.1 (Hamming window function).

w(l) =

 0.54− 0.46 cos(2πl
L′−1) if 0 ≤ n ≤ L′ − 1

0 otherwise

In order to apply the window to a frame, st(l) · w(l) is calculated for l = 1, . . . , L′. The effect of

windowing is illustrated in Figure 2.4. In the top figure the Hamming window functionw(l) for

each sample position l is illustrated. In the middle figure a signal for one frame is illustrated.

In the bottom figure the signal after the window has been applied is illustrated. Windowing

is done to reduce the adverse effect of chopping out the frame from the original complete

signal [23, 26]. When blocking the signal into frames, the sample at the ends of the frame may

be high, so the signal goes from zero to a high amplitude. By applying the window, the signal

of one frame becomes more realistic. This can been seen by comparing the middle and bottom

figure. In the latter, the amplitude of samples in the ends of the frame have been decreased

after windowing. If the window had not been applied it could introduce high frequencies that

was not in the signal of the frame.

9

2.1. FEATURE EXTRACTION

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

Window function w(l).

1 2 3 4 5 6 7 8 9 10

Frame before windowing st(l).

1 2 3 4 5 6 7 8 9 10

Frame after windowing w(l) · st(l).

Figure 2.4: Applying a Hamming window w(l) to signal st(l).

10

2.1. FEATURE EXTRACTION

Discrete Fourier transformation The third step is to map the windowed signal for each frame

to the frequency domain which gives L′ coefficients for each frame. Each coefficient represents

the magnitude of a correlation to a signal with a certain frequency. This is done by computing

the absolute value of the Discrete Fourier transform (DFT)2 which is given by [23]:

St(f) =
L′∑
l=1

st(l)e
−i· 2π

L′ ·f ·l for f = 1, . . . L′ (2.1)

Here i is the imaginary unit. Because of conjugate symmetry there are two coefficients for each

frequency [23]. Thus half of the coefficients are redundant and can therefore be discarded. Let

the number of coefficients for a frame after the discard be F , i.e. F = L′

2 + 1, the coefficients

for frame t is then denoted as |St(f)| where f = 1, . . . , F . A spectrum for each frame can then

be drawn from the found magnitudes. This is shown in Figure 2.5. The top figure illustrates a

windowed signal of a frame. The middle figure illustrates the magnitude for each frequency

found by computing the absolute value of the DFT. The bottom figure shows the same as the

middle figure but as a spectrum. The frequency is plotted horizontal. The second dimension is

plotted as a color gradient. This represent the magnitude of a frequency. In this thesis we use

blue color as low magnitudes and red as high magnitudes.

Result: Spectrogram When a spectrum has been computed for all the frames of the audio

signal, the spectrums can be combined into a spectrogram by drawing each spectrum on the

horizontal axis chronologically, i.e. in the order that their corresponding frame appear in the

signal. An example of a spectrogram is shown in Figure 2.6. The horizontal axis represent time

while the vertical axis represent frequency. The third dimension represent the magnitude of a

particular frequency for a particular time in the signal. By investigating a spectrogram, it serves

as a useful aid when investigating sounds. In fact, spectrograms was used by the experts who

labeled the audio files in the data set that is used in this thesis [31].

2.1.2 Mel-Frequency Cepstral Coefficients

A spectrogram is good for analyzing the sounds in an audio file, owever further computations

are normally performed on the coefficients when features for speech and sound recognition

is desired [11, 19, 23, 25, 26, 27, 29]. For this project the Mel-Frequency Cepstral Coefficients

(MFCCs) is used, which are coefficients that together describe the mel-frequency cepstrum [19].

The mel-frequency cepstrum is derived from the spectrum, and, as the spectrum, they carry

information about the frequencies in a frame [19, 23]. An overview of the steps for computing

the MFCCs are illustrated in Figure 2.7. Each step is described in the following paragraphs.

2In practice Fast Fourier transform (FFT) is used for computing the DFT because the algorithm for FFT is compu-
tational faster than the basic DFT algorithm [12].

11

2.1. FEATURE EXTRACTION

3000 3100 3200 3300 3400 3500 3600
−1500

−1000

−500

0

500

1000

1500
Frame signal

Time sample

A
m

p
lit

u
d
e

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3
x 10

4 |DFT|

Frequency coefficient

M
a
g
n
it
u
d
e

Figure 2.5: Computing the spectrum of a frame.

12

2.1. FEATURE EXTRACTION

Figure 2.6: Example of a resulting spectrogram.

Spectra
Mel-spaced

filter bank

Sum of

coefficients

s(l) |St(f)| hb(f)|St(f)|

log(qt(b))

l=1,...,L f=1,...,F

t=1,...,T

f=1,...,F

b=1,...,B

b=1,...,b

t=1,...,T

Logarithm of

coefficients

Discrete cosine

transformation

t=1,...,T

xt(d)

d=1,...,D

t=1,...,T

qt(b)

b=1,...,b

t=1,...,T

Figure 2.7: Pipeline for computingMFCCs.

13

2.1. FEATURE EXTRACTION

Spectrum for each frame The first step is to compute the spectrum for each frame as ex-

plained in Section 2.1.1.

Mel-spaced filter bank In order to combine the coefficients of the spectrum for each frame,

a filter bank is applied [19]. A filter bank consists of several filters. Each filter covers an

area of frequencies. When applied a filter scales each coefficient of the spectrum with a factor.

The value of this factor depends on the frequency area associated with the filter. Coefficients

outside the area which the filter covers are scaled to 0. The result of applying the filter bank is

a filtered spectrum for each filter in the filter bank.

An example of a filter can be seen in Figure 2.8. As it can be seen in the figure, a filter covers

an interval for frequencies. When the signal is discrete, as it is in this project, the filters will

also be discrete, so a filter is a sequence of numbers h(f) where f = 1, . . . , F . For frequencies

f outside the filter h(f) = 0. Let B be the number of filters in the filter bank. For each frame t

the filters hb(f), b = 1, . . . , B, are then applied to the spectrum coefficients for the frame. This

gives B sequences:

〈hb(1)|St(1)|, hb(2)|St(2)|, . . . , hb(F)|St(F)|〉 for b = 1, . . . , B (2.2)

Frequency

Figure 2.8: Example of one filter.

The size of the frequency area that a filter covers could be the same for all filters in a filter

bank. Humans, however, can better distinguish smaller changes in frequencies for a sound if

the frequency is small than if the frequency is high [24]. This can be expressed in the filter

bank by letting filters which cover a frequency area of low frequencies cover a smaller area

than filters which cover an area of high frequencies [19, 24]. Such a filter bank are then said

to be mel-spaced. An example of a mel-spaced filter bank with five filters is illustrated in

Figure 2.9. There is however no reference in found litterateur for what filter bank to use for

right whale calls. Brown and Smaragdis [11], who had a similar problem and uses a similar

solution method as us, got good results when using MFCC which is the cepstral coefficients

where a mel-spaced filter bank have been used in the derivation. At the same time the MatLab

14

2.1. FEATURE EXTRACTION

toolbox VOICEBOX [7] provides a function called melcepst which finds the mel-spaced cepstral

coefficients, so we have chosen to use a mel-spaced filter bank.

Frequency

Figure 2.9: Example of a mel-spaced filter bank with 5 filters.

Sum of coefficients for each filter In order to reduce the number coefficients we sum all of

the elements in the sequence for each filter, which corresponds to an area in the frequencies.

Thus the number of coefficients are reduced from F to B for each frame t:

qt(b) =
F∑
f=1

hb(f)|St(f)| for b = 1, . . . , B (2.3)

Logarithm of coefficients for each filter We compute the logarithm of each of the B coeffi-

cients from the previous step. This have the effect on the values that numbers close to zero

become large negative values and the large positive values are reduced to smaller positive val-

ues. The original motivation behind applying the the logarithm, however is that we potentially

could detect and remove echo effects in resulting coefficients [23]. The result is a sequence of B

numbers for each frame t:

〈log qt(1), log qt(2), . . . log qt(B)〉 (2.4)

Discrete cosine transform The fifth step is to convert the coefficients back to the time domain

[19]. This is done by making the Discrete Cosine transform (DCT) on the sequence:

xt(d) =

B∑
b=1

log(qt(b)) cos(
π

B
· d · (b− 1

2
)) for d = 1, . . . , D (2.5)

which returns a sequence of B elements which is the MFCCs. In order to construct our feature

vector, the desired number of MFCCs is kept while the rest is discarded [19]. Usually it are the

coefficients for the high frequencies which are discarded. Let D be the desired number, the

result is therefore a sequence of D MFCCs for each frame which we will refer to as the feature

vectors or the data of an audio file. How D is chosen is presented in Section 2.2.

15

2.2. DATA ANALYSIS

We will denote an observed feature vector as x. When we want to specify that it is the feature

vector for frame t, xt is used, so xt = (xt(1), . . . , xt(D)). When denoting all observed feature

vectors for frames t to t′, the notation xt:t′ is used. When the feature vector of a frame t is not

observed Xt is used, and when we want to specify that the feature vector for frame t comes

from audio file r we denote it as x
(r)
t . Let R be the number of audio files. Then the set of all the

observed feature vectors of all R audio files is denoted as X = (x
(1)
1:T , . . . ,x

(R)
1:T).

2.2 Data analysis

To extract the digital signal from the audio files and compute the MFCCs, we use the MatLab

toolbox called VOICEBOX.

In order to make a spectrogram the length of the frames, and how much the frames overlap

must be decided. For this project we used two different frame lengths: A frame length of 4000

samples, and a frame length of 512 samples. The frame length of 4000 samples corresponds to

2 seconds i.e. the entire audio recording. So the audio records was therefore only divided into

one frame. Thus is T = 1, and there is no overlap. This was used for measuring the effect of

going from a simple approach with only one frame to a more complex approach with several

frames. The frame length of 512 samples corresponds to a frame length of 256 ms. A overlap

of 2
3 of the frame length was chosen. The frame length of 512 was chosen in order to describe

the sound files as nuanced as possible but still limit the number of frames because this has a

great effect on the required time for learning the models. The choice was therefore based on

keeping the number of frames down such that the models can be learned in the time frame of

this project. The overlap of 2
3 was based on [26]. When dividing the signal into 512 frames with

an overlap of 2
3 there will be 22 frames, so T = 22 in this case.

The recordings in the data set contain a mixture of non-biological noise, up-calls, and other

whale calls [3]. A spectrogram for three audio files are shown in Figure 2.10. The spectrogram

in Figure 2.10(a) contains an up-call, and the spectrogram in Figure 2.10(b) contains noise but

no up-call. The spectrogram in Figure 2.10(c) contains an up-call like sound. It is, however, not

an up-call, so the audio file for the spectrogram is negative. The positive recordings can contain

sounds that also appear in the negative recordings and vice verse, except for the up-calls which

only appear in the positive records. Figure 2.10(a) and Figure 2.10(c) illustrates however that

a negative labeled recording can contain signal that is very similar to an up-call. The average

spectrogram for each class are shown in Figure 2.11 where Figure 2.11(a) shows the average

spectrogram for all the positive labeled audio recordings, and Figure 2.11(b) shows the average

spectrogram for all the negative labeled audio recordings.

From the spectrogram the MFCCs can be found, but in order to do this we must decide the

number of filters in the filter bank. This determine the frequency area of the filters because the

16

2.2. DATA ANALYSIS

(a) A spectrogram of an audio that are labeled positive.

(b) A spectrogram of an audio that are labeled negative containing se-
vere amount of noise.

(c) A spectrogram of an audio that are labeled negative containing an
up-call like signal.

Figure 2.10: Three spectrograms where frame length is 512 samples, and overlap is 2
3 of frame length.

17

2.2. DATA ANALYSIS

(a) The average spectrogram of all audio recordings that are labeled positive.

(b) The average spectrogram of all audio recordings that are labeled negative.

Figure 2.11: Average spectrograms with the used filter bank append to the vertical axis.

18

2.3. DATA CLEANING

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Frequency (kHz)

Figure 2.12: The filter bank used for extracting features.

filter bank covers the entire frequency spectrum; here from 0 to 1000 Hz. The filter bank that

was used for the work of this thesis had 22 filters and is illustrated in Figure 2.12. Further we

must decide the number of MFCCs to keep and use as feature data. For making these decisions

it can be useful to look at the average spectrogram for all the audio files in both the positive

class and negative class. These are shown in Figure 2.11 with our filter bank illustrated on the

vertical axis. From this it can be seen that the up-calls are normally located below 400 Hz, and

looking at Figure 2.12 it can be seen that by choosing the first 12 filter banks this area is covered.

We therefore chose the number of MFCCs for each frame to be D = 12.

2.3 Data cleaning

Some cleaning of the available data set was necessary. We had two remove both outliers and

duplicates before the available data was partitioned into subset. A few audio files were found

to be outliers. The relative likelihood of observing some feature vectors from these audio files

was so small that it came too close to zero, and we could not use them in our models. The

content of the audio files for these feature vectors was examined by listening to it, and viewing

them as a spectrogram plot. They all seemed to contain some strong interferes. In total 7 audio

files were found to be ouliers where 3 of these were labeled as containing an up-call. An exam-

ple of an positive audio file that was found to be an outlier is shown in figure Figure 2.13.

Doing the Kaggle competition [3] the host announced on the official forum [4] that the public

training data set did contain some duplicates and they therefore released a python script that

the participants could use to remove the duplicates.

In total was 646 audio files removed from the available data either because they was outliers or

duplicates. The data set was therefore reduced to 29354 audio files.

19

2.3. DATA CLEANING

Figure 2.13: Spectrogram for an outlier audio file.

20

3
Models

The feature data for an audio file is a feature vector for each frame where the vectors consists

of the MFCCs for the particular frame. From this the audio file must be classified which means

that it must be determined whether a given audio file is positive or negative, i.e. whether it

contains an up-call or does not contain an up-call, respectively. In order to do this, a classifier

must be made [15]. In this project, this is addressed by using two model types; GMMs and

HMMs. A model is then used to represent the positive labeled data while another model is

used to represent the negative labeled data. This chapter gives a description of the two model

types, and how they can be used to represent the feature vectors in this problem. The GMM is

explained in Section 3.1, and the HMM is explained in Section 3.2.

3.1 Gaussian Mixture Model

We can consider the feature data of the audio files in each class as being generated by a prob-

ability distribution. An audio file can then be classified by considering the probability that the

distribution had generated the feature data of the audio file. Thus by using a probability dis-

tribution as a model to represent each class, we can infer about the class of a particular audio

file [30]. Let D be the number of MFCCs for each frame, i.e. D is the size of the feature vectors.

It is assumed that when plotting the feature vectors in the space of RD, there are one or several

areas where most of the feature vectors are placed. These areas are called clusters, and if there

21

3.1. GAUSSIAN MIXTURE MODEL

are more than one of these areas it may be assumed that the feature vectors have been gener-

ated by a mixture distribution [30]. A mixture distribution consists of several components, one for

each cluster, each of which is a distribution for the members of the particular cluster. For con-

tinuous feature vectors with more than one dimension, the multivariate Gaussian distribution

is normally used as distribution for the components. The mixture distribution is then called a

Gaussian Mixture Model (GMM). The multivariate Gaussian distribution is explained in Sec-

tion 3.1.1 and the GMM is explained further in Section 3.1.2. How GMMs is used for representing

the classes in this project is explained in Section 3.1.3.

3.1.1 Multivariate Gaussian Distribution

A multivariate Gaussian distribution is an extension of the normal distribution to a space with

dimensions D ≥ 1. It is therefore a distribution over the continues space RD and it is defined

by [28, 30]:

Definition 3.1.1 (Probability density function of multivariate Gaussian distribution).

P (x) =
1√

(2π)D|Σ|
e−

1
2
(x−µ)TΣ−1(x−µ)

where µ is the mean vector, and Σ is the covariance matrix.

All vectors in this project are considered as being column vectors, so x − µ is a column vector

and (x−µ)T is a row vector. A multivariate Gaussian distribution is described by its mean vec-

tor and covariance matrix, so by setting these parameters a multivariate Gaussian distribution

is defined. A multivariate Gaussian distribution is denoted as N (µ,Σ), and the probability

density function is thus denoted as P (x|µ,Σ) ∼ N (µ,Σ).

The mean vector µ can be considered as the center of a mass where P (x) is the amount of mass

concentrated at x [15]:

Definition 3.1.2 (Mean vector).

µ = E[x] =


µ1

µ2
...

µD

 =


E[x1]

E[x2]
...

E[xD]

 =

∫ ∞
−∞

∫ ∞
−∞
· · ·
∫ ∞
−∞

xp(x)dx

22

3.1. GAUSSIAN MIXTURE MODEL

The covariance matrix is defined from the covariances σij between each dimension i and j.

When i = j, this is the variances σ2i [15]. The variance for dimension i is defined by:

Definition 3.1.3 (Variances).

σ2i = E[(xi − µi)2] =

∫ ∞
−∞

(xi − µi)2p(xi)dxi i = 1, 2, . . . , D

The variance σ2i is the square of the standard deviation σi which is a measure of how far the

observations xi is likely to derive from the mean µi. The covariance between the dimension i

and j is defined by:

Definition 3.1.4 (Covariances).

σij = E[(xi − µi)(xj − µj)] =

∫ ∞
−∞

∫ ∞
−∞

(xi − µi)(xj − µj)p(xi, xj)dxixj i, j = 1, 2, . . . , D

Note that from Definition 3.1.3 and Definition 3.1.4 it follows that σij = σji and σii = σ2i . The

covariance matrix Σ is then defined by:

Definition 3.1.5 (Covariance matrix).

Σ = E[(x− µ)(x− µ)T]

=


E[(x1 − µ1)(x1 − µ1)] E[(x1 − µ1)(x2 − µ2)] · · · E[(x1 − µ1)(xD − µD)]

E[(x2 − µ2)(x1 − µ1)] E[(x2 − µ2)(x2 − µ2)] · · · E[(x2 − µ2)(xD − µD)]
...

...
. . .

...

E[(xD − µD)(x1 − µ1)] E[(xD − µD)(x2 − µ2)] · · · E[(xD − µD)(xD − µD)]



=


σ21 σ12 · · · σ1D

σ21 σ222 · · · σ2D
...

...
. . .

...

σD1 σD2 · · · σ2D



The values of the entries in the covariance matrix determine the orientation and slope of the

23

3.1. GAUSSIAN MIXTURE MODEL

multivariate Gaussian distribution [15]. The effect is illustrated in Figure 3.1 where the con-

tours of three multivariate Gaussian distributions for D = 2 are shown. If we for two dimen-

sions i and j, i 6= j, have σij > 0 then the multivariate Gaussian distribution will increase

in dimension j when it increases in dimension i. This effect is illustrated by the multivariate

Gaussian distribution to the left in Figure 3.1. If σij = 0, the dimensions are said to be un-

correlated, and the multivariate Gaussian distribution will stay the same in dimension j when

it increases in dimension i. This effect is illustrated by the multivariate Gaussian distribution

in the middle in Figure 3.1. If σij < 0 the multivariate Gaussian distribution will decrease

in dimension j when it increases in dimension i. This effect is illustrated by the multivariate

Gaussian distribution to the right in Figure 3.1. The degree of the slope is determined by the

variance i.e. the diagonal of the covariance matrix.

Figure 3.1: The effect of the covariance matrix.

Since σij = σji the covariance matrix must be symmetric when a multivariate Gaussian distri-

bution is defined. Further it it also required that Σ is positive semi-definite which means that

for every vector w ∈ RD then wTΣw ≥ 0. This can be seen from the following [21]:

wTΣw = wT ·
∫ ∞
−∞

∫ ∞
−∞
· · ·
∫ ∞
−∞

(x− µ)(x− µ)Tp(x)dx ·w

=

∫ ∞
−∞

∫ ∞
−∞
· · ·
∫ ∞
−∞

wT (x− µ)(x− µ)Tp(x)wdx

= E[wT (x− µ)(x− µ)Tw]

For the last expression we have that wT (x−µ) = (x−µ)Tw = (x−µ) ·w,where · is the inner

product, so the expression becomes E[((x− µ) ·w)2]. Since the result of the inner product is a

scalar, the expression is the expected value of a squared scalar, and this is always greater than

or equal to zero.

For a multivariate Gaussian distribution it is further required that Σ is non-singular because

else the variance will be zero. If the Σ is non-singular it also follows that the matrix is invertible

and the determinant of Σ is different from 0 [20] which is required by Definition 3.1.1.

24

3.1. GAUSSIAN MIXTURE MODEL

3.1.2 Mixture of Gaussians

A mixture distribution is a distribution with K components each of which is a distribution

[28, 30]. Each component k is given a weight 0 ≤ wk ≤ 1 such that
∑K

k=1wk = 1. Let ck be

component k. The mixture distribution is then defined by:

Definition 3.1.6 (Probability density function for a mixture distribution).

P (x) =

K∑
k=1

wkP (x|ck)

The weights wk ensures that
∫∞
−∞ · · ·

∫∞
−∞ P (x)dx = 1.

For continuous data with more than one dimension the multivariate Gaussian distribution is

normally used as components. In this case the mixture distribution is denoted as a Gaussian

Mixture Model (GMM), which can be described with the parameters

λ = ((w1,µ1,Σ1), (w2,µ2,Σ2), . . . , (wK ,µK ,ΣK)). The probability density function for the

GMM is then:

P (x) =
K∑
k=1

wkP (x|µk,Σk) (3.1)

where P (x|µk,Σk) is given by Definition 3.1.1.

3.1.3 Representing our feature data using Gaussian Mixture Models

In this thesis we present two approaches where GMMs are used for representing the feature data

for each audio file.

3.1.3.1 Representation using a single frame

Each audio file can be interpreted as a single frame with the length of the audio file such that

the feature data for an audio file is a single feature vector with 12 MFCCs. This data can then

be considered as drawn from the distribution of a GMM. Thus a GMM can be used to represent

both classes.

Before the GMM can be learned from data, the number of components K must be chosen. We

however do not know how many clusters the feature vectors form, so in order to decide on the

number of components to use, we learn several GMMs with different number of components

for both the positive and the negative class. For the classification system in Figure 1.1 the best

25

3.2. HIDDEN MARKOV MODEL

combination of a model for the positive class and a model for the negative class can then be

determined by classifying the files in a validation data set.

3.1.3.2 Representation using several frames

An audio file can be divided into several frames, as explained in Chapter 2, and thereby provide

feature data that describe the audio files more nuanced. Let each audio file be divided into T

frames then the data x1:T for an audio file consists of T feature vectors, x1:T = (x1,x2, . . . ,xT).

It can then be assumed that the feature vector for frame t for all audio files in a class is generated

by the same GMM. Let λt be the parameters for the GMM of frame t then such a system could be

considered as a model with the parameters λ = (λ1, λ2, . . . , λT). By assuming that the frames

are independent, the probability for the feature data of an audio file is then:

P (x1:T) =

T∏
t=1

P (xt) =

T∏
t=1

K∑
k=1

wkP (xt|µk,Σk) (3.2)

Again the number of components K must be chosen, and the parameters of the GMMs can be

learned from data. We let all the GMMs for each frame have the same number of components.

Then, as in Section 3.1.3.1, the GMMs for both the positive and the negative class are learned

where the number of components are varied. For the classification system in Figure 1.1 the best

combination of a model for the positive class and a model for the negative class can then be

determined by classifying the files in a validation data set.

3.2 Hidden Markov Model

As it can be seen in Figure 2.11(a) the digital signal for an up-call has a certain pattern. The

digital signal of an audio file can be considered as being generated by an underlying process

which is in a certain state for each frame. At the beginning of each frame, the underlying

process can change state or possibly stay in the same state. Because an up-call has a certain

pattern, it is reasonable to assume that the state of the underlying process for a certain frame

depends on the states for the previous frames. We still assume that the feature vector of a frame

is generated by a GMM. The component which generated the feature vector is then dependent

on the state of underlying process. It is however not possible to observe the state of the process

nor the component that generated a particular feature vector, but the feature vector of a frame

is observable. Such a system can be represented by a Hidden Markov Model (HMM) with a

GMM for each state.

In this chapter HMMs are introduced, and it is presented how HMMs are used in this thesis.

An HMM is a special kind of Bayesian Network. We therefore give a description of Bayesian

26

3.2. HIDDEN MARKOV MODEL

Networks in Section 3.2.1. In Section 3.2.2 a general formalized description of HMMs is given,

and the presentation of how HMMs is used in this thesis is given in Section 3.2.3. Section 3.2.1

and Section 3.2.2 are rewritten from the description of HMMs given in [17].

3.2.1 Bayesian Network

A Bayesian Network is a data structure that represents dependencies among variables. The

variables can both be discrete and continuous. It is defined as [30]:

Definition 3.2.1 (Bayesian Network). A Bayesian Network consists of two parts (G, θ):

• G is a Directed Acyclic Graph (DAG) where nodes represent variables and edges describe the de-

pendencies between the variables.

• θ is a set of conditional probability distributions, one for each node, describing the conditional

probabilities for each variable.

The following applies for the variables and the conditional probabilities:

• If a variable Y is the parent of variable node X , i.e. there is an edge from node Y to node X , then

variable X depends on variable Y .

• The conditional probability distribution associated to X is P (X|pa(X)) where pa(X) is the set of

parent nodes of X . The distribution P (X|pa(X)) is then quantifying the effect of the parents on

X .

• If X is discrete it is required that
∑

X p(X|pa(X)) = 1, and if X is continues it is required that∫
X p(X|pa(X))dX = 1.

The way that information is transmitted through the variables of a Bayesian network can be

used for finding conditional independence among the variables. We exploit this in Section 4.3.

Transmission of information in a Bayesian network is covered by the following three case

[18]:.

Serial connection An example of a serial connection is shown in Figure 3.2. Here C is influ-

enced directly by B and influenced by A through B. However if B is instantiated, C becomes

independent of A because no evidence on A will change our belief of the state of C when B is

known i.e. A and C becomes d-separated.2.2 Causal Networks and d-Separation 27

A B C

Fig. 2.3. Serial connection. When B is instantiated, it blocks communication be-
tween A and C.

Example 2.2. Figure 2.4 shows a causal model for the relations between
Rainfall (no, light, medium, heavy), Water level (low, medium, high), and
Flooding (yes, no). If I have not observed the water level, then knowing that
there has been a flooding will increase my belief that the water level is high,
which in turn will tell me something about the rainfall. The same line of
reasoning holds in the other direction. On the other hand, if I already know
the water level, then knowing that there has been flooding will not tell me
anything new about rainfall.

Rainfall Water level Flooding

Fig. 2.4. A causal model for Rainfall, Water level, and Flooding.

Diverging Connections

The situation in Figure 2.5 is called a diverging connection. Influence can
pass between all the children of A unless the state of A is known. That is,
B, C, . . . , E are d-separated given A.

Evidence may be transmitted through a diverging connection unless it is
instantiated.

...

A

B C E

Fig. 2.5. Diverging connection. If A is instantiated, it blocks communication be-
tween its children.

Example 2.3. Figure 2.6 shows the causal relations between Sex (male, female),
length of hair (long, short), and stature (<168 cm, ≥168 cm).

Figure 3.2: Example of a serial connection. The figure is from [18].

27

3.2. HIDDEN MARKOV MODEL

Diverging connection An example of a diverging connection is shown in Figure 3.3. If the

variable A is instantiated then the children of A become independent i.e. they are d-separated.

Otherwise information can pass through A and the children influence each other.

2.2 Causal Networks and d-Separation 27

A B C

Fig. 2.3. Serial connection. When B is instantiated, it blocks communication be-
tween A and C.

Example 2.2. Figure 2.4 shows a causal model for the relations between
Rainfall (no, light, medium, heavy), Water level (low, medium, high), and
Flooding (yes, no). If I have not observed the water level, then knowing that
there has been a flooding will increase my belief that the water level is high,
which in turn will tell me something about the rainfall. The same line of
reasoning holds in the other direction. On the other hand, if I already know
the water level, then knowing that there has been flooding will not tell me
anything new about rainfall.

Rainfall Water level Flooding

Fig. 2.4. A causal model for Rainfall, Water level, and Flooding.

Diverging Connections

The situation in Figure 2.5 is called a diverging connection. Influence can
pass between all the children of A unless the state of A is known. That is,
B, C, . . . , E are d-separated given A.

Evidence may be transmitted through a diverging connection unless it is
instantiated.

...

A

B C E

Fig. 2.5. Diverging connection. If A is instantiated, it blocks communication be-
tween its children.

Example 2.3. Figure 2.6 shows the causal relations between Sex (male, female),
length of hair (long, short), and stature (<168 cm, ≥168 cm).

Figure 3.3: Example of a diverging connection. The figure is from [18].

Converging connection An example of a converging connection is shown on Figure 3.4. Here

the parents of A are independent unless A changes certainty i.e. information is given that

change our belief of the state of variable A. This information can be given if A or any of A’s

descendants is instantiated.

28 2 Causal and Bayesian Networks

Hair length

Sex

Stature

Fig. 2.6. Sex has an impact on length of hair as well as stature.

If we do not know the sex of a person, seeing the length of his/her hair will
tell us more about the sex, and this in turn will focus our belief on his/her
stature. On the other hand, if we know that the person is a man, then the
length of his hair gives us no extra clue on his stature.

Converging Connections

A description of the situation in Figure 2.7 requires a little more care. If
nothing is known about A except what may be inferred from knowledge of
its parents B, . . . , E, then the parents are independent: evidence about one
of them cannot influence the certainties of the others through A. Knowledge
of one possible cause of an event does not tell us anything about the other
possible causes. However, if anything is known about the consequences, then
information on one possible cause may tell us something about the other
causes. This is the explaining away effect illustrated in the car start problem:
the car cannot start, and the potential causes include dirty spark plugs and
an empty fuel tank. If we now get the information that there is fuel in the
tank, then our certainty in the spark plugs being dirty will increase (since this
will explain why the car cannot start). Conversely, if we get the information
that there is no fuel on the car, then our certainty in the spark plugs being
dirty will decrease (since the lack of fuel explains why the car cannot start).
In Figure 2.8, two examples are shown. Observe that in the second example
we observe only A indirectly through information about F ; knowing the state
of F tells us something about the state of E, which in turn tells us something
about A.

A

B C E

Fig. 2.7. Converging connection. If A changes certainty, it opens communication
between its parents.

Figure 3.4: Example of a converging connection. The figure is from [18].

Following the rules of d-separation, it is possible to decide if any pair of variables in a Bayesian

Network are independent given the evidence entered into the network. The d-separation rules

express conditional independence between the variables of the network; if two variablesA and

B are d-separated because of some other variable C then they are conditionally independent

given C because when C is known no knowledge of B will alter the probability of A.

3.2.2 The structure of an Hidden Markov Model

An HMM can be seen as a special type of Bayesian Network that models a system which evolves

over time where time is divided into intervals denoted by a discrete time stamp t each refereed

to as a time slice [18, 30]. For each time slice there is a discrete state variable St. This variable

can be hidden which means that it cannot be directly observed i.e. we have no evidence for

the variables St. This is the case in this thesis. Further, for each time slice there is one or

more observation variables which can be either discrete or continuous and do not need to

28

3.2. HIDDEN MARKOV MODEL

have the same state space. These variables are observable and can therefore be instantiated

when doing inference in the HMM. The HMMs used in this thesis have exactly one continuous

multidimensional observation variable Xt for each time slice. Thus, HMMs with more than one

observation variable in each time slice is not discussed.

There are three assumptions underlying an HMM [30]:

1. The observations Xt at time t are generated by some process that is always in some state,

we will refer to this as the Markov process. This state is the value of the hidden state

variable St which means that the observation variable for each time slice t depends on

the hidden state variable St.

2. The Markov assumption which states that the present is only dependent on a finite his-

tory of previous states. The most simple form of this is the first-order Markov process where

the given state only depends on the previous state. I.e., given the value of St−1, the cur-

rent state St is independent of states prior to St−1. The HMM in Figure 3.5 is a first-order

Markov process.

3. The model is stationary: The probability of switching to a particular state, and the proba-

bility of a particular observation when in a given state, does not change over time, so the

conditional probability distributions is the same for all time slices t.

An example of a DAG for an HMM with one observation variable for each time slice is shown in

Figure 3.5.

Figure 3.5: A Hidden Markov Model with one observation variable.

The HMM in Figure 3.5 has the following conditional probability distributions:

1. The transition conditional probability distribution P (St|St−1). This are the probabilities of

for the transition between the states of the HMM. As expressed by the graph in Figure 3.5

the current state is only dependent on the state of the previous time slice. Because an

HMM is stationary this distribution is the same for all t.

2. The emission conditional probability distribution P (Xt|St). As expressed by the graph in

Figure 3.5, the observable variable Xt for each time slice t depend only on the state St.

Because an HMM is stationary this distribution is the same for all t.

29

3.2. HIDDEN MARKOV MODEL

3. The prior distribution P (S1), this will be refereed to as the start distribution in the con-

tents of HMM.

3.2.3 Representing our feature data using Hidden Markov Models

For the problem addressed by this thesis each time slice of the HMM represents a frame of the

discrete signal in an audio file, so further on both the phrase time slice and frame is used to

denote a frame of the audio file. There is a single observable multidimensional variable in

each time slice which is the feature vector for the associated frame. The feature vectors are

considered to be generated by GMMs, so there is a GMM of each state. Let Ct be the component

of the GMM which generated the feature vector observed at time t, a time slice for the HMM is

then given by Figure 3.6.

Figure 3.6: Time slice t of the HMM for the problem in this thesis.

Such an HMM has the conditional probability distributions P (S1), P (St|St−1), P (Ct|St) and

P (Xt|St, Ct). P (S1) and P (St|St−1) are, respectively, the start and transition conditional prob-

ability distribution introduced earlier. P (Ct|St) is the weight of component Ct of the GMM for

state St of the HMM, and P (Xt|St, Ct) is the probability of an observation given the component

and state to time t which is determined by Definition 3.1.1. We thus have

P (Ct = k|St = n) = wnk (3.3)

P (Xt = xt|St = n,Ct = k) = P (xt|µnk,Σnk) (3.4)

30

3.2. HIDDEN MARKOV MODEL

The emission conditional probability distribution can then be found the following way:

P (xt|St = n) =

K∑
k=1

P (Ct = k,xt|St = n) Marginalize

=
K∑
k=1

P (xt|St = n,Ct = k)P (Ct = k|St = n) Fund. rule

From Equation 3.3 and Equation 3.4 we then get that:

P (xt|St = n) =

K∑
k=1

wnkP (xt|µnk,Σnk) (3.5)

By comparing this with Equation 3.1, it is seen that this probability therefore is the probability

density function for the GMM to a given state. Let N be the number of states of the Markov pro-

cess. The parameters of this HMM are therefore λ = (P (S1), P (St|St−1), (wk,µnk,Σnk)
N,K
n=1,k=1).

31

4
Learning

For a model with parameters λ, we would like determine the values of λ such that the model

represent the observed feature data as good as possible. Thus we would like to learn the pa-

rameters from the observed features. A general method for learning the parameters of a model

is introduced in Section 4.1. Section 4.2 and Section 4.3 explain how this method is applied to

GMMs and HMMs, respectably.

4.1 General introduction to learning

When it is possible to observe all variables in a model, the model parameters which best fit

the observed features can be found by determining the maximum likelihood of the parameters

given the observations. This is explained in Section 4.1.1. However, the method presented

in Section 4.1.1 can not always be used e.g. if not all data can be observed. Instead can the

EM-algorithm be used to learn the model parameters. This is introduced in Section 4.1.2.

4.1.1 Maximum likelihood [15]

Let R be the number of audio files, and let x(r) be the feature vectors of the frames for audio

file r. Then the observable data are X = (x(1),x(2), . . . ,x(R)). It is assumed that each x(r) is

generated by the same underlying model with parameters λ, thus they are identical distributed.

It is also assumed that the data samples are independent from each other. The data samples

32

4.1. GENERAL INTRODUCTION TO LEARNING

x(1),x(2), . . . ,x(R) are then said to be independently and identically distributed (i.i.d), and the

likelihood of the model parameters λ given the dataX can then be found by Equation 4.1.

P (X|λ) =

R∏
r=1

P (x(r)|λ) (4.1)

Normally the log-likelihood is used instead of the likelihood such that the product is replaced

with a sum which is computationally safer. This gives us Equation 4.2.

logP (X|λ) = log

R∏
r=1

P (x(r)|λ) =

R∑
r=1

logP (x(r)|λ) (4.2)

For example if our model is a multivariate Gaussian distribution, the parameters of the model

would be λ = (µ,Σ). The likelihood P (x(r)|µ,Σ) can then be found using Definition 3.1.1, and

logP (X|λ) can be determined by:

logP (X|λ) =
R∑
r=1

log

(
1√

(2π)D|Σ|
e−

1
2
(x(r)−µ)TΣ−1(x(r)−µ)

)

where x(r) and µ are column vectors. The values of λ are however not known, but we would

like to find some values for λ which maximizes logP (X|λ) i.e. we want to determine λ∗ in

Equation 4.3.

λ∗ = arg maxλ logP (X|λ) (4.3)

The values of λ∗ can be found by optimizing the expression of logP (X|λ). For the multivariate

Gaussian distribution this is done by finding the partial derivatives of logP (X|λ) with respect

to the parameters µ and Σ, setting the expressions equal to 0, and solving the equations for µ

and Σ [15]:

∂

∂µ
logP (X|λ) = 0⇒ µ̂ =

1

R

R∑
r=1

x(r)

∂

∂Σ
logP (X|λ) = 0⇒ Σ̂ =

1

R

R∑
r=1

(x(r) − µ̂)(x(r) − µ̂)T

There are however cases where this method can not be used e.g. if the model has some hidden

variables.

33

4.1. GENERAL INTRODUCTION TO LEARNING

4.1.2 The Expectation-Maximization algorithm

It may not always be possible to find the maximum likelihood parameters for example when

a model has hidden variables, or if not all data have been observed. Instead the EM-algorithm

can be used to estimate the parameters of the model [10, 15, 30]; a method which was originally

proposed in [14]. Let X be the observable variables and let Y be the hidden variables such that

X and Y together includes all the variables of the model. P (X|λ) is then called the incomplete-

data likelihood, and P (X ,Y|λ) is called the complete-data likelihood. The EM-algorithm consists

of two steps [10, 15]. In the first step it is assumed that the values of the parameters are

known by assigning values to the parameters, and then the expected value of the complete-

data log-likelihood given the initialized parameters and the observed data is found. This step is

called the expectation step. In the second step the values of the parameters which maximizes the

expected value of the complete-data log-likelihood is found. This step is called the maximization

step. These values are then used for the parameters in the next expectation step. The two steps

are iterated until convergence.

The expectation step First it is assumed that λ is known by assigning values to the param-

eters. This is denoted as λ(i−1). Then the expected value of logP (X ,Y|λ) given X and λ(i−1),

denoted Q(λ, λ(i−1)), is found:

Q(λ, λ(i−1)) = E[logP (X ,Y|λ)|X , λ(i−1)]

=
∑
Y

log(P (X ,Y|λ))P (Y|X , λ(i−1)) (4.4)

For the models used in this thesis all the hidden variables are discrete, and the expected value is

therefore calculated as a sum in the last expression of Equation 4.4. This will give an expression

dependent on the parameters λ.

The maximization step Then we would like to find the parameters which maximizes the

expected value of logP (X ,Y|λ):

λ(i) = arg maxλQ(λ, λ(i−1)) (4.5)

This can be done by optimizing Q(λ, λ(i−1)) according to the parameters. λ(i) is then used to

find the expected value of the log-likelihood in the next iteration.

Termination For the EM-algorithm the incomplete-data likelihood P (X|λ(i)) will converge

toward a local maximum or saddle point which means that P (X|λ(i)) ≥ P (X|λ(i−1)) [35].

This fact can be used to determine when to terminate. For example if the absolute difference

34

4.2. GAUSSIAN MIXTURE MODEL

between P (X|λ(i)) and P (X|λ(i−1)) becomes below a threshold ε:

P (X|λ(i))− P (X|λ(i−1)) ≤ ε (4.6)

Alternatively the relative difference can be used. Hence, the algorithm will terminate when:

P (X|λ(i))− P (X|λ(i−1))
P (X|λ(i−1))

≤ ε (4.7)

As earlier mention log-likelihood is often used instead of likelihood, and then the relative dif-

ference termination criterion becomes:

logP (X|λ(i))− logP (X|λ(i−1))
| logP (X|λ(i−1))|

≤ ε (4.8)

Either way we must determine the likelihood or the log-likelihood of λ(i) and λ(i−1) given

X .

4.2 Gaussian Mixture Model

As mentioned in Section 3.1 a GMM has the parameters λ = ((w1,µ1,Σ1), (w2,µ2,Σ2), . . . , (wK ,

µK ,ΣK)), where K is the number of components. Assuming that the feature vector x has been

generated by a GMM with parameters λ then the likelihood of λ given x can be found using

Equation 3.1:

P (x|λ) =
K∑
k=1

wkP (x|µk,Σk) (4.9)

So for all the feature vectors X = (x(1),x(2), . . . ,x(R)) generated by the same GMM with the

parameters λ, the log-likelihood of λ given X is [10]:

logP (X|λ) =
R∑
r=1

log
K∑
k=1

wkP (x(r)|µk,Σk) (4.10)

This is hard to optimize because it contains a logarithm of a sum, so the parameters is found

using the EM-algorithm [10]. This is presented in Section 4.2.1. For the first iteration, we need

some initial values for λ. How these are chosen is explained in Section 4.2.2. In Section 4.2.3 an

illustrative example of the effect of the EM-algorithm for GMM is presented.

When representing the audio files as a single single frame there is only one feature vector per

audio file and therefore only one GMM to represent the class. The log-likelihood can there-

fore be found using Equation 4.10 and the parameters can be learned as explained in Sec-

35

4.2. GAUSSIAN MIXTURE MODEL

tion 4.2.1. When representing the audio files as several frames there is a GMM for each frame.

Let λt be the parameters for the GMM for frame t such that the system has the parameters

λ = (λ1, λ2, . . . , λT). Each λt is learned separately as it is presented in Section 4.2.1. The log-

likelihood of λ can then be found using Equation 3.2:

logP (X|λ) =

R∑
r=1

log

T∏
t=1

P (x
(r)
t)

=

R∑
r=1

T∑
t=1

logP (x
(r)
t)

=

R∑
r=1

T∑
t=1

log

K∑
k=1

wkP (x
(r)
t |µk,Σk) (4.11)

4.2.1 Estimation of parameters

The feature vector x can be observed, so the observable data are X = (x(1), . . . ,x(R)). It is

however not possible to observe which component that generated the feature vector x(r). Let

C(r) ∈ {1, . . . ,K} be a hidden variable where C(r) = k if x(r) is generated by component k. We

then have the hidden variables C = {C(1), . . . , C(R)}. The steps of the EM-algorithm for finding

the parameters of the GMM can then be determined [10, 30].

The expectation step First the expected value of logP (X , C|λ) given X and λ(i−1) is found

using Equation 4.12. How the values of λ(i−1) for the first iteration are found is explained in

Section 4.2.2.

Q(λ, λ(i−1)) = E[logP (X , C|λ)|X , λ(i−1)]

=
R∑
r=1

K∑
k=1

log(P (x(r), C(r) = k|λ))P (C(r) = k|x(r), λ(i−1)) (4.12)

We will handle the two terms P (x(r), C(r) = k|λ) and P (C(r) = k|x(r), λ(i−1)) handle sepa-

rately.

The term P (x(r), C(r) = k|λ) can be rewritten using the fundamental rule:

P (x(r), C(r) = k|λ) = P (x(r)|C(r) = k, λ)P (C(r) = k|λ)

Here P (x(r)|C(r) = k, λ) is the probability that x(r) was generated by component k i.e.

P (x(r)|C(r) = k, λ) = P (x(r)|µk,Σk), and P (C(r) = k|λ) is the weight of component k, i.e.

P (C(r) = k|λ) = wk. The term P (x(r), C(r) = k|λ) therefore becomes:

P (x(r), C(r) = k|λ) = wkP (x(r)|µk,Σk)

36

4.2. GAUSSIAN MIXTURE MODEL

The term P (C(r) = k|x(r), λ(i−1)) can be rewritten using Bayes’ rule:

P (C(r) = k|x(r), λ(i−1)) =
P (x(r)|C(r) = k, λ(i−1))P (C(r) = k|λ(i−1))

P (x(r)|λ(i−1))

= ϕP (x(r)|C(r) = k, λ(i−1))P (C(r) = k|λ(i−1))

where ϕ is the normalization factor. Again P (x(r)|C(r) = k, λ(i−1)) is the probability that x(r)

was generated by component k, and P (C(r) = k|λ(i−1)) is the weight of component k. Let

w
(i−1)
k , µ(i−1)

k , and Σ
(i−1)
k imply that it is the values of wk, µk, and Σk from λ(i−1). The term

P (C(r) = k|x(r), λ(i−1)) then becomes:

P (C(r) = k|x(r), λ(i−1)) =
w

(i−1)
k P (x(r)|µ(i−1)

k ,Σ
(i−1)
k)∑K

k=1w
(i−1)
k P (x(r)|µ(i−1)

k ,Σ
(i−1)
k)

= ϕ · w(i−1)
k P (x(r)|µ(i−1)

k ,Σ
(i−1)
k)

(4.13)

The expected value of logP (X , C|λ) given X and λ(i−1) becomes:

Q(λ, λ(i−1)) =

R∑
r=1

K∑
k=1

log(wkP (x(r)|µk,Σk)) · ϕw
(i−1)
k P (x(r)|µ(i−1)

k ,Σ
(i−1)
k)

=
R∑
r=1

K∑
k=1

log(wk) · ϕw
(i−1)
k P (x(r)|µ(i−1)

k ,Σ
(i−1)
k)

+
R∑
r=1

K∑
k=1

log(P (x(r)|µk,Σk)) · ϕw
(i−1)
k P (x(r)|µ(i−1)

k ,Σ
(i−1)
k) (4.14)

The maximization step Q(λ, λ(i−1)) must then be maximized by finding the partial deriva-

tives of wk, µk and Σk for Equation 4.14, setting these equal to zero, and solve for the param-

eters. When maximizing wk Lagrange multipliers are used to ensure that the weights sum to

one [10]. This gives the following expressions:

ŵk =
1

K

R∑
r=1

P (C(r) = k|x(r), λ(i−1)) (4.15)

µ̂k =

∑R
r=1 P (C(r) = k|x(r), λ(i−1))x(r)∑R
r=1 P (C(r) = k|x(r), λ(i−1))

(4.16)

Σ̂k =

∑R
r=1 P (C(r) = k|x(r), λ(i−1))(x(r) − µ̂k)(x

(r) − µ̂k)
T∑R

r=1 P (C(r) = k|x(r), λ(i−1))
(4.17)

where P (C(r) = k|x(r), λ(i−1)) is given by Equation 4.13. These must be calculated for k =

1, . . . ,K for finding λ(i) = ((ŵ1, µ̂1, Σ̂1), . . . , (ŵK , µ̂K , Σ̂K)). These values are then used for the

parameters in the next iteration.

37

4.2. GAUSSIAN MIXTURE MODEL

Termination The logP (X|λ(i)) and logP (X|λ(i−1)) can be found using Equation 4.10.

4.2.2 Initial values of the parameters

Initial values of the parameters λ for a GMM with K components can be chosen by first clus-

tering in K clusters which can be done with the k-means algorithm. The weight, mean vector

and covariance matrix for each component k can then be estimated from the data in the corre-

sponding cluster [26]. The k-means algorithm used is presented in Algorithm 1.

Algorithm 1: k-means [15]

Input: Data samples X = (x(1),x(2), . . . ,x(R)), number of clusters K
1 Create K lists: l1, l2, . . . lK
2 Create K centroids: ρ1,ρ2, . . . ,ρK
3 X ′ = X
// Initialize centroids

4 for k = 1, . . . ,K do
5 Chose random data sample x from X ′
6 ρk = x
7 X ′ = X ′\x
8 end
9 repeat

// Put data in clusters
10 Empty the lists l1, l2, . . . lK
11 for r = 1, . . . , R do
12 k′ = arg mink=1,...,K

√
(x(r) − ρk)

T (x(r) − ρk)

13 Put x(r) in list lk′
14 end

// Update centroids
15 X ′ = X
16 for k = 1, . . . ,K do
17 if |lk| ≤ dimension of state space then
18 Chose random data sample x from X ′
19 ρk = x
20 X ′ = X ′\x
21 else
22 Set ρk to the mean of the data in lk
23

24 end
25 until No change of µk for k = 1, . . . ,K;

The term
√

(x(r) − µk)
T (x(r) − µk) is the Euclidean distance from x(r) to µk. K-means makes a

list lk and a centroid ρk for each cluster k. First each centroid is set to be a data point x. Then

for each data point it puts the data point in the cluster whose centroid is closest to the data

point. When all data points have been put in a cluster, the centroid for each cluster is updated

to the center of the points in the particular cluster. This is repeated until the centroids does not

38

4.2. GAUSSIAN MIXTURE MODEL

change for an iteration.

After the k-means have been applied let x(1),x(2), . . . ,x(rk) be the data in cluster k. Then the

weight, mean vector and covariance matrix of component k can be estimated from the data in

a cluster by the following formulas [15, 26]:

ŵk =
rk
R

(4.18)

µ̂k =
1

rk

rk∑
i=1

x(i) (4.19)

Σ̂k =
1

rk

rk∑
i=1

(x(i) − µ̂k)(x
(i) − µ̂k)

T (4.20)

ŵk will sum to one for all K components as required, and Σ̂k is symmetric as required because

the matrix (x(i) − µ̂k)(x
(i) − µ̂k)

T is symmetric. Further, Σ̂k is semi-definite as required. The

proof for this follow the same pattern as the proof that Σ is semi-definite. It can be seen from

the following [9].

wT Σ̂kw = wT 1

rk

rk∑
i=1

((x(i) − µ̂k)(x
(i) − µ̂k)

T))w

=
1

rk

rk∑
i=1

(wT (x(i) − µ̂k)(x
(i) − µ̂k)

Tw)

For the last expression we have wT (x(i)−µ̂k) = (x(i)−µ̂k)Tw = (x−µ̂k))·w, where · is the inner

product. The expression therefore becomes 1
rk

∑rk
i=1((x

(i) − µ̂k)) · w)2. Since the result of the

inner product is a scalar the expression is the sum of squared scalars, and this is always greater

than or equal to zero. It is therefore ensured that wT Σ̂kw ≥ 0. As mentioned in Section 3.1.1

it is also required that Σ̂ is non-singular else the variance is zero. This can be checked by

calculating the determinant of the matrix. If this is 0 then the found estimates can not be used,

and k-means must be applied again with another initialization of the centroids.

4.2.3 Illustrative example of learning a Gaussian Mixture Model

Figure 4.1 illustrates an example of the results for the steps that we perform in order to learn

a GMM. In the example the size of the feature vectors is two, so D = 2. In Figure 4.1(a) the

feature vectors are plotted into a graph. We will then learn a GMM with three components that

fit this data. First the k-means algorithm is run which partitions the points into three clusters.

The result of k-means is illustrated in Figure 4.1(b) where each color represents a cluster. Then

the parameters of the GMM is initialized by calculating Equation 4.18-4.20 for each cluster. The

contour of the initialized GMM is illustrated in Figure 4.1(c). The EM-algorithm is then run until

convergence. The contour of the GMM after the EM-algorithm has terminated is illustrated in

39

4.3. HIDDEN MARKOV MODEL

Figure 4.1(d). The GMM in Figure 4.1(c) and Figure 4.1(d) looks similar. However, the GMM in

Figure 4.1(d) is better fitted to the points because the likelihood of the parameters of the model

given the points increases in every iteration of the EM-algorithm.

−6 −4 −2 0 2 4 6 8 10 12 14
−6

−4

−2

0

2

4

6

8

(a) Points of feature vectors.

−6 −4 −2 0 2 4 6 8 10 12 14
−6

−4

−2

0

2

4

6

8

(b) Result of k-means.

−6 −4 −2 0 2 4 6 8 10 12 14
−6

−4

−2

0

2

4

6

8

(c) GMM with initialized parameters.

−6 −4 −2 0 2 4 6 8 10 12 14
−6

−4

−2

0

2

4

6

8

(d) The GMM after applying the EM-algorithm.

Figure 4.1: Illustrative example of learning a GMM.

4.3 Hidden Markov Model

The state of an HMM is hidden, and, thus, the state variable for each time slice St can not

be observed. The EM-algorithm is therefore used to find some parameters of the HMM which

fit the observed data. The EM-algorithm for an HMM requires several tasks; forward, backward

and smoothing. These are therefore introduced in Section 4.3.1-4.3.3 before the steps of the EM-

algorithm are explained in Section 4.3.4. In Section 4.3.4 it is however only described how

to estimate the parameters when a single audio file is given. In Section 4.3.5 it is explained

how observations from multiple audio files is used for estimating the model parameters. In

Section 4.3.6 it is explained how we initialize the model parameters for the EM-algorithm.

In [17] it is described how HMMs is learned when the observable data is discrete. Section 4.3.1,

Section 4.3.2, and Section 4.3.3 are rewritten from the description given in [17], and the de-

40

4.3. HIDDEN MARKOV MODEL

scription of reestimating P (S1) and P (St|St−1) in Section 4.3.4 is inspired from the description

given in [17].

4.3.1 Forward message

The forward message is defined as [26]:

Definition 4.3.1 (Forward message). The forward message αt is the probability of observing the

observations from time 1 to t, and being in a certain state of the Markov process at time t :

αt = P (x1:t, St)

We have that P (x1:t, St)→ 0 for t→∞. This poses an underflow problem when implementing

the forward message. It is explained in Section 5.3.1.1 how this is handled.

The value of the forward message can be found the following way [30]:

αt = P (x1:t, St)

= P (xt|St,x1:t−1) · P (St,x1:t−1) Fund. rule

= P (xt|St) · P (St,x1:t−1) Cond. indep.

= P (xt|St)
∑
St−1

P (St−1, St,x1:t−1) Marginalize

= P (xt|St)
∑
St−1

P (St|St−1,x1:t−1) · P (x1:t−1, St−1) Fund. rule

= P (xt|St)
∑
St−1

P (St|St−1) · P (x1:t−1, St−1) Cond. indep.

By noticing that αt−1 = P (x1:t−1, St−1) the expression of the forward message becomes:

αt = P (xt|St)
∑
St−1

P (St|St−1) · αt−1 (4.21)

So the forward message can be calculated recursively. The term P (xt|St) is given by Equa-

tion 3.5 and the term P (St|St−1) is the transition distribution. For the first time step t = 1 the

forward variable is

α1 = P (S1) · P (x1|S1) (4.22)

41

4.3. HIDDEN MARKOV MODEL

We will denote the value of the forward message for a particular state n as [26, 30]:

αt(n) = P (x1:t, St = n)

4.3.2 Backward message

The backward message is defined as [26, 30]:

Definition 4.3.2 (Backward message). The backward message βt is the likelihood of the state of the

Markov process at time t given the observations from time t+ 1 to T :

βt = P (xt+1:T |St)

As with the forward message, the backward message approaches 0 the longer the sequence

xt+1:T gets, so this also poses an underflow problem when implementing the backward mes-

sage. In Section 5.3.1.1 it is explained how the underflow problem is handled for the forward

and backward message.

The value of the backward message can be found the following way [30]:

βt = P (xt+1:T |St)

=
∑
St+1

P (xt+1:T , St+1|St) Marginalize

=
∑
St+1

P (xt+1:T |St, St+1) · P (St+1|St) Fund. rule

=
∑
St+1

P (xt+1:T |St+1) · P (St+1|St) Cond. indep.

=
∑
St+1

P (xt+1|xt+2:T , St+1) · P (xt+2:T |St+1) · P (St+1|St) Fund. rule

=
∑
St+1

P (xt+1|St+1) · P (xt+2:T |St+1) · P (St+1|St) Cond. indep.

By noticing that βt+1 = P (xt+2:T |St+1) the expression of the backward variable becomes:

βt =
∑
St+1

P (xt+1|St+1) · βt+1 · P (St+1|St) (4.23)

The backward message can therefore, as the forward message, also be calculated recursively.

The term P (xt+1|St+1) is given by Equation 3.5, and the term P (St+1|St) is the transition distri-

bution. For the first backward variable, that is for the last time step t = T , there is no emission,

42

4.3. HIDDEN MARKOV MODEL

so for all states of ST the likelihood are set to 1 in order to rate them equally [26, 30]:

βT = (1, 1, . . . , 1) (4.24)

We will denote the value of the backward message for a particular state n as:

βt(n) = P (xt+1:T |St = n)

4.3.3 Smoothing

Smoothing is defined as [26, 30]:

Definition 4.3.3. The smoothing variable γt is the probability of the states of the Markov process at

time t given the observations from time 1 to time T :

γt = P (St|x1:T)

The value of the smoothing variable can be found the following way [30]:

γt = P (St|x1:T)

=
P (xt+1:T |St,x1:t) · P (St|x1:t)

P (xt+1:T |x1:t)
Bayes’ rule

=
P (xt+1:T |St) · P (St|x1:t)

P (xt+1:T |x1:t)
Cond. indep.

=
P (xt+1:T |St) · P (St,x1:t)

P (xt+1:T |x1:t)P (x1:t)
Fund. rule

= ϕP (xt+1:T |St)P (St,x1:t) ϕ is normalization factor

The term P (St,x1:t) is the forward message and the term P (xt+1:T |St) is the backward message,

so smoothing becomes:

γt =
αt · βt∑
St
αt · βt

(4.25)

It is worth noting that for γt the forward message αt takes observations from time step 1 to t

into consideration while βt takes observations from time step t + 1 to T into consideration, so

all observations are included exactly once in the expression.

We will denote the smoothing value for a particular state n as γt(n) = P (St = n|x1:T), and this

is therefore given as:

γt(n) =
αt(n) · βt(n)∑N
n=1 αt(n) · βt(n)

(4.26)

43

4.3. HIDDEN MARKOV MODEL

4.3.4 Estimation of parameters

The considerations and calculations in this section has its base in [10]. The observable data are

the feature vectors of the audio files, X = (x
(1)
1:T , . . . ,x

(R)
1:T). However, we first treat the case with

feature vectors from one audio file x1:T i.e. X = x1:T . The case with multiplied audio files is

handled in the next section. The hidden variables S1, S2, . . . , ST , which we denote as S1:T , are

the state of the Markov process at each time t, and the hidden variables C1, C2, . . . , CT , which

we denote as C1:T , are the component used at each time t.

The expectation step Let
∑

S1:T
denote

∑
S1

∑
S2
· · ·
∑

ST
and

∑
C1:T

denote
∑

C1

∑
C2
· · ·
∑

CT
.

The expected value of the log-likelihood of the parameters, logP (x1:T , S1:T , C1:T |λ), given x1:T

and the parameters λ(i−1) is given by:

Q(λ, λ(i−1)) =
∑
S1:T

∑
C1:T

log(P (x1:T , S1:T , C1:T |λ))P (S1:T , C1:T |x1:T , λ
(i−1)) (4.27)

By looking at the Bayesian network of the HMM in Figure 3.6 the term P (x1:T , S1:T , C1:T |λ) can

be rewritten using the chain rule [18]:

P (x1:T , S1:T , C1:T |λ) = P (S1|λ)P (C1|S1, λ)P (x1|C1, S1, λ)
T∏
t=2

P (St|St−1)P (Ct|St, λ)P (xt|Ct, St, λ)

This can be used to rewrite Equation 4.27:

Q(λ, λ(i−1)) =
∑
S1:T

∑
C1:T

log(P (S1λ)P (C1|S1, λ)P (x1|C1, S1, λ)

T∏
t=2

P (St|St−1, λ)P (Ct|St, λ)P (xt|Ct, St, λ))

· P (S1:T , C1:T |x1:T , λ
(i−1))

=
∑
S1:T

∑
C1:T

log(P (S1|λ))P (S1:T , C1:T |x1:T , λ
(i−1)) (i)

+
∑
S1:T

∑
C1:T

T∑
t=2

log(P (St|St−1, λ))P (S1:T , C1:T |x1:T , λ
(i−1)) (ii)

+
∑
S1:T

∑
C1:T

T∑
t=1

log(P (Ct|St, λ)P (xt|Ct, St, λ))P (S1:T , C1:T |x1:T , λ
(i−1)) (iii)

44

4.3. HIDDEN MARKOV MODEL

We will rewrite the three terms i, ii, and iii separately. The term i becomes:

∑
S1:T

∑
C1:T

log(P (S1|λ))P (S1:T , C1:T |x1:T , λ
(i−1)) =

∑
S1:T

log(P (S1|λ))
∑
C1:T

P (S1:T , C1:T |x1:T , λ
(i−1))

=
∑
S1:T

log(P (S1|λ))P (S1:T |x1:T , λ
(i−1))

=
∑
S1

(log(P (S1|λ))
∑
S2:T

P (S1:T |x1:T , λ
(i−1)))

=
∑
S1

log(P (S1|λ))P (S1|x1:T , λ
(i−1))

The term ii becomes:

∑
S1:T

∑
C1:T

T∑
t=2

log(P (St|St−1, λ))P (S1:T , C1:T |x1:T , λ
(i−1))

=
∑
S1:T

T∑
t=2

log(P (St|St−1, λ))
∑
C1:T

P (S1:T , C1:T |x1:T , λ
(i−1))

=
∑
S1:T

T∑
t=2

log(P (St|St−1, λ))P (S1:T |x1:T , λ
(i−1))

=

T∑
t=2

∑
St−1

∑
St

(log(P (St|St−1, λ))
∑
S1:t−2

∑
St+1:T

P (S1:T |x1:T , λ
(i−1)))

=
T∑
t=2

∑
St−1

∑
St

log(P (St|St−1, λ))P (St−1, St|x1:T , λ
(i−1))

The factor P (St−1, St|x1:T) is given by the following where λ(i−1) is omitted to make the deriva-

tion more readable:

P (St−1, St|x1:T) = P (St−1, St|x1:t−1,xt,xt+1:T)

=
P (xt+1:T |St−1, St,x1:t−1,xt) · P (St−1, St|x1:t−1,xt)

P (xt+1:T |x1:t)
Bayes’ rule

=
P (xt+1:T |St) · P (St−1, St|x1:t−1,xt)

P (xt+1:T |x1:t)
Cond. indep.

=
P (xt+1:T |St) · P (xt|St−1, St,x1:t−1) · P (St−1, St|x1:t−1)

P (xt+1:T |x1:t) · P (xt|x1:t−1)
Bayes’ rule

=
P (xt+1:T |St) · P (xt|St) · P (St−1, St|x1:t−1)

P (xt+1:T |x1:t) · P (xt|x1:t−1)
Cond. indep.

45

4.3. HIDDEN MARKOV MODEL

=
P (xt+1:T |St) · P (xt|St) · P (St|St−1,x1:t−1) · P (St−1|x1:t−1)

P (xt+1:T |x1:t) · P (xt|x1:t−1)
Fund. rule

=
P (xt+1:T |St) · P (xt|St) · P (St|St−1) · P (St−1|x1:t−1)

P (xt+1:T |x1:t) · P (xt|x1:t−1)
Cond. indep.

=
P (xt+1:T |St) · P (xt|St) · P (St|St−1) · P (St−1,x1:t−1)

P (xt+1:T |x1:t) · P (xt|x1:t−1) · P (x1:t−1)
Fund. rule

= ϕP (xt+1:T |St)P (xt|St)P (St|St−1)P (St−1,x1:t−1) ϕ is normalization factor

HereP (xt+1:T |St) is the backward message to time t, P (xt|St) is given by Equation 3.5, P (St|St−1)
is the transition distribution, andP (St−1,x1:t−1) is the forward message to time t. P (St−1, St|x1:T)

then becomes:

P (St−1, St|x1:T) =
αt−1 · P (St|St−1) · P (xt|St) · βt∑

St−1

∑
St
αt−1 · P (St|St−1)P (St−1 · P (xt|St) · βt

(4.28)

The term iii becomes:

∑
S1:T

∑
C1:T

T∑
t=1

log(P (Ct|St, λ)P (xt|Ct, St, λ))P (S1:T , C1:T |x1:T , λ
(i−1))

=
T∑
t=1

∑
St

∑
Ct

(log(P (Ct|St, λ)P (xt|Ct, St, λ))
∑
S1:t−1

∑
St+1:T

∑
C1:t−1

∑
Ct+1:T

P (S1:T , C1:T |x1:T , λ
(i−1)))

=
T∑
t=1

∑
St

∑
Ct

log(P (Ct|St, λ)P (xt|Ct, St, λ))P (St, Ct|x1:T , λ
(i−1))

=
T∑
t=1

N∑
n=1

K∑
k=1

log(wnkP (xt|µnk,Σnk))P (St = n,Ct = k|x1:T , λ
(i−1)) Equation 3.3 and Equation 3.4

=

T∑
t=1

N∑
n=1

K∑
k=1

log(wnk)P (St = n,Ct = k|x1:T , λ
(i−1))

+
T∑
t=1

N∑
n=1

K∑
k=1

log(P (xt|µnk,Σnk))P (St = n,Ct = k|x1:T , λ
(i−1))

The factor P (St = n,Ct = k|x1:T , λ
(i−1)) is given by the following where λ(i−1) is omitted to

make the derivation more readable:

P (St = n,Ct = k|x1:T) = P (Ct = k|St = n,x1:T) · P (St = n|x1:T) Fund. rule

= P (Ct = k|St = n,xt) · P (St = n|x1:T) Cond. indep.

=
P (xt|Ct = k, St = n) · P (Ct = k|St = n)

P (xt|St = n)
· P (St = n|x1:T) Bayes’ rule

= ϕP (xt|Ct = k, St = n) · P (Ct = k|St = n) · P (St = n|x1:T)

ϕ is normalization factor

46

4.3. HIDDEN MARKOV MODEL

Here P (xt|Ct = k, St = n) is given by Equation 3.4, P (Ct = k|St = n) is given by Equa-

tion 3.3, and P (St = n|x1:T) is the smoothing variable for state n. P (St = n,Ct = k|x1:T) then

becomes:

P (St = n,Ct = k|x1:T) =
αt(n) · βt(n)∑N
n=1 αt(n) · βt(n)

· wnkP (xt|µnk,Σnk)∑K
k=1wnkP (xt|µnk,Σnk)

(4.29)

Q(λ, λ(i−1)) is therefore the sum of four terms:

Q(λ, λ(i−1)) =
∑
S1

log(P (S1|λ))P (S1|x1:T , λ
(i−1)) (I)

+

T∑
t=2

∑
St−1

∑
St

log(P (St|St−1, λ))P (St−1, St|x1:T , λ
(i−1)) (II)

+

T∑
t=1

N∑
n=1

K∑
k=1

log(wnk)P (St = n,Ct = k|x1:T , λ
(i−1)) (III)

+
T∑
t=1

N∑
n=1

K∑
k=1

log(P (xt|µnk,Σnk))P (St = n,Ct = k|x1:T , λ
(i−1)) (IV)

The maximization step The parameters which must be maximized are the start distribu-

tion P (S1), the transition distribution P (St|St−1), and for each component k of the GMMs for

each state n of the Markov process the weight wnk, the mean vector µnk, and the covari-

ance matrix Σnk. As described in Section 4.1, this includes taking the partial derivatives of

Q(λ, λ(i−1)).

When optimizing Q(λ, λ(i−1)) according to P (S1) the terms II, III, and IV cancels out, so it is

only required to differentiate the term I. Since it is required that
∑N

n=1 P̂ (S1 = n) = 1 Lagrange

multipliers are used. The equation for P̂ (S1) becomes [26]:

P̂ (S1) = P (S1|x1:T , λ
(i−1)) = γ1,λ(i−1) (4.30)

where γ1,λ(i−1) implies that γ1 has been found using the values of λ(i−1). P̂ (S1) can be inter-

preted as the expected number of transitions from S1.

When optimizing Q(λ, λ(i−1)) according to P (St|St−1) the terms I, III, and IV cancels out, so

it is only required to differentiate the term II. For the result P̂ (St|St−1) it is required that∑N
n′=1 P̂ (St = n′|St−1 = n′′) = 1 for n′′ = 1, . . . , N , so Lagrange multipliers are used. The

equation for P̂ (St|St−1) becomes [26]:

P̂ (St|St−1) =

∑T
t=2 P (St−1, St|x1:T , λ

(i−1))∑T
t=2 P (St−1|x1:T , λ(i−1))

=

∑T
t=2 P (St−1, St|x1:T , λ

(i−1))∑T
t=2 γt−1,λ(i−1)

(4.31)

47

4.3. HIDDEN MARKOV MODEL

where P (St−1, St|x1:T , λ
(i−1)) can be found with Equation 4.28, and γt−1,λ(i−1) implies that γt−1

has been found using the values of λ(i−1). The denominator can be found with smoothing, but

it can also be found by marginalizing St out of the nominator. The reestimation of P (St|St−1)
can be interpreted as [26]:

P̂ (St|St−1) =
expected number of transistions from St−1 to St

expected number of times in state St−1

When optimizing Q(λ, λ(i−1)) according to wnk the terms I, II, and IV cancels out, so it is only

required to differentiate the term III. It is required that
∑K

k=1 ŵnk = 1 for n = 1, . . . , N so

Lagrange multipliers are used again. The equation for ŵnk becomes [26]:

ŵnk =

∑T
t=1 P (St = n,Ct = k|x1:T , λ

(i−1))∑T
t=1

∑K
k=1 P (St = n,Ct = k|x1:T , λ(i−1))

(4.32)

where P (St = n,Ct = k|x1:T , λ
(i−1)) is found using Equation 4.29.

When optimizing Q(λ, λ(i−1)) according to µnk and Σnk the terms I, II, and III cancels out, so it

is only required to differentiate the term IV. The equations for µ̂nk and Σ̂nk becomes [26]:

µ̂nk =

∑T
t=1 P (St = n,Ct = k|x1:T , λ

(i−1)) · xt∑T
t=1 P (St = n,Ct = k|x1:T , λ(i−1))

(4.33)

Σ̂nk =

∑T
t=1 P (St = n,Ct = k|x1:T , λ

(i−1))(xt − µ̂nk)(xt − µ̂nk)
T∑T

t=1 P (St = n,Ct = k|x1:T , λ(i−1))
(4.34)

where P (St = n,Ct = k|x1:T , λ
(i−1)) is found using Equation 4.29.

Equation 4.32-4.34 must be calculated for n = 1, . . . , N and k = 1, . . . ,K. The parameters for

the next iteration then becomes λi = (P̂ (S1), P̂ (St|St−1), (ŵnk, µ̂nk, Σ̂nk)
N,K
n=1,k=1).

Termination The likelihood of the parameters given the observations can be found from the

forward message to the last time step T by marginalizing the states of the Markov process out

[26]:

P (x1:T |λ) =
∑
ST

P (x1:T , ST |λ)

=
∑
ST

αT (4.35)

4.3.5 Multiple audio files

When we have multiple audio files X = (x1
1:T , . . . ,x

R
1:T) all of these can be used for learn-

ing the model parameters. The reestimation formulas given in Equation 4.30-4.34 then be-

48

4.3. HIDDEN MARKOV MODEL

comes [26]:

P̂ (S1) =

∑R
r=1 γ

(r)

1,λ(i−1)

R
(4.36)

P̂ (St|St−1) =

∑R
r=1

∑T
t=2 P (St−1, St|x(r)

1:T , λ
(i−1))∑R

r=1

∑T
t=2 γ

(r)

t−1,λ(i−1)

(4.37)

ŵnk =

∑R
r=1

∑T
t=1 P (St = n,Ct = k|x(r)

1:T , λ
(i−1))∑R

r=1

∑T
t=1

∑K
k=1 P (St = n,Ct = k|x(r)

1:T , λ
(i−1))

(4.38)

µ̂nk =

∑R
r=1

∑T
t=1 P (St = n,Ct = k|x(r)

1:T , λ
(i−1)) · x(r)

t∑R
r=1

∑T
t=1 P (St = n,Ct = k|x(r)

1:T , λ
(i−1))

(4.39)

Σ̂nk =

∑R
r=1

∑T
t=1 P (St = n,Ct = k|x(r)

1:T , λ
(i−1))(x

(r)
t − µ̂nk)(x

(r)
t − µ̂nk)

T∑R
r=1

∑T
t=1 P (St = n,Ct = k|x(r)

1:T , λ
(i−1))

(4.40)

In order to determine when to terminate, P (X|λ) must be found. Using Equation 4.1 and

Equation 4.35 this becomes [26]:

P (X|λ) =
R∏
r=1

∑
ST

α
(r)
T (4.41)

where α(r)
T = P (x

(r)
1:T , ST |λ). As mentioned earlier the log-likelihood, logP (X|λ), is used in

order to get a sum instead of a multiplication because it is computational better. This is then

given by:

logP (X|λ) =

R∑
r=1

log(
∑
ST

αrT) (4.42)

4.3.6 Initial values of the parameters

The EM-algorithm is not ensured to find the global optimum, so the EM-algorithm must be

run several times with different initial values in order to increase the probability for finding a

good local optimum. According to Rabiner [26] there is no known good selection for initial

parameters only knowledge about the particular domain can be used as guidance. Normally

the parameters are initialized randomly. We choose to initialize the start and transition prob-

ability distribution uniformly in order to limit the parameter space to search, and, thus, only

use a randomness when initializing the weights, mean vectors, and covariance matrices. In

order to find good values for these parameters, the feature vectors of all frames of all annotated

audio files are randomly distributed to each state. Then k-means is applied on the feature vec-

tors in each state, and the parameters for the GMM for each state is estimated as explained in

Section 4.2.2.

49

5
Implementation

In order to learn and test the models several implementation tasks were required. Extractions

of the feature vectors and validation were performed using methods from MatLab while the

the models, learning the models, and classification of the audio files were implemented in C++.

In Section 5.1 the pipeline of the work process is presented which gives an overview of the

implementation tasks required. In Section 5.2 implementation of GMM is described in more

details, in Section 5.3 implementation of HMM is described in more details, and in Section 5.4

implementation of classification is described.

5.1 Pipeline

The pipeline of handling data is shown in Figure 5.1.

First the data set is devided into three disjoint subsets:

1. A subset for learning

2. A subset for validation

3. A subset for testing1

1For the Kaggle competition this subset is given by Kaggle. These audio files are not annotated, so it can not be
seen whether a audio file is positive or negative, but the result of the classification of these audio files can be loaded
up to the Kaggle web page [3], and a result is returned based on AUC of a ROC-curve. AUC and ROC-curves are
explained in more details in Section 6.1.1.

50

5.1. PIPELINE

Data set of

annotated

audio files

Divide data set

into three

subsets:

Training,

validation,

and test

Extract feautre

vectors
Feature vector

files

Learn models

from

training set

Model files

Classify the

 audio files in

the validation

set using the

learned models

Classification

results

Chose no. of

states and

components

Classify the

 audio files in

the test set

Classification

results

Evalutate

which model

type that

performs best

when used in

the classifier

Figure 5.1: The pipeline of handling data. The part of the process which are red is performed for each
model type.

After this the feature vectors are extracted from all the audio files using the MatLab toolbox

VOICEBOX. This returns four data files each of which consists of the feature vectors for the

audio files in the particular set:

1. A data file for positive audio files used for learning the model parameters

2. A data file for negative audio files used for learning the model parameters

3. A data file for audio files used for validation

4. A data file for audio files used for testing

To learn the models for the positive and negative class, the data file containing the feature data

for the training set is loaded. From this different models are learned where the number of

components is varied for the models using GMMs, and number of states and components are

varied for the models using HMMs. Afterwards the learned models are stored as files such that

they can be used as candidates for the final classifier.

For both positive and negative models, the learned models are loaded together with the feature

vectors for the audio files in the validation set. For each learned model each of these audio files

are classified, and the results are saved to a file. For each model type all the positive models

are paired against all negative models, and the validation set is used to decide which pair of

positive and negative model that performs best when used in the classifier in Figure 1.1. It is

then tested which model type that performs best when used in the classifier by loading the

selected positive and negative model, and the features vector for the audio files in the test

set. The audio files in the test set are then classified, and it is evaluated which model type is the

best performs best when used in the classifer in Figure 1.1. Validation and testing are explained

further in Chapter 6.

51

5.2. Gaussian Mixture Model

5.2 Gaussian Mixture Model

An overview of the implementation of the GMM can be seen in Appendix A where the header

file of the implementation is presented. It consists of three classes: MultivariateGaussianDistri-

bution, Component and GMM. A class-diagram of the implementation of GMM can be seen in

Figure 5.2 where the most relevant attributes and methods are shown.

GMM
components: std::vector<Component>

mixtureDistribution(boost::vector data): double
calculateLogLikelihood(std::vector<boost::vector> data): double
generateRandom(unsigned data, std::vector<boost::vector> noComponents,
boost::random::mt19937 rng): GMM∗

learningLogLikelihood(std::vector<boost::vector> data, double epsilon, std::vector<int>
fileNumbers): double
learning(std::vector<boost::vector> data, std::vector<int> fileNumbers): void

Component

weight: double
mgd: boost::shared_ptr <MultivariateGaussianDistribution >

MultivariateGaussianDistribution
meanVector: boost::shared_ptr<boost::vector>
covarianceMatrix: boost::shared_ptr<boost::matrix>
invCovarianceMatrix: boost::shared_ptr<boost::matrix>
detCovarianceMatrix: boost::shared_ptr<double>

probabilityDensityFunction(boost::vector datum): double

components

1..*

mgd

1

Figure 5.2: Class-diagram for Gaussian Mixture Model.

The class MultivariateGaussianDistribution contain a mean vector and a covariance matrix. Fur-

ther it has a method for calculating the probability density function in Definition 3.1.1. This can

be seen in Listing 5.1. When calculating the probability density function the determinant and

inverse of the covariance matrix must be found. The method are called several times e.g. dur-

ing learning where the determinant and inverse of the covariance matrix are the same. In order

52

5.2. Gaussian Mixture Model

to save calculations, the determinant and inverse covariance matrix are therefore cached. This

is done by having an attribute for the determinant and the inverse covariance matrix which

is set to null when the value of the covariance matrix is updated e.g. after one iteration of

learning. The first time the determinant and the inverse of the covariance matrix are used af-

ter the covariance matrix has been updated the determinant and the inverse covaraince matrix

are calculated and cached, and then these values are used later on instead of making the same

calculations again. This can be seen in Line 6 and Line 14 of Listing 5.1.

1 double MultivariateGaussianDistribution :: probabilityDensityFunction(const vector <

double > &x)

2 {

3 if(detCovarianceMatrix == NULL)

4 {

5 double det = determinantLU (* covarianceMatrix);

6 detCovarianceMatrix.reset(new double(det));

7 }

8 if(* detCovarianceMatrix <1e-300)

9 {

10 throw SingularCovarianceMatrixException (* detCovarianceMatrix);

11 }

12 if(invCovarianceMatrix == NULL)

13 {

14 invCovarianceMatrix.reset(invertGaussJordan (* covarianceMatrix));

15 }

16 // exponent

17 vector <double > diff = x-* meanVector;

18 vector <double > prod1 = prod(* invCovarianceMatrix , diff);

19 double prod2 = inner_prod(diff , prod1);

20 double exponent = -0.5* prod2;

21

22 // normalization factor

23 double tmp = pow(2*pi , dim);

24 tmp = tmp * (* detCovarianceMatrix);

25 tmp = sqrt(tmp);

26 double normalizeFactor = 1.0/ tmp;

27

28 double result = normalizeFactor*exp(exponent);

29 if(result == std:: numeric_limits <double >:: infinity ())

30 {

31 throw InfLikelihoodException(result);

32 }

33 return result;

34 }

Listing 5.1: Probability density function for Multivariate Gaussian Distribution.

The class Component contains a MultivariateGaussianDistritbution and a double for the weight

of the component, and the class GMM contains several components. The mixture distribution

given in Equation 3.1 was implemented directly from the formula in the method mixtureDistribution.

The learning and initialization of a GMM were also implemented directly from the explanations

53

5.3. HIDDEN MARKOV MODEL

given in Section 4.2.1 and Section 4.2.2, respectively. The flow chart for learning is shown

in Figure 5.3. First the parameters of the GMM must be initialized. This is done with the

method generateRandom. For initialization the k-means algorithm was also implemented.

The method learning runs one iteration of the EM-algorithm. Different methods which ter-

minates the EM-algorithm on different criteria can then be made. These can run several iter-

ations of the EM-algorithm, and call the learning method for performing an iteration. The

learningLogLikelihood method is such a method which terminates when the increase in log-

likelihood is below a threshold. When one iteration of learning has been run, a new GMM

object is not created instead the values of this GMM object are updated. Computation of the

log-likelihood for the model parameters given the data was implemented directly from Equa-

tion 4.10 using method MultivariateGaussianDistritbution.

Figure 5.3: Flow chart for learning a GMM.

According to Rabiner [26] most problems of interest have a very complex optimization sur-

faces, and similarly many local maximums for optimization. When learning a model, several

different initial values of the parameters λ are therefore used in order to increase the probability

of finding a local maximum closer to the global maximum. The model with the initial values

which led to the highest log-likelihood is then used further on for validation. As mentioned in

Section 4.2.2 we used the k-means algorithm to make the initial clustering of the feature vec-

tors. In the k-means algorithm the first choice of centroids is made by randomly picking feature

vectors. The initial values of λ can therefore be changed by picking different feature vectors to

use as initial centroids.

5.3 Hidden Markov Model

This section has been rewritten from the description of scaling and implementation given in

[17]. The header file for the implementation of HMM can be seen in Appendix B. The class of

HMM has four attributes:

54

5.3. HIDDEN MARKOV MODEL

• noStates: An unsigned integer to represent the number of states the HMM.

• start: A vector of doubles to represent the prior probability P (S1), so entry i of the vector

is the prior probability for state i.

• transition: A matrix of doubles to represent the transition conditional probability dis-

tribution P (St|St−1). The value at entry (i, j) of the matrix is the probability for making

a transition from state i to state j.

• emission: A list of objects of type GMM, one for each state.

The implementation was made almost directly from the description given in Section 3.2 and

Section 4.3 where matrices and vectors were used as data structures for the probability distri-

butions. There is however some technical specification when implementing the forward and

backward message. These are introduced in Section 5.3.1. Specifications of learning are dis-

cussed in Section 5.3.2.

5.3.1 Forward and backward message

When calculating the forward and backward message from Equation 4.21 and Equation 4.23

it includes many multiplications with numbers below one, so for large values of t there is a

great risk that αt and βt will come so close to zero that it will lead to underflow. How this is

handled is explained in Section 5.3.1.1. Matrix operations can be exploited when implementing

the forward and backward message. This is explained in Section 5.3.1.2.

5.3.1.1 Scaling

Underflow of forward and backward message can be avoided by scaling αt and βt in each time

step [26]. For the forward message this is done by multiplying with a normalization factor

in each time step, so when computing αt it will be normalized. We refer to the result of this

as ft, and this is then used in the next iteration when computing αt+1. Let the normalization

factor to time step t be ct, the initialization step and induction step for the forward message

then becomes:

f1 =
P (S1) · P (x1|S1)∑
St
P (S1) · P (x1|S1)

= c1P (S1)P (x1|S1) (5.1)

ft =
P (xt|St)

∑
St−1

P (St|St−1) · ft−1∑
St
P (xt|St)

∑
St−1

P (St|St−1)ft−1
= ctP (xt|St)

∑
St−1

P (St|St−1)ft−1 (5.2)

For the backward message the same scaling factors are used i.e. ct is also used for scaling

βt. We denote the result as bt. As with the forward message bt is used in the next iteration

when computing βt−1. The initialization and induction step of the backward message then

55

5.3. HIDDEN MARKOV MODEL

becomes:

bT = cT · (1, 1, . . . , 1) (5.3)

bt = ct
∑
St+1

P (xt+1|St+1) · bt+1 · P (St+1|St) (5.4)

Using the scaled forward and backward message does not have an effect on the EM-algorithm

because the scaling factors cancels out from the nominator and denominator in Equation 4.36-

4.40 [26]. We must however still be able to calculate the log-likelihood of λ given the data X .

Recall from Equation 4.35 that the likelihood for λ given an audio file r is:

P (x
(r)
1:T |λ) =

∑
ST

P (x
(r)
1:T , ST |λ) =

∑
ST

α
(r)
T

where α(r)
T is the forward message to the last time step T for audio file r. Further recall from

Equation 4.42 that the log-likelihood of λ for the data X then is:

logP (X|λ) =

R∑
r=1

logP (x
(r)
1:T |λ) =

R∑
r=1

log(
∑
ST

α
(r)
T)

Let f (r)t be the scaled forward message to time step t for audio file r, and let c(r)t be the scaling

factor to time step t for audio file r. By using induction, it can be shown from Equation 5.2

that [26]:

f
(r)
t =

t∏
i=1

c
(r)
i α

(r)
t (5.5)

56

5.3. HIDDEN MARKOV MODEL

Because f (r)T is normalized, we have:

∑
ST

f
(r)
T = 1

m Using Equation 5.5∑
ST

T∏
t=1

c
(r)
t α

(r)
T = 1

m c
(r)
t is not dependend of ST

T∏
t=1

c
(r)
t

∑
ST

α
(r)
T = 1

m Using Equation 4.35
T∏
t=1

c
(r)
t P (x

(r)
1:T |λ) = 1

m

P (x
(r)
1:T |λ) =

1∏T
t=1 c

(r)
t

So P (x
(r)
1:T |λ) can be found from the scaling factors, and the log-likelihood of λ given all the

data X then becomes:

logP (X|λ) =
R∑
r=1

log
1∏T

t=1 c
(r)
t

= −
R∑
r=1

T∑
t=1

log c
(r)
t (5.6)

5.3.1.2 Using matrix operations

Let the integer noStates be denoted N , the vector start be denoted by π, and let the matrix

transition be denoted by A. For an observation at time t, xt, the emission P (xt|St) can be cal-

culated for each state using Equation 3.5 from Section 3.2.3. The result can then be represented

by a vector Et where entry n is the result of the mixture distribution of the GMM to state n i.e.

the result of P (xx|St = n). Equation 5.2 for forward message can then be written as [30]:

f1:t = ct · Et ·AT · f1:t−1 (5.7)

Russell and Norvig [30] suggest that Et can be represented as a diagonal matrix, and the cal-

culations can then be performed by using matrix-vector operations. However, this will result

in several unnecessary calculations, and in order to avoid this component wise multiplication

with Et can be used instead. This is done by calculating AT · f1:t−1 first with matrix-vector

57

5.3. HIDDEN MARKOV MODEL

multiplication. The result is a vector which must be multiplied component wise with Et and

scaled. The implementation of this can be seen in Listing 5.2. In the listing lastForward is the

scaled forward from last iteration, and sensor is the result of P (xx|St = n). Scaling is done

after the call to this method.

1 vector <double > HMM:: forward(const vector <double > &lastForward , const vector <double > &

sensor) const

2 {

3 vector <double > step1(noStates);

4 vector <double > step2(noStates);

5 step1 = prod(trans(* transition),lastForward);

6 step2 = componentwiseProd(sensor , step1);

7 double sum = 0;

8 for(unsigned i=0; i<this ->noStates; ++i)

9 {

10 sum += step2[i];

11 }

12 if(! boost::math:: isnormal(sum))

13 {

14 throw OutlierException(sum);

15 }

16 return step2;

17 }

Listing 5.2: Forward message.

Equation 5.4 for backward message can be written as [30]:

bt:T = A · Et+1 · bt+1:T (5.8)

Similar to the forward message, it is suggested by Russell and Norvig [30] to represent Et as

a diagonal matrix. But like with the forward message, we used component wise multiplica-

tion of vectors instead. The implementation of this can be seen in Listing 5.3. In the listing

lastBackward is the scaled backward message from last iteration, and sensor is the result of

P (xx|St = n). Scaling is done after the call to this method.

58

5.4. CLASSIFICATION

1 vector <double > HMM:: backward(const vector <double > &lastBackward , const vector <double >

&sensor)

2 {

3 vector <double > step1(noStates);

4 vector <double > step2(noStates);

5 step1 = componentwiseProd(sensor , lastBackward);

6 step2 = prod(* transition ,step1);

7 double sum = 0;

8 for(unsigned i=0; i<this ->noStates; ++i)

9 {

10 sum += step2[i];

11 }

12 if(! boost::math:: isnormal(sum))

13 {

14 throw OutlierException(sum);

15 }

16 return step2;

17 }

Listing 5.3: Backward message.

When calculating ft, the value of the last forward step ft−1 is needed, so all the forward steps

for t = 1, . . . , T are calculated first in learning and cached such that it is not necessary to

calculated f1:t−1 every time ft is used. The same is done for backward message because bt+1 is

required in order to calculate bt.

5.3.2 Learning

Learning was implemented directly from the explanation given in Section 4.3. The values of

forward messages, backward messages, smoothing variables, and P (St, Ct|x1:T) are cached

because these values are used several times. The flow chart of learning can be seen in Figure 5.4.

As with GMM several different initial values of the parameters λ are used in order to increase

the probability of finding a local maximum close to the global maximum. The initial values of

the start and transition distribution are the same for each initial value of λ, but the parameters

of the GMMs are changed. This is done by randomly distribute the feature vectors to the states

differently for each start point and use k-means to cluster the feature vectors.

5.4 Classification

When a positive and a negative model have been learned, they can be used to classify new

audio files, as it is shown in our classification system in Figure 1.1. Let λpositive be the pa-

rameters of the positive model, let λnegative be the parameters for the negative model, and let

x1:T be the feature vectors of an audio file that must be classified. We then find P (x1:T |λpositive)
P (x1:T |λnegative)

which is compared with a threshold. However as explained earlier, we have implemented

59

5.4. CLASSIFICATION

Figure 5.4: Flow chart for learning a HMM.

the log-likelihood instead of the likelihood, so P (x1:T |λpositive)
P (x1:T |λnegative) must be rewritten such that the

log-likelihood can be used for calculating the ratio:

P (x1:T |λpositive)
P (x1:T |λnegative)

= e
log

(
P (x1:T |λpositive)
P (x1:T |λnegative)

)

= elog(P (x1:T |λpositive))−log(P (x1:T |λpositive))

Here log(P (x1:T |λpositive)) is the log-likelihood of the positive model, and log(P (x1:T |λnegative))
is the log-likelihood for the negative model. The implementation of classification therefore

finds log(P (x1:T |λpositive)) and log(P (x1:T |λnegative)), and returns

elog(P (x1:T |λpositive))−log(P (x1:T |λnegative)).

60

6
Experiments

The classification approach presented in this thesis was tested by classifying the audio files in

a data set that was reserved for testing, and from this compute various metrics for the perfor-

mance of the classification, i.e. how well the classifier detects the files containing up-calls, and

rejects the files not containing up-calls. The metrics used for measuring the performance of the

classifier are introduced in Section 6.1.

As shown in Figure 1.1 two models are used when classifying an audio file with feature data x:

A model learned from the positive labeled files, and another model learned from the negative

labeled files. Let P (x|λpositive) be the likelihood of the model for the positive model, and let

P (x|λnegative) be the likelihood for the negative model. Then the result of the classification of

the audio file is the ratio P (x|λpositive)
P (x|λnegative) . Thus the result is high, if the likelihood of the model for

the positive class is high, and the result is low, if the likelihood of the model for the negative

class is high. A threshold must be chosen in order to decide the class of the audio file from the

found ratio. If the ratio of the classification of an audio file is higher than the threshold, the

audio file is classified as being positive, otherwise it is classified as being negative.

We have investigated the performance of three different types of models when used in the

classification procedure shown in Figure 1.1. The first model type considered each audio file

as a single frame, when extracting the features, and modeled these using a single GMM. For the

second model type, each audio signal was divided up into overlapping frames and the features

61

6.1. PERFORMANCE METRICS

were then extracted from each of them. The features for each frame were then modeled using

a GMM for each frame. These GMMs had the same number of components but were learned

individually from different frames. For the third model type an HMM was used in order to

capture the development in the process that we assumed generated the audio signal. For the

HMM, the audio files were also divided into overlapping frames. Models of different types can

be combined in the classification process, e.g. having an HMM for the positive class and a GMM

for the negative class. However we limited ourselves to not combining the models of different

type in order to keep the testing less complicated.

In order to find the two models for the classification procedure there are many parameters

which must be determined. For the feature extraction process, see Section 2.1, the frame length

and the size of the overlap of the frames must be decided in order to compute the feature

data. Furthermore a particular model contains various parameters such as mean vectors, co-

variance matrices, and probability tables. These parameters are learned from data using the

EM-algorithm, and thus we refer to this process as parameter learning. Finally the number of

components and states must be decided, these parameters denote the cardinality of variables

in the model, and can not be learned using the EM-algorithm since they determine the number

of model parameters. These parameters are decided by learning several different models where

the number of components and states are varied, and then the learned models are validated.

Thus we have three groups of parameters. The first group is parameters for the feature extrac-

tion, the second group is the model parameters, which we learn with the EM- algorithm, and

the third group is the parameters that describe the cardinality of the model parameters which

we determined by validation.

We therefore require three data sets. A data set for parameter learning, we refer to this as the

training set, a data set for selecting among the learned models, we refer to this as the validation

set, and a data set for testing the final model by measuring it performance, we refer to this as

the test set.

Our test setup, and how the parameter space was explored for validation are described in

Section 6.2. The classification procedure presented in this thesis was tested in two stages. The

purpose of the first stage was to demonstrate how well our method performs in relation to

the Kaggle competition. This is presented in Section 6.3. The purpose of the second stage was

to present a further analysis of the results, and investigate what an HMM captures from the

training data. This is presented in Section 6.4.

6.1 Performance metrics

The performance metrics, which we used, can be computed from the entries of the so called

confusion matrix which is illustrated in Figure 6.1 [32]. The binary result of the classifier is re-

62

6.1. PERFORMANCE METRICS

ferred to as positive if it was predicted to contain a right whale up-call and negative otherwise.

Whether the classification was correct or incorrect is refereed to as true or false, respectively.

The entries of the confusion matrix are:

• True Positive (TP): Number of audio files which were classified to be positive and con-

tained an up-call

• True Negative (TN): Number of audio files which were classified to be negative and did

not contain an up-call

• False Positive (FP): Number of audio files which were classified to be positive but did not

contain an up-call

• False Negative (FN): Number of audio files which were classified to be negative but did

contain an up-call

Predicted positive Predicted negative

Actual positive TP FN

Actual negative FP TN

Figure 6.1: Confusion Matrix.

6.1.1 ROC curves

This section is rewritten from a section in [17] which describes ROC curves. The evaluation

metric used for selecting the number of components and states are the Area Under Curve of

the Receiver Operating Characteristic (ROC) curves. AROC curve illustrates the relation between

the two rates [32]:

• True Positive Rate (TPR): The fraction of positive labeled audio files that was classified

correctly

• False Positive Rate (FPR): The fraction of negative labeled audio files that was classified

as being positive

Then TPR and FPR can be calculated using Equation 6.1 and Equation 6.2, respectively.

TPR =
TP

TP + FN
(6.1)

FPR =
FP

FP + TN
(6.2)

The classification procedure, shown in Figure 1.1, must be performed for each audio file in the

test data set. The computed class for each audio file must then be compared to the its actual

63

6.1. PERFORMANCE METRICS

label in order to determine in which of the four entries of the confusion matrix the audio file

belong. When every file in the test data set has been assigned to an entry of the confusion

matrix, the TPR and FPR can be computed. For a given threshold the TPR and the FPR constitute

a point on the ROC curve. By varying the classification threshold over an appropriate interval

several points on the ROC curve are obtained. The ROC curve can be plotted in a coordinate

system where the horizontal axis represents the FPR and the vertical axis represents the TPR [32].

Each point on the curve represents the performance of the classifier for a particular threshold. If

TPR = FPR it would correspond to random guessing, and if TPR > FPR the prediction is better than

random guessing. The larger TPR is, compared to FPR, the better. A good classification should

be close to the point (0, 1). To compare classifiers it is convenient to reduce the ROC curve to a

single scalar representing the average performance of the classifier. A common method is to use

the Area Under Curve (AUC) of the ROC curve [32]. If the classifier is perfect the AUC is 1, while

the AUC for random guessing is 0.5. A classifier that is better than another classifier would have

a larger AUC. The ROC curves and AUC used in the work of this thesis was computed using the

Matlab function perfcurve [8].

6.1.2 Precision, recall and accuracy

The entries of the confusion matrix can be used for calculate other performance metrics. In this

thesis we used accuracy, precision, and recall which can found by Equation 6.3, Equation 6.4, and

Equation 6.5, respectively [16, 32].

Accuracy =
TP + TN

TP + FP + FN + TN
(6.3)

Precision =
TP

TP + FP
(6.4)

Recall =
TP

TP + FN
(6.5)

The accuracy is the percentage of instances that the classifier predicted correctly, and thus it

does not make any distinctions between the positive and negative class. For the problem ad-

dressed by this thesis, the audio files in the positive class are more significant than the negative,

since it is the positive that we are trying to recognize. When this is the case precision and re-

call are often used [32]. They are computed with respect to one of the class of interest. For the

problem addressed in this thesis we are interested in the audio files containing a right whale up

call. Precision is the fraction of audio files that actually contain an up-call in the group of audio

files that the classifier predicted to be positive. Precision is high when the classifier makes few

false positive errors. Recall is the fraction of audio files containing an up-call that the classifier

64

6.2. TEST SETUP

recognized correctly. Recall is high when the classifier made few false negative errors. We can

increase precision of our classifier by increasing the threshold in Figure 1.1. This will decrease

the number of files that are predicted positive. However this will reduce the recall since it also

increases the risk of predicting a file to not contain an up-call although it actually did. Precision

and recall expresses the tradeoff between the error of FP and FN and are sometimes visualized

as a prediction-recall curve. For making this curve, the precision and recall are computed for

various thresholds and plotted into a graph in a coordinate system. All the precision-recall

curves used for this thesis were computed using the Matlab function perfcurve [8].

Precision and recall can be combined into a single scalar, called the Fβ-measure, which is cal-

culated by Equation 6.6 where the value of β express the tread-off between prediction and

recall [32]. Since we do not know the utility function for the right whale detection problem,

we used the F1-measure which is the harmonic mean between the recall and precision. The

F1-measure is shown in Equation 6.7.

Fβ =
(1 + β2)recall · precision
recall + β2precision

(6.6)

F1 =
(1 + 12)recall · precision
recall + 12precision

=
2 · recall · precision
recall + precision

(6.7)

6.2 Test setup

We compare the models types by computing the AUC of the ROC curves for the learned models

on the test set. This is done in Section 6.3. In order to perform further analysis of the models we

also computed the accuracy, precision and recall in Section 6.4. In this section it also presented

that we found the most likely path through the state space for the Markov process for three

positive audio files using a learned positive HMM, and compared it with spectrogram plots for

the audio files in order to investigate if we could identify states that are part of the up-call and

states that are noise. Further we learned additional linear models to investigate whether it is

possible to detect the position of an up-call in an audio file from the most likely state sequence

for the audio file.

As mentioned in the introduction of this chapter the EM-algorithm can be used to learn the

model parameters such as the probability tables, but not the number of states and components

using the EM-algorithm. Instead we learned models with different number of states and com-

ponents for both the positive and negative model. Then we used the validation set to select

the best model pair containing both a positive and a negative model. This was done by pairing

each positive model with each negative model and then use each of these pairs in the classifica-

tion process on the validation set. We then selected the models of the pair that yield the highest

65

6.3. KAGGLE RESULTS

AUC of the ROC curves. In this way the number of states and components were selected for both

the positive and the negative model. The model pairs can be any combination of a positive and

negative model. However, in order to simplify our experiments chapter, we limited ourselves

to only pair models of the same type.

The number of components and states for the models that we learned from the training set,

and validated on our validation set are presented in Table 6.1. In order to simplify the test,

we varied the number of components and states over the same values for the positive models

as we did for the negative models. As shown in the first and second row of Table 6.1, for the

models using either a single GMM or several GMMs, we varied the number of components from

1 up to 10. We did not exceed 10 components because we wanted to restrict the complexity of

the used GMMs in order to learn the model parameters in a reasonable time. As shown in the

third row of Table 6.1, for the models using an HMM we varied the number of states from 5 to

15 in steps of 5, and the number of components from 1 to 4. Here we restricted the number

of components to be 4 with the presumption that the space of the HMM compensate for the

reduced number of components. We only validated HMMs with 5, 10, and 15 states in order

limit the parameter space that was explored. Ideally there should not be any gap between the

parameters for the models that were investigated, however it was necessary here because of

time constraints and limited computer power. As mentioned in Section 2.2, we used a frame

length of both 4000 samples and 512 samples. The frame length of 4000 corresponds to two

seconds, i.e. the duration of each audio file, so the audio file was therefore represented as one

frame. This was the frame length used for the model type which used a singe GMM. The frame

length of 512 samples was used for the model type which used several GMMs and the model

type which used a HMM. The overlap of the frames was set to 2
3 . This gave 22 frames, so

T = 22.

As termination criterion we used change in absolute value of log-likelihood and change in rela-

tive value of log-likelihood. For the experiments in Section 6.3 we terminated the EM algorithm

when the absolute value went below a threshold of 10−6, while in Section 6.4 we terminated

the EM-algorithm when the relative value went below a threshold of 10−5. The latter leads to

earlier termination, and we chose to use this rather than the absolute value for all experiments

subsequent to the experiments in order to learn the required models in the time window of this

project.

6.3 Kaggle results

Kaggle provided two disjoint data sets; a public training set containing 293541 labeled audio

files, and a private test set containing 54503 audio files where the label was not published and

1The actually size of the public training set was 30000, but, as explained in Section 2.3, 646 outliers and duplicates
was removed.

66

6.3. KAGGLE RESULTS

GMM No. of components
1, 2, 3, 4, 5, 6, 7, 8, 9 and 10

GMMs No. of components
1, 2, 3, 4, 5, 6, 7, 8, 9 and 10

HMM No. of states No. of components
5 1

5 2

5 3

5 4

10 1

10 2

10 3

10 4

15 1

15 2

15 3

15 4

Table 6.1: The different number of components and states used for the learned models.

therefore unknown for the Kaggle competition participants. The public data set was split up

such that 2/3 of the files for each label were used for learning the model parameters λ with

the EM algorithm. The remaining audio files in the public data set were used for selecting

the number of components and states. The private Kaggle data set was used for testing the

performance of our models when used for classification. Figure 6.2 illustrates the partitioning

of the available audio files. The models for the Kaggle results were trained with five initial

points for the EM algorithm, and the absolute difference of log-likelihood with a threshold of

10−6 was used as termination criterion.

Kaggle's public data set

29 354 files

2/3 1/3

Train set Validation

set

Kaggle's private data set

54 503 files

Test set

Figure 6.2: Partitioning of the available data.

67

6.3. KAGGLE RESULTS

6.3.1 Model selection

The model parameters such as weights, mean vectors, and covariance matrices for a GMM, or

start and transition conditional probabilities for an HMM were learned using the EM algorithm.

However, in order to determine the number of components and number of states, several mod-

els were learned and compared using the validation set. This data set contained 9784 of the

files from the public data set. The values that the number of components and states were var-

ied over can be seen in Table 6.1. For each model type each positive model was paired with

each negative model in the classifier for classifying the audio files in the validation set, and we

selected the pair which gave the highest AUC of the ROC curve.

The five best validation results for a classifier using a single GMM for each class are shown in

Table 6.2. The best result was for a positive model with 5 components and a negative model

with 10 components. These were then used for testing in Section 6.3.2.

The five best validation results for a classifier using 22 GMMs for each class are shown in Ta-

ble 6.3. The best result was for a positive model with 10 components and a negative model

with 10 components. These were then used for testing in Section 6.3.2.

The five best validation results for a classifier using an HMM for each class are shown in Ta-

ble 6.4. The best result was for a positive model with 10 states and 2 components and a negative

model with 10 states and 4 components. These were then used for testing in Section 6.3.2.

Positive model Negative model
no. components no. components AUC of ROC curve

5 10 0.92371
6 10 0.92269
7 10 0.92264
5 9 0.92244
5 7 0.92186

Table 6.2: The 5 best results for validation when modeling the signal as a single frame using a GMM.

Positive model Negative model
no. components no. components AUC of ROC curve

10 10 0.91675
10 9 0.91643
8 10 0.9164
9 10 0.91614
8 9 0.91612

Table 6.3: The 5 best results for validation when modeling the signal as 22 frames using a GMM for each
frame.

68

6.4. FURTHER ANALYSIS

Positive model Negative model
no. states no. components no. states no. components AUC of ROC curve

10 2 10 4 0.89621
15 3 15 3 0.89607
15 3 15 4 0.8959
15 2 15 3 0.89565
15 4 15 3 0.89494

Table 6.4: The 5 best results for validation when modeling the signal as 22 frames using an HMM.

6.3.2 Test

Using the pair of models which gave the best results in Table 6.2, Table 6.3, and Table 6.4,

respectively, P (x|λpositive)
P (x|λnegative) was calculated for the feature data x for each of the 54503 audio files

in the private data set from Kaggle. The results were load up to the Kaggle web page, and AUC

of the ROC curve was returned. The results are listed in Table 6.5.

Model type Positive model Negative model AUC of ROC curve

GMM 5 components 10 components 0.92106

GMMs 10 components 10 components 0.91260

HMM 10 states, 2 components 10 states 4 components 0.88902

Table 6.5: Test results for the Kaggle setup tests.

The AUC for the classifier using HMMs is smaller than for the two classifiers using respectively

one and several GMMs. In fact the simplest approach using only a single GMM performs best.

This do, indeed, not support our expectations; by using an HMM the model should capture

the development in the process that generated the signals in the audio files and, thus, perform

better when used for classifying the audio files in the test set. If we look at the last column

in Table 6.2, Table 6.3, and Table 6.4, the difference in AUC is in the third decimal point. The

AUC therefore seems robust for change in the number of components and states. In Section 6.4

a closer analysis of the models, and an investigation of what the classifier using HMMs have

problem capturing are presented.

6.4 Further analysis

In this section we make a further analysis of the models, in order to investigate what they

have problems capturing. In order to analyze the models we looked at additional metrics for

measuring the models performance. Further we investigated whether a group of states of the

Markov process corresponds to an up-call.

69

6.4. FURTHER ANALYSIS

6.4.1 Our setup

In Section 6.3 we only looked at the AUC of the ROC curves. In this section it is presented how

we analyzed the classifiers more thoroughly by looking at accuracy, precision, and recall. Fur-

ther we drew the ROC curve, precision-recall curve, and computed the confusion matrices for a

single threshold value. This required that we had access to the actual labels of each audio file

in the data set, and we could therefore not use the private Kaggle test data set. The models in

this section were therefore learned independently from the models in Section 6.3. The avail-

able data were partitioned into new disjoint data sets, but here we only used the audio files

from the public Kaggle data set. 1/3 of the files in the public data set were reserved for tests,

4/9 were used for learning the weights, mean vectors, covariance matrices, and the start and

transition probability distribution tables using the EM algorithm, and the remaining 2/9 were

used for selecting the number of components and states. The partition of the data can be seen

in Figure 6.3.

Kaggle's public data set

29 354 files

4/9 1/3

Train set Test set
Validation

set

2/9

Figure 6.3: Partitioning the data for the further analysis.

6.4.2 Model selection

As in Section 6.3.1, we selected the cardinality of the hidden variables by learning the models

presented in Table 6.1. However, this time the training set presented in Section 6.4.1 was used.

Again, for each model type each positive model was paired with each negative model in the

classifier for classifying the audio files in the validation set, and we selected the pair which

gave the highest AUC of the ROC curve. The model was trained with five randomly selected

initial points for the EM algorithm, and the relative distance of log-likelihood with a threshold

of 10−4 was used as termination criterion. We varied the number of components and states

over the same values as in Section 6.3.1, which can be seen in Table 6.1

The five best validation results for a classifier using a single GMM for each class is shown in

Table 6.6. The best result was for a positive model with 3 components and a negative model

with 5 components. These were then used for testing in Section 6.4.3.

The five best model selection results for a classifier using several GMMs for each class is shown

70

6.4. FURTHER ANALYSIS

in Table 6.7. The best result was for a positive model with 10 components and a negative model

with 9 components. These were then used for testing in Section 6.4.3.

The five best model selection results for a classifier using a HMM for each class is shown in Ta-

ble 6.8. The best result was for a positive model with 15 states and 2 components, and a negative

model with 15 states and 3 components. These were then used for testing in Section 6.4.3.

Positive model Negative model
no. components no. components AUC of ROC curve

3 5 0.9176
4 8 0.91738
4 5 0.91727
7 10 0.9172
3 6 0.91639

Table 6.6: The 5 best results for validation when modeling the signal as a single frame using GMM.

Positive model Negative model
no. components no. components AUC of ROC curve

10 9 0.90315
7 10 0.90311
6 10 0.90288
7 9 0.90287
10 10 0.90286

Table 6.7: The 5 best results for validation when modeling the signal as 22 frames using a GMM for each
frame.

Positive model Negative model
no. states no. components no states no. components AUC of ROC curve

15 2 15 3 0.88954
15 4 15 3 0.88848
10 3 15 3 0.88671
10 4 15 3 0.8867
15 1 15 3 0.88662

Table 6.8: The 5 best results for validation when modeling the signal as 22 frames using HMM.

6.4.3 Tests

Using the files from the data set that was reserved for testing, see Figure 6.3, the performance

measures can be computed on the best model pairs in Table 6.6, Table 6.7 and Table 6.8.

71

6.4. FURTHER ANALYSIS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ROC curves

False positive rate

T
r
u
e

p
o
s
i
t
i
v
e

r
a
t
e

GMM

GMMs

HMM

random guess

Figure 6.4: ROC curves of the final models.

6.4.3.1 Receiver operating characteristic curves

Figure 6.4 shows the ROC curve for the classifier using, respectively, a GMM, several GMMs, and

an HMM for representing the features of an audio file. The ROC curves also indicate that the

approaches using either a single GMM or several GMMs perform better than the approach using

a HMM, since the curve for the HMM based classifier is dominated by the classifiers using a

single and several GMMs respectively. Actually, as their AUC, the ROC curves indicate that the

simplest approach with a single GMM for each class of audio files performs best.

6.4.3.2 Precision-recall curves

Figure 6.5 shows the precision-recall curve for the classifier using respectively a GMM, several

GMMs, and an HMM for representing the features of an audio file. The precision-recall curves

unfortunately also shows that the approaches using GMMs overall performs better than the

approach using HMMs, since their curves dominate the curve for the HMM based classifier.

6.4.3.3 Accuracy and F1-value

For each threshold there is an accuracy and a F1-measure. In Table 6.9 the largest accuracy

and F1-measure of all thresholds are shown. Furthermore AUC of the ROC curves are shown

for the classifier using, respectively, a GMM, several GMMs, and a HMM for representing the

features of an audio file. Both accuracy and the F1-value indicate that GMM is better than HMM

at classifying the audio files.

This contradicts with results to those found by Brown and Smaragdis [11] who investigate the

use of GMMs and HMMs to classify killer whale calls into seven classes and report accuracy

as their result. The best accuracy found by Brown and Smaragdis was over 95%, which was

obtained for the HMMs with 13 to 17 states, one GMM per state, and 24 to 30 MFCCs. Their best

72

6.4. FURTHER ANALYSIS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Precision−recall curves

Recall

P
r
e
d
i
c
t
i
o
n

GMM

GMMs

HMM

Figure 6.5: Precision-recall for final Models.

result using a GMM was 92%, which was obtained by using GMMs with two components and

30 MFCCs. It is not easy to compare our result to theirs. Besides working on a different domain

and problem, they do not report the width of the filters in the their filter bank or the number of

filters in the bank, thus do we not know the frequency area that their features cover. However,

for 12 MFCCs, which is the number coefficients we used, they obtained an accuracy from 78% to

82% for GMMs, and an accuracy from 85% to 89% using HMMs. Generally their HMMs performed

better than their GMMs.

Model type Best Accuracy best F1-measure AUC

GMM 0.86427 0.72399 0.91931
GMMs 0.86202 0.71615 0.91193
HMM 0.84076 0.69606 0.89514

Table 6.9: Performance metrics for final models.

6.4.3.4 Confusion matrix

In Figure 6.6, Figure 6.7, and Figure 6.8 the confusion matrix for the classifier that uses a GMM,

several GMMs, and an HMM are shown. The threshold used is the threshold for the best result of

the ROC curves in Figure 6.4. The HMM has lowest numbers of TP and TN predictions, and high-

est numbers of FP and FN predictions. The HMM has especially a high number of FP predictions.

This indicates that it recognizes noisy audio files as containing an up-call.

73

6.4. FURTHER ANALYSIS

Predicted positive Predicted negative

Actual positive 2030 309

Actual negative 1357 6088

Figure 6.6: Confusion Matrix for GMM threshold found from ROC curve.

Predicted positive Predicted negative

Actual positive 1990 349

Actual negative 1342 6103

Figure 6.7: Confusion Matrix for GMMs threshold found from ROC curve.

6.4.4 Model investigation

In order to investigate whether there are a connection between the state of the Markov process

and the frame in the audio file containing an up-call we computed the most likely path through

the state space of a positive HMM, and compared this to a spectrogram of the audio file. For

a particular HMM we can use the Viterbi algorithm [26] to compute arg maxs1:T P (s1:T |x1:T)

which is a sequence of states s1:T that is most likely to have generated a particular observation

sequence x1:T . This is sometimes referred to as the Viterbi path or the most likely explanation.

The Viterbi algorithm is presented in Appendix C. By computing the Viterbi path for an audio

file in our test set we can analyze the meaning of the states and try identifying if there are some

states which correspond to an up-call. We have chosen to do this for three audio files. We did

this for the HMM with the highest AUC score seen in Table 6.8 and for four linear left-right HMMs,

each having 3 states but different number of components.

6.4.4.1 Hidden Markov Model from Section 6.4.3

We use the positive HMM with the largest AUC in Table 6.8 i.e. the positive HMM with 15 states

and 2 components. The result is shown in Figure 6.9 where the spectrogram of the three audio

files and the Viterbi path for each audio file is shown. In order to understand the figure one

must recall that the frames overlap with 2
3 which means that they are displaced with 1

3 of a

frame from the right. A frame starts at a certain line, and ends when the next line of the same

type appears where a new frames also starts. The Viterbi path is written such that the state

of a frame is written right after line which starts the frame, i.e. under the first 1
3 part of the

Predicted positive Predicted negative

Actual positive 1969 370

Actual negative 1413 6032

Figure 6.8: Confusion Matrix for HMM threshold found from ROC curve.

74

6.4. FURTHER ANALYSIS

frame.

No ordering was assumed prior to executing the EM algorithm for the models in Table 6.8, and

thus the state index do not imply any order. The result indicates that state 4, 5, 8, 9 and 10

are used for modeling noise, while state 1, 6, 7, 9, 10, 12 and 15 are used for modeling up-calls.

There are some similarities for the up-calls in the first and second audio file while the up-call

in the third audio file seems to differ. The Viterbi path for the up-call in the first, second, and

third audio file visits the states 1 − 7 − 10, 1 − 15 − 7 − 10, and 9 − 6 − 12 − 10, respectively.

When not looking at how many frames the model stay in each state the only different between

the two paths in the first and second audio file are that the up-call in the second audio file goes

through state 15 which the up-call in the first audio file does not.

The state 9 and 10 are used both for modeling noise and up-calls which is unfortunate. State

10 seems to represent the time in the end and after the up-call. These results however indicates

that the HMM detects up-call in some degree.

6.4.4.2 Linear left-right models

That the GMM classifier performs better than a classifier using HMMs do, indeed, not correspond

with our expectations. We assumed that an HMM would capture the development in the signals

and model this as a noise part, followed by the up-call, and then followed by a noise part. The

learned HMM in Section 6.4.3 was, however, ergodic which means that all states can be reached

from every states [26]. A more directly approach could be to learn a simple linear left-right

model with only three states which should model the noise - up-call - noise development.

A linear left-right HMM is an HMM with transitions such that the model only can stay in the

same state or transit to a state with a number one higher than the current state number. The

initializing of the start and transition distribution before learning then is:

P (S1) =


1

0

0



P (St|St−1) =


1
2

1
2 0

0 1
2

1
2

0 0 1


The entries set to 0 will stay as 0 doing learning. In order to initialize the GMMs associated

to the states, the first a frames of an audio file are distributed to state 1, the next b frames are

distributed to state 2, and the last c states are distributed to state 3. For each audio file a, b and

c is drawn randomly such that a+ b+ c = 22. The GMMs are then initialized using k-means as

75

6.4. FURTHER ANALYSIS

Viterbi path: 8 8 8 8 1 7 7 7 7 7 10 10 10 4 4 4 4 4 4 4 4 4

Viterbi path: 5 5 5 5 1 1 1 1 15 15 7 7 10 8 8 8 8 8 8 8 8 8

Viterbi path: 9 9 9 9 9 9 9 6 6 6 12 12 12 12 12 10 10 10 10 10 10 10

Figure 6.9: Viterbi paths for the positive HMM from Table 6.8, and three different audio files containing
an up-call.

76

6.4. FURTHER ANALYSIS

explained in Section 4.2.2.

The point then is that state 1 takes care of the frames before the up-call, state 2 takes care of the

frames during the up-call, and state 3 takes care of the frames after the up-call. Such a model

would not capture the development of the up-call because there is only one state for the up-call

frames, and, thus, the up-call part must be captured using the GMM associated with the up-call

state.

Again we would like to see whether the model can capture the up-call by looking at the Viterbi

path. We learn four positive linear left-right HMMs with 3 states, and, respectably, 1, 2, 3 and

4 components. We then compute the Viterbi path for each HMM on the audio files shown in

Figure 6.9. The result is shown in Figure 6.10. The first line of states under the spectrograms

is the Viterbi path for the HMM with 1 component, the second line is the Viterbi path for the

HMM with two components, and so on. The HMM with 1 component is not able to capture the

up-call in any of the audio files. The Viterbi paths for the HMMs with 2, 3 and 4 components

gives almost the same result. For the first audio file, the Viterbi paths changes to state 2 when

the up-call starts and to state 3 when the up-call ends. For the second audio file, the Viterbi

paths changes to state 2 too late, i.e. after the up-call has started, but changes to state 3 at the

end of the up-call. However, the HMM with 4 components perhaps changes a bit too early to

state 3 it can, however, be hard to see. In the third audio file it looks like all three paths changes

too early to state 2, but changes to state 3 at the end of the up-call. It can, however, be the case

that the up-call starts this early, but the spectrogram does not capture it. It looks like the three

linear left-right HMMs with 2, 3 and 4 components are able to detect the position of the up-call

to a fair degree. Actually this could be use for removing the noisy part of the audio signal by

only considering the part where the HMM is in state 2.

77

6.4. FURTHER ANALYSIS

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

1

2

2

2

1

2

2

2

1

2

2

2

1

2

2

2

1

2

2

2

1

2

2

2

1

2

2

2

1

3

3

3

1

3

3

3

1

3

3

3

1

3

3

3

1

3

3

3

1

3

3

3

1

3

3

3

1

3

3

3

1

3

3

3

Viterbi path:

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

1

1

2

2

1

2

2

2

1

2

2

2

1

2

2

3

1

3

3

3

1

3

3

3

1

3

3

3

1

3

3

3

1

3

3

3

1

3

3

3

1

3

3

3

1

3

3

3

2

3

3

3

Viterbi path:

1

1

1

1

1

2

2

2

1

2

2

2

1

2

2

2

1

2

2

2

1

2

2

2

1

2

2

2

1

2

2

2

1

2

2

2

1

2

2

2

1

2

2

2

1

2

2

2

1

2

2

2

1

2

2

2

1

2

2

2

1

2

2

2

1

2

2

2

1

3

3

3

1

3

3

3

1

3

3

3

1

3

3

3

2

3

3

3

viterbi path:

Figure 6.10: Viterbi paths for the three linear left-right HMMs having one to four components and three
different audio files containing an up-call.

78

7
Conclusion

We have designed and implemented a classification system which, to some extend, can classify

an audio file as either containing an up-call from a North Atlantic right whale or not. An audio

file was represented by a feature vector for each frame. The entries of the the feature vectors

were the MFCCs for the particular frame. We experimented with using different model types in

the classification system to compare the performance of these for our application. The model

types used in the classification system was based on GMMs and HMMs. We tried two different

approaches using GMMs. In the first approach each audio file was considered as a single frame

and therefore represented with one feature vector. The feature vectors for the audio files were

then considered as being generated by a single GMM. In the second approach the audio files

were divided up into overlapping frames. The feature vector for each frame was then consid-

ered as being generated by a GMM such that we had a GMM for each frame. In addition to the

two approaches using GMMs, we also tried an approach using an HMM where there was associ-

ated a GMM to each state. Each model type was designed and implemented. The models were

learned from annotated audio files using the the EM-algorithm. We therefore investigated the

general theory and of the EM-algorithm, and how the two steps of the algorithm were derived

for GMMs and HMMs with a GMM for each state.

In order to compare the model types, we used ROC curves, precision-recall curves, and calcu-

lated the accuracy, F1-measure, and the AUC of the ROC curves. For all of these performance

metrics, the model type that represented the audio files as a single feature vector using a GMM

79

7.1. FUTURE WORK

gave the best results, the model type using several GMMs gave the second best results, and the

HMM gave the worst result. We had expected that the HMM would give the best result because

HMMs can capture the structure of an up-call. Brown and Smaragdis [11] found that HMMs

were better at classifying than GMMs when classifying calls made by killer whales into seven

classes. Further they obtained a higher accuracy than the accuracy we got. They, however,

also experimented with different numbers of MFCCs, so it might had shown an effect in our

results if we had had time for testing with different width of the filters and varied the num-

ber of MFCCs. It is, however, also worth noticing that their audio files had a sampling rate of

44100 samples/s compared to the sampling rate of 2000 samples/s which the audio files, we

classified, had.

In order to investigate the models further we constructed the confusion matrices for the thresh-

old which correspond to the point on the ROC curve closest to (0, 1). For all three model types

the classification system had a high number of false positive classification, but it was much

higher for the HMM than for the two GMMs approaches. Since we had expected that the HMM

would perform best we investigated this model type further by computing the Viterbi path for

three different audio files containing an up-call in order to see which states an positive HMM

was in before, during, and after an up-call. This was done for both an ergodic HMM and four

linear left-right HMMs. To a certain degree the states of the ergodic HMM seemed to correspond

either to the up-call part of an audio file or the noise part of the audio file. However, two states

were visited both for the frames during an up-call and for frames before and after the up-call.

The linear left-right HMMs were learned with three states and one to four components. The

HMM with one component was not able to detect the up-calls, but the HMMs which had two,

three and four components were able to detect the up-call to some degree.

7.1 Future work

Further analysis is required in order to find what the models have trouble capturing. The

accuracy in our results is relatively low. Especially is precision an issue since our classifiers

have a tendency to make many false positive errors. It is reasonable to believe that it is possible

to improve on our results. A way to approach this would be to find and visualize the audio

files in the false positive and false negative entries of the confusion matrix in order to identify

which type of audio files that are hard to classify. This could for example be audio files with a

noisy spectrogram and no up-call like structure but many different frequencies in each frame,

or an audio file with a call that is very similar to the right whale up-calls but were made by

other whale species.

We obtained better results for the classifiers using a GMM rather than an HMM for representing

each class of audio files. This is conflicting with our expectations and the results reported by

Brown and Smaragdis [11]. A way to investigate what the GMMs captures, that the HMMs do

80

7.1. FUTURE WORK

not, could be to learn HMMs with only one state, and use those with our classifier. Such models

would be very close to the models using a GMM because an HMM with one state, and a GMM for

each state would only have the parameters of the GMM to estimate. By increasing the number of

state it may be possible to analyze when the performance decreases. An approach with HMMs

with only one state would not be identical to the approach using a single GMM because the

latter represents the audio signal as a single frame. It could also be interesting to investigate

the performance of linear left-right HMMs with the same number of states as frames, and with

zero probability of transiting to the same state. Such a model would be close to the model using

several independent GMMs where the audio files are represented as several frames.

Several factors can be investigated in the future to improve the classification system. Future

work should include investigating the effect of using different features types. We restrained

from this in order to focus on the machine learning part of the problem. The feature extraction

process explained in Section 2.1 includes many parameters e.g. frame length and overlap of

the frames, the number of coefficients, and the size and shape of the filters in the filter bank. By

changing these it might lead to more appropriate features which carry information that could

help classify the audio files containing up-calls with higher accuracy. E.g. would smaller filters

and more coefficients give a better resolution of the frequency area for the up-calls, or shorter

frame lengths could help capturing the development in the audio file with higher granular-

ity.

Other types of features could be investigated e.g. the filters could be spaced linear, or the tem-

poral derivatives of coefficients could be used [26]. Alternatively the spectrum could be used

directly as features rather than the cepstrum. However, we did some experiments early in the

project process which indicated that spectrum would not perform better than the MFCC.

Preprocessing of the audio files could also be investigated. Noise seemed to have a very neg-

ative effect on the performance of the classifier. It could be interesting to investigate the effect

of applying different noise reducing filters such as spectral subtraction [33] to the audio files

in order to suppress the marine noise. This could possibly make the HMM able to describe the

up-call in a better way without being disturbed by intrusive noise.

An HMM could be used to detect that start and end frame of the up-call. The results from

Section 6.4.4 indicated that it is possible to learn HMMs that can be used to detect the start and

end of an up-call by looking at the Viterbi path. For example could the linear left-right HMMs

with two or more components in Section 6.4.4.2 be used to detect the relevant frames. When

the Viterbi path for the model transit to state 2 the relevant part of the audio signal begins, and

when it transit to state 3 the relevant part of the audio file ends. A way to improve this further

could be to make additional annotation of the audio files. The start and the end times for the

relevant part of the audio files that contain an up-call could be annotated, and then use this

81

7.1. FUTURE WORK

when initializing the parameters of the model. For the linear left-right HMMs with three states

this would mean that the GMM of state 1, 2, and 3 would be initialized by estimating from the

samples of the frames that are respectively before, under, and after the the up-call. A drawback

of this approach is of cause that it requires further annotation of the audio files which is time

consuming.

82

A
gaussian.h

1 /*

2 * gaussian.h

3 * Implementation of a Gaussian mixture model (GMM).

4 * Contains a Mulitvariate Gaussian Distribution class , a Component class , and a GMM

class.

5 *

6 * Created on: Feb 19, 2013

7 * Author: Morten Albeck Nielsen and Stine Back Larsen

8 */

9

10 #ifndef GAUSSIAN_H_

11 #define GAUSSIAN_H_

12

13 #include <assert.h>

14

15 #include <boost/numeric/ublas/vector.hpp >

16 #include <boost/numeric/ublas/matrix.hpp >

17 #include <boost/shared_ptr.hpp >

18 #include <boost/random/uniform_real_distribution.hpp >

19 #include <boost/random/mersenne_twister.hpp >

20 #include <boost/algorithm/string/split.hpp >

21 #include <boost/algorithm/string/classification.hpp >

22 #include <boost/lexical_cast.hpp >

23

24 #include <boost/math/special_functions/fpclassify.hpp >

25

26 #include <cmath >

27 #include <fstream >

83

28 #include <iostream >

29 #include <limits > // std:: numeric_limits

30 #include <exception >

31

32 #include " a r g l i s t . h "

33

34 using namespace boost :: numeric ::ublas;

35

36 // ---------------------Exception classes ---------------------

37 class LoglikelihoodUnderflowException: public std:: exception

38 {

39 double logLikelihood;

40 public:

41 LoglikelihoodUnderflowException(double logLikelihood):logLikelihood(

logLikelihood){};

42

43 virtual const char* what() const throw ()

44 {

45

46 std:: stringstream msg;

47 msg << " L o g l i k e l i h o o d underf low : l o g l i k e l i h o o d = " <<logLikelihood;

48

49 return msg.str().c_str();

50 }

51 };

52

53 class SingularCovarianceMatrixException: public std:: exception

54 {

55 double det;

56 public:

57 SingularCovarianceMatrixException(double det):det(det){};

58

59 virtual const char* what() const throw ()

60 {

61

62 std:: stringstream msg;

63 msg << " S i n g u l a r c o v a r i a n c e m a t r i x : d e t e r m i n a n t = " <<det;

64

65 return msg.str().c_str();

66 }

67 };

68

69 class InfLikelihoodException: public std:: exception

70 {

71 double likelihood;

72 public:

73 InfLikelihoodException(double likelihood):likelihood(likelihood){};

74

75 virtual const char* what() const throw ()

76 {

77

78 std:: stringstream msg;

79 msg << " l i k e l i h o o d i n f i n i t y : l i k e l i h o o d = " <<likelihood;

80

84

81 return msg.str().c_str();

82 }

83 };

84

85 class ZeroDataSizeException: public std:: exception

86 {

87 double size;

88 public:

89 ZeroDataSizeException(double size):size(size){};

90

91 virtual const char* what() const throw ()

92 {

93

94 std:: stringstream msg;

95 msg << " Data s i z e t o s m a l l : s i z e = " <<size;

96

97 return msg.str().c_str();

98 }

99 };

100

101 class OutlierException: public std:: exception

102 {

103 double sumEx;

104 public:

105 OutlierException(double sum):sumEx(sum){};

106

107 virtual const char* what() const throw ()

108 {

109

110 std:: stringstream msg;

111 msg << " o u t l i e r : " ;

112 msg << sumEx;

113 msg << " " ;

114

115 return msg.str().c_str();

116 }

117 };

118

119 // ---------------------Mulitvariate Gaussian Distribution ---------------------

120 class MultivariateGaussianDistribution {

121 private:

122 // Attributes:

123 unsigned dim;

124 boost :: shared_ptr <vector <double > > meanVector;

125 boost :: shared_ptr <matrix <double > > covarianceMatrix;

126

127 // Caches:

128 boost :: shared_ptr <matrix <double > > invCovarianceMatrix;

129 boost :: shared_ptr <double > detCovarianceMatrix;

130

131

132 public:

133 MultivariateGaussianDistribution(unsigned dim , const vector <double > &meanVector ,

const matrix <double > &covarianceMatrix);

85

134 MultivariateGaussianDistribution(const MultivariateGaussianDistribution ©);

135

136 virtual ~MultivariateGaussianDistribution ();

137

138 unsigned getDim () const {return dim;}

139 boost :: shared_ptr <vector <double > > getMeanVector () const {return meanVector ;}

140 boost :: shared_ptr <matrix <double > > getCovarianceMatrix () const {return

covarianceMatrix ;}

141 boost :: shared_ptr <double > getDetCovarianceMatrix ();

142

143 void setMeanVector(const vector <double > &v);

144 void setCovarianceMatrix(const matrix <double > &m);

145

146 void resetCovarianceMatrixCach ();

147

148 double probabilityDensityFunction(const vector <double > &x);

149 double probabilityDensityFunction(const vector <double > &x, const double &

exponent);

150 double calculateExponent(const vector <double > &x);

151

152

153 };

154

155 // ---------------------Component ---------------------

156 class Component

157 {

158 private:

159 double weight;

160 boost :: shared_ptr <MultivariateGaussianDistribution > mgd;

161

162 public:

163 Component(double weight , unsigned dim ,const vector <double > &meanVector , const

matrix <double > &covarianceMatrix);

164 Component(double weight , const MultivariateGaussianDistribution &mgd);

165 Component(const Component& copy);// copy constructor

166

167 double getWeight () const {

168 return weight;

169 }

170 boost :: shared_ptr <MultivariateGaussianDistribution >

getMultivariateGaussianDistribution () const {return mgd;}

171 unsigned getDim () const {return mgd ->getDim ();}

172 boost :: shared_ptr <vector <double > > getMeanVector () const {return mgd ->

getMeanVector ();}

173 boost :: shared_ptr <matrix <double > > getCovarianceMatrix () const {return mgd ->

getCovarianceMatrix ();}

174

175

176 void setWeight(double weight);

177

178 void setMultivariateGaussianDistribution(MultivariateGaussianDistribution mgd);

179 void setMeanVector(const vector <double > &v);

180 void setCovarianceMatrix(const matrix <double > &m);

181

86

182 std:: string printComponent(bool print=true) const;

183

184 virtual ~Component ();

185 };

186

187 // ---------------------Gaussian Mixture Model ---------------------

188 class GMM {

189 private:

190 unsigned dim;

191

192 static void setMinMaxVecFromData(vector <double > *min , vector <double > *max , const

std::vector <vector <double > > &data);

193

194

195

196 public:

197 std::vector <Component > components;

198 GMM(unsigned dim , const std::vector <Component > &components);

199

200 GMM(const GMM& copy); //(deep) copy constructor

201 virtual ~GMM();

202

203 unsigned getDim (){return dim;};

204 unsigned getNoComponents () const {return components.size();}

205

206 static vector <double > calculateSampleMean(const std::vector <vector <double > > &

observations);

207 static matrix <double > calculateSampleCovMatrix(const std::vector <vector <double >

> &observations , const vector <double > &mean);

208 static GMM *generateRandom(const unsigned noComponents , const std::vector <vector

<double > > &data , boost :: random :: mt19937 &rng);

209

210 double mixtureDistribution(const vector <double > &obs);

211

212 double calculateLogLikelihood(const vector <double > &obs);

213 double calculateLogLikelihood(const std::vector <vector <double > > &obsSeqs);

214

215

216 double learningLogLikelihood(const std::vector <vector <double > > &obsSeqs , double

epsilon , const std::vector <int > &fileNumbers);

217 void learning(const std::vector <vector <double > > observations , const std::vector

<int > &fileNumbers);

218

219 std:: string printGMM (bool print=true) const;

220 void saveGMM ();

221 static void saveGMMS(const std::vector <GMM > &gmms);

222

223 bool containSingularCovarianceMatrix(void);

224 };

225

226 #endif /* GAUSSIAN_H_ */

Listing A.1: Header file of implementation of Gaussian Mixture Model.

87

B
hmm.h

1 /*

2 * hmm.h

3 * Implementation of a Hidden Markov Model (HMM) with a Gaussian mixture model (GMM) for

each hidden state.

4 *

5 * Created on: Feb 11, 2013

6 * Author: Morten Albeck Nielsen and Stine Back Larsen

7 */

8

9 #ifndef HMM_H_

10 #define HMM_H_

11

12 #include <boost/numeric/ublas/vector.hpp >

13 #include <boost/numeric/ublas/matrix.hpp >

14 #include <boost/shared_ptr.hpp >

15 #include <boost/random/mersenne_twister.hpp >

16 #include <boost/random/uniform_int_distribution.hpp >

17 #include <boost/random/discrete_distribution.hpp >

18

19 #include <boost/math/special_functions/fpclassify.hpp >

20

21 #include <assert.h>

22 #include <limits >

23

24 #include <iostream >

25 #include <fstream >

26

27 #include <cmath >

88

28

29 #include <exception >

30 #include <string >

31 #include <sstream >

32

33 #include " u t i l i t i e s . h "

34 #include " g a u s s i a n . h "

35

36 using namespace boost :: numeric ::ublas;

37

38 class ComponentInfLikelihoodException: public std:: exception

39 {

40 unsigned state;

41 unsigned component;

42 public:

43 ComponentInfLikelihoodException(unsigned state , unsigned component):state(state)

, component(component){};

44

45 unsigned getState (){return state ;}

46 unsigned getComponent (){return component ;}

47

48 virtual const char* what() const throw ()

49 {

50

51 std:: stringstream msg;

52 msg << " For s t a t e " <<state << " component " <<component << " l i k e l i h o o d i s

i n f i n i t y " ;

53

54 return msg.str().c_str();

55 }

56 };

57

58 class HMM

59 {

60 private:

61 unsigned noStates;//a state is indicated by a number

62

63 boost :: shared_ptr <vector <double > > start;

64 boost :: shared_ptr <matrix <double > > transition;

65 boost :: shared_ptr <matrix <double > > logTransition;

66 boost :: shared_ptr <std::vector <GMM > > emission; //A GMM for each state

67

68

69

70 static std::vector <GMM > generateEmission(std::vector <std::vector <vector <double >

> > states , unsigned noComponents , boost:: random :: mt19937 &rng);

71

72 std::vector < std::vector < matrix <double > > > *calculateGamma(

73 std::vector <const std::vector <vector <double > > *> &obsSeqs ,

74 const std::vector <std::vector <vector <double > > > &smoothingsSeqs

75); //used for learning

76

77 void resetComponent(const std::vector <std::vector <vector <double > > > &obsSeqs ,

unsigned state , unsigned component , boost :: random :: mt19937& rng);

89

78

79 public:

80 HMM(const unsigned noStates ,const vector <double > &start ,const matrix <double > &

transition , const std::vector <GMM > &emission);

81 ~HMM(void);

82

83

84 unsigned getNoStates () const {return noStates ;}

85 boost :: shared_ptr <vector <double > > getStart () const {return start;}

86 boost :: shared_ptr <matrix <double > > getTransition () const {return transition ;}

87 boost :: shared_ptr <std::vector <GMM > > getEmission () const {return emission ;}

88

89 void setMembers(const unsigned noStates ,const vector <double > &start , const

matrix <double > &transition , const std::vector <GMM > &emission);

90 void setStart(unsigned state , double probability);

91 void setStart(const vector <double > &v);

92 void setTransition(unsigned startState , unsigned endState , double probability);

93 void setTransition(const matrix <double > &m);

94 void setEmission(const std::vector <GMM > &e);

95

96 static HMM *generateRandom(const unsigned noStates , const unsigned noComponents ,

const std::vector <std::vector <vector <double > > > &data , boost:: random ::

mt19937 &rng , bool leftRight=false);

97

98 vector <double > forward(const vector <double > &previousForward , const vector <

double > &sensor) const;

99 vector <double > backward(const vector <double > &previousBackward , const vector <

double > &sensor);

100 vector <double > maxProp(const vector <double > &previousMaxProp , vector <double >&

psi);

101

102 std::vector <vector <double > > filtering(const std::vector <vector <double > > &

obsSeq) const;

103 std::vector <vector <double > > filtering(const std::vector <vector <double > > &

obsSeq , std::vector <double > &scalingFactors) const;

104

105 std::vector <vector <double > > backwardInduction(const std::vector <vector <double >

> &obsSeq);

106 std::vector <vector <double > > backwardInduction(const std::vector <vector <double >

> &obsSeq , const std::vector <double > &scalingFactors);

107

108 vector <double > prediction(const std::vector <vector <double > > &obsSeq , unsigned

timestep) const;

109

110

111 std::vector <vector <double > > smoothing(const std::vector <vector <double > > &

obsSeq);

112 std::vector <vector <double > > smoothing(const std::vector <vector <double > > &

obsSeq , std::vector <vector <double > > &forwards , std::vector <vector <double > >

&backwards , std::vector <double > &scalingFactors);

113

114

115 std::vector <unsigned > mle(const std::vector <vector <double > > &obsSeq);

90

116 std::vector <unsigned > mle(const std::vector <vector <double > > &obsSeq , double &

logP);

117

118 static double calculateLogLikelihood(const std::vector <double > &scalingFactors);

119 static double calculateLogLikelihood(const std::vector <std::vector <double > > &

scalingFactorsSeqs);

120

121 double learningKMeans(const std::vector <std::vector <vector <double > > > &obsSeqs ,

const double epsilon , boost:: random :: mt19937 &rng , const std::vector <int > &

fileNumbers);

122 double learningLogLikelihood(const std::vector <std::vector <vector <double > > > &

obsSeqs , const double epsilon , const std::vector <int > &fileNumbers ,

boost :: random :: mt19937& rng);

123 bool learning(const std::vector <std::vector <vector <double > > > &obsSeqs , std::

vector <std::vector <double > > &scalingFactorsSeqs , const std::vector <int > &

fileNumbers);

124

125 vector <double > calculateEvidence(const vector <double > &obs) const;

126

127 std::vector <vector <double > > generateSequence(const unsigned &lenght , boost::

random :: mt19937 &rng);

128 double distance(const HMM &other , const unsigned &lenght , boost:: random :: mt19937

&rng); //not symmetric

129

130 std:: string printHMM(bool print=true);

131 void saveHMM(const std:: string prefix= " ");

132

133 bool containSingularCovarianceMatrix ();

134 };

135

136

137

138

139 #endif /* HMM_H_ */

Listing B.1: Header file of implementation of Hidden Markov Model.

91

C
Viterbi algorithm

The description given on the Viterbi algorithm in this appendix is based on the description

given by Rabiner [26]. Let s1:T be the sequence of state for an HMM with with highest probabil-

ity when observation x1:T . We would then like to determine s1:T . Let λ be the parameters of the

HMM, and let δt = maxS1:t−1 P (S1:t,x1:t|λ), i.e. δt is the highest probability for a path through

S1:t−1, observing x1:t and ending in state St. s1:T can then be found using Algorithm 2. Both

the path s1:T and the probability ∆ = maxn=1,...,N (δT (n)) can be of interest.

92

Algorithm 2: Viterbi algorithm [26]
Input: Observation sequence x1:T

// Initialization
1 δ1 = P (S1) · P (x1|St)
2 ψ1 = 0
// Recursion

3 for t = 2, . . . , T do
// P (xt|St = n) is given by Equation 3.5

4 δt(n) = maxn′=1,...,N (δt−1(n
′)P (St = n|St−1 = n′)) · P (xt|St = n) for n = 1, . . . N

ψt(n) = arg maxn′=1,...,N (δt−1(n
′)P (St = n|St−1 = n′)) · P (xt|St = n) for n = 1, . . . N

5 end
// Termination

6 ∆ = maxn=1,...,N (δT (n))
7 sT = arg maxn=1,...,N (δT (n))
// Path backtracking

8 for t = T − 1, . . . , 1 do
9 st = ψt+1(st−1)

10 end

93

Bibliography

[1] Cornell University’s Bioacoustic Research Program. URL http://www.birds.cornell.

edu/brp/. Retrieved April 29, 2013.

[2] Kaggle, . URL https://www.kaggle.com/. Retrieved April 22, 2013.

[3] The Marinexplore and Cornell University Whale Detection Challenge, . URL https://

www.kaggle.com/c/whale-detection-challenge/. Retrieved April 22, 2013.

[4] The Marinexplore and Cornell University Whale Detection Challenge Forum, . URL http:

//www.kaggle.com/c/whale-detection-challenge/forums/. Retrieved April 22, 2013.

[5] Right Whale Listening Network. URL http://www.listenforwhales.org/. Retrieved

April 29, 2013.

[6] Marinexplore. URL http://marinexplore.org/. Retrieved April 29, 2013.

[7] Voicebox: Speech Processing Toolbox for MatLab. URL http://www.ee.ic.ac.uk/hp/

staff/dmb/voicebox/voicebox.html. Retrieved April 22, 2013.

[8] Compute Receiver Operating Characteristic (ROC) curve or other performance curve

for classifier output. URL http://www.mathworks.se/help/stats/perfcurve.html. Re-

trieved May 23, 2013.

[9] Is a sample covariance matrix always symmetric and positive def-

inite? URL http://stats.stackexchange.com/questions/52976/

is-a-sample-covariance-matrix-always-symmetric-and-positive-definite. Re-

trieved April 30, 2013.

[10] Jeff A Bilmes et al. A gentle tutorial of the EM algorithm and its application to parame-

ter estimation for Gaussian Mixture and Hidden Markov Models. International Computer

Science Institute, 4(510):126, 1998.

[11] Judith C. Brown and Paris Smaragdis. Hidden markov and gaussian mixture models

for automatic call classification. Journal of the Acoustical Society of America, 125(6):EL221–

EL224, 2009.

94

http://www.birds.cornell.edu/brp/
http://www.birds.cornell.edu/brp/
https://www.kaggle.com/
https://www.kaggle.com/c/whale-detection-challenge/
https://www.kaggle.com/c/whale-detection-challenge/
http://www.kaggle.com/c/whale-detection-challenge/forums/
http://www.kaggle.com/c/whale-detection-challenge/forums/
http://www.listenforwhales.org/
http://marinexplore.org/
http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html
http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html
http://www.mathworks.se/help/stats/perfcurve.html
http://stats.stackexchange.com/questions/52976/is-a-sample-covariance-matrix-always-symmetric-and-positive-definite
http://stats.stackexchange.com/questions/52976/is-a-sample-covariance-matrix-always-symmetric-and-positive-definite

BIBLIOGRAPHY

[12] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction

to Algorithms. The MIT Press, Cambridge, MA, USA, 2nd edition, 2001.

[13] S Datta and C Sturtivant. Dolphin whistle classification for determining group identities.

Signal processing, 82(2):251–258, 2002.

[14] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from in-

complete data via the EM algorithm. Journal of the Royal Statistical Society. Series B (Method-

ological), pages 1–38, 1977.

[15] Richard O Duda, Peter E Hart, and David G Stork. Pattern classification. Wiley-interscience,

2nd edition, 2012.

[16] Xinjian Guo, Yilong Yin, Cailing Dong, Gongping Yang, and Guangtong Zhou. On the

class imbalance problem. In Natural Computation, 2008. ICNC’08. Fourth International Con-

ference on, volume 4, pages 192–201. IEEE, 2008.

[17] Anders Hesslager-Olesen, Stine Back Larsen, and Morten Albeck Nielsen. Predicting Unit

Production in StarCraft using Hidden Markov Models. Department of Computer Science,

Aalborg University, Autumn 2012.

[18] Finn V. Jensen and Thomas D. Nielsen. Bayesian Networks and Decision Graphs. Springer

Publishing Company, Incorporated, 2nd edition, 2007. ISBN 9780387682815.

[19] A. Klapuri and M. Davy. Signal Processing Methods for Music Transcription. Springer Sci-

ence+Business Media LLC, 2006. ISBN 9780387328454. URL http://www.google.dk/

books?id=AF30yR41GIAC.

[20] S. J. Leon. Linear Algebra With Applications. Maxwell Macmillan international editions.

Pearson, 2006. ISBN 0-13-200306-6.

[21] David McAllester. The Covariance Matrix. Course TTIC 103 (CMSC 35420): Statis-

tical Methods for Artificial Intelligence, at Toyota Technological Institute at Chicago,

Autumn 2007. URL http://ttic.uchicago.edu/~dmcallester/ttic101-07/lectures/

Gaussians/Gaussians.pdf. Retrieved April 14, 2013.

[22] David K Mellinger and Christopher W Clark. Recognizing transient low-frequency whale

sounds by spectrogram correlation. The Journal of the Acoustical Society of America, 107:3518,

2000.

[23] A.V. Oppenheim and R.W. Schafer. Discrete-Time Signal Processing. Prentice Hall signal

processing series. Pearson Education, Limited, 2009. ISBN 9780132067096. URL http:

//books.google.dk/books?id=5vajQAAACAAJ.

[24] F.J. Owens. Signal processing of speech. Macmillan new electronics series. McGraw-Hill

95

http://www.google.dk/books?id=AF30yR41GIAC
http://www.google.dk/books?id=AF30yR41GIAC
http://ttic.uchicago.edu/~dmcallester/ttic101-07/lectures/Gaussians/Gaussians.pdf
http://ttic.uchicago.edu/~dmcallester/ttic101-07/lectures/Gaussians/Gaussians.pdf
http://books.google.dk/books?id=5vajQAAACAAJ
http://books.google.dk/books?id=5vajQAAACAAJ

BIBLIOGRAPHY

Ryerson, Limited, 1993. ISBN 9780070479555. URL http://books.google.dk/books?id=

qpAeAQAAIAAJ.

[25] Lawrence Rabiner and Biing-Hwang Juang. Fundamentals of speech recognition. 1993.

[26] Lawrence R. Rabiner. A Tutorial on Hidden Markov Models and Selected Applications in

Speech Recognition. In Proceedings of the IEEE, pages 257–286, 1989.

[27] D. Reby, R. Andre-Obrecht, A. Galinier, J. Farinas, and B. Cargnelutti. Cepstral coefficients

and hidden markov models reveal idiosyncratic voice characteristics in red deer (cervus

elaphus) stags. Journal of the Acoustical Society of America, 120(6):4080–4089, 2006. URL

http://sro.sussex.ac.uk/756/.

[28] Douglas Reynolds. Gaussian mixture models. Encyclopedia of Biometric Recognition, pages

14–68, 2008.

[29] Marie A Roch, Melissa S Soldevilla, Jessica C Burtenshaw, E Elizabeth Hen-

derson, and John A Hildebrand. Gaussian mixture model classification of

odontocetes in the Southern california bight and the gulf of california. J

Acoust Soc Am, 121(3):1737–48, 2007. URL http://www.biomedsearch.com/nih/

Gaussian-mixture-model-classification-odontocetes/17407910.html.

[30] Stuart Jonathan Russell, Peter Norvig, John F Canny, Jitendra M Malik, and Douglas D

Edwards. Artificial Intelligence: A Modern Approach. Prentice hall Englewood Cliffs, 2nd

edition, 1995.

[31] Eric Spaulding, Matt Robbins, Thomas Calupca, Christopher W. Clark, Christopher Trem-

blay, Amanda Waack, Ann Warde, John Kemp, and Kris Newhall. An autonomous,

near-real-time buoy system for automatic detection of north atlantic right whale calls.

Proceedings of Meetings on Acoustics, 6(1), 2009. doi: 10.1121/1.3340128. URL http:

//link.aip.org/link/?PMA/6/010001/1.

[32] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to Data Mining, (First

Edition). Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2005. ISBN

0321321367.

[33] S.V. Vaseghi. Advanced Digital Signal Processing and Noise Reduction. Wiley, 2008. ISBN

9780470740163. URL http://books.google.ca/books?id=vVgLv0ed3cgC.

[34] BA Weisburn, SG Mitchell, CW Clark, and TW Parks. Isolating biological acoustic tran-

sient signals. In Acoustics, Speech, and Signal Processing, 1993. ICASSP-93., 1993 IEEE Inter-

national Conference on, volume 1, pages 269–272. IEEE, 1993.

[35] CF Wu. On the convergence properties of the em algorithm. The Annals of Statistics, 11(1):

95–103, 1983.

96

http://books.google.dk/books?id=qpAeAQAAIAAJ
http://books.google.dk/books?id=qpAeAQAAIAAJ
http://sro.sussex.ac.uk/756/
http://www.biomedsearch.com/nih/Gaussian-mixture-model-classification-odontocetes/17407910.html
http://www.biomedsearch.com/nih/Gaussian-mixture-model-classification-odontocetes/17407910.html
http://link.aip.org/link/?PMA/6/010001/1
http://link.aip.org/link/?PMA/6/010001/1
http://books.google.ca/books?id=vVgLv0ed3cgC

	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	Symbols
	1 Introduction
	1.1 Problem Statement
	1.2 Related Work
	1.3 Approach

	2 Data
	2.1 Feature Extraction
	2.1.1 Spectrograms
	2.1.2 Mel-Frequency Cepstral Coefficients

	2.2 Data analysis
	2.3 Data cleaning

	3 Models
	3.1 Gaussian Mixture Model
	3.1.1 Multivariate Gaussian Distribution
	3.1.2 Mixture of Gaussians
	3.1.3 Representing our feature data using Gaussian Mixture Models

	3.2 Hidden Markov Model
	3.2.1 Bayesian Network
	3.2.2 The structure of an Hidden Markov Model
	3.2.3 Representing our feature data using Hidden Markov Models

	4 Learning
	4.1 General introduction to learning
	4.1.1 Maximum likelihood Duda2012pattern
	4.1.2 The Expectation-Maximization algorithm

	4.2 Gaussian Mixture Model
	4.2.1 Estimation of parameters
	4.2.2 Initial values of the parameters
	4.2.3 Illustrative example of learning a Gaussian Mixture Model

	4.3 Hidden Markov Model
	4.3.1 Forward message
	4.3.2 Backward message
	4.3.3 Smoothing
	4.3.4 Estimation of parameters
	4.3.5 Multiple audio files
	4.3.6 Initial values of the parameters

	5 Implementation
	5.1 Pipeline
	5.2 Gaussian Mixture Model
	5.3 Hidden Markov Model
	5.3.1 Forward and backward message
	5.3.2 Learning

	5.4 Classification

	6 Experiments
	6.1 Performance metrics
	6.1.1 ROC curves
	6.1.2 Precision, recall and accuracy

	6.2 Test setup
	6.3 Kaggle results
	6.3.1 Model selection
	6.3.2 Test

	6.4 Further analysis
	6.4.1 Our setup
	6.4.2 Model selection
	6.4.3 Tests
	6.4.4 Model investigation

	7 Conclusion
	7.1 Future work

	A gaussian.h
	B hmm.h
	C Viterbi algorithm
	Bibliography

