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Abstract:

This project concerns the investigations of using a mi-
crophone array to suppress reverberation and noise such
that the Phone Error Rate (PER) for Automatic Speech
Recognition (ASR) system is reduced, when the distance
between speaker and microphone is relatively large. The
general theory of array processing is presented along with
the classical Generalised Sidelobe Canceller (GSC) beam-
forming algorithm, which uses the Mean Square Error
(MSE) as optimization criteria. This algorithm is exten-
ded to adapt the filter block-wise instead of sample-wise
and further adapt them using a kurtosis criteria, whe-
re it is sought to maximise the kurtosis of the output.
Histograms of reverberant speech and clean speech are
plotted to confirm that clean speech has a higher kurto-
sis and is more super-gaussian than reverberant speech.
A simple cosine-modulated filter bank and Zelinski po-
stfiltering is implemented and verified to further extend
the system. The fundamental theory of Hidden Markov
Model (HMM) ASR along with two popular adaptation
methods, Vocal Tract Length Normalisation (VTLN) and
Maximum Likelihood Linear Regression (MLLR), is sta-
ted. The beamforming algorithm is benchmarked against
the classical and well-known delay-and-sum beamformer
(DSB), both with and without Zelinski postfiltering. The
benchmarks were done using two data sets each consi-
sting of 610 phonemes, but where one has synthetic gene-
rated reverberation and the other is collected from a real
speaker recorded in a classroom and an auditorium. The
speech recognition software, Kaldi, is used the generate
PER. The reults show that the DSB without postfiltering
performs better than maximum kurtosis GSC in all case.
The reasons for this are discussed in the end.

The contents of this report is freely available, but publication (with source reference) is only permitted as agreed with the authors.
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Synopsis:

I dette projekt undersøges en måde, hvor flere mikrofo-
ner i et array kan bruges til at undertrykke efterklang og
støj således at automatisk talegendekelsessystemer opnår
bedre resultater i tilfælde, hvor afstanden mellem taler og
mikrofon er relativ stor. Den fundamentale array signal-
behandlingsteori er kort beskrevet sammen med udled-
ning af den klassiske GSC array algoritme, som anvender
MSE som optimeringskriterie. Denne algoritme er udvi-
det således, at det adaptive filter estimeres i forhold til
at maksimere kurtosis af outputtet. Ydermere opdateres
filteret kun blok vist. Histogrammer af ren tale og tale
med efterklang er plottet, hvilket bekræfter at ren tale er
mere super-gaussisk og har en højere kurtosis værdi end
tale med efterklang. En simpel filter bank og Zelinski po-
stfiltrering implementeres og verficeres gennem test. Den
fundamentale teori bag HMM ASR præsenteres sammen
med to metoder, hvor taleren og de akustiske omgivel-
ser kan tilpasses til den eksisterende model. Algoritmen
testes mod den velkendte DSB med og uden postfiltre-
ring. Der anvendes to typer datasæt, hver bestående af
610 phonemer. En type datasæt, hvor efterklangen er ge-
nereret syntetisk vha. MATLAB og en type, hvor data
er optaget i et klasseværelse og et auditorie. Som tale-
genkendelsessystem anvendes Kaldi. Resultaterne viser,
at DSB uden postfiltrering opnår bedre resultater end
maksimum kurtosis GSC i alle tilfælde. Årsagerne hertil
diskuteres til sidst.

Rapportens indhold er frit tilgængeligt, men offentliggørelse (med kildeangivelse) må kun ske efter aftale med forfatterne.
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as documentation of Master Thesis in Signal Processing and Computing at the Department of
Electronic Systems, Aalborg University. From ultimo January to medio April I was a visiting
student at Center for Robust Speech Systems (CRSS) at UT Dallas, Texas, under the supervision
of Professor Dr. John H.L. Hansen. This stay was among other spent on setting up an Automatic
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ASR system. All code is written in MATLAB and can be found on the supplied CD. The Kaldi
software used to do speech recognition is not supplied on the CD but can be found at http:
//kaldi.sourceforge.net/index.html.

Reading guide

Matrices are written in bold with capital letters (A), and vectors are just written in bold (a).
Notation, which is not standardized, is explained at first encounter. All relevant equations are
numbered. The first time acronyms are used the full word/sentence is stated, and furthermore a
list of acronyms is provided. The content of the report is organised in the following way: Chapter 1
gives a soft introduction to the application of speech recognition and the motivation for improving
the performance when the distance between speaker and microphone is increased. Chapter 2 states
the reverberant signal model and the statistic properties of the signals involved. Chapter 3 gives
an overview of array processing and derives the classic Generalised Sidelobe Canceller (GSC) and
extends the algorithm using a kurtosis criteria. Chapter 4 gives a brief overview of the theory
behind ASR and chapter 5 states and discuss the results achieved. Finally, chapter 6 concludes on
the thesis and discusses how to proceed. Appendices are found at the back of the report.

Nicolai B. Thomsen - Aalborg 6/6, 2013
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Kapitel 1

Introduction

It is becoming more and more popular for people to use some kind of computer/device (smartphone,
tablet, PC etc.) on a daily basis. The interaction is primarily done using some kind of touch input,
which is not very practical since it ties the user’s hands to the device or perhaps the user is not able
to use his/her hands. A typical scenario of the first case could be when driving a car, in which case
the user has to use his/her hands to operate the steering wheel and the gear stick [1]. An example
of the second case is disabled people who simply cannot operate their hands at the required level
of precision. In such cases it is desirable to be able to interact with the device without the use of
hands or physical contact with the device. One method which is becoming more and more popular
is the use of voice and speech, where the device is able to understand simple commands or whole
sentences. Under ideal situations where the user is close to the microphone talking directly into
it in a low-noise environment, performance is acceptable. This can be achieved by using a user-
mounted microphone, but at the price of inconvenience, which is acceptable in some applications
and situations, but as an example thi is not acceptable in multi-user settings. When the distance
between the user and device/microphone is increased (Distant Speech Recognition (DSR)), the
performance is seriously degraded due to background noise and echo or reverberation [1]. These
problems have to be overcome in order for speech interaction between human and computer to
become popular and effective, thus a lot of research has been done within the field of DSR. One
particular and interesting method of combating these problems is through the use of multiple
microphones, also known as microphone array processing or beamforming. This introduces the
possibility to direct the gain towards the user and thereby supressing other sources. The scope of
this thesis is to investigate one recent proposed method [2] and evaluate it in terms PER. The
outline is as follows: first the problem is described along with a signal model, next a brief overview
of basic array processing theory is given along with the derivation and implementation of a classic
beamformer called GSC. After this the algorithm is extended according to [2] and evaluated in
terms of recognition performance. At last a conclusion on the results is made.

1



Chapter 2. Problem Description

Kapitel 2

Problem Description

The aim of this section is to describe the phenomenon of reverberation and why this poses a
problem. Based on this a reverberant signal model will be given and mainly the statistical properties
of these signals will be stated. This will set the stage for all further investigation in this report.
This section will also explain how the enhancement/dereverberation is assessed in this report, since
there are many different ways of measuring this.

2.1 Signal model in acoustic environment

Figure 2.1 shows a simplified version of a ASR system using a linear microphone array with M
elements to aquire speech in a reverberant environment, where two sources, s1 and s2, are present.
We see that the speech from both sources has a direct path to microphone 2 (solid line) and some
delayed versions due to reflections on the walls (dashed lines), the latter is called reverberation.
Only two reflection for each source is shown due to simplicity, but in reality the number is much
greater. The same will off course be the case for all the microphones but for simplicity only the
signals going to microphone 2 are indicated. The level or severity is typically described by the
reverberation time or T60, which describes how long it takes the energy of the reverberation (not
included the energy of the direct path) to get below 60dB [3, p. 6]. For low reverberation times,
reverberation will not pose as severe a problem to human listeners, but in the case where the
speech is picked up by an ASR this has a great influence on the performance of the system and
will certainly degrade this [1, p. 8].

ASR

....

1 2 M

s1
s2

Figur 2.1: Figure showing the situation of doing ASR in a reverberant environment using a linear microphone
array. There are two sources, s1 and s2 and M microphones connected to an ASR system. Solid lines indicate LoS
and dashed lines indicate reflection on walls (reverberation).
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Section 2.2. Objective of speech enhancement

We are now able to state a signal model for the signal received at the mth microphone [4, p.
68]

ym(n) =

K∑
k=1

gm,k(n) ∗ sk(n) + vm(n) (2.1)

where:
ym(n) is the output signal from the mth microphone at time index n
gm,k(n) is the acoustic impulse response between the kth source and the mth microphone at

time index n
sk(n) is the clean signal from the kth source at time index n
vm(n) is additive white noise at the mth microphone
K is the number of sources

Normally one is interested in only one of the sources and consider this as the signal of interest
and then regard all other sources as interference, but for convenience this is not explicitly stated
in the signal model here. To get a better understanding of what is going on in equation 2.1 we will
list the known and assumed properties of the signals.

Source signals, sk(n)

These are the unknown clean speech signals from the sources, and therefore broadband signals.
Each speech signal is assumed to be a non-stationary and zero-mean stochastic process. We further
have that the source signals are uncorrellated, e.g. E[sk1(n1)sk2(n2)] = 0 for k1, k2 = 1,2,...K,
k1 6= k2 and for all n1 and n2.

Acoustic Impulse Response, gm,k(n)

These are unknown and time-variant. Because the reverberation time is between 0.1s and 1s for
normally sized rooms, the length of the Acoustic Impulse Response (AIR)’s is in the order of
thousands [3, p. 8].

Additive noise, vm(n)

We assume that the noise is Additive White Gaussian Noise (AWGN) both temporally and spatially
(across microphones), e.g. E[vm(n1)vm(n2)] = 0 for all n1,n2 and n1 6= n2 and E[vm1(n)vm2(n)] =
0 for m1,m2 = 1,2,...M , m1 6= m2 and for all n.

Microphone signals, ym(n)

We will assume that all microphone signals are zero-mean. Because every microphone will receive
signals from all sources (with different delays) the microphone signals are correlated with each
other, e.g. E[ym1(n1)ym2(n2)] 6= 0 for all m1,m2 = 1,2,...M and for all n1 and n2.

2.2 Objective of speech enhancement

As mentioned earlier there are mainly two reasons to do speech enhancement, where the first is the
case when a human listener is perceiving the signal, and the second case is when enhancement is
needed in order for an ASR to achieve satisfying performance in terms of Word Error Rate (WER)
or PER. This thesis will focus on the last objective.

2.2.1 Suppression vs. Cancellation

Many different methods have been employed trying to eliminate the reverberation of speech and
thereby achieve optimum performance of an ASR. All these methods can roughly be divided into
two main categories as done in [5]. Here the methods are divided in reverberation cancellation and
reverberation suppression. The basic idea of the two categories and the differences is now explained.

3



Chapter 2. Problem Description

Cancellation
When trying to cancel out the reverberation effect one aims at estimating the true AIR’s and then
perform an inverse filtering or deconvolution. This is also refered to as blind deconvolution due to
the fact that the AIR’s are estimated blindly. In theory this will yield a perfect reconstruction of
the true speech signal [4, p. 152], sk(n), but the method has some drawbacks. In order for this
method to be useful first of all the AIR’s must be estimated. Since the lengths of these are typically
in the order of hundreds or thousands these can be very difficult to estimate in practice. Also the
AIR’s cannot share any common zeros when looking at these in the z-domain as this will result in
a rank-deficient filter matrix, thus making it non-invertible [4, p. 152].

Suppression
These methods primarily relies on optimum filtering by exploiting the statistical properties of the
desired speech source. One example of a suppression method is fixed/adaptive beamforming, where
knowledge of the direction of the desired signal is used to suppress signals impinging from other
direction. These types of method are generally more robust then cancellation methods because
nothing needs to be estimated, but as a consequence the potential is not as great [5, p. 74].

In this thesis focus will be on suppression methods using multiple microphones.
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Kapitel 3

Array Signal Processing

3.1 Array response and signal model

This section will define the signal model for a Uniform Linear Array (ULA), which is used throug-
hout the report. Figure 3.1 shows a linear array of M microphones, where linear referes to the
microphones being equally spaced by the distance d. We also make the assumption that the source
of the signal is located in the far-field, such that the incident wave is plane [6, p. 117].

0 1 2 M-1

...

d

θ

Figur 3.1: Linear array of M microphones and an impinging signal from the direction of angle given by Θ.

First we define the response of the microphone array at the direction, θ by

a(θ) = [g0(θ) g1(θ)e(−j2π cos(θ) dλ ) g2(θ)e(−j2π cos(θ) 2d
λ ) ... gM−1(θ)e(−j2π cos(θ)

(M−1)d
λ )]T (3.1)

where:
θ is angle
d is the spacing between microphones
λ = c

f is the wavelength
gm(θ) denotes the directivity pattern for the mth microphone

In array processing equation 3.1 is called the steering vector. It is important to note, that the
response is dependent on the spacing of the microphones, d, and the frequency of the signal, f .
For now we assume isotropic microphones, thus we have gm(θ) = 1 for m = 0,1,...,M − 1 and
θ ∈ [0; 2π[. We thus get [7]

a(θ) = [1 e(−j2π cos(θ) dλ ) e(−j2π cos(θ) 2d
λ ) ... e(−j2π cos(θ)

(M−1)d
λ )]T (3.2)

For a single wave, s(t), impinging from the constant direction θ and without noise we have

x(t) = a(θ)s(t) (3.3)

We see from equation 3.3 that the signals are continuous in time. After sampling is done we
get the following discrete-time signal model

5



Chapter 3. Array Signal Processing

x(n) = a(θ)s(n) (3.4)

where:
n is the sample index

We are now able to define the discrete-time output of the array when K waves are impinging
and additive noise is present [7]

x(n) = A(θ)s(n) + v(n) (3.5)

where:
A(θ) ∈ CM×K is a matrix, whose columns are the steering vectors corresponding to the impin-

ging signals
s(n) ∈ RK×1 is a vector containing the K signals at time n
v(n) ∼ N (0,σ2I) is additive noise

A very important observation is that when no noise is present x(n) is contained in the K-
dimensional subspace of the M -dimensional signal-subspace, assuming that K < M [7].

3.2 Generalised Sidelobe Canceller (GSC)

This section will explain and derive a classical adaptive beamformer called the Generalised Sidelobe
Canceller. We start by defining the signal model and scenario. Afterwards the solution is derived
and a practical implementation based on this is explained. At last some simulations are conducted
by implementing the beamformer in Matlab.

3.2.1 Problem description

The problem at hand is illustrated by the block diagram in figure 3.2. Given the input x(n), which
is a response of a uniform linear array as described in section 3.1, we are interested in finding a
filter or a vector w such that the output obeys some constraints. In other words we are seeking a
spatial filter with certain properties according to the direction.

x(n) y(n)wH

Figur 3.2: Block diagram showing the input, output and the optimum filter.

The input signal x(n) consists of the desired signal, interfering signals and some additive noise
at each microphone by

x(n) = a(θu)u(n)︸ ︷︷ ︸
desired

+

K∑
k=1

a(φk)dk(n)︸ ︷︷ ︸
interference

+ v(n)︸︷︷︸
noise

(3.6)

where:
a(θ) is a steering vector, see equation 3.2
u(n) is the desired signal
θu is the direction of the desired signal
K is the number of interfering signals

6



Section 3.2. Generalised Sidelobe Canceller (GSC)

dk(n) is the kth interfering signal
φk is the direction of the kth interfering signal signal
v(n) ∼ N (0,σ2I)

3.2.2 Derivation

The GSC is an implementation of a the Linear Constrained Minimum-Variance (LCMV) beam-
former [6, p. 120]. Some assumptions are neccessary in order for the GSC to be valid

• The direction of the desired signal is known and does not change over time

• The desired signal is narrowband

The problem of finding the LCMV optimum filter can be stated as an optimization problem,
where it is sought to find the filter coefficients w, which yields a minimum output power and at
the same time obey some linear constraints.

min E[|y(n)|2] = E[y(n)y(n)∗] = E[wHx(n)(wHx(n))∗] = wHRxxw

subject to CHw = g (3.7)

where:
E is the expectation operator
Rxx is the correlation matrix of the input x(n)
C is a constraint matrix

The solution to equation 3.7 is found by using the method of Lagrange multipliers and is given
by

wo = R−1xxC(CHR−1xxC)−1g (3.8)

The full derivation of the solution is given in appendix A. There are many ways of constraining
the problem and thereby choosing C and g [8, p. 514-525]. We see from equation 3.8 that the
solution requires that the covariance matrix of the input signal is known in beforehand. This is
not the case in real-world problems, thus we need to do something else. The next subsection will
explain how using the covariance matrix is avoided.

3.2.3 Implementation

The idea behind the GSC is to divide the M -dimensional signal space into a subspace given by
the constraints and a subspace which is orthogonal to the constraint subspace [8]. We assume the
constraints to be linearly independent and that the number of constraints is lower than the number
of microphones, L < M . The constraint subspace therefor has the dimension L and the dimension
of the orthogonal space is M − L. The range of the constraint subspace is thus given by the span
of the columns of C and we define the matrix B, which column space span the orthogonal space.
In the literature the matrix B is called the blocking matrix, so we adopt this. The orthogonality
requirement can be stated as

CHB = 0 (3.9)

where:
0 is a matrix of zeros

7



Chapter 3. Array Signal Processing

We see from 3.9 that the column of B span the null space of CH . The optimum filter is split
into a contribution from the constraint subspace and a contribution from the orthogonal subspace
[8]

wo = wq −wp (3.10)

where:
wq is the part from the constraint subspace
wp is the part from the orthogonal subspace

wq and wp are found by projecting wo onto C and B, respectively. The projection matrix onto
the constraint space is given by

PC = C(CHC)−1CH (3.11)

We can now find an expression for wq

wq = PCwo (3.12)

= C(CHC)−1CHR−1C(CHR−1C)−1g (3.13)

= C(CHC)−1g (3.14)

An important thing to notice here is that wq does not depend on the statistics of the input
signal, but only the constraints. Another important thing is in the case where we constrain to have
unit gain in the desired direction, θu, we thus have the following constraint

CHw = a(θu)Hw = 1 (3.15)

This is a special case of the LCMV and is called Minimum-Variance Distortionless Response
(MVDR) beamformer [6, p. 119]. We note that the single linear constraint in equation 3.15 is equal
to the steering vector in equation 3.2, e.g C = a(θu). By replacing the constraint matrix, C, in the
last expression in equation 3.14 with the single constraint from equation 3.15 and using the fact
that C = a(θu), we get

wq = a(θu)
(
a(θu)Ha(θu)

)−1
1 =

a(θu)

||a(θu)||22
(3.16)

where:
||·||2 denotes the euclidian norm.

From comparing equation 3.16 with equation 3.4 we see that wq turns out to be a matched
filter to the desired signal.

Equation 3.11 can also be used to create a matrix B, which comply with equation 3.9, in the
following way

B = I−PC (3.17)

We now take the first M − L columns of B [8, p. 532].
It is now possible to find wp in the same way as wq was found. This is however not satisfying

and a better solution exists. We can reformulate the problem into an optimum filtering problem.
This is illustrated in figure 3.3.

Figure 3.3 shows how the input signal is split into an upper and lower path. The upper path
makes sure that unit gain is achieved in the desired direction, and the lower path takes care of
interference. The lower path is thus implemented as an adaptive filter, since the interference and
noise is not known before hand. In this way the filter can adapt to changing environments. To
ensure that the lower path do not conflict with the upper path, the input to the lower path is
first projected on to the orthogonal space of the constraint space by multiplying with the blocking
matrix, B, hence the name.

8



Section 3.2. Generalised Sidelobe Canceller (GSC)

wq

B wp

∑
-

d(n)x(n)

y(n)

e(n)

Z(n)

Figur 3.3: Block diagram of the GSC. The dashed line frames the part, which can be considered as an optimum
filter [6, p. 123].

3.2.4 Simulation

A MATLAB implementation of the GSC has been made, where the adaptive filter in the lower
path on figure 3.3 is a Normalised Least-Mean-Square (NLMS) adaptive filter [6, p. 320-324]. The
equation for updating the filter weight is given by

w(n+ 1) = w(n) +
β

ε+ ||z(n)||22
z(n)e∗(n) (3.18)

where:
β is the step-size. Should obey 0 < β ≤ 2
ε is a small positive constant to ensure numerical stability when ||z(n)||2 is small

It is not the scope of this report to investigate the theory behind adaptive filtering. Three
scenarios are chosen to illustrate the effect of the GSC. To keep focus on its ability to suppress
interference and not noise, the simulations were run without adding noise. We construct the sig-
nal using a narrowband signal-of-interest and narrowband interference. The signal received by
microphone m is described by

xm(n) = A cos(2πFn)︸ ︷︷ ︸
u(n)

·e−j2πm
cos(θ)
λu +

K∑
k=1

Bk cos(2πfkn+ ψk)︸ ︷︷ ︸
sk(n)

·e−j2πm
cos(φk)

λk (3.19)

where:
A is the amplitude of the desired signal
F is the frequency of the desired signal
θ is the direction of arrival of the desired signal
K is the number of interfering signals
Bk is the amplitude of the kth interfering signal
fk is the frequency of the kth interfering signal
ψk is the phase of the kth interfering signal
φk is the direction of the kth interfering signal

In both simulation we use the MVDR beamformer given by equation 3.15.

Simulation 1 - Single interfering source
Table 3.1 shows the settings for this simulation, where only one interfering source is present.

Figure 3.4 shows how the mean-squared error (MSE) develops over time in frames of 128
samples for e(n), d(n) and in the case of the raw input from a single microphone x(n). The MSE
for the error signal is estimated by

MSE(e) =
1

N

N∑
k=1

(u(k)− e(k))2 (3.20)

9



Chapter 3. Array Signal Processing

Parameter Value(s)

ε 0.1
β 0.1
d λ

2 = 5.7 m
M 4
A 1
F 30 Hz
θ 80°
K 1
B 1
f 5 Hz
ψ 0 rad
φ 70 °

Tabel 3.1: Parameter values for simulation 1.

where:
N = 128
e is the error signal
u is the true signal of interest
k denotes the kth sample of the block

The MSE for x(n) and d(n) is calculated in the same way by replacing e(k) in equation 3.20.
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Figur 3.4: Simulation 1: Plot of how the MSE develops over time.

It is seen from 3.4 that the MSE for the error signal converges to approximately 0. This is
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Section 3.2. Generalised Sidelobe Canceller (GSC)

compared to the case when only a single microphone is used and no enhancement is done, where
the MSE oscillates around approximately 0.5. The last case is when only the matched filter, wq,
is used. In this case the MSE is 0.3 and we see that we get an improvement compared to the
single microphone case, but still not as good as the whole GSC. The GSC clearly outperforms
the matched filter in this case, because the interfering signal has an impinging angle close to the
desired signal together with the fact that the beam of matched filter improves proportionally with
the number of microphones.

Figure 3.5 shows the response of the blocking matrix (top), the matched filter, wq (middle)
and the adaptive filter, wp (bottom). As mentioned in section 3.1 the response is dependent on
frequency. In the following plots the responses are measured at the frequency of the desired signal,
thus the response of the adaptive filter wp cannot be used directly to determine from which
directions interfering signal are coming, unless the frequency of these are close to the frequency of
the desired signal. We first note that the blocking matrix can be interpreted as a filter-bank, where
each column acts as a band-rejection filter [6, p. 126]. We clearly see that the blocking matrix has
0 gain at the desired angle whereas the matched filter has unit gain, which was also expected. Due
to the limited number of microphones the matched filter has a very slow varying response. This is
due to that fact that wq only contains M − L coefficients, where L is the number of constraints.
In this case wq contains 3 coefficients which does not yield a very good fit.
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Figur 3.5: Simulation 1: Plot of the response of the blocking matrix, B, (top), matched filter, wq, (middle) and
adaptive filter, wp at the last iteration (bottom).

Simulation 2 - Multiple interfering sources
Table 3.2 shows the settings for this simulation.

Similar to simulation 1 the MSE has been calculated in frames of 128 samples and the result is
seen on figure 3.6. We again see that there is a great improvement when using the GSC compared
to the single-microphone case (red).
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Parameter Value(s)

ε 0.1
β 0.1
d λ

2 = 5.7 m
M 4
A 1
F 30 Hz
θ 80°
K 3
B [1,1,1]
f [5, 10, 15] Hz
ψ [0, 0, 0] rad
φ [78°, 82°, 40°]

Tabel 3.2: Parameter values for simulation 2.
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Figur 3.6: Simulation 2: Plot of how the MSE develops over time.

Figure 3.7 shows the response of the blocking matrix (top), the matched filter, wq (middle) and
the adaptive filter, wp (bottom). We again see that the blocking matrix and the matched filters
are orthogonal to each other.

Simulation 3 - Correlated interference
As stated in section 2 the Signal-Of-Interest (SOI) is reflected on walls and other objects, which will
result in delayed and phase-shifted versions of SOI impinging from different angles other than the
Direction-Of-Interest (DOI). This corresponds to u(n) and sk(n) for k = 1,2,...K being correlated
in equation 3.19. To see how the GSC handles correlated noise, the same settings as in simulation
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Figur 3.7: Simulation 2: Plot of the response of the blocking matrix, B, (top), matched filter, wq, (middle) and
adaptive filter, wp at the last iteration.

1 is chosen except for the phase and frequency of the interfering signal. The simulation is done by
averaging over 100 different realisations each with different phase of the interfering signal.

Table 3.3 shows the settings for this simulation.

Parameter Value(s)

ε 0.3
β 0.1
d λ

2 = 5.7 m
M 4
A 1
F 30 Hz
θ 80°
K 1
B 1
f 30 Hz
φ 70°

Tabel 3.3: Parameter values for simulation 3.

Figure 3.8 shows the same types of plot as for the first simulation. We clearly see, that the GSC
performs very poor when the interference is correlated with the SOI. This phenomenon is called
signal cancellation [9]. In this case the matched filter performs better. Because of this the GSC is
not suitable for dereverberation, where the interfering signals can be considered to be delayed and
phase-shifted versions of the SOI.
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Figur 3.8: Simulation 3: Plot of how the MSE develops over time. The plot has been made by averaging over 100
simulation with random phase of the interfering signal.

3.2.5 Summary

In this section we have derived and investigated a simple narrowband beamformer called the
Generalised Sidelobe Canceller. A MATLAB implementation has been made and simulations have
showed its ability to attenuate interfering signals coming from different directions. We have seen
that the GSC is able to filter out the interfering signals when these are not correlated with the
SOI. In the case of correlated interfering signals the GSC is unable to suppress the interfering
signals and thus performs poorly. Another significant drawback of the GSC is that it is intended
for narrowband signal and not broadband signals which is the case when we are dealing with speech
signals.

3.3 Maximum Kurtosis Subband GSC

This section will describe an improved version of the standard GSC, which was described in 3.2.
The improved version is described and tested in [10, 2], where it achieves good performance. It is
however important to note that the ULA consists of 64 microphones with a spacing of 2 cm, which
results in a large aperture and a very narrow beam in the desired direction.

The subband structure and the improved GSC are shown in figure 3.9. In the subband structure
on figure 3.9(a) there is also a block for estimating the Direction-of-Arrival (DOA), however this
is only shown for a conceptual purpose and will not be implemented or described.

The four improvements are

Subband structure Compensates for the array response being frequency dependent.

Maximising block kurtosis Avoids the signal cancellation problem.

Subspace filtering Makes the kurtosis estimate more robust.

Postfiltering Noise reduction on the output from the beamformer.

The motivation for making these improvements and further details are described in the following
sections, where each improvement is described, implemented and verified.

To get an overview of when things are updated and calculated, pseudo code of the improved
GSC [2] is stated in algortihm 1.

It is important to note here, that some elements are updated for every input snapshot sample,
while other elements are only updated for every block of input snapshot samples.
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Figur 3.9: Structure for the improved GSC. (a) the subband structure, (b) the GSC for the dth subband including
postfilter. hA and hS are the analysis and synthesis filter banks respectively and wZel denotes the Zelinski postfilter.

Algorithm 1 Maximum Kurtosis GSC
wp ← [0, 0, ... , 0, 1]
for every snapshot sample do
Update B and wq (Not done in this project)
if Block of samples received then
Update covariance matrix Σ(b)← µΣ(b− 1) + (1− µ)R̂zz(b)
Generate subspace filter U
Update filter wp

end if
end for

where:
R̂zz(b) is the sample covariance matrix for the current block
Σ(b) is the iterated covariance matrix used to generate U
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3.3.1 Filterbank

As mentioned and showed in section 3.1 the response of a sensor array is frequency dependent. The
problem is now how to choose the frequency to generate the filter wq in the GSC, when speech is
broadband. The problem is illustrated on figure 3.10, which shows the array response for a uniform
linear array with fixed interspacing in terms of frequency and direction for different choices of wq.
There are two things to notice from these plot. The first thing is that the maximum gain (dark red)
is not in the same direction across all frequencies. This will result in some undesirable coloration of
the signal. The second thing to notice is that at low frequencies there is a lot of coloration, which
is highly undesirable. This can be solved by using a high number of microphones or by increasing
the spacing between them. Both methods are not very practical. We will not look into the last
problem.

(a) (b)

(c) (d)

Figur 3.10: Joint angle and frequency response for a microphone array for different frequencies of incomming
signal with M = 6, d = 0.04 and θ = 60°. (a) f = 500 Hz, (b) f = 1500 Hz, (c) f = 2500 Hz and (d) f = 3500 Hz.

The first problem however can be solved by employing a subband structure where the spectrum
is divided into P subbands and then assume the output from each subband to be a narrowband
signal. Figure 3.11 shows the response of the same array in figure 3.10, but now with a subband
structure, such that the beamformer wq is created with the center frequency of each subband. We
clearly see that maximum gain is attained at 60° across all frequencies as opposed to previous.

For the narrowband assumption to be valid infinitely many subbands must be used, thus making
it infeasible in a real-world application. Because of this a finite number of subbands is used. A
general subband system with P subbands is shown in figure 3.12.
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Figur 3.11: Joint angle and frequency response for microphone array when using 30 subbands.
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Figur 3.12: Block diagram of a general filter bank system consisting of analysis bank (left) and synthesis bank
(right) [11, p. 114]. The decimation is D.

Lower complexity
Lower complexity is achieved by decimating the signal after subband filtering it. There is however
only something to gain if the signal processing to be done has a higher complexity than doing the
analysis filtering and synthesis filtering.

The potentially lower complexity do not come for free. The introduction of a filter bank will
result in a time delay which is not desirable and makes it difficult implement in application requiring
real-time performance. In this thesis this is however not the case, thus the time delay is not a
problem.

Implementation
To implement a subband structure without introducing distortion or spectral coloration of the
signal there are some properties, which are desirable. The first one is the perfect reconstruction
property [11, p. 133], which is given by

17



Chapter 3. Array Signal Processing

x̂(n) = c · x(n− n0) (3.21)

where:
c is a non-zero constant scalar
n0 is some integer

In words equation 3.21 states that in order for perfect reconstruction the output of the filter
bank must be a constant scaled and fixed time-delayed version of the input signal. Another design
rule is that the decimation factor, D, is chosen to be at maximum equal to the number of subbands,
e.g. D ≤ P . In this project it is chosen to use a cosine modulated filter bank, where the analysis-
and synthesis filters are given by

hk(n) = 2p0(n) · cos

((
k +

1

2

)(
n+

N

2

)
π

P
+ (−1)k

π

4

)
(3.22)

fk(n) = 2p0(n) · cos

((
k +

1

2

)(
n+

N

2

)
π

P
− (−1)k

π

4

)
(3.23)

where:
k = 0,1,...,P − 1 is the subband index
n = 0,1,...,N is the sample index
p0(n) is the prototype filter

It has the advantage of being simple to implement. From equation 3.23 we see that the filter
bank is realised by finding a low-pass prototype filter and then multiplying by a modulating cosine
to get the desired bandpass-filter. It is therefore of importance to chosse the right prototype filter.

Verification
This section will verify the implementation of a filter bank implementation by applying it to a
speech signal and then comparing to the original signal using spectrograms and MSE. Table 3.4
shows the parameter values for the verification.

Parameter Value(s)

P 8
D 8
N 2048
Fs 8kHz

Tabel 3.4: Parameter values for filter bank verification.

The prototype filter is chosen to be a FIR-filter designed using the window method, furthermore
a Hanning window is used. The response of this filter is seen on figure 3.13.

Figure 3.14 shows the magnitude response of the analysis bank and synthesis bank.
Figure 3.15 shows the time series and the spectrogram of the signal before and after the filter

bank. We see that these are almost identical.
The MSE between x(n) and x̂(n) was found to be 4.35 · 10−7. Based on comparison of time

series and spectrograms and the MSE, we conclude that the filter bank is implemented correct.

3.3.2 Kurtosis Adaptive filter

This section will explain and derive the adaptive filter problem when it is desired to maximize the
kurtosis of the output.
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Figur 3.13: Magnitude frequency response of prototype filter.

Motivation
The adaptive filter problem in the conventional GSC, described in section 3.2, aims at minimizing
the mean-squared error between d(n) and y(n), e.g. E[(d(n) − y(n))2]. The reason for this was
to minimise the power in all other directions than the desired one. In this section the approach
given in [2, 10] is investigated. Here it is sought to maximize the kurtosis of the output, e(n). The
Kurtosis of a random variable e is given by [12]

Kurt(e) = E[|e|4]− βE[|e|2]2 (3.24)

The kurtosis quantifies the shape of a Probability Density Function (PDF) as being high if
the PDF is narrow and has long and heavy tails and vice versa. Setting β = 3 gives the following
interpretation of the kurtosis for a given PDF of a random variable, e, [12]

• Super-gaussian, Kurt(e) > 0

• Gaussian, Kurt(e) = 0

• Sub-gaussian, Kurt(e) < 0

The proof that the kurtosis of a Gaussian random variable with zero mean and unit variance is
zero, is given in appendix C. It has been observed that the PDF of clean speech is super-gaussian
[13], thus this can be used as a measure to distuinguish clean speech from other sources. By looking
at the signal model for the mth microphone in equation 2.1 and assuming that the sources, noise
and reverberation are independent samples, we can employ the Central Limit Theorem (CLT),
which states that the sum of an infinite number of independent random variables is distributed
according to a gaussian distribution. We recall from equation 2.1 that all the reflections are not
independent, however as the reverberation time is increased, the reflections and direct-path signal
becomes almost independent. This claim is supported by empirical results found in [13], where it is
found that the distribution of reverberant speech (not considering noise) tends toward a gaussian
distribution as the reverberation time increases. The idea is then to adjust the filter coefficients
in such a way that the output has a super-gaussian distribution (e.g. maximize the kurtosis) and
thus will resemble the speech signal from the desired source.
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Figur 3.14: Frequency magnitude reponse of (a) the analysis bank (b) the synthesis bank, for a filter length of
N = 2048 and P = 8 subbands.

Estimating the Kurtosis
In practice the kurtosis is not known and therefore needs to be estimated. This is done by using
the sample kurtosis, which for a data set e = [e(1) e(2) ... e(M)]T is given by [2]

K̂urt(e) =
1

M

M∑
n=1

|e(n)|4 − β

(
1

M

M∑
n=1

|e(n)|2
)2

(3.25)

where:
M is the block/segment size

To support the claim that clean speech is super-gaussian and that reverberant speech has a
more gaussian-like distribution some empirical investigations are carried out. Figure 3.16 shows
the time series, histogram along with fitted distributions and the kurtosis, for a speech signal of
4s recorded close to the speaker (left) and recorded using a distant microphone (right). We denote
these signals as clean speech and reverberant speech, respectively. Figure shows the histogram for
the two signals together with fitted Gaussian and Laplace distributions. We see that for clean
speech the histogram is very peaky and has relatively much weight or mass in the tails, thus it
is very super-gaussian. The reverberated speech is also super-gaussian but not as much as clean
speech. We see that it seems to be very well approximated by a Laplace distribution. Figure shows
the kurtosis calculated with three different block sizes using equation 3.25. First we note that the
kurtosis is generally higher for the clean speech than the reverberant speech across all block sizes.
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(a)

(b)

Figur 3.15: Spectrogram of (a) x(n) (b) x̂(n), for a filter length of N = 2048 and P = 8 subbands.

Second it is interesting to see how much the kurtosis varies depending on the block size. This
indicates, that the block size can have a great influence on the estimation of the kurtosis.

Last, we note that for the clean speech and block size of 0.25s the kurtosis is low for parts
where speech is present, which may indicate that some parts of speech do not have a super-
gaussian distribution. To investigate this further the a subset of the TIMIT database was used to
find the average kurtosis of each phoneme group and each phoneme. The average kurtosis of the
phoneme classes is seen in figure 3.17. It is interesting to see how much the kurtosis varies across
phoneme classes and that some classes actually have a very low kurtosis. This shows that some
parts of speech do not have a super-gaussian distribution.

The sample kurtosis calculated for the entire time series is 8.8 and 3.6 for clean speech and
reverberant speech, respectively. Based on these plots, we thus confirm that reverberant speech is
less super-gaussian than clean speech.

There are however drawbacks of using the kurtosis as a measure of non-gaussianity, because
this is sensitive to outliers, which is not ideal [12, p. 182] and can lead to false estimates of the
filter weights. This issue will be addressed later.

Updating the filter coefficients
As mentioned in the introduction to the improved GSC the adaptive filter is only updated for every
block of samples and we are interested in finding the filter which maximizes the sample kurtosis
for the current block of samples. We can define the cost function as the sample kurtosis and add a
term which penalizes large filter coefficents. If this term is not added, it is easily seen that equation
3.25 is maximized by making the coefficients of w infinitely big.
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Figur 3.16: (a) Time series, (b) sample kurtosis and (c) histogram and fitted distribution for close microphone
recording (left) and distant microphone recording (right). The length of the signal is 4s sampled at 16000 kHz.
Histograms are generated with 1000 bins.
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Figur 3.17: Average kurtosis for each phoneme class. The number over each bar is the number of phonemes used
to find the average.

J (w) =
1

M

M∑
n=1

|e(n)|4 − β

(
1

M

M∑
n=1

|e(n)|2
)2

− α ||w||22 (3.26)

The strategy is now to find the gradient and use this to find the optimum filter. The gradient
is derived in appendix B and is given by

g(w(k)) =− 2

M

bk+M−1∑
n=bk

|e(n)|2 · v(n)e∗(n)

+

(
2β

M2

bk+M−1∑
n=bk

|e(n)|2
)
·
bk+M−1∑
n=bk

v(n)e∗(n)− αw(k) (3.27)

where:
k = 1,2,....P is the block-index
M is the block size given in samples
bk is the index of the first sample in the kth block
v(n) = UHBHx(n) is given by figure 3.9(b) on page 15

For each block of samples we use the gradient ascent method along with backtracking line
search to find the optimum filter to apply to the current block of samples, which is given by [14,
p. 464]. Pseudo code for this algorithm is shown in 2.

A typical stopping criteria is when the norm of the gradient becomes smaller than some pre-
defined threshold, i.e. ||g(w)||2 < ε. Note that according to [2], there is a need for projecting the
filter onto the unit circle if the norm of the filter exceeds 1. The advantage of using the gradient
method is the simplicity, however we are only guaranteed a local optimum and the convergance rate
depends much on the condition number of the Hessian [14, p. 475]. This means that the algorithm
may become very slow in some cases.

Verification
In this section the implementation of the gradient ascent method with backtracking line search is
verified. To simplify the verification the kurtosis cost function in equation 3.26 is replaced by an
analytical function of the form
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Algorithm 2 Gradient ascent with backtracking line search
t = 1, α ∈]0,0.5], β ∈]0,1] and starting point w
while Stopping criteria not satisfied do
while J (w + tg(w)) < J (w) + αt ||g(w)||22 do
t← βt

end while
w← w + tg(w)
if ||w||2 > 1 then

w = w
||w||2

end if
end while

J (w) = wTRw + µwTw (3.28)

and the gradient is thus given as

g(w) = Rw + µw (3.29)

To simplify even further and to be able to visualize the cost function, we constrain the problem
to 2 dimenions, i.e. w ∈ R2×1. Based on the gradient we know that the optimum point is a vector
of zeros, i.e. wopt = [0 0]T . Table 3.5 shows how the paramteres are chosen for the verification.

Parameter Value(s)

t 1
α 0.1
β 0.4
µ 0.3
ε 0.0001

R

[
−0.5 0

0 −1.5

]
Tabel 3.5: Parameter values for gradient verification.

Figure 3.18 shows a 3D plot of the cost function and a contour plot with the results for gradient
ascent method.

The output of the algorithm after is seen in table 3.6 and we see that it reaches the optimum
as expected. We thus conclude that the implementation is correct.

Parameter Value(s)

Number of iterations 49
w [−4 · 10−4 −4.5 · 10−33]T
J (w) −3.2 · 10−8

Tabel 3.6: Result for gradient verification.

3.3.3 Subspace filtering

As mentioned in section 3.3.2 the sample kurtosis is sensitive to outliers, thus outliers can cause
incorrect updates of the filter, wq. To avoid this the noise subspace is estimated as an average over
all noise-vectors making it more robust and one-dimensional.
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Figur 3.18: (a) 3D plot of the cost function J (w) (b) Contour plot of the cost function J (w) together the result
of the gradient ascent algorithm for each iteration.

Method
Consider the (M − 1) × 1 output, z(n), from the blocking matrix B shown in figure 3.9(b) on
page 15. We ommit the frequency index, f for convenience. Due to the orthogonality between the
blocking matrix and wq and assuming perfect steering, z(n) will not contain any contribution from
the desired signal but only contributions from interfering signals and additive white gaussian noise,
both spatially and in time. Here we use the same signal model as in 3.5 on page 6

z(n) = As(n) + v(n) (3.30)

where:
s(n) contains the signal from D interferers
v(n) is AWGN

We assume that there are fewer interfering signals than there are microphones, e.g. D < M . In
the case of a highly reverberant room, there will be reflections impinging from many different angles,
thus there will be a very high number of "interferers", which will probably exceed the number
of microphones. Furthermore these reflections are not independent, which makes the task more
difficult. This will be mentioned in the end. First we consider the case of independent interferers
and spatially uncorrelated white noise. Taking the covariance matrix of z and exploiting that the
interfering signals and the noise are uncorrelated yields

Rzz = E[zzH ] = ARzSAH + RzV = ARzSAH + σ2
V I (3.31)

where:
RzS = E[s(n)s(n)H ]
RzV = E[v(n)v(n)H ]
I is the identity matrix
σ2
V is the noise-variance

We now want to find a basis for the D-dimensional subspace spanned by the interfering signals.
This can be achieved by first taking the Eigenvalue Decomposition (EVD) of the covariance matrix
given in equation 3.31 and then picking the eigenvectors corresponding to the D largest eigenvalues
[15, p. 166]. Since Rzz is hermitian the EVD is given by [15, p. 348]

Rzz = EΛEH (3.32)

where:
E = [e1, e2, ..., eM−1] are the eigenvectors
Λ = diag [λ1, λ2, ..., λM−1] contains the eigenvalues
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When not taking reflections into consideration, the eigenvalues attain the following values when
they are sorted in descending order [15, p. 166]

λk =

{
σ2
S + σ2

V for 1 ≤ k ≤ D
σ2
V for D + 1 ≤ k ≤M

Based on this we can now define our signal subspace as SS = R{e1, e2, ..., eD} and our noise
subspace as SV = R{eD+1, eD+2, ..., eM−1}, where R{·} denotes the range operator [15]. The
subspace filter is now constructed in the following way

U = [e1, e2, ..., eD, eṼ ] (3.33)

where:
eṼ =

∑M−1−D
k=1 eD+k

We see that we have seperated the signal and noise subspaces and reduced the noise subspace
to be of one dimension instead of M −D − 1 by making an average noise vector. This makes the
estimation of the noise much more robust and reduces the dimensionality in the case where many
microphones are used.

As mentioned earlier, when many reflections are present the number of signals will exceed the
number of microphones, e.g. D > M , which makes this method useless. However some reflections
may have a very small amplitude compared to the noise-variance and can therefore be neglected.
Another problem arise if the signals are perfectly correlated, then it is impossible to divide the
range of the covariance matrix into a signal- and noise subspace [16, p. 378].

Choosing the size of signal subspace and noise subspace
It is necessary to find a robust and automatic way of estimating how many eigenvectors the signal
subspace and noise subspace comprises of. In [2] it is suggested to use a measure called contribution
ratio and then threshold on this. The contribution ratio for the ith eigenvector is given by

Ci =
λi∑M−1

k=1 λk
(3.34)

We then decide if an eigenvector belongs to either the signal subspace or the noise subspace
by thresholding on Ci, if Ci ≥ threshold then eigenvector ei belongs to the signal subspace and if
not, then it belongs to the noise subspace.

3.3.4 Postfiltering

So far attention has been given to suppress interfering signals and not reducing the noise in equation
3.5. This section describes how to reduce noise after beamforming has been applied, hence the name
postfiltering. We assume that the true signal has been corrupted by AWGN, thus the signal model
for the output of the GSC can be described in the following way:

e(n) = s(n) + w(n) (3.35)

where:
e(n) is the output from the GSC at time-index n
s(n) is the true signal at time-index n
w(n) is AWGN at time-index n

To reduce the noise, we can apply the well-known Wiener-filter [17, p. 612]. In order for the
use of this filter to be valid, s(n) and w(n) must be Wide Sense Stationary (WSS) processes and
uncorrelated, E[s(n1)w(n2)] = 0 for all n1 and n2. We assume that w(n) obey the assumptions, but
as mentioned in section 2 the source signals are non-stationary, hence s(n) is also non-stationary,
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which violates the WSS assumption. This can however be overcome by considering frames of 20−30
ms seperately. The Wiener-filter seeks to find a linear filter, h, which minimizes the MSE given by

E[(s(n)− ŝ(n))2] (3.36)

where:
ŝ(n) =

∞∑
k=−∞

h(k)e(n− k)

The solution is given by

H(f) =
Ps(f)

Ps(f) + Pw(f)
=
Ps(f)

Pe(f)
(3.37)

where:
H(f) is the frequency-domain Wiener-filter
Ps(f) and Pw(f) are the Power Spectral Density (PSD) of s(n) and w(n), respectively
Pe(f) is the PSD of e(n) = s(n) + w(n)

The time-domain filter can then be obtained by applying the inverse Fourier Transform on
H(f). Since we do not know Ps(f) and Pw(f), these must be estimated in some way, which will
be described next.

Zelinski postfiltering
Since the signal, s(n), can only be considered WSS in frames of 20− 30 ms the PSD’s cannot be
estimated by averaging over a long time series, in other words we need to estimate the PSD’s using
only data from the current frame. One possibility is to assume ergodicity to split the data into
smaller sets and then do ensemble averaging. However this results in a degradation of resolution
in the frequency domain, which is not desirable. This problem can be tackled by using Zelinski
postfiltering [18], where the method refers to estimating the PSD’s and not the actual filter. This
method uses the fact that multiple microphone signals are present. We assume the following signal
model (same as in equation 2.1) for the signal at the mth microphone

ym(n) =

K∑
k=1

gm,k(n) ∗ sk(n) + vm(n) (3.38)

and also that each microphone signal, m = 1,...,M , has been compensated for delay such
that they are aligned according to the desired direction. This compensation method will not be
described in this report. Using the signal model we can now find Ps(f) and Pe(f).

Estimating Pe(f)

Zelinski postfiltering estimates Pe(f) by estimating the PSD for each of the microphone signals
and then average over them. The PSD of ym(n) is given as [17, p. 569]

E[Y ∗m(f)Ym(f)] = E

[(
K∑
k=1

Gm,k(f)Sk(f) + Vm(f)

)∗( K∑
k=1

Gm,k(f)Sk(f) + Vm(f)

)]
(3.39)

where:
S(f) is the Discrete Fourier Transform of s(n)

For simplicity we assume that K = 2, which yields
E[Y ∗m(f)Ym(f)] =E[(G∗m,1(f)S∗1 (f) +G∗m,2(f)S∗2 (f) + V ∗m(f))(Gm,1(f)S1(f) (3.40)

+Gm,2(f)S2(f) + Vm(f))]

=E[G∗m,1(f)S∗1 (f)Gm,1(f)S1(f) +G∗m,1(f)S∗1 (f)Gm,2(f)S2(f)+ (3.41)

G∗m,1(f)S∗1 (f)Vm(f) +G∗m,2(f)S∗2 (f)Gm,1(f)S1(f)+

G∗m,2(f)S∗2 (f)Gm,2(f)S2(f) +G∗m,2(f)S∗2 (f)Vm(f)+

V ∗m(f)Gm,1(f)S1(f) + V ∗m(f)Gm,2(f)S2(f) + V ∗m(f)Vm(f)]
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All the cross-terms equal zero due to the assumtions that all sources are uncorrelated and
zero-mean [17, p. 651] resulting in

E[Y ∗m(f)Ym(f)] = |Gm,1(f)|2 E[|S1(f)|2]︸ ︷︷ ︸
Ps1 (f)

+|Gm,2(f)|2 E[|S2(f)|2]︸ ︷︷ ︸
Ps2 (f)

+E[|Vm(f)|2]︸ ︷︷ ︸
Pvm (f)

(3.42)

We can thus estimate Pe(f) by taking the power of the Discrete Fourier Transform (DFT) of
each of the microphone signals and then average over them, which can be stated as

P̂e(f) =
1

M

M∑
m=1

|F(ym(n))|2 (3.43)

where:
P̂e(f) denotes the estimate of Pe(f)
M is the number of microphones
F() denotes the Fourier Transform

There are two things to notice from equation 3.42. The first thing is that assuming our source
of interest is s1(n) and that the beamformer perfectly removes all other (K − 1) sources, then
equation 3.35 can be written as

e(n) = s1(n) + w(n) (3.44)
(3.45)

and the PSD of e(n) is given by

Pe(f) = Ps1(f) + Pw(f) (3.46)

Comparing equation 3.42 and equation 3.46 it is seen that Pe(f) is overestimated by the sum of
the PSD of each of the interfering signals. Another thing that is also seen by comparing equation
3.42 and equation 3.46 is that unless Pw(f) = Pvm(f) the noise is also overestimated. It is thus
not taken into consideration that the beamformer itself will remove some of the noise making
Pw(f) ≤ Pvm(f) for all f .

Estimating Ps(f)

Pe(f) can be estimated by taking the cross-spectrum of the microphone signals and assuming that
the noise for two different microphones are uncorrelated, e.g. E[vm(k)vp(k)] for m,p = 1,...,M and
m 6= p. The cross-spectrum is given by

E[y∗m(f)yp(f)] = E

[(
K∑
k=1

Gm,k(f)Sk(f) + Vm(f)

)∗( K∑
k=1

Gp,k(f)Sk(f) + Vp(f)

)]
(3.47)

For simplicity we again assume K = 2, which yields

E[Y ∗m(f)Yp(f)] =E[(G∗m,1(f)S∗1 (f) +G∗m,2(f)S∗2 (f) + V ∗m(f))(Gp,1(f)S1(f)+ (3.48)

Gp,2(f)S2(f) + Vp(f))]

=E[G∗m,1(f)S∗1 (f)Gp,1(f)S1(f) +G∗m,1(f)S∗1 (f)Gp,2(f)S2(f)+ (3.49)

G∗m,1(f)S∗1 (f)Vp(f) +G∗m,2(f)S∗2 (f)Gp,1(f)S1(f)+

G∗m,2(f)S∗2 (f)Gp,2(f)S2(f) +G∗m,2(f)S∗2 (f)Vp(f)+

V ∗m(f)Gp,1(f)S1(f) + V ∗m(f)Gp,2(f)S2(f) + V ∗m(f)Vp(f)]

Again all the cross-terms are equal to zero due to the same assumption as before, and we thus
get

E[Y ∗m(f)Yp(f)] = G∗m,1(f)Gp,1(f)E[|S1(f)|2]︸ ︷︷ ︸
Ps1 (f)

+G∗m,2(f)Gp,2(f)E[|S2(f)|2]︸ ︷︷ ︸
Ps2 (f)

(3.50)
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Ps(f) can now be estimated by first estimating all possible cross-spectra and then average over
them. This can be stated by

P̂s(f) =
2

M(M − 1)
Re

[
M−1∑
m=1

M∑
q=m+1

F(ym(n))∗F(yq(n))

]
(3.51)

where:
Re[·] denotes the Real-operator

Taking only the real part of the estimate is justified by the fact that the true PSD of s(n) is
real-valued [17, p. 573].

From equation 3.50 we again see that in the case where all interfering sources are removed, the
PSD of s(n) = s1(n) is overestimated.

Combining the two estimates of the PSD’s we get the following

Ĥ(f) =
P̂s(f)

P̂e(f)
=

2
M(M−1)Re

[∑M−1
m=1

∑M
q=m+1 F(ym(n))∗F(yq(n))

]
1
M

∑M
m=1 |F(ym(n))|2

(3.52)

Verification
In this section the implementation of Zelinski postfiltering is verified by running a small numerical
example as in section 3.2.4 on page 9. We use the signal-to-noise plus interference ratio (SNIR) as
a measure of quality, which is defined as

SNIRdB = 10 · log10

(
PS

PI + PN

)
(3.53)

where:
PS is the power of the desired signal
PI is the power of the interfering signal
PN is the power of the noise

When no interference is present SNIR corresponds to the well-known signal-to-noise ratio
(SNR). The verification is done by sweeping over a range of input SNIR and then calculate the
output SNIR in case 1: narrowband where no interference is present, case 2: narrowband when
a single interferer is present, and case 3: real speech from TIMIT database. In all cases we use
the same signal model as in equation 3.19 in section 3.2.4 on page 9 and the same settings unless
stated otherwise. Furthermore the postfiltering is implemented using the overlap-add method, thus
a specific window and overlap has to be chosen. The settings for both narrowband cases (1 and 2)
are given in table 3.7

Case 1 and 2

Parameter Value

Fs 256 Hz
N 8192

Number of simulation pr. SNIR 5
Window Hanning
Overlap 50%

Postfilter block size 32 samples = 12.5 ms

Tabel 3.7: Parameter values for postfilter.

29



Chapter 3. Array Signal Processing

Parameter Value

d λ
2 = 7.6 m

M 5
A 1
F 45 Hz
θ 90°

Tabel 3.8: Parameter values for case 1; without interference.
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Figur 3.19: Case 1: Plot of output SNIRdB as a function of input SNIRdB.

Parameter Value

d λ
2 = 7.6 m

M 5
A 1
F 45 Hz
θ 90°
K 1
B 0.1
f 10 Hz
φ 70 °

Tabel 3.9: Parameter values for case 2; with interference.

Real speech
Table 3.10 shows the settings for the verfication using real speech.

Figure 3.21 shows the output SNR as a function of the input SNR. We see that for low values
of SNR the postfiltering enhances the signal by approximately 12dB. As the SNR increases we
see that the SNR output of the postfilter converges towards the SNR of the GSC, which is to be
expected because the Wiener filter in equation 3.37 can be written as

H(f) =
Ps(f)

Ps(f) + Pw(f)
=

Ps(f)
Pw(f)

Ps(f)
Pw(f) + Pw(f)

Pw(f)

=
SNR(f)

SNR(f) + 1
≈ 1, for SNR� 1 (3.54)
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Figur 3.20: Case 2: Plot of output SNIRdB as a function of input SNIRdB.

Parameter Value

TIMIT-sentence Region 1, Speaker FAKS0, file SA1.wav
Fs 8000 Hz
N 63488 samples
M 5

Number of simulation pr. SNIR 3
Window Hanning
Overlap 50%

Postfilter block size 2048 samples = 128 ms
DOI 90°

Tabel 3.10: Parameter values for postfilter.

Based on these simulations it is fair to conclude that the Zelinski postfilter is implemented
correct.
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Figur 3.21: Case 3: Plot of output SNRdB as a function of input SNRdB.

3.4 Summary

In this chapter the response of a Uniform Linear Array (ULA) has been given. Furthermore the
a classic adaptive beamforming algorithm, Generalised Sidelobe Canceller (GSC) was derived,
implemented and verified in the case of narrowband signals. It showed good performance and was
able to suppress interfering signals. The classic GSC was extended according to [2] to maximize the
kurtosis of the output instead of minimizing the MSE. The well-known Zelinski Wiener-filter for
postfiltering of the output of the beamforming algorithms was derived, implemented and verified
through testing in various SNR conditions. The next chapter will give a brief overview of the general
theory Automatic Speech Recognition (ASR) along with two widely-used adaptation methods.
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Kapitel 4

Speech Recognition

This chapter will give a brief overview of the problem of performing speech recognition and how
this is solved. In this chapter we are concerned with doing phoneme recognition as PER is used as
performance metric later in the report. The extension to recognizing words and sentences is however
very easy. We start by defining the problem. Given an input waveform the recognizer should output
a sequence of phonemes, which corresponds to the sequence of phonemes responsible for generating
the input waveform. This is shown in figure 4.1

Recognizer 'sh' 'uh' 'ae'

Figur 4.1: Illustration of the task of phoneme recognition. The waveform is arbitrary speech and does not correspond
to the shown phoneme sequence.

The most fundamental elements of modern ASR systems are the HMM and Gaussian Mixture
Model (GMM) topology and the features used, thus these are described next.

4.1 HMM and GMM

This section will go through the basics of Hidden Markov Models (HMMs) and Gaussian Mixture
Models (GMMs) for speech recognition.

4.1.1 HMM

HMMs have been used in the process of speech recognition for a long time [19] and is the most
widely used method. HMMs are used to model the state of things, which can only be observed
indirectly via another observation, hence the word hidden. We can describe a HMM using the
following elements [19]

• Number of hidden states (phonemes), N .

• Transition probabilities, the probability of being in state i and transitioning into state j, i.e.
aij = P (qt+1 = Sj |qt = Si).

• Observation / Emission probabilities, the probability of observing a specific observation at
time t, ot, when being in state h, i.e. bh(ot) = P (ot|qt = Sh). These are also refered to as
likelihood probabilities.

• Initial state probabilities, the probability of beginning in state h at time t = 1, i.e. πh =
P (q1 = Sh).
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In the context of speech recognition the obervations are the acoustic features (described later)
which are generated from the input waveform in figure 4.1 and the hidden states are the true
phonemes responsible for generating the acoustic feature. Because a phoneme can be pronounced
differently and at different speeds, they are typically modelled by three emitting states and a start
and end state, where it is only possible to stay in the current state or transition to the right state.
This is illustrated in figure 4.2.

'sh'1 'sh'2 'sh'3'sh'0 'sh'4

Begin Middle EndStart Stop

a01

a11

a12

a22

a23

a33

a34

Figur 4.2: Illustration of a HMM for the phoneme ’sh’.

When only one HMM per phoneme is used it is called context-independent recognition. This
can naturally be extented to context-dependent recognition, where a phone has several HMMs
depending on the phone just before and after [20]. This is due to the observation that a the pro-
nounciation of a phone depends on adjacent phones. Modelling of words (sequences of phonemes)
can now be done by concatenating HMMs for different phonemes.

4.1.2 GMM

As stated in the previously subsection we need to find the observation probabilities, which in the
context of speech recognition is denoted acoustic modelling. The observation / acoustic feature is
a continuous vector, which will be described in more detail later. We need to make a model for
each state (phoneme), which can tell how likely this state generated a given observation / acoustic
feature. This PDF is typically modelled by a mixture of multivariate Gaussian distributions in the
following way

bj(ot) =

M∑
m=1

cjm
1√

2π|Σjm|
exp

(
(ot − µjm)TΣ−1(ot − µjm)

)
(4.1)

where:
M is the number of mixtures
cjm is the mth mixture coefficient for the jth state
µjm is the mth mean vector of the jth state
Σjm is the mth covariance matrix for the jth state

For each state we thus need to estimate the M mixing coefficients, covariance matrices and
mean vectors. This is done through training.

4.1.3 Putting it together

We have now seen how speech can be modelled using HMMs and how the observation probabilities
can be modelled. The problem of recognizing a sequence of phonemes can now be solved by making a
HMMs based on all the possible phonemes and then finding the most probable / likely path through
it. A more formal way of stating this is: Given a sequence of t observations as O = o1,o2,...,ot

find a sequence of N states / phones as V = v1,v2,...,vN , that is most probable to have generated
the observation sequence. This problem is refered to as decoding and can be written as [20]

V̂ = arg max
V∈L

P (V|O) (4.2)
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where:
L is the set of all possible sequences of states / phonemes

Equation 4.2 can be restated in the following way by using Bayes’ well-known rule

V̂ = arg max
V∈L

P (O|V)P (V)

P (O)
= arg max

V∈L
P (O|V)P (V) (4.3)

We see in equation 4.3 that the denominator can be dropped since this is constant for all possible
V. We see that P (V) are the transition probabilities mentioned earlier, which is called the language
model in the context of speech recognition. The likelihoods, P (O|W) can be computed using the
trained acoustic models in equation 4.1. Since all possible sequences of states/phonemes have to
be evaluated it is necessary to do this efficient. This is achieved by using the Viterbi algorithm
[19].

4.2 Features

As depicted in figure 4.1 the input to an ASR system is an acoustic waveform. This waveform has
to be split into features such that the HMM topology can be applied. The most popular features
are called Mel-Frequency Cepstrum Coefficients (MFCCs) and is computed using the following
steps [21, 22]

Pre-emphasis A high-pass filter is applied to put emphasis on higher frequencies.

Windowing A window is applied to split the waveform into frames with a typical duration of
25ms and an overlap of 10ms. A non-rectangular window is often chosen to avoid problem
when transforming to frequency domain.

DFT Transforms the time frame into frequency domain.

Mel filter bank A non-uniform filter bank is applied and the log-energy in each band is found.
The filter bank is non-uniformly spaced due to the fact that human hearing is not equally
sensitive to all frequencies. The filters are spaced according to the Mel scale. A frequency
response of this filter bank is shown in figure 4.3. Typically, only the first 12 coefficients are
used.

Inverse Discrete Fourier Transform (iDFT) Apply the iDFT to the log-energies mainly to
make the coefficients uncorrelated, which has the advantage of making it sufficient to use
diagonal matrices as covariance matrices in the GMM in equation 4.1 [21].

Energy Find the energy of the frame.

We now have a vector of 12 MFCCs and the energy adding up to 13 coefficients. To model the
change in speech first- and second order differences between coefficients are also computed. The
final acoustic feature thus contains 13 · 3 = 39 coeffients.

4.3 Adaptation

This section briefly describes two popular methods for adapting and normalising data such that
the effects of mismatch between gender, age and acoustic environments are reduced.

35



Chapter 4. Speech Recognition

0

0.2

0.4

0.6

0.8

1

Frequency

M
ag

ni
tu

de

Figur 4.3: Frequency response of the Mel filter bank.

4.3.1 VTLN - Vocal Tract Length Normalisation

The vocal tract of men, women and children all have different lengths making the spectrum af
speech different [23]. This has an effect on the MFCC, which is not desirable. VTLN reduces this
effect by making a frequency warping of the training data and testing data. We can state a criteria
for finding this optimum frequency warping, α̂ [23]

α̂ = arg max
α

P (Oα
i |λ,Ti) (4.4)

where:
Oα
i is a sequence of feature vectors generated from a utterances from speaker i warped by α

λ is the parameters for the given HMM
Ti is the transcription of the utterances

Since a lower and upper bound on α is known due to the minimum and maximum length of
the vocal tract, the optimum value is simply found by sweeping over 0.88 ≤ α ≤ 1.12.

4.3.2 MLLR - Maximum Likelihood Linear Regression

When there is a mismatch between training and testing data in terms of speaker-variability, acoustic
environment noise etc., the performance of ASR systems is degraded [24]. This effect due to mis-
match can be reduced using an affine transformation in either the feature-space (in this case the
MFCC observation vectors) or in the model-space (in this case the parameters describing the indi-
vidual multivariate gaussians used to describe the observation probabilities in equation 4.1). The
equations given in the model-space are given by [25]

µ̄ = Aµ+ b (4.5)

Σ̄ = HΣHT (4.6)

where:
A, b and H are the transformation parameters to be estimated.
µ̄ and Σ̄ are the new model parameters after adaptation.

Sometimes a constrain is forced such that A = H, which is a variant called constrained Maxi-
mum Likelihood Linear Regression (cMLLR) [25]. The general method works in the following way:
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Given test data from a new speaker, some (small) amount of this is used to determine the transfor-
mation parameters such that the likelihood of the observation adaptation data is maximised [26].
This can be stated in the following way [24]

(T̂,Â,b̂,Ĥ) = arg max
(T,A,b,H)

P (O|T,A,b,H,λ)P (T) (4.7)

where:
Â, b̂ and Ĥ are the estimated transformation parameters.
O is the observation sequence from the adaptation data.
T is the state sequence.
λ is the unadapted trained model.

The adaptation can either be supervised (the true state generating the observation sequence
is known) or unsupervised. If a transformation for all gaussian mixtures from all states are to be
found this corresponds to a full training problem and thus requires much data. It is assumed that
the same transformation can be applied to a several parameters, based on the assumption that the
mismatch has effected all parameters in a similar way [25].

4.4 Kaldi

As mentioned earlier a ASR system is used to evaluate the performance of the beamforming
algorithms. This section describes the system setup in this project. We use an engine called Kaldi
[27]. The engine uses the MFCC as acoustic feature and models each state of a phoneme using a
GMM. Some important parameters are listed in table 4.1.

Parameter Value(s)

Number of MFCC 13
Length of feature vector 3 · 13 = 39

Number of states per phoneme 3
Frame length 25 ms
Frame overlap 10 ms

Number of iterations for training 40

Tabel 4.1: Settings for ASR engine.

In the paper, where the maximum kurtosis GSC is proposed [2, 10], the recognition error rate
is found for different settings of the ASR, thus the same is done here. First an experiment where no
adaptation is done is performed. Kaldi can use both a context-independent and context-dependent
HMM, where context-dependent means that the phoneme-model depends on the phone just before
and after it [20]. The second experiment is where VTLN and MLLR (as described previously) is
used.
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Kapitel 5

Experimental Results

To show an improvement using the GSC with kurtosis criteria the algorithm is tested in terms of
PER for different acoustic environments. This chapter is dedicated to describing the data used,
stating the results and finally discuss and compare them with results achieved in other projects.

5.1 Data

The purpose of this section is to describe the data used to benchmark the performance of the
array processing algorithms. In both the synthetic case and the real-world case we use data from
the well-known TIMIT database. Appendix E lists the 16 sentences used which makes a total of
610 phonemes to be recognised. This is considered enough to show a performance gain if any.
The synthetic reverberation is generated using a MATLAB implementation made by [28], which
basically uses the image-source model to generate the desired Room Impulse Response (RIR) and
then convolves this with the 16 TIMIT sentences in appendix E on page 56. Table 5.1 shows the
settings for generating the synthetic data, where xM refers to the position of the center of the
microphone array.

Parameter Value(s)

Room dimension [x,y,z] [3, 4, 2.5]
xM [x,y,z] [1.5, 1, 1.3]
xS [x,y,z] [1.5, 2.5, 1.5]

Incident angle 90°

Tabel 5.1: Room settings for generating synthetic data.

The real-world data was captured at in the spring 2013 at UT Dallas, Texas. It was generated
by having a speaker read the aforementioned TIMIT sentences in two rooms with different acoustic
characteristica, while recording with a microphone array and a single microphone attached close to
the speaker’s mouth. Images and drawings of the rooms are shown in appendix F along with a table
showing dimensions of the rooms, location of the speaker and microphone array. The microphone
array used for recording has the same geometry as the one used to generate synthetic data.

5.2 Results

This section states the results achieved by applying the maximum kurtosis GSC on the data
described in the previously section, and then comparing with the very simple DSB, as this seems
to be the general approach. The PER for the clean speech and raw distant microphone are also
stated. Table 5.2 shows how the beamformers are abbreviated in the rest of this chapter.

As mentioned in 4 there are context-independent and -dependent HMM modelling and furt-
hermore different adaptation methods which can be applied in order to increase performance of
the ASR system. Because of this three PERs are given for each method. We denote them in the
following way: Context-independent recognition is denoted MONO, context-dependent recognition
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Signal Abbreviation

Clean data CLEAN
Single-channel reverberant data from center microphone of microphone array RAW
Delay-and-sum beamformer DSB
Delay-and-sum beamformer + Zelinski postfiltering DSB-PF
GSC with Kurtosis criteria GSC-K
GSC with Kurtosis criteria + Zelinski postfiltering GSC-K-PF
GSC with Kurtosis criteria and subspace filtering GSC-K-SP
GSC with Kurtosis criteria and subspace filtering + Zelinski postfiltering GSC-K-SP-PF

Tabel 5.2: Table of abbreviations

is denoted TRI and context-dependent recognition with VTLN and MLLR is denoted VTLN &
MLLR. Besides using only the PER, histograms and spectrograms are also shown for selected
settings. When looking at the gradient of the cost function given in equation 3.27 in section 3.3.2
we see that for a signal with range in amplitude the two first terms might be very small. Because
of this a sufficent high step size should be chosen. Also it is therefore very important that alpha
is not set too high forcing w to become all zeros. The parameters are found imperically on data
not in the test set. The gradient method used to find the optimum filter weights is terminated
when the kurtosis of the output has converged. Through initial experiments so change was seen
using the contribution ratio described in equation 3.34, so when testing with subspace filter the
dimension of the signal space is fixed to 2.

5.2.1 Synthetic data

Two different types of experiments are conducted; First where the block size used to estimate the
filter weights is fixed and the reverberation time is varied along with different SNRs, and second
where the reverberation time is fixed and the block size is varied. In the first experiment the two
SNRs are chosen to be 20dB and 60dB, and the case of varying block size SNR is set to 60dB.

Different reverberation times
Table 5.3, 5.4 and 5.5 show the ASR results obtained for a reverberation time of 0.1s, 0.3s and
0.5s, respectively. It is first noted that even a low reverberation time of 0.1s degrades performance
dramatically and that a reverberation time of 0.5s doubles the PER. As an overall trend, both the
DSB and maximum kurtosis GSC increase performance for all three settings of the ASR system
significantly. When comparing the DSB and the maximum kurtosis GSC, the first performs the
best in all cases when postfiltering is not considered. When comparing the maximum kurtosis GSC
without subspace filtering to the one with subspace filtering no difference in performance is seen,
however the dimension of the filter is reduced with one dimension but at the cost of calculating
the sample covariance matrix.

To see how the maximum kurtosis improves the speech signal, spectrograms and histograms
are shown for the case of a reverberation time of 0.5s and a SNR of 60dB. Figure 5.1 shows the
histogram and fitted distributions for (a) the clean speech, (b) the raw speech and (c) the output
from the maximum kurtosis GSC. We clearly see that the clean speech is peaky and has heavy
tails, which is best modelled by a gamma distribution, whereas the raw speech is better modelled
as a laplace distribution as we also saw in section 3.3.2. The output of the maximum kurtosis GSC
is best fitted by a gamma distribution, which indicates that the algorithm has improved this aspect
as expected.

Figure 5.2 shows the spectrogram for (a) the clean speech, (b) the raw speech, (c) the output
from maximum kurtosis GSC and (d) the output from the maximum kurtosis GSC with postfilte-
ring. We first note the degradation of the from the clean speech to the raw speech and the effect of
the reverberation is clearly seen. When comparing the raw speech with the output from the maxi-
mum kurtosis GSC we do see an improvement and that some reverberation has been decreased,
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Method MONO (60 / 20) [%] TRI (60 / 20) [%] VTLN & MLLR (60 / 20) [%]

CLEAN 34.59 33.1 29.02
RAW 48.36/59.51 44.59/55.08 39.02/48.52
DSB 46.56/53.11 41.15/45.08 35.74/39.84

DSB-PF 46.23/47.38 41.15/43.61 33.44/36.39
GSC-K 46.56/53.44 42.46/45.25 36.72/39.34

GSC-K-PF 46.56/46.89 41.31/43.93 34.43/36.72
GSC-K-SP 46.56/52.79 42.46/45.25 36.72/40.49

GSC-K-SP-PF 46.56/46.56 41.31/44.10 34.43/36.72

Tabel 5.3: PER results for running ASR on synthetic data. T60 = 0.1s, step size = 1011, α = 10−13, block size
= 0.5s and size of signal subspace (D) = 2.

Method MONO (60 / 20) [%] TRI (60 / 20) [%] VTLN & MLLR (60 / 20) [%]

CLEAN 34.59 33.1 29.02
RAW 62.62/66.72 61.64/69.18 58.20/65.74
DSB 60.66/64.26 54.59/61.48 51.64/57.38

DSB-PF 56.07/56.39 52.79/55.25 48.20/50.00
GSC-K 62.62/66.23 57.38/61.97 55.25/59.02

GSC-K-PF 55.41/57.54 53.28/55.25 50.49/51.48
GSC-K-SP 62.62/66.23 57.38/61.97 55.25/59.02

GSC-K-SP-PF 55.41/57.54 53.28/55.25 50.49/51.48

Tabel 5.4: Results for running ASR on synthetic data. T60 = 0.3s, step size = 1011, α = 10−13, block size = 0.5s
and size of signal subspace (D) = 2.

Method MONO (60 / 20) [%] TRI (60 / 20) [%] VTLN & MLLR (60 / 20) [%]

CLEAN 34.59 33.1 29.02
RAW 70.98/75.08 68.69/71.64 66.89/70.49
DSB 66.72/69.18 64.59/67.54 61.64/66.07

DSB-PF 64.43/65.25 60.00/61.15 61.48/65.08
GSC-K 67.05/72.30 66.23/68.03 64.10/67.87

GSC-K-PF 63.77/66.07 62.13/63.93 61.15/62.46
GSC-K-SP 67.05/72.30 66.23/68.03 64.10/67.87

GSC-K-SP-PF 63,77/66,07 62.13/63,93 61.15/62.46

Tabel 5.5: Results for running ASR on synthetic data. T60 = 0.5s, step size = 1011, α = 10−13, block size = 0.5s
and size of signal subspace (D) = 2.
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Figur 5.1: T60 = 0.5s: Histogram and fitted distributions for (a) the close microphone, (b) the center array-
microphone and (c) the GSCK output.
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which corresponds with the fact that a small improvement is seen in the recognition performance.
When looking at figure 5.2(d) we see that the postfiltering removes some noise and also helps on
the reverberation, which is also seen in the error rates in table 5.5.

(a)

(b)

(c)

(d)

Figur 5.2: T60 = 0.5s: Spectrograms for (a) the close microphone, (b) the center array-microphone, (c) the GSCK
output and (d) the GSCK output with postfiltering. FFT-length = 28 samples and 1/8 overlap between frames.

Different block sizes
To see how the block size for estimating the filter affects the PER, the maximum kurtosis GSC
has been run with different block and the results has been evaluated. This is shown in figure 5.3
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for triphone modelling and triphone modelling with VTLN and MLLR together with results for
the raw speech and the DSB. We see that there does not seem to be a consistent trend in how the
algorithm performs as a function of block size.
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Figur 5.3: T60 = 0.1s: PER for different block sizes for (a) triphone modelling and (b) triphone modelling with
VTLN and MLLR. The last measurement point is for block size equal to the whole utterance. Since recognition
performance for the raw signal and delay-and-sum beamformer do not depend on the block size this is just plotted
as a flat line for reference.

5.2.2 Real Data

This subsection will describe the results achieved when applying the algorithms on real data
collected in two rooms, an auditorium and a classroom.

TI-auditorium
The results obtained for real data recorded in an auditorium is stated in table 5.6. In this case we
see that the maximum kurtosis GSC without postfiltering almost breaks down and even degrades
the performance compared to the raw signal in the case where VTLN and MLLR is used. Again
DSB turns out to be best with and without postfiltering.

Method MONO [%] TRI [%] VTLN & MLLR [%]

CLEAN 47.54 46.89 41.15
RAW 70.33 69.51 66.89
DSB 68.03 67.38 64.92

DSB-PF 67.05 64.59 63.28
GSC-K 70.16 67.16 68.85

GSC-K-PF 68.69 65.08 65.08
GSC-K-SP 70.66 67.70 68.69

GSC-K-SP-PF 68.69 65.25 64.43

Tabel 5.6: ASR results for TI-auditorium. step size = 105, α = 10−7, block size = 0.5s and size of signal subspace
(D) = 2.

Figure 5.4 shows the histograms for the clean speech, raw speech and the output from the
maximum kurtosis GSC. As expected the clean signal is approximated very well by a gamme
distribution, whereas both the raw speech and GSCK is almost indentical and best approximated
by a laplace distribution. This corresponds well the recognition results obtained in table 5.6.
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Figur 5.4: TI-auditorium: Histogram and fitted distributions for (a) the close microphone, (b) the center array-
microphone and (c) the output from the maximum kurtosis GSC.

Classroom
Table 5.7 shows the results for the recordings done in a classroom. We again see that DSB performs
better than maximum kurtosis GSC and that the maximum kurtosis GSC alone does not improve
the PER significantly compared to the raw signal. However the combination of maximum kurtosis
GSC and postfiltering performs the best. It is also noted that the subspace filter does not change
anything significantly.

Method MONO [%] TRI [%] VTLN & MLLR [%]

CLEAN 50.82 45.90 42.13
RAW 68.69 66.56 61.97
DSB 64.59 61.64 59.02

DSB-PF 60.82 61.97 57.21
GSC-K 68.03 64.43 61.80

GSC-K-PF 62.79 60.49 56.72
GSC-K-SP 68.03 64.10 62.13

GSC-K-SP-PF 63.11 60.66 57.05

Tabel 5.7: ASR results for classroom. Step size = 106, α = 10−6, block size = 0.5s and size of signal subspace
(D) = 2.

Figure 5.5 shows the histograms for the clean speech, raw speech and the output from the
maximum kurtosis GSC. As expected the clean speech is modelled very well by a gamma distribu-
tion and the raw reverberant speech fit well with a laplace distribution. We do however see that
no significant change is seen in the distribution by applying the maximum kurtosis GSC, which
corresponds very well with obtained results from table 5.7.
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Figur 5.5: Classroom: Histogram and fitted distributions for (a) the close microphone, (b) the center array-
microphone and (c) the output from the maximum kurtosis GSC.
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5.3 Discussion

In the previously section ASR results were obtained for the classical DSB and maximum kurtosis
GSC with and without Zelinski postfiltering in the case of synthetic reverberation and recorded
data. In both cases the DSB showed better performance, however in some cases the combination
of maximum kurtosis GSC and postfiltering turned out to yield the best performance. The results
obtained in this report contradicts the results obtained in the three reference papers, [10, 2, 29],
where the maximum kurtosis algorithm performs better than DSB in the last paper, and outper-
forms other beamforming algorithms in the two first papers. Experiments were also conducted to
see if the amount of data used to adapt the filter had an influence in the performance. In this
project no clear trend was seen as opposed to [29], where the algorithm improves with more data.
There are however differences between the two papers and this report. In [10] and [2] a ULA with
64 microphones is used compared to the 5-element ULA used in this report, however it is not be-
lieved that the array geometry has any impact on how the maximum kurtosis algorithm compares
to DSB. The main difference between this work and [10] is the number of subbands used, where
8 subbands are used in this work, 1024 is used in [10], which is a significant difference, that could
explain the difference in results. Another difference is that the ASR systems, training and test data
are not the same in the two cases. It is difficult to say whether this has an influence or not. During
the testing of the maximum kurtosis GSC relatively big variations (1− 2%) were observed in the
error rates just by changing the regularization parameter, α, in equation 3.26 and 3.27. This could
indicate that the right value just has not been found, since it has to be set based on empirical
results just as in [2].
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Kapitel 6

Conclusion

This project has concerned the use of array processing to improve speech recognition in scenarios
where reverberation is a significant problem. A reverberant signal model for a microphone array was
stated along with some important statistical properties. Focus was naroowed down to investigate
the proposed beamforming algorithm method in [10, 2]. The method is an extended version of the
well-known GSC beamforming algorithm, where kurtosis is used as an optimization criteria, based
on the observation that clean speech has a higher kurtosis than reverberant speech due to the CLT.
This observation was confirmed by using histograms of clean and reverberant speech. A similar
system as in [10, 2, 29] was implemented and each block was verified. The recognition software
Kaldi was set up such that the algorithm could be benchmarked against the classic DSB and
the general theory of HMM speech recognition was presented along with two popular adaptation
methods, namely VTLN and MLLR. As test data both synthetic data and real recorded data was
used. The method improved the recognition performance in almost all cases compared to the raw
signal, but did not perform better than DSB. This contradicts with the results stated in [10, 2],
where the method achieves good results compared to other beamforming algorithms. The main
difference between the work in this project and the reference papers is the number of frequency
subbands used. This will be investigated further to determine if this is the cause of the poor
performance. The results also showed that Zelinski posfiltering had a positive effect on reducing
the PER in almost all cases.
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Appendix A Deriving the Linear Constrained Minimum-Variance
optimum filter

The derivations in this section are primarily from [8]. The optimization problem is given by

min wHRw (A.1)

subject to CHw = g

where:
w ∈ CM×1
R ∈ RM×M has full rank
C ∈ CM×L is the constraint matrix and has full rank
g ∈ CL×1

This problem is solved using the well-known method of Lagrange multipliers. The Lagrangian
is given by

L(w,λ) = wHRw + λH(CHw − g) (A.2)

where:
λ is a vector of Lagrange multipliers.

Taking the derivative with respect to w, setting equal to 0 and solving for w gives

∇L(w,λ) = 2Rw + Cλ = 0⇒ (A.3)

w = −1

2
R−1Cλ (A.4)

We still need to find an expression for the lagrange multiplier. This is done by inserting equation
A.4 into the equality constraint in equation A.2 and solving for λ, which yields

g = −1

2
CHR−1Cλ⇒ (A.5)

λ = −2(CHR−1C)−1g (A.6)

It is noted, that we are guaranteed that the inverse of CHR−1C exist since both C and Rxx have
full rank. By inserting the last expression in A.6 into the last expression of A.4 we arrive at the
solution

wo = R−1C(CHR−1C)−1g (A.7)
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Appendix B Derivation of the sample kurtosis gradient

First we define our cost function by

J (w) =
1

M

M−1∑
k=0

|e(k)|4 − β

(
1

M

M−1∑
k=0

|e(k)|2
)2

− α ||w||22 (B.1)

where e(k) = d(k)−wHv = d(k)−wHUHBHx according to figure 3.9(b) on page 15.
We start by splitting the expression for convenience in the following way

J (w) =
1

M

M−1∑
k=0

|e(k)|4︸ ︷︷ ︸
J1(w)

−β

(
1

M

M−1∑
k=0

|e(k)|2
)2

︸ ︷︷ ︸
J2(w)

−α ||w||22︸ ︷︷ ︸
J3(w)

(B.2)

and then find the derivative with respect to the filter, w, for both terms. We ommit the time-
dependency for convenience, but it is re-inserted in the final expression.

J1(w) :
We see that this expression can be rewritten in the following way

J1(w) =
1

M

M−1∑
k=0

|e|4 =
1

M

M−1∑
k=0

(|e|2)2 (B.3)

By using the well-known chain-rule the derivative is easily found

∂

∂w∗
J1(w) =

2

M

M−1∑
k=0

|e|2 · ∂

∂w∗
|e|2 (B.4)

=
2

M

M−1∑
k=0

|e|2 · ∂

∂w∗
(dd∗ − dvHw − d∗wHv + wHvvHw) (B.5)

=
2

M

M−1∑
k=0

|e|2 · (−d∗v + vvHw) (B.6)

= − 2

M

M−1∑
k=0

|e|2 · v(d∗ − vHw) (B.7)

= − 2

M

M−1∑
k=0

|e|2 · ve∗ (B.8)

J2(w) :
Again in this term it is suitable to use the chain-rule

∂

∂w∗
J2(w) = 2β

(
1

M

M−1∑
k=0

|e|2
)
· ∂

∂w∗

(
1

M

M−1∑
k=0

|e|2
)

(B.9)

= 2β

(
1

M

M−1∑
k=0

|e|2
)
· 1

M

M−1∑
k=0

∂

∂w∗
|e|2 (B.10)

The last term in equation B.10 has also already been derived thus we get
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∂

∂w∗
J2(w) = −2β

(
1

M

M−1∑
k=0

|e|2
)
· 1

M

M−1∑
k=0

ve∗ (B.11)

= −2β

(
1

M2

M−1∑
k=0

|e|2
)
·
M−1∑
k=0

ve∗ (B.12)

J3(w) :

∂

∂w∗
J3(w) =

∂

∂w∗
αwHw = αw (B.13)

Finally, putting the three terms back together and inserting the time-dependancy yields

∂

∂w∗
J (w) = − 2

M

M−1∑
k=0

|e(k)|2 · v(k)e∗(k) + 2β

(
1

M2

M−1∑
k=0

|e(k)|2
)
·
M−1∑
k=0

v(k)e∗(k)− αw

(B.14)
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Appendix C Kurtosis of random variable with standard normal
distribution

This aims to show that the kurtosis of a random variable with standard normal distribution is
zero, i.e.

Kurt(X) = E[X4]− 3E[X2]2 = 0, for fX(x) =
1√
2π
e

−x2
2 (C.1)

where:
fX(x) is the PDF of the random variable X

Due to the assumption of unit variance, the expression becomes
Kurt(X) = E[X4]− 3 = 0; (C.2)

We thus need to show that E[X4] = 3.

E[X4] =

∫ ∞
−∞

x4fX(x) dx (C.3)

=
1√
2π

∫ ∞
−∞

x4e
−x2
2 dx (C.4)

The method of integration by parts, which states that
∫
udv = uv −

∫
vdu, can now be used

[30, p. 521]. Setting

u = x3 → du = 3x2dx (C.5)

dv = xe
−x2
2 → v = −e

−x2
2 (C.6)

We thus get

E[X4] =
1√
2π

∫ ∞
−∞

x4e
−x2
2 dx (C.7)

=
1√
2π

(
−x3e

−x2
2 −

∫ ∞
−∞
−e

−x2
2 3x2dx

)
(C.8)

=
1√
2π

(
−x3e

−x2
2 + 3

∫ ∞
−∞

e
−x2
2 x2dx

)
(C.9)

=
1√
2π

([
−x3e

−x2
2 + 3 ·

(√
π

2
erf
(
x√
2

)
− xe

−x2
2

)]∞
−∞

)
(C.10)

We clearly see that the exponentials evaluate to zero for plus and minus infinity, i.e. e
−x2
2 = 0|±∞.

We are thus left with

E[X4] =
3√
2π

[√
π

2
erf
(
x√
2

)]∞
−∞

(C.11)

=
3√
2π

√
π

2

(
erf
(
∞√

2

)
− erf

(
−∞√

2

))
(C.12)

=
3√
2π

√
π

2
(1− (−1)) (C.13)

=
3√

2
√
π
·
√
π√
2
· 2 (C.14)

= 3 (C.15)

We thus have that Kurt(X) = E[X4]− 3 = 3− 3 = 0.
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Appendix D Estimated kurtosis for individual phonemes

Figure D.1 show the average kurtosis estimated for each phoneme in the English language. The bar
plot is based on a subset of the TIMIT database. The number over each bar indicates the number
of phones used to average over.
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Figur D.1: Bar chart of estimated kurtosis for individual phonemes based on data from the TIMIT database.
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Appendix E TIMIT sentences

DR1 - MDAB0
• He has never, himself, done anything for which to be hated - which of us has?

• Be excited and don’t identify yourself.

• Sometimes, he coincided with my father’s being at home.

• At twilight on the twelfth day we’ll have Chablis.

• The bungalow was pleasantly situated near the shore.

• Are you looking for employment?

• A big goat idly ambled through the farmyard.

• Eating spinach nightly increases strength miraculously.

DR1 - MWBT0
• To many experts, this trend was inevitable.

• However, the litter remained, augmented by several dozen lunchroom suppers.

• Books are for schnooks.

• Those musicians harmonize marvelously.

• A muscular abdomen is good for your back.

• The causeway ended abruptly at the shore.

• Please take this dirty table cloth to the cleaners for me.

• The carpet cleaners shampooed our oriental rug.
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Appendix F Overview of rooms used for recording

This appendix includes picture and sketches of the rooms used to collect reverberant data.

Room From To Distance [m]

TI auditorium xM xS 4
Classroom xM xS 1.2

Tabel F.1: Table of distances between speaker and center of microphone array.

TI auditorium

Audience

xs

xM

≈ 25 m

(a) (b)

Figur F.1: TI-auditorium, (a) Rough sketch with positions indicated, (b) picture taken during recordings.

Classroom

Table

Table

Table

Table

Table

Table

xM

xS

≈ 11 m

≈ 9 m

(a) (b)

Figur F.2: Standard class room, (a) sketch with positions indicated, (b) picture taken during recordings.
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