
Evaluation of
Skeleton
Trackers and
Gesture
Recognition for
Human-robot
Interaction

Martin Bünger
Fall 2012 – Spring 2013
Vision, Graphics and Interactive Systems, AAU

Robotics and Intelligent Machines, Georgia Tech

Department of Architecture,
Design & Media Technology
Fredrik Bajers Vej 7, 9220 Aalborg, Denmark

Telephone 99 40 86 00

http://www.sict.aau.dk/

Title: Evaluation of Skeleton Trackers and
Gesture Recognition for Human-robot
Interaction.

Theme: Master thesis

Project period:
P10, fall 2012 - spring 2013

Project group:
group nr. 1049

Participants:
Martin Bünger

Supervisor:
Thomas B. Moeslund
Henrik I. Christensen

Issue count: 3
Page count: 83
Enclosed: 5 Appendices
Finish date: June 6., 2013

Abstract:

This report is a master thesis in the field Vision,
Graphics and Interactive System. It documents the
work done during a two semesters visit at Georgia
Institute of Technology. The report consists of
two parts: An evaluation of skeleton trackers and
Gesture recognition.

The evaluation of skeleton trackers compares the
two Kinect skeleton trackers from Microsoft and
Primesense. The results of the tests shows that
their performance is very similar. It is also tested
how a simple multi Kinect setup with data fusion
can work, which shows slight improvements.

The gesture recognition is based on hidden Markov

models and is mainly about recognizing pointing

gestures. The test includes a two-class and a multi-

class setup, which both yields good results.

This page is intentionally left blank.

2

Preface

This report is the documentation for the project: Evaluation of Skeleton Trackers and Gesture
Recognition for Human-robot Interaction, that was made during a trip to the Robotics and Intel-
ligent Machines (RIM) laboratory at Georgia Institute of Technology(GT), Atlanta, USA. The
trip lasted from September 2012 to May 2013. The report represents a master thesis in com-
puter engineering in the area of Vision, Graphics and Interactive Systems from the School of
Information and Communication Technology at Aalborg University in Denmark.

The project was supervised by Dr. Henrik I. Christensen, who is the director of the Center for
Robotics and Intelligent Machines, during the visit. In that period Thomas B. Moeslund func-
tioned as a secondary supervisor, after returning home he functioned as the main supervisor.

The two main parts of the report, were done from January to May 2013, while two demonstra-
tions were worked on from October to January. The two main parts are: An evaluation of Kinect
API’s, see part I, which lead to the article Evaluation of OpenNI NITE and Kinect SDK Skele-
ton Trackers for Human-Robot Interaction, see appendix E and a pointing gesture recognition
system, see part II. The two demonstrations were done at GT, which can be seen in appendix B
and C.

Acknowledgement

First, I wish to thank Dr. Henrik I. Christensen, the director of the Center for Robotics and
Intelligent Machines at Georgia Institute of Technology, for making my visit possible. Also for
being a great supervisor and for hosting me in the RIM-lab. I also want to thank my supervisor
Thomas B. Moeslund for giving me great advice, while I was abroad.

I met many incredibly welcoming and helpful people at the RIM-lab. One of them was Akansel
Cosgun, who is a Graduate Research Assistant at GT. We worked together on the article: Evalu-
ation of OpenNI NITE and Kinect SDK Skeleton Trackers for Human-Robot Interaction and on
the Kinect part of the second demonstration for the BMW-project. I also want to thank Aaron
Bobick, who was the supervisor, with Henrik, on the BMW-project, for advices and guidance.

I also want to thank the people from the RIM-lab: Alexander Trevor, Kimoon Lee, Jake Huck-
aby, Joan Devassy, Alexander Lambert and Carlos Nieto for always being helpful and made
Atlanta feel like home. A thank also goes to the Danish people I met on the trip, especially
Søren and Mads, who is also students at Aalborg University.

Last, I really appreciate the people who took time to visit me during my stay: My mom, dad,
Søren, Christian and Anders.

3

Contents

Table of contents 3

1 Introduction 7
1.1 Scenario . 7
1.2 Reading guide . 8

I Kinect Fusion 11

2 Analysis 13
2.1 Introduction . 13
2.2 The Kinect sensor . 14
2.3 Multiple Kinect calibration . 15
2.4 Data fusion . 16
2.5 Discussion . 17

3 Design 19
3.1 Kinect interference . 19
3.2 Kinect calibration . 20
3.3 Test design . 21

4 Implementation 25
4.1 Overview . 25
4.2 Multiple Kinect calibration . 25
4.3 Kinect interference . 26
4.4 System synchronization . 27
4.5 Skeleton fusion . 28

5 System test 29
5.1 Kinect fusion . 29
5.2 Discussion . 34

II Gesture recognition 37

6 Analysis 39
6.1 Introduction . 39
6.2 Gestures . 40
6.3 Methods . 41
6.4 Discussion . 42

4

7 Design 45
7.1 Data analysis . 45
7.2 Hidden Markov Models . 49
7.3 Continuous HMM . 56
7.4 Real time . 56
7.5 Test design . 57

8 Implementation 59
8.1 Overview . 59

9 System test 61
9.1 Training . 61
9.2 Results . 62
9.3 Discussion . 63

III Conclusion 65

10 Conclusion 67

IV Appendices 73

A Kinect specifications 75

B First demonstration 77

C Second demonstration 79

D CD index 81

E Article 83

5

This page is intentionally left blank.

6

1
Introduction

The assembly line has been under development since the start of the Industrial Revolution, be-
cause of the higher and higher demands in the manufacturing process, but also the sheer amount
of production. Now a days these high production factories, relies heavily on robots, which can
do physical and precision demanding work really well. Still, there is some tasks, that humans
can do better and humans are also still required for supervising the robots. Since these high
torque robots can be extremely dangerous for people, they are often very strictly divided.

This segregation is made for two reasons. First of all, a robot often does not know how to
behave safely around people. Secondly, robots work in controlled environments with very few
unknown variables, people tend to introduce these unknown variables.

In modern automotive factories, like the BMW assembly line, there is some tasks, that requires
precision and adaptivity, which only a human worker can do. These tasks also requires strength,
which raises the physical demands for the worker. Therefore it would be efficient to introduce
collaboration between robots and human workers.

The idea of this master thesis is to discover the opportunities of improving the manufacturing
process, by letting robots and human workers collaborate along the assembly line.

1.1 Scenario

The BMW-project is a research project at GT, which includes five students and two supervisors.
The main purpose of the project is to make a preliminary analysis of how to allow closer col-
laboration between robots and humans in an industrial environment.

The primary use case from BMW is the installation of the battery in the cars, where workers
have to handle a 20 kilogram mass in physical demanding poses. This is where the robots enters
the field. The notion is, that the robot will pick up a battery and drive it to the worker, when it
is needed. Then the robot needs to give the battery to the worker or assist in installing it, where
the worker can provide the fine movement. Having a high powered robot so close to a human

7

1.2. READING GUIDE

requires high safety, which can be achieved by having complete knowledge of what the worker
is doing and the intentions. The scenario is illustrated on figure 1.1, where the workspace can
be seen and the stream of cars coming from right.

Assembly line

workspace

Batteries

Car Car CarCar

Figure 1.1: The scenario at the BMW factory.

One of the essential parts for making this work, is to have a comprehensive sensor system,
which is capable of tracking the worker at all times. Two of the other important parts is the
control of the robot and the handling of the information from the sensors.

As mentioned above the scenario contains a lot of really interesting engineering problems. This
report will be looking at two problems. First, how to gather information about the area and the
worker. Second, how to utilize this information to enable collaboration between the worker and
the robot.

1.2 Reading guide

The reading guide consists of multiple sections. First a description of the report structure. Then
how citations are made and last, descriptions of the abbreviations used in the report.

1.2.1 Report structure

The report is divided into two parts. The first part is about the data acquisition from the Kinect,
which unfolds into a comparison between the skeleton trackers from Microsoft and Primesense.
Next is the gesture recognition part, which leads to a pointing gesture recognition system. Both
of these parts includes: Analysis, design, implementation and test. The report ends with a con-
clusion and future work.

Enclosed to the report is a CD, see appendix D, which includes all the code and scripts used in
the project. It also includes all data used for the tests. A video of the second demonstration is
also included.

8

CHAPTER 1. INTRODUCTION

1.2.2 Citations

The citations are made after the IEEE standard, where they are represented as a number in
brackets, [1]. The references can be found in the end of the report before the appendices.

1.2.3 Abbreviations

The following abbreviations are used frequently throughout this report. When each abbrevia-
tion is first introduced into the report, it is presented by this syntax:

...using Point Clouds (PC)..

PC Point Cloud

ROS Robot Operating System

API Application Programming Interface

NITE Natural Interface Middleware

HMM Hidden Markov Model

ICP Iterative Closest Point

SDK Software Development Kit

MS-SDK Microsoft Software Development Kit

FSM Finite State Machine

PDF Probability Density Function

9

This page is intentionally left blank.

10

Part I

Kinect Fusion

11

This page is intentionally left blank.

12

2
Analysis

This chapter consists of an introduction, an analysis and a discussion about how to gather the
data. The first section is an introduction to data gathering and the choice of sensors are made.
Next up is an analysis of the chosen sensor and methods for handling the data.

2.1 Introduction

Data acquisition can be done in a variety of ways. There is optical sensors, laser range sensors,
RGB sensors, sound sensors etc. In order to determine which sensor to use, it is required to do
an analysis of the scenario. This analysis can be seen in section 1.1. Basically the data needed
for the system can be defined as where is it safe for the robot to move, where is the worker and
what is the worker doing. The main problem for a vision based sensing system is occlusion
in this scenario, because there is multiple moving objects in the detection area. This counts
the robot, workers and an assembly line with a vehicle. A way to solve this problem is to use
multiple cameras in the workspace. For instance if the view of the worker is blocked from one
camera, it might be possible to get a view of the worker from another camera. A multiple sensor
setup introduces a whole new problem, data fusion.

Data fusion is simply put, to combine measurements from different sensors to achieve a better
measurement. Depending on the application, it can be done in different ways. An application
can use data fusion to combine data from two different types of sensors or by merging data from
multiple sensors of the same type. For example an application could be using both microphone
and camera to find the position of a person. Data fusion in this way is nothing new. Humans
and animals have always been doing this, combining the view from each eye to get a 3D view.
And also combine information from multiple sensors, senses. While it is impossible to see what
is behind us, we can hear it.

There is a few issues when designing a data fusion system, which is highly dependable on the
choice of sensor. There is quite a few choices of visual sensors, standard RGB cameras, Time
of Flight (ToF) cameras and RGB-D cameras. RGB is widely available with a variety of dif-
ferent resolutions, where as a RGB-D sensor usually is stock with a low resolution. The same

13

2.2. THE KINECT SENSOR

statement can be noted between the ToF and the RGB-D sensor, ToF has a better precision than
the other. Thus, RGB-D does both jobs worse, than the individual sensors. Work has been done
to combine a ToF and RGB sensor into one application [1]. For this system it has been chosen
to work with a RGB-D camera, since the combination of RGB and depth information gives a
wider range of opportunities.

In this system the sensor will be the RGB-D sensor Microsoft Kinect, and is described further
in section 2.2. One of the first problems with multiple sensors is how they affect each other and
how to actually fuse the data from them. These problems are a part of the analysis below.

2.2 The Kinect sensor

The Kinect sensor was introduced in November 2010 [2] as a new input method to the Xbox
360. It was introduced as a competitor to the Nintendo Wii and later the PlayStation Move
from Sony. Apart from being a gaming console peripheral the Kinect has also served as a depth
sensing device for developers. It did not take long for developers to hack the Kinect and start
making their own applications with the Kinect [3]. Microsoft apparently realized the potential
of the Kinect and launched their own SDK [4]. The reason for the Kinect to be so popular
among developers and academics were the low price. Previous to the Kinect, depth sensors
were more expensive and therefore were a bigger investment. With the Kinect, everyone can
have a depth sensor.

The Kinect technology was developed by the Israeli PrimeSense, under the codename "Project
Natal" [5]. PrimeSense have since launched its own SDK and middleware called OpenNI and
NITE [6], and is also selling depth sensors.

The Microsoft Kinect is not just a depth sensor, it also has a microphone array for voice recog-
nition and a standard RGB camera. The depth sensing is done by projecting a infrared grid
of dots out in the room, called structured light. Then a infrared sensor is measuring the shift
between the dots and computing the depth [7] [8]. This method has also been tested on visible
light, by using a projector and a normal RGB-camera [9].

When using multiple Kinect at the same time, the use of infrared light is causing problems.
Interference caused by the multiple projected infrared grid will cause noise in the computed
depth [10]. Tests have shown that the interference can be avoided by placing the Kinects in
the right way. The interference is greatly reduced by placing the Kinects with a perpendicular
viewing angle. The worst scenarios is when the Kinects are facing each other or parallel to
each other [11]. Different solutions to the problem have been proposed, in [12] [13] a small
mechanical device is shaking the Kinect sensor. The shaking will give the infrared light motion
blur, but since the infrared projector and the sensor is both moving simultaneous, the motion

14

CHAPTER 2. ANALYSIS

blur is reduced for that exact sensor, but still making it blurry for the other sensors. Another
solution [14] is using both the RGB and the Depth images to filter the noise, but the method is
only tested on a single Kinect. Another approach to reducing the noise from multiple Kinects is
to use Time division multiple access(TDMA), where multiple signals can be transmitted on the
same channel, by scheduling a specific time slot for each signal to be transmitted in. TDMA is
possible to use with multiple Kinects by turning the infrared projector on and off. Unfortunately
it is not possible to do this with the current API’s as it is, since it is too slow. In [15] [10] a
small mechanical modification is made to make it possible to toggle the transmitter.

One really interesting feature on the Kinect platform is the built-in skeleton tracker. Microsoft
and OpenNI have their own implementation of this feature. The Microsoft skeleton tracker
works by classifying each pixel of the depth image as being part of a joint using heavy trained
decision forests [16]. Each decision forest is a gathering of multi-class decision tree classifiers.
After this classification the joint positions are computed by using a weighted Gaussian kernel
on the joint pixels. The result of this procedure can be seen on figure 4.2. Primesense have
not released any information about how their tracker works, but a main difference is that it uses
temporal information. Another approach to skeleton tracking from depth imaging is presented
in [17]. This approach is based on having a human model, that consists of a kinematic model
and a shape model. The depth data is then fitted to the model using a particle filter.

An evaluation of the two skeleton trackers has never been done on the same dataset, because
of platform and driver problems, thus the first step of this thesis, is to evaluate which of these
sensors gives the best data. This data is the information that needs to be fused. Before looking
at the actual fusing, another problem will be covered in section 2.3.

2.3 Multiple Kinect calibration

This section is a discussion about how to calibrate multiple Kinects. The camera calibration
process consists of finding the right parameter for the camera. These parameters are divided
into two groups, the intrinsic parameters and the extrinsic parameters. The intrinsic parameters
includes the focal length and the lens distortion, while the extrinsic parameters tell about the
transformation between the camera coordinate system and the world coordinate system. For the
intrinsic parameters, the usual checkerboard calibration can be used, both for the RGB and the
depth camera.

The extrinsic calibration is the first step in the process of fusing the data, and is defined by being
the process of computing the 6D pose transformation between multiple Kinects. This is done
by capturing images of an object from all the cameras, and then extracting the same point in
each frame. This will give a position of an object from multiple poses and it is then possible
to use those positions to find the pose of the cameras. This can be done with the traditional

15

2.4. DATA FUSION

checkerboard or a QR-code.

In a setup with perfect conditions the extrinsic calibration would yield multiple skeleton joints
laying exactly on top of each other. The following section 2.4, Data fusion, will discuss method
for solving the problem when the skeleton joints positions is not perfect.

2.4 Data fusion

This section will present different forms of fusion methods. First in form of graphical models,
which is based on seeing each joint as a node in a tree-structure. Then a Point cloud (PC) based
approach, where the idea is to merge the two PC from each Kinect, and fed it to a skeleton
tracker. Last, apply a probabilistic filter, such as the Kalman filter, to the joint data.

2.4.1 Graphical model

A graphical model for solving the multiple Kinect fusion could be made by the same method as
in [16]. The method is based on a large amount of decisions trees, which forms decision forests.
These forests are fed with a large amount a data in order to optimize the parameters. All this
data will adapt all the threshold values in all the branches, in all the trees, in all the forests, to
be able to distinguish between different poses. The downside of using this machine learning
approach is that it needs a lot of training. The Microsoft system in [16] is using approximately
500.000 samples.

The method mention above can not directly be applied to the skeleton fusion problem, because
is it based on pixel intensities. But, by using more human-like features, such as length of limbs
and other physical constraints it is possible to make a fusion model, with the capabilities of both
figuring out which points to fuse and how to fuse them.

Another approach to the fusion problem is to use the information about the position and the
orientation of the person. For instance, it is known [18], that the skeleton information from a
Kinect is best if you are facing towards it. Thus, could a model be to weight the values from the
facing Kinect higher than others.

2.4.2 Point cloud based

The essential step in data fusion by using Point Cloud is to merge the clouds. This can be done
in various ways. The KinectFusion by Microsoft Research [19] [20] is using the Iterative Clos-
est Point(ICP) algorithm to merge Point Clouds and compute the transformation between two
frames. The downside of the ICP algorithm is, that the Point Clouds must be roughly align to
begin with, for it to work. But, if the Kinects is calibrated to operate in the same coordinate
frame, then the joints will already be roughly aligned. In this scenario the ICP can be used for

16

CHAPTER 2. ANALYSIS

two purposes to iteratively improve the Kinects calibration and to finish the alignment of the
joints.

By using the perfectly aligned Point Clouds as input to the skeleton tracker, NITE, it is possi-
ble to get a merged skeleton model from multiple Kinects. A PC based method also offers the
ability to filter the PC and remove noise or objects in the scene.

The problem with this method is, that the fusion just happens without any considerations about
which Kinect actually gives the correct data.

2.4.3 Probabilistic filter

Recursive Bayesian estimation is a probabilistic method to recursively estimate a Probability
Density Function(PDF). Two well known Bayes filters is the Kalman filter and the particle filter.

Particle filters have been used with the Kinect for tracking before [17] [21], and it also has the
capabilities to merge the data in the process. Though particle filters can be used for filtering the
Kinect data, it is more viable as a method, when the system is Non-Gaussian. Which means
that the PDF converges towards more than one local maximum.

The Kalman filter can also be used for data fusion [22]. In [23] two different approaches to
Kalman Filter fusion is tested. The two methods are based on filtering before or after the fusion
process. If the measurement matrices are identically the methods functions equally, but the
second method, filtering after, is more efficient computational-wise. It is also noted, that the
first method is best if the measurement matrices are not equally.

2.5 Discussion

After the analysis of the problems regarding data fusion, it is possible to make decisions about
what will work best for this specific scenario. The first task is to figure out a way to handle the
interference between multiple sensors. Results have shown that the interference can be reduced
with a simple vibrating device mounted on the sensors. This method will be implemented in the
system. Next step is to prepare the data for the fusion algorithm, which is done by calibrating
the extrinsic parameters of the sensors. This calibration will transform the joints coordinates
from each Kinect to a common coordinate system.

To fuse the system three different approaches has been analyzed. The graphical methods offer
some very interesting ways to make data fusion based on the model of the human. The point
cloud method also has a unique feature in being able to, for instance, remove objects from the
the scene, which could reduce the effect of unavoidable occlusions. These occlusions could be

17

2.5. DISCUSSION

the robot blocking the view of the worker or other objects. The probabilistic methods offers
a fusion based on filters. The particle filter is not ideal for tracking and is a better choice for
parameter estimation. The Kalman filter is the state of the art filter for tracking, but might be
too demanding for tracking 24 joints in a 3D space. Therefor it is chosen to work with both PC
and a graphical method.

18

3
Design

This chapter includes all the thoughts and design decisions made for the skeleton fusion part
of the system. First a method for solving the interference problem is presented. Next, the
calibration of the Kinects are done. Then the skeleton fusing is described. Last, the test setup
and test scenarios are designed.

3.1 Kinect interference

The Kinect interference problem occurs when there is more Kinects pointing at the same scene.
The root of the problem is that the IR patterns emitted by the infrared projectors are overlapping
and that causes noise in the depth data from the Kinects. On figure 3.1 it can be seen that there
is overlap, noise, in the left side of frame 3.1a.

(a) Depth image 0. (b) Depth image 1.

Figure 3.1: The depth frames from two Kinects.

As mentioned in section 2.2 it is possible to reduce the interference by shaking the Kinects. In
figure 3.2 the results of a constant tapping on one of the Kinects can be seen. The tapping adds
vibrations to the Kinect and thereby adds motion blur to the grid seen by the other Kinect. By
comparing the frame in 3.1a and the frame in 3.2a, it is easy to see, that some of the noise is
gone.

The Shake’n’Sense [12] introduced in section 2.1 have tested different frequencies for the vi-
brations, but also suggests a simple solution. The simple solution is to mount a little motor on

19

3.2. KINECT CALIBRATION

(a) Depth image 0. (b) Depth image 1.

Figure 3.2: The depth frames from two Kinects while adding vibrations to one of them.

top of the Kinect with an off-center wheel. This approach will be used for this system, since it
is fairly simple to implement and should be able to reduce the interference.

3.2 Kinect calibration

As described in 2.3 the Kinect calibration is two-fold, first the intrinsic parameters are found
and then the extrinsic parameters.

Even though the Kinect has a built in intrinsic calibration [24], it is possible to get a better per-
formance by doing a calibration. The intrinsic parameters is found using a camera calibration
toolbox for Matlab [25]. The toolbox uses 20 images, of a checkerboard, from a camera to
compute the focal length, principal point, skew coefficient and the distortion.

The RGB cameras and the depth cameras can be calibrated using the checkerboard method.
When calibrating the depth camera, IR sensor, it is a good idea to use an external source of IR
light [24]. This could be sunlight or a halogen lamp.

The extrinsic calibration is the mapping from camera coordinates to world coordinates. It con-
sists of a translation and a rotation matrix. These to matrices can be found by recording different
poses of a checkerboard with frames from both Kinects, which gives two set of 3D points. This
gives two point sets and the transformation between such two sets can be computed by using
the Singular Value Decomposition (SVD) [26]. The first step in the process is to find the covari-
ance matrix between the two point sets, A and B. The centroid of each point set is computed by
averaging all the points. The computation of covariance matrix H can be seen in equation 3.1.

H =
H∑
i=1

(
P i
A − centroidA

) (
P i
B − centroidB

)T (3.1)

Next, the SVD is applied to H for computing the rotation. Equation 3.2 and 3.3 shows this, R is
the rotation matrix, describing the rotation between the two sets of points.

20

CHAPTER 3. DESIGN

[U, S, V] = SVD (H) (3.2)

R = V UT (3.3)

The translation is then computed by adding the rotation to the centroid of A, and then moved to
point set B by adding the centroid of B. This procedure is shown in equation 3.4

T = −R · centroidA + centroidB (3.4)

3.2.1 Skeleton fusion

This section will provide two different methods to the skeleton fusion problem.

The NITE framework and Microsoft SDK gives an interesting confidence value for each joint.
This value can be used for fusion purposes, since we are interested in figuring out, which data is
reliable. The confidence value is 1, when it gives a reliable position of the joint and 0, when the
data is unreliable. Thus, it is possible to make a simple model for the joint fusion by trusting
the Kinect with the best values based on confidence. Two different approaches is suggested for
using the confidence value, with a common basis, if only one Kinect gives 1, trust that one. If
both Kinects gives the value of one, then the first approach is to count the sum of confidence for
each Kinect and then trust the Kinect with the highest sum. The other approach is to average
the two joints.

The next method is to merge the point clouds and run the NITE skeleton tracker on the new
improved PC. There is one major disadvantage by using this method, the system does not know
if the data is reliable or not. On the other side, a combined PC must be more complete for
the person because of the added points from different angles. It is also worth noticing, that it
is possible to do some filtering on the new point cloud. The filtering could for instance be to
remove the background and other noise-components.

3.3 Test design

This section describes the test setup for the Kinect fusion. As mentioned in section 2.2 there is
a platform problem, when comparing Microsoft SDK and NITE to each other. The Microsoft
SDK is currently only supported on Windows, while OpenNI and NITE works on all major
platforms. This limits the test to be executed on the Windows platform. Choosing the right plat-
form does not solve all the constrictions of this setup, the drivers from Microsoft and OpenNI
cannot stream data from a Kinect at the same time. Therefore it is necessary to use a third party
software called kinect-mssdk-openni-bridge [27], which allows OpenNI to stream data from the
Microsoft driver. OpenNI works by creating production notes, these notes could for instance be

21

3.3. TEST DESIGN

a depth generator or a user generator, with the bridge, it is possible to create a depth node from
either Microsoft or OpenNI. In the same way it is possible to create a user node using NITE or
using the Microsoft SDK, tough it is not possible to do this at the same time.

Therefore it is chosen to use a setup, where the skeleton tracker from Microsoft is running live
and in the same process the depth node is saved to a OpenNI recording, a .oni-file. Then in the
post-processing the depth node can be streamed and the NITE skeleton tracker can be applied
to that data. Thus, both skeleton trackers are running on the same data. This approach can also
been used on multiple Kinects, by running the same program multiply times.

To test the performance a sort of ground truth is needed. In the evaluation of another skeleton
tracker they used a motion capture system to acquire a ground truth [28]. This will also be the
way of acquiring a ground truth for this test, by using a Vicon Motion Capture system [29]. The
Vicon system triangulates the position of passive reflective markers, which is usually placed on
a suit. When a person is wearing the suite, it is possible calibrate a character in the motion cap-
ture software and then compute the position and rotation of each joint. The joint informations
can then be streamed to a user application using their SDK.

The whole system then consists of two Kinect applications and the motion capture data. These
three processes needs to be synchronized so the frames are matching. This can be achieved by
implementing a network connection between the processes. The network connection will send
a message out to each processes to tell if it should start or stop capturing data.

As mentioned earlier the test will be conducted in a motion capture lab. The setup of the Kinect
will be done as shown on figure 3.3, which shows the Kinect being perpendicular to each other.
The test scenarios will be performed at the red dot in the figure, which is 2 meters from each
Kinect. This distance is based on the optimal range which is from 0.8-4 meters [30].

2000 mm

2
0

0
0

 m
m

Figure 3.3: The relation between the position of the Kinect.

22

CHAPTER 3. DESIGN

3.3.1 Test scenarios

This section consists of descriptions of each test scenario. There will be an explanation of how
each scenario is played out, and then there will be a reasoning for the scenario.

Walking Walk in a circle in front of the Kinect facing the Kinect with the torso and head all
the time. This scenario is for testing basic movement in front of Kinect, without any
occlusions.

360 This full body rotation is done with arms out in a T-pose and with the arms a long the
side of the body. This is done to evaluate which of the two skeleton trackers are best at
tracking under rotation both in range of motion and in picking up the skeleton again.

Hiding arms This scenario is played out by standing in front of the Kinect facing it. Then
hiding both arms one by one, and last both at the same time. This will test which system
handles hand occlusion best.

Box pick up The box pick up is where the person is standing facing the Kinect and then picking
up a package from the floor. The person must then show the package to the Kinect by
stretching out both arms. This test will discover what happens when both system are
affected by partial occlusions.

Full body occlusion In this scenario the person is going behind a wall to create full body oc-
clusions. The person will go back and forth a few times. This will test how fast the
systems will pick up a skeleton again after losing it.

Sitting This scenario is conducted by having a person standing beside a chair and then sitting
down, which will be done a few times. This will test which system is best handling a case
of a person sitting.

Basic arms Basic arms is done by standing with a 45 degrees angle to the Kinect and then
move the arms from a T-pose down along the side and then stretching forward. The arm
movement is repeated for every 45 degree in a 90 degrees range for the Kinect.

And for the dual Kinect setup the following scenarios are covered.

360 This scenario is exactly like the one conducted for one Kinect.

Box pick up In this box pick up the box is reached over to the second Kinect.

Basic arms This is done for 180 degrees so the person reaches 45 degrees for both Kinects.

23

This page is intentionally left blank.

24

4
Implementation

This section describes how the system designed in 3 is implemented. First a small overview is
given with a system flowchart, then each subsystem is described.

4.1 Overview

This section’s purpose is to give an overview of the implementation, which can be seen on figure
4.1. As noted in section 3.2.1 the data acquisition has to be implemented in Visual C++, rest of
the system is implemented in Matlab.

Kinect 1

Kinect 2

Vicon

.txtServer

.txt

.txt

.oni

.oni

Figure 4.1: Flowchart of the system.

On figure 4.1 it can be seen that the Kinects are delivering data in two ways, writing to a txt-file
and saving an oni.-file. The txt-file is the MS-SDK skeleton tracker and the oni.-file is meant
for the NITE tracker. The two different models and the Vicon model can be seen on figure 4.2

4.2 Multiple Kinect calibration

The camera calibration is done in two steps, as described in 3.2. First the intrinsic parameters
is computed for each Kinect using the camera calibration toolbox [25]. In 3.2 the extrinsic
calibration is explained as finding the transformation between the two Kinects using images of

25

4.3. KINECT INTERFERENCE

Figure 4.2: The different skeleton models in the system. From left: The Vicon motion capture
suit, The skeleton model in the Vicon Blade software, Microsoft skeleton tracker and OpenNI
skeleton tracker.

a checkerboard seen by both Kinects. Since a third system, the Vicon motion capture, is in-
troduced another approach is used for the calibration. Instead of calibrating the two Kinects to
operate in the same coordinate frame, the two Kinects are separately calibrated to operate in the
coordinate frame of the Vicon system. This is achieved by using a checkerboard with reflective
markers on it, the checkerboard can be seen in figure 4.3.

Figure 4.3: Checkerboard used for extrinsic calibration.

The corners can be detected by the Kinect and the markers by the Vicon system. To find the
checkerboard corners in the Vicon frame, the markers are used for inferring the positions of the
corners, which can be done because of the known dimensions of the checkerboard. Then the
SVD-method, as explained in section 3.2, can be applied to get the transformation between the
coordinate frames.

4.3 Kinect interference

This section explains how the interference problem from section 3.1 is solved. The solution is
implemented by mounting a DC motor on top of the Kinect, with an off-centered weight. The

26

CHAPTER 4. IMPLEMENTATION

off-centered weight is tape fastened on the axis, which is sufficient for the desired vibration. A
9V battery is mounted for powering the motor. Figure 4.4 shows the implementation.

Figure 4.4: The DC motor with off-centered weight and battery.

4.4 System synchronization

This section covers the system synchronization as mentioned in 3.3, and seen in figure . The
synchronization is using TCP sockets by using the Winsock2 API.

Data stream

Recording
?

Received
'Q'
?

YES

Received
'R'
?

 NO

Start recording

YES

Write data to
.txt/.oni

Stop recording

YES

 NO

 NO

Figure 4.5: The system flow for the synchronization on the clients.

The system consists of one server and three clients. Figure 4.5 shows the system flow for one
client. The data stream represents the incoming TCP packages from the server. The server can
send two different messages: Q, for stopping the recording, R for starting the recording and A
for saving data to file. The Q and R is prompted from a user interface, while A is continuously
send each 33ms, while recording is active.

27

4.5. SKELETON FUSION

4.5 Skeleton fusion

In figure 4.6 it is shown how the skeleton fusion is implemented. The data from both Kinects is
received, and then for each joint the confidence values are compared. If the values are equal then
there is two choices. First, the two joint positions are averaged. Second, the sum of confidence
for all joints is computed, and the Kinect with the highest sum is chosen. If the confidences is
not equal, the highest one is chosen.

Kinect 1 Kinect 2

Conf.
equal

?

Average Full

YES

Kinect 1
>

Kinect 2

NO

Pick data
Kinect 1

YES

Kinect 2
>

Kinect 1

Pick data
Kinect 2

YES

NO

Figure 4.6: The kinect fusioning system.

The point cloud based method described in section 3.2.1 is not implemented due to time con-
straint and the choice of focusing on comparing the NITE skeleton tracker with the MS-SDK
tracker.

28

5
System test

This chapter is divided into two parts. The evaluation of the Kinect fusion and of the human
behavior prediction. The test will be conducted as described in section 3.3. Figure 5.1 shows
how the test was conducted, where a person is wearing the motion capture suit, the two Kinects
can be seen and some of the motion capture sensors are present at the top.

Figure 5.1: A picture of how the test was conducted.

5.1 Kinect fusion

The test of the Kinect fusion is two fold. First the two skeleton trackers, NITE and Microsoft
SDK (MS-SDK) is compared using one Kinect. Then the dual Kinect fusion is tested. In the
tables below, the name for each scenario is defined as:

• Walking: Walk

• 360: 360

• Hiding arms: Hide

29

5.1. KINECT FUSION

Joint System Walk 360 Hide Box Occ Sit Arms
Head MSSDK 100 100 100 100 66 100 100

NITE 91 99 93 82 83 68 99
Neck MSSDK 100 100 100 100 67 100 100

NITE 100 100 100 100 83 99 100
Torso MSSDK 100 100 100 100 67 100 100

NITE 100 100 100 100 83 99 100
Shoulders MSSDK 100 73 100 100 60 99 96

NITE 100 100 100 100 83 99 100
Elbows MSSDK 100 75 100 96 57 74 96

NITE 99 90 100 71 59 95 100
Hands MSSDK 100 76 58 48 47 86 95

NITE 99 88 100 70 58 94 100

Table 5.1: Percentage of tracked position

• Box pick up: Box

• Full body occlusion: Occ

• Sitting: Sit

• Basic arms: Arms

5.1.1 Single Kinect

In table 5.1 a large amount of percentages are shown. These values are telling how large of
the percentage of the joints are tracked all the time, where tracked means have a confidence of
1. Joints with a value of 100% are tracked all the time for that scenario. By comparing the
values for NITE and MS-SDK it can be noticed that except for the head values, MS-SDK is
more prone to lose track of joints. Especially in occlusion scenario.

In table 5.2 the average error of each joint for each scenario is listed, the bold values are the
best ones. These errors are based on the ground truth from the Vicon motion capture system.
By inspecting the values in table 5.2 is can be noticed, that MS-SDK seems better on shoulder,
elbows and hands, while NITE is better on head, neck and torso. Also, it is worth noticing at
the bad accuracy for the hands when occlusions are present.

A comparison between number in the two tables 5.1 and 5.2 leads to some interesting discover-
ies. For instance MS-SDK has better accuracy for the occlusion scenario, where it is more prone
to throw away values. This is also true for the 360 scenario, which means that the confidence
values from MS-SDK is more reliable.

Figure 5.2 shows a comparison of the error rate for the shoulder joint for the walking scenario.
It can be seen that the error is changing over time between 6-8 centimeters. For this joint and

30

CHAPTER 5. SYSTEM TEST

Joint System Walk 360 Hide Box Occ Sit Arms
Head MSSDK 15.8 17.2 16.1 13.2 32.5 14.8 16.3

NITE 10.6 11.8 13.3 12.2 76.2 11.0 13.5
Neck MSSDK 11.2 14.5 10.9 8.5 31.8 7.7 11.2

NITE 4.6 4.9 3.2 10.5 76.6 5.7 5.2
Torso MSSDK 4.4 5.9 3.9 10.1 30.7 7.5 4.2

NITE 6.7 6.7 6.8 15.5 82.0 12.1 7.5
Shoulders MSSDK 7.8 16.8 5.8 9.3 34.6 7.9 6.7

NITE 5.6 18.6 7.1 8.7 82.4 9.2 7.2
Elbows MSSDK 9.6 28.6 7.6 6.4 42.5 8.7 7.4

NITE 9.0 32.0 7.4 9.1 78.5 11.1 8.3
Hands MSSDK 14.8 47.3 15.6 12.2 52.9 14.1 12.7

NITE 14.8 50.2 11.0 15.9 84.7 14.2 14.2

Table 5.2: Error of the two models MS-SDK and NITE. All values are in centimeters.

scenario NITE is performing better.

2 4 6 8 10 12 14 16 18 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Time [s]

P
os

iti
on

 E
rr

or
 [m

]

Error rate MS−SDK
Error rate NITE

Figure 5.2: Average error in shoulder joint positions for the walking scenario.

Figure 5.3 demonstrates the left hand joint positions in x,y and z coordinates over time in the
360 turn scenario. It is noteworthy that it takes a few seconds for NITE to start tracking and this
is because of our data capture procedure. NITE runs on the .oni file offline whereas MS-SDK
always runs on the live stream. Therefore it takes some time for the NITE tracker to initiate
tracking. First at around t=3s, the person starts to turn around self and this turn ends around
t=12s, where another rotation is performed. The second 360 rotation is done with the arms
along the side of the body, that is why we can see the Y-position decrease at t=12s. In figure 5.3
the X-position and the Z-position should be similar since it is a rotation around the Y-axis. For
the X-position around t=6s, it seems like NITE is in doubt and is giving some really big errors,
while MS-SDK stays closer to the real value. Whats happening at around t=7s on the X-position
is that the skeleton flips and both MS-SDK and NITE thinks it sees the front of the person in-
stead of the back, that is why the slope looks like the one at around t=10s, where the person is

31

5.1. KINECT FUSION

actually facing the Kinect again. The same phenomenon can also be seen on the second rotation
and for the Z-position. For this scenario NITE and MS-SDK seems to be performing equally,
although NITE seems to return to the right position faster than MS-SDK. This can be seen on
figure 5.3 around t=9s.

0 2 4 6 8 10 12 14 16 18 20
−2.5

−2

−1.5

−1

−0.5

0
X position

Time [s]

P
os

iti
on

 [m
]

Vicon
MS−SDK
NITE

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5
Y position

Time [s]

P
os

iti
on

 [m
]

Vicon
MS−SDK
NITE

0 2 4 6 8 10 12 14 16 18 20
−2.5

−2

−1.5

−1

−0.5

0
Z position

Time [s]

P
os

iti
on

 [m
]

Vicon
MS−SDK
NITE

Figure 5.3: Absolute position for the left hand joint.

5.1.2 Dual Kinect

In this section the Kinect fusion as described in section 4.5 is evaluated. The two fusion meth-
ods are Average and Sum as seen in table 5.3, which shows the performance of the two fusion
methods and and a single Kinect in the 360 scenario. One of the goals of have Kinect fusion is
to increase the range of motion for the tracked person. Therefore it is interesting to compare the
values in table 5.1 with the ones in table 5.3. A evaluation of those values shows that their is an
increase in the range of rotation that the person can do, while being tracked.

Table 5.4 shows the accuracy of the two Kinect fusion methods, and it is clear that the Average
methods is best. While the methods is not clearly better than the single Kinect on accuracy, it

32

CHAPTER 5. SYSTEM TEST

Joint System Single Kinect Dual Avg. Dual Sum
Head MSSDK 100 100 100

NITE 95.5 100 100
Neck MSSDK 100 100 100

NITE 100 100 100
Torso MSSDK 100 100 100

NITE 100 100 100
Shoulders MSSDK 76.6 99.4 99.4

NITE 100 100 100
Elbows MSSDK 76.4 99.6 99.6

NITE 92.8 100 100
Hands MSSDK 83 98.8 98.8

NITE 91.6 100 100

Table 5.3: Percentage of tracked position

Joint System Single Kinect Dual Avg. Dual Sum
Head MSSDK 18.7 19.3 19.5

NITE 12.97 14.77 13.75
Neck MSSDK 14.57 16.06 15.89

NITE 5.59 5.11 6.13
Torso MSSDK 6.44 6.09 6.75

NITE 6.94 6.24 6.91
Shoulders MSSDK 16.63 16.75 18.63

NITE 15.01 16.17 17.03
Elbows MSSDK 29.03 29.96 34.29

NITE 29.64 29.93 31.63
Hands MSSDK 46.24 44.06 52.08

NITE 48.22 44.79 50.09

Table 5.4: Error of the two models MS-SDK and NITE for different fusion methods. All values
are in centimeters.

has better values for some of the joints.

Figure 5.4 shows the X-position of the left hand joint for the 360 scenario just as in figure
5.3. The upper graph is using a single Kinect while the bottom graph is using the avg. fusion
method. Up to around t=7s both systems looks noisy, that is because of the confidences are
changing when the person is rotating away from both Kinect. MS-SDK seems to be doing a
better job, without filtering the bad confidences. This changes though at around t=11s, where
MS-SDK seems to do a better job while using the fusion method, and again around t=23s. With
the fusion method NITE still seems to do a better job than MS-SDK on the tracking.

As mentioned in section 4.3 two small shake devices are mounted on each device. They were
evaluated by running a test with them on and with them off. The result of this test can be seen
on figure 5.5 and it is clear that the vibration actually makes the accuracy worse.

33

5.2. DISCUSSION

0 5 10 15 20 25
−2.5

−2

−1.5

−1

−0.5

0
X position − Single Kinect

Time [s]

P
os

iti
on

 [m
]

Vicon
MS−SDK
NITE

0 5 10 15 20 25
−2.5

−2

−1.5

−1

−0.5

0
X position − Dual Avg.

Time [s]

P
os

iti
on

 [m
]

Vicon
MS−SDK
NITE

Figure 5.4: Single Kinect and Dual Kinect on the 360 scenario. The x-position tracked is from
the left hand.

Head Neck Torso Shoulders Elbows Hands
0

5

10

15

20

25

30

35

40

45

Joint names

P
os

iti
on

 e
rr

or
 [c

m
]

Vibration error

NITE vib
NITE no vib
MS−SDK vib
MS−SDK no vib

Figure 5.5: Accuracy measured with and without vibration.

5.2 Discussion

The test in this chapter was done as specified in section 3.3. In the test for a single Kinect it was
discovered that the tracking performance was highly dependent on the joint. For instance the

34

CHAPTER 5. SYSTEM TEST

NITE performed best tracking on all joint except for the head. Looking at accuracies, it is noted
that MS-SDK performance better in some scenarios. For instance the occlusion scenario, where
the whole body is temporal occluded, this might be caused by the fact, that MS-SDK reads the
situation better and stops the tracking before NITE. With this conclusion made, it is interesting
that the opposite seems to be happening in figure 5.3, where NITE looks faster at picking up the
tracking again. NITE also performs better on the 360 rotation, which can be seen in table 5.1
and 5.3. So, while MS-SDK stops tracking faster and by that achieving higher accuracy, NITE
seems to be faster at returning to tracking mode.

For dual Kinects NITE showed better tracking, see table 5.3, but this is also in the 360 scenario,
where NITE also was best on a single Kinect. In figure 5.4 it can be seen that both tracking
systems is improved by the fusion. The lines that goes up to zero is caused by the fact that both
Kinect acquires bad data and the value is then set to zero. This tells that expect for the start the
joints are tracked all the time.

The last test was the test of the vibration modules mounted on the Kinects. Here it was dis-
covered that the accuracy was worse with the vibration modules. It is an interesting discovery,
because it has been documented, that the vibration effect reduces the noise on the depth images.
This noise reduction is apparently not enough to make up for the fact, that a lot of error can
occur, if the sensors are moving. First, the calibration will become less accurate, and then the
moving sensors will certainly add more noise to the acquired positions.

Another important thing is the different skeleton models in the system. Figure 4.2 in section 4.1
gives an impression on the different models. The problem is, that these three companies, Vicon,
Microsoft and PrimeSense, have different definitions of a human skeleton. This is a major
concern, when the data from the models is compared to each other, with the idea of computing
accuracy. A way to solve this, is to gather the data, and the compute the offset from model to
model. If a shoulder point is defined in two different ways, the difference must be measurable.
This problem was tried to solve, but it was not possible to find any meaningful offsets, which
could be caused by too noisy data.

35

This page is intentionally left blank.

36

Part II

Gesture recognition

37

This page is intentionally left blank.

38

6
Analysis

In this chapter starts out with an introduction to human behavior prediction, which is leading
to the topic of gesture recognition. Next up is a discussion of what a gesture is and how it is
defined in this report. Next is an analysis of how to detect gestures. Last, a discussion, where
the analysis leads to a basis for a solution to the problem.

6.1 Introduction

The human behavior estimation is directly based on the data from the Kinect fusion. The goal
is to deliver a model of the human to the robot. This model can basically be anything from just
a position of the human, to a more advanced model of where the person is looking and what
the person is doing. The first part of this chapter about human behavior prediction is a analysis
of that kind of model the system should be using. To figure out how to model the system, one
should ask questions about the scenario.

1. Where is the persons attention ?

2. Where is it safe for the person to move ?

3. What is the person doing ?

4. What action can the robot do, to be most helpful ?

All these questions are based on estimating information or behavior about the person. But even
if it is possible to answer all the questions above, the robot still might be uncertain about a sit-
uation. This uncertainty could be solved by introducing a way for the worker to communicate
with the robot. Ways of doing this could be some sort of physical interface, voice commands
or gestures. Gestures is an interesting communication channel, since the Kinect gives a lot of
informations about the state of the arms of the worker. Also, it will be more robust than voice
commands in a loud workspace, like the assembly line at a car factory.

39

6.2. GESTURES

In Human-robot interaction gestures can be really useful. For instance to tell the robot to stop,
rotate or move.

Deliver

Return

MovePick up

idle

Assembly

Pointing

Robot
hands object

Figure 6.1: The states that the worker can be in.

Figure 6.1 shows a scenario taken from the description in section 1.1, where a gesture is incor-
porated. In this scenario the worker has two different ways to acquire the object, a battery, and
then the workers proceeds to move to the car and do the assembling. The worker can acquire
the battery by picking it up, or pointing to the object to signal the robot to deliver it.

The next section will elaborate on what a pointing gesture is and how others have defined it.
After that methods for general gesture recognition and pointing gestures will be analyzed.

6.2 Gestures

Gestures is the standard non-verbal communication form for humans and have existed since the
modern humans were born. Gestures are used all the time while communicating with others,
in form of either facial expressions or movement with hands. The sign language is a complete
language with grammar and a vocabulary, and is purely based on gestures. It has also been
proven, that gestures is on of the first steps for learning to speak [31]. The skeleton tracked by
the Kinect gives a good model for arms movement and is a great foundation for gesture-based
communication for the system.

A gesture can be decomposed into three stages: preparation, stroke and retraction, with stroke
as the most important stage [32]. It might be true, that the stroke is important because of the
amount of information, but a gesture is still the sum of the stages. For instance, a kick, if the
gesture is stopped after the stroke, the leg is raised, it will be ambiguous. First, how can it be
known at which height to stop the gesture. This is why the retraction is important.

Gestures are, just like for instance hand writing, unique for an individual person. One of the
most well known gestures, the wave, can be done in many different ways. Some people only
bend the fingers, while others are only rotating the wrist.

40

CHAPTER 6. ANALYSIS

This is also very true for pointing gestures, and is also what makes gesture recognition a non-
trivial problem. A pointing gesture can be done in many ways, straight arm or bended elbow
joint, and some people also use the entire hand instead of only the index finger. Three different
ways of pointing is described in [33], which is: pointing with forearm, using straight arm or by
lining up eyes and fingertip.

To narrow down the range of motions for a pointing gesture, it is decided that a pointing gesture
is done with an almost straight arm, close to no bending in the elbow joint. Figure 6.2 shows
what the pointing gesture can look like. The three stages then becomes: arms in resting position,
moving arm and holding arm in pointing position.

Figure 6.2: The three stage pointing gesture.

6.3 Methods

Detecting human activities from video streams is one of the most researched topics in Computer
Vision, which have concluded in a few surveys [34] [35]. As mentioned earlier gestures are an
interesting activity for recognition systems, because of the high variety in the execution of the
gesture. A few surveys on the topics has been written [36], where it is noted that many have
been using methods as Hidden Markov Models and finite state machines. Many well known
methods: Principal Component Analysis, Kalman filtering and Particle Filtering, can be cou-
pled with discrimination algorithms to achieve gesture recognition.

Hidden Markov Models (HMM) is a very popular state-space model. The hidden states in HMM
is what makes it different from the standard Markov model. Instead of observing the states, out-
put for the states is observed. HMM works by training a model with sequences and then it gives
a likelihood, for how good a new sequence fits the model. This makes it able to adapt to almost
any gestures and sequences, given the optimal observed values for the gesture. HMM is very
well documented as on of the best methods for gesture recognition [37] [38] [39] [40] [41] [42].

One of the first examples of HMM recognizing human action is in [41], where the HMM’s are
recognizing different tennis strokes. Others have been using HMM’s to train different vocabu-
laries for communication [42], which has lead to a real-time American sign language recogni-
tion system [40]. In [39] complex Tai Chi, a Chinese martial art form, actions are recognized

41

6.4. DISCUSSION

using standard, linked, and coupled HMM’s. These merged models are made by introducing a
conditional probability between their hidden state variable. Another type is parametric HMM’s,
which is based on the idea of extracting information from the gesture. This is done with output
densities, which are functions of a gesture parameter vector. This enables the model to return
for instance the pointing direction [37]. One of the difficulties with HMM’s are the recognition
of a non-gesture, since the models usually are only based on actual gesture examples. A method
for modeling the threshold of the likelihood value, is applied to solve this problem [38].

Another state based method is the finite state machines (FSM) [36], actually the HMM is a type
of FSM. This implies that they are familiar. For FSM each state is represented as a parameter
vector, which includes probabilistic parameters and a duration interval. One of the main dif-
ferences is the fact that the states are hidden in the HMM, while everything is observable for
FSM [43] [44].

Conditional random fields (CRF) have also been applied to gesture recognition tasks. The CRF
is based on discriminative learning, which based on the idea of learning to distinguish between
multiple models. This is very different from the generative learning in HMM, where the models
are taught how a model looks, but not how it compares to other models. In [45] [46] different
gesture recognition tasks are tested on both HMM and CRF. HMM performance better in both
and is also stated faster in one of them. In [47] a hidden CRF is modeled and performance better
than a HMM.

As mentioned earlier a lot of popular feature reduction methods and filtering methods can be
combined with the discrimination methods above. The principal component analysis is a way of
transforming a feature set onto a lower-dimensional manifold. In gesture recognition it works by
creating templates for each gesture and new gestures can then be compared and recognized [48].
The Kalman filter is a state of the art tracking algorithm for multiple purposes, it works by
estimating parameters by using previous noisy inputs. The Kalman filter is not useful alone for
gesture recognition, but works great in combination with for instance HMM’s [49]. The particle
filter is a probabilistic filter like the Kalman filter. The idea of the filter is to represent probability
densities with an amount of particles. These particles are sampled and weighted based on the
observations, which in tracking scenarios often are representing location and velocity [50].

6.4 Discussion

Based on the analysis of gesture recognition and pointing gestures in the previous sections, it
is possible to decided how to solve the problems for this system. First, it was decided to look
for gestures to improve the collaboration between robots and workers in at the BMW assembly
line. It was decided to define a pointing gesture as starting from a resting position, to raise the
arm without bending in the elbow joint and the return to the resting position.

42

CHAPTER 6. ANALYSIS

For detection the gesture a few similar solutions were described. FSM, HMM and CRF are all
state based discrimination algorithms, which have all proven to be able to do gesture recogni-
tion. In tests comparing the algorithms it seems like HMM’s are best, which is the reason for
choosing it for this system.

43

This page is intentionally left blank.

44

7
Design

As described in chapter 6 the human behavior estimation is based on gesture recognition by
using HMM’s. The gesture, the system should be designed to recognize, is a pointing gesture
described in section 6.2. HMM’s are based on observations and transitions probabilities, that
triggers the action of changing states. The states that a person is going through doing a pointing
gesture can be loosely defined previous to the training of the HMM, but there is no guarantee
that the HMM will fit the data like that. This concept and a lot more about HMM’s will be
discussed in section 7.2.

The observations are based on the skeleton data computed by the Kinect fusion mentioned in
part I. To pick out the best observations a few questions should be answered. Which joints
are interesting for the given gesture? Which information from each joint is interesting for
the gesture? Are these informations robust from person to person? These questions will be
answered in section 7.1.

7.1 Data analysis

A HMM is using observations to compute which state to be in. These observations are the in-
puts values from the sensor in the system, the Kinects. With the skeleton tracker for the Kinects
it is possible to receive precise information about each joint. This information is the orientation,
the position and the confidence of the values. Before deciding which informations to look for, it
is important to make an analysis the given gesture and discover which informations are relevant.

As mentioned in section 6.2, the pointing gesture is defined as a straight arm lift to reduce the
complexity of modeling the variety of pointing with a bended arm. Even though the modeling
of the arms should be equal, it is decided to only use right arm gestures for this system. It
is still important to observe both arms, since movement of the left arm might indicate another
gesture than pointing. As mentioned in section 6.3, a HMM is using states, which is interesting
to analyze, in order to figure out, which types of observations would work best. The states are
based on the gesture definition from section 6.2, where the gesture was decomposed into three
stages: preparation, stroke and retraction.

45

7.1. DATA ANALYSIS

To be able to detect when the gesture is happens, when it is ongoing, and when it is done, the
observations is divided into three states. So, the gesture might consist of these three states:

• State 1: Low angle for the arm, describing that the arm is in a resting position, along the
side of the body. Close to zero velocity for the angles since the arm should be steady.

• State 2: High variety in the angles and a high velocity. This indicates that the arm is
moving to the pointing position.

• State 3: High angle for the arm, which means that the arm is in a non-resting position.
The velocities should be close to zero.

Figure 7.1 shows how those three states would look in a state machine. The arrows symbolizes
the state transitions. A gesture is recognized if the state sequence is in form of: State 1, State 2,
State 3, State 2 and State 1.

State 1 State 2 State 3

Figure 7.1: The three states and the transitions.

In the state description angles and velocities are mentioned, which is also recommended in a
survey, studying features for gesture recognition, where usage of velocities and angles are rec-
ommended for recognition rather than raw Cartesian coordinates [51]. Using velocities instead
of Cartesian coordinates makes the observations invariant to rotations, which makes the system
able to detect pointing gestures in a variety of directions. The angles are still important since
it keeps track of whether the arm is raised or not. Also, it might be useful to add the angle
between the overarm and forearm to detect if the arm is straight.

It is now known which informations to look for, and as described in chapter 7 a Kinect is de-
livering the information. Figure 7.2 shows a sequence of multiple pointing gestures and the
xyz-orientations for the shoulder joint. The orientations of the joint is described in quaternions,
which is a common way of representing rotations in robotics. A quaternions consists of the
three usual components xyz and w, xyz defines the rotational axis and w defines the amount. The
figure 7.2 shows seven pointing gestures, which can be observed on the graph by looking at the
z and w values. Graphs for the other joints looks similar to this one, which leads to the notion
of computing angles from the joint positions instead. The problem with the values in figure 7.2
is, that they are not completely clear and also, they do not give the best representation for a

46

CHAPTER 7. DESIGN

pointing gesture.

0 200 400 600 800 1000 1200 1400
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Frame [f]

A
ng

le
 [r

ad
]

x
y
z
w

Figure 7.2: Orientations for the shoulder joint. The seven pointing gestures happens approxi-
mately at: f = 300, f = 450, f = 600, f = 750, f = 900, f = 1050 and f = 1200.

As mentioned above the pointing gesture consist of a straight arm raise from resting position. A
good way of representing this gesture could be to compute the arm angle in respect to the human
body e.g. a vertical line. This would make the angle invariant to different direction of pointing,
but variant to how high the person is pointing. The computation of this angle can be seen in
equation 7.1, where pS and pE is to 3D position of the shoulder and elbow respectively. ~v is a
vertical vector defined as [0, 1, 0]T . To verify that the elbow joint is straight, an angle between
the upper arm and forearm is computed, which is done by computing the forearm angle the
same way as the upper arm and then the two are subtracted. The ~j is in this case computed by
subtracting the wrist point from the elbow point.

~j = pS − pE

α = acos

(
~v ·~jT

|~v||~j|

)
(7.1)

The new angles can be seen on the graph in figure 7.3 and it can clearly be seen, when the ges-
tures are happening. The blue curve is the upper arm angle, which is the one showing how high
the arm is raised. Up to frame number 200 the person is doing some calibration movements to
ensure, that the Kinect is tracking the person. The figure shows seven pointing gestures, where
the four first is in front of the person in similar heights. The last three gestures are all in ascend-
ing heights, which can be seen on the graph. During a pointing gesture it is expected that the
entire left arm are still, which is seen on the graph. The positions for the right arm gets noisy
during movement, and that is why the graph shows that the right elbow joint is not stretched.

47

7.1. DATA ANALYSIS

0 200 400 600 800 1000 1200
−60

−40

−20

0

20

40

60

80

100

120

140

Frames

V
el

oc
ity

l arm angle
r arm angle
l elbow angle
r elbow angle

Figure 7.3: New arm angle.

0 200 400 600 800 1000 1200
0

10

20

30

40

50

60

70

80

Frames

V
el

oc
ity

l arm angle
r arm angle
l elbow angle
r elbow angle

Figure 7.4: Velocity of the arm angles.

The velocities of the angles are computed with the formula in equation 7.2 and can be seen on
the graph in figure 7.4. The graph shows that the velocities greatly increases when the arm is
moving, which can be seen by comparing figure 7.4 with figure 7.3. Equation 7.2 is a simple
average computation coupled with an amplification by an multiplying with ten.

v(n) =
|α(n)− α(n− 1)|

0, 2
(7.2)

To summarize, it was investigated which observations would be best for detecting a pointing
gesture. It was discovered that the orientations directly from the Kinect could not be used.
Instead a new angle, based on the dot product between the arm and the vertical axis, is used.

48

CHAPTER 7. DESIGN

This method is also used for computing the angle of the elbow joint. These angle makes a basis
for the computation of velocities.

7.2 Hidden Markov Models

As mentioned in chapter 6.3, Hidden Markov Models, are popular models for temporal and
sequence data. A simple way to explain how the HMM works is to think of a black box. First,
an amount of sequences are shown to the box, which teaches the box what the sequences can
look like. Then, a new sequence can be shown to the box and the box will give a value of how
similar the new sequence is to the ones shown.

The HMM is derived from the standard Markov models, which are finite-state machines with
transition probabilities. Therefore the HMM inherits the Markov property, which is, that the
estimation for the next state only depends on the current state. The HMM is introduced when it
is not possible to directly observe those states, but instead it is possible to observe some output
from those states. The description in this section is based on An introduction to hidden Markov
models by L. Rabiner [52].

S1 S2

O1

a12

a21

b12 b21

Figure 7.5: A basic HMM.

The HMM is defined by the equation seen in 7.3, where N is the number of states. M is the
number of observation signals per state, for instance a coin would have two, heads and tails. A
and B are both matrices. A is the state transition probabilities and B is the observation symbol
probabilities. π is the initial state distribution. Though it is usually reduced to the compact
notation seen in equation 7.4. A simple HMM is illustrated on figure 7.5, where a12 is the
probability of a transition to S2. The observation probability b12 is the probability of observing
O1, while in S1.

λ = (N,M,A,B, π) (7.3)

λ = (A,B, π) (7.4)

49

7.2. HIDDEN MARKOV MODELS

When applying the HMM to real applications three problems occurs, which has to be solved.
The three problems are:

1. Evaluation: Given a HMM model, what is the probability that a output sequence is pro-
duced by the model. In other words if the output sequence is given as O = O1O2 . . . OT

and the model is λ = (A,B, π), how can P (O|λ) be computed. This problem is solved
by using a form for dynamical programming, namely the Forward algorithm.

2. Decoding: Given a model λ and a observation sequence O, how is it possible to find the
optimal state sequence, Q = Q1Q2 . . . QT . In other words, find the state sequence which
is most likely to have generated the observation sequence O. This can be solved using the
Viterbi algorithm.

3. Learning: Given a observation sequence or a set of those, how can the model parameters
A, B and π be adjusted to maximize P (O|λ). This is solved using the Baum-Welch
algorithm

The three problems is what defines the features of a Hidden Markov Model. First the model
is taught how the sequence should look like (Problem 3), and then the model can be analyzed
(Problem 2). Finally, a new sequence can be classified (Problem 1).

7.2.1 Evaluation

The evaluation problem is to compute the probability, that the new observation was produced by
the model. The problem can also be described as, how well the model fits the new observation,
which is a better description of the problem given multiple models. The problem is to compute
the probability of a given observation sequence, O = O1O2 · · ·OT , given a model, λ, P (O|λ).

The easiest way to do this is to look through all the state sequences, with length the same as the
observations sequence, which is given by Q = q1q2 · · · qT . Then the probability of O given Q
and λ is computed with the equation in 7.5

P (O|Q, λ) =
T∏
t=1

P (Ot|qt, λ) (7.5)

In 7.5 it is assumed that the observations are statistically independent, which gives equation 7.6.
Here it can be seen, that the probability of a observation sequence given a state sequence and a
model, is given by the probability of observing On while being in state qn.

P (O|Q, λ) = bq1 (O1) · bq2 (O2) · · · bqT (OT) (7.6)

The probability that one specific state sequence will occur can be computed by equation 7.7,
where π is the initial probability e.g. which state to start in and a is the transition probabilities.

50

CHAPTER 7. DESIGN

P (Q|λ) = πq1aq1q2aq2q3 · · · aqT−1qT (7.7)

To get the probability that a given observation sequence O and a state sequence Q is happening
at the same time, the product between 7.6 and 7.7 is computed. This is shown in equation 7.8.

P (O,Q|λ) = P (O|Q, λ)P (Q|λ) (7.8)

Now, the probability for a observation sequence given a model can be computed as listen in
equation 7.9.

P (O|λ) =
∑
allQ

P (O|Q, λ)P (Q|λ)

=
∑

q1,q2,··· ,qT

πq1bq1(O1)aq1q2bq2(O2) · · · aqT−1qT bqT (OT)
(7.9)

Equation 7.9 is a sum of joint probability over all possible state sequences, which is a lot of
computations. For instance for a model with 5 states and a sequence length of 100, 2·100·5100 ≈
1072 computations are needed. This is clearly not a good solution, luckily an algorithm called
Forward-backward can do this better. The algorithm is using the forward variable called αt(i),
which is defined as seen in equation 7.10.

αt(i) = P (O1O2 · · ·Ot, qt = Si|λ) (7.10)

The forward variable is the probability for being in state i at time t given the model λ. This can
be solved inductively by going through the three steps:

1. Initialization

αt(i) = πibi(O)1, 1 ≤ i ≤ N (7.11)

2. Induction

αt+1(j) =

[
N∑
i=1

αt(i)aij

]
bj(Ot+1), 1 ≤ t ≤ T − 1 1 ≤ j ≤ N (7.12)

3. Termination

P (O|λ) =
N∑
i=1

αT (i) (7.13)

In equation 7.11 the forward variable is initialized, with the initial probabilities and the prob-
ability of observing O1. Next up is equation 7.12, which is the induction step. Here the term
αt(i)aij is the probability of joint event that the sequence O1O2 · · ·OT is observed and that the
state Sj is reached at time t + 1, via state Si at time t. The sum of this term results in the

51

7.2. HIDDEN MARKOV MODELS

probability of Sj at time t+ 1, with respect to all the previous observations. Then, for comput-
ing αt+1(j), the sum is multiplied with the probability of observing Ot+1 in state j. The final
probability is computed by summing the forward variables as seen in equation 7.13. With the
forward variable it is possible to solve the problem with 3000 computations instead of ≈ 1072.

7.2.2 Decoding

The decoding problem is different from the evaluation problem, because there is no exact solu-
tion to the problem. It can be solved in many different ways and it all depends on what is meant
by the optimal state sequence given a observation sequence. One possible solution could be to
pick the states qt that are individually most likely. This optimal criterion is then based on max-
imizing the expected number of correct individual states. To solve this problem the γ-variable
is needed, which is defined in equation 7.14.

γt(i) = P (qt = Si|O, λ) (7.14)

The γ-variable is the probability of at time t being in state Si given the observation sequence O
and the model λ. Equation 7.14 can be rewritten using the forward-backward variables as seen
in equation 7.15.

γt(i) =
αt(i)βt(i)

P (O|λ)
=

αt(i)βt(i)∑N
i=1 αt(i)βt(i)

(7.15)

In equation 7.15 the forward variable α includes the partial observation probabilities forO1O2 · · ·OT

and state Si at t. The backward variable β is including probability of the observation sequence
Ot+1Ot+2 · · ·OT given state Si at t. P (O|λ) is a normalization factor to ensure that equation
7.16 is true.

N∑
i=1

γt(i) = 1 (7.16)

Before using the γ-variable, the backward variable is defined as seen in equation 7.17, where it
can be noted, that it is the probability for the partial observation sequence from t+ 1 to the end,
given the model λ and the state Si at time t.

βit = P (Ot+1Ot+2 · · ·OT |qt = Si, λ) (7.17)

Like the forward variable, the backward variable is based on induction. Before that, the variable
is initialized. The procedure can be seen in equation 7.18 and 7.19.

1. Initialization

βT (i) = 1, 1 ≤ i ≤ N (7.18)

52

CHAPTER 7. DESIGN

2. Induction

βt(i) =
N∑
j=1

aijbj(Ot−1)βt+1(j), t = T − 1, T − 2, · · · , 1, 1 ≤ i ≤ N (7.19)

In the initialization step, equation 7.18, βT (i) is defined to be 1 for all i. The induction step
in equation 7.19 computes the probability of have been in Si at time t taking into account the
observation sequence from time t+ 1. This is done by considering all possible state transitions
at time t + 1, the state transition from Si to Sj , the observation Ot+1 in state j, and accounting
for the remaining partial observation sequences, βt+1(j).

Back to the γ-variable and the decoding problem. To find the most likely, individually, state qt
at time t equation 7.20 can be applied.

qt = arg max
1≤i≤N

[γt(i)] , 1 ≤ t ≤ T (7.20)

Even though this method maximizes the expected number of correct states, the result might not
be valid. This is because the algorithm does not validate the resulting state sequence and it can
be wrong, since it is not always possible to transition from a given state to another. The solution
to this is to change the optimal criterion to maximize P (Q|O, λ) i.e. find the best state sequence
given the observations and the model. This is equal to maximizing P (Q,O|λ), which can be
solved by the Viterbi algorithm. The Viterbi algorithm can find the best state sequence given a
observations sequence. It is done using the quantity δ as seen in equation 7.21.

δt(i) = max
q1,q2··· ,qt−1

P [q1q2 · · · qt = i, O1O2 · · ·Ot|λ] (7.21)

It can be seen that δi(t) is the high probability for a single path at time t, which includes the
first t observations and ends in state Si. Induction gives the equation 7.22.

δt+1(j) =
[
max
i

δt(i)aij

]
· bj (Ot+1) (7.22)

Then a variable is needed for saving each of the state sequences for each t and j, which is the
array ψt(j). The Viterbi algorithm consists of the following four steps:

1. Initialization

δ1(i) = πibi(O1), 1 ≤ i ≤ N (7.23)

ψ1(i) = 0 (7.24)

2. Recursion

53

7.2. HIDDEN MARKOV MODELS

δt(j) = max
1≤i≤N

[δt−1(i)aij] · bj (Ot) , 2 ≤ t ≤ T, 1 ≤ j ≤ N (7.25)

ψt(j) = arg max
1≤i≤N

[δt−1(i)aij] , 2 ≤ t ≤ T, 1 ≤ j ≤ N (7.26)

3. Termination

P ∗ = max
1≤i≤N

[δT (i)] (7.27)

q∗T = arg max
1≤i≤N

[δT (i)] (7.28)

4. Path backtracking

q∗t = ψt+1(q∗t+1), t = T − 1, T − 2, · · · , 1 (7.29)

The Viterbi algorithm is similar to the forward algorithm seen in equation 7.11-7.13 expect for
the maximization, where the forward algorithm is using summing.

7.2.3 Learning

The last problem to solve is the learning problem. The problem is to optimize the model param-
eters (A,B, π) to maximize the probability of a observation sequence given the model. There
is no known analytical way of solving this problem, instead it can be solved for a local maxima
for P (O|λ) with the Baum-Welch algorithm. First step is to define the ξ-variable, which is the
probability of being in state Si at time t and state Sj at time t + 1, given the model and the
observation sequence, see equation 7.30.

ξt(i, j) = P (qt = Si, qt+1 = Sj|O, λ) (7.30)

This can be rewritten in a form using the forward and backward variables, see equation 7.31.

ξt(i, j) =
αt(i)aijbj(Ot+1)βt+1(j)

P (O|λ)

=
αt(i)aijbj(Ot+1)βt+1(j)∑N

i=1

∑N
j=1 αt(i)aijbj(Ot+1)βt+1(j)

(7.31)

The γ-variable was earlier defined as the probability of being in state Si at time t given a
observation sequence and a model. This can be related to ξ by summing over j, which gives
equation 7.32

54

CHAPTER 7. DESIGN

γt(i) =
N∑
j=1

ξt(i, j) (7.32)

The sum of γ can be interpreted as the expected times a state Si is visited or the number of
transitions if t = T is excluded. The sum of ξ can be seen as the expected number of transitions
from Si to Sj . These two summations can be seen in equation 7.33-7.34

T−1∑
t=1

γt(i) = expected number of transitions from Si (7.33)

T−1∑
t=1

ξt(i, j) = expected number of transitions from Si to Sj (7.34)

Formulas 7.33-7.34 can be applied to give method for estimating the model parameters, π, A
and B.

π̄i = expected number of times in Si at time t = 1

= γ1(i)
(7.35)

āij =
expected number of transitions from Si to Sj

expected number of transitions from Si

=

∑T−1
t=1 ξt(i, j)∑T−1
t=1 γt(i)

(7.36)

¯bj(k) =
expected number of times in state j and observing symbol vk

expected number of times in state j

=

∑T
t=1 γt(j), Ot = vk∑T

t=1 γt(j)

(7.37)

Consider a current model λ = (A,B, π), then equation 7.35-7.37 can be applied to obtain the
reestimated model λ̄ = (Ā, B̄, π̄), which is proven to be a better model than λ. This is done
iteratively through the observation sequences to improve the model. The last step in procedure
is to take the maximum likelihood estimate of the HMM, which is done through equation 7.38.

Q(λ, λ̄ =
∑
Q

P (Q|O, λ) log
[
P (O,Q|λ̄)

]
(7.38)

max
λ̄

[
Q(λ, λ̄

]
⇒ P (O|λ̄) ≥ P (O|λ) (7.39)

Equation 7.39 states what Baum proved, that the maximization of Q(λ, λ̄ increases the likeli-
hood.

55

7.3. CONTINUOUS HMM

7.3 Continuous HMM

The description of the HMM so far, have been based on the assumption, that the observation
were discrete values from a finite alphabet with a probability mass function. Usually, when
working on most real processes the values will take the form of continuous signals. Therefore
it is necessary to modify the HMM to work with probability density functions (PDF) instead,
which is done through equation 7.40.

bj(O) =
M∑
m=1

cjmΘ[O,µjm,Ujm], 1 ≤ j ≤ N (7.40)

The cjm is the mixture coefficient for the mth mixture in state j and O is the modeled vector.
Θ is for instance a Gaussian density, where µjm is the mean vector and Ujm is the covariance
matrix. The mixture coefficient covers the stochastic constraints, that it sums to one and all
entries are larger or equal than zero, which makes the PDF normalized as seen in equation 7.41∫ ∞

−∞
bj(x)dx = 1, 1 ≤ j ≤ N (7.41)

The reestimation formulas for the coefficient for the mixture density are on the form shown in
equation 7.42-7.44.

c̄jk =

∑T
t=1 γt(j, k)∑T

t=1

∑M
k=1 γt(j, k)

(7.42)

µ̄jk =

∑T
t=1 γt(j, k) ·Ot∑T
t=1 γt(j, k)

(7.43)

Ūjk =

∑T
t=1 γt(j, k) · (Ot − µjk)(Ot − µjk)

′∑T
t=1 γt(j, k)

(7.44)

The γ function is earlier defined in equation 7.15. In this way it is possible to estimate the
parameters of a probability density function and by that, using continuous signals in the HMM.

7.4 Real time

For the offline training part of using HMM it is possible to extract the sequence so they fit per-
fectly. This can not be done on real-time data from the sensors. Therefore it is necessary to
add a window function to cut the live data stream into sequences. The length of this window is
complicated to compute. One might base it on training data and choose a length, that fits the
data. But what would happen if the gesture is done slower, faster or the actual pointing is longer
that usual.

These concerns can be handled by reducing the input data to shorter sequences, only including

56

CHAPTER 7. DESIGN

the important parts. This could be done by looking at the sequence and removing all the re-
dundant frames. For instance the pointing gesture consists of three states, going through one to
three, and then back again, in which case the sequence can be reduced to five frames. Another
approach could be to view states as events. For instance, stay in state one until the right arm
have a high velocity, when the transition happens the window could start and include an amount
of previous frames.

7.5 Test design

This section will describe two different test scenarios conducted on the data gathered. The
evaluation of a HMM is giving a likelihood value, this value can not be used without having
something to compare it to. Usually, a system would look for more than one gesture, and then
having multiple models to compare with the observed data. Another way is to have a garbage
model, which is a model based on data, that is not the pointing gesture. Both of these test ap-
proaches will be used to evaluate the pointing gesture recognition.

The test will be based on the K-fold cross-validation method, where all the data is divided into
K-parts. Then one of the parts are saved for testing, while the rest is applied to the learning
algorithm. This is done for all of the K-parts, so every single sample have been used as training
and test, but not at the same time. For this specific test, the data is divided into 5 parts, which
gives 80% data for training and 20% for test.

The data gathered is a variety of pointing gestures done by ten different people. The gestures
are done as specified in 6.2. In figure 7.6 it can be seen how the data is captured. Each person
would stand on a mark on the floor and point at each marker. This add variety to the training set
in form of different persons and different pointing directions.

Figure 7.6: The acquisition of the training data.

Further more, there is a pool of data with four different gestures: Stretching arms toward an
object, Walking, Stretching arms over head and Wave both hands. These extra gestures are sup-

57

7.5. TEST DESIGN

pose to imitate gestures that might happen in a production facility. The gesture were recorded
for the garbage model, but will also be used for a multi-model gesture recognition evaluation.
Since the gestures were not a part of the pointing gesture plan, there is only a very limited
amount of samples. This decreases the chance of the system working, but also works as an
experiment, for how few samples that is actually needed.

58

8
Implementation

The implementation of the pointing gesture recognition is done in Matlab using the probabilistic
modeling toolkit [53]. The toolkit allows for the evaluation, decoding and learning, as described
in section 7.2. In this chapter the details of the implementations is specified. First a section,
that gives an overview of how implementation is done. Last, a section that will go through the
implementation and how it works more deeply.

8.1 Overview

The system flow is seen in figure 8.1, where it can be seen that it consists of three parts. The
data is different gestures in trimmed sequences.

data

Splitting data Learning Evaluation

Figure 8.1: The system flow for the gesture recognition.

In the first step, Splitting data, all the data is divided into K-parts for each class, as described in
section 7.5. Then 20% is send directly to the evaluation, while the remaining 80% is send to the
learning algorithm. In the learning, all the training data is applied to obtain a HMM for each
class. For the Evaluation with a garbage model the test sequence is compared to two models.
For the multi-model gesture recognition evaluation, the test sequence is tested on all six models.
The evaluation function from the toolkit returns a likelihood value, that describes how well the
data fits the model. This likelihood is compared for all models and the model with the highest
value is chosen. Due to time constraint the real time improvements mentioned in section 7.4 are
not implemented. The evaluation is instead applied directly to fitted observed sequences.

59

This page is intentionally left blank.

60

9
System test

The gesture recognition system is tested as described in section 7.5. First, the training is eval-
uated for the two test approaches. Then the results are presented and then the results are dis-
cussed.

9.1 Training

The training is computed with the Baum-Welch algorithm. One of the interesting things about
training HMM is deciding the amount of states. As written in 7.1, one might design the system
with a certain number of states. But, this approach does not work for HMM. Instead one should
try the trial and error method, and in that way obtain the best amount of states. After testing
it was discovered that 7 states was optimal for the pointing gesture. To investigate the model
the prior probabilities, the transition probabilities and the mean value for the observations, are
listed in equation 9.1-9.3. In equation 9.1 it can be seen that the model is most likely to start in
state S5 and then S6 and S1. In equation 9.2 it can be noticed that the diagonal, the probability
of staying in the same state, is very high. It can also be seen, that there is some state transitions
that are very unlikely.

π =
(

0.195 0.012 0.098 0.012 0.445 0.223 0.015
)

(9.1)

A =



0.911 0.014 0.007 0.029 0.006 0.011 0.022

0.006 0.960 0.001 0.001 0.001 0.001 0.032

0.018 0.001 0.919 0.001 0.037 0.001 0.025

0.013 0.000 0.000 0.959 0.000 0.000 0.026

0.002 0.001 0.037 0.001 0.957 0.001 0.002

0.008 0.002 0.002 0.002 0.005 0.959 0.023

0.023 0.023 0.026 0.025 0.001 0.003 0.899


(9.2)

By examining equation 9.3 it is possible to understand what each state represents. For state
S1, which is the first column, the velocity is decent and a high angle. This indicates that this

61

9.2. RESULTS

state is the one where the hand goes from resting position towards the pointing position. State
S3 and S7 indicates the same thing, but with different angle and velocities, which is properly
because the range of that motion is large, i.e. high variance on the velocity, and therefore the
state is divided into three. State S2 and S4 both have low velocity and high angles, which tells
that these states represents when the arm is in the pointing position. Again, this is caused by
the high variance in the angle, and therefore the state is divided into two. State S5 and S6 is
representing the resting position of the arms, where the major difference seems to lie in the left
upper arm angle. This could be because the two states represents the start of the gesture and
the ending, where one of them involves movement in the left shoulder area.

µ̄ =



L Upper angle
R Upper angle
L Under angle
R Under angle
L Upper velo
R Upper velo
L Under velo
R Under velo


=



13.59 10.09 8.78 12.93 9.00 20.51 14.19

50.16 90.79 25.38 54.23 10.82 11.11 59.88

2.19 2.77 3.07 1.16 3.26 −1.96 0.97

3.67 6.62 13.42 4.19 1.16 3.72 10.16

2.55 0.26 0.75 0.39 0.58 0.82 0.54

10.32 0.42 26.07 0.49 1.37 1.52 19.04

6.06 0.57 1.59 1.08 1.67 2.36 0.91

7.15 0.82 17.36 0.88 2.73 1.87 9.92


(9.3)

Now that the states are evaluated, it is possible to see if the transition probabilities makes sense.
Lets assume the sequence starts in S5, hence equation 9.1, which is one of the states where arm
is in resting position. From S5 the highest probability is to go to state S3, a35 = 0, 037, which
is a state with high velocity, i.e. the arm is moving toward the pointing position. From state S3

there are two probable moves either going back to state S5 or state S7. State S7 leads to S1-S4,
which indicates movement or being in the pointing position. By the same method it is possible
to find the state sequence to move back to the resting position.

The analysis of the model above, is a simplification of the workings of a HMM, that excludes
the emission probabilities, which indicates what the current state is. The emission probabilities
are represented by a 8 × 8 matrix for each state. In the next section the results will show if it
works on real sequences.

9.2 Results

The results for the two-class recognition can be seen in table 9.1. The table is designed as a
confusion matrix, where the 91 is the true positives and 30 is true negatives. There is also 1

false positive and 1 false negative.

The results shows, that the pointing recognition system works pretty well with the garbage
model. In table 9.2 the results for the multi-class gesture recognition is shown. It can easily be

62

CHAPTER 9. SYSTEM TEST

A
ct

ua
lc

la
ss

Predicted class
Pointing Garbage

Pointing 91 1
Garbage 1 30

Table 9.1: Confusion matrix for two-class gesture recognition.

Predicted class
Class 1 Class 2 Class 3 Class 4 Class 5

A
ct

ua
lc

la
ss Class 1 92 0 0 0 0

Class 2 0 4 0 6 1
Class 3 0 0 5 0 0
Class 4 0 1 0 4 0
Class 5 0 1 0 1 3

Table 9.2: Confusion matrix for multi-class gesture recognition. Class 1: Pointing, Class 2:
Stretching arms toward an object, Class 3: Walking, Class 4: Stretching arms over head and
Class 5: Wave both hands.

seen by looking in the diagonal, correct predictions, that even though the sample number is low,
the recognition system works well. The class with the biggest problems is class 2 with class
4. This is because how related these two gestures are. Class 2 is the Stretching arms toward
an object and class 4 is Stretching arms over head, so these two classes are both using both
arms and stretching. Class 1 is the pointing gesture, which passes the test perfectly. Class 3 is
Walking, which is very different from the other gestures, and that is properly why it works so
well. Class 5 Wave both hands is in some instances classified as Class 2 and Class 3, this might
be caused by the fact that all three classes are having motion with both arms.

From table 9.2 the diagonal can be extracted and summed to get the total number of true posi-
tives: 108. The values in the non-diagonal entries are false positives: 10.

9.3 Discussion

The test is divided using two different approaches: The two-class and the multi-class. The
garbage model approach is easy, but also flawed. A garbage model can easily be modeled to
be so ambiguous, that every observed sequence is closer to the model of the pointing gesture.
The other possibility can also be true, the garbage model might have so much variety, that each
observed sequence easily can be accepted. Regarding the multi-class recognition one problem
is clear, the amount of training data is very low. Only five samples for each, which is one for
testing and four for training. The models for these gestures might be too undiscriminating for
recognizing anything.

In the two-class there is 2 failed and 121 correct classifications, which is a classification rate of
98.3%. For the multi-class test there were 108 correct and 10 failed classifications, which gives

63

9.3. DISCUSSION

a classification rate of 90.7%. From the results it is clear that the lack of training data causes
problem for the models, especially because all the errors occurs for the worst trained models.
This is properly not the only problem all the errors are made by Class 2, 4 and 5, which are
classes that are pretty similar. This might indicate that the observations are not good enough,
but it is hard to judge, because of the lack of training data.

Another problem with the tests, is the way the likelihood values are compared. When just com-
paring values the system will classify everything, which means that some sequences might have
had a low likelihood and yet still been classified. It would make more sense to make a threshold
for the likelihood values and classify those below the threshold as an error.

With these concerns in mind the results are good. The results of 98.3% and 90.7% are good,
and the improvements will make them better.

64

Part III

Conclusion

65

This page is intentionally left blank.

66

10
Conclusion

This report represent the work I did during my visit to the RIM lab at Georgia Institute of Tech-
nology. Working in an environment, which have a more research orientated approach, have been
an interesting experience and definitely different from how I have been working on projects at
Aalborg University.

In the first part of the report, an evaluation of the skeleton trackers from Primesense and Mi-
crosoft, was done. The purpose of this was to understand, which tracker would work best and
how introducing multiple Kinects with a simple fusion algorithm would work, for a Human-
robot collaboration in an industrial environment. It was discovered that there is only a little
difference between the two trackers, one would be best for one scenario, while the other would
be best in another scenario. Small vibration modules were also testes on the Kinects, which
should reduce the noise in the depth images. The results of those tests were worse than without
the modules, so the vibration might be a bad idea for skeleton tracking, while still being viable
for point cloud capturing. While using two Kinects, two simple fusion algorithms were tested.
The results from on of them was at times better than a single Kinect, while the other was worse.
From the experience obtained during these test, with the BMW-project in mind, I would not
recommend using any of these trackers. During the tests it was clear, that the data is only accu-
rate, when a person is facing the Kinect, which is hard to achieve in an industrial environment
while moving around.

The next part of the report is the gesture recognition, which was done using Hidden Markov
models. Two different evaluation approaches were tested: Two-class and Multi-class. The two-
class approach yielded great results, but are based on having a garbage model, which might not
be the optimal choice. The multi-class test showed promising results for recognizing multiple
gestures, even though the amount of training data was low. The report specifies some improve-
ments that might improve the performance.

67

Bibliography

[1] M. Van den Bergh and L. Van Gool, “Combining rgb and tof cameras for real-time 3d hand
gesture interaction,” in Applications of Computer Vision (WACV), 2011 IEEE Workshop
on. IEEE, 2011, pp. 66–72.

[2] Wikipedia. (2013) Kinect. [Online]. Available: http://en.wikipedia.org/wiki/Kinect

[3] Gizmodo. (2010) Microsoft kinect hacked? already?! [Online]. Available:
http://gizmodo.com/5683744/was-microsoft-kinect-hacked-already

[4] Microsoft Reseach. (2011) Academics, enthusiasts to get kinect sdk. [Online]. Available:
http://research.microsoft.com/en-us/news/features

[5] Microsoft. (2010) Primesense supplies 3-d-sensing technology to “project natal” for
xbox 360. [Online]. Available: http://www.microsoft.com/en-us/news/press/2010/mar10/
03-31PrimeSensePR.aspx

[6] PrimeSense. (2013) Nite middleware. [Online]. Available: http://www.primesense.com/
solutions/nite-middleware/

[7] Optoelectronic notes. (2010) How kinect works with primesense. [Online]. Available:
http://ntuzhchen.blogspot.com/2010/12/how-kinect-works-prime-sense.html

[8] K. Khoshelham, “Accuracy analysis of kinect depth data,” in ISPRS workshop laser scan-
ning, vol. 38, 2011, p. 1.

[9] D. TV. (2012) Measuring objects in 3d using only a camera and projector. [Online].
Available: http://www.diginfo.tv/v/12-0159-r-en.php

[10] F. Faion, S. Friedberger, A. Zea, and U. D. Hanebeck, “Intelligent sensor-scheduling for
multi-kinect-tracking,” in Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ Interna-
tional Conference on. IEEE, 2012, pp. 3993–3999.

[11] L. Sumar and A. Bainbridge-Smith, “Feasability of fast image processing using multiple
kinect cameras on a portable platform,” 2011, unpublished.

[12] D. A. Butler, S. Izadi, O. Hilliges, D. Molyneaux, S. Hodges, and D. Kim, “Shake’n’sense:
reducing interference for overlapping structured light depth cameras,” in Proceedings of
the 2012 ACM annual conference on Human Factors in Computing Systems. ACM, 2012,
pp. 1933–1936.

[13] A. Maimone and H. Fuchs, “Reducing interference between multiple structured light depth
sensors using motion,” in Virtual Reality Workshops (VR), 2012 IEEE. IEEE, 2012, pp.
51–54.

68

http://en.wikipedia.org/wiki/Kinect
http://gizmodo.com/5683744/was-microsoft-kinect-hacked-already
http://research.microsoft.com/en-us/news/features
http://www.microsoft.com/en-us/news/press/2010/mar10/03-31PrimeSensePR.aspx
http://www.microsoft.com/en-us/news/press/2010/mar10/03-31PrimeSensePR.aspx
http://www.primesense.com/solutions/nite-middleware/
http://www.primesense.com/solutions/nite-middleware/
http://ntuzhchen.blogspot.com/2010/12/how-kinect-works-prime-sense.html
http://www.diginfo.tv/v/12-0159-r-en.php

BIBLIOGRAPHY

[14] S. Matyunin, D. Vatolin, Y. Berdnikov, and M. Smirnov, “Temporal filtering for depth
maps generated by kinect depth camera,” in 3DTV Conference: The True Vision-Capture,
Transmission and Display of 3D Video (3DTV-CON), 2011. IEEE, 2011, pp. 1–4.

[15] Y. Schröder, A. Scholz, K. Berger, K. Ruhl, S. Guthe, and M. Magnor, “Multiple kinect
studies,” Computer Graphics, 2011.

[16] J. Shotton, T. Sharp, A. Kipman, A. Fitzgibbon, M. Finocchio, A. Blake, M. Cook, and
R. Moore, “Real-time human pose recognition in parts from single depth images,” Com-
munications of the ACM, vol. 56, no. 1, pp. 116–124, 2013.

[17] L. Zhang, J. Sturm, D. Cremers, and D. Lee, “Real-time human motion tracking using
multiple depth cameras,” in Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ Inter-
national Conference on. IEEE, 2012, pp. 2389–2395.

[18] Xbox. Placering af kinect-sensoren. [Online]. Available: http://support.xbox.com/da-DK/
xbox-360/kinect/sensor-placement

[19] R. A. Newcombe, A. J. Davison, S. Izadi, P. Kohli, O. Hilliges, J. Shotton, D. Molyneaux,
S. Hodges, D. Kim, and A. Fitzgibbon, “Kinectfusion: Real-time dense surface mapping
and tracking,” in Mixed and Augmented Reality (ISMAR), 2011 10th IEEE International
Symposium on. IEEE, 2011, pp. 127–136.

[20] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli, J. Shotton,
S. Hodges, D. Freeman, A. Davison, et al., “Kinectfusion: real-time 3d reconstruction
and interaction using a moving depth camera,” in Proceedings of the 24th annual ACM
symposium on User interface software and technology. ACM, 2011, pp. 559–568.

[21] M. F. Fallon, H. Johannsson, and J. J. Leonard, “Efficient scene simulation for robust
monte carlo localization using an rgb-d camera,” in Robotics and Automation (ICRA),
2012 IEEE International Conference on. IEEE, 2012, pp. 1663–1670.

[22] S.-l. Sun, “Multi-sensor optimal information fusion kalman filters with applications,”
Aerospace Science and Technology, vol. 8, no. 1, pp. 57–62, 2004.

[23] Q. Gan and C. J. Harris, “Comparison of two measurement fusion methods for kalman-
filter-based multisensor data fusion,” Aerospace and Electronic Systems, IEEE Transac-
tions on, vol. 37, no. 1, pp. 273–279, 2001.

[24] ROS. Intrinsic calibration of the kinect. [Online]. Available: http://ros.org/wiki/openni_
launch/Tutorials/IntrinsicCalibration

[25] J.-Y. Bouguet. Camera calibration toolbox for matlab. [Online]. Available: http:
//www.vision.caltech.edu/bouguetj/calib_doc/

69

http://support.xbox.com/da-DK/xbox-360/kinect/sensor-placement
http://support.xbox.com/da-DK/xbox-360/kinect/sensor-placement
http://ros.org/wiki/openni_launch/Tutorials/IntrinsicCalibration
http://ros.org/wiki/openni_launch/Tutorials/IntrinsicCalibration
http://www.vision.caltech.edu/bouguetj/calib_doc/
http://www.vision.caltech.edu/bouguetj/calib_doc/

BIBLIOGRAPHY

[26] S. Umeyama, “Least-squares estimation of transformation parameters between two point
patterns,” Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 13, no. 4,
pp. 376–380, 1991.

[27] T. S. Washio. (2012) Kinect-mssdk-openni-bridge: Experimental module to
connect kinect sdk to openni. [Online]. Available: https://code.google.com/p/
kinect-mssdk-openni-bridge/

[28] L. Sigal, S. Bhatia, S. Roth, M. J. Black, and M. Isard, “Tracking loose-limbed people,”
in Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004
IEEE Computer Society Conference on, vol. 1. IEEE, 2004, pp. I–421.

[29] Vicon.com. Motion capture systems from vicon. [Online]. Available: http://www.vicon.
com

[30] Microsoft. Depth space range. [Online]. Available: http://msdn.microsoft.com/en-us/
library/hh973078.aspx#Depth_Ranges

[31] J. M. Iverson and S. Goldin-Meadow, “Gesture paves the way for language development,”
Psychological Science, vol. 16, no. 5, pp. 367–371, 2005.

[32] Y. Wu and T. S. Huang, “Vision-based gesture recognition: A review,” Urbana, vol. 51, p.
61801, 1999.

[33] K. Cheng and M. Takatsuka, “Hand pointing accuracy for vision-based interactive sys-
tems,” in Human-Computer Interaction–INTERACT 2009. Springer, 2009, pp. 13–16.

[34] P. Turaga, R. Chellappa, V. S. Subrahmanian, and O. Udrea, “Machine recognition of hu-
man activities: A survey,” Circuits and Systems for Video Technology, IEEE Transactions
on, vol. 18, no. 11, pp. 1473–1488, 2008.

[35] T. B. Moeslund, A. Hilton, and V. Krüger, “A survey of advances in vision-based human
motion capture and analysis,” Computer vision and image understanding, vol. 104, no. 2,
pp. 90–126, 2006.

[36] S. Mitra and T. Acharya, “Gesture recognition: A survey,” Systems, Man, and Cybernetics,
Part C: Applications and Reviews, IEEE Transactions on, vol. 37, no. 3, pp. 311–324,
2007.

[37] A. D. Wilson and A. F. Bobick, “Parametric hidden markov models for gesture recogni-
tion,” Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 21, no. 9,
pp. 884–900, 1999.

[38] H.-K. Lee and J.-H. Kim, “An hmm-based threshold model approach for gesture recogni-
tion,” Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 21, no. 10,
pp. 961–973, 1999.

70

https://code.google.com/p/kinect-mssdk-openni-bridge/
https://code.google.com/p/kinect-mssdk-openni-bridge/
http://www.vicon.com
http://www.vicon.com
http://msdn.microsoft.com/en-us/library/hh973078.aspx#Depth_Ranges
http://msdn.microsoft.com/en-us/library/hh973078.aspx#Depth_Ranges

BIBLIOGRAPHY

[39] M. Brand, N. Oliver, and A. Pentland, “Coupled hidden markov models for complex action
recognition,” in Computer Vision and Pattern Recognition, 1997. Proceedings., 1997 IEEE
Computer Society Conference on. IEEE, 1997, pp. 994–999.

[40] T. Starner, J. Weaver, and A. Pentland, “Real-time american sign language recognition us-
ing desk and wearable computer based video,” Pattern Analysis and Machine Intelligence,
IEEE Transactions on, vol. 20, no. 12, pp. 1371–1375, 1998.

[41] J. Yamato, J. Ohya, and K. Ishii, “Recognizing human action in time-sequential images
using hidden markov model,” in Computer Vision and Pattern Recognition, 1992. Pro-
ceedings CVPR’92., 1992 IEEE Computer Society Conference on. IEEE, 1992, pp.
379–385.

[42] A. F. Bobick and Y. A. Ivanov, “Action recognition using probabilistic parsing,” in Com-
puter Vision and Pattern Recognition, 1998. Proceedings. 1998 IEEE Computer Society
Conference on. IEEE, 1998, pp. 196–202.

[43] P. Hong, M. Turk, and T. S. Huang, “Gesture modeling and recognition using finite state
machines,” in Automatic Face and Gesture Recognition, 2000. Proceedings. Fourth IEEE
International Conference on. IEEE, 2000, pp. 410–415.

[44] A. F. Bobick and A. D. Wilson, “A state-based approach to the representation and recog-
nition of gesture,” Pattern Analysis and Machine Intelligence, IEEE Transactions on,
vol. 19, no. 12, pp. 1325–1337, 1997.

[45] M. Elmezain, A. Al-Hamadi, S. Sadek, and B. Michaelis, “Robust methods for hand ges-
ture spotting and recognition using hidden markov models and conditional random fields,”
in Signal Processing and Information Technology (ISSPIT), 2010 IEEE International Sym-
posium on. IEEE, 2010, pp. 131–136.

[46] D. Kelly, J. McDonald, and C. Markham, “Evaluation of threshold model hmms and con-
ditional random fields for recognition of spatiotemporal gestures in sign language,” in
Computer Vision Workshops (ICCV Workshops), 2009 IEEE 12th International Confer-
ence on. IEEE, 2009, pp. 490–497.

[47] S. B. Wang, A. Quattoni, L.-P. Morency, D. Demirdjian, and T. Darrell, “Hidden condi-
tional random fields for gesture recognition,” in Computer Vision and Pattern Recognition,
2006 IEEE Computer Society Conference on, vol. 2. IEEE, 2006, pp. 1521–1527.

[48] S. Calinon and A. Billard, “Recognition and reproduction of gestures using a probabilis-
tic framework combining pca, ica and hmm,” in Proceedings of the 22nd international
conference on Machine learning. ACM, 2005, pp. 105–112.

[49] C. Keskin, A. Erkan, and L. Akarun, “Real time hand tracking and 3d gesture recognition
for interactive interfaces using hmm,” ICANN/ICONIPP, vol. 2003, pp. 26–29, 2003.

71

[50] C. Shan, T. Tan, and Y. Wei, “Real-time hand tracking using a mean shift embedded
particle filter,” Pattern Recognition, vol. 40, no. 7, pp. 1958–1970, 2007.

[51] L. W. Campbell, D. A. Becker, A. Azarbayejani, A. F. Bobick, and A. Pentland, “Invariant
features for 3-d gesture recognition,” in Automatic Face and Gesture Recognition, 1996.,
Proceedings of the Second International Conference on. IEEE, 1996, pp. 157–162.

[52] L. Rabiner and B. Juang, “An introduction to hidden markov models,” ASSP Magazine,
IEEE, vol. 3, no. 1, pp. 4–16, 1986.

[53] K. Murphy. probabilistic modeling toolkit for matlab/octave, version 3. [Online].
Available: https://code.google.com/p/pmtk3/

[54] Microsoft. Kinect for windows sensor components and specifications. [Online]. Available:
http://msdn.microsoft.com/en-us/library/jj131033.aspx

[55] ROS. Camera pose calibration. [Online]. Available: http://ros.org/wiki/camera_pose_
calibration

72

https://code.google.com/p/pmtk3/
http://msdn.microsoft.com/en-us/library/jj131033.aspx
http://ros.org/wiki/camera_pose_calibration
http://ros.org/wiki/camera_pose_calibration

Part IV

Appendices

73

This page is intentionally left blank.

74

A
Kinect specifications

This appendix is a description of the technical specifications of the Microsoft Kinect.

Overview

Figure A.1 shows the Kinect and where all the sensors are placed.

Figure A.1: The Kinect sensors and their position. Picture is taken from the official documen-
tation for the Kinect [54].

Sensors

The list of sensors and other functionalities on the Kinect. The information is taken from the
Kinect wikipedia site and the official documentation [54] [2].

• RGB sensor The RGB sensor is capable of recording in a resolution up to 1280x1024 at
a low frame rate, but is usually running in 640x480 at 30 Hz. The view angle for both
sensors are 43◦ vertically and 57◦ horizontally field of view, and the practical ranging
limit is 1.2–3.5 meters.

75

• Infrared emitter and sensor The depth sensing consist of the the IR emitter and the IR
sensor, which combined can generate the depth of the image. The IR sensor can stream
the IR video directly in 640x480 with 30 Hz, this is also the resolution and framerate
for the depth sensing. The range of the depth sensor is optimal at 0.8-4 meters, with the
default range mode. For the near range mode it is 0.4-3 meters [30].

• Multi-array microphone The microphone array consists of four microphones, which
enables the Kinect to capture sound and detect where the sound is coming from.

• 3-axis accelerometer The accelerometer works for a 2G range and can be used for mea-
suring the orientation of the Kinect.

• Tilt motor The built in motor can tilt the Kinect, which can be necessary when the Kinect
is integrated into a system or if a higher or shorter person is using it. The tilt range is±27◦

76

B
First demonstration

This demonstration was conducted in mid December 2013 for representatives from BMW, who
were visiting Georgia Institute of Technology. In this demonstration there was also a setup with
the robotic arm moving around, which was made by another student. This chapter will start
with an introduction of what is done in this demonstration and the purpose of it. Next up is the
description of the implementation of the demonstration. Last, the results and conclusions for
the demonstration will be discussed.

Introduction

The purpose for this demonstration is to test a basic way of, intelligently, using multiple Kinects
in a scene. This can be done by choosing the Kinect, that produces the best data. The best data
must be received, when the person is in optimal position for the Kinect, which is directly in
front of it and the person should be facing the Kinect. This must be true, since this is what the
Kinect is invented for and therefore trained for.

Implementation

The implementation of this demonstration was done in ROS. The system consists of three nodes,
two nodes which acquires data from the two Kinects and one notes that receives data and does
the computation and visualization. For this demonstration the visualization tool, Rviz was used.
This can be seen on figure B.1. Nodes seen on the figure are communicating through the Topic
system that ROS uses. It works by enabling nodes to advertise and subscribe to topics. For
instance, the two Kinect nodes are advertising the data from the Kinects. The listening node is
subscribing to the Kinect nodes and is also advertising the information for the visualization.

To compute which Kinect the person was facing the angle of the torso was computed for both
skeletons, if the angle was smaller than a threshold, the Kinect was chosen. This angle was
taken directly from the Kinect data stream.

77

Kinect node 1

Kinect node 2

Listening node rViz

Figure B.1: The system flow for first demonstration.

Discussion

This demonstration confirmed that it is possible to choose Kinect based on the orientation of
the person, which might be the optimal solutions for some scenarios. Even though the demon-
stration worked well, it was decided afterwards, that this approach was not the optimal choice
for the system. This is caused by the fact, that it is not always guaranteed, that the person is
somehow close to facing a Kinect, so in those cases. This approach would perform bad.

78

C
Second demonstration

This was an intern demonstration for the BMW project group at the Robotic and Intelligent
Machines (RIM) laboratory at Georgia Institute of Technology(GT), supervised by Prof. Aaron
Bobick and Dr. Henrik I. Christensen. This chapter will start with an introduction of what is
done in this demonstration and the purpose of it. Next up is the description of the implemen-
tation of the demonstration. Last, the results and conclusions for the demonstration will be
discussed.

Introduction

The purpose for this demonstration was to integrate the sensor setup with the robot. The sensor
setup was in this case two Kinects standing with a 90 degrees angle, pointing at the workspace.
The viewpoint for both Kinects can be seen on figure C.1. Integration meant, that both system
should be aware of each other i.e. the Kinects were calibrated to function in the same coordinate
space as the robot. This allowed the robot to know where the person in the workspace was, and
therefore could make an action based on the position.

Figure C.1: The view from the to Kinects.

To demonstrate this the robot was programmed to follow the right hand of the person, a video
clip of this can be seen on the CD, see appendix D. The data from the Kinects in the system
were fused together, to make the system robust against missing data from one of them. This was
achieved by using the confidence value from each joint from each Kinect. If one of the joints

79

had a confidence value smaller than 1, the data would be omitted. If both of the Kinects gave a
confidence value of 1 for the same joint, the data was averaged.

Implementation

The robot and the Kinects were communication through the build in Topic-system, which is
shortly explained in B. For doing the fusing of the data, the data from the Kinects was first
streamed to a listening node, which fused the data and transmitted it to the robot. The calibra-
tion of the Kinects in this system was done using the camera pose calibration package from
ROS [55].

Kinect node 1

Kinect node 2

Listening node robot

Figure C.2: The system flow for second demonstration.

On figure C.2, the node structure of the system can be seen. The skeleton fusing here is equal
to the one as described in section 4.5.

Discussion

This demonstration was a test of integrating the robot and a vision system. The system worked
well, and the robot could follow then hand. The fusion algorithm made it possible, that the
system would still work, if one of the Kinect was completely covered, which might happen
in a manufacturing facility. The success of this fusion algorithm also led to it being used in
the article Evaluation of OpenNI NITE and Kinect SDK Skeleton Trackers for Human-Robot
Interaction

80

D
CD index

This section describes what can be found on the enclosed CD.

• code

– Kinect fusion
C++ code for data acquisition and Matlab script for data analysis.

– Gesture recogntion
All the Matlab script written to extract the data, train and evaluate the HMM.

• data

– Kinect fusion
All data acquired during the evaluation. Includes data from OpenNI, Microsoft and
the Vicon system. All scenarios are included in differet files.

– Gesture recogntion
All the data collected for the testing of the gesture recognition system. The data
can also be found compressed in a .mat file in the code/Gesture recognition/Matlab-
folder.

• report

– report.pdf

– evaluation of skeleton trackers.pdf

• video

– BMW-Demo-02-2013-02-04.MOV

81

This page is intentionally left blank.

82

E
Article

83

Evaluation of OpenNI NITE and Kinect SDK Skeleton Trackers for
Human-Robot Interaction

Akansel Cosgun1, Martin Bünger2 and Henrik I. Christensen1

Abstract— In this paper we evaluate the two well-known
skeleton trackers OpenNI NITE and Kinect SDK. The choice
of tracker is usually based on required platform instead of
performance, so this paper gives an overview, through different
scenarios, of which tracker to use. In our experiments we use
a software bridge to run NITE and MS-SDK on the same
data stream, and uses a professional motion capture system
for ground truth. We also evaluate a simple dual Kinect
fusion and mechanical vibration for interference reduction.
Our experiments shows, that MS-SDK handles occlusion better,
while NITE resumes tracking faster after an occlusion. MS-
SDK has in general better accuracy on shoulders, elbows and
hands, while NITE is better on head, neck and torso. The simple
Kinect fusion improves the tracked range of motion, while no
improvement in accuracy was measured.

I. INTRODUCTION

Detection and tracking humans have been a very active re-
search areas, with potential applications in different domains
such as human-computer interaction, gaming, surveillance,
medical therapy and robotics. Finding only the human posi-
tion and orientation is enough for these applications. There
has been successes in the area of person position tracking us-
ing monocular cameras [1], laser scanners and more recently
Time-of-Flight cameras [2]. Motion capture systems aim to
find the joint positions of the human body by requiring the
user to wear markers. Markerless motion capture systems has
been an area after the introduction of the RGB-D cameras.
There are currently two state-of-the-art skeleton trackers that
are used by researchers and practitioners: Microsoft Kinect
SDK (MS-SDK) [3] and OpenNI (NITE) [4]. Kinect SDK
is only available in Windows whereas NITE is available on
both Windows and Linux. We have observed that the choice
of the skeleton tracking system is dictated by the operating
system and not the performance of the skeleton tracker. We
aim to compare the accuracy and detection rates of the joint
positions reported by the two trackers. The trackers cannot
run on the same data streams due to the limitations at the
driver level, therefore the datasets used for the comparison
for MS-SDK and NITE has been different from each other
in recent studies. In this work, we run both systems on the
same data streams, which leads to a fair comparison.

We are specifically interested in scenarios that is likely
to occur in human-robot interaction scenarios. We evaluate
both systems for basic scenarios like walking, turning around
and sitting. We further tested scenarios that included partial

1A. Cosgun and H. Christensen are with Center for Robotics and
Intelligent Machines, Georgia Tech, Atlanta, GA, USA.

2M. Bünger is with the Department of Computer Engineering at Aalborg
University, Denmark.

*A.Cosgun and M. Bünger contributed equally to this work.

Fig. 1. The different conventions for skeleton models.

occlusion and full body occlusion. One other scenario in-
volves the person manipulation a box-like object in front of
the sensor. These scenarios are likely to happen in daily life
when the robot is around people. In an evaluation of the
skeleton tracking systems it is important to estimate how the
reliability and accuracy are for different types of scenarios.
By knowing the limitations of its perception system, a robot
can then alter its actions accordingly. For example, the robot
might hand-off an object more carefully if the person is
sitting in a chair rather than standing. The accuracy and
detection rates of the joints would also be important with
regards to the safety of humans for scenarios where the robot
operates in close proximity to humans.

First, we examine the relevant literature on person tracking
and motion capture in Section II. Section III describes our
experimental setup in detail. We report the accuracy errors
and detection rates and discuss the results in Section IV,
before concluding in Section V.

II. RELATED WORKS

Estimation of human poses has been researched for many
years and several surveys address the topic [5][6][7]. A
variety of different ways of estimating a human model has
been suggested for instance tracking the person from the

bottom and up [8][9], which uses probabilistic methods to
fit models on the body, and have good occlusion recovery
results. Poselets have also been used for tracking and
annotating human body parts [10], where each poselet is
trained by a SVM classifier. Another approach with a single
Time-of-Flight (ToF) camera [2] using a GPU-accelerated
filtering method, has given some good results, .05-.1 meter
error rate. The downside of this method is that it only
runs around 6 frames per second. Another approach with
a ToF sensor and a stereo camera setup [11], which is
based on Iterative Closest Point (ICP) and a human body
model, and works by fitting the data to the model. Others
have tried tracking humans by using multiple gray scale
cameras [1]. Work has also been done by using the human
silhouette to capture the 3d pose from a human [12]. Their
algorithm is based on trained relevance vector machines,
which allows it not to use any particular 3d human body
model. This enables the algorithm to work on individuals
with different body types. The mean angular error for this
method is 6-7 degrees. The Microsoft Kinect platform is
a common platform for extracting depth maps for skeleton
tracking, and have also been used for identifying body
parts [13]. In [14] a method uses multiple depth cameras to
create a 22-DOF human model, which performs better than
NITE and MS-SDK in speed, robustness and accuracy. This
method uses a fused depth stream from multiple sensors
and tracks the body using a annealed particle filters on the
GPU. Others have been using decision trees to compute and
track the human pose [15][3], which is the method used on
the Microsoft Xbox 360 Kinect.

When multiple Kinects are facing the same scene, overlap-
ping IR patterns cause interference problems for the Kinects.
In [16] the RGB and depth stream is combined to filter the
depth stream to remove noise and occlusions. Others have
been using a Time Divided Multiple Access approach, where
they schedule time for each Kinect [17]. Also, in [18] a small
mechanical modification is made to the Kinect to make the
sensor shake. The vibration adds motion blur to the pattern,
which makes the individual sensors able to detect only its
own pattern.

III. DATA ACQUISITON

A. Skeleton Tracking Systems

Our experimental setup is depicted in Figure 2. Skeleton
data was acquired from MS-SDK and NITE by running the
skeleton trackers on the depth streams obtained by the Kinect
for Xbox 360 sensor at 30 Hz. MS-SDK and NITE use
different sensor drivers and therefore cannot be run at the
same time. Some researchers compared the two systems by
acquiring different datasets [14]. We use a software bridge
that allows us to run both the NITE and the MS-SDK
on the same depth streams [19]. This way, we can do a
direct comparison of tracking performances between the two
systems. NITE and MS-SDK used in this paper are both
versions 1.5.

2000 mm

2
0

0
0

 m
m

Fig. 2. The position of the Kinects in the experiment.

We used a commercial 3D motion capture system (Vicon
[20]) to obtain the ground truth of the joint positions. Vicon
finds the 3D positions of passive reflective markers in the
scene by triangulation at up to 200Hz. We use the Vicon
Blade software to output the skeleton joint poses after a
calibration phase on the user who wears a suit with markers.

During data acquisition, Vicon and MS-SDK, which is
running in OpenNI framework through bridge, logs the joint
poses in real-time at 30Hz. In the meanwhile, the depth
stream from the Kinect is saved to an .oni file in OpenNI.
This .oni file is later streamed to the NITE skeleton tracker,
and the joint positions are logged. This procedure ensures
that the exact same motion is captured for the three different
systems. Since it takes some time for the NITE tracker to
initialize at the beginning of the .oni recording, some frames
are lost in the beginning of each recording.

The reported joint positions on the human body model
is slightly different in the 3 skeleton tracking systems. See
figure 1 for an illustration of the joint position conventions
of these systems.

B. Calibration and Synchronization

Before capturing data the sensors have to be calibrated
both intrinsically and extrinsically. The intrinsic calibration
for the Kinect RGB camera is done using the Camera
Calibration Toolbox [21]. Extrinsic calibration is required
to find the transformation between the Kinect RGB camera
frame and the Vicon global frame, so that the joint po-
sitions can be described in the same coordinate frame. A
checkerboard with 14 reflective markers on its edges, see
figure 3, is used for extrinsic calibration. The markers are
placed so that their translation to the interior corners and the
markers are exactly known. 3D Corner positions are found in
the checkerboard frame by utilizing the intrinsic parameters
found. The neighboring corner positions too are used to infer
the reflective marker positions in the RGB camera frame.
This gives us 14 point correspondences. We then estimate the
transformation between the two sets of points by minimizing
the least squares error [22].

Fig. 3. Checkerboard used for extrinsic calibration.

Caused by software license issues, we used different PC’s
for the Kinect and Vicon. Although both the Kinect depth
stream both run at 30Hz, sometimes the frame rate changes
and system clock drifts due to high load CPU. Therefore time
synchronization is necessary to associate the skeleton frames.
We implemented a time server on the Kinect server where
the Vicon PC inquire the current system clock of the Kinect
PC after it receives a new data. Time association between
NITE and MS-SDK skeletons were not necessary because
the number of frames for both trackers were equal after the
.oni file processing.

C. Dual Kinects

The experiment is divided into two parts: single Kinect and
dual Kinects. In the dual Kinect experiments, we acquire time
synchronized skeleton data from both Kinects. The Kinects
are placed so that there is approximately 90◦ between them.

When multiple Kinects are facing the same area, the
patterns from the IR projectors cause interference. We
implemented the simple method described in [18], where
mechanical vibration was applied by tying a simple DC
motor with an off-balance load to the sensor. This practical
solution improved the quality of the depth stream.

D. Dataset

We acquired a dataset under different scenarios in order
to test the capabilities of Kinect-based skeleton trackers.
We focused on practical scenarios for common tasks. The
scenarios are as followed:

• Walking Walking around in a circle while facing the
Kinect for measuring performance in basic movement
in the scene.

• 360 Two full rotations around self with arms up and
down, to understand occlusion issues when person is
seen from different angles.

• Hide Hiding one arm at the time behind the back and
then hiding both at the same time, to explore how the
two systems handles partial occlusions.

• Box Picking up a box from the floor and extending it
towards the sensor, for understanding how the system
reacts when a object is introduced to the scene.

• Occlusion Full body occlusion by hiding behind a wall
and coming back, to measure how fast each system can
detect people.

Joint System Walk 360 Hide Box Occ Sit Arms
Head MSSDK 100 100 100 100 66 100 100

NITE 91 99 93 82 83 68 99
Neck MSSDK 100 100 100 100 67 100 100

NITE 100 100 100 100 83 99 100
Torso MSSDK 100 100 100 100 67 100 100

NITE 100 100 100 100 83 99 100
Shoulders MSSDK 100 73 100 100 60 99 96

NITE 100 100 100 100 83 99 100
Elbows MSSDK 100 75 100 96 57 74 96

NITE 99 90 100 71 59 95 100
Hands MSSDK 100 76 58 48 47 86 95

NITE 99 88 100 70 58 94 100

TABLE I
PERCENTAGE OF TRACKED POSITION

• Sitting Sitting down for several seconds, and then
standing up 2 times. raise afterwards. For measuring
how each system performs, when the subject is sitting.

• Arms Rotating in steps of 45 degrees with arms fully
stretched forward and to the side, for measuring basic
arm movement for different orientations.

For the setup with two Kinect one scenario was captured:
• 360 rotation A slow 360 degrees rotation in T-pose for

exploring occlusions caused by rotation in a dual Kinect
setup.

IV. RESULTS AND DISCUSSION

We measured the joint positional error and detection rate
of the joints in the upper body for all scenarios. Joint
positional error is the average distance to the ground truth
joint position. Detection rate is the percentage of time the
joint is tracked.

NITE reports a confidence value for each and every
joint, which describe how reliable the data from the tracker
is. Three discrete confidences are reported by NITE: 1 if
the joint is tracked, 0.5 if in doubt and 0 if not tracking.
MS-SDK has a similar variable for each joint of interest:
tracking, inferred and not-tracking, which we interpret as
1, 0.5 and 0. We define the metric detection rate as the
percentage of frames that the skeleton tracker returns a
confidence value of 1 for the run. Table I and III shows
the detection rate of different joints for all scenarios. The
values in this table are percentages of time that the joint
is tracked. This means that joints with a detection rate of
%100 is tracked all the time according to that particular
skeleton tracker.

Table II and IV are the accuracy in centimeters of both
models, compared to the ground truth. The accuracy is
only measured for joints that are being tracked i.e. with a
confidence of 1.

A. Single Kinect

For a single Kinect, it can be seen, in Table I that for
the arms scenario, MS-SDK is more prone to stop tracking.
The same observation can be made for the occlusion and

Joint System Walk 360 Hide Box Occ Sit Arms
Head MSSDK 15.8 17.2 16.1 13.2 32.5 14.8 16.3

NITE 10.6 11.8 13.3 12.2 76.2 11.0 13.5
Neck MSSDK 11.2 14.5 10.9 8.5 31.8 7.7 11.2

NITE 4.6 4.9 3.2 10.5 76.6 5.7 5.2
Torso MSSDK 4.4 5.9 3.9 10.1 30.7 7.5 4.2

NITE 6.7 6.7 6.8 15.5 82.0 12.1 7.5
Shoulders MSSDK 7.8 16.8 5.8 9.3 34.6 7.9 6.7

NITE 5.6 18.6 7.1 8.7 82.4 9.2 7.2
Elbows MSSDK 9.6 28.6 7.6 6.4 42.5 8.7 7.4

NITE 9.0 32.0 7.4 9.1 78.5 11.1 8.3
Hands MSSDK 14.8 47.3 15.6 12.2 52.9 14.1 12.7

NITE 14.8 50.2 11.0 15.9 84.7 14.2 14.2

TABLE II
ACCURACY OF THE TWO MODELS MS-SDK AND NITE

the 360 scenarios. Accuracy-wise NITE performs better for
the head and neck, while MS-SDK is better for the rest
of the joints as can be seen in Table II. The two basic
scenarios Walk and Arms have acceptable accuracies for
both systems. Moreover, NITE has better accuracy for Walk
scenario and MS-SDK performs better in Arms scenario.
In the 360 scenario the biggest errors are for elbows and
hands, this is because these are the joints with most motion.
The interesting values for the Box scenario is the torso and
hands. The torso gets occluded when the box is picked up,
which affects the accuracy. The hands have good values,
with MS-SDK being better.

The full body occlusion scenario yields the worst
accuracy, which was expected. The interesting result here, is
that table I shows that MS-SDK is adjusting the confidence
value more than NITE, which results in a better accuracy,
shown in table II. The sitting scenario has overall good
accuracy, but MS-SDK performs best.

Figure 4 shows the error of the position of the shoulder
joint in the walking scenario. The figure includes the
error of NITE and MS-SDK with respect to the ground
truth. It can be noted that this is one of the joints where
NITE is better than MS-SDK. The positional error varies
between 0.05m and 0.14m in a run of 20 seconds, which
may be considered as a large variation in the positional error.

Figure 5 demonstrates the left hand joint positions in x,y
and z coordinates over time in the 360 turn scenario. It is
noteworthy that it takes a few seconds for NITE to start
tracking and this is because of our data capture procedure.
NITE runs on the .oni file offline whereas MS-SDK always
runs on the live stream. Therefore it takes some time for the
NITE tracker to initiate tracking. First at around t=3s, the
person starts to turn around self and this turn ends around
t=12s, where another rotation is performed. The second 360
rotation is done with the arms along the side of the body, that
is why we can see the Y-position decrease at t=12s. In figure
5 the X-position and the Z-position should be similar since
it is a rotation around the Y-axis. For the X-position around
6, it seems like NITE is in doubt and is giving some really

big errors, while MS-SDK stays closer to the real value.
Whats happening at around 7 on the X-position is that the
skeleton flips and both MS-SDK and NITE thinks it sees
the front of the person instead of the back, that is why the
slope looks like the one at around t=10s, where the person is
actually facing the Kinect again. The same phenomenon can
also be seen on the second rotation and for the Z-position.
For this scenario NITE and MS-SDK seems to be performing
equally, although NITE seems to return to the right position
faster than MS-SDK. This can be seen on figure 5 around
t=9s.

It is noteworthy to report that the inaccuracies are also
dependent on the joint coordinate conventions for different
skeleton trackers. While the errors might be systematic, we
do not compensate for the joint offsets and report the raw
errors in position.

2 4 6 8 10 12 14 16 18 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Time [s]

P
os

iti
on

 E
rr

or
 [m

]

Error rate MS−SDK
Error rate NITE

Fig. 4. Average error in shoulder joint positions for the walking scenario.

B. Dual Kinect

For testing the Dual Kinect setup two simple fusion
approaches is used. First we look at the confidences, from
each Kinect, if both is 1, then we average the result. If
the confidence is only 1 for one of the Kinect, we trust
the data from that Kinect. This method is called Avg. The
other method is similar, instead of averaging the result
we pick the data from the Kinect, which has the highest
sum of confidences. The results from each of these fusion
methods can be seen in table III and table IV. One of the
goals of having multiple Kinects is to increase the range of
motion for a person in a scene. It can be seen by comparing
table I and III, that the dual Kinect setup has increased the
percentage of tracked joints.

In table IV the accuracy for the two fusion approaches
and a single Kinect, is shown. The single Kinect performs
better on most joint, while the dual average is best on
the rest. It can also be noted that the single Kinect and
dual avg. is pretty close, while the dual full has a larger error.

0 2 4 6 8 10 12 14 16 18 20
−2.5

−2

−1.5

−1

−0.5

0
X position

Time [s]

P
os

iti
on

 [m
]

Vicon
MS−SDK
NITE

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5
Y position

Time [s]

P
os

iti
on

 [m
]

Vicon
MS−SDK
NITE

0 2 4 6 8 10 12 14 16 18 20
−2.5

−2

−1.5

−1

−0.5

0
Z position

Time [s]

P
os

iti
on

 [m
]

Vicon
MS−SDK
NITE

Fig. 5. Absolute position for the left hand joint.

Joint System Single Kinect Dual Avg. Dual Sum
Head MSSDK 100 100 100

NITE 95.5 100 100
Neck MSSDK 100 100 100

NITE 100 100 100
Torso MSSDK 100 100 100

NITE 100 100 100
Shoulders MSSDK 76.6 99.4 99.4

NITE 100 100 100
Elbows MSSDK 76.4 99.6 99.6

NITE 92.8 100 100
Hands MSSDK 83 98.8 98.8

NITE 91.6 100 100

TABLE III
PERCENTAGE OF TRACKED POSITION

Figure 6 shows the X-position of the left hand joint for
the 360 scenario. The top graph is the values from a single
Kinect, while the bottom graph is from the dual avg. method.
Until around t=7s the data looks noise, this is because the
confidence is 0. Next, the same phenomenon as seen in
figure 5 can be seen, where the Kinect flips the skeleton.
At around t=12s, we can detect the first improvement of the
dual Kinect setup, where the MS-SDK finds the skeleton
faster than before. This can also slightly be seen at around
t=23s. It is worth noting that except for the start, it seems
like OpenNI’s NITE is doing a better job, but MS-SDK does
a better job on the second rotation, where the arms are down.

As mentioned we applied mechanical vibration [18] to
each of the Kinect to reduce the interference. In one of the
scenarios data was recorded without the vibration. Figure 7
shows the result, the recordings without the vibration has
better precision, even though the depth stream is improved.
This might be because the vibration ruins the calibration.

Joint System Single Kinect Dual Avg. Dual Sum
Head MSSDK 18.7 19.3 19.5

NITE 12.97 14.77 13.75
Neck MSSDK 14.57 16.06 15.89

NITE 5.59 5.11 6.13
Torso MSSDK 6.44 6.09 6.75

NITE 6.94 6.24 6.91
Shoulders MSSDK 16.63 16.75 18.63

NITE 15.01 16.17 17.03
Elbows MSSDK 29.03 29.96 34.29

NITE 29.64 29.93 31.63
Hands MSSDK 46.24 44.06 52.08

NITE 48.22 44.79 50.09

TABLE IV
ACCURACY OF THE TWO MODELS MS-SDK AND NITE FOR DIFFERENT

FUSION METHODS

0 5 10 15 20 25
−2.5

−2

−1.5

−1

−0.5

0
X position − Single Kinect

Time [s]

P
os

iti
on

 [m
]

Vicon
MS−SDK
NITE

0 5 10 15 20 25
−2.5

−2

−1.5

−1

−0.5

0
X position − Dual Avg.

Time [s]

P
os

iti
on

 [m
]

Vicon
MS−SDK
NITE

Fig. 6. Absolute position for the left hand joint.

V. CONCLUSION

In this paper, we evaluate the two skeleton trackers MS-
SDK and OpenNI NITE. The trackers has been tested in
different scenarios, and results concluded that the best tracker
should be picked based on the scenario. MS-SDK has better
accuracy when occlusion is present and is general better
on shoulder, elbows and hands. NITE needs several frames
before the tracking starts, but can resume skeleton tracking
faster than MS-SDK, after an occlusion. A setup with dual
Kinects has also been investigated with two simple fusion
methods, results shows an increase in the tracked range
of motion, but close to non improvements in accuracy. It
has also been tested how mechanical vibration can improve
dual Kinect performance, it was discovered that the vibration
reduces the accuracy.

Head Neck Torso Shoulders Elbows Hands
0

5

10

15

20

25

30

35

40

45

Joint names

P
os

iti
on

 e
rr

or
 [c

m
]

Vibration error

NITE vib
NITE no vib
MS−SDK vib
MS−SDK no vib

Fig. 7. The error rate comparison with and without vibration.

ACKNOWLEDGMENT

This work was made possible through financial support
from the BMW corporation.

REFERENCES

[1] Q. Cai and J. Aggarwal, “Tracking human motion using multiple
cameras,” in Pattern Recognition, 1996., Proceedings of the 13th
International Conference on, vol. 3. IEEE, 1996, pp. 68–72.

[2] V. Ganapathi, C. Plagemann, D. Koller, and S. Thrun, “Real time
motion capture using a single time-of-flight camera,” in Computer
Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on.
IEEE, 2010, pp. 755–762.

[3] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore,
A. Kipman, and A. Blake, “Real-time human pose recognition in
parts from single depth images,” in Computer Vision and Pattern
Recognition (CVPR), 2011 IEEE Conference on. IEEE, 2011, pp.
1297–1304.

[4] [Online]. Available: http://www.openni.org/files/nite
[5] R. Poppe, “Vision-based human motion analysis: An overview,” Com-

puter Vision and Image Understanding, vol. 108, no. 1, pp. 4–18,
2007.

[6] T. B. Moeslund and E. Granum, “A survey of computer vision-based
human motion capture,” Computer Vision and Image Understanding,
vol. 81, no. 3, pp. 231–268, 2001.

[7] T. B. Moeslund, A. Hilton, and V. Krüger, “A survey of advances in
vision-based human motion capture and analysis,” Computer vision
and image understanding, vol. 104, no. 2, pp. 90–126, 2006.

[8] L. Sigal, S. Bhatia, S. Roth, M. J. Black, and M. Isard, “Tracking
loose-limbed people,” in Computer Vision and Pattern Recognition,
2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society
Conference on, vol. 1. IEEE, 2004, pp. I–421.

[9] D. Ramanan and D. A. Forsyth, “Finding and tracking people from
the bottom up,” in Computer Vision and Pattern Recognition, 2003.
Proceedings. 2003 IEEE Computer Society Conference on, vol. 2.
IEEE, 2003, pp. II–467.

[10] L. Bourdev and J. Malik, “Poselets: Body part detectors trained using
3d human pose annotations,” in Computer Vision, 2009 IEEE 12th
International Conference on. IEEE, 2009, pp. 1365–1372.

[11] S. Knoop, S. Vacek, and R. Dillmann, “Sensor fusion for 3d human
body tracking with an articulated 3d body model,” in Robotics and
Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International
Conference on. IEEE, 2006, pp. 1686–1691.

[12] A. Agarwal and B. Triggs, “3d human pose from silhouettes by rele-
vance vector regression,” in Computer Vision and Pattern Recognition,
2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society
Conference on, vol. 2. IEEE, 2004, pp. II–882.

[13] C. Plagemann, V. Ganapathi, D. Koller, and S. Thrun, “Real-time
identification and localization of body parts from depth images,” in
Robotics and Automation (ICRA), 2010 IEEE International Conference
on. IEEE, 2010, pp. 3108–3113.

[14] L. Zhang, J. Sturm, D. Cremers, and D. Lee, “Real-time human motion
tracking using multiple depth cameras,” Quadrant, vol. 1, no. a1, p. a2.

[15] G. Rogez, J. Rihan, S. Ramalingam, C. Orrite, and P. H. Torr,
“Randomized trees for human pose detection,” in Computer Vision
and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on.
IEEE, 2008, pp. 1–8.

[16] S. Matyunin, D. Vatolin, Y. Berdnikov, and M. Smirnov, “Temporal
filtering for depth maps generated by kinect depth camera,” in 3DTV
Conference: The True Vision-Capture, Transmission and Display of
3D Video (3DTV-CON), 2011. IEEE, 2011, pp. 1–4.

[17] F. Faion, S. Friedberger, A. Zea, and U. D. Hanebeck, “Intelligent
sensor-scheduling for multi-kinect-tracking,” in Intelligent Robots and
Systems (IROS), 2012 IEEE/RSJ International Conference on. IEEE,
2012, pp. 3993–3999.

[18] D. A. Butler, S. Izadi, O. Hilliges, D. Molyneaux, S. Hodges,
and D. Kim, “Shake’n’sense: Reducing interference for overlapping
structured light depth cameras,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, ser. CHI
’12. New York, NY, USA: ACM, 2012, pp. 1933–1936. [Online].
Available: http://doi.acm.org/10.1145/2207676.2208335

[19] T. S. Washio. (2012) Kinect-mssdk-openni-bridge: Experimental
module to connect kinect sdk to openni. [Online]. Available:
https://code.google.com/p/kinect-mssdk-openni-bridge/

[20] V. M. Systems and P. P. Inc. (2012) Vicon motion capture systems.
[Online]. Available: http://www.vicon.com/

[21] J.-Y. Bouguet. (2010) Camera calibration toolbox for matlab. [Online].
Available: http://www.vision.caltech.edu/bouguetj/calib doc/

[22] S. Umeyama, “Least-squares estimation of transformation parameters
between two point patterns,” Pattern Analysis and Machine Intelli-
gence, IEEE Transactions on, vol. 13, no. 4, pp. 376–380, 1991.

