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thogonal frequency-division multiplexing re-
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its impulse response consists of a few dom-
inant components. The task of the sparse
channel estimation is posed as a sparse sig-
nal estimation problem. Using the approach
of sparse Bayesian learning with hierarchical
prior modeling the channel estimation prob-
lem is integrated with the other receiver tasks
through a factor graph representation of the
whole system. The iterative algorithm for
joint channel estimation and decoding is thus
analytically derived by applying the com-
bined belief propagation and mean field in-
ference framework as message-passing on this
factor graph.
Our numerical results show that the pro-
posed algorithm outperforms, in terms of bit-
error-rate, an analogous receiver that uses
a robust channel assumption, but does not
exploit the sparsity of the channel. As
the channel estimation part is of high com-
putational complexity we propose two dif-
ferent methods for reducing the complex-
ity: 1) heuristic modification of the message-
computation scheduling such that only part
of the soft data information is used in channel
estimation 2) grouping channel variables of
the factor graph into vectors of a certain size.
For the devised receiver algorithm the second
method does not degrade the bit-error-rate
performance of the receiver, while the com-
plexity is significantly reduced.
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Synopsis:

I dette speciale udvikles en ny iterativ algo-
ritme til modtagelse af ‘orthogonal frequency
division multiplexing’ radiosignaler som ud-
nytter scenariet hvor kanalens impulsrespons
best̊ar af nogle f̊a dominerende komponen-
ter. Estimering af denne type kanal formu-
leres som et komprimeret signalbehandlings-
problem. Vha. den bayesianske metode inte-
greres problemet med modtagerens andre op-
gaver via en faktorgrafrepræsentation af he-
le systemet. En hierarkisk a priori sandsyn-
lighedsfordeling p̊alægges kanalens impulsre-
spons. Den iterative algoritme udledes ana-
lytisk ved anvendelse af en kombinationen af
‘belief propagation’ og ‘mean field’ metoder-
ne p̊a denne faktorgraf, hvorved estimering af
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stemt størrelse. Den sidstnævnte metode gi-
ver ikke anledning til højere bitfejlrate for
udviklede modtager, mens modtagerens be-
regningskompleksitet reduceres markant.
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Preface

This master thesis is written by me, Peter Bjørn Jørgensen, at the School of
Information and Communication Technology, Aalborg University during my
10th semester in project period from February 1st to June 6th 2013. During
the project period I was affiliated with the Navigation and Communications
(NavCom) section at the Department of Electronics Systems at Aalborg
University. The project was conducted in collaboration with the wireless
algorithm design group at Renesas Mobile, Copenhagen. The interaction
took place via email, online meetings and a physical meeting in May at the
premises of Renesas Mobile in Copenhagen.

The inspiration for the topic of the master thesis originates from the
NavCom section that already has done remarkable research in the fields of
1) variational Bayesian methods and its application to design of wireless
receivers 2) sparse estimation using Bayesian hierarchical prior modeling. I
also had the opportunity to work on the latter of the two topics in my 8th
semester project. This project is a move in the direction of joining these two
vast scientific areas. The involvement of Renesas Mobile emphasizes that
the methods are not only of scientific interest, but they have been identified
as potential solutions for challenges in the advancement of future wireless
communication systems. I would like to thank the people at Renesas Mobile
Copenhagen for their engagement in the project.

The report is structured as follows. In Chapter 1 the context of the
project and its goals are defined, followed by Chapter 2 in which the scope
is further narrowed by the definition of a system model and the problem
we want to solve. A brief survey of some of the results from the two afore-
mentioned scientific fields is given in Chapter 3 and in the following chapter
a current state-of-the-art iterative receiver is introduced. The main con-
tributions of the thesis is found in Chapter 5, 6 and 7. We propose a
novel iterative receiver with sparse channel estimation, benchmark its per-
formance against current state-of-the-art receivers and propose two methods
for reducing the computational complexity of the receiver scheme.
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The report contains a number of appendices. Appendix A is a list of the
notation and symbols used throughout the report and a list of used acronyms
is found in Appendix B. The remaining appendices are referenced within
the text whenever they become relevant. In addition to this report another
outcome of the project is a simulation framework, implemented in Matlab,
that includes the system model, channels and receivers discussed in the
thesis. All code and simulation results can be found on the accompanying
CD together with a digital copy of the report in ‘pdf’ format.

Aalborg University, June 6th, 2013

Peter Bjørn Jørgensen
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CHAPTER 1
Introduction

Mobile communication systems have undergone a rapid evolution during re-
cent years in order to meet the ever-increasing demand for higher data rates.
The global trend the last five years has shown an annual increase of 40% in
the number of mobile broadband subscriptions [1]. The bandwidth allocated
to mobile systems has increased, up to 100 MHz for future systems [2]. On
the other hand higher spectral efficiency is achieved with new technologies
such as orthogonal frequency division multiplexing (OFDM), mutiple-input
multiple-output (MIMO) processing and modern channel coding techniques.
One of the challenges in modern wireless digital receiver design is how to im-
plement all the new features and at the same time meet the requirements of
low power consumption, low computational complexity and small memory
footprint that implementation on handheld devices impose.

Approximate inference on factor graphs [3, 4] in the form of message-
passing has shown to be an efficient and flexible tool to design the signal-
processing tasks of wireless receivers [5–8]. As opposed to the classical
approach in which the different operations (channel estimation, demapping,
decoding etc.) of the receiver are optimized separately according to some
optimality criteria, this approach allows a unified design of all the receiver
tasks.

One of the critical tasks the receiver has to perform is estimation of the
wireless channel’s response. The accuracy of this estimate has a significant
impact on the overall performance of the receiver. To improve the accuracy
of the estimates the underlying structure of the channel can be exploited. In
a multipath radio channel the transmitted signal arrives at the receiver via
multiple propagation paths, each associated with a certain time delay [9].
In some channel models, e.g. the standardized 3GPP channel models [10]
there is only a few dominating multipath components. This kind of channel
is referred to as sparse channels. Reconstruction of sparse signals from noisy
measurements has gained much attention in recent years due to the emerg-
ing field of compressed sensing [11, 12] and the reconstruction algorithms
have been successfully applied to the channel estimation problem [13–15].
The Bayesian approach for sparse signal estimation, usually denominated
sparse Bayesian learning (SBL) [16,17], is also found suitable for the channel
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Chapter 1. Introduction

estimation task [18,19]. In SBL a (possibly hierarchical) prior distribution is
imposed on the weights of the multipath channel’s impulse response which
leads to algorithms that produce sparse solutions. Some steps have been
taken in the direction of integrating sparse channel estimators in iterative
receivers, e.g. in [20] where the channel’s impulse response is modeled using
a two-state Markov process; a channel weight can be in a ‘high’ or ‘low’
power state. We see SBL algorithms as natural candidates for integration
in message-passing receivers due to their probabilistic formulation and it is
still an area to elaborate upon.

Project Definition

In this project we investigate the integration of sparse channel estimators
based on SBL techniques within the framework of message-passing iterative
wireless receivers for OFDM-based wireless communication systems. We
seek answers to the following questions

• How can SBL-based channel estimation be embedded in an iterative
message-passing OFDM receiver architecture?

• In which scenarios and to what extent does the aforementioned receiver
benefit from the exploitation of the sparse channel structure?

• Is the proposed receiver architecture feasible for implementation in
future wireless digital modems and how can the computational com-
plexity be reduced?

Outline of Report

The project report is structured in the following way: We start in Chapter 2
by presenting the problem we are solving with the iterative receiver archi-
tecture and the assumptions of the underlying system model. In Chapter 3
we briefly introduce the message-passing framework for Bayesian inference
as well as the basic ideas of compressed sensing and SBL, which is utilized
throughout the rest of the project. Based on the probabilistic description
of the system model a current state-of-the-art iterative message-passing re-
ceiver is introduced in 4. In Chapter 5 we present how the channel esti-
mation part of the receiver can be modified to exploit the sparse channel
assumption using SBL, yielding a novel algorithm for jointly performing
sparse channel estimation and decoding. The performance of the two re-
ceiver schemes is compared by the use of Monte Carlo simulations. The
channel estimation in both receiver algorithms is of high computational
complexity and in Chapter 7 simple techniques to lower the computational
complexity that applies to both receivers are investigated. Finally, the con-
clusion of the project and further outlook is presented in Chapter 8.
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CHAPTER 2
System Model and
Problem Definition

This chapter defines the problem we are investigating by introducing a prob-
abilistic model of a simple point-to-point communication system. The model
and its relation to orthogonal frequency division multiplexing (OFDM) are
presented in Section 2.1. In Section 2.2 a simple model for the multipath
channel is introduced followed by a brief discussion of optimal receiver de-
sign in Section 2.3.

2.1. System Model

In the following we describe the system model used in this project and high-
light the made assumptions. We consider a generic communication system
with one transmitter and one receiver. The baseband representation of the
system is shown as a block diagram in Figure 2.1. The vector representa-

Figure 2.1: Block diagram of the system model.

tion of the digital communication system is employed and the considered
channels will be described by their complex baseband models. All signals
are thus represented by finite-length column-vectors. The message to be
conveyed is a binary vector u ∈ {0, 1}K sampled from a binary symmetric
source. The message is encoded by a channel coder with rate R and then

randomly interleaved into a vector of coded bits c ∈ {0, 1}
K
R . We denote

the coding and interleaving function C, i.e. c = C(u).
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Chapter 2. System Model and Problem Definition

The coded bits are divided into segments of Q bits. Each segment is
mapped to a complex modulation symbol xi ∈ SD where SD denotes the
discrete modulation alphabet of size 2Q. The mapping functionM(·) is one-
to-one and onto. The number of data symbols is N = K

RQ
. Without loss of

generality it is assumed that K, Q and N are integers. Similarly M complex
pilot symbols are randomly selected from the pilot alphabet SP. The data
and pilot symbols are multiplexed to form the vector of transmitted symbols
x ∈ CN+M . The indices of the data and pilot symbols are denoted by the
disjoint sets D and P respectively. With D ∪ P = [1 : M +N ] the vector
of data symbols is xD = (xi|i ∈ D)T and the vector of pilot symbols is
xP = (xj|j ∈ P)T.

The symbols x are transmitted through the channel with complex chan-
nel coefficients h ∈ CN+M and additive noise w ∈ CN+M to yield the
observations

y = h� x + w (2.1)

with h�x denoting the entry-wise product of the two vectors h and x. We
will also make use of the equivalent expression

y = Xh + w (2.2)

where X ∈ C(M+N)×(M+N) is a diagonal matrix with the entries of x on
its diagonal. The additive noise w is modeled as independent and identi-
cally distributed (iid) samples of a complex Gaussian random variable with
precision parameter λ, i.e.

p(w) = CN
(
w; 0, λ−1I

)
(2.3)

where I is the (M +N)× (M +N) identity matrix.

The observation model in (2.1) could for example be used to model a
time-varying, frequency-flat channel with each entry of h being the channel
coefficient at the corresponding time instance, but its primary purpose in
this project is to model a point-to-point OFDM system with no interference
between the subcarriers. In this case h is a sampled version of the frequency-
domain transfer function.

2.1.1 Application to OFDM

A block diagram of an OFDM communication system is shown in Figure 2.2.
The correspondence with Figure 2.1 is depicted through the naming of the
signal vectors.

The pilot and data symbols are multiplexed in frequency by mapping
them to orthogonal subcarriers. The time domain signal is obtained through
the inverse fast Fourier transform (FFT) of the frequency domain symbols.
The cyclic prefix (CP) is inserted by copying the last time-domain samples
to the beginning of the OFDM symbol. To avoid inter-symbol-interference
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Section 2.2. Multipath Channel Model

Figure 2.2: Block diagram representation of OFDM communication system with tradi-
tional receiver.

the length of the cyclic prefix must be longer than the impulse response
of the channel. The main reason for transmitting the CP instead of using
a ’silent’ guard time is that, under the assumption that the channel im-
pulse response is static during the transmission of one OFDM symbol, it
turns the linear convolution of the channel into circular convolution. This
reduces the complexity of the frequency domain equalization as the channel
can be modeled as entry-wise multiplication after applying a finite-length
Fourier transform on the time-domain samples. See [21, sec. 5.2.1] for this
derivation.

2.2. Multipath Channel Model

To have a full probabilistic description of the system model we also need to
introduce a probabilistic model for the frequency domain channel coefficients
h = (h1, . . . , hN+M)T.

The channel impulse response is assumed to be static during the trans-
mission of one OFDM symbol. Employing the specular multipath channel
model the impulse response can be written as [9]

g(τ) =
P∑
p=1

βpδ(τ − τp) (2.4)

where P is the number of multipath components, βp is the complex gain
of the p’th multipath component and τp is the corresponding delay. Taking
the continuous-time Fourier transform yields the frequency domain repre-
sentation

F {g(τ)} (f) =
P∑
p=1

βp exp(−j2πτpf) . (2.5)

Denoting the subcarrier spacing ∆f the elements of the channel coefficient
vector are obtained as

hi =
P∑
p=1

βp exp(−j2πτpi∆f) , i ∈ [1 : N +M ]. (2.6)

5
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The multipath gains are usually modelled as independent complex Gaussian
random variables [9]

p(βp) = CN
(
βp; 0, σ2

p

)
, p ∈ [1 : P ]. (2.7)

where σ2
p is the average power of the p’th multipath component. This chan-

nel is a special case of the wide-sense-stationary uncorrelated scattering
(WSSUS) [22] Rayleigh fading channel. The difference from the general
case is that we do not allow βp and τp to evolve with time. It is thus as-
sumed that the channel’s impulse response is static during the transmission
of one OFDM symbol, hence no Doppler frequency spread is incurred [9].
Given τ = (τ1, · · · , τP )T and s = (σ2

1, · · · , σ2
P )T each hi in (2.6) is a linear

combination of the Gaussian random variables β = (β1, · · · , βP )T, hence
each hi is also Gaussian distributed. Therefore we now make the assump-
tion that h1, . . . , hN+M are jointly Gaussian, hence we can write the prior
distribution as

p(h) = CN (h; 0,Σh) (2.8)

In Chapter 4 we design a receiver that exploits knowledge of the prior (2.8).
As part of the performance evaluation in Chapter 6 we further discuss the
correctness of the assumption (2.8) and compute the covariance matrix Σh

for different channel models. We also evaluate the performance when the
receiver assumes a covariance matrix that is different from the true one.
In Chapter 5 a similar receiver is designed that exploit the structure of
(2.6) under the assumption that P is small, which we refer to as the sparse
channel assumption.

2.3. Optimal Receiver Design

Notice that the block diagram in Figure 2.2 also depicts a traditional OFDM
receiver as well as the transmitter. In such a receiver each block can be
thought of as the reverse operation of a corresponding block in the trans-
mitter. Each block is optimized with respect to some local performance
measure, e.g. the equalizer could be the minimum mean-squared error esti-
mator of the channel coefficients given the pilot observations yP .

However, the ultimate goal of the receiver is not to estimate the channel
coefficients but to produce an estimate û ∈ {0, 1}K of the original message,
ideally identical to u. To minimize the risk of making an error the maximum
a posteriori (MAP) criterion is employed [23]. For minimizing the bit-by-bit
error rate the decision rule reads

ûk = argmax
uk∈{0,1}

p(uk|y) (2.9)

for all k ∈ [1 : K]. Alternatively the objective could be to minimize
the block-error-rate based on p(u|y). Computing a closed form expres-
sion for the posterior in (2.9) using the joint probability density func-
tion (pdf) p(y,h, λ,xD, c,u) is intractable and we therefore resort to sub-
optimal methods. In the following chapter different approximate Bayesian
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Section 2.3. Optimal Receiver Design

inference techniques are introduced, which allow us to approximate the pos-
terior in (2.9) using an iterative algorithm. The framework thus provides a
formal method for optimizing all operations of the receiver jointly, aiming
to get as close as possible to the MAP criterion in order to minimize the
bit-error-rate.
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CHAPTER 3
Theoretical Background

This chapter is a brief survey of the two main theoretical topics this project
is built upon: In Section 3.1 we introduce Bayesian inference as message-
passing on factor graphs and in Section 3.2 we introduce compressed sensing
including its Bayesian approach, namely sparse Bayesian learning.

3.1. Bayesian Inference as Message-Passing on Factor Graphs

In Bayesian inference we seek to (approximately) compute the posterior of
variables of interest given a set of observed data variables. In this section
we first introduce factor graphs [3] as a tool for visualizing how complicated
functions, e.g. a joint probability density function (pdf), factorizes as a
product of simpler functions. Various Bayesian inference schemes can be
formulated as message-passing algorithms on factor graphs. The focus here
is on the unified framework [4] that combines belief propagation (BP) [3,
24] and the mean field (MF) [25, 26] approximation. How the expectation
maximization (EM) algorithm [27] can be obtained as an instance of the
MF algorithm is also mentioned. As we adopt and inference approach to
derive message-passing receivers in later chapters, the purpose of the section
is to introduce the message-passing framework and the notation that is used
throughout the rest of the report. A thorough theoretical analysis of the
different algorithms is not within the scope of this project.

3.1.1 Factor Graph

When designing inference algorithms that deal with a complicated global
function of many variables it can often be exploited how the global function
factorizes as a product of ‘local’ functions that depend on a subset of the
variables [3].

In this project our global function is the joint pdf or probability mass
function (pmf) of the observations and all the unknown variables of a prob-
abilistic system model. When the observed values are fixed the global func-
tion is thus proportional to the posterior of the unobserved values given

9



Chapter 3. Theoretical Background

the observations. For example in the trivial case with a single unobserved
variable x and an observed variable y with observed value y′, we have:

p(x, y = y′) = p(x|y = y′)p(y = y′) ∝ p(x|y = y′) (3.1)

As the observations are fixed they can be considered as a specific param-
eterization of the local functions. In a more general setting suppose we
have a probabilistic model for the set of unobservable random variables
x = (xi | i ∈ I)T where I is the set of variable indices and the joint distri-
bution factorizes as

p(x) =
1

z

∏
a∈A

fa(xa) (3.2)

where A is the set of indices of local functions and xa = (xi|i ∈ N (a))T is
the vector of arguments of fa and z is a normalization constant that ensures
that the right-hand side of (3.2) is a proper distribution. The set N (a) ⊆ I
is the set of indices of the variables that are arguments of fa for a ∈ A and
N (i) ⊆ A is the set of indices of the local function fa that have variable xi
for i ∈ I as an argument.

This factorization can be visualized using a factor graph. A factor graph
is a bipartite, undirected graph that shows which local functions depends
on which variables. It has a variable node for each variable xi, a factor node
for each local function fj and an edge connecting variable node xi to factor
node fj if and only if xi is an argument of fj [3]. We label variable nodes
with the same name as the corresponding variables and the factor nodes
with the same name as the corresponding local functions.

An example of two factor graphs is shown in Figure 3.1, where we rep-
resent factor nodes by black squares and variable nodes by circles. A factor
graph is a tree (or cycle-free) graph if any two nodes in the factor graph are
connected by exactly one simple path, i.e. a path with no repeated nodes.

(a) p(x1, x2, x3, x4) = fA(x1, x2)
fB(x2, x3, x4)fC(x3)fD(x4)

(b) p(x1, x2, x3, x4) = fA(x1, x2)
fB(x2, x3, x4)fC(x1, x3)fD(x4)

Figure 3.1: Example of factor graph representation of two different global functions.
The factor graph in (a) is a tree graph (no cycle) while the one in (b) is not cycle-free.

10



Section 3.1. Bayesian Inference as Message-Passing on Factor Graphs

3.1.2 Message-Passing Inference Framework

The goal of probabilistic inference is to compute the marginal distribution
of one or more of the variables xi for i ∈ I in the probabilistic model (3.2).
Several inference frameworks can be formulated as message-passing algo-
rithms on factor graphs, in which neighboring nodes exchange information
in form of messages.

If the factor graph is cycle-free we can apply the sum-product algorithm
to obtain the exact marginal distributions [3]. The belief propagation (BP)
[24] algorithm is a special case of the sum-product algorithm [3]. However,
if the factor graph contains cycles we may apply an iterative version of
the BP algorithm, sometimes referred to as loopy BP [28], but we are no
longer guaranteed to obtain the exact marginal distributions [3] and for some
models the algorithm will not converge [28]. We refer to the approximation
of marginal distributions as ‘beliefs’. In some cases applying BP results in
very complicated message computations and the resulting algorithm may
be infeasible for a practical implementation.

The mean field (MF) approximation is an alternative approximate infer-
ence algorithm. The global pdf is approximated by a simpler distribution
q(x), which is the product of the beliefs

q(x) =
∏
i∈I

q(xi) (3.3)

Note that in this context single variables xi can be both vectors or scalars
even though they are typeset with regular lowercase letters. If all xi for
i ∈ I are scalar variables the approximating distribution is fully factorized,
which is also known as the näıve mean field approximation [26]. The MF al-
gorithm proceeds by iteratively minimizing the Kullback-Leibler divergence
KL(q(x)||p(x|y = y′)) [29] from the approximating distribution to the true
one [25].

Some of the pros and cons of the BP and MF according to [4] are as
follows

• Mean Field approximation

– Always admits a convergent implementation.
– Has simple message-passing update rules, especially for conjugate-

exponential models.
– Is not compatible with hard constraints.

• Belief Propagation

– Yields good approximation of the marginal distributions if the fac-
tor graph has no short cycles.

– Is compatible with hard constraints.
– May have high complexity, especially when applied to probabilistic

models involving both discrete and continuous random variables.

11



Chapter 3. Theoretical Background

This motivates the devisal of a unified message-passing algorithm that ex-
ploits the virtues of both algorithms and circumvents their drawbacks. Such
an inference framework is proposed in [4]. Within this joint BP-MF infer-
ence scheme the factor nodes are split into two disjoint sets, the BP part
ABP and the MF part AMF such that ABP ∪AMF = A. The global function
thus factorizes as

p(x) =
∏

a∈AMF

fa(xa)
∏

c∈ABP

fc(xc) (3.4)

While factor nodes belongs to either the BP part or the MF part, vari-
able nodes can be arguments to factor nodes in both parts simultaneously.
Provided that the factor graph fulfills certain technical conditions the fol-
lowing iterative update rules converges to a stationary point of the objective
function [4]

mMF
a→i(xi) = exp

∑
xa\xi

log fa(xa)
∏

j∈N (a)\i

nj→a(xj)

 , ∀a ∈ AMF, i ∈ N (a).

(3.5)

mBP
a→i(xi) = da

∑
xa\xi

fa(xa)
∏

j∈N (a)\i

nj→a(xj), ∀a ∈ ABP, i ∈ N (a). (3.6)

ni→a(xi) = ei
∏

c∈N (i)∩AMF

mMF
c→i(xi)

∏
c∈N (i)∩ABP\a

mBP
c→i(xi), ∀i ∈ I, a ∈ N (i) (3.7)

where da and ei are positive constants ensuring normalized beliefs. When
a local function fa(xa) is a function of continuous random variables, the
summations in (3.5) and (3.6) are replaced by integrals over the support
of the random variables. The beliefs can be retrieved at any point in the
iterative scheme as

qi(xi) = ei
∏

a∈N (i)∩AMF

mMF
a→i(xi)

∏
a∈N (i)∩ABP

mBP
a→i(xi), ∀i ∈ I (3.8)

Note that messages from factor to variable nodes are computed as in BP
if the factor node is in the BP part and as in MF if the factor node is in
the MF part. Messages from variable to factor nodes are extrinsic values if
the factor node is in the BP part and beliefs (i.e. a posteriori probability
values) if the factor node is in the MF part. For the messages in (3.5) we
will also use the equivalent notation

mMF
a→i(xi) = exp

(
〈log fa(xa)〉∏

j∈N (a)\i nj→a(xj)

)
, ∀a ∈ AMF, i ∈ N (a). (3.9)

Expectation Maximization (EM)

As shown in [4,30] the EM algorithm can be obtained as an instance of MF
by restricting the beliefs qi(xi) for i ∈ IEM ⊆ I to a Dirac delta function at

12



Section 3.2. Compressed Sensing

the mode of the corresponding belief obtained with the MF algorithm. The
message computation rules are the same, except the messages from variable
to factor nodes (3.7) are replaced by

nEM
i→a(xi) = δ(xi − x̄i), with x̄i = argmax

x

 ∏
a∈N (i)

ma→i(xi)

 (3.10)

for all i ∈ IEM and all a ∈ N (i). The reason for using EM for some variable
nodes is that it may lead to messages that are simpler to compute. However,
all information of the ‘original’ belief except its mode is discarded.

3.2. Compressed Sensing

To exploit sparsity of the channel in the design of message-passing receivers
we employ the framework of compressed sensing and its Bayesian approach,
sparse Bayesian learning. In the following we introduce the notation, con-
cepts and basic results in compressed sensing that are utilized in the project.

In compressed sensing and sparse decomposition it is assumed that a
signal of interest z ∈ CK has a sparse representation α ∈ CL in some
(possibly overcomplete) basis Θ ∈ CK×L, i.e. L ≥ K, rank(Θ) = K. We
say that z is P -sparse in Θ, if there exists a vector α with only P � L or
fewer non-zero components such that

z = Θα (3.11)

In many practical cases the vector α is only approximately sparse, meaning
that it is well approximated by a sparse vector. The compressibility of a
signal can be quantified by the error incurred by approximating it by a
sparse vector [31]

min
x′∈{x′ | ||x′||0≤P}

||x− x′||2 (3.12)

where the ||·||0 denotes the number of nonzero components of a vector. For
example Θ could be a Fourier or wavelet basis [12] with (K = L), in which
case the weights α can easily be determined by α = Θ−1z. However, one
of the ramifications of compressed sensing is that in this case we do not
need to observe z to be able to find its sparse representation α. Instead we
observe a vector v containing N < K linear combinations of the entries of
z:

v = Bz = BΘα (3.13)

If the matrix A = BΘ ∈ CN×L has certain properties, it is possible to
pose guarantees on the ability to recover any P -sparse α from observing
v [31]. In the literature A is often referred to as the measurement or sensing
matrix [31,32] and Θ may be referred to as the dictionary matrix [31]. In this
project the distinction between Θ and A is not important and throughout
this report we therefore refer to A as the dictionary, i.e. the dictionary is

13



Chapter 3. Theoretical Background

the linear mapping from the sparse representation α to the observations
v as in [17, 33]. In the standard Compressed Sensing (CS) framework the
measurements are non-adaptive, meaning that the matrix A is fixed in
advance [31].

3.2.1 Conditions for Reconstruction

Since N � L, (3.13) represents the compression of signal the signal α into
v, which may indicate loss of information. In order to uniquely reconstruct
a P -sparse signal α from v, we must be able to distinguish between any
P -sparse signals obtained by applying the mapping A. Guarantees on the
ability to recover a sparse signal are often based on the restricted isometry
property (RIP) [34].

Restricted Isometry Property [34] The matrix A satisfies RIP of order P
if there exists a restricted isometry constant δP ∈ (0, 1) such that

(1− δP ) ||α||22 ≤ ||Aα||
2
2 ≤ (1 + δP ) ||α||22 (3.14)

for all P -sparse α.

When A satisfies the RIP of order 2P , one interpretation of (3.14) is that
the distance between any pair of P -sparse vectors (note that their difference
is thus 2P -sparse) is approximately preserved under the linear map A. The
RIP guarantees reconstruction up to a certain sparsity level, but it is in
general difficult to verify if A satisfies RIP [31]. An easier computable
property to provide reconstruction guarantees is the coherence of A [32].

Coherence [31] The coherence of a N × L matrix A, µ(A) is the largest
absolute inner product between two columns ai, aj of A

µ(A) = max
1≤i<j≤L

|〈ai, aj〉|
||ai||2 ||aj||2

(3.15)

It can be shown µ(A) ∈
[√

L−N
N(L−1)

, 1
]

[32]. In some cases there is a

direct relation between the coherence and RIP.

RIP and Coherence [35] If A has unit-norm columns and coherence µ, then
A satisfies RIP of order P with δP = (P − 1)µ for all P < 1

µ
.

The coherence can also be used to guarantee the uniqueness of the sparse
representation of the signal.

Uniqueness of α [36] If P < 1
2

(
1 + 1

µ(A)

)
, then for each measurement vec-

tor v ∈ RN there exists at most one P -sparse signal α such that v = Aα.

We do not apply the above results directly to the design of the dictio-
nary, but they aid the understanding of the CS problem and provide some
intuition on the desired properties of the dictionary.

14



Section 3.2. Compressed Sensing

3.2.2 Reconstruction Algorithms

We now focus on the different algorithms for solving the CS reconstruction
problem: given the dictionary matrix A ∈ CN×L and the measurement
vector v ∈ CN find a sparse vector α ∈ CL such that v = Aα.

The simplest way of posing a recovery algorithm is to find the sparsest
solution that explains the observations, i.e.

α̂ = argmin
α

||α||0 subject to v = Aα (3.16)

However, this algorithm requires an exhaustive search of α, i.e. for every
P = [1 : L] we need to check if v is in the span of all combinations of P
columns of A [32].

We can relax the `0 ‘norm’ assumption and replace it with the `1 norm
and thus obtain a convex optimization problem. Furthermore, when the
observations are impaired by additive noise, i.e., y = Aα+ w the equality
constraint is relaxed with an inequality.

α̂ = argmin
α

||α||1 subject to ||y −Aα||22 ≤ ε (3.17)

where ε ≥ ||w||22 is a bound on the noise. Now, using Lagrangian relaxation
of the constraints we can obtain the basis pursuit denoising method [37]

α̂ = argmin
α

||y −Aα||22 + µ ||α||1 (3.18)

Alternative algorithms are greedy algorithms such as CoSaMP [38] and
OMP [39]. The general approach of these algorithms is to use the correlation
between the columns of the dictionary A and the observation vector y to
(iteratively) find the columns of A that contribute most to y [32].

In this project we focus on the Bayesian approach to the compressed
sensing reconstruction problem also known as Sparse Bayesian Learning
(SBL) [16, 17, 40], because, besides its good performance, it is suitable for
deriving a sparse channel estimator that is naturally embedded in an it-
erative receiver obtained using Bayesian inference. In contrast, applying
a greedy pursuit algorithm to estimate the sparse channel would require
a heuristic way of embedding it into the receiver scheme with the risk of
tainting the convergent properties of the inference schemes.

3.2.3 SBL and Hierarchical Prior Modeling

In SBL we generally deal with the signal model y = Aα + w, where w ∼
CN (w; 0, λ−1I). Notice that we consider the case where y,A,α and w are
complex-valued although the original literature [16,17,40] considers only the
real-valued case. The complex case is investigated in [33]. For simplicity of
the following discussion the noise precision λ is assumed known, although
it is modeled as an unknown parameter when deriving the novel receiver
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Chapter 3. Theoretical Background

in Section 5.2. Thus p(y|α) = CN (y; Aα, λ−1I) and, by selecting a prior
distribution p(α), the maximum a posteriori probability (MAP) estimate
of α is obtained as

α̂MAP = argmax
α

p(α|y) = argmax
α

p(y|α)p(α)

p(y)
(3.19)

or equivalently using the negative log-probability

α̂MAP = argmin
α

||y −Aα||22 + λ−1Q(α) (3.20)

where the term Q(α) = − log(p(α))+const. is a penalization term that en-
forces sparsity of α̂MAP [33]. We can select different prior distributions for
α to induce sparse solutions. For example choosing p(α) as the product of
L Laplace pdfs yields the `1 norm penalty term as in basis pursuit denoising
(3.18) [41]. Instead of working directly with the prior p(α) a hierarchical
representation of the prior is often employed in order to yield more compu-
tationally tractable inference algorithms. In SBL the prior of the weights
α conditioned on the hyperparameters γ, p(α|γ), is usually governed by a
Gaussian pdf, e.g. [16,17,33,41–43].

In the following we present the three-layer hierarchical prior model pro-
posed in [33]. This model is able to encompass several other models pro-
posed in the literature through specific choices of parameters and by treating
some of the random variables as known quantities. Here the joint pdf of the
weights α, and the hyperparameters γ and η factorizes as

p(α,γ,η) = p(α|γ)p(γ|η)p(η) (3.21)

where

p(α|γ) = CN (α; 0,Γ) =
L∏
`=1

CN (α`; 0, γ`) (3.22)

p(γ|η) =
L∏
`=1

Ga (γ`; ε, η`) (3.23)

p(η) =
L∏
`=1

Ga (γ`; c, d) (3.24)

where Γ = diag(γ) is the diagonal matrix with the entries of γ on the
diagonal. We can also obtain two-layer hierarchical models from this de-
scription by treating η as a fixed parameter vector. For example, using the
two-layer model, we can obtain the `1 penalty term for complex α by set-
ting η` = η, ∀ `, and choosing ε = 3

2
[33]. The well-known Relevance Vector

Machine (RVM) can also be derived from the two-layer model by using a
‘flat’ prior on γ as shown in [17].

For the two-layer model it can be shown that the marginal prior of α is
given by [33]

p(α; ε,η) =
L∏
`=1

p(α`; ε, η`) (3.25)
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with

p(α`; ε, η`) =
2

πΓ(ε)
η
ε+1

2
` |α`|

ε−1Kε−1(2
√
η`|α`|) (3.26)

where Kv(·) is the modified Bessel function of the second kind and order v
and Γ(·) is the gamma function.

Similarly, for the three-layer model, marginalizing over γ and η yields [33]

p(α; ε, c, d) =
L∏
`=1

p(α`; ε, c, d) (3.27)

with

p(α`; ε, c, d) =

(
1

πd

)
Γ(ε+ c)Γ(c+ 1)

Γ(ε)Γ(c)

(
|α`|2

d

)ε−1

U(ε+ c; ε;
|α`|2

d
) (3.28)

where U(·; ·; ·) is the confluent hypergeometric function [44].

To get an idea of how the choice of parameters affects the penalty term
of the weights, we plot in Figure 3.2 contour lines for both the two-layer
and three-layer prior distributions for L = 2.
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Figure 3.2: Contour plot of (a) the marginalized two-layer prior distribution
p(α1, α2; ε, η1, η2) with η1 = η2 = 1 and (b) the marginalized three-layer prior distri-
bution p(α1, α2; ε, c, d) with c = 1 and d = 0.1.

In all cases the prior pdf is monotonically increasing for α1, α2 → 0
and the contour plots show how the probability mass gets more centered
around the axes as the value of ε decreases. In Figure 3.2a, the contour for
the `1 penalty term (ε = 1.5) is also recognizable. By selecting ε < 1.5 we
obtain prior distributions that are more sparsity-inducing than the Bayesian
version of basis pursuit denoising (3.18) and it is thus expected that the
algorithms derived from this model will produce sparser solutions. This
hypothesis is supported by the numerical results in [33].
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Chapter 3. Theoretical Background

3.2.4 Iterative Inference Scheme

With the chosen prior distribution we could in principle find the MAP
estimate of α by solving (3.20). This is in general not straightforward
when the choice of prior distribution leads to a non-convex penalty term
[45]. Therefore, an iterative Bayesian inference scheme is often applied.
Popular choices are the EM algorithm [27] used in [17, 33, 41, 43] and the
‘fast inference scheme’ originally devised for Fast RVM [46] but later used in,
e.g., [33,43,47]. The MF inference scheme is another method that has also
been applied for sparse estimation using hierarchical prior modelling [18].

In the derivation of the receiver algorithm with sparse channel estimation
in Chapter 5 we employ the three-layer hierarchical prior model for the delay
domain weights and apply the MF inference scheme formulated as message-
passing on a factor graph. The three-layer model is used here due to its
generality. As the same prior model is used for pilot-assisted sparse channel
estimation in [18], the devised receiver can be considered as a data-aided
extension of this one. Since we are targeting low-complexity algorithms and
previous work [33, 48] indicates that the two-layer version exhibits faster
convergence than its three-layer counterpart, we use a two-layer version in
the numerical results in Chapter 6.
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CHAPTER 4
Message-Passing Receiver

Design

Based on the system model introduced in Chapter 2, a message-passing
iterative receiver structure is introduced in the following. The receiver re-
flects current state-of-the-art within the field of message-passing algorithms
for channel estimation and decoding. The derivations and discussions this
chapter rely on contemporary literature, especially the work in [4, 7]. The
purpose of introducing this receiver algorithm is to provide a reference and
a basis for the development of receiver structures that exploit the chan-
nel sparsity. The receiver algorithm presented here is thus included as a
reference in the simulations in Chapter 6.

The factorization of the probabilistic system model and its factor graph
representation are presented in Section 4.1 and 4.2, respectively. After
discussing the choice of inference framework in Section 4.3, we derive the
messages of the iterative receiver algorithm in Section 4.4. The scheduling
of message computations defining the iterative algorithm is presented in
Section 4.5.

4.1. Probabilistic Model

Using the system model described in Chapter 2 we can express the prob-
abilistic system function as the joint pdf of the observations and all the
unknown variables. The inherent conditional independences of the system
model allow the following factorization of the system function

p(y,xD,h, λ, c,u) = p(y|xD,h, λ)p(h)p(λ)p(xD|c)p(c|u)p(u) (4.1)

Notice that the pilot symbols xP are not included in the probabilistic model
as they are known a priori. The following observations have been used.

• Since xD is a deterministic function of c which in turn is a deterministic
function of u, x is independent of u given c.

• The channel weights h, the data symbols xD and the noise process w
are independent.
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Chapter 4. Message-Passing Receiver Design

• Given xD and h the uncertainty of the observations y in (2.2) is due to
the noise w whose statistics are parameterized by the noise precision
λ.

Further factorization is possible as the noise samples are iid the information
bits are iid and the data symbols are independent given the coded bits:

p(y|xD,h, λ) = CN
(
y; Xh, λ−1I

)
(4.2)

=
∏
i∈D

p(yi|xi, hi, λ)
∏
j∈P

p(yj|hj, λ) (4.3)

=
∏

i∈D∪P

CN(yi;xihi, λ
−1) (4.4)

p(u) =
K∏
k=1

p(uk) (4.5)

p(xD|c) =
N∏
n=1

p(xin|c(n)), (4.6)

where c(n) is the nth length Q segment of c and in ∈ D is the corresponding
index into x. The functions p(xin|c(n)) and p(c|u) mimic hard constraints.
The functions are thus given by degenerate distributions, i.e.

p(xin|c(n)) =

{
1 if xin =M(c(n))

0 otherwise
, n ∈ [1 : N ] (4.7)

p(c|u) =

{
1 if c = C(u)

0 otherwise
(4.8)

The prior distribution p(uk) will in most cases be the uniform pdf, i.e.
p(uk) = 1

2
on its domain. The noise precision prior p(λ) can conveniently

be chosen as the gamma pdf

p(λ) = Ga(λ; a, b) =
ba

Γ(a)
λa−1 exp(−bλ) (4.9)

as the gamma pdf is conjugate prior for a Gaussian distribution with known
mean and unknown precision. The channel weight prior p(h) is obtained
from the knowledge or assumptions on the channel. As discussed in section
2.2, choosing a Gaussian pdf is appropriate, i.e.

p(h) = CN(h; 0,Σh) (4.10)

4.2. Factor Graph Representation

Using the factorisation of the probabilistic model we can now visualize the
dependencies between the variables in a factor graph. To ease the notation
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in the following derivations, we define the following local functions pertain-
ing to three categories.

Observation Model

fDi(hi, xi, λ) = p(yi|xi, hi, λ) (4.11)

= CN(y;hixi, λ
−1), i ∈ D (4.12)

fPj(hj, λ) = p(yj|xj, hj, λ) (4.13)

= CN(y;hjxj, λ
−1), j ∈ P (4.14)

Channel and Noise Prior

fH(h) = p(h) (4.15)

= CN(h; 0,Σh) (4.16)

fλ(λ) = p(λ) = Ga(λ; a, b) (4.17)

Coding and Modulation Constraints

fMn(xin , c
(n)) = p(xin|c(n)), n ∈ [1 : N ] (4.18)

fC(c,u) = p(c|u) (4.19)

fU(uk) = p(uk), k ∈ [1 : K] (4.20)

We thus have the following factorization of the system function

p(y,xD,h, λ, c,u) =
∏
i∈D

fDi(hi, xi, λ)
∏
j∈D

fPj(hj, λ)

· fH(h)fλ(λ)fC(c,u) ·
N∏
n=1

fMn(xin , c
(n))

K∏
k=1

fUk(uk) (4.21)

The observation vector y is not an input of any of the local functions and is
therefore not present on the right-hand side. One can think of the observa-
tions as creating an instance of a family of graphical models parameterized
by the observation vector y. The factor graph representation of (4.21) is
shown in Figure 4.1. The channel coding and interleaving subgraph is repre-
sented by the box labeled fC. In Subection 4.4.4 we show the factor graph
representation of a convolutional code and outline how decoding can be
implemented by the application of the BP algorithm.

Given an instance (parameterized by the observations y) of the factor
graph we apply an inference framework to find the beliefs:

q(uk) ≈ p(uk|y) ∀ k ∈ [1 : K]. (4.22)

Notice that the factor graph representation of the system function is not
unique. For example we could choose some variable nodes as vectors instead
of using the individual entries as shown here. Furthermore, instead of using
the fully factorized form in (4.21) in some cases it can be beneficial to
eliminate factor nodes by joining several nodes into one, i.e. using the joint
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Figure 4.1: Factor graph representation of the factorized probabilistic system model.

pdf instead of the factorized form. This can be done to eliminate cycles
in the graph, but it may also lead to intractable or computationally heavy
algorithms. The outcome depends on the choice of inference framework,
thus there are many degrees of freedom in choosing a combination of factor
graph representation and inference framework.

4.3. Choice of Inference Framework

The choice of inference framework highly affects the performance of the
resulting receiver algorithm. A study of the feasibility and bit error rate
(BER) performance of different inference schemes applied to the presented
system model and factor graph is presented in [7]. The system model is
the same except that in [7] the noise precision λ is assumed known and is
thus not included in the estimation. The basis of the study is the combined
BP-MF framework from which the BP and MF frameworks can be obtained
as special cases. We make use of the following conclusions [7]. Using BP for
all nodes in the factor graph becomes computationally intractable because
the message mfH→hi(hi) becomes a Gaussian mixture with 2Q(N−1) and 2QN

for i ∈ D and i ∈ P respectively [7]. Therefore different approximations
are introduced. An approximation that exploits the correlation between
the channel coefficients h is desired. The following approaches are assessed
in [7]:

a) BP with Gaussian approximation: Each message mfDi
→hi(hi) for i ∈ D

is approximated by a single Gaussian pdf instead of a Gaussian mixture
with 2Q components.

b) Expectation propagation (EP): The belief of each channel coefficient
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hi for i ∈ D is restricted to a Gaussian pdf.

c) BP-MF: The factor graph is split into the MF and BP part. The factor
nodes fDi for i ∈ D are in the MF part and the remaining nodes are
in the BP part.

d) BP-EM: The splitting of the graph is the same as in BP-MF, but
the beliefs of hi for i ∈ [1 : M + N ] are restricted to be Dirac delta
functions.

In the considered scenario all algorithms except BP with Gaussian approx-
imation shows BER performance within 0.5 dB compared to a reference
estimator based on BP with known channel coefficients. The scheme using
BP with Gaussian approximation performs about 2 dB worse. The EP-
based scheme becomes unstable and needs the use of an heuristic approach
to dampen the updates of the beliefs of hi. The BP-MF and BP-EM based
approaches shows the same performance. However, there is no reduction in
computational complexity by choosing the BP-EM approach even though
only point estimates of the channel coefficients are used. Therefore we will
focus on the BP-MF based scheme in the following.

4.4. Computation of Messages

Unlike [7] we also consider a scenario in which the noise precision is un-
known. Therefore we also include the factor nodes corresponding to pilot
symbols fPj in the MF part of factor graph. Denoting the set of all factor
nodes A, we thus have

AMF = {fDi |i ∈ D} ∪
{
fPj |j ∈ P

}
(4.23)

ABP = {A\AMF} (4.24)

= {fH} ∪ {fλ} ∪ {fC} ∪ {fMn|n ∈ [1 : N ]} ∪ {fUk |k ∈ [1 : K]} (4.25)
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4.4.1 Channel Coefficients

In the following we compute the beliefs of the channel coefficients h. Given
the beliefs q(λ) and q(xi), for all i ∈ D, we can compute

mMF
fDi
→hi(hi) ∝ exp

(∫ ∞
0

∑
xi∈SD

log fDi(hi, xi, λ)nxi→fDi
(xi)nλ→fDi

(λ)dλ

)
(4.26)

= exp
(
〈log fDi(hi, xi, λ)〉q(xi) q(λ)

)
(4.27)

= exp

(〈
log

(
λ

π

)
− λ|yi − hixi|2

〉
q(xi) q(λ)

)
(4.28)

∝ exp
(〈
−λ
(
|yi|2 + |hi|2|xi|2 − 2 Re (y∗i hixi)

)〉
q(xi) q(λ)

)
(4.29)

∝ CN
(
hi;µhoi , σ

2
hoi

)
, (4.30)

for all i ∈ D, where

µhoi =
yi 〈xi〉∗q(xi)
〈|xi|2〉q(xi)

, σ2
hoi

=
1

〈λ〉q(λ) 〈|xi|2〉q(xi)
(4.31)

Similarly for the factor nodes corresponding to pilot symbols

mMF
fPj
→hj(hj) ∝ exp

(〈
log fPj(hj, λ)

〉
q(λ)

)
(4.32)

= exp

(〈
log

(
λ

π

)
− λ|yj − hjxj|2

〉
q(λ)

)
(4.33)

∝ exp
(〈
−λ
(
|yj|2 + |hj|2|xj|2 − 2 Re

(
y∗jhjxj

))〉
q(λ)

)
(4.34)

∝ CN
(
hj;µhoj , σ

2
hoj

)
(4.35)

for all j ∈ P , where

µhoj =
yjx
∗
j

|xj|2
, σ2

hoj
=

1

〈λ〉q(λ) |xj|2
(4.36)

The messages from the channel prior node fH to each variable node hi are
given by

mBP
fH→hi(hi) ∝

∫
fH(h)

∏
j∈P\i

mMF
fPj
→hj(hj)dhj

∏
k∈D\i

mMF
fDk
→hk(hk)dhk (4.37)

for all i ∈ [1 : N +M ]. Note that∏
j∈P

∏
k∈D

mMF
fPj
→hj(hj)m

MF
fDk
→hk(hk) ∝ CN(h;µoh,Σ

o
h) (4.38)
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where the entries of

µoh = (µhoi |i ∈ [1 : M +N ])T (4.39)

Σo
h = diag

[(
σ2
hoi
|i ∈ [1 : N +M ]

)]
(4.40)

are computed as in (4.31) and (4.36). Now denote the vector µohī as the
vector µoh with the ith entry removed and [Σo

h ]̄i,̄i as the matrix Σo
h with the

ith row and ith column removed. In the following we also make use of the
notation [Σo

h]i,̄i, which is the ith row of Σo
h with the ith column removed

and similarly [Σo
h ]̄i,i is the ith column with the ith row removed. Using this

notation (4.37) can be written as

mBP
fH→hi(hi) ∝

∫
fH(h) CN(hī;µ

o
hī
, [Σo

h ]̄i,̄i)dhī (4.41)

Considering fH(h) as a product of two pdfs p(hi|hī)p(hī) and using the
identity of Section C.3 we obtain

mBP
fH→hi(hi) ∝

∫
CN(hi;µhi+[Σh]i,̄i [Σ]−1

ī,̄i hī, [Σh]i,i−[Σh]i,̄i [Σh]−1
ī,̄i [Σh ]̄i,i)

· CN(hī;µhī , [Σh ]̄i,̄i) CN(hī;µ
o
hī
, [Σo

h ]̄i,̄i)dhī (4.42)

By rewriting the last two factors of (4.42) using the identity of Section C.5
and dropping the normalization constant, we get a function of the form∫
p(hi|hī)p(hī)dhī. This corresponds to computing the marginal distribu-

tion p(hi) and we can thus apply the identity in Section C.4 to obtain

mBP
fH→hi(hi) ∝ CN

(
hi;µhci , σ

2
hci

)
(4.43)

with

µhci = [Σh]i,̄i

(
[Σh ]̄i,̄i + [Σo

h ]̄i,̄i

)−1

µohī (4.44)

σ2
hci

= [Σh]i,i + [Σh]i,̄i

(
[Σh ]̄i,̄i + [Σo

h ]̄i,̄i

)−1

µohī (4.45)

The computation of each message requires the computation of the inverse of
a matrix of dimension (M +N −1)× (M +N −1), which is an operation of
complexity1 O ((M +N − 1)3). Fortunately, computation of these messages
is not required in an implementation of the algorithm. To see why, notice
that the messages are used to compute

nhi→fDi
(hi) ∝ mBP

fH→hi(hi)m
MF
fDi
→hi(hi), ∀i ∈ D (4.46)

nhj→fPj
(hj) ∝ mBP

fH→hj(hj)m
MF
fPj
→hj(hj), ∀j ∈ P (4.47)

1As common practice we treat computing the inverse of the L× L matrix as an operation of O(L3)
though an algorithm of complexity O(L2.373) exists [49].
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Inserting (4.41), (4.30) and (4.35) into (4.46) and (4.47) we obtain

nhi→fDi
orfPi

(hi) ∝
∫

CN(h;µh,Σh) CN
(
hī;µho

ī
, [Σo

h ]̄i,̄i

)
· CN

(
hi;µhoi , σ

2
hoi

)
dhī (4.48)

=

∫
CN(h;µh,Σh) CN(h;µoh,Σ

o
h) dhī (4.49)

∝
∫

CN(h;µqh,Σ
q
h) dhī (4.50)

= CN(hi; [µqh]i, [Σ
q
h]i,i) (4.51)

= q(hi) (4.52)

for all i ∈ [1 : M +N ], with

Σq
h =

(
(Σh)−1 + (Σo

h)−1
)−1

(4.53)

µqh = Σq
h (Σo

h)−1µoh (4.54)

All messages in (4.51) can thus be computed2 by (4.53) and (4.54) involv-
ing a single matrix inversion of dimension (M + N) × (M + N), with-
out explicitly using the messages {mBP

fH→hi(hi)|i ∈ [1 : N + M ]}, since
Σh is given in the definition of the prior of channel coefficients fH(h) and
the quantities (µoh,Σ

o
h) are given by the set of messages {mMF

fDi
→hi(hi)|i ∈

D} ∪ {mMF
fPj
→hj(hj)|j ∈ P}.

Notice that if we gather the channel coefficients into a vector variable
node h = (hi|i ∈ [1 : N + M ])T and ‘move’ this node to the MF part, the
messages to the factor nodes fDi and fPj are identical to the expression
in (4.51). In this case the belief q(h) = CN(h;µqh,Σ

q
h). This approach is

used in [4] and is an example of how two different choices of factor graph
representation and inference scheme may lead to the exact same algorithm.
We generalize the approach in Chapter 7, where the channel coefficients are
moved to the MF part and gathered into smaller groups in order to lower
the computational complexity.

2As we show in Chapter 6, Σh may be singular. Applying the Woodbury formula (Appendix C.6)

we can instead compute the equivalent expression Σq
h = Σh −

(
Σh + Σo

h

)−1
Σh.
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4.4.2 Noise Precision

Given the current beliefs of the data symbols q(xi) and channel coefficients
q(hi), the messages to the noise precision variable node λ are given by

mMF
fDi
→λ(λ) ∝ exp

(
〈log fDi(hi, xi, λ)〉q(xi)q(hi)

)
(4.55)

∝ λ exp
(
−λ
〈
|yi − hixi|2

〉
q(xi)q(hi)

)
, ∀ i ∈ D (4.56)

mMF
fPj
→λ(λ) ∝ exp

(〈
log fPj(hj, λ)

〉
q(hj)

)
(4.57)

∝ λ exp
(
−λ
〈
|yj − hjxj|2

〉
q(hj)

)
, ∀ j ∈ P (4.58)

mBP
fλ→λ(λ) ∝ λa−1 exp(−bλ) (4.59)

We thus have

q(λ) ∝ mBP
fλ→λ(λ)

∏
i∈D

mMF
fDi
→λ(λ)

∏
j∈P

mMF
fPj
→λ(λ) (4.60)

∝ λa+M+N−1 exp(−λb) exp

(∑
i∈D

〈
|yi − xihi|2

〉
q(xi)q(hi)

)

· exp

(∑
j∈P

〈
|yj − xjhj|2

〉
q(hj)

)
(4.61)

= λa+M+N−1 exp
(
−λ
(
b+

〈
||y −Xh||22

〉∏
i∈D q(xi)q(hi)

∏
j∈P q(hj)

))
(4.62)

Thus the belief of the noise precision reads

q(λ) = Ga
(
λ; a+M +N, b+

〈
||y −Xh||22

〉)
(4.63)

The belief is used in (4.31), (4.36) and (4.65) through its mean

〈λ〉q(λ) =
a+M +N

b+
〈
||y −Xh||22

〉∏
i∈D q(xi)q(hi)

∏
j∈P q(hj)

(4.64)

Algorithms for scenarios in which the noise precision λ is known can be ob-
tained by replacing every occurrence of 〈λ〉q(λ) in (4.31), (4.36) and (4.65)

by the true value. Obviously the messages mMF
fDi
→λ(λ), mMF

fPj
→λ(λ) and

mBP
fλ→λ(λ) should not be computed in these cases.

4.4.3 Data Symbols

The derivation of the messages mMF
fDi
→xi(xi) is very similar to mMF

fDi
→hi(hi).

Given q(hi) and q(λ) we thus get

mMF
fDi
→xi(xi) ∝ CN

(
xi;

yi 〈hi〉∗q(hi)
〈|hi|2〉q(hi)

,
1

〈λ〉q(λ) 〈|hi|2〉q(hi)

)
(4.65)
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for all i ∈ D. Note that even though (4.65) has the functional form of a
Gaussian pdf, the message is a pmf since xi ∈ SD is discrete-valued. Given
the messages n

c
(n)
q →fMn

(c
(n)
q ) from the coding and interleaving subgraph we

can compute

mBP
fMn→xin (xin) ∝

∑
c(n)∈{0,1}Q

fMn(xin , c
(n))

∏
q∈[1:Q]

n
c
(n)
q →fMn

(c(n)
q ) (4.66)

for all n ∈ [1 : N ]. The belief q(xi) are thus given by

q(xin) ∝ mBP
fMn→xin (xin) ·mMF

fDin
→xin (xin) ∀n ∈ [1 : N ] (4.67)

4.4.4 Channel Coding and Interleaving

In the following we outline how the channel coding and interleaving part is
implemented by applying BP to a factor graph representation of convolu-
tional channel codes. The resulting algorithm is identical to the BCJR [50]
algorithm [3].

The factor graph representation of the channel coding and interleaving
subgraph is shown in Figure 4.2. In this representation we have exploited
how the trellis representation of the code translates into a factor graph as
described in [3]. Again the factor nodes fUk for all k ∈ [1 : K] represent
the prior distribution of the information bits. The factor nodes fSk for all
k ∈ [0 : K] represent indicator functions equal 1 if the information bit uk
produces the vector of coded bits wk and changes the trellis state from
state sk−1 to state sk, and 0 otherwise. The initial state s0 is known a
priori. Using a rate R code the vector of coded bits is wk ∈ {0, 1}

1
R for

all k ∈ [1 : K] and we thus assume that 1
R

is an integer. To do bit-level
interleaving, each vector of coded bits is mapped to 1

R
individual bits by

the mapping function fwk(c,wk). Notice that the edges shown on 4.2 are
just an example, i.e. the node w1 may have an edge to any of the variables
{c(1), . . . , c(N)} because of the interleaving. The coded and interleaved bits

c ∈ {0, 1}KR are divided into N segments of size Q and each segment is
mapped to one data subcarrier.

Since all variables are discrete and fSk and fWk
represents hard con-

straints, the BP algorithm is trivially applied and therefore the expressions
for any of the messages are not shown here. In the implementation we are
dealing with pmfs with very small values. For better numerical stability we
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Figure 4.2: Factor graph representation of the channel coding and interleaving part.

use log-domain versions of the BP messages (3.6) (3.7)

m̃BP
a→i(xi) = logmBP

a→i(xi) (4.68)

= log da + log
∑
xa\xi

fa(xa) exp

 ∑
j∈N (a)\i

ñj→a(xj)

 (4.69)

ñi→a(xi) = log ni→a(xi) (4.70)

= log ei +
∑

c∈N (i)∩AMF

m̃MF
c→i(xi)

∑
c∈N (i)∩ABP\a

m̃BP
c→i(xi) (4.71)

To avoid numerical underflows when evaluating the sum (4.69) the following
identity is also used

log
∑
i

exp(xi) = M + log
∑
i

exp(xi −M) (4.72)

with M = max
i
xi. The algorithm is implemented in Matlab and is avail-

able on the accompanying CD. The implementation relies on lookup ta-
bles to avoid evaluating all configurations of xa\xi in the left-most sum
(4.69) for which the indicator functions fa(xa) evaluate to zero. However,
to run the large-scale simulations a faster implementation of the decoder is
needed. Therefore our implementation of the decoder can be replaced with
the Iterative Solutions Coded Modulation Library [51]. See Appendix H for
a description of the implemented simulation framework and running time
measurements for the algorithms with and without the Coded Modulation
Library.
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4.5. Iterative Algorithm and Scheduling

The iterative inference scheme produces a local minimizer of the objective
function. Which local minimizer is found depends on the initialization of
the algorithm as well as the order in which messages are computed. The
initialization of beliefs and scheduling of messages are therefore important
design parameters and the optimal choice depends on the model. As pilot
symbols are transmitted in order to estimate h it makes intuitively sense to
first compute the beliefs q(hi) for all i ∈ [1 : N+M ] using the pilot symbols
only. Thus the algorithm proceeds as follows

1) If λ is unknown initialize 〈λ〉q(λ) using a heuristic scheme.

2) Initialize the messages mMF
fDi
→hi(hi) ∝ CN(hi; 0,∞) for all i ∈ D and

compute mMF
fPj
→hj(hj) for all j ∈ P using (4.35).

3) Update q(hi) for all i ∈ [1 : N + M ] using (4.51) with Σq
h and µqh

defined in (4.53) and (4.54) respectively.

4) If λ is unknown update 〈q(λ)〉q(λ) using (4.64).

5) Compute the messages mMF
fDi
→xi(xi) for all i ∈ D using (4.65).

6) Compute the messages in the modulation, interleaving and coding sub-
graph yielding the belief of the information bits q(uk) for all k ∈ [1 : K].
Terminate the algorithm if the stopping criterion is fulfilled.

7) Using the messages from the subgraph
{
n
c
(n)
q →fMn

(c
(n)
q )| q ∈ [1 : Q], n ∈ [1 : N ]

}
as extrinsic values compute mfMn→xin (xin) for all n ∈ [1 : N ] using
(4.66).

8) Update q(xi) for all i ∈ D using (4.67)

9) Compute mMF
fDi
→hi(hi) for all i ∈ D and mMF

fPj
→hj(hj) for all j ∈ P using

(4.30) and (4.35) respectively. Repeat from step (3).

The algorithm runs until a stopping criterion is fulfilled. Selecting a good
stopping criteria is not an important objective of this project, so we choose
the simplest stopping criterion possible: The algorithm is terminated after
a fixed number of iterations have been completed. After completion hard
decisions are made on the beliefs of the information bits.
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CHAPTER 5
Message-Passing Receiver with

Sparse Channel Estimation

In this chapter a novel message-passing iterative receiver algorithm with
sparse channel estimation is introduced. The key difference between this
algorithm and the one presented in the previous chapter is that it exploits
the sparsity of the channel. We pose the task of sparse channel estimation
as a compressed sensing problem and apply the methods of sparse Bayesian
learning (SBL) with hierarchical prior modeling to embed the problem into
the message-passing receiver framework. This enables a unified scheme
in which sparse channel estimation, detection and decoding is jointly per-
formed as message-passing on a factor graph representation of the system.

In Section 5.1 we define the dictionary required for the compressed sens-
ing problem and discuss the problem that arises from the fact that the
propagation delays of the multipath components are continuous valued while
employing a dictionary in which the delays are discretized. In Section 5.2,
5.3 and 5.4 we present the probabilistic model, its factor graph represen-
tation and the derivation of the messages respectively. Considerations on
the scheduling of the iterative algorithm are presented in Section 5.5. In
Section 5.6 we show how increasing the spacing between the pilots of the
OFDM system affects the dictionary of the compressed sensing problem.

5.1. Dictionary for Sparse Signal Representation

In the iterative receiver algorithm devised in the previous chapter we obtain
estimates (in the form of beliefs) of the frequency domain channel coeffi-
cients h as an integrated part of the inference scheme. We now investigate
an alternative approach for estimating h by exploiting the sparse structure
of the multipath channel model. To apply the sparse Bayesian learning
framework as described in Chapter 3 we need to define a dictionary matrix
Φ in which h has a sparse representation α.

Sparse channel estimation has previously been applied to estimate the
multipath OFDM-channel in [13, 18]. In [13] the optimization problem

31



Chapter 5. Message-Passing Receiver with Sparse Channel Estimation

is solved using greedy pursuit algorithms (Basis Pursuit and Orthogonal
Matching Pursuit) and [18] follows a Bayesian approach with hierarchical
prior modelling. In both cases only the pilot symbols are used for channel
estimation and therefore only the pilot symbol observations are used

yP = XPhP + wP (5.1)

where yP denotes the vector formed from the entries of y indexed by the
pilot indices P , and the remaining vectors are similarly defined. In [13] the
pilot symbols XP are included in the dictionary, whereas in [18] they are
divided out to obtain the ’modified’ observation model

rP = (XP)−1yP = hP + (XP)−1wP (5.2)

After obtaining the estimate of the pilot symbol channel coefficients hP the
estimate is interpolated to yield estimates of the data symbol channel coef-
ficients hD. However, as we want to investigate data-aided sparse channel
estimation this approach does not simplify the observation model. At the
receiver it is not possible to compute r = X−1y since the entries of X cor-
responding to data symbols are unknown and needs to be estimated. We
thus stick to the observation model in (2.2).

Following the notation in Section 2.2 we can represent the channel coef-
ficients h in (2.6) using a sum of parameterized vectors

h =
P∑
p=1

ψ(τp)βp (5.3)

where the column vectors ψ ∈ C(N+M)×1 are given by

ψ(τp) =


exp(−j2π∆fτp)
exp(−j2π2∆fτp)

...
exp(−j2π(N +M)∆fτp)

 (5.4)

We can then define the parameterized dictionary Ψ(τ ) as

Ψ(τ ) = (ψ(τ1),ψ(τ2), . . . ,ψ(τP )) (5.5)

and the channel coefficients are compactly written in matrix notation

h = Ψ(τ )β (5.6)

Each column in Ψ(τ ) thus corresponds to a specific tap delay and each row
corresponds to one subcarrier frequency.

However, the multipath delays τ are unknown and Ψ(τ ) can therefore
not be used as dictionary, because the standard CS framework presumes a
fixed dictionary [31]. Following the same approach as in [13, 18, 52, 53] we
employ a uniformly spaced grid of delays in the interval [0, . . . , τmax]

t = (t1, t2, t3, . . . , tL)T = (0, Td, 2Td, . . . , τmax)T (5.7)
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where τmax

Td
is an integer and Td is the delay resolution. The delay vector t

is thus of dimension L = τmax

Td
+ 1. The dictionary is then defined as Φ ∈

C(N+M)×L = Ψ(t). Using this dictionary we obtain an estimate ĥ = Φα̂,
where α̂ ∈ CL×1. Notice that since Φ is defined using discretized delays it
may not be possible to represent h as Φα for any P sparse α ∈ CL×1. In
other words, the observation model

y = XΦα+ w (5.8)

is an approximation of the true observation model (2.2).

5.1.1 Basis Mismatch

In this section we dwell on the problem of reconstructing a signal using one
dictionary (Φ = Ψ(t)) when the true signal has a sparse representation in
a different dictionary (Ψ(τ )). The purpose is to gain insight on how the
choice of delay resolution Td affects the ability to do reconstruction.

Using a dictionary for reconstruction that is different from the one that
has generated the signal can be considered as basis mismatch and is analyzed
in [54] with a focus on the discrete Fourier basis. The authors derive an
upper bound for the best P -term approximation error and a lower bound
for the worst-case best P -term approximation error in terms of the `1-norm,
i.e. bounds on

min
h′P∈{ΦαP | ||αP ||0≤P}

||h− h′P ||1 (5.9)

where h′P is a linear combination of P columns of Φ. However, the results
are only applicable to dictionaries of finite dimension and since our gener-
ating dictionary Ψ(τ ) is parameterized by a continuous-valued vector it is
not of finite dimension.

Different algorithms for estimating continuous-valued parameters within
the compressed sensing framework have been proposed in the literature.
These includes convex optimization methods in [53, 55], greedy pursuit al-
gorithms [52] and the Bayesian approach [56]. In [52,55,56] new algorithms
are developed for signals that are sparse in frequency domain. These re-
sults are also useful in this project, where we have sparsity in delay domain,
because of the duality of the Fourier transform.

A Bayesian approach to handle the problem of basis mismatch is to model
the difference between the true delays and the corresponding delays in the
dictionary as a uniform random variable, as done for frequency domain
mismatch in [56]. The dictionary is then conditioned on the displacement
d, i.e. Φ|d = Ψ(t + d) where d = (d1, . . . , dL)T is uniformly distributed
p(d) =

∏L
`=1 U(d`;−1

2
Td,

1
2
Td). However this approach does not lead to

analytically tractable pdfs and computationally heavy numerical methods
are applied to circumvent this [56]. In this project we therefore utilize the
fixed dictionary approach.
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5.1.2 Delay Resolution

As shown in [52] the reconstruction accuracy using standard greedy pur-
suit algorithms degrades significantly when the sinusoidal frequencies are
located outside the sampling grid and the performance does not increase
by increasing the resolution of the dictionary. This is caused by the fact
that a finer resolution also increases the coherence of the dictionary. As
shown in Appendix E the absolute inner product between two columns of
the dictionary is a function of the absolute difference in delay between the
columns. We have

|ψ(tk)
Hψ(t`)|

||ψ(tk)||2 ||ψ(t`)||2
=
|DN+M(2π∆f(tk − t`))|

N +M
(5.10)

where

DK(x) =
K−1∑
k=0

exp(jkx) =
sin(1

2
Kx)

sin(1
2
x)

exp
(
jxK−1

2

)
(5.11)

is the Dirichlet kernel [57]. The normalized inner product in (5.10) is plotted
as a function of the absolute delay difference |tk − t`| in Figure 5.1 for two
different numbers of subcarriers N+M . Notice how the rate of decay of the
envelope depends on the number of subcarriers, i.e. the system bandwidth.
To minimize the coherence of the dictionary one can choose Td = 1

∆f(N+M)
,

which makes the columns orthogonal to each other and Φ is thus formed
from the columns of a discrete inverse Fourier matrix. However, in this case
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Figure 5.1: Normalized correlation between two columns of the dictionary |ψ(tk)
Hψ(t`)|

||ψtk||2||ψ(t`)||2
as a function of their relative delay |tk − t`|.

h may not have a sparse representation in Φ. Furthermore, the approach
in [55] can be considered as using a fully coherent dictionary (µ(Φ) ≈ 1)
for reconstruction; however this fact was shown to not be an obstacle to
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recovery. In that case it is more important that the parameters of the
true signal are sufficiently separated [55]. Whether we can use coherent
dictionaries for reconstruction thus depends on the algorithm that is applied.
From (5.10), we see that for τmax ≤ 1

2∆f
and Td ≤ 1

2∆f(N+M)
the coherence

of the dictionary is

µ(Φ) =
|DN+M(2π∆fTd) |

N +M
(5.12)

This result will be used for comparison in the following.

We cannot hope to successfully apply a sparse reconstruction scheme if
the signal of interest h does not have a sparse representation in the dictio-
nary Φ. With h given in (5.6), let hP denote the best approximation of h
one can obtain from a linear combination of P columns of Φ, i.e.

hP = argmin
h′∈{Φα | ||α||0≤P}

||h− h′||2 (5.13)

As shown in Appendix F we can write an upper bound for the best P -term
approximation error as

||h− hP ||22
N +M

≤

(
1−

∣∣∣∣DN+M(π∆fTd)

N +M

∣∣∣∣2
)(

P∑
p=1

|βp|

)2

(5.14)

Even if the upper bound is loose we can still draw some conclusions from
it. Notice how the Dirichlet kernel of order N +M shows up here as in the
expression for coherence of the dictionary in (5.12). We can drive the upper
bound to zero by letting Td → 0 and thus get an arbitrarily low approxi-
mation error. It means that a sparse representation of h in Φ does exist if
the delay resolution is sufficiently fine. However, this leads to increased co-
herence (5.12) and maybe more importantly it increases the computational
complexity of the sparse reconstruction algorithm as the number of columns
L = 1 + τmax

Td
increases. The bound thus suggests that choosing the delay

resolution Td is a trade-off between the approximation error of the sparse
representation versus the coherence of the dictionary and the computational
complexity of the algorithm.

It is not required that a perfect sparse approximation exists, meaning
an approximation error of 0. Using the oracle estimator as a lower bound
(see Appendix G), we can not expect to obtain perfect estimates of h any-
way, because our observations are impaired by noise. The delay resolution
Td should thus be chosen such that the approximation error is small com-
pared to the lower bound of the estimation error. We can not derive a
perfect choice of Td using the bound (5.14), but it suggests that the choice
of Td should depend on the system bandwidth as the decay rate of the
Dirichlet kernel depends on the order as shown in Figure 5.1. When look-
ing at |DN+M(π∆fTd) | as function of Td the width of the main lobe is

1
∆f(N+M)

. For a certain trade-off between approximation error and compu-

tational complexity we can thus expect that Td ∝ 1
∆f(N+M)

, which implies
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Chapter 5. Message-Passing Receiver with Sparse Channel Estimation

that the number of columns L of the dictionary should be proportional to
the system bandwidth, i.e. L ∝ ∆f(N +M). This hypothesis is supported
by the numerical results in Chapter 6. If we consider the dictionary as an
oversampled discrete Fourier transform matrix this is equivalent to keeping
a constant oversampling factor.

5.2. Probabilistic Model

With the approximated observation model (5.8) we can now devise an it-
erative receiver with data-aided sparse channel estimation. The iterative
receiver presented in Chapter 4 is used as a base, as all the functionality
except the channel estimation part can be reused. As h is not directly
represented in the observation model (5.8) it is dropped from the system
function. Similar to (4.1) the system function factorizes as

p(y,xD,α, λ, c,u) = p(y|xD,α, λ)p(α)p(λ)p(xD|c)p(c|u)p(u) (5.15)

This resembles the factorization in (4.1) with h replaced by α. However, to
enforce sparse values of α, we model α using hierarchical priors and thus
include the hyper-parameters in the system function. To consider a very
general case we employ the three-layer hierarchical prior model introduced
in Chapter 3, hence the hyper-parameters γ and η must be included in the
system function

p(y,xD,α,γ,η, λ, c,u) =

p(y|xD,α, λ)p(α|γ)p(γ|η)p(η)p(λ)p(xD|c)p(c|u)p(u) (5.16)

The observations can be factorized as

p(y|xD,α, λ) = CN
(
y; XΦα, λ−1I

)
(5.17)

=
∏
i∈D

p(yi|xi,α, λ)
∏
j∈P

p(yj|α, λ) (5.18)

=
∏

i∈D∪P

CN(yi;xi [Φα]i , λ
−1) (5.19)

The channel and noise prior pdfs are given by

p(λ) = Ga(λ; a, b) =
ba

Γ(a)
λa−1 exp(−bλ) (5.20)

p(α|γ) = CN (α; 0,Γ) =
L∏
`=1

CN (α`; 0, γ`) (5.21)

p(γ|η) =
L∏
`=1

Ga (γ`; ε, η`) (5.22)

p(η) =
L∏
`=1

Ga (γ`; c, d) (5.23)
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Where Γ = diag(γ) is the diagonal matrix with the entries of γ on the
diagonal. The pmfs governing the modulation, interleaving and coding con-
straints p(xD|c), p(c|u) and p(u) are the same as in Section 4.1.

5.3. Factor Graph Representation

As in Section 4.2 we define local functions within three categories:

Observation Model

fDi(α, xi, λ) = p(yi|xi,α, λ) (5.24)

= CN(y; [Φα]ixi, λ
−1), i ∈ D (5.25)

fPj(α, λ) = p(yj|xj,α, λ) (5.26)

= CN(y; [Φα]jxj, λ
−1), j ∈ P (5.27)

Channel and Noise Prior

fα(α,γ) = p(α|γ) = CN(α; 0,Γ) (5.28)

fγ(γ,η) = p(γ|η) =
L∏
`=1

Ga (γ`; ε, η`) (5.29)

fη(η) = p(η) =
L∏
`=1

Ga (η`; c, d) (5.30)

fλ(λ) = p(λ) = Ga(λ; a, b) (5.31)

Coding and Modulation Constraints

fMn(xin , c
(n)) = p(xin|c(n)), n ∈ [1 : N ] (5.32)

fC(c,u) = p(c|u) (5.33)

fU(uk) = p(uk), k ∈ [1 : K] (5.34)

Note that the local functions (5.25) and (4.12) as well as (5.27) and (4.14)
are denoted by the same name even though they are different functions.
Their functional form is very similar and they play the same role in the
probabilistic model. The factorization of the system function is thus

p(y,xD,h, λ, c,u) =
∏
i∈D

fDi(α, xi, λ)
∏
j∈D

fPj(α, λ)

· fα(α,γ)fγ(γ,η)fη(η)fλ(λ)fC(c,u) ·
N∏
n=1

fMn(xin , c
(n))

K∏
k=1

fUk(uk) (5.35)

The factor graph representation of (5.35) is shown in Figure 5.2. Since
the observation functions fDi(α, xi, λ) and fDj(α, λ) depend on all α, it is
convenient to represent α as a single vector node. As in [18] we do not
factorize the pdfs of the hierarchical prior into several local functions. The
nodes fγ, fγ and fη are included in the MF part of the factor graph. In this
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Chapter 5. Message-Passing Receiver with Sparse Channel Estimation

case we get the same algorithm if we choose to represent every entry of γ
and η as single variable nodes and fully factorize fγ(γ,η) and fη(η). Using
the structured approach eases the notation in the following derivations.
Denoting the set of all factor nodes A, we thus have

AMF = {fDi |i ∈ D} ∪
{
fPj |j ∈ P

}
∪ {fα} ∪ {fγ} ∪ {fη} (5.36)

ABP = {A\AMF}
= {fλ} ∪ {fC} ∪ {fMn|n ∈ [1 : N ]} ∪ {fUk |k ∈ [1 : K]} (5.37)

Figure 5.2: Factor graph representation of the factorized system model with hierarchical
channel prior.

5.4. Computation of Messages

5.4.1 Channel Weights

Given the beliefs q(λ) and q(xi) for all i ∈ D we can compute

mMF
fDi
→α(α) ∝ exp

(
〈log fDi(α, xi, λ)〉q(xi) q(λ)

)
(5.38)

∝ exp
(〈
−λ|yi − [Φα]ixi|2

〉
q(xi) q(λ)

)
(5.39)

∝ exp
(
−〈λ〉q(λ)

(
|[Φα]i|2

〈
|xi|2

〉
q(xi)
− 2 Re

(
y∗i 〈xi〉q(xi) [Φα]i

)))
(5.40)

= exp
(
−〈λ〉q(λ)

(
|riα|2

〈
|xi|2

〉
q(xi)
− 2 Re

(
y∗i 〈xi〉q(xi) riα

)))
(5.41)
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for all i ∈ D, where ri ∈ C1×(N+M) is the ith row of Φ. Similarly we get

mMF
fPj
→α(α) ∝ exp

(〈
log fPj(α, λ)

〉
q(λ)

)
(5.42)

∝ exp
(
−〈λ〉q(λ)

(
|rjα|2|xj|2 − 2 Re

(
y∗jxjrjα

)))
(5.43)

for all j ∈ P . Given the belief q(γ) the message from the factor node fα
reads

mMF
fα→α(α) ∝ exp

(
〈log fα(α,γ)〉q(γ)

)
(5.44)

∝ exp
(
−αH

〈
Γ−1

〉
q(γ)

α
)

(5.45)

The belief q(α) is proportional to the product of the messages (5.41), (5.43)
and (5.45)

q(α) ∝ exp

(
−αH

(〈
N+M∑
i=1

[
rH
i ri|xi|2λ

]
+ Γ−1

〉)
α

)

· exp

(
〈λ〉 2

〈
N+M∑
i=1

Re(y∗i xiriα)

〉)
(5.46)

= exp
(
−αH

(
ΦH
〈
XHX

〉
Φ 〈λ〉+

〈
Γ−1

〉)
α+ 〈λ〉 2 Re(yH 〈X〉Φα)

)
(5.47)

∝ CN (α;µα,Σα) (5.48)

where

Σα =
(
ΦH
〈
XHX

〉∏
i∈D q(xi)

Φ 〈λ〉q(λ) +
〈
Γ−1

〉
q(γ)

)−1

(5.49)

µα = 〈λ〉q(λ) ΣαΦH 〈X〉H∏
i∈D q(xi)

y (5.50)

5.4.2 Noise Precision

The messages to the noise precision variable node are given by

mMF
fDi
→λ(λ) ∝ λ exp

(
−λ
〈
|yi − riαxi|2

〉
q(xi)q(α)

)
, ∀ i ∈ D (5.51)

mMF
fPj
→λ(λ) ∝ λ exp

(
−λ
〈
|yj − rjαxj|2

〉
q(α)

)
, ∀ j ∈ P (5.52)

mBP
fλ→λ(λ) ∝ λa−1 exp(−bλ) (5.53)

The belief q(λ) is the product of the messages (5.51), (5.52) and (5.53)

q(λ) ∝ λa+M+N−1 exp

(
−λ

(
b+

N+M∑
i=1

〈
|yi − xiriα|2

〉
q(α)

∏
i∈D q(xi)

))
(5.54)

∝ Ga
(
λ; a+M +N, b+

〈
||y −XΦα||22

〉
q(α)

∏
i∈D q(xi)

)
(5.55)

And the first moment is thus

〈λ〉q(λ) =
a+M +N

b+
〈
||y −XΦα||22

〉
q(α)

∏
i∈D q(xi)

(5.56)
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5.4.3 Data Symbols

Given q(α) and q(λ) we can compute the messages

mMF
fDi
→xi(xi) ∝ exp

(
〈log fDi(α, xi, λ)〉q(α),q(λ)

)
(5.57)

∝ exp
(
−〈λ〉q(λ)

〈
|yi − xiriα|2

〉
q(α)

)
(5.58)

∝ CN

(
xi; yi

(ri 〈α〉q(α))
∗

〈|riα|2〉q(α)

,
1

〈λ〉q(λ) 〈|riα|2〉q(α)

)
(5.59)

where 〈|riα|2〉q(α) = ri
(
Σα + µαµ

H
α

)
rH
i for all i ∈ D. As in Chapter 4 the

beliefs q(xi) are thus given by

q(xin) ∝ mBP
fMn→xin (xin) ·mMF

fDin
→xin (xin) ∀n ∈ [1 : N ] (5.60)

5.4.4 Hyper-Parameters

The messages to variable node γ are

mMF
fα→γ(γ) ∝ exp

(
〈log fα(α,γ)〉q(α)

)
(5.61)

∝
L∏
`=1

γ−1
` exp

(
−γ−1

`

〈
|α`|2

〉
q(α)

)
(5.62)

mMF
fγ→γ(γ) ∝

L∏
`=1

γε−1
` exp

(
−〈η`〉q(η) γ`

)
(5.63)

Computing the product of the messages yields

q(γ) ∝
L∏
`=1

γε−2
` exp

(
−γ−1

`

〈
|α`|2

〉
q(α)
− γ` 〈η`〉q(η)

)
(5.64)

The belief q(γ) is thus a product of generalized inverse Gaussian pdfs [58]
of order p = ε− 1. The moments for any n ∈ R are given by [58]

〈γn` 〉q(γ) =

(
〈|α`|2〉q(α)

〈η`〉q(η)

)n
2 Kp+n

(
2
√
〈η`〉q(η) 〈|α`|2〉q(α)

)
Kp

(
2
√
〈η`〉q(η) 〈|α`|2〉q(α)

) (5.65)

where Kν(·) is the modified Bessel function of the second kind with order
ν ∈ R. In a practical implementation it may be inconvenient to evaluate
the modified Bessel function. To avoid this we can restrict the belief of γ to
a Dirac delta function at the mode of (5.64), hence obtain EM type updates
for q(γ)

qEM(γ) =
L∏
`=1

δ(γ` −D`) (5.66)

40



Section 5.4. Computation of Messages

where

D` =
(ε− 2) +

√
(ε− 2)2 + 4 〈η`〉q(η) 〈|α`|2〉q(α)

2 〈η`〉q(η)

(5.67)

Finally the messages to the variable node η are given by

mMF
fγ→η(η) ∝

L∏
`=1

ηε` exp
(
−η`(〈γ`〉q(γ))

)
(5.68)

mMF
fη→η(η) ∝

L∏
`=1

ηc−1
` exp(−η`d) (5.69)

The belief q(η) is obtained by computing the product of the messages (5.68)
and (5.69)

q(η) ∝
L∏
`

ηε+c−1
i exp

(
−η`

(
〈γ`〉q(γ) + d

))
(5.70)

The belief q(η) is thus a product of L gamma pdfs. The first moment is
computed as

〈η`〉q(η) =
ε+ c

〈γ`〉q(γ) + d
(5.71)

The messages for the modulation, interleaving and coding subgraphs are
computed as in Section 4.4.

5.4.5 Using Pilots Only

For comparison we want to investigate a similar algorithm in which only
the pilot symbols are used for sparse channel estimation as in [13,18]. The
algorithm in [18] uses the same hierarchical prior model (three-layer version)
as presented here and we thus obtain a very similar algorithm. It is obtained
from the graphical model presented in this chapter, simply by replacing the
messages mMF

fDi
→α and mMF

fDi
→λ for all i ∈ D with constant messages. The

update expressions for the parameters (Σα,µα) of q(α) can be obtained
from (5.49) and (5.50) by setting 〈xi〉q(xi) = 〈|xi|2〉q(xi) = 0 for all i ∈ D,
which is equivalent to

ΣPα =
(
ΦH
PXH

PXPΦP 〈λ〉q(λ) +
〈
Γ−1

〉
q(γ)

)−1

(5.72)

µPα = 〈λ〉q(λ) ΣPαΦH
PXH

PyP (5.73)

where ΦP is the matrix consisting of the rows of Φ indexed by P , yP is the
column vector with the entries of y that corresponds to P and XP is the
diagonal matrix consisting of the diagonal entries of X indexed by P . In
addition the belief q(λ) becomes

qP(λ) = Ga
(
λ;M + a, b+

〈
||yP −XPΦPα||22

〉
q(α)

)
(5.74)
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We also employ channel estimation using only the pilot symbols in the first
iteration of the data-aided receiver algorithm, because no feedback from the
modulation and coding part is available in this iteration.

5.5. Iterative Algorithm and Scheduling

The initialization and scheduling of messages are also important design
parameters when using a hierarchical prior model. We propose the following
scheme

1) If λ is unknown initalize 〈λ〉q(λ) using a heuristic scheme.

2) Initialize 〈Γ−1〉q(γ) and 〈η`〉q(η) for all ` ∈ [1 : L].

3) Set 〈xi〉q(xi) = 〈|xi|2〉q(xi) = 0 for all i ∈ D.

4) Perform several sub-iterations to update beliefs of the hierarchical prior
model:

a) Update belief q(α) using (5.49) and (5.50).

b) Update belief q(γ) and compute 〈γ〉q(γ) and 〈γ−1〉q(γ) using either
(5.65) or (5.66) (EM update).

c) Update belief q(η) and compute 〈η〉q(η) using (5.71).

d) If λ is unknown, update q(λ) and compute 〈λ〉q(λ) using (5.56).

5) Compute the messages mMF
fDi
→xi(xi) for all i ∈ D using (5.59).

6) Compute one iteration of the modulation, interleaving and coding sub-
graph yielding the belief of the information bits q(uk) for all k ∈ [1 : K].
Terminate the algorithm if the stopping criterion is fulfilled.

7) Using the messages from the subgraph
{
n
c
(n)
l →fMn

(c
(n)
l )| l ∈ [1 : Q], n ∈ [1 : N ]

}
as extrinsic values compute mfMn→xin (xin) for all n ∈ [1 : N ] using
(4.66).

8) Update q(xi) for all i ∈ D using (5.60).

9) Proceed from step (4).

Again, the first step is to update the channel estimate, which ultimately
means the belief q(α). Setting 〈xi〉q(xi) = 〈|xi|2〉q(xi) = 0 for all i ∈ D
corresponds to only using the pilot symbols for channel estimation in the
first iteration. The hierarchical model implies that it may be beneficial to
do several iterations within the channel estimation subgraph (step (4)) in
between updating the beliefs of the modulation, interleaving and coding
subgraph. In the simulations in Section 6.3 we use 20 iterations in the
channel estimation sub-graph within the first outer iteration and 5 itera-
tions for every following outer iteration. The idea is to first obtain a fairly

42



Section 5.6. Pilot Spacing

accurate estimate of the channel using pilots only before including the data
to refine this estimate. The number of iterations using pilots only should
not be so high that the estimate can not be refined, for example we want
to avoid that several of the weights α and the hyper-parameters γ and η
are being ‘pruned’ from the model before including the data in the channel
estimation.

Pruning is a detail in the implementation in which columns of the dic-
tionary Φ as well as the corresponding entries of γ, η and α are ‘erased’.
This is necessary in order to avoid ill-conditioning of the matrix inversion in
(5.49), see for example [16, appendix B]. In our implementation we prune
the parameters corresponding to index i when

〈
γ−1
i

〉
> 1

100ε
where ε is the

machine precision (ε ≈ 2.22 · 10−16 in the Matlab implementation). In ad-
dition to avoiding numerical problems, pruning reduces the computational
complexity of the later iterations as the number of columns in Φ decreases.

Because we are using a hierarchical prior model, we also need initial set-
tings of 〈Γ−1〉q(γ) and 〈η`〉q(η). Note, that when using the two-layer model
the belief of η is not updated, but fixed to an initial value. When using
pilots only in all iterations we do not utilize the messages from the modula-
tion, interleaving and coding subgraph and there is thus no need to iterate
between this subgraph and the channel estimation subgraph.

5.6. Pilot Spacing

In Subsection 5.4.5 we have particularized our proposed receiver to a receiver
algorithm using only the pilot symbols for channel estimation. We now
investigate how the pilot spacing affects the dictionary of the compressed
sensing problem.

Similar to the analysis of the correlation between the columns of the
dictionary in the discussion of delay resolution in Section 5.1.2 we can de-
rive an expression for the correlation between two columns of the reduced
dictionary as shown in Appendix E. By reduced dictionary we mean the
matrix ΦA that is the concatenation of every Ath row from the original
dictionary Φ. This corresponds to the dictionary used when using evenly
spaced pilots, i.e. P = [1, 1+A, 1+2A . . . , dN+M

A
e]. From (E.12) we see that

for |tk − t`| = [ 1
∆fA

, 2
∆fA

, . . .] the normalized absolute correlation between
the two columns corresponding to tk and t` will be 1. This is illustrated in
Figure 5.3 for different values of the pilot spacing A.

When increasing A we obtain that columns of the dictionary correspond-
ing to completely different path delays become fully correlated. The number
of observations is insufficient to distinguish between the channel’s multipath
components with different path delays and in this case we do not expect
the compressed sensing recovery algorithms to be successful. If the max-
imum multipath delay τmax is small, a larger pilot spacing A can be used
before this problem of ambiguity arises. For example using A = 10 with
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τmax = 5.2 µs we do not see this problem, as illustrated with the solid line
on Figure 5.3.
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Figure 5.3: Normalized correlation between two columns of the reduced dictionary
|ψA(tk)

HψA(t`)|
||ψAtk||2||ψA(t`)||2

as a function of their relative delay |tk−tl|. The reduced dictionary con-

sists of every Ath row of the original dictionary. The number of subcarriers N+M = 600
and |tk − tl| ∈ (0, τmax = 5.2 µs).
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CHAPTER 6
Performance Evaluation

To evaluate the performance of the proposed receiver with sparse chan-
nel estimation we perform a number of simulations using the developed
OFDM simulation framework described in Appendix H. Direct comparison
is made with the more conventional iterative receiver described in Chap-
ter 4. To distinguish between the two receiver schemes we (with abuse of
notation) refer to the receiver exploiting the sparse channel assumption as
the ‘sparsity-aware receiver’ and to the receiver devised in Chapter 4 as the
‘frequency-domain receiver’.

In Section 6.1 we discuss the channel models used for the simulations
and their relation to the choice of covariance matrix for the prior of the
channel coefficients h used by the receiver in Chapter 4. The details of
the algorithms we evaluate are given in Section 6.2 followed by simulation
results for different scenarios in Section 6.3.

6.1. Channel Model

To perform simulations of the devised receiver algorithms we need an ap-
propriately defined channel model. We consider two different methods for
specifying the characteristics of the multipath channel model introduced in
Section 2.2. The first method suits the standardized 3GPP LTE reference
channel models [10] and the second method is the exponentially decaying
channel model used in e.g. [18, 59].

6.1.1 3GPP Channel Models

Returning to the multipath channel (2.6) and following the notation of
Section 2.2, the 3GPP LTE reference channels directly specifies the delays
τ = (τ1, · · · , τP )T and the average powers s = (σ2

1, · · · , σ2
P )T of each multi-

path component, thus p(β) = CN (β; 0,Σβ) with Σβ = diag(s). The power
delay profiles for the channel models are shown in Table 6.1. Given τ and s
each hi is a sum of independent Gaussian random variables, hence hi is also
Gaussian distributed. In the following we compute the mean and covariance
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p τp [ns] σ2
p [dB]

1 0 0.0
2 30 -1.0
3 70 -2.0
4 90 -3.0
5 110 -8.0
6 190 -17.2
7 410 -20.8

(a) EPA

p τp [ns] σ2
p [dB]

1 0 -0.0
2 30 -1.5
3 150 -1.4
4 310 -3.6
5 370 -0.6
6 710 -9.1
7 1090 -7.0
8 1730 -12.0
9 2510 -16.9

(b) EVA

p τp [ns] σ2
p [dB]

1 0 -1
2 50 -1
3 120 -1
4 200 0
5 230 0
6 500 0
7 1600 -3
8 2300 -5
9 5000 -7

(c) ETU

Table 6.1: Power delay profiles of the 3GPP channel models Extended Pedestrian A
(EPA), Extended Vehicular A (EVA) and Extended Typical Urban (ETU) [10].

of h. Each βp is independent of the others and has zero mean, therefore

〈hi〉 =
P∑
p=1

〈βp〉 exp(−j2π∆fτpi) = 0, i ∈ [1 : M +N ] (6.1)

The entries of the covariance matrix of h are thus given by

[Σh]i,k = 〈hih∗k〉 (6.2)

=
P∑
p=1

P∑
q=1

〈
βpβ

∗
q

〉
exp(−j2π∆f(τpi− τqk)) (6.3)

=
P∑
p=1

σ2
p exp(−j2π∆fτp(i− k)) (6.4)

for all i, k ∈ [1 : M + N ]. Using the parametric matrix description in
(5.6) (h = Ψ(τ )β) and by using that a linear transformation of a complex
Gaussian random vector is also complex Gaussian [60, appendix 15B], we
obtain

h ∼ CN
(
h; 0,Ψ(τ )ΣβΨ(τ )H

)
(6.5)

Since rank(Σβ) = P we have that rank(Ψ(τ )ΣβΨ(τ )H) ≤ P . For the
sparse channel models with fixed delays we have N +M > P , and h is thus
a degenerate multi-variate complex Gaussian random variable.

The 3GPP channel models are used as reference to ease comparison with
other receivers in the literature. However, it is not a realistic assumption
that the delays of the multipath components are fixed. If the implemented
algorithms were only tested against these channel models, one could unin-
tentionally exploit the specific configuration of the parameters. This mo-
tivates us to additionally consider other multipath channel models with a
higher degree of uncertainty in the parameters.
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6.1.2 Exponentially Decaying Power Delay Profile

As opposed to the 3GPP channel models, we will now also model the num-
ber of multipath components and the delays as random variables. Similar
to the approach in [18,59] we employ an exponentially decaying power delay
profile, where the number of taps and the tap delays are unknown. It is
assumed that we know the maximum tap delay τmax. This assumption is
justified as the cyclic prefix needs to be dimensioned such that the multi-
path components extending beyond the cyclic prefix length are insignificant
to avoid inter-symbol-interference. We write the pdf of the unknown pa-
rameters as

p(β, τ , P ) = p(β|τ )p(τ |P )p(P ) (6.6)

where P is a discrete, positive random variable with mean µP , p(τ |P ) is
the product of P continuous uniform pdfs over the interval (0; τmax) and

p(β|τ ) =
P∏
p=1

CN
(
βp; 0, u · exp

(
−τp
v

))
. (6.7)

The parameters u and v respectively govern the scale and decay rate of the
power delay profile. In a simulation setup realizations of h can be obtained
by drawing samples of the parameter P , then τ = (τ1, · · · , τP )T and β =
(β1, · · · , βP )T and finally applying equation (2.6). By letting v → ∞ a
flat power delay profile is obtained. Because of the more complicated joint
distribution (6.6) it is no longer straight-forward to determine the pdf of
the channel weights h. However, we can still determine the first and second
moments exactly. The mean of the channel weights is given by

〈hi〉 =

〈
P∑
p=1

〈
〈βp〉p(β|τ ) exp(−j2π∆fτpi)

〉
p(τ |P )

〉
p(P )

(6.8)

=

〈
P∑
p=1

〈0 · exp(−j2π∆fτpi)〉p(τ |P )

〉
p(P )

(6.9)

= 0 (6.10)

for all i ∈ [1 : M + N ]. The derivation of the covariance matrix for both
finite v and v →∞ is given in Appendix D. For finite v we get

[Σh]i,k =
1− exp

(
−τmax

(
1
v

+ j2π∆f(i− k)
))

v
(
1− exp

(
− τmax

v

)) (
1
v

+ j2π∆f(i− k)
) . (6.11)

and for v →∞

lim
v→∞

[Σh]i,k =
1− exp(−τmaxj2π∆f(i− k))

τmaxj2π∆f(i− k)
(6.12)

The receiver from Chapter 4 requires the prior of the channel coefficients
given as p(h) = CN (h; 0,Σh). Since we are using this receiver for compari-
son with the sparsity-aware receiver we employ the same channel assumption

47



Chapter 6. Performance Evaluation

(flat power delay profile and knowledge of τmax) 1, even though a different
channel model is used for the actual simulation. In this case (6.12) is used as
the covariance of the prior distribution. The flat power delay profile can be
considered as a ‘robust’ channel assumption when more detailed knowledge
of the channel statistics is missing [59,61].

In some scenarios we also employ the true covariance matrix (6.12) for
the prior distribution. However, even in this case the prior does not match
true distribution of h as the true distribution is not Gaussian when using the
exponential channel model. The mean and covariance of the prior matches
that of the true distribution, and the prior is thus a Gaussian approximation
of the true distribution. A histogram of a single frequency domain channel
coefficient h1 for two parameterizations of the exponential channel model is
shown in Figure 6.1. This numerical example shows that when the average
number of multipath components µP grows the Gaussian approximation is
more accurate.
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Figure 6.1: Normalized histograms for the real part of 50000 realizations of the channel
coefficient h1 using the exponentially decaying channel model where the number of mul-
tipath components P is Poisson distributed with mean µP , v = 1 µs, τmax = 5.2 µs and u
selected such that

〈
|h1|2

〉
= 1. The same result can be obtained for the imaginary part

of h1 and therefore we do not show this result. The solid black line shows the marginal
distribution of the coefficient h1 assumed by using the Gaussian prior.

In Figure 6.2 we plot complex magnitude of the frequency correlation
function |〈hih∗k〉| for the three different 3GPP power delay profiles as well as
the frequency correlation function for the exponentially decaying channel
model including its parameterization to the robust channel assumptions
(flat power delay profile). The assumption of a flat power delay profile
in delay domain translates into a frequency correlation function that is
decaying rapidly with frequency, i.e. it is assumed that the correlation

1In the sparse estimation algorithm the flat power delay assumption appears in the selection of the
parameters of the two-layer hierarchical prior distribution. For the two-layer model, selecting η` = η
for all ` ∈ [1 : L] gives the same prior distribution p(α`; ε, η`) for all the multipath components, which
corresponds to a flat power delay profile. In addition we also employ the same initialization of the beliefs〈
γ−1
`

〉
q(γ)

for all ` ∈ [1 : L].
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between subcarriers is much lower than it is according to the other channel
models.
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Figure 6.2: Frequency correlation function for the different 3GPP channels and the
exponential model (with v = 1 µs) and the robust channel assumption (v → ∞), in both
cases τmax = 5.2 µs.

6.1.3 Signal-to-noise Ratio

For simulation purposes it is important to be able to control the signal-to-
noise ratio (SNR) the receiver is operating in. From the observation model
(2.2) we write the average SNR as

SNR =

〈
||Xh||22

〉〈
||w||22

〉 (6.13)

=

〈
hHXHXh

〉
λ−1(M +N)

(6.14)

=
trace

(〈
hHXHXh

〉)
λ−1(M +N)

(6.15)

=
trace

(〈
XHXhhH

〉)
λ−1(M +N)

(6.16)

=
trace

(〈
XHX

〉 〈
hhH

〉)
λ−1(M +N)

(6.17)

=

∑M+N
i=1 〈|xi|2〉 [Σh]i,i
λ−1(M +N)

(6.18)

Without loss of generality we can choose to normalize the diagonal elements
of Σh. In case the channel is modelled by a fixed number of multipath com-
ponents with known average power as in (6.4) the normalization is obtained
with

∑P
p=1 σ

2
p = 1. For the exponential channel model the normalization is

shown in Appendix D. If we further choose the modulation alphabets SD

and SP such that the modulation symbols have unit average power the SNR
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expression simplifies to

SNR = λ. (6.19)

Choosing the modulation alphabets to achieve this can in general be com-
plicated. However, if u is generated from a binary symmetric source (a
good assumption when source coding is employed) we can expect the code-
words c to be equiprobable, hence also the modulation symbols due to the
one-to-one and onto mapping M(·).

6.2. Evaluated Algorithms

For the sparsity-aware receiver we use the two-layer version of the hierarchi-
cal prior model in all simulations as previous results [33, 48] indicates that
the two-layer version has faster convergence and often equivalent estimation
accuracy as its three-layer counterparts. Optimal settings for the parame-
ters ε and η of the hierarchical prior depend on the scenario. Some initial
simulations show that setting ε = 1 and η` = 1 ∀ ` ∈ [1 : L] gives good
results for the scenarios considered here and this setting of the parameters
is thus used throughout all the simulations. The parameters have thus been
coarsely tuned to the scenario. Furthermore we use the EM type update
(5.66) for the belief q(γ) to avoid the evaluation of the Bessel function.
The algorithm proceeds as described in Section 5.5 with the initialization〈
γ−1
`

〉
q(γ)

= 1. The first time channel estimation is performed 20 iterations

of the channel estimation subgraph are computed (step (4) using pilots
only), while in every following iteration 5 iterations are performed in the
subgraph.

We include the oracle estimator as described in Appendix G as a refer-
ence, as it is often used as a lower bound for the estimation error of sparse
estimators [62]. Using the oracle estimator we obtain a point estimate ĥ,
compute mMF

fDi
→xi(xi) for all i ∈ D and perform 5 iterations of the modula-

tion, interleaving and coding part of the receiver.

For comparison we include the receiver devised in Chapter 4, both with
pilots only and data-aided channel estimation. This receiver needs the prior
covariance matrix Σh of the channel weights h. Using a flat power delay
profile and knowledge of the maximum propagation delay τmax we get the
covariance matrix in (6.12). The receiver based on these assumptions is in
the following referred to as the ‘robust’ receiver. In addition we include
a reference receiver with perfect knowledge of the channel’s second-order
statistics. That is, it uses the exact covariance matrix for the prior pdf of
h, given in (6.11) for the exponential channel model and in (6.4) for the
3GPP channel models.

In all simulation scenarios it is assumed that the noise precision λ is
unknown and it is initialized as the inverse of the sample variance as in
[18], i.e. 〈λ〉q(λ) = N+M−1

||y−ȳ||2 . In all algorithms the parameters of the prior
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p(λ; a, b) = Ga (λ; a, b) are set to a = b = 0, which corresponds to the
(improper) Jeffrey’s prior p(λ) ∝ 1

λ
[63].

6.3. Numerical Results

Some parameters of the OFDM simulation scenario are fixed throughout
all of the following simulations. These parameters are summarized in Table
6.2. In the simulations of the exponential channel model the number of
multipath components P is sampled from a Poisson distribution with mean
µP = 10 if not otherwise specified.

CP length (τmax) 5.2 µs
Subcarrier spacing (∆f) 15 kHz

Pilot pattern Equally spaced, QPSK
Data modulation order 16 QAM

Code rate (R) 1
2 , (Polynomial: [13, 15]8)

Noise precision (λ) Estimated

Table 6.2: Common simulation parameters for all simulated scenarios.

6.3.1 Sufficient Delay Resolution

The analysis of the design of the dictionary in Section 5.1, suggested that
the number of columns L of the dictionary Φ should be proportional to the
system bandwidth ∆f(N + M). Using the parameters in Table 6.3 the
mean squared error (MSE) of the channel estimate ĥ = Φ 〈α〉q(α) is plotted
versus number of columns for different number of subcarriers in Figure 6.3.
In all three plots there is a clear transition after which the MSE of the

Pilot Spacing 10
Average SNR 30 dB

Channel model Exp. decay, µP = 10, v = 1 µs

Table 6.3: Simulation parameters for the scenario in which the MSE of the channel
estimate is plotted versus the number of columns of the dictionary for different number
of subcarriers (N +M).

channel estimate no longer decreases by increasing the number of columns
(decreasing Td). The point of the transition is independent of whether we
use pilots only or include data in the channel estimation, i.e. the required
delay resolution does not depend on the number of observations available
to the sparse estimator.

51



Chapter 6. Performance Evaluation

1020304050 100 150 200
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

No. Columns in Φ

M
S
E

o
f
C
h
a
n
n
e
l
E
s
t
.:

||h
−
ĥ
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Figure 6.3: MSE versus number of columns L of the dictionary Φ for different number
of subcarriers N +M .

6.3.2 Performance versus SNR with Different Channel Models

An important figure of merit for any communication system is the BER
versus the SNR. Using the simulation parameters in Table 6.4 and four
different channel models (exponential, ETU, EPA, EVA) the BER versus
SNR is plotted in Figure 6.4.

For all the 3GPP channel models the BER obtained using the oracle
estimator and the estimator of the frequency-domain coefficients h using
the exact covariance matrix coincide. For the exponential channel model
the oracle estimator outperforms the other algorithms, but the BER of the
data-aided sparse channel estimation algorithm follows that of the oracle
estimator closely. It even outperforms the receiver with frequency-domain
estimation using the exact covariance matrix by a small margin (less than
1 dB). In general we notice a significant decrease in BER when including

Pilot Spacing 10
No. subcarriers (N +M) 600

No. columns in Φ (L) 300

Table 6.4: Simulation parameters used in the evaluation of the performance of the
different receiver schemes versus SNR.
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Figure 6.4: BER of the different receiver schemes versus SNR in different 3GPP chan-
nel models and the exponential channel model.

the soft data information in the channel estimation. For the sparsity-aware
algorithm the improvements is approximately 2.5 dB, while for the robust
receiver inclusion of the data is crucial for acceptable BER, especially at
high SNR.

When using the exponential channel model, the data-aided robust re-
ceiver shows the same performance as the receiver with knowledge of the
exact covariance matrix. By including soft data estimation in the channel
estimation the robust receiver is able to compensate for the mismatch be-
tween the assumed and true covariance2. To limit the number of simulation
scenarios we only use the exponential channel model in all of the following
simulation scenarios.

2for all the 3GPP channel models it is noticed in Figure 6.4 that the BER curve for the robust data-
aided receiver indicates an ‘error floor’, i.e. the curve flattens for high SNR. Further investigations have
shown that this algorithm has slow convergence and needs more iterations in high SNR. For an average
SNR of 20 dB it has not converged within the 20 iterations after which the algorithm is terminated. We
expect that the BER curves of this algorithm would follow the same trend as in Figure6.4a if it had
run until convergence. When using the exponential channel model or lower average SNR the algorithm
reaches convergence.
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Pilot Spacing 10
No. subcarriers (N +M) 600

No. columns in Φ (L) 300
Average SNR 20 dB

Channel model Exp. decay, P fixed, v = 1 µs

Table 6.5: Simulation parameters used in the evaluation of the performance of the
different receiver schemes versus the sparsity of the channel.

6.3.3 Robustness to Non-sparse Channels

As shown above the sparsity-aware receiver successfully exploits the sparsity
of the channel and outperforms the robust receiver, that does not exploit
the sparsity of the channel. A question that naturally arises is how sparse
the channel should be in order to exploit the sparsity and will the receiver
algorithm that assumes sparsity fail if the channel is not sparse? To an-
swer these questions we evaluate the performance of the different receiver
algorithms in channels with different levels of sparsity. We employ the expo-
nentially decaying channel but now fix the number of multipath components
P = [1, 5, 10, 15, 25, 50, 100, 200]. The remaining simulation parameters are
found in Table 6.5.
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Figure 6.5: BER and MSE performance of the different receivers versus number of
multipath components in the channel’s impulse response. Note that the legend on (a) is
also valid for (b).

The BER and MSE of the channel estimate are plotted versus the num-
ber of multipath components in Figure 6.5. Looking at the MSE of the
channel estimate it is noticed that when the channel has only one mul-
tipath component the sparsity-aware algorithms outperform the receiver
algorithms that do not exploit the sparsity, but the difference in BER is

small. With less components the SNR
||Xh||22
||w||22

fluctuates more between each

channel realization, which may lead to higher BER. When the number of
multipath components increases the performance of the data-aided sparsity-
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aware receiver is similar to that of the receiver with knowledge of the exact
covariance matrix. It outperforms the data-aided robust algorithm in terms
of BER. This result shows that even for channels with many multipath
components there is not a significant penalty in terms of BER by assuming
that the channel is sparse. It is expected however, that this result will de-
pend on the choice of prior parameters ε,η that controls the sparsity of the
estimates of α as discussed in Section 3.2.

6.3.4 Reducing the Number of Pilot Symbols

When performing data-aided channel estimation we can consider the data
symbols as ‘pseudo-pilots’, as they play the same role as the pilots symbols
in channel estimation, but there is a higher degree of uncertainty associated
with the data symbols. This interpretation of data-aided channel estima-
tion suggests that the number of true pilot symbols can be reduced while
retaining the same performance. To test this hypothesis we perform a num-
ber of simulations with different pilot spacings. The remaining simulation
parameters are fixed to the values shown in Table 6.6.The BER curves for

No. subcarriers (N +M) 600
No. columns in Φ (L) 150

Average SNR 20 dB
Channel model Exp. decay, µP = 10, v = 1 µs

Table 6.6: Simulation parameters used in the evaluation of the performance of the
different receiver schemes versus the number of pilot symbols.

this scenario are shown in Figure 6.6. There is a transition in the BER by
increasing the pilot spacing from 10 to 14 subcarriers. This is the range
in which columns of the reduced dictionary, corresponding to completely
different multipath delays, start becoming fully correlated as discussed in
Section 5.6. For the sparse channel estimation scheme based on pilots only
the transition is sharper than for the data-aided channel estimation scheme
as the interpretation of the data symbols as ‘pseudo-pilots’ suggested.

With high spacing between pilots the channel estimation scheme with
knowledge of the exact covariance matrix outperforms the other schemes.
The algorithms based on the robust channel assumption assume that the
correlation between the frequency domain channel coefficients h is much
lower than it actually is as depicted in Figure 6.2.

There is a big gap in the BER performance between the receiver al-
gorithm based on the robust assumption and the one using the exact co-
variance matrix in scenarios with high pilot spacing. This motivates an
investigation of whether incorporating knowledge of the channel’s second-
order statistics into the sparse channel estimation scheme will lead to an
improvement of the same magnitude. One approach would be to adjust the
parameters of the hierarchical prior model such that the second moment of
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Figure 6.6: BER for the different receiver schemes versus the pilot spacing.

the marginal prior distribution (p(α; ε,η) in the two-layer case) matches
the power delay profile of the channel, instead of employing the flat power
delay profile assumption (η` = η ∀ `).
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CHAPTER 7
Reducing Complexity of

Channel Estimation

In this chapter we propose two methods for reducing the computational
complexity of the channel estimation task of the iterative receivers pre-
sented in Chapter 4 and 5 respectively. We first identify the dominating
complexity of both receivers in Section 7.1. Then we propose partial data-
aided receivers in Section 7.2, i.e. receivers that do not utilize the soft
estimates of all data symbols for channel estimation. A different method
is presented in Section 7.3 in which the generalized mean field approxima-
tion is employed to reduce the computational complexity. This method also
applies to both receiver schemes. The performance of the low-complexity
receivers is assessed through Monte Carlo simulations in Section 7.4.

7.1. Computing the Matrix Inverse

The computational complexity of both receiver algorithms is dominated by
computation of the belief of the channel weights (q(h) and q(α) respec-
tively). Therefore the methods we propose seek to reduce the complexity of
these particular computations. Each section in the following has a subsec-
tion dealing with the update of q(h) for the receiver in Chapter 4 and then
a subsection dealing with the update of q(α) for the receiver in Chapter 5.

7.1.1 Frequency Domain Channel Coefficients

For the receiver in Chapter 4 the operation with highest complexity is the
computation of the beliefs q(hi) for i ∈ [1 : N+M ]. As explained in Section
4.4 it requires inversion of the matrix (4.53) of dimension (N+M)×(N+M)
with complexity O ((N +M)3).
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7.1.2 Delay Domain Channel Weights

For the belief q(α) the critical computations (5.49), (5.50) are

Σα =
(
ΦH
〈
XHX

〉∏
i∈D q(xi)

Φ 〈λ〉q(λ) +
〈
Γ−1

〉
q(γ)

)−1

(7.1)

µα = 〈λ〉q(λ) ΣαΦH 〈X〉H∏
i∈D q(xi)

y (7.2)

As common practice we consider computing the matrix inverse of the L×L
matrix in (7.1) as an operation of complexity O(L3), even though an algo-
rithm of complexityO(L2.373) exists [49]. Likewise computing ΦH

〈
XHX

〉∏
i∈D q(xi)

Φ

is an operation of complexity O(L2(N+M)). If (N+M) < L it is beneficial
to apply the Woodbury matrix inverse formula in appendix C.6 to obtain

Σα =
〈
Γ−1

〉−1−
〈
Γ−1

〉−1
ΦH
(
〈λ〉−1 〈XHX

〉−1
+ Φ

〈
Γ−1

〉−1
ΦH
)−1

Φ
〈
Γ−1

〉−1

(7.3)
which reduces the size of the matrix to be inverted to dimension (N +
M)× (N +M). In turn we need to compute Φ 〈Γ−1〉−1

ΦH with complexity
O ((N +M)2L). Thus if L > (N + M) we use (7.3) and the complexity
is O ((N +M)2L) and if L ≤ (N + M) we use (7.1) and the complex-
ity is O (L2(N +M)). The operation of updating the belief q(α) is thus
min(O(L2(N +M)),O(L(N +M)2)).

Computing 〈λ〉q(λ) in (5.56) is also of high complexity for the sparse
estimation algorithm, because it requires evaluation of the term〈

||y −XΦα||22
〉
q(α)

∏
i∈D q(xi)

(7.4)

It can be written as〈
||y −XΦα||22

〉
=

N+M∑
i=1

|yi|2 +
〈
|xi|2

〉
ri
〈
ααH

〉
rH
i − 2 〈Re(y∗i xiriα)〉

=
N+M∑
i=1

|yi|2 +
〈
|xi|2

〉
ri
(
Σα + µαµ

H
α

)
rH
i − 2 Re(y∗i 〈xi〉 riµα)

=
N+M∑
i=1

|yi|2 +
〈
|xi|2

〉 (
riΣαrH

i + ||riµα||22
)
− 2 Re(y∗i 〈xi〉 riµα)

(7.5)

where ri is the ith row of Φ and the total complexity is thus O(L2(N+M)).
A similar computation is needed for computing the messages mMF

fDi
→xi(xi)

for all i ∈ D, which is of complexity O(L2N). The per-iteration complexity
of the sparse channel estimation algorithm is thus O(L2(N +M)).

7.2. Partial Data-Aided Channel Estimation

In a conventional receiver often only the pilot symbols are utilized for es-
timating the channel. The receivers proposed in Chapter 4 and 5 are fully
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data-aided, i.e. the beliefs of all data symbols (q(xi) for all i ∈ D) are used
in the channel estimation of the receiver. It is easy to imagine a hybrid
scheme between pilot-only channel estimation as in [13, 18] and fully data-
aided channel estimation. In the following we investigate how such a hybrid
scheme influences the computational complexity of the two receivers.

Denote the set of indices of data symbols we want to use for channel
estimation F ⊆ D. The special case F = ∅ is the pilot-only scheme and
F = D is the fully data-aided scheme presented in the previous chapters.

7.2.1 Frequency Domain Channel Coefficients

Referring to the factor graph representation of the receiver in Figure 4.1
we want to eliminate the contribution of the messages {mMF

fDi
→hi(hi) | i ∈

{D\F}} and {mMF
fDi
→λ(λ) | i ∈ {D\F}} to channel and noise precision esti-

mation, respectively. This is achieved heuristically by forcing these messages
to be constant. To keep the same functional form as the original messages,
we formulate these constant messages as complex normal with zero mean
and infinite variance, i.e.

mMF
fDi
→hi(hi) ∝ CN

(
hi;µhoi , σ

2
hoi

)
(7.6)

where

µhoi =
yi 〈xi〉∗q(xi)
〈|xi|2〉q(xi)

, σ2
hoi

=
1

〈λ〉q(λ) 〈|xi|2〉q(xi)
, ∀ i ∈ {F} (7.7)

µhoj = 0, σ2
hoj

=∞, ∀ j ∈ {D\F} (7.8)

As in Chapter 4 Σo
h = diag

[(
σ2
hoi
|i ∈ [1 : N +M ]

)]
and the required com-

putation is

Σq
h =

(
(Σh)−1 + (Σo

h)−1
)−1

(7.9)

µqh = Σq
h (Σo

h)−1µoh (7.10)

where Σh is the prior covariance matrix of the channel coefficients h. The
following toy example demonstrates how this ‘elimination’ of messages re-
duces the computational complexity.

Say D = {1, 3, 4}, P = {2} and F = {4}. We can write (Σo
h)−1 using its
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compact singular value decomposition (SVD)

(Σo
h)−1 =


0 0 0 0
0 1

σ2
ho2

0 0

0 0 0 0
0 0 0 1

σ2
ho4

 (7.11)

=


0 0
1 0
0 0
0 1


 1

σ2
ho2

0

0 1
σ2
ho4

(0 1 0 0
0 0 0 1

)
(7.12)

= UCV (7.13)

Without loss of generality we have in this example assumed that 1
σ2
ho2

>

1
σ2
ho2

. Inserting (7.13) into (7.9) and applying the Woodbury matrix inverse

formula (Appendix C.6) gives

Σq
h = Σh −ΣhU(C−1 + VΣhU)−1VΣh (7.14)

Due to the structure of U and V multiplication by these matrices can be
computed by indexing, i.e. in this example ΣhU is the concatenation of the
second and fourth columns of Σh, likewise VΣh is the concatenation of the
second and fourth rows of Σh.

The dimension of the matrix inverse is thus reduced from (N + M) to
(|F|+M). Computing Σq

h and µqh is thus of complexityO ((N +M)2 + (|F|+M)3).

To completely eliminate the influence of the data symbols that are not in
F , we also replace the messages mfDj

→λ(λ) for all j ∈ {D\F} by constant

messages. Denote C = P ∪ F and let yC be the column vector obtained
from the entries of y indexed by C and XC the diagonal matrix with the
entries of the diagonal of X indexed by C, the belief q(λ) becomes

qC(λ) = Ga
(
λ; |C|+ a, b+

〈
||yC −XChC||22

〉∏
i∈C q(hi)

)
(7.15)

and the computation of the parameters is of linear complexity in |C| and is
therefore not dominating.

As a side-note if the noise precision λ is known the entries of Σo
h cor-

responding to pilot symbols are constant with iterations and this can be
exploited to further reduce the complexity. If we write (Σo

h)−1 as the sum
of two diagonal matrices (Σo

h)−1 = (Σop
h )−1 + (Σod

h )−1, where (Σop
h )−1 con-

tains the entries corresponding to pilot symbols and (Σod
h )−1 the entries

corresponding to data symbols, using an SVD approach as shown above
with (Σod

h )−1 = ADB, the computation in each iteration becomes

Σq
h =

(
(Σh)−1 + (Σop

h )−1 + (Σod
h )−1

)−1
(7.16)

=
(
(Σh)−1 + (Σop

h )−1 + ADB
)−1

(7.17)

= G−GA(D−1 + BGA)−1BG (7.18)
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where G = ((Σh)−1 +(Σop
h )−1)−1 can be computed once, requiring a matrix

inversion of dimension M , and all subsequent updates requires a matrix
inversion (7.18) of dimension |F|.

7.2.2 Delay Domain Channel Weights

We now make a similar modification of the receiver that exploits the sparsity
of the channel. Referring to the factor graph representation in Figure 5.2 the
messages mMF

fDj
→α(α) for all j ∈ {D\F} are replaced by constant messages.

This corresponds to setting 〈xi〉q(xi) = 〈|xi|2〉q(xi) = 0 for all i ∈ {D\F}
in (7.1) and (7.2). Still denoting C = {P ∪ F} and let ΦC be the matrix
consisting of the rows of Φ indexed by C, the parameters of the belief
q(α) = CN (α;µα,Σα) are computed by

Σα =
(
ΦH
C
〈
XH
CXC

〉∏
i∈F q(xi)

ΦC 〈λ〉q(λ) +
〈
Γ−1

〉
q(γ)

)−1

(7.19)

µα = 〈λ〉q(λ) ΣαΦH
C 〈XC〉

H∏
i∈F q(xi)

yC (7.20)

Again we replace the messages mfDj
→λ(λ) for all j ∈ {D\F} by constant

messages. The belief q(λ) thus becomes

qC(λ) = Ga
(
λ; |C|+ a, b+

〈
||yC −XCΦCα||22

〉)
(7.21)

and the computational complexity of (7.19), (7.20) and (7.21) is O(L2(|F|+
M)). This implies that computing the messages mMF

fDi
→xi(xi) for all i ∈ D

may become the dominating complexity with O(L2N). The total complex-
ity is thus max(O(L2(|F|+M)),O(L2N)).

7.3. Generalized Mean Field Approximation

In this section we present the second method for reducing the computational
complexity of the channel estimation part of both receivers. We utilize
the generalized mean field (GMF) approximation [26] in the same way as
done for pilot-only sparse channel estimation with hierarchical priors in
[64]. In GMF the posterior pdf of a set of variables is approximated by an
approximating function that is constrained to factorize over groups of the
variables. The idea here is to divide the channel weights (h in frequency
domain and α in delay domain) into disjoint groups in order to avoid the
inversion of a matrix of large dimension.

7.3.1 Frequency Domain Channel Coefficients

As opposed to the approach in Chapter 4 we include the factor node fH,
corresponding to the prior of the channel coefficients, to the MF part of the
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factor graph. We thus have

AMF = {fDi |i ∈ D} ∪
{
fPj |j ∈ P

}
∪ {fH} (7.22)

ABP = {A\AMF} (7.23)

= {fλ} ∪ {fC} ∪ {fMn|n ∈ [1 : N ]} ∪ {fUk |k ∈ [1 : K]} (7.24)

where the local functions are defined as in Chapter 4. The channel coeffi-
cients h are divided into groups of size G by defining vector hz = (hi | i ∈
[(z − 1)G + 1 : zG])T for all z ∈ [1 : Z], where Z is the number of groups
(Z = N+M

G
). The belief q(h) is constrained to factorize as:

q(h) =
Z∏
z=1

q(hz) (7.25)

The factor graph representation of the chosen factorization for the whole
receiver is shown in Figure 7.1. Choosing Z = 1 yields the algorithm in

Figure 7.1: Factor graph representation of the system function, in which the channel
coefficients h are divided into disjoint groups.

Chapter 4 as h has been moved to the MF part as in [4]. It can easily be
shown that the belief of hz for all z ∈ [1 : Z] is given by

q(hz) = CN
(
hz;µ

q
hz
,Σq

hz

)
(7.26)

where

Σq
hz

= ((Σhz)
−1 + (Σo

hz)
−1)−1 (7.27)

µqhz = Σq
hz

(Σo
hz)
−1µohz (7.28)

where

Σhz = ([Σh]i,j | i, j ∈ [(z − 1)G+ 1 : zG]) (7.29)

Σo
hz = ([Σo

h]i,j | i, j ∈ [(z − 1)G+ 1 : zG]) (7.30)

µohz = (µoi | i ∈ [(z − 1)G+ 1 : zG])T (7.31)
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for all z ∈ [1 : Z] are partitions of Σh,Σ
o
h,µ

o
h respectively. By redefin-

ing Σq
h as the block diagonal matrix Σq

h = diag(Σq
h1
, . . . ,Σq

hZ
) and µqh =

((µqh1
)T, . . . , (µqhZ )T)T, the remaining messages and update of the beliefs

are as shown in Chapter 4.

By choosing the approximating distribution to factorize over groups of
variables we thus need to compute the inverse of a G×G matrix Z = N+M

G

times, which gives a complexity of O(G2(N +M)).

7.3.2 Delay Domain Channel Weights

Similarly the delay domain channel weights α are also divided into groups of
size G. Be aware that we reuse notation from the previous section and also
use Z = L

G
as the number of groups, though it may be different from Z in the

previous section. All local functions and the partitioning into MF and BP
part are as in Chapter 5. The factor graph representation of the factorized
system function is shown in Figure 7.2. Similarly to previous section we

Figure 7.2: Factor graph representation of the system function, in which the delay
domain channel weights α have been divided into smaller groups.

define αz = (α` | ` ∈ [(z − 1)G+ 1 : zG])T and obtain the messages

mMF
fα→αz(αz) ∝ exp

(
αz 〈Γz〉q(γ)αz

)
(7.32)

mMF
fDi
→αz(αz) ∝ exp

(
−〈λ〉q(λ)

(〈
|riα|2

〉∏
z′ 6=z q(αz′ )

〈
|xi|2

〉
q(xi)

−2 Re
(
y∗i 〈xi〉q(xi) (ri)zαz

))
(7.33)

mMF
fPj
→αz(αz) ∝ exp

(
−〈λ〉q(λ)

(〈
|rjα|2

〉∏
z′ 6=z q(αz′ )

|xj|2 − 2 Re
(
y∗jxj(rj)zαz

)))
(7.34)
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for all i ∈ D, all j ∈ P and all z ∈ [1 : Z]. The belief q(αz) for all z ∈ [1 : Z]
is thus given by

q(αz) = CN (αz;µαz ,Σαz) (7.35)

where

Σαz = (ΦH
z

〈
XHX

〉∏
i∈D q(xi)

Φz 〈λ〉q(λ) +
〈
Γ−1
z

〉
q(γ)

)−1 (7.36)

µαz = 〈λ〉q(λ) ΣzΦ
H
z

(
〈X〉H∏

i∈D q(xi)
y −

〈
XHX

〉∏
i∈D q(xi)

∑
z′ 6=z

Φz′µαz′

)
(7.37)

Similarly to previous section we redefine Σα as the block diagonal matrix
Σα = diag(Σα1 , . . . ,ΣαZ ) and µα = ((µα1)T, . . . , (µαZ )T)T, such that the
remaining messages and beliefs can be computed using the expressions in
Chapter 5.

Notice how µαz depends on all µαz′
for z′ 6= z because of the sum in

(7.37). In order to not evaluate the full sum for each z, the update of the
beliefs are computed recursively as depicted in Algorithm 1. When G = 1

Algorithm 1 Update of beliefs q(αz)∀ z ∈ [1 : Z]

1: Input: y, 〈X〉,
〈
XHX

〉
, 〈λ〉, Φ and mean of current belief µ′α

2: Output: Mean µα and covariance Σα of updated belief.
3: a← Φµ′α O ((N +M)L))
4: for z = [1 : Z] do
5: Σαz

← (ΦH
z

〈
XHX

〉
Φz 〈λ〉+

〈
Γ−1z

〉
)−1 O (G(N +M)L))

6: µαz ← 〈λ〉ΣzΦ
H
z

(
〈X〉H y −

〈
XHX

〉 (
a−Φzµ

′
αz

))
O ((N +M)L))

7: a← a + Φz(µαz − µ′αz
) O ((N +M)L))

8: end for
9: Σα ← diag(Σα1

, . . . ,ΣαZ
)

10: µα ← ((µα1
)T, . . . , (µαZ

)T)T

the recursive update of µz resembles the Gauss-Seidel method for solving
systems of linear equations [65]. It is thus expected that smaller group sizes
requires a larger number of iterations to converge, i.e. it may be necessary
to perform Algorithm 1 multiple times when updating the beliefs. The
complexity of each step in the algorithm (assuming G ≤ N + M) is shown
in the right column of Algorithm 1. Notice that for the steps within the
‘for’-loop the increase in complexity that comes from performing the step
Z = L

G
times is included in the expressions. The complexity of updating all

the beliefs q(αz) for all z ∈ [1 : Z] is thus O (G(N +M)L)).

When computing 〈λ〉qλ using (7.5) we need to exploit that Σα is now a

block diagonal matrix. Computing riΣαrH
i for all i ∈ [1 : N + M ] is then

also of complexity O(G(N +M)L).

The complexity of one iteration of the channel estimation part of the two
receiver schemes and their modified versions is summarized in Table 7.1.
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Modification Frequency Domain Delay Domain

Original (N +M)3 L2(N +M)
Partial Feedback (|F|+M)3 + (N +M)2 max

(
L2(|F|+M), L2N

)
GMF Approximation G2(N +M) G(N +M)L

Table 7.1: Computational complexity in Big-O notation for one iteration of the two
investigated channel estimation schemes and the versions modified for reduced computa-
tional complexity. It is assumed G ≤ (N +M).

7.4. Numerical Results

In this section the impact of the proposed complexity-reducing methods on
the performance of the receivers is evaluated through Monte Carlo simu-
lations. We therefore investigate the same receivers as in Chapter 6, but
with the channel estimation part modified with the proposed methods. The
initialization of the algorithms is also the same as in Chapter 6 and the
parameters shown in Table 6.2 are also fixed throughout all simulations.
Notice that the methods of partial feedback and the GMF approximation
can easily be combined to yield receiver algorithms using both methods
for reducing the complexity. However, to limit the number of simulation
scenarios we consider the two methods separately.

7.4.1 Partial Feedback

When using partial feedback, i.e. when 0 < |F| < |D| different choices of
the index set F of data symbols to be used for channel estimation can be
considered. In the following numerical experiment we employ two different
approaches for selecting F . In the first method we use uniform feedback.
Let d = (d1, d2, . . . dN)T be the vector with the elements of D ordered in
ascending order. With |F| chosen such that S = N

|F| is an integer we use

the indices F = {dS, d2S, . . . , dN}.
In the second method F is allowed to change between iterations. Just

after updating q(xi) for all i ∈ D in the iterative algorithm we select F to
be the set of the |F| indices of the beliefs q(xi) with the smallest variances.
The motivation for this approach is that in each iteration we thus use soft
information of the data symbols with least amount of uncertainty.

The results for both methods applied to the two receivers are shown in
Figure 7.3. For the sparsity-aware receiver scheme we see no difference

Pilot Spacing 10
No. subcarriers (N +M) 600

No. columns in Φ (L) 150
Channel model Exp. decay, µP = 10, v = 1 µs

Table 7.2: Simulation parameters for the scenario in which the performance of the
receiver schemes is evaluated versus SNR for different levels of feedback.
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(a) Sparsity-aware receiver
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Figure 7.3: BER for the (a) sparsity-aware receiver and (b) the robust receiver schemes
using different levels of data-aided feedback. The fraction in the legend refers to the
relative size of |F| compared to |D|. ‘U’ denotes the uniform selection approach and ‘LV’
is the lowest variance method. Note that the ‘dotted’ curve in (b) corresponds to the
receiver using the exact covariance matrix for the prior distribution of h and is thus not
using the robust channel assumption.

between using uniform feedback or the lowest variance method, the curves
coincide on Figure 7.3a. Furthermore the difference between using all the
data symbols for channel estimation or only half of them is very small.

For the robust receiver the picture is different. For this scheme the
uniformly spaced feedback outperforms the lowest variance method. Fur-
thermore the penalty for not using all the data for the channel estimation is
larger. By using all the data symbols there is a gain of approximately 1 dB
compared to ‘1

2
Data U’ and 3 dB compared to ‘1

5
Data U’ in high SNR.

To see how the use of soft-information changes the convergence proper-
ties of receiver algorithms we plot the BER versus iteration number for both
receivers in Figure 7.4 for the scenario with 15 dB average SNR. Notice that
the iteration number refers to the outer iterations of the algorithm, which
means that for the sparsity-aware receiver the number of iterations used in
the channel estimation subgraph is 20 + 5(i − 1) where i is the iteration
number. The first 20 of these iterations uses pilot symbols only and are
therefore of lower complexity. As shown in Figure 7.4a the sparsity-aware
algorithm in reaches convergence in approximately 10 outer iterations. The
number of iterations in the channel estimation part (65 in total) is thus
larger than for the robust receiver in Figure 7.4b for which there are only
minor improvements in BER after approximately 20 iterations. However,
for the fully data-aided case the complexity per iteration is lower for the
sparse channel estimation part as the size of the required matrix inversion
is smaller (150 vs 600 in this case). This is also indicated by the running
time measurements in Appendix H, that shows that in the Matlab imple-
mentation it is faster to compute 20 outer iterations for the sparsity-aware
receiver than for the robust receiver with the same parameters as used here.
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Figure 7.4: BER versus iteration number for the (a) sparsity-aware receiver and (b) the
robust receiver using different levels of data-aided feedback. The average SNR is 20 dB.
The fraction in the legend refers to the relative size of |F| compared to |D|. ‘U’ denotes
the uniform selection approach and ‘LV’ is the lowest variance method. The iteration
number refers to the outer iterations.

It is noted that this result is not general as it is highly dependent on the
implementation of the algorithm and the hardware platform it is running
on. For both receivers in Figure 7.4b using only the pilots symbols for the
channel estimation requires fewer iterations to reach convergence than for
data-aided channel estimation. The algorithm is iterative because the noise
precision λ is estimated.

7.4.2 Performance for Different Group Sizes

Using the simulation parameters in Table 7.3 we plot the BER and the
MSE of the channel estimate for the robust receiver in Figure 7.5. As the

Pilot Spacing 10
No. subcarriers (N +M) 600

No. columns in Φ (L) 150
Channel model Exp. decay, µP = 10, v = 1 µs

Noise precision (λ) Known

Table 7.3: Simulation parameters for the scenario in which the performance of the
receiver schemes is evaluated versus SNR for different group sizes.

number of subcarriers is 600 a group size G = 600 is the same receiver as
in previous chapters. Using two groups (G = 300) has no visible impact
on the BER performance, but already with G = 100 there is a significant
increase in both BER and MSE of the channel estimate, especially at high
SNR. Therefore we do not consider this simple method as a viable solution
for reducing the computational complexity of this receiver scheme. A more
sophisticated solution with the same computational complexity is proposed
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Figure 7.5: BER and MSE performance of the robust receiver with different group sizes
G versus SNR. All curves are for the receiver using the robust channel assumption, except
the ‘dashed’ curve with diamond-shaped markers.

in [66] 1.

The results for the receiver with sparse channel estimation in the same
scenario are shown in Figure 7.6. Since the number of columns of the
dictionary is L = 150 the receiver with G = 150 is the same as in previous
chapters. Here there is no increase in BER when decreasing the group size,
even with a group size G = 1 the BER performance is the same and the
per-iteration complexity of the receiver scheme is significantly reduced. The
same observation was made for pilot-only channel estimation in [64].

As discussed in Section 7.3.2 the algorithm may have slower convergence
with smaller group sizes. At low to medium SNR we do not observe any
difference in convergence, but in the high SNR region there is a notice-
able difference in the convergence of the MSE of the channel estimate as
illustrated in Figure 7.7. However, the difference is so small that it is not
noticeable in BER. Using small group sizes is thus considered as a viable op-
tion for reducing the computational complexity. With G = 1 the complexity
per iteration is O((N +M)L). That is the same complexity per iteration as
if we used the fast inference scheme [46] for solving the compressed sensing
problem [48]. In the fast inference scheme only one of the entries of α is
updated in each iteration, while the method shown here updates all entries
with the same complexity.

1In [66] p(h) = CN (h; 0,Σh) is approximated by a Markov model p(h) = p(h1)
∏Z
z=2 p(hz |hz−1).

The resulting algorithm is also of complexity O(G2(N + M)). In a simulation scenario using channels
with different frequency correlation functions the BER performance using small group sizes (G = 6) is
close (approximately 0.5 dB) to the performance when using only one group (G = 300).
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Figure 7.6: BER and MSE performance of the sparse channel estimation receiver with
different group sizes G versus SNR.
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Figure 7.7: MSE of channel estimate versus iteration number. The iteration number
refers to the outer iteration.

69





CHAPTER 8
Conclusion

In this thesis we have investigated the problem of embedding sparse chan-
nel estimation in iterative message-passing receivers. We model a simple
point-to-point OFDM communication system operating in a noisy, specular
multipath channel with static impulse response.

The goal of the receiver is to minimize the bit-error-rate (BER) which
can be achieved by the maximum a posteriori criterion. However computing
the posterior probability density function of the information bits required
for exact implementation of this criterion is analytically intractable. We
therefore resort to iterative inference techniques to approximate the poste-
rior. By employing a factor graph representation of the probabilistic system
model the different tasks of the receiver (channel estimation, equalization,
demapping and decoding) can be identified as local computations of an
inference scheme formulated as message-passing on the factor graph. In
previous work the combined belief propagation (BP) and mean field (MF)
algorithm (BP-MF) was proven effective for performing the inference in this
kind of communication system. Based on this work we studied and imple-
mented a state-of-the-art iterative receiver that was utilized as an important
reference throughout the thesis.

Sparse Channel Estimation

The main contribution of the thesis is a novel iterative receiver that exploits
the sparse structure of a specular multipath channel having a few significant
components. We have posed the problem of estimating the sparse channel as
a sparse estimation problem. Formulating this problem involves the design
of a proper dictionary matrix. The multipath delays are continuous val-
ued parameters, but we employ a dictionary with discretized delays, which
causes mismatch between the ‘true dictionary’ and the one used for signal
recovery. The analysis shows that if the discretization is fine enough the
signal has an accurate sparse representation in the dictionary, but a finer
discretization increases the coherence property of the dictionary. More im-
portantly the computational complexity increases with finer resolution as
the number of columns of the dictionary increases. Using the approach of
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sparse Bayesian learning (SBL) with hierarchical prior modelling the sparse
estimation problem was integrated with the other receiver tasks in the fac-
tor graph representation of the whole system. This enables a unified design
of the sparse channel estimation and decoding.

The performance of the receiver with sparse channel estimation was eval-
uated through Monte Carlo simulations using a multipath channel model
with exponentially decaying power delay profile and different 3GPP power
delay profiles. The results show that for a certain level of discretization a fur-
ther increase in the delay resolution does not lead to better accuracy of the
channel estimates. The proposed receiver uses a sparsity-inducing prior that
models the channel weights, each corresponding to a certain multipath delay
within the length of the cyclic prefix, as independent and identically dis-
tributed. Therefore the proposed receiver scheme was benchmarked against
the reference receiver with the same ‘robust’ channel assumption (flat power
delay profile and knowledge of the maximum multipath delay). The pro-
posed receiver outperforms the reference receiver with the robust channel
assumption in all considered scenarios and the performance is on par or
better with the reference receiver using exact knowledge of the channel co-
variance. However, this is only the case if the number of pilot subcarriers is
sufficiently high. With a high pilot spacing, knowing the exact covariance
matrix shows a significant gain over the sparse channel estimation scheme
as designed here.

We also investigated the performance of the receivers using the expo-
nential model with different levels of sparsity (number of multipath compo-
nents). Even in scenarios with a high number of multipath components the
BER and MSE of the channel estimate using the sparsity-aware receiver is
still similar to that of the receiver with knowledge of the exact covariance
matrix.

Complexity Reduction

The channel estimation task of both the sparsity-aware and the reference
receiver was shown to be of high computational complexity. To alleviate this
problem we proposed two methods for reducing the computational complex-
ity of both receivers.

The first method is a heuristic scheme in which some of the messages
corresponding to feedback from the soft decoder are replaced by constant
messages. In each iteration the reference receiver computes the inverse
of a square matrix of dimension (|F| + M) where |F| is the number of
data subcarriers used for channel estimation and M is the number of pilot
symbols, hence the size of the matrix to be inverted is linear with |F|. For
the sparse channel estimation scheme other operations of the receiver can
become dominant and the complexity is max (L2(|F|+M), L2N), where
L is the number of multipath components in the dictionary and N is the
number of data subcarriers.
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The second method is based on the generalized mean field approximation
in which the channel coefficients (in frequency or delay domain) are divided
into disjoint groups of a certain size. With this method the complexity
of the reference receiver is reduced from O((N + M)3) to O(G2(N + M))
and for the sparsity-aware receiver it is reduced from O(L2(N + M)) to
O(G(N + M)L) where N + M is the total number of subcarriers, L is the
number of multipath delays in the dictionary matrix and G is the group
size. Numerical results show that using smaller groups for the reference
receiver is not a viable method as it leads to significantly higher BER,
especially in high SNR. For the sparsity-aware receiver, using smaller group
sizes has little to no impact on the BER performance of the receiver whereas
the computational complexity is significantly decreased. However, a small
penalty in the rate of convergence was noticed in the high SNR scenario.

In the considered scenarios the sparsity-aware receiver requires more iter-
ations to converge, but the complexity of each iteration is lower because the
number of multipath delays in the dictionary L could be chosen to be small
compared to total number of subcarriers (N + M). In general it is cum-
bersome to accurately assess and compare the computational complexity
between the two receivers. The complexities mentioned here are per itera-
tion and in addition the big-O notation only capture how the complexity
scales with the size of the problem. For a practical implementation we would
for example be more interested in the total number of floating point oper-
ations which in turn depends on the number of iterations required to reach
convergence. Depending on the hardware platform memory consumption
and the suitability for parallel execution may also be important properties
of the algorithms.

Outlook

We have successfully shown how sparse channel estimation can be naturally
embedded in an iterative receiver scheme, but some open research problems
have been identified in the process.

As mentioned above we solved the sparse signal estimation problem by
using a dictionary with discretized multipath delays, though the true mul-
tipath delays are continuous valued. It is of interest to investigate whether
other approaches to this problem such as [55,56] could improve the estima-
tion accuracy or be beneficial in another aspect, for example yield receiver
algorithms with lower complexity.

The iterative receiver using the proposed sparse channel estimation scheme
was found to be less robust to large spacings between the pilot subcarriers
compared to the reference receiver with perfect knowledge of the covari-
ance of the frequency domain channel coefficients. The covariance matrix
used by the reference receiver is derived from the knowledge of the power
delay profile of the channel’s impulse response. As mentioned above the
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sparse channel estimation scheme assumes a flat power delay profile. If
the knowledge of the channel’s power delay profile is incorporated into the
sparse channel estimation scheme, it may be possible to achieve the same
robustness to large pilot spacings as exhibited by the reference receiver. One
approach would be to shape the parameters of the prior pdf of the delay-
domain weights to match the power delay profile of the channel, instead
of using the same setting for all channel weights. However, it is neither a
realistic assumption that we know the power delay profile of the channel ex-
actly. If the aforementioned technique is implemented it would also become
relevant to investigate how to track a time-varying power delay profile in
the sparse channel setting. If the power-delay profile is slowly varying, one
could for example initialize the beliefs of the unknown variables with the
beliefs obtained in the processing of the previous OFDM symbol. In such
a setting it would also be more realistic compare with a reference receiver
scheme that estimates the covariance matrix of the time-varying channel,
e.g. [67,68].

Another natural extension is embedding the sparse channel estimation
in an iterative message-passing receiver within a multiple-input multiple-
output (MIMO) communication system such as [69].
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APPENDIX A

Notation and Symbols

Throughout the report vectors are typeset with a bold lowercase font (e.g.
x) and matrices are bold uppercase (e.g. X). Scalar variables and functions
are written in italics (e.g. x). The following list clarifies the notation and
symbols used throughout the report.

A.1 Notation

(·)T Transpose of a vector or matrix.
(·)H Hermitian transpose of a vector or matrix.
(·)∗ Complex-conjugate (entry-wise for vector or matrix).
〈f(x)〉p(x) Expected value of the function f(x) with respect to the pdf

or pmf p(x). The pdf/pmf may be omitted if it is clear from
the context.

||·||p The lp-norm of a vector. For p = 0 it is the number of non-
zero components of a vector.

[·]i,j The entry on the ith row and jth column of a matrix.

[·]i The ith entry of a vector.
| · | The absolute value of a scalar (real or complex), the determi-

nant of a matrix or the cardinality of a set.

A.2 Symbols

Φ ∈ C(M+N)×L Dictionary matrix. In the OFDM model each row
corresponds to one subcarrier and each column to
one multipath delay.

h ∈ C(M+N)×1 Frequency domain channel coefficient vector, can
be approximated by h = Φα.

α ∈ CL×1 Complex weight of each multipath component.
y ∈ C(M+N)×1 Observation vector, y = Xh + w.
X ∈ C(M+N)×(M+N) Diagonal matrix with N data and M pilot symbols.

u ∈ {0, 1}K×1 Uncoded information bits.

c ∈ {0, 1}
K
R
×1 Coded and interleaved bits. R is the code rate.

w ∈ C(M+N)×1 Noise vector, circular symmetric zero-mean com-
plex Gaussian with covariance matrix λ−1I.

λ Noise precision.
a and b Shape and rate parameter for the gamma prior on

the noise precision.
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Acronyms

BER bit error rate

BP belief propagation

CP cyclic prefix

CS Compressed Sensing

EM expectation maximization

EP expectation propagation

EPA 3GPP Extended Pedestrian A

ETU 3GPP Extended Typical Urban

EVA 3GPP Extended Vehicular A

FFT fast Fourier transform

iid independent and identically distributed

MAP maximum a posteriori

MF mean field

MSE mean squared error

OFDM orthogonal frequency division multiplexing

pdf probability density function

pmf probability mass function

RVM Relevance Vector Machine

SBL Sparse Bayesian Learning

SNR signal-to-noise ratio
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Identities and Definitions

C.1 Complex Gaussian pdf

The pdf of a circular symmetric complex random variable x ∈ CN is defined
as

p(x) =
1

πN
det(Σ)−1 exp

(
−(x− µ)HΣ−1(x− µ)

)
(C.1)

where µ ∈ CN is the mean and Σ ∈ CN×N is the covariance matrix. We
denote the pdf as CN(x;µ,Σ).

C.2 Gamma Distribution

The pdf of a gamma-distributed random variable x ∈ R+ is given by

p(x) =
βα

Γ(α)
xα−1 exp(−βx) (C.2)

where α ∈ R+ is the shape parameter, β ∈ R+ is the rate parameter and
Γ(·) is the gamma function. The pdf is denoted as Ga(x;α, β).

C.3 Conditional Gaussian Distribution

Given the vector x ∈ CN with distribution CN (x;µ,Σ). Partitioning the
variable as

x =

(
xa
xb

)
(C.3)

and doing the corresponding partitioning of the mean and covariance

µ =

(
µa
µb

)
, Σ =

(
Σaa Σab

Σba Σbb

)
. (C.4)

The conditional distribution p(xa|xb) will also be complex normal with mean

µa|b = µa + ΣabΣ
−1
bb (xb − µb) (C.5)

and covariance matrix

Σa|b = Σaa −ΣabΣ
−1
bb Σba. (C.6)

See [28, sec 2.3.1] for the derivation for the real case.
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C.4 Bayes Rule for Gaussian Random Variables

Given

p(x) = CN(x;µ,Σ) (C.7)

p(y|x) = CN(y|Ax + b,B) (C.8)

Then

p(y) = CN(y; Aµ+ b,B + AΣAH). (C.9)

See [28, sec 2.3.3] for the derivation.

C.5 Product of Gaussian pdfs

The product of two Gaussian pdfs is proportional to a Gaussian pdf

CN(x; a,A) CN(x; b,B) = kCN(x;µ,Σ) (C.10)

where

Σ =
(
A−1 + B−1

)−1
(C.11)

µ = Σ
(
A−1a + B−1b

)
(C.12)

k = CN (a; b,A + B) (C.13)

C.6 Woodbury Matrix Inverse Formula

Given invertible matrices A of dimension N×N and C of dimension K×K
and the rectangular matrices U of dimension N × K and V of dimension
K ×N :

(A + UCV)−1 = A−1 −A−1U(C−1 + VA−1U)−1VA−1 (C.14)
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Frequency Domain Covariance
Matrix for the Static Multipath

Channel

From the equations (2.6), (6.6) and (6.7) we obtain

[Σh]i,k = 〈hih∗k〉p(β,τ ,P )

=

〈
P∑
p=1

P∑
q=1

〈〈
βpβ

∗
q

〉
p(β|τ )

exp(−j2π∆f(τpi− τqk))
〉
p(τ |P )

〉
p(P )

=

〈
P∑
p=1

〈〈
|βp|2

〉
p(β|τ )

exp(−j2π∆fτp(i− k))
〉
p(τ |P )

〉
p(P )

=

〈
P∑
p=1

〈
u exp

(
−τp
v

)
exp(−j2π∆fτp(i− k))

〉
p(τ |P )

〉
p(P )

=

〈
P∑
p=1

∫ τmax

0

u

τmax

exp

(
−τp

(
1

v
+ j2π∆f(i− k)

))
dτp

〉
p(P )

=

〈
P∑
p=1

u

τmax

(
1
v

+ j2π∆f(i− k)
) (1− exp

(
−τmax

(
1

v
+ j2π∆f(i− k)

)))〉
p(P )

=
µP · u

τmax

(
1
v

+ j2π∆f(i− k)
) (1− exp

(
−τmax

(
1

v
+ j2π∆f(i− k)

)))
(D.1)

for all i, k ∈ [1 : N +M ]. Now choose u such that the diagonal elements of
Σh are normalized to 1

u =
τmax

µP · v
(
1− exp

(
− τmax

v

)) . (D.2)

Inserting (D.2) in (D.1) yields

[Σh]i,k =
1− exp

(
−τmax

(
1
v

+ j2π∆f(i− k)
))

v
(
1− exp

(
− τmax

v

)) (
1
v

+ j2π∆f(i− k)
) . (D.3)

Now considering the case of flat power delay profile (v → ∞), the two
occurrences of 1

v
→ 0 and

lim
v→∞

v
(

1− exp
(
−τmax

v

))
= τmax, (D.4)
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thus

lim
v→∞

[Σh]i,k =
1− exp(−τmaxj2π∆f(i− k))

τmaxj2π∆f(i− k)
. (D.5)

A similar derivation for the scenario where the number of multipath compo-
nents P is known is shown in [59]. The results for the normalized covariance
matrices are equivalent to what is shown here in (D.3) and (D.5).
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Correlation Between Columns of
Dictionary

With the dictionary Φ defined in Section 5.1 we can derive a closed-form
expression for the correlation between two columns, i.e. the entries of the
matrix ΦHΦ.

[ΦHΦ]k,` = ψ(tk)
Hψ(t`) (E.1)

=
N+M∑
n=1

exp(j2π∆fntk) exp(−j2π∆fnt`) (E.2)

=
N+M∑
n=1

exp(j2π∆fn(tk − t`)) (E.3)

=
N+M−1∑
n=0

exp(j2π∆fn(tk − t`)) · exp(j2π∆f(tk − t`)) (E.4)

= DN+M(2π∆f(tk − t`)) · exp(j2π∆f(tk − t`)) (E.5)

=
sin(π∆f(N +M)(tk − t`))

sin(π∆f(tk − t`))
exp(jπ∆f(tk − t`)(N +M + 1))

(E.6)

for all k, ` ∈ [1 : L] and where

DK(x) =
K−1∑
k=0

exp(jkx) =
sin(1

2
Kx)

sin(1
2
x)

exp
(
jxK−1

2

)
(E.7)

is the Dirichlet kernel [57]. When both the numerator and denominator of
the amplitude term in E.7 approaches zero the limiting value of the fraction
is used instead.

Denote the reduced dictionary ΦA that consists of every Ath row of Φ,
i.e. ΦA contains row [1, 1 + A, 1 + 2A, · · · , dN+M

A
e] of Φ. The correlation
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between the kth and the `th columns can then be written as

[ΦH
AΦA]k,` =

dN+M
A
e∑

n=1

exp(j2π∆f(A(n− 1) + 1)tk) exp(−j2π∆f(A(n− 1) + 1)t`)

(E.8)

=

dN+M
A
e−1∑

n=0

exp(j2π∆fnA(tk − t`)) exp(j2π∆fn(tk − t`)) (E.9)

= DdN+M
A
e(2π∆fA(tk − t`)) · exp(j2π∆fn(tk − t`)) (E.10)

=
sin(π∆fAdN+M

A
e(tk − t`))

sin(π∆fA(tk − t`))
· exp

(
jπ∆f(tk − t`)(A(dN+M

A
e − 1) + 2)

)
(E.11)

If N+M
A

is an integer the expression can be simplified as

[ΦH
AΦA]k,` =

sin(π∆f(N +M)(tk − t`))
sin(π∆fA(tk − t`))

· exp(jπ∆f(tk − t`)(N +M − A+ 2)) (E.12)
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Upper Bound for the Best P -term
Approximation Error

Let hP denote the best approximation of h one can obtain by using a linear
combination of P columns from the fixed dictionary Φ (as defined in Section
5.1) with delay resolution Td. The approximation hP is thus given by (5.13).

The approach to derive an upper bound for the best P -term approxima-
tion error is to derive an upper bound for a näıve P -term approximation.
The approach is originally devised in [52], however there is a minor mistake
in the derivation and different scaling and notation is used for the dictionary.
Now define the näıve P -term approximation as

h′ =
P∑
p=1

α′pψ(t′p) (F.1)

where α′p = βpbp with bp to be found and t′p = Td round( τp
Td

) is the delay in
the search grid that is closest to the actual delay τp. Then

||h− hP ||2 ≤ ||h− h′||2 (F.2)

=

∣∣∣∣∣
∣∣∣∣∣
P∑
p=1

βpψ(τp)−
P∑
p=1

βpbpψ(t′p)

∣∣∣∣∣
∣∣∣∣∣
2

(F.3)

≤
P∑
p=1

|βp|
∣∣∣∣ψ(τp)− bpψ(t′p)

∣∣∣∣
2

(F.4)

Minimizing (F.4) using standard least-squares approach yields the solution

bp =
ψ(t′p)

Hψ(τp)∣∣∣∣ψ(t′p)
∣∣∣∣2

2

=
ψ(t′p)

Hψ(τp)

N +M
(F.5)

Now insert the solution into (F.4) to obtain

(F.4) =
P∑
p=1

|βp|

√
||ψ(τp)||22 −

|ψ(t′p)
Hψ(τp)|2

N +M
(F.6)

=
P∑
p=1

|βp|

√√√√(N +M)

(
1−

∣∣∣∣DN+M(2π∆f(t′p − τp))
N +M

∣∣∣∣2
)

(F.7)

≤

√√√√(N +M)

(
1−

∣∣∣∣DN+M(π∆fTd)

N +M

∣∣∣∣2
)

P∑
p=1

|βp| (F.8)
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Finally squaring both sides yields

||h− hP ||22 ≤

(
1−

∣∣∣∣DN+M(π∆fTd)

N +M

∣∣∣∣2
)(

P∑
p=1

|βp|

)2

(N +M) (F.9)

Note (F.4) comes from the triangle inequality and it holds with equality if
and only if all the error terms ep = ψ(τp)− bpψ(t′p) are aligned, i.e. if and
only if ep for all p ∈ [2 : P ] can be obtained from e1 by multiplication of
non-negative, real scalars. The inequality (F.8) holds with equality if and
only if the true delays τp for all p ∈ [1 : P ] are located exactly in between
two delays of the search grid. We can thus not expect the upper bound to
be tight.
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Oracle Estimator

The MSE of the ‘oracle’ estimator is often used in estimation of sparse sig-
nals as a lower bound for the MSE of the sparse estimate [62]. It can be
shown that for a particular definition of unbiasedness for a sparse signal esti-
mator the MSE of the oracle estimator is equal to the unbiased Cramer-Rao
bound [62]. Note that this does not imply that there is no biased estimator
with better performance. With the observation model y = XΨ(τ )β + w
the oracle estimator for β is given by

β̂o = (XΨ(τ ))†y (G.1)

where (·)† denotes the Moore-Penrose pseudo-inverse. Notice that the oracle
estimator needs the knowledge of X and τ and it is therefore not a practical
estimator (if we knew X there is no reason to estimate β), but it is still useful
for comparison. In this project we are more concerned about the estimate
of h rather than β and we thus compute ĥo = Ψ(τ )β̂o. Treating τ and
β as fixed unknown parameters and averaging the estimation error over
realizations of the data xD and noise vector w, the MSE of this estimator
reads〈∣∣∣∣∣∣Ψ(τ )β −Ψ(τ )β̂o

∣∣∣∣∣∣2
2

〉
p(w)p(xD)

=
〈∣∣∣∣Ψ(τ )(XΨ(τ ))†w

∣∣∣∣2
2

〉
p(w)p(xD)

(G.2)

Assuming full column rank of XΨ(τ ) such that

(XΨ(τ ))† = (Ψ(τ )HXHXΨ(τ ))−1Ψ(τ )HXH (G.3)

the MSE is given by〈∣∣∣∣∣∣h− ĥo

∣∣∣∣∣∣2
2

〉
p(w)p(xD)

= λ−1
〈
trace

(
(Ψ(τ )HXHXΨ(τ ))−1Ψ(τ )HΨ(τ )

)〉
p(xD)

(G.4)
If phase-shift keying is used for all data and pilot symbols and we normalize
the symbols to unit power we have XHX = I and the MSE thus becomes P

λ

where P is the number of multipath components and λ is the noise precision.
The MSE of the oracle estimator is thus proportional to the number of
multipath components and inversely proportional to the noise precision.
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Description of Simulation Framework

This appendix contains the documentation for the simulation software de-
veloped for the project and some of the design considerations that have
been made in the development.

The purpose of the simulation framework is to evaluate the performance
of the devised OFDM receivers in different simulation scenarios. As we are
interested in estimating the BER performance of the receivers the results
must be averaged over a large number of realizations. In the following some
of the design considerations to meet this requirement is discussed.

Programming Environment Due to the short time span of the project, fast
code development is of high priority when it comes to choice of programming
environment. Matlab is chosen over other candidates such as Python and
R, because a larger number of existing tools for modeling communication
systems is available for Matlab.

Parallelization and Resumability When running a large number of simu-
lations it is desirable to be able to run several simulations in parallel to
decrease the time needed for obtaining results. Therefore we use the par-
allel computing toolbox of Matlab to achieve this. The simulations are
designed to be resumable such that an additional number of Monte Carlo
iterations can be performed after an initial completion of the simulation.

Testing and Validation To validate the functionality of the implemented
software we use the idea of unit testing, in which small parts of the software
are tested individually. If small parts of the framework fail the tests there
is no reason to believe that the framework is valid as a whole. To aid the
setup and execution of tests the Matlab xUnit [70] framework is used.

H.1 Structural Overview

The main components of the simulation framework is located in the src/
folder. We employ the object-oriented programming paradigm and files
starting with lowercase letters are functions and files starting with uppercase
letters are classes. There are three main types of classes, the signal class,
the decoder class and the receiver class.

Signal Class Defines the parameters of the simulation scenario and gener-
ates signals and channel realizations. The base class is Signal.m, from
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which the two subclasses SignalExp.m and Signal3GPP.m inherits a
lot of functionality but redefines the channel generation method to generate
realization of the exponential and the 3GPP channel models respectively.
After setting the properties of a signal object, a new realization of the chan-
nel and signals is obtained by calling the randomize() method.

Decoder Class Performs demapping, deinterleaving and decoding as de-
scribed in Subsection 4.4.4. Can be configured to use the Coded Modulation
Library [51] or our own implementation based on BP.

Receiver Class The files prefixed with Rx each defines one receiver class.
This includes the sparse estimation algorithm RxHierarch.m, the non-
sparse algorithm RxFreq.m, the oracle estimator RxOracle.m and a re-
ceiver with perfect knowledge of the channel coefficients h, RxPerfectCSI.m.
Each receiver has an rx() method that takes a signal object and a decoder
object as argument, processes the observed signal and returns a performance
matrix. The rows of the performance matrix are BER, MSE of the channel
estimate and the value of 〈λ〉q(λ) and each column corresponds to one outer
iteration of the algorithm.

The unit tests are located in the test/ folder. The tests in test/TestDecoder.m
verifies that the different versions of the decoder decodes without error in
a noise-free setting and test/TestSignal.m verifies that the SNR of
the generated signals matches the targeted SNR. All the unittests can be
executed by running the test/tests_run.m script.

To run a simulation scenario the simulate.m function is used. It is
possible to sweep over any parameter of the signal class and the simulate
function parallelize over the parameter sweep as well as the different algo-
rithms to be evaluated.

The following example shows how to run a simulation scenario using the
3GPP ETU channel model and sweeping the SNR in dB as [5, 10, 15, 20, 25, 30].
The algorithms to be evaluated are the sparse channel estimation algorithm
in Chapter described in 5 using a group size of 10, the receiver in Chapter
4 using a group size of 100 and the oracle estimator. The simulation uses 8
workers (processes) and averages over 200 Monte Carlo simulations for the
5, 10, 15 and 20 dB scenarios and 1000 Monte Carlo iterations for the 25
and 30 dB scenarios. The result is saved to the file snr_etu_test.mat.

addpath '../src' '../cml'
dbstop if error
rxh = RxHierarch();
rxh.known_lambda = false;
rxf.group_size = 10;
rxf = RxFreq();
rxf.group_size = 100;
rxf.knwon_lambda = false;

92



Appendix H. Description of Simulation Framework

algs = {rxh, rxf, RxOracle()};
trellis = poly2trellis(4,[13 15],13);
dec = Decoder(trellis, [13 15]);
dec.use_cml = true;
sig = Signal3GPP(trellis, 'etu');

monte_carlo_iters = [200 200 200 200 1000 1000];
parm.SNR_DB = [5 10 15 20 25 30];
parm.pilot_spacing = 10;
parm.num_subcarriers = 600;
parm.num_columns = 150;
simulate('../results/snr_etu_test.mat', ...
dec, sig, parm, algs, monte_carlo_iters, 8);

The result can be plotted afterwards using the plot_result.m function.
To add more Monte Carlo iterations to the same simulation scenario, simply
change the numbers in the vector monte_carlo_iters and rerun the
script and more iterations will be added to the existing result.

H.2 Running Time and Speedup

To get an idea of the running time of the implemented algorithms we mea-
sure the time it takes to process 5 OFDM blocks sequentially. The signal
parameters are as in Chapter 6 and the channel model is as in Table 6.2
and Table 6.3. We use the two-layer sparse estimation algorithm and the
robust algorithm as described in Section 6.2. The algorithms are run on
a desktop PC with a 2.67 GHz Intel Core i7 920 Quad-core CPU, 6 GB
RAM, Matlab R2013a on Arch Linux (kernel version 3.9.2). Each algo-
rithm uses 20 outer iterations. The results are generated by running the
script running_time.m and the produced output is presented in Table
H.1.

In test 1 we use our own Matlab implementation of the BCJR algorithm
for decoding as described in Subsection 4.4.4. In the other test setups we
use the CML library to do the decoding. In test setup 3 and 4 px mex
refers to the use of a MEX versions of the mapping and demapping func-
tions. The demapping function src/pde2bi.m is used to compute the
messages mBP

fMn→c
(n)
q

(c
(n)
q ) for all n ∈ [1 : N ] and all q ∈ [1 : Q] as depicted

for n = 1, q = 1 and Q = 4 on Figure H.1a. For each of the QN messages we
need to sum over the 2Q valid configurations of fMn(xin , c

(n)). These com-
putations are not well suited for fast computation in the standard Matlab
programming language. Similarly the mapping function src/pbi2de.m
computes the messages mBP

fMn→xin
(xin) for all n ∈ [1 : N ] as shown in Fig-

ure H.1b. To speed up the computation of these messages we have imple-
mented src/pde2bi_cg.m and src/pbi2de_cg.m. These functions
are equivalent to the aforementioned functions but they are better suited
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for generating Matlab MEX files using the Matlab coder, which translates
Matlab functions into C code and MEX files. Executing the build script
src/mex_build.m generates the MEX versions of these functions.

(a) (b)

Figure H.1: Example of the messages corresponding to (a) demapping and (b) mapping
operations.

First notice from Table H.1 how employing the CML library greatly
reduces the running time of the implemented algorithms. In this example
the reduction is approximately 70 seconds for processing 5 OFDM blocks.
By using the MEX versions of the mapping and demapping functions the
running time is further reduced by 10 seconds. By reducing the group size
to G = 10 for the sparsity-aware algorithm and G = 100 for the receiver
in Chapter 4 we obtain a further reduction in running time. Keep in mind
that the sparsity-aware algorithm uses several sub-iterations in the channel
estimation part of the factor graph and therefore it has higher running times
for small group sizes than the other algorithm. We have observed that using
even smaller group sizes e.g. G = 1 does not reduce the running time of
the Matlab implementation because of the larger book-keeping overhead
incurred by using smaller group sizes.

Test MEX Group size G Sparsity-aware Robust

1 BP (150, 600) 98 100
2 CML (150, 600) 23 27
3 CML, px mex (150, 600) 13 17
4 CML, px mex (10, 100) 9 4

Table H.1: Running time in seconds for the implemented algorithms for decoding 5
OFDM blocks. As we are using N + M = 600 subcarriers and the number of columns
of the dictionary Φ is L = 150, a group size of (150, 600) corresponds to 1 group for the
sparsity-aware receiver and the robust receiver respectively.

Be aware that the running times are highly dependent on the choice of
hardware platform and the specific details of the software implementation.
Therefore we can not generalize the results shown here to conclude on the
general performance of the algorithms.
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