
Developing a type inference algorithm for The
Ambient Calculus with Kill

Casper Jensen

June 5, 2013

Department of Computer Science

Aalborg University

Selma Lagerlöfs Vej 300

9220 Aalborg East

Telefon 99 40 99 40

http://cs.aau.dk

Title:

Developing a type inference algo-
rithm for The Ambient Calculus
with Kill

Projectperiod:
DAT10, Spring semester 2013

Projectgroup:
d106f13

Group members:
Casper Jensen
Cjens08@student.aau.dk

Supervisor:
Hans Hüttel

Circulation: 3

Pages: 43

Finished on June 5, 2013

Synopsis:

In this report we describe a slightly

modified type system for The Ambient

Calculus with Kill. We then describe a

type inference algorithm for this type

system. The algorithm works in three

steps: ”Constraint Generation”, which

takes a process P and generates the

constraints needed to make it typeable.

”Constraint Solving”, which take the

generated constraint and solve them,

resulting in a pre-processed E and ∆

and a set of group dependencies. And

finally ”Post-Processing” which solves

the group dependencies and assures

that any constraints on the overall typ-

ing is ensured, yielding our final E and

∆. Finally we prove that the E and

∆ returned by our algorithm makes P

well-typed and that ∆ is minimal.

The report content is freely accessible, but the publication (with source) may only be made

by agreement with the authors.

Contents

1 Introduction 1
1.1 Type inference and Ambient Calculus with Kill 1
1.2 Related Work . 2
1.3 Overview . 3

2 The Ambient Calculus with Kill 5
2.1 The Syntax . 5
2.2 The Type System . 7

2.2.1 Group Operations . 8
2.3 The Typing Relation . 9
2.4 Minimal and Most Permissive Typing 11
2.5 Type Soundness . 13

3 Generating Constraints 15

4 Solving Constraints 20
4.1 Generating E and ∆init . 20
4.2 Solving our ∆-constraint . 21

5 Post-processing 24
5.1 Solving group dependencies 24
5.2 Remaining post-processing . 25

5.2.1 Assign missing multiplicities 25
5.2.2 Ensure that no linear group may be killed 25
5.2.3 Ensure minimal typing 25

6 Correctness of the Algorithm 27

2

7 Conclusion 33
7.1 Results . 33
7.2 Future Work . 34

Appendix A The Typing Relation 37

Appendix B Annotated Reduction 39

Appendix C Type Soundness 40

3

Chapter 1

Introduction

1.1 Type inference and Ambient Calculus with

Kill

The Ambient Calculus on its own is able to precisely and fairly readable
describe most distributed systems, and with the extension of kill n, from
”Describing volunteer computing with departing and centralized nodes”[5],
it is also able to describe volunteer computing systems and other peer-to-peer
systems where a node may leave the system at a given time. In the original
description of the Ambient Calculus with Kill[5], a type system, derived from
the notion of groups, is also proposed. This system gives a security policy
for a process P , describing where an ambient belonging to a given group may
reside, and where and if it may be killed.

Where a type checker takes a given process P and a given typing E and
concludes if P is well-typed under the typing assumptions of E, another
approach is type inference where we assume that E ` P is well-typed for
some given process P and deduce what the typing of E must be to for fill
this assumption. The typing of E would then be built from the context of P ,
where if we e.g. had kill n.P we would assume that the name n is killable, and
that the type of n would reflect or at least not contradict this assumption.

In this report we will take a slightly modified version of the proposed
type system[5], and with it, build a type inference algorithm for the Ambient
Calculus with Kill. The algorithm will work in three steps.

1. Given a process P generate a constraint CE on the group environment
and a constraint C∆ on the security policy.

1

2. Then solve the constraints CE and C∆ yielding a pre-processed group
environment E and security policy ∆

3. Some finishing post-processing assures that any constraints on the over-
all typing is ensured, yielding our final E and ∆.

1.2 Related Work

Type inference algorithms have been proposed for versions of the calculus of
Mobile Ambients before. In “Type Inference for Mobile Ambients in Prolog
[4]” the authors describe an implemented algorithm, for a version of Mobile
Ambients without kill and open, but with communication instead, where
〈M〉.P is an output process and (x : W).P an input process.
The type system is, like the one described in this report, derived from the no-
tion of groups, but where our type system purely describes where an ambient
belonging to a certain group may reside or be killed, the system presented in
[4] also concentrates on communication and what messages may be passed
between groups. The group type is as follows: g : gr(S, C, E , T), where S are
the groups that g may stay in, C are the groups that g may cross from an
in or out, E are the groups that g may enter from an to and T is the fixed
communications types within g.
The type inference algorithm is built on the principle of principal typing,
where the algorithm iteratively goes through a process and for each sub-
part, generates the group environment Γ and variable environment ∆. The
author also implements this type inference algorithm in Prolog, where the
implementation elegantly follows the algorithm through Prolog clauses.

A common approach to type inference is that of generating and solving con-
straints. In “Type inference for a distributed π-calculus[6]” the authors de-
scribe a type inference algorithm for Dπ working in two steps

• given a term S and its initial typing context Γ , generate type con-
straints involving type variables.

• produce a substitution µ of type variables for types solving the con-
straints.

2

If the algorithm terminates, then the substitution applied to the initial con-
text µΓ is a valid typing context for S. Otherwise, S is not typeable. The
author also describes how to handle subtyping and dependent types through
the notion of binding relations, saying that if a binding relation (a, α) exists,
then it is forbidden to substitute a type variable α by a type in which name
a occurs.
Both the constraint generation and constraint solving are done through a
rewriting system, where a constraint is defined as (E , I)B, where E is the
typing constraint, defined as a set of equations between type schemes, I is
the subtyping constraint, defined as a set of inequations between location
types, and B is a binding relation.
The constraint generation is defined as a reduction relation on tuples
(J , E , I)XB where J is a set of sequences involving context schemes, X is
a set of type variables, and (E , I)B is the constraint being generated. The
generation terminates when J is empty, so reductions for the solving phase
are of the form:

({Γ ` S}, ∅, ∅)var(Γ)
∅ ∗ (∅, E , I)XB

Where Γ is an initial context for the sequence S
The constraint solving is defined as a reduction relation on tuples (E , I, µ)XB
where µ is a principal solution of the constraint (E , I)B. The solving termi-
nates when it either reaches a terminal configuration (∅,A, µ)YB that can not
reduce more, or the failure state ⊥, so the solving goes like:

(E , I, ∅)var(E,I)
B ∗ (∅,A, µ)YB 6

or
(E , I, ∅)var(E,I)

B ∗ ⊥

1.3 Overview

The report is organized as follows. In chapter 2 we will revisit the Ambient
Calculus with Kill, an extension to the original Calculus of Mobile Ambients,
we will present its syntax and a possible type system for it.
Then in chapter 3 we will describe how constraints on the group environment
E and the security policy ∆ can be generated from each of the formation
rules and an initial group G.
Following in chapter 4, we will derive an algorithm for solving the different

3

constraints generated in the chapter before, yielding a pre-processed group
environment E and security policy ∆.
In chapter 5 we take the pre-processed E and ∆ and do any finalizing post-
processing that could not be done before the full environments was generated,
this includes solving group dependencies, assigning missing multiplicities and
making sure our typing is minimal.
In chapter 6 we prove the correctness of our algorithm, saying that P is
typeable in the resulting environment E and security policy ∆ and that the
∆ generated is minimal.
Finally in chapter 7 we will draw our conclusions and reflect on future works.

4

Chapter 2

The Ambient Calculus with Kill

The Ambient Calculus[3] is a process calculus, designed to describe concur-
rent system with mobility. It does this through the use of ambients, where
an ambient is defined as “a bounded placed where computation happens”. It
also gives the possibility of moving ambients in and out of each other, mak-
ing it able to describe mobile systems. The Ambient Calculus with Kill[5]
extends this with a kill-capability, able to remove a named ambient with all
of its containing processes.

2.1 The Syntax

The full syntax of the Ambient Calculus with Kill looks as follows.

n Ambient name
P ,Q ::= Process

(νn)P restriction
0 inactivity
P | Q composition
!P replication
n[P] ambient
M.P action

M ::= Capability
in n can enter n
out n can exit n
open n can open n
kill n can kill n

5

Where n ranges over a countable infinite set of names N . An ambient n is a
bounded space in which a process P runs, by definition we say that our total
process is contained in an invisible top-level ambient. Restriction creates a
new unique name n for use in P , the new name is a reference to an ambient
and may be used to operate on that ambient by name. Inactivity is the
process that does nothing. Composition lets two processes P and Q run in
parallel. Replication lets us create an unbounded supply of copies of the
process P .
Finally action lets us use one of the three capabilities. in n which lets an
ambient, with the in-capability in it, move to the named ambient n if it is
parallel with the enclosing ambient. out n lets an enclosed ambient, with the
out-capability in it, move out of the enclosing named ambient n. The capa-
bility, open n, opens up an ambient, removing the ambient n and exposing
the content of it. The kill n capability looks much like open n, but instead of
exposing the contained processes, the kill n also removes those.

The reduction rules then look as shown in figure 2.1

(Par) (New)
P → P ′

P | Q→ P ′ | Q
P → P ′

(νn)P → (νn)P ′

(Out) (In)
n[Q | m[out n.P]]→ n[Q] | m[P] m[in n.P] | n[Q]→ n[Q | m[P]]

(Open) (Kill)
open n.P | n[Q]→ Q | P kill n.P | n[Q]→ P

(Rep) (Str)

!P →!P | P P ≡ Q Q→ Q′ Q′ ≡ P ′

P → P ′

Figure 2.1: Reduction rules

6

2.2 The Type System

The type system we use for the Ambient Calculus with Kill is a linear type
system, where an ambient n belongs to a group G. Where the type of the
group describes the possible behaviour of ambients belonging to the group.
The type system also introduces multiplicity, describes if the ambients be-
longing to the group is linear 1 or unlimited ω, that is if there may only
occur exactly one ambient belonging to the group, or if there may be zero or
more. The type system therefore acts as a security policy, describing where
an ambient may reside, and what ambients may be killed or opened, and
where.

The type system makes use of two environments. The first is a group
environment E binding names to groups, e.g. n1 : G1, . . . , nm : Gm, where
each name occurs only once. The second is the security policy ∆, binding
each group G to its particular type (C,K,m), where C is the set of groups
which G can be contained in, K is the set of groups which may kill or open
an ambient belonging to G and m is the multiplicity of G. Giving us the type
system shown in figure 2.2.

7

E(a) ::= Group
Ga

∆(Ga) ::= Group Type
(C,K,m)

C ::= The groups which Ga may be contained in
G1, . . . ,Gn | ∅

K ::= The groups that may kill Ga, K ⊆ C
G1, . . . ,Gn | ∅

m ::= Group Multiplicity

0
Zero, never occurs in the given environ-
ment

1
Linear, occurs exactly once in the given
environment

ω
Unlimited, occurs any number of times
in the given environment

Where if ∆(G) = (C,K,m) and ∃Ga ∈ C,∆(Ga) = (Ca,Ka, ω) then m = ω

Figure 2.2: The Type System

Where the condition at the end assures that no groups with linear mul-
tiplicity are inside an ambient which may risk being killed.

The type of the top-level ambients group Gtop is (C,K, ω) where C and K is
empty.

2.2.1 Group Operations

The sum of two groups G1 and G2, written G1⊕G2, where ∆(G1) = (C1,K1,m1)
and ∆(G2) = (C2,K2,m2), is defined as follows:

(C1,K1,m)⊕ (C2,K2,m) = (C1 ∪ C2,K1 ∪ K2,m) m = {0, ω}

(C1,K1,m1)⊕ (C2,K2,m2) = (C1∪C2,K1∪K2, 1) m1,m2 = {0, 1},m1 6= m2

In all the cases but the listed, G1 ⊕ G2 is undefined.

And the sum of two Security policies ∆1 and ∆2, written ∆1 ⊕ ∆2, being

8

defined as the security policy ∆ given by dom(∆) = dom(∆1) ∪ dom(∆2).
where for all G ∈ dom(∆) we get

∆(G) =

∆1(G)⊕∆2(G) if G ∈ dom(∆1) ∩ dom(∆2)

∆1(G) if G ∈ dom(∆1) and G /∈ dom(∆2)

∆2(G) if G ∈ dom(∆2) and G /∈ dom(∆1)

2.3 The Typing Relation

The set of well-typed processes is defined using a typing relation, where
the names are defined in a group environment E, which is a set of typing
assumptions, n : Gn, meaning n belongs to the group Gn, and the type of our
groups are defined in our security policy ∆.
The typing relation E `∆

G P indicates that if a Process P is in a group G
and the free names have the types as defined in E and ∆, then P is well-
typed. An instance of the typing relation is called a type judgement, where
the validity of a typing judgement is shown by providing a typing derivation,
constructed using a set of typing rules.
In Cardelli, Ghelli and Gordons original type system[2], without groups, we
have the typing derivation:

E ` P : T

E ` Q : T

E ` n[Q] : T

E ` open n.P | n[Q] : T

where the reduction to E ` P | Q : T is straight forward, as both P and Q
is typed in the same environment. If we look at the same reduction in our
type system, the typing derivation looks like:

E `∆
G P

E `∆
Gn Q

E `∆
G n[Q]

E `∆
G open n.P | n[Q]

which we would want to reduce to E `∆
G P | Q, we have that P and Q is

still typed in the same environment, but P is typed in the group G and Q
in Gn. We therefore define that if a process P is well-typed in some group
G, then it is also well-typed in any group the content of P may be in, in the
current scope. That is E `∆

G′ P , where for any ambient n[Q] in P , E(n) = Gn,
∆(Gn) = (C,K,m), G ∈ C and G ′ ∈ C

9

Lemma 1 (Consistency). If E `∆
G P and ∀Gn ∈ Scope(E,P), ∆(Gn) =

(C,K,m) where G ∈ C and G ′ ∈ C then E `∆
G′ P

Where Scope(E,P) is defined as:

Scope(E, 0) = ∅
Scope(E, n[Q]) = E(n)

Scope(E, !Q) = Scope(E,Q)

Scope(E,M.Q) = Scope(E,Q)

Scope(E,Q | R) = Scope(E,Q) ∪ Scope(E,R)

Scope(E, (νn : Gn)Q) = Scope(E, n : Gn, Q)

Proof. Which we prove by structural induction in P , most of the cases is
alike, so we will only show a few.

Case n[P]
By induction we have that E `∆

G′ P , it must be the case that E(n) = Gn,
∆(Gn) = (C,K,m) where G ∈ C and G ′ ∈ C and E `∆

G P

Case !P
By induction we have that E `∆

G′ P , it must be the case that ∀Gn ∈
Scope(E,P), ∆(Gn) = (C,K,m) where G ∈ C and G ′ ∈ C and E `∆

G P

Case P | R
By induction we have that E `∆

G′ P | R, it must be the case that ∀Gn ∈
Scope(E,P), ∆(Gn) = (Cn,Kn,mn) where G ∈ Cn and G ′ ∈ Cn, and ∀Gm ∈
Scope(E,R), ∆(Gm) = (Cm,Km,mm) where G ∈ Cm and G ′ ∈ Cm, finally we
have E `∆

G P | R

In this report we will only show the typing rules which differs from the
original report[5], the full set can be seen in appendix A

Ambient

An ambient in our environment belongs to group Gn, where the multiplicity
of Gn must be 1 or ω and Gn must be in C of the surrounding group G, we
also have that all groups that may kill the surrounding group G must be in

10

Cn
E(n) = Gn E `∆

Gn P

E `∆
G n[P]

(E-Amb)

where ∆(G) = (C,K,m) and ∆(Gn) = (Cn,Kn,mn),

G ∈ Cn, m 6= 0 and K ⊆ Cn

In Capability

The in capability is checking that our group Ga may move in to the group of
n Gn and that all group that may kill Gn must be in C

E(n) = Gn E `∆
G P

E `∆
G in n.P

(E-In)

where ∆(G) = (C,K,m) and ∆(Gn) = (Cn,Kn,mn),Gn ∈ C and Kn ⊆ C

Out Capability

Out is similar to in but instead of checking if Ga may be contained in Gn, we
need to check if Ga may be in what ever group Gn is in. We also checks that
all groups that may kill any group we end up in, is in C

E(n) = Gn E `∆
G P

E `∆
G out n.P

(E-Out)

where ∆(G) = (C, K,m),∆(Gn) = (Cn, Kn,mn) and ∀Ga ∈ Cn,
∆(Ga) = (Ca,Ka,ma), G ∈ Ca and Ka ⊆ C

2.4 Minimal and Most Permissive Typing

An interesting result of the type system, is that for any process P , we can
produce a most permissive typing, where all names in P can be bound to
a group, where both C and K contains each and every group of the type
system, and the multiplicity is unlimited, ω. This means that any and all
processes can be typed with at least this most permissive typing.

11

Definition 1 (Most Permissive Typing). A security policy ∆ is most per-
missive iff:
∀G ∈ dom(∆)

∆(G) = (C,K, ω)
Where C = dom(∆) and K = dom(∆)

We say that a security policy ∆ is minimal iff for any group G ∈ dom(∆),
there exist no group G1 ∈ dom(∆) so that ∆(G) 6≡ ∆(G1), that is: ∆ is
injective, and for all possible security policies ∆′, any group in ∆ is a subset
of the same group in ∆′.
The most permissive and minimal typing then becomes ∀n ∈ dom(E), E(n) =
G where ∆(G) = ({Gtop,G}, {Gtop,G}, ω)

Definition 2 (Minimal Typing). A security policy ∆ is minimal iff:
∀G ∈ dom(∆).@G1 ∈ dom(∆)⇒ ∆(G) 6≡ ∆(G1)
∀∆′.∆ ≤ ∆′

Where ∆ ≤ ∆′ if ∀G.∆(G) ⊆ ∆′(G)

Theorem 1 (Typeability). Any process P can be typed with the most per-
missive typing.

Proof. Which we prove by induction on the typing relation. All cases are
mostly trivia, so we will only show a few.

Case P | Q
From the typing relation we have:

E1 `∆
G P E2 `∆

G Q

E `∆
G P |Q

E = E1 ⊕ E2 (E-Par)

By induction we have that E1 `∆
G P and E2 `∆

G Q is well-typed, and
typed with the most permissive typing. The joining of the environments
are straight forward, ∆ must be the same in both environments, as such
any names in both E1 and E2 will have exactly the same type, the most
permissive type.

Case n[P]
From the typing relation we have:

E(n) = Gn E `∆
Gn P

E `∆
G n[P]

(E-Amb)

12

where ∆(G) = (C,K,m) and ∆(Gn) = (Cn,Kn,mn),

G ∈ Cn, m 6= 0 and K ⊆ Cn
By induction we have that E `∆

Gn P is well-typed, and typed with the
most permissive typing. From the definition of the most permissive
typing we have that ∀G ∈ dom(∆), ∆(G) = (dom(∆), dom(∆), ω),
thereby G and Gn also have this most permissive type. The first part
of the side condition holds true, as G is in dom(∆) and therefore in
Cn. The multiplicity of G is ω and thereby not equal to 0, meaning
the second part of the side condition also holds true. The third part of
the side condition also holds true, as K = Cn = dom(∆), and therefore
K ⊆ Cn.

The remaining cases are similar to the case of n[P]

2.5 Type Soundness

In proving the soundness of our type system, we use a annotated reduction
semantics P

α→ Q, where α is either cap n, kill n or 1. Where cap n is a in n
or out n reduction, kill n is a open n or kill n reduction, and 1 is a restricted
or replicated reduction. The full annotated reduction semantics is given in
Appendix B
Using this annotated reduction semantics we get Theorem 2. The theorem
tells us that a process P in group G may reduce to a process P ′ in group G ′
where G ′ may or may not be the same as G and if the annotation is kill n
then n must be killable in G and n must have multiplicity ω. In this report
we will only prove the theorem for any of the reductions rules altered by the
changes in our typing relation. The full proof can be seen in Appendix C

Theorem 2 (Type Soundness). If E `∆
G P and P

α→ P ′ then

(1) E `∆
G′ P

′ and

(2) if α = kill n where E(n) = Gn, ∆(Gn) = (C,K,m) then G ∈ K and
m = ω

Proof. Which we prove by induction in the annotated reduction rules

13

Case n[Q | m[out n.P]]
cap n→ n[Q] | m[P]

Starting with E `∆
G n[Q | m[out n.P]], we get E(n) = Gn and E `∆

Gn Q |
m[out n.P], this was concluded using (E-Amb). Then using (E-Par)
we get E1 `∆1

Gn Q and E2 `∆2
Gn m[out n.P]. Using (E-Amb) again we get

E2 `∆2
Gm out n.P , then using E-Out we get E(n) = Gn and E2 `∆2

Gm P
where ∆2(Gm) = (Cm, Km,mm),∆2(Gn) = (Cn, Kn,mn) and ∀Ga ∈
Cn,∆2(Ga) = (Ca,Ka,ma), Gm ∈ Ca and Ka ⊆ Cm, where some Ga must
be G
Then using induction, Lemma 1 and (E-Par) we get our result E `∆

G
n[Q] | m[P] where E = E1 ⊕ E2

Case m[in n.P] | n[Q]
cap n→ n[Q | m[P]]

Starting with E `∆
G m[in n.P] | n[Q], we get E1 `∆1

G m[in n.P]

E2 `∆2
G n[Q] where E = E1 ∪ E2,∆ = ∆1 ⊕ ∆2, this was concluded

using (E-Par). Then using (E-Amb) we get E(m) = Gm and E1 `∆1
Gm

in n.P . Using (E-In) we get E(n) = Gn and E1 `∆1
Gm P where ∆1(G) =

(C,K,m) and ∆1(Gn) = (Cn,Kn,mn),Gn ∈ C and Kn ⊆ C
Then using induction, Lemma 1 and (E-Amb) we get our result E `∆

G
n[Q | m[P]]

Case open n.P | n[Q]
kill n→ Q | P

It must be the case that there exist ∆1, E1 and ∆2, E2 such that ∆ =
∆1 ⊕∆2, E = E1 ∪ E2, E1 `∆1

G open n.P and E2 `∆2
G n[Q]. Using (E-

Amb) we get E2(n) = Gn, ∆2(Gn) = (C,K,m) where it must be the case
that m 6= 0 and E2 `∆2

Gn Q. And using (E-Open) we get E1(n) = Gn,
∆1(Gn) = (C,K,m) where it must be the case that G ∈ K and m = ω
and E1 `∆1

G P .

By using Lemma 1 we get E2 `∆2
G Q and by joining with E1 `∆1

G P we
get E `∆

G P | Q where ∆ = ∆1 ⊕∆2, E = E1 ∪ E2

14

Chapter 3

Generating Constraints

In this chapter we describe how we can generate constraints for a processes
P . We do this by taking a process P and a group G, where G is the group
that P is currently in, and it returns a constraint (CE,C∆) where CE is the
set of constraints on the group environment E

CE ::= C1
E ∪ C2

E | n : Gn | new n : Gn

and C∆ is the set of constraints on the security policy ∆.

C∆ ::= C1
∆ ∧ C2

∆ | G ∈ CGn | G ∈ KGn | mG = ω | mG 6= 0 |
∀n ∈ {n, . . . ,m}.C∆2 | ∀G ∈ CGn .C∆2 | KG ⊆ CGn

In the following we assume the Barendregt-convention[1], that is: that all
bound variables are pairwise distinct and distinct from all free variables. In
practice this is achieved by alpha-converting the process before we generate
the constraints on it.

Parallel Composition

The first process we will look at is parallel composition. From the typing rule
we can see, that we need to type each of the parallel processes separately,
and that the resulting environment is gained from the typing of the separate
processes.

E1 `∆1
G P E2 `∆2

G Q

E `∆
G P |Q

E = E1 ∪ E2,∆ = ∆1 ⊕∆2 (E-Par)

15

So the constraint on E is the union of the constraint from the two processes,
and the constraint on ∆ is the constraints from the two processes.

(G, P1)→g (C1
E,C1

∆) (G, P2)→g (C2
E,C2

∆)

(G, P1|P2)→g (C1
E ∪ C2

E, C1
∆ ∧ C2

∆)
(C-Par)

Ambient

The next process is the ambient. Here we see that the containing process
must be typed in the group of the ambient. We also have that the current
group G must be in C of the group of the ambient Gn, and that the multiplicity
of Gn must be different from 0, we also have that K of G must be in in C of
Gn.

E(n) = Gn E `∆
Gn P

E `G n[P]

∆

(E-Amb)

where ∆(G) = (C,K,m) and ∆(Gn) = (Cn,Kn,mn),

G ∈ Cn, m 6= 0 and K ⊆ Cn
So the constraint on E is the union of the constraint of the process P typed
in group Gn and the binding of n with the group Gn. The constraint on ∆ is
the constraint of the process P in Gn, and the constraints that G must be in
CGnand that mGn must be different from 0, we also have that KG must be in
in CGn .

(Gn, P)→g (CE,C∆)

(G, n[P])→g (CE ∪ n : Gn, C∆ ∧ G ∈ CGn ∧mGn 6= 0 ∧ KG ⊆ CGn)
(C-Amb)

Null

The typing of the null process is trivial.

E `G 0
∆ (E-Null)

As expected, null being trivial is reflected in it neither returning any con-
straints on E or ∆.

(G, 0)→g (∅, ∅)
(C-Null)

16

New

Due to the Barendregt-convention, the new process is rather simple. From
the typing rule we have that all we need to do, is type P with the restricted
name n and its type Gn added to the environment E.

E, n : Gn `∆
G P

E `∆
G (νn : Gn)P

(E-New)

So the constraints on E are simple the constraints of P and the binding of a
new n with Gn, and the constraints on ∆ is simply the constraints on P .

(G, P)→g (CE C∆)

(G, (νn : Gn)P)→g (CE ∪ new n : Gn, C∆)
(C-New)

In Capability

From the typing rule of the in capability we have, that the group Gn of n
must be in C of the current group G, we also have that K of Gn must be in
C of G.

E(n) = Gn E `∆
G P

E `∆
G in n.P

(E-In)

where ∆(G) = (C,K,m) and ∆(Gn) = (Cn,Kn,mn),Gn ∈ C and Kn ⊆ C
This is reflected in the constraint, where the constraint on E is the union
of the constraint from P and the binding of n to the group Gn, and the
constraint on ∆ is the constraint on P and the constraint that Gn must be
in C of G, we also have that KGn must be in in CG.

(G, P)→g (CE,C∆)

(G, in n.P)→g (CE ∪ n : Gn, C∆ ∧ Gn ∈ CG ∧ KGn ⊆ CG)
(C-In)

Out Capability

The out capability is a little more complicated. From the side condition of
the typing rule, we have that C of the group Gn must be in C of G, our current
group, we also have that forall Ga in C of Gn, K of Ga must be in C of G.

E(n) = Gn E `∆
G P

E `∆
G out n.P

(E-Out)

17

where ∆(G) = (C, K,m),∆(Gn) = (Cn, Kn,mn) and ∀Ga ∈ Cn,
∆(Ga) = (Ca,Ka,ma), G ∈ Ca and Ka ⊆ C

This is reflected in the constraint, where the constraint on E is the union
of the constraint from P and the binding of n to the group Gn, and the
constraint on ∆ is the constraint on P and the constraint that CGn must be
in CG, we also have that for all groups Ga in Cn, KGa must be in in CG.

(G, P)→g (CE,C∆)

(G, out n.P)→g (CE ∪ n : Gn, C∆ ∧ ∀Ga ∈ CGn .G ∈ CGa ∧ KGa ⊆ CG)
(C-Out)

Open Capability

From the typing rule of open we have, that the current group G must be in K
of Gn, the groups that may kill Gn, and that the multiplicity of Gn the group
of n must be unlimited, ω.

E(n) = Gn E `∆
G P

E `∆
G open n.P

(E-Open)

where ∆(Gn) = (C,K,m), G ∈ K, m = ω

This is reflected in the constraint, where the constraint on E is the union
of the constraint from P and the binding of n to the group Gn, and the
constraint on ∆ is the constraint on P and the constraint that G must be in
KGn and that mGn must be ω.

(G, P)→g (CE,C∆)

(G, open n.P)→g (CE ∪ n : Gn, C∆ ∧ G ∈ KGn ∧mGn = ω)
(C-Open)

Kill Capability

The typing rule of the kill capability is identical to the open capability.

E(n) = Gn E `∆
G P

E `∆
G kill n.P

(E-Kill)

where ∆(Gn) = (C,K,m), G ∈ K, m = ω

And so is its constraints.

(G, P)→g (CE,C∆)

(G, kill n.P)→g (CE ∪ n : Gn, C∆ ∧ G ∈ KGn ∧mGn = ω)
(C-Kill)

18

Replication

From the formation rule for replication we have that any name n in the
process P must be unlimited, that is that m of Gn, where Gn is the group of
n, must be ω. We find all the names in P using the n(P), which gives us all
names in P .

E `∆
G P

E `∆
G !P

(E-Rep)

where ∀n ∈ n(P), E(n) = Gn,∆(Gn) = (C,K,m), m = ω

This is reflected in the constraint, where the constraint on E is the constraint
from P , and the constraint on ∆ is the constraint on P and the constraint
that for all n in n(P), mGn must be ω.

(G, P)→g (CE,C∆)

(G, !P)→g (CE, C∆ ∧ ∀n ∈ n(P).mGn = ω)
(C-Rep)

19

Chapter 4

Solving Constraints

In this chapter we will describe how to solve the constraints generated in the
previous section, the process works in two steps:

1. First we generate our initial and final group environment Einit and E
and initial security policy ∆init.

2. Then using Einit and ∆init we solve our constraint on ∆ and generates
group dependencies, through an iterative process on the possible rules
of C∆.

4.1 Generating E and ∆init

First we generate our group environment E, which is simply Einit as defined
by the domain of our constraint CE, without all bindings on the form new n :
G

Einit ::= dom(CE)

∀new n ∈ Einit.E ::= Einit \ n
Where E \ n is defined as:

E \ n = E ′ If E ::= E ′, n : G

Next we generate our initial security policy ∆init, where we initialize all the
possible groups, as defined by the bindings in Einit, to the type (∅, ∅,⊥)

∆init ::= ∀G ∈ Einit.G 7→ (∅, ∅,⊥)

Where ⊥ means the multiplicity is not yet determined.

20

4.2 Solving our ∆-constraint

We then solve our ∆-constraint using the following transition:

Einit,∆init ` C∆ →s (∆, A)

Saying: The constraint C∆ yields a security policy ∆ and a dependency set
A, given a initial group environment Einit and initial security policy ∆init.
Where A is the arc-set of a directed graph telling which part of a group
(C or K) is dependent on which part of other groups. So if the arc (CG, CG1)
exists, we have that CG ⊆ CG1 .
From the previous chapter we have that our security policy constraint is a

conjunction
k∧
i=1

C∆i
where C∆ is defined as follows

C∆ ::= ∅ | G ∈ CGn | G ∈ KGn | mG = ω | mG 6= 0 |
∀n ∈ {n, . . . ,m}.C∆2 | ∀G ∈ CGn .C∆2 | KG ⊆ CGn

Where in all we define ∆1 ∧∆2 as:

∆1∧∆2 = ∆ where ∆(G) =

∆1(G) if G ∈ dom(∆1) and G 6∈ dom(∆2)

∆2(G) if G ∈ dom(∆2) and G 6∈ dom(∆1)

∆1(G)⊗∆2(G) if G ∈ dom(∆2) and G ∈ dom(∆1)

Where ⊗ is defined as:

(C1,K1,m1)⊗ (C2,K2,m2) = (C1 ∪ C2,K1 ∪ K2,m)

Where m is defined as:

m =

ω if m1 = ω ∨m2 = ω ∨ (m1 = > ∧m2 = >)

> if (m1 = > ∨m2 = >) ∧m1 6= m2 ∧m1 6= ω ∧m2 6= ω

⊥ if m1 = ⊥ ∧m2 = ⊥
We then have that the transition for each of the rules is as follows:

Solving (∅)
For the case of C∆ = (∅) we get, to no surprise, that it changes nothing in
our security policy.

Einit,∆init ` (∅)→s (∅, ∅)

21

Solving (G ∈ CGn)

For the case of C∆ = (G ∈ CGn) we remap Gn to also contain G in its C-
component, we also solve any remaining constraint C∆ with this changed
group.

Einit,∆init[Gn 7→ (C ∪ {G},K,m)] ` C∆ →s (∆, A)

Einit,∆init ` C∆ ∧ (G ∈ CGn)→s (∆ ∧ Gn 7→ (C ∪ {G},K,m), A)

where Einit(n) = Gn and ∆init(Gn) = (C,K,m)

Solving (G ∈ KGn)

For the case of C∆ = (G ∈ KGn) we remaps Gn to also contain G in its
K-component, we also solve any remaining constraint C∆ with this changed
group.

Einit,∆init[Gn 7→ (C,K ∪ {G},m)] ` C∆ →s (∆, A)

Einit,∆init ` C∆ ∧ (G ∈ KGn)→s (∆ ∧ Gn 7→ (C,K ∪ {G},m), A)

where Einit(n) = Gn and ∆init(Gn) = (C,K,m)

Solving (KG ⊆ CGn)

For the case of C∆ = (KG ⊆ CGn) we add the arc (KG, CGn) to A to be solved
in the post-processing.

Einit,∆init ` C∆ →s (∆, A)

Einit,∆init ` C∆ ∧ ((KG ⊆ CGn)→s (∆, A ∪ (KG, CGn))

Solving (mGn = ω)

For the case of C∆ = (mGn = ω) we remaps Gn to have a multiplicity of ω,
we also solve any remaining constraint C∆ with this changed group.

Einit,∆init[Gn 7→ (C,K, ω)] ` C∆ →s (∆, A)

Einit,∆init ` C∆ ∧ (mGn = ω)→s (∆ ∧ Gn 7→ (C,K, ω), A)

where Einit(n) = Gn and ∆init(Gn) = (C,K,m)

22

Solving (mGn 6= 0)

For the case of C∆ = (mGn 6= 0) we remaps Gn to have a multiplicity of > if
it was ⊥.

Einit,∆init[Gn 7→ (C,K,>)] ` C∆ →s (∆, A)

Einit,∆init ` C∆ ∧ (mGn 6= 0)→s (∆ ∧ Gn 7→ (C,K,>), A)

where Einit(n) = Gn and ∆init(Gn) = (C,K,⊥)

And remaps Gn to have a multiplicity of ω if it was > or ω., in all cases
we also solve any remaining constraint C∆ with this changed group.

Einit,∆init[Gn 7→ (C,K, ω)] ` C∆ →s (∆, A)

Einit,∆init ` C∆ ∧ (mGn 6= 0)→s (∆ ∧ Gn 7→ (C,K, ω), A)

where Einit(n) = Gn and ∆init(Gn) = (C,K,>) or ∆init(Gn) = (C,K, ω)

Solving (∀n ∈ {n, . . . ,m}.C∆2
)

For the case C∆ = (∀n ∈ {n, . . . ,m}.C∆2) we solve C∆ in the current en-
vironment and forall n in {n, . . . ,m} we solve C∆2 with the prime variable
renamed to n.

Einit,∆init ` C∆ →s (∆, A) ∀n ∈ {n, . . . ,m}.Einit,∆init ` (C∆2(n))→s (∆1, A1) . . . (∆n, An)

Einit,∆init ` C∆ ∧ (∀n ∈ {n, . . . ,m}.C∆2)→s (∆ ∧∆1 ∧ · · · ∧∆n, A ∪ A1 ∪ · · · ∪ An)

Solving (∀G ∈ CGn.C∆2
)

For the case C∆ = (∀G ∈ CGn .C∆2) we solve C∆ in the current environment
and forall G in CGn we solve C∆2 with the prime variable renamed to G.

Einit,∆init ` C∆ →s (∆, A) ∀G ∈ CGn .Einit,∆init ` (C∆2(G))→s (∆1, A1) . . . (∆n, An)

Einit,∆init ` C∆ ∧ (∀G ∈ CGn .C∆2)→s (∆ ∧∆1 ∧ · · · ∧∆n, A ∪ A1 ∪ · · · ∪ An)

23

Chapter 5

Post-processing

In this chapter we will take the E, ∆ and A produced in the previous section
and with it generated our final group environment E and security policy ∆.
This post-processing will work in four steps:

1. First we solve the group dependencies of A, finalising the C of all types.

2. Next we assign multiplicities to any group which has not yet been
assigned one.

3. With all groups assigned a multiplicity, we ensure that no linear group
may end up inside an unlimited group, where it risk being killed.

4. Finally we ensure that no two groups have the same type, ensuring that
our typing is minimal.

5.1 Solving group dependencies

The first thing we do in our post-processing is solving our group dependency
A, we solve our dependency by evaluating the reduction ∆ ` (A)→ ∆′ where
A = (KGa , CG1), . . . , (KGz , CGn).

We have two cases of A, the first have the first element in the list A being
a dependency on the K-set of a group G.

∆ ` (D)→ ∆′

∆ ` ((KG, CGn), D)→ ∆′ ⊗ Gn 7→ (C ∪ KG,K,m)
where ∆(Gn) = (C,K,m)

24

And the last where A is empty.

∆ ` (∅)→ ∆

5.2 Remaining post-processing

The transitions in the remaining post-processing are all off the form E,∆→
E ′,∆′, taking the generated group environment E and security policy ∆,
and assigning any missing multiplicities, securing that no linear group may
be killed and finally that the typing is minimal.

5.2.1 Assign missing multiplicities

The first step is assigning a multiplicity of 1 to any group not yet assigned a
multiplicity, ⊥, or assigned a multiplicity of m 6= 0, >.

∀G ∈ dom(∆).(m = > ∨m = ⊥)

E,∆→ E,∆(G 7→ (C,K, 1))
where ∆(G) = (C,K,m)

5.2.2 Ensure that no linear group may be killed

Next we check every group G in our security policy, to see if there exists a
group, G1, with multiplicity m1 = ω in the groups that G may be contained
in, if such a group exists, we assign the multiplicity of G to ω

∀G ∈ dom(∆).∃(G1 ∈ C ∧m1 = ω)

E,∆→ E,∆(G 7→ (C,K, ω))

where ∆(G) = (C,K,m) and ∆(G1) = (C1,K1,m1)

5.2.3 Ensure minimal typing

Finally we assure that our type system is minimal. We do this by checking
for all names n bound to group G1, if there exists a name m bound to group
G2, so that G1 and G2 are equal. If such a name exists, we rebind the names
n and m to a new group G in E, and add the new group G to ∆ with the
type of the original group, finally we also remove G1 and G2 from ∆.

∀E(n) = G1.∃(E(m) = G2 ∧ G1 ≡ G2)

E,∆→ E, n : G,m : G,∆[G 7→ (C,K,m)] \ {G1,G2}

25

where ∆(G1) = (C,K,m)

where ∆ \ G is defined as:

∆ \ G = ∆′ if ∆ ::= ∆′[G 7→ (C,K,m)]

26

Chapter 6

Correctness of the Algorithm

In this chapter we prove that given a process P , our algorithm returns a E
and ∆, that make P well-typed under the typing assumptions of the group
environment E and security policy ∆, and that our ∆ is minimal.

Theorem 3 (Correctness of the Algorithm). Given a process P we have
that after the Constraint Generation (G, P)→g (CE,C∆), Constraint Solving
Einit,∆init ` (C∆)→s (∆, A), Solving Group Dependencies ∆ ` (dom(A))→
∆′, and Post-Processing E,∆→∗ E ′,∆′.
E ′ and ∆′ will be subject to the following:

1. E ′ `∆′
G P

2. ∆′ is minimal

Proof. The proof proceeds by induction in the structure of P . In each case
of the induction we prove the second half of the theorem (minimality) by
contradiction as follows: Suppose ∆′ is not minimal, then there must exist
some ∆′′, ∆′′ @ ∆′, where ∆′′ is minimal. From the post-processing we have
that ∀G ∈ dom(∆′) there exist no G ′ ∈ dom(∆′) so that G and G ′ is injective,
so if ∆′′ @ ∆′ then there must exist some G ∈ dom(∆′′) ∩ dom(∆′) where
∆′′(G) ⊂ ∆′(G), that is G contains fewer groups in either the C or K set.

Case P | Q
1. By induction we have that E ′1 `

∆′
1
G P and E ′2 `

∆′
2
G Q. By us-

ing C-Par we have that (G, P | Q) →g (CE1 ∪ CE2 ,C∆1 ∧ C∆2) where
(G, P)→g (CE1 ,C∆1) and (G, Q)→g (CE2 ,C∆2). From CE1 we can get
Einit1 , E1 and ∆init1 , and from CE2 we can get Einit2 , E2 and ∆init2 . We

27

can then solve the constraint by the reductions Einit1 ,∆init1 ` (C∆1)→s

(∆1, A1) and Einit2 ,∆init2 ` (C∆2)→s (∆2, A2). Finally after the post-
processing we can use (E-Par) and get E ′ `∆′

G P | Q

2. We have that if ∆′ is not minimal then there must exists some
∆′′ so that ∆′′ @ ∆′, if such a security policy exist atleast one group
G ∈ dom(∆′) ∩ dom(∆′′) must exist so that ∆′′(G) ⊂ ∆′(G). This
group must exist in either the P or Q process, but from the induction

hypothesis we have that E ′1 `
∆′

1
G P and E ′2 `

∆′
2
G Q where both ∆′1 and

∆′2 is minimal, ∆′ must thus already by minimal.

Case n[P]
1. By induction we have that E ′ `∆′

Gn P . By then using C-Amb we have
that (G, n[P])→g (CE ∪ n : Gn, C∆ ∧ G ∈ CGn ∧mGn 6= 0 ∧ KG ⊆ CGn)
where (Gn, P) →g (CE,C∆). From CE ∪ n : Gn we get Einit, E and
∆init where atleast the binding n : Gn is in both E-environments.
We can then recursively solve our constraint, Einit,∆init ` (C∆ ∧ G ∈
CGn ∧mGn 6= 0 ∧ KG ⊆ CGn) →s (∆ ∧ Gn 7→ ({G}, ∅,>), A ∪ (KG, CGn))
where Einit,∆init ` (C∆) →s (∆, A). By solving the group depen-
dencies we get ∆(Gn) 7→ ({G} ∪ {KG}, ∅,>), and by assigning missing
multiplicities we get ∆′(Gn) 7→ ({G} ∪ {KG}, ∅,m) where m = 1 unless
something in P changes that. Finally we have that the types given by
our algorithm is consistence with (E-Par), giving us E ′ `∆′

G n[P]

2. We have that if ∆′ is not minimal then there must exists some
∆′′ so that ∆′′ @ ∆′, if such a security policy exist atleast one group
G ∈ dom(∆′) ∩ dom(∆′′) must exist so that ∆′′(G) ⊂ ∆′(G). From
our algorithm we have that ∆′(Gn) 7→ ({G} ∪ {KG}, ∅,m), we could
either remove the group G or a group from the collection KG, but in
doing so we would have E ′ 0∆′′

G n[P], from the induction hypothesis we
have that E ′ `∆′

Gn P where ∆′ is already minimal, ∆′ must thus overall
already by minimal.

Case 0
1. From C-Null we have that (G, 0) → (∅, ∅), and by solving it we
get ∅, ∅ ` (∅)→s (∅, ∅), meaning 0 generates the everywhere undefined
E and ∆ environment. Looking at (E-Null) we have that ∅ `∅G 0 as
(E-Null) have no side conditions to for fill.

28

2. As the 0-process generates the everywhere undefined E and ∆
environment, the environments for 0 must thus already be minimal.

Case (νn : Gn)P
1. By induction we have that E ′ `∆′

G P . By then using C-New we
have that (G, (νn : Gn)P)→g (CE ∪ new n : Gn, C∆) where (G, P)→g

(CE,C∆). From CE ∪ new n : Gn we get Einit, E and ∆init where
atleast the binding n : Gn is in Einit. We can then solve our constraints
Einit,∆init ` (C∆) →s (∆, A) which is the constraint of P . Finally
after the post-processing we use (E-New) and gets E ′ `∆′

G (νn : Gn)P

2. We have that if ∆′ is not minimal then there must exists some
∆′′ so that ∆′′ @ ∆′, if such a security policy exist atleast one group
G ∈ dom(∆′)∩ dom(∆′′) must exist so that ∆′′(G) ⊂ ∆′(G). If no such
group exists in the P -process, so that E ′ `∆′′

G (νn : Gn)P , but from
the induction hypothesis we have that E ′ `∆′

Gn P where ∆′ is already
minimal, ∆′ must thus overall already by minimal.

Case in n.P
1. By induction we have that E ′ `∆′

G P . By then using C-In we have
that (G, in n.P) →g (CE ∪ n : Gn, C∆ ∧ Gn ∈ CG ∧ KGn ⊆ CG) where
(G, P)→g (CE,C∆). From CE ∪n : Gn we get Einit, E and ∆init where
atleast the binding n : Gn is in both E-environments. We can then re-
cursively solve our constraint, yielding us Einit,∆init ` (C∆ ∧ Gn ∈
CG ∧ KGn ⊆ CG) →s (∆ ∧ G 7→ ({Gn}, ∅,⊥), A ∪ (KGn , CG)) where
Einit,∆init ` (C∆) →s (∆, A). By solving the group dependencies
we get ∆(G) 7→ ({Gn} ∪ {KGn}, ∅,⊥), and by assigning missing mul-
tiplicities we get ∆′(G) 7→ ({Gn} ∪ {KGn}, ∅,m) where m = 1 unless
something in P changes that. Finally we have that the types given by
our algorithm is consistence with (E-In), giving us E ′ `∆′

G in n.P

2. We have that if ∆′ is not minimal then there must exists some
∆′′ so that ∆′′ @ ∆′, if such a security policy exist atleast one group
G ∈ dom(∆′) ∩ dom(∆′′) must exist so that ∆′′(G) ⊂ ∆′(G). From our
algorithm we have that ∆′(G) 7→ ({Gn} ∪ {KGn}, ∅,m), we could either
remove the group G or a group from the collection KGn , but in doing
so we would have E ′ 0∆′′

G in n.P , such a group must then exists in the

29

P -process, so that E ′ `∆′′
G in n.P , but from the induction hypothesis we

have that E ′ `∆′
Gn P where ∆′ is already minimal, ∆′ must thus overall

already by minimal.

Case out n.P
1. By induction we have that E ′ `∆′

G P . By then using C-Out we have
that (G, out n.P)→g (CE∪n : Gn, C∆∧∀Ga ∈ CGn .G ∈ CGa∧KGa ⊆ CG)
where (G, P) →g (CE,C∆). From CE ∪ n : Gn we get Einit, E and
∆init where atleast the binding n : Gn is in both E-environments.
We can then recursively solve our constraint, yielding us Einit,∆init `
(C∆ ∧ ∀Ga ∈ CGn .G ∈ CGa ∧ KGa ⊆ CG) →s (∆ ∧ ∆1 ∧ · · · ∧ ∆n, A ∪
A1 ∪ · · · ∪ An ∪ (CGn , CG)) where ∀Ga ∈ CGn .Einit,∆init ` (G ∈ CGa)→s

(∆1, A1) . . . (∆n, An) and Einit,∆init ` (C∆)→s (∆, A). By solving the
group dependencies we get ∆(G) 7→ ({KGa}, ∅,>), ∆(Ga) 7→ (G, ∅,>),
and by assigning missing multiplicities we get ∆(G) 7→ ({KGa}, ∅,m),
∆(Ga) 7→ (G, ∅,m) where m = 1 unless something in P changes that.
Finally after the post-processing we have that E ′ `∆′

G P and using (E-
Out) we have that E ′ `∆′

G out n.P

2. We have that if ∆′ is not minimal then there must exists some
∆′′ so that ∆′′ @ ∆′, if such a security policy exist atleast one group
G ∈ dom(∆′) ∩ dom(∆′′) must exist so that ∆′′(G) ⊂ ∆′(G). From our
algorithm we have that ∆(G) 7→ ({KGa}, ∅,m), ∆(Ga) 7→ (G, ∅,m), we
could either remove the group G or a group from the collection KGa ,
but in doing so we would have E ′ 0∆′′

G out n.P , such group must then
exists in the P -process, so that E ′ `∆′′

G out n.P , but from the induction
hypothesis we have that E ′ `∆′

Gn P where ∆′ is already minimal, ∆′

must thus overall already by minimal.

Case open n.P
1. By induction we have that E ′ `∆′

G P . By then using C-Open we
have (G, open n.P) →g (CE ∪ n : Gn, C∆ ∧ G ∈ KGn ∧ mGn = ω)
where (G, P) →g (CE,C∆). From CE ∪ n : Gn we get Einit, E and
∆init where atleast the binding n : Gn is in both E-environments.
We can then recursively solve our constraint, yielding us Einit,∆init `
(C∆ ∧ G ∈ KGn ∧ mGn = ω) →s (∆ ∧ Gn 7→ (∅, {G}, ω), A) where
Einit,∆init ` (C∆)→s (∆, A). Finally we have that the types given by
our algorithm is consistence with (E-Open), giving us E ′ `∆′

G open n.P

30

2. We have that if ∆′ is not minimal then there must exists some
∆′′ so that ∆′′ @ ∆′, if such a security policy exist atleast one group
G ∈ dom(∆′) ∩ dom(∆′′) must exist so that ∆′′(G) ⊂ ∆′(G). From
our algorithm we have that ∆(Gn) 7→ (∅, {G}, ω), we could remove the
group G, but in doing so we would have E ′ 0∆′′

G open n.P , such a group
must then exists in the P -process, so that E ′ `∆′′

G open n.P , but from
the induction hypothesis we have that E ′ `∆′

Gn P where ∆′ is already
minimal, ∆′ must thus overall already by minimal.

Case kill n.P
1. By induction we have that E ′ `∆′

G P . By then using C-Kill we
have (G, kill n.P) →g (CE ∪ n : Gn, C∆ ∧ G ∈ KGn ∧ mGn = ω)
where (G, P) →g (CE,C∆). From CE ∪ n : Gn we get Einit, E and
∆init where atleast the binding n : Gn is in both E-environments.
We can then recursively solve our constraint, yielding us Einit,∆init `
(C∆ ∧ G ∈ KGn ∧ mGn = ω) →s (∆ ∧ Gn 7→ (∅, {G}, ω), A) where
Einit,∆init ` (C∆)→s (∆, A). Finally we have that the types given by
our algorithm is consistence with (E-Kill), giving us E ′ `∆′

G kill n.P

2. We have that if ∆′ is not minimal then there must exists some
∆′′ so that ∆′′ @ ∆′, if such a security policy exist atleast one group
G ∈ dom(∆′) ∩ dom(∆′′) must exist so that ∆′′(G) ⊂ ∆′(G). From
our algorithm we have that ∆(Gn) 7→ (∅, {G}, ω), we could remove the
group G, but in doing so we would have E ′ 0∆′′

G kill n.P , such a group
must then exists in the P -process, so that E ′ `∆′′

G open n.P , but from
the induction hypothesis we have that E ′ `∆′

Gn P where ∆′ is already
minimal, ∆′ must thus overall already by minimal.

Case !P
1. By induction we have that E ′ `∆′

G P . By then using C-Rep we have
(G, !P)→g (CE, C∆∧∀n ∈ n(P).mGn = ω) where (G, P)→g (CE,C∆).
From CE we get Einit, E and ∆init. We can then recursively solve our
constraint, yielding us Einit,∆init ` (C∆ ∧ ∀n ∈ n(P).mGn = ω) →s

(∆∧∆1∧· · ·∧∆n, A∪A1∪· · ·∪An) where Einit,∆init ` (C∆)→s (∆, A),
where ∆1∧· · ·∧∆n each contains a group G1,...,n 7→ (∅, ∅, ω). Finally we
have that the types given by our algorithm is consistence with (E-Rep),
giving us E ′ `∆′

G !P

31

2. We have that if ∆′ is not minimal then there must exists some
∆′′ so that ∆′′ @ ∆′, if such a security policy exist atleast one group
G ∈ dom(∆′)∩ dom(∆′′) must exist so that ∆′′(G) ⊂ ∆′(G). There are
no types besides the ones in P , such a group must then exists in the
P -process, so that E ′ `∆′′

G open n.P , but from the induction hypothesis
we have that E ′ `∆′

Gn P where ∆′ is already minimal, ∆′ must thus
overall already by minimal.

32

Chapter 7

Conclusion

In this chapter we will draw our conclusion, summing up the results gained
in this report and discuss the possible future work in regards to those results.

7.1 Results

In this report we presented a modified type system for the Ambient Calculus
with Kill, which through Lemma 1 handles the problem of consistent typ-
ing between our type system and the one of Cardelli, Ghelli and Gordon[2],
where e.g. the reduction of open n.P | n[Q] is typeable in [2] but not in our
type system. It also presents three modified typing rules, which introduce the
idea of group dependencies, where the type of one group may be dependent
on the type of another group. We also present the notion of minimal typing,
which is a typing where no group G have the same type as any other group
in ∆, that is: ∆ is injective. We also find the interesting result that any
process P may be typed using atleast a most permissive typing, where each
group in ∆ have a type of (dom(∆), dom(∆), ω), that is: all groups may be
everywhere, and be killed everywhere.

We then built a type inference algorithm on our modified type system,
the algorithm works in three steps: constraint generation, constraint solving
and post-processing.

The first step, constraint generation, takes a process P and a group G and
generates a constraint (CE,C∆), the constraint generation is done for each of
the sub-processes in P , where each sub-process generates its own constraints

33

which together gives the over all constraint.
The next step, constraint solving, takes the constraint generated from the

previous step, and with it generates Einit, E and ∆init, which in turn is used
to solve the constraint on ∆ and generate group dependency, the solving is
done through a iterative process solving the constraint for each sub-part of
the over all constraint.

The final part of our algorithm is the post-processing, where we do some
final adjustments to the E and ∆ environments, this includes solving our
group dependencies, assigning missing multiplicities, securing that no linear
groups may accidentally be killed and that our typing is minimal.

Last but not least, we prove that our algorithm produces a typing which
makes the process P well-typed, and that our final ∆ environment is minimal.

7.2 Future Work

With a proven algorithm, an interesting possible next step would be to make
an implementation of our algorithm. A possible implementation language
could be Prolog as it nicely and easily support first order logic which our
algorithm could easily be converted to, an implementation would then, more
or less, just be the rules already stated. With an implementation at hand, it
would also be interesting to use it on some larger and possible more complex
systems.

When talking about implementing our algorithm, another interesting as-
pect to look at, is the time complexity of our algorithm. As the constraint is
generated from P , we would assume that the generation is linear in P , same
goes for the solving which would be linear in the constraints generated from
P . As for the post-processing we have that solving group dependencies looks
linear in the number of dependencies, and the remaining three is linear in
the number of groups in our typing.

Other extensions of the ambient calculus introduces the notion of com-
munication between processes, it would be interesting to look at what the
addition of communication would do to our calculus with kill. It would then
be possible to communicate the name of an ambient to be killed, or even to
communicate a whole kill-process into an ambient where there where none
before. This would present a number of considerations in respect to our type

34

inference algorithm, as we would have to consider what could be communi-
cated in a given ambient, and incorporate that in to our typing.

Another interesting area to look in to, would be to compare the typing
given by our algorithm with the predictions returned from a static analysis.
Where our algorithm looks at where a given name is mentioned and from
that deduce where the name might be contained, the prediction of a static
analysis, like e.g. shape analysis[7], could be build so as to only return where
a given name may actually end up from the possible actions. We would,
with the static analysis, be able to more precisely see where an ambient n[P]
would end up with a process kill n.Q, saying not only where it may be killed,
but where it would be killed.

35

Appendix

36

Appendix A

The Typing Relation

(E-Par)
E1 `∆

G P E2 `∆
G Q

E `∆
G P |Q

E = E1 ⊕ E2

(E-Amb)
E(n) = Gn E `∆

Gn P

E `∆
G n[P]

where ∆(G) = (C,K,m) and ∆(Gn) = (Cn,Kn,mn),
G ∈ Cn, m 6= 0 and K ⊆ Cn

(E-Null) (E-New)

E `∆
G 0

E, n : Gn `∆
G P

E `∆
G (νn : Gn)P

(E-In)
E(n) = Gn E `∆

G P

E `∆
G in n.P

where ∆(G) = (C,K,m) and ∆(Gn) = (Cn,Kn,mn),Gn ∈ C and Kn ⊆ C

(E-Out)
E(n) = Gn E `∆

G P

E `∆
G out n.P

where ∆(G) = (C, K,m),∆(Gn) = (Cn, Kn,mn) and ∀Ga ∈ Cn,

37

∆(Ga) = (Ca,Ka,ma), G ∈ Ca and Cn ⊆ C

(E-Open)
E(n) = Gn E `∆

G P

E `∆
G open n.P

where ∆(Gn) = (C,K,m), G ∈ K, m = ω

(E-Kill)
E(n) = Gn E `∆

G P

E `∆
G kill n.P

where ∆(Gn) = (C,K,m), G ∈ K, m = ω

(E-Rep)
E `∆

G P

E `∆
G !P

where ∀n ∈ n(P), E(n) = Gn,∆(Gn) = (C,K,m), m = ω

38

Appendix B

Annotated Reduction

(R-Par) (R-Rep)

P
α→ P ′

P | Q α→ P ′ | Q
!P

1→!P | P

(R-New1) (R-New2)

P
α→ P ′

(νn)P
1→ (νn)P ′

Where n(α) = n
P

α→ P ′

(νn)P
α→ (νn)P ′

Where n(α) 6= n

(R-Out) (R-In)

n[Q | m[out n.P]]
cap n→ n[Q] | m[P] m[in n.P] | n[Q]

cap n→ n[Q | m[P]]

(R-Open) (R-Kill)

open n.P | n[Q]
kill n→ Q | P kill n.P | n[Q]

kill n→ P
(R-Str)

P ≡ Q Q
α→ Q′ Q′ ≡ P ′

P
α→ P ′

39

Appendix C

Type Soundness

Lemma 2 (Weakening). If E `∆
G P and E⊕E ′ is well-defined then E⊕E ′ `∆

G
P

Lemma 3 (Structural Group Preservation). If P ≡ Q then E `∆
G P iff

E `∆
G Q

Case P | Q α→ P ′ | Q where P
α→ P ′

It must be the case that there exist E1 and E2 such that E = E1 ⊕ E2,
E1 `∆

G P and E2 `∆
G Q. Using induction, we have that E1 `∆

G P
′ and using

(E-Par) we get E `∆
G P

′ | Q
For the case where α = kill n, E(n) = Gn, ∆(Gn) = (C,K,m) it must be the
case that G ∈ K and m = ω

Case (νn : Gn)P
1→ (νn : Gn)P ′ where P

α→ P ′ and n(α) = n

It must be the case that E, n : Gn `∆
G P . Using induction we get E, n : Gn `∆

G
P ′ and using (E-New) we get E `∆

G (νn : Gn)P ′

Case (νn : Gn)P
α→ (νn : Gn)P ′ where P

α→ P ′ and n(α) 6= n

It must be the case that E, n : Gn `∆
G P . Using induction we get E, n : Gn `∆

G
P ′ and using (E-New) we get E `∆

G (νn : Gn)P ′

For the case where α = kill n, E(n) = Gn, ∆(Gn) = (C,K,m) it must be the
case that G ∈ K and m = ω

40

Case n[Q | m[out n.P]]
cap n→ n[Q] | m[P]

Starting with E `∆
G n[Q | m[out n.P]], we get E(n) = Gn and E `∆

Gn
Q | m[out n.P], this was concluded using (E-Amb). Then using (E-Par)
we get E1 `∆

Gn Q and E2 `∆
Gn m[out n.P]. Using (E-Amb) again we get

E2 `∆
Gm out n.P , then using E-Out we get E(n) = Gn and E2 `∆

Gm P where
∆(Gm) = (Cm, Km,mm),∆(Gn) = (Cn, Kn,mn) and ∀Ga ∈ Cn,∆(Ga) =
(Ca,Ka,ma), Gm ∈ Ca and Ka ⊆ Cm, where some Ga must be G
Then using induction, Lemma 1 and (E-Par) we get our result E `∆

G n[Q] |
m[P] where E = E1 ⊕ E2

Case m[in n.P] | n[Q]
cap n→ n[Q | m[P]]

Starting with E `∆
G m[in n.P] | n[Q], we get E1 `∆

G m[in n.P] E2 `∆
G n[Q]

where E = E1⊕E2, this was concluded using (E-Par). Then using (E-Amb)
we get E(m) = Gm and E1 `∆

Gm in n.P . Using (E-In) we get E(n) = Gn
and E1 `∆

Gm P where ∆(G) = (C,K,m) and ∆(Gn) = (Cn,Kn,mn),Gn ∈
C and Kn ⊆ C
Then using induction, Lemma 1 and (E-Amb) we get our result E `∆

G n[Q |
m[P]]

Case open n.P | n[Q]
kill n→ Q | P

It must be the case that there exist E1 and E2 such that E = E1 ⊕ E2,
E1 `∆

G open n.P and E2 `∆
G n[Q]. Using (E-Amb) we get E2(n) = Gn,

∆(Gn) = (C,K,m) where it must be the case that m 6= 0 and E2 `∆
Gn Q. And

using (E-Open) we get E1(n) = Gn, ∆(Gn) = (C,K,m) where it must be the
case that G ∈ K and m = ω and E1 `∆

G P .
By using Lemma 1 we get E2 `∆

G Q and by joining with E1 `∆
G P we get

E `∆
G P | Q where E = E1 ⊕ E2

Case kill n.P | n[Q]
kill n→ P

It must be the case that there exist E1 and E2 such that E = E1 ⊕ E2,
E1 `∆

G kill n.P and E2 `∆
G n[Q]. Using (E-Kill) we get E1(n) = Gn, ∆(Gn) =

(C,K,m) where it must be the case that G ∈ K and m = ω and E1 `∆
G P .

Using Lemma 2 we get E `∆
G P where E = E1 ⊕ E2.

41

Case !P
1→!P | P

Using (E-Rep) we get E `∆
G P where ∀n ∈ n(P), E(n) = Gn, ∆(Gn) =

(C,K,m) and m = ω.
Using (E-Par) we get E `∆

G !P | P

Case P
α→ P ′ where P ≡ Q, Q

α→ Q′ and Q′ ≡ P ′

Since structural congruence preserves typing (Lemma 3), we have that E `∆
Ga

Q and using induction we get E `∆
Gb Q

′. Using Lemma 3 a second time we
get E `∆

Gb P
′ as expected.

42

Bibliography

[1] Hendrik Pieter Barendregt. The Lambda Calculus – Its Syntax and Se-
mantics, volume 103 of Studies in Logic and the Foundations of Mathe-
matics. North-Holland, 1984.

[2] Luca Cardelli, Giorgio Ghelli, and Andrew D. Gordon. Types for the
ambient calculus, 2001.

[3] Luca Cardelli and Andrew D. Gordon. Mobile ambients. In In Proceedings
of POPL’98. ACM Press, 1998.

[4] Elio Giovannetti. Type inference for mobile ambients in prolog, 2004.

[5] Casper Jensen. Describing volunteer computing with departing and cen-
tralized nodes. January 2013.

[6] Cedric Lhoussaine. Type inference for a distributed [pi]-calculus. Science
of Computer Programming, 50(1-3):225–251, March 2004.

[7] Hanne Riis Nielson and Flemming Nielson. Shape analysis for mobile
ambients. In In POPL’00, pages 142–154. ACM Press, 2000.

43

	Introduction
	Type inference and Ambient Calculus with Kill
	Related Work
	Overview

	The Ambient Calculus with Kill
	The Syntax
	The Type System
	Group Operations

	The Typing Relation
	Minimal and Most Permissive Typing
	Type Soundness

	Generating Constraints
	Solving Constraints
	Generating E and init
	Solving our -constraint

	Post-processing
	Solving group dependencies
	Remaining post-processing
	Assign missing multiplicities
	Ensure that no linear group may be killed
	Ensure minimal typing

	Correctness of the Algorithm
	Conclusion
	Results
	Future Work

	Appendix The Typing Relation
	Appendix Annotated Reduction
	Appendix Type Soundness

