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For a long time it puzzled me how something so
expensive, so leading edge, could be so useless,
and then it occurred to me that a computer is a
stupid machine with the ability to do incredibly
smart things, while computer programmers are
smart people with the ability to do incredibly
stupid things. They are, in short, a perfect
match.

Bill Bryson
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Abstract:
This thesis documents the development of
a fluid simulation for the Unity3D game
engine, based on the Navier-Stokes equa-
tions implemented on a 2D Eulerian grid
combined with a height field. The focus
of the simulation is a real-time and graph-
ically realistic simulation, capable of han-
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namics for graphics, a short description
of the differences between existing simu-
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scription of the equations used in the cre-
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Preface

This thesis documents the analysis of existing relevant research within the area
of fluid dynamics for graphics, the design and development of a fluid simulation
to be used in the Unity3D game engine, as well as a performance test of the
product and a demo showing its potential, made by Jens Christian M. Laursen
during the spring of 2013 at Aalborg University. The included DVD contains a
demo of the product, the thesis, referred webpages, referred videos as well as an
AV-production documenting the process.

In the literature, liquid and fluid is often used synonymously, however the
term fluid can technically be either liquid of gas. In this thesis the term fluid will
be used to describe liquids.

vii



Resumé

Dette speciale dokumenterer udviklingen af en væske simulering til Unity3D spil
motoren, baseret p̊a en kombination af et højde felt og en 2D Eulerian gitter
metode. Fokus for denne simulering er en real time grafisk realistisk væske simu-
lator der kan h̊andtere forskellige typer væsker, samt interaktionen mellem væske
og objekter. Dette speciale giver en introduktion til fysikken bag grafisk væske
dynamik, en kort beskrivelse af forskellene p̊a eksisterende simuleringer samt en
beskrivelse af emner, der er relevante for dette speciale. Der er ogs̊a en beskrivelse
af de ligninger der som er blevet brugt til at skabe en væske simulering.

I bøger, teaterstykker, film etc. er en del af målet af sikre at den indi-
viduelle læser/tilskuer er fordybet i historien i en s̊adan grad at tid og sted
glemmes. Uanset hvor fordybet læseren/tilskueren er i historien, s̊a er der dog
omstændigheder der kan gøre at denne fordybelse brydes. Dette sker specielt i
film hvis der p̊a én eller anden måde er noget grafisk der ikke passer ind. Vær
opmærksom p̊a at her ikke menes forældet grafik; mange ældre film er lige s̊a
nemme at fordybe sig i som nye, p̊a trods af at grafikken tydeligvis er fra to
forskellige tidsaldre. Hvad der derimod menes, er grafik der p̊a én eller anden
måde ikke passer ind i universet.

Det samme fænomen gør sig gældende for computerspil, men i modsætning
til film, hvor en hær af computere kan bruge timer, dage eller ligefrem uger p̊a
at rendere en sekvens billede for billede, skal computerspil være i stand til at
rendere simuleringer i real time p̊a forbruger hardware. Simuleringerne må endda
kun optage en brøkdel af processor kraften, da det meste skal bruges til at holde
spillet kørende.

Ydelses mæssigt er simuleringer af væsker meget krævende, hvilket er grundet
til at de kun eksisterer i ganske f̊a spil. I stedet er en række metoder igennem
tiden blevet brugt til at lave simplificerede simuleringer der visuelt ligner og/eller
opfører sig som væske.

Målet for dette speciale var at lave en interaktiv væske simulering til brug i
Unity3D spil motoren. Simuleringen skulle være i stand til at simulere forskel-

viii



lige væsker samt interaktionen mellem væske og objekter. Det var et krav at
simuleringen skulle være stabil, virke realistisk og være i stand til at køre med
minimum 60FPS p̊a forbruger hardware for at være brugbar i computerspil. For
at gøre dette var Navier-Stokes ligningerne implementeret i en Eulerian 2D git-
terstruktur, kombineret med et højdefelt. Konsekvensen af at have valgt denne
implementeringsform er at detaljegraden for det endelige produkt er i den lavere
ende; produktet kan ikke h̊andtere store gitterstrukturer (større end 48x48) og
samtidig holde sig under 60 FPS grænsen. Dette betyder effektivt set at pro-
duktet kan bruges til at simulere mindre vandomr̊ader, men ikke søer, floder og
hav. Produktet kan simulere mindre vandmængder, tyktflydenhed, bruger-tilført
kraftp̊avirkning samt to-vejs interaktionen mellem væske og primitive objekter
(kugler og kuber) for 40+ objekter ad gangen med justerbare massefylde.
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1
Introduction and Previous Work

There are two ways to write error-free programs;
only the third one works.

Alan J. Perlis

This thesis documents the development of a fluid simulation for the Unity3D
game engine. The focus of the simulation is a real-time and graphically realistic
interaction between fluid and solids. This chapter gives an introduction to fluid
dynamics, a short description of the differences between existing simulation tech-
niques and a description of aspects relevant to this thesis.

For those new to fluid simulation for graphics, I recommend the following
articles:

• Fast Fluid Dynamics Simulation on the GPU [1], for a short, well-
written introduction on the subject.

• Fluid Simulation, SIGGRAPH 2007 Course Notes [2], for an in-
depth explanation on various aspects of fluid simulation and various ways
of implementation.

1.1 Fluids in Computer Games

In books, plays in at theaters, movies etc., part of the goal is to ensure that
the reader/viewer is immersed into the story, to the exclusion of everything else.
However, no matter how immersed the reader/viewer is in the story, certain events
can cause the reader/viewer to lose this connection.
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1. INTRODUCTION AND PREVIOUS WORK

Especially for movies, unfitting graphics can sometimes expel the viewer from
immersion. Mind that here is not meant outdated graphics; many older movies
heavy on graphics are as immersive as modern ones even though the graphics are
obviously of two different ages. What is meant is graphics that in some ways
simply do not fit the universe.

The above mentioned phenomena are no less valid in computer games. How-
ever, unlike movies where complicated simulations can be made by offline ren-
dering where farms of computers can spend hours, days or even weeks building a
sequence frame by frame, computer games must be able to render the simulations
in real-time on consumer hardware while only taking up a fraction of the available
processing power, since the majority of the latter is needed elsewhere.

Performance wise, real simulations of fluids are very expensive, which is why
only few modern games contain them. Instead a variety of methods have been
used to fake fluid-like behavior. The following paragraphs each describe fluids
in various forms in computer games, going from the simpler ones, to the more
advanced. The included DVD contains in-game videos of the effects.

• Mass Effect 2: One of the simplest kinds seen in computer games is from
Mass Effect 2 [3], wherein the character can choose to order a drink from
the bar. The drink in the glass is in this case simply a translucent container
formed after the glass, and when the character empties the glass, the flat
top of the contained fluid is simply moved locally towards the bottom of
the glass.

• Skylander: Spyro’s Adventure [4]: Features a common solution to ren-
der water surface in a lake; the surface of the lake is a translucent plane
with a bluish color. A shader is then used to give the impression of ripples
and other fluid-like movement on the surface.

• Uru: Ages Beyond Myst [5]: Uses procedural water, see Section 1.4.3.

• Portal 2 [6]: This game uses an approach called Metaballs.

• From Dust [7]: This game uses a height-field method described later in
Section 1.4.4.

• Borderlands 2 [8]: Uses PhysX’s Smoothed Particle Hydrodynamics (SPH)
method to simulate various small puddles of blood, poison and more, and
allows the user to interact with it. SPH is described in Section 1.4.2.3.

2



1.2 Navier-Stokes Equations

1.2 Navier-Stokes Equations

The majority of Computational Fluid Dynamics (CFD) for graphics methods are
based on the Navier-Stokes equations for incompressible and homogeneous flow.
That a fluid is homogeneous means the density does not vary across the fluid
body, and that it is incompressible means that it does not vary over time, either.
The first equation, the Momentum Equation, describes how forces acting on a
fluid cause it to accelerate:

∂u

∂t
= −(u ·∇)u− 1

ρ
∇p+ ν∇ ·∇u + f (1.1)

u Velocity of the fluid. Is a vector velocity field. The velocity of a

particle at position x =
[
xx xy xz

]T
at time t is given by u = u(t,x) =[

u(t,x) v(t,x) w(t,x)
]T

.

ρ Density of the fluid at a point. Remember that the density is

constant and that ρ =
m

V
, where m is mass and V is volume.

– For syrup, this is roughly 1500kg/m3

– For water, this is roughly 1000kg/m3

– For air, this is roughly 1.3kg/m3

p Pressure Is a scalar field, indicating the force per unit area that the
fluid exerts on anything. The pressure of a particle at a position x at
time t is given by p = p(t,x)

ν Kinematic viscosity of the fluid. It measures in m2/s how viscous
the fluid is, that is, how much the fluid will resist deformation. Remem-

ber that ν =
µ

ρ
, where µ is the dynamic viscosity of the fluid, measured

in Pa · s.
f External forces per unit volume. Often called body forces, since these

forces affect the entire body of fluid, not just the surface. Often this is
equal ρg, where g is acceleration due to gravity. Usually (0,−9.81, 0)m/s2.

The second equation is the equation for conservation of mass, given by Equa-
tion 1.2. Most CFD methods focusing on visual effects consider fluids to be
incompressible, which is also the assumption made in this thesis. This assump-
tion leads to the simplified equation for the conservation of mass which is given
by Equation 1.3.

It is important to note that the consequence of this assumption is that it
effectively prevents the simulation of sound and shock waves within the fluid.

3



1. INTRODUCTION AND PREVIOUS WORK

∂ρ

∂t
= −∇ · (ρu) (1.2)

∇ · u = 0 (1.3)

The ∇ operator, called nabla, in the Navier-Stokes equations, has three mean-
ings, depending on how it is used. Appendix A goes into further details, but here
is a short description:

∇ is called the gradient, and when coupled with a scalar field (e.g. with
a pressure field: ∇p) results in a vector field.

∇· in the Incompressibility Equation 1.3 is called the divergence and re-
sults in a scalar field when coupled with a vector field (e.g. with a
velocity field ∇ · u). The resulting scalar field is a measurement how
much a vector quantity is either entering or exiting a given region of the
fluid. The incompressibility equation states that the sum of all changes
of fluid in the entire body must equal zero.

∇ ·∇ is called the Laplacian, and it refers to taking the divergence of a
gradient. If the right hand side of the Laplacian is non-zero, e.g. ∇ ·
∇x = b, it is called a Poisson equation.

1.2.1 Momentum Equation in Cartesian Coordinates

Since u is a vector, the momentum equation is in reality multiple equations. This
is the momentum equation written explicitly in Cartesian Coordinates in three
dimensions:

∂u

∂t
= −

(
u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
− 1

ρ

∂p

∂x
+ ν

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
+ fx

∂v

∂t
= −

(
u
∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
− 1

ρ

∂p

∂y
+ ν

(
∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2

)
+ fy

∂w

∂t
= −

(
u
∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
− 1

ρ

∂p

∂z
+ ν

(
∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2

)
+ fz,

where fx, fy and fz is the external force in the direction, specified by the
implementation. The equation of mass, Equation 1.2 becomes:

∂ρ

∂t
+
∂ρ

∂x
u+

∂ρ

∂y
v +

∂ρ

∂z
w = 0,

but since the density is homogeneous, ρ does not change across the body of

4



1.2 Navier-Stokes Equations

fluid and it becomes:

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0

1.2.2 Explaining the equations

To solve the Navier-Stokes equations, they are first split into separate parts.

1.2.2.1 Velocity of a location
∂u

∂t

Starting from the left, the
∂u

∂t
part describes how the fluid velocity at a fixed

location changes over time, see Figure 1.1.

(a) (b) (c)

Figure 1.1: Velocity at a fixed location in a grid changing over time.

1.2.2.2 Advection (u ·∇)u

The first part on the right side, (u ·∇)u, is often called Transport, Convective
Acceleration, Self-Advection or simply Advection in the literature. It is effectively
a (velocity) vector (flow) field of the fluid motion, expressing how the velocity
of a body of fluid changes as it moves around. In other words; it expresses how
a quantity (which can be velocity, density or even solids) accelerates both as it
follows the velocity field and as a result of the velocity field itself changing in
time, and it is this that makes the motion of fluids quadratic instead of linear.

1.2.2.3 Pressure
1

ρ
∇p

Pressure is force per unit area. When applied to a point in space, this part of the
Navier-Stokes equations measures the net difference in pressure force, and any

5



1. INTRODUCTION AND PREVIOUS WORK

difference in pressure leads to acceleration, e.g. if a position in a fluid has low
pressure compared to a neighbor position, then the fluid will accelerate from the
high-pressure position toward the low-pressure position. The pressure is closely
related to the equation for conservation of mass, described below.

1.2.2.4 Viscosity/Diffusion ν∇ ·∇u

Viscosity, or diffusion, is a term that defines how much a given fluid will resist
deformation. E.g. water has low viscosity, so if a solid is dropped into a rel-
atively small body water, it will quickly affect the rest of the fluid. Syrup, on
the other hand, has a high viscosity and will to a much larger degree resist the
deformation caused by a dropping solid. In relation to a grid-based fluid simu-
lation, viscosity defines how a quantity (e.g. velocity) in a cell interacts with its
neighbors. The viscous fluid is achieved by applying diffusion to the velocity field.

1.2.2.5 External Force ρg or f

Often called Other Forces or Body Force and denoted f . Typically, only gravity
is contained within this variable, however, it can also contain electromagnetic-
and/or centrifugal force.

1.2.3 Conservation of Mass ∇ · u = 0

For every time step, the Navier-Stokes equations are solved for the velocity field
for a body of fluid: Advection, diffusion and force application. The result of
these computations is a velocity field with non-zero divergence. Since Equa-
tion 1.3 demands a divergence-free velocity field, further calculations have to be
done. The equation for conservation of mass is also called Pressure Projection,
or simply Projection in literature, and is a term for the calculations that ensure
incompressibility.

1.3 Boundary Conditions

Fluids interact with their containers and other fluids, stream around objects
embedded in the fluids and carry them along if the density of the solid is less
than that of the fluid. These interactions are called the boundary conditions.

Each equation has its own boundary conditions: The momentum equations
have one set of boundary conditions, the pressure another, density yet another
and so on.

6



1.4 Fluid Simulation Techniques

Figure 1.2: Eulerian Fixed Grid of size M-1×N-1. The distance between two grids
is ∆x and ∆y, respectively. Usually ∆x = ∆y.

Free Surfaces: Free Surfaces is a term used for the part of the fluid boundary
that is not in touch with walls, other solids or other fluids (air is typically ignored).

1.4 Fluid Simulation Techniques

There are a number of different techniques generally used to make real fluid sim-
ulations including Eulerian (grid-based) and Lagrangian (particle-based). Other
techniques that focus on looking realistic, rather than being realistic, include pro-
cedural simulation and height field techniques. Each have their pros and cons and
will be described in this section.

1.4.1 Grid Based - Eulerian

A fluid simulation based on the Eulerian view tracks the fluid properties at fixed
(discrete) points in space, as seen in Figure 1.2. These properties are given by
either scalar or vector fields, which are often defined in the center of individual
grid cells. Grid based simulations come in various forms: Fixed Grid, Adaptable
Grid and Tall Cell Grid among others.

The simplest form is the uniform fixed grid, depicted in Figure 1.3a: Herein
a space is divided into grid cells, typically of equal size. This version has the
advantage that it allows fast lookups, since the grid can be loaded into memory
when the simulation is initiated [9]. The disadvantage is that it is also wasteful,

7



1. INTRODUCTION AND PREVIOUS WORK

since it is probable that a large number of cells will never be used. Also, unless
the size of the cells are very small, some of the finer details will be lost in regions
of great activity.

An adaptable grid, as the name implies, has a non-uniform grid, where regions
with little activity will be given large cells, whereas regions with much activity
(e.g. a region with vorticity), will be given smaller cells, as depicted in Figure
1.3b. While this version has obvious advantages over the uniform fixed grid, it is
complicated to build a stable grid with fast lookups.

The last version of grid that will be described here is the Tall Cell grid,
introduced by (Irving et al., 2006) in 2006 [10] and used again by (Chantanex
and Müller, 2011) [11] in 2011. Similar to the adaptable grid, this version will
focus processing power on regions with much activity, which is typically near the
surface and near boundaries. The difference being that all cells beneath a certain
distance to the surface will be converted into one tall cell in each column, as
depicted in Figure 1.3c. While this version suffers from the same disadvantages
as the adaptable grid, the great advantage is that processing power is focused
only on the region near the surface while everything else is ignored.

1.4.1.1 Basic Grid Structure

A relatively heavy part, performance wise, of Eulerian fluid simulations is to
ensure that the incompressibility of the fluid, Equation 1.3, is maintained. A way
of doing this is to estimate how much the amount of fluid in a cell is changing, and
in which direction it is flowing. To make this easier, (Harlow and Welch, 1965) [12]
introduced the Marker-and-Cell (MAC) grid structure in 1965. It is a so-called
“Staggered” grid [2], meaning that different variables are stored different places.
In 2D, the scalar quantities, such as density, are stored at the center of the grid,
depicted as pi,j on Figure 1.4, whereas vector quantities, such as velocities, are
stored at the center of the vertical and horizontal cell edges, depicted as ui±1/2,j

and vi,j±1/2, respectively. Similarly in 3D, the scalar quantities are stored at the
center of the cell, while vector quantities are stored at the center of the faces.

1.4.2 Particle Based - Lagrangian

Instead of looking for change at fixed points in space, a Lagrangian based fluid

simulation follows particles, each of which has a position x =
[
xx xy xz

]T
and a

velocity u, see Figure 1.5. Many Lagrangian based simulations use two versions
of particle systems; one to simulate spray and foam; and one to simulate fluid.
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(a) (b)

(c)

Figure 1.3: Eulerian Grids seen from the side, where the black lines indicate regions
with much activity. (a) is a fixed grid, where every grid cell has the same size,
(b) is an adaptable grid where the amount of grid cells increase in regions of
great activity and decrease in regions without, (c) is a tall cell grid which is
similar to the adaptable grid, only it converts every fluid grid cell beneath
x grid cells to one tall cell, thereby focusing the processing power onto the
surface.

Particles are generated before the program begins and/or by one/multiple
emitters. These emitters can have any shape, but the simplest ones are point
emitters and rectangle emitters. An emitter will typically generate particles with
a number of parameters, including velocity, mass, lifetime etc. The emitter itself

9
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Figure 1.4: Eulerian Grid Structures. The image shows is a 2D MAC grid struc-
ture, where the scalar field values are stored in the center of the grid cells,
and vector quantities are stored at the center of the edges.

also has a number of parameters, including spawn rate, spawn impulse force etc.

1.4.2.1 Non-Interacting Particles

Also called a Simple Particle System. This is the most common kind of particle
system and, as the name implies, the system does not calculate collisions for the
particles. Since it is not essential that foam and spray particles interact, they are
usually simulated using this kind of particle system.

Figure 1.5: Lagrangian Particle Method. Consists of a number of particles which,
unlike the grid cells in an Eulerian based simulation, moves around.

10



1.4 Fluid Simulation Techniques

1.4.2.2 Interacting Particles

In fluid simulation, a change in one part of the fluid will affect part of, if not the
entire, body of fluid. It is therefore essential that the particles can interact.

However, having every particle in the simulation calculate its distance to ev-
ery other particle gives a quadratic complexity (O(N2)) for N particles. The
complexity can be decreased if each particle only takes nearby particles into ac-
count; each particle only calculate its distance to particles within a distance d.
In optimal situations, this will reduce the expected complexity to linear time,
(O(N)).

1.4.2.3 Smoothed Particle Hydrodynamics

The Smoothed Particle Hydrodynamics (SPH) method was invented within the
field of computational astrophysics by (Lucy, 1977) [13] and (Gingold and Mon-
aghan, 1977) [14] but has been used extensively in the field of fluid simulation.
SPH is basically an interpolation method, used to approximate fluid properties at
any position from particles in space. In other words, SPH is used to approximate
continuous fluid properties by interpolating values between discrete samples. The
process of interpolating values between particles is called smoothing [15], and it
is done using so-called smoothing kernels[2].

1.4.3 Procedural Water

Procedural water is a term often used for fluid simulations wherein only the visual
effect is important; that the fluid seems fluid-like. This kind of simulation is rarely
based on any kind of physics, instead it is up to the individual programmer to
find a creative method; an often used method is using superimposed sine waves
with varying amplitudes and directions, sometimes with a dampening factor to
make the waves flatten after a while. Among others, (Mark Flinch, 2004) [16]
used superimposed sine waves to simulate water surface in lakes in the game Uru:
Ages Beyond Myst [5].

Since this kind of simulation is not based on physics, it is typically very cheap
and is therefore often used to simulate larger basins of fluid, such as lakes and
oceans.

1.4.4 Height Field

A height field based simulation typically consists of a number of tall cubes with
equal width and breadth, formed in a square, see Figure 1.6. It is relatively simple
to set up, and is often used to implement physical aspects of fluid simulation;
waves, solid-to-fluid and fluid-to-solid coupling etc. Another advantage of a height
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Figure 1.6: A height field consists of a number of cubes. The position is set at the
top of each cube. Velocity is restricted to the y-axis and breaking waves are
therefore impossible.

field is that it works well together with a texture implementation on a shader.
The surface of the fluid is typically represented via a:

• continuous 2D function u(x, y)

• discrete 2D array u[i,j].

This kind of simulation has one major disadvantage, however: Since waves
are simulated by controlling the vertical velocity of each cube, it is not possible
to simulate breaking waves using a height field alone. Therefore, a height field is
often coupled with a particle system which is activated where foam, sprays and
splashes should form on a breaking wave.

As mentioned in Section 1.4.1, a height field has previously been used in col-
laboration with an Eulerian based simulation, where the height field performed
the calculations of the lower part of the fluid.

1.5 Foam and Spray

For the generation of spray and foam from breaking waves, (Fournier and Reeves,
1986) defined a rule, saying that when the difference between particle speed and
surface speed projected in the direction of the normal to the surface exceeds a
certain threshold (depending on the curvature of the surface), spray is generated.
Otherwise, foam is generated. When generated, spray is sent in the direction of
the surface normal, whereas foam is sent sliding along the wave surface [17, 18].
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1.6 Solid Interaction

1.6 Solid Interaction

When describing the interaction between a solid and a fluid, three general inter-
action types, often called coupling, are used [19]; one-way solid-to-fluid coupling,
one-way fluid-to-solid coupling and finally two-way coupling.

Attributes of a solid affecting the interaction with a fluid:

• velocity and direction with which it hits the water.

• density of the solid.

• projectioned area of the solid (the part which hits the water).

• the form of the part which hits the water - convex, concave, sharp, flat etc.

• volume of the solid.

• other solids connected with the solid, e.g. a rag doll.

Attributes of the fluid affecting the interaction with the solid

• velocity of the part of the fluid the solid hits.

• density of the fluid.

• viscosity of the fluid.

One-way Coupling - Solid-to-Fluid interaction
Solids cause deformation in the fluid, e.g. a ball hits the fluid and creates splashes
and displacement of fluid. However, the fluid has no influence on the solid,
meaning that the solid will continue its motion unhindered.

One-way Coupling - Fluid-to-Solid interaction
This is the opposite situation, where the fluid affects the motion of the solid, but
the solid has no influence on the fluid, e.g. when a ball hits a fluid, the ball will
act as if it hit a fluid, meaning that it will float toward the surface if its density is
less than that of the fluid. The fluid itself will remain unchanged, meaning that
the motion of the fluid will continue unaffected by the solid.

Two-way Coupling
Solids cause deformation in the fluid which in turn affects the motion of the solids.
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2
Method

There are two ways of constructing a software
design. One way is to make it so simple that
there are obviously no deficiencies. And the
other way is to make it so complicated that
there are no obvious deficiencies.

Sir Charles Antony Richard Hoare

This chapter will describe the formulas that will be used to create a fluid simu-
lation based on an Eulerian grid combined with a height field. Equations in this
section assume a 2D grid.

2.1 Requirements

The frame rate, measured in Frames Per Second (FPS), is a term often used to
determine how smooth a game is running on a computer. More precisely, if the
time to render an image is given in milliseconds, the frame rate is then simply the
sum of images, rendered in a full second. For modern computer games the target
frame rate is often 30-60 FPS [20]. A frame rate of 30-60 FPS means between
331

3
and 162

3
milliseconds to render each frame.

Given that the majority of the processing power is needed elsewhere to make
the game running, this leaves only little processing power for the simulation of
fluids. Hence, the following requirements for the simulation must be met;

• It must appear realistic.

• It must be interactive.
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2. METHOD

• It must consume little memory.

• It must be cheap to compute.

• It must be stable.

One very specific goal that must be met is that the simulation must be able
to run at minimum 60FPS.

2.2 Steps of fluid simulation

This section explains in detail the algorithms which can be used to create a grid-
based fluid simulation. A single simulation iteration for one time step is given by
1) force application, 2) advection, 3) diffusion and finally 4) projection. Each of
which will be described in this chapter.

2.2.1 Finite Difference Form

The finite difference form for the gradient, divergence and Laplacian in two di-
mensions are:

∇q =

[
∂q

∂x

∂q

∂y

]T
=
qi+1,j − qi−1,j

2∆x
,
qi,j+1 − qi,j−1

2∆y

=
qi+1,j − qi−1,j

2∆x
,
qi,j+1 − qi,j−1

2∆x
(2.1)

∇ · u =
∂u

∂x
+
∂v

∂y
=
ui+1,j − ui−1,j

2∆x
+
vi,j+1 − vi,j−1

2∆y

=
ui+1,j − ui−1,j + vi,j+1 − vi,j−1

2∆x
(2.2)

∇ ·∇q =
∂2q

∂x2
+
∂2q

∂y2
=
qi+1,j − 2qi,j + qi−1,j

(∆x)2
+
qi,j+1 − 2qi,j + qi,j−1

(∆y)2

=
qi+1,j + qi−1,j + qi,j+1 + qi,j−1 − 4qi,j

(∆x)2
(2.3)

where i and j refer to the positions of individual grids, and ∆x and ∆y are
respectively the width and breadth of individual grids along the x-axis and y-axis.
Note that in fluid dynamics, it is often the case that ∆x = ∆y, in which case the
finite difference forms simplify to Equations 2.1, 2.2 and 2.3. See Appendix A for
further details.
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2.2 Steps of fluid simulation

2.2.2 Advection

In a particle system, the way a particle with position x is moved forward in a
time step ∆t is often simply by moving it forward using a velocity vector, or, in
this case, a velocity field. This is done using the equation known as the forward
Euler, also called Explicit Euler or simply Euler, method:

x(t+ ∆t) = x(t) + u(t)∆t,

where x(t) is the current position, u(t)∆t is the velocity vector in a time step
and x(t+ ∆t) is the new position after a time step. A more general formula is:

q(x + u∆t, t+ ∆t) = q(x(t), t),

where q can be either a vector (e.g. velocity) or scalar quantity (e.g. den-
sity, temperature). The forward Euler is unstable, as a simulation using this
method for advection will, sooner or later, blow up - especially in cases where the
magnitude of u(t)∆t is larger than a grid cell size, ∆x [21].

To improve stability, what is often used instead is the semi-Lagrangian method,
which does two things: First it performs a backward Euler, also known as implicit
Euler, method; where the forward Euler method moves a quantity forward in
time, the backward Euler method does the opposite and traces a quantity back
in time to its previous position to the quantity it had back then:

q(x, t+ ∆t) = q(x(t)− u(x, t)∆t, t) (2.4)

While this ensures stability, in that a quantity will move with the velocity
field but never actually change, this provides another problem for grid based
simulations; on a discrete grid it is not certain that the position a quantity pre-
viously occupied is in center of a grid cell. It is in fact improbable that this
should ever be the case. This problem is solved using a process known as bilinear
interpolation (trilinear in three dimensions) [22], which is the second part of the
semi-Lagrangian method, see Figure 2.1.

2.2.3 Viscosity/Diffusion

Similarly to the solution to the advection technique, wherein the semi-Lagrangian
method was chosen over the simpler and more obvious forward Euler method, the
solution to the diffusion has an explicit solution given by equation:

u(x, t+ ∆t) = u(x, t) + ν∇ ·∇u(x, t)

The above equation, however, is known to become unstable for large values
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Figure 2.1: Bilinear interpolation on a discrete grid; The new quantity in the new
position is calculated by tracing it back in time along the velocity vector to
its old position x. Since x is outside the center of the grid, its old value is
calculated from the surrounding four grid positions. Once done, the value of
the old quantity is passed on to the new quantity. Note that dT is ∆t.

∆t and ν. An implicit method was given by (Stam, 1999) [23]:

(I− ν∆t∇ ·∇)u(x, t+ ∆t) = u(x, t), (2.5)

which is a Poisson equation for velocity. I is the identity matrix.

2.2.4 Pressure Projection

When pressure is applied to fluid, the fluid can either compress or expand. Math-
ematically, this is given by Equation 1.2, which states that an influx of fluid
changes the amount of fluid at that location. The following method is based on
the Stable Fluids technique described in (Stam, 1999) [23] as well as the Fast
Fluid Dynamics Simulation on the GPU article by (Harris, 2004) [1].

2.2.4.1 Helmholtz-Hodge Decomposition

A sum of vector fields can be decomposed into a sum of vector fields. By defining
a region D in a plane on which the fluid is defined, with a smooth boundary
∂D, with normal direction n, the Helmholtz-Hodge Decomposition Theorem by
(Chorin and Marsden) [24] states that a vector field w on D can be decomposed
into the form:

w = u + ∇p, (2.6)
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2.2 Steps of fluid simulation

where u is a divergence-free vector field (∇ · u = 0) and p is a pressure field.

For every time step the Navier-Stokes equations are solved for the velocity
field for a body of fluid: Advection, diffusion and force application. The result of
these computations is a velocity field with non-zero divergence. Since Equation
1.3 demands a divergence-free velocity field, further calculations have to be done.
The Helmholtz Decomposition Theorem states that the divergent velocity field
can be made divergence-free by subtracting the gradient of the resulting pressure
field:

u = w −∇p

To solve for a scalar field the divergence operator is applied to both sides of
Equation 2.6, resulting in:

∇ ·w = ∇ · (u + ∇p)

= ∇ · u + ∇ ·∇p,

but since Equation 1.3 states that ∇ · u = 0, it simplifies to:

∇ ·∇p = ∇ ·w, (2.7)

which is a Poisson equation for the pressure of the fluid. For further details,
read (Harris, 2004) [1].

2.2.5 Jacobi Iteration

The Poisson-pressure equation, Equation 2.7, and the viscous diffusion equation,
Equation 2.5, can be solved using the Poisson method [1], which is given by the
equation:

Ax = b,

where A is a matrix with non-zero diagonal elements [25] given implicitly by
the Laplacian operator, ∇ ·∇, b is a vector of constants and x is a vector or
scalar quantity, e.g. the velocity field u or pressure field p. The Poisson method
can be solved using the Jacobi equation that is an iterative method, which starts
with an initial guess, and for every iteration the guess is improved. The Jacobi
equation can be used to solve both the Poisson-pressure and the viscous diffusion
equation and is given by the equation:
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xk+1
i,j =

xki−1,j + xki+1,j + xki,j−1 + xki,j+1 + αbi,j

β,
(2.8)

where k denotes the present iteration number, α, β, x and b vary, depending
on whether it is a Poisson-pressure or viscous diffusion equation that is to be
solved.

Viscous diffusion equation: α =
(∆x)2

ν∆t
, β = 4 + α, x = u and b = u.

Poisson-pressure equation: α = −(∆x)2, β = 4, x = p and b = ∇ ·w.

2.3 Boundary Conditions

No-slip is the most simple kind of boundary condition, relevant for viscous fluids.
It states that the velocity of a quantity goes to zero at the boundaries for a
stationary boundary:

u = 0,

and

u = usolid,

for a moving boundary [2].

2.4 Fluid Solid Coupling

There are three major forces a fluid can induce to a solid body: buoyancy, drag
and lift. Buoyancy is given by the equation:

fbuoyancy = −gρVsub, (2.9)

where g is the gravitational vector, ρ is the density of the fluid and Vsub is the
submerged volume of the object.

While it is useful to be able to simulate the coupling between the fluid and
primitive objects (spheres, cubes etc.), it would be more useful if the simulation
could handle any type of object. One solution is to define fluid coupling for prim-
itive objects and approximate a complex object with one or multiple of these
primitive objects, e.g. approximate a boat as a number of cubes. A different
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solution was presented by (Yuksel, House and Keyser, 2007) [26], who performed
the drag and lift calculations, given by Equation 2.11 and 2.12, on the object
faces in contact with a fluid.

The calculation of the buoyancy, Equation 2.9, requires the submerged volume
of an object, which can be approximated as suggested by (Chentanez and Müller,
2010) [27], by transforming the object into a number of prisms by a) calculating
the projected area of each downward-facing face of the object in the xz-plane, b)
multiplying the area with the distance to the surface in the y-plane for each face,
and finally c) summing up the resulting volumes:

Vsub =


0 if airborne∑
AprojFace(η − py) if ny < 0

Vtotal if fully submerged

(2.10)

where AprojFace is the projected area of a face, p =
[
px py pz

]T
is the position of

the centroid of a face, η is the height of the surface above the face, n =
[
nx ny nz

]T
is the face normal and ny is the face normal along the y-axis, and Vtotal is the
pre-calculated volume of the object. Note that this equation will give errors with
some concave objects. The equations for drag and lift are given by:

fdrag = −1

2
ρCDA|urel|urel (2.11)

f lift = −1

2
ρCLA|urel|

(
urel ×

n× urel

|n× urel|

)
, (2.12)

where A is the effective area of the face, CD and CL are respectively the
drag and lift coefficients, which depend on the fluid as well as the shape of the
solid. urel is the velocity of the solid relative to the velocity of the fluid. That is:
urel = usolid − ufluid. A is given by:

A =

(
n · urel

|urel|
α + (1− α)

)
Aface, (2.13)

where α is a control-parameter given by 0 ≤ α ≤ 1. Once calculated, the
buoyancy is applied to the center of the submerged volume, and the drag and lift
forces are applied to the center of each face.
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2.5 Surface Rendering

This section describes the visual part of the simulation, the goal being to make
the simulation seem as realistic as possible. This requires a number of things
that will be described separately. All fluid calculations are performed on multiple
arrays and at the end of ever iteration. The new values represent the new heights
of all cubes in the height map, and these values are applied to an 8bit texture,
which is then transferred to the shader which handles the fluid surface. The
shader is attached to a material which in turn is attached to a plane.

2.5.1 Vertex Displacement

The shader will manipulate the individual pixels and displace them along the
y-axis.

2.5.2 Reflection

When looking at the surface of e.g. water, the surface will reflect either the sky
or other objects. In computer graphics this is given by the formula:

R = I− 2N(N · I),

which dictates that the angle between the camera ray, I, and the surface
normal, N, is equal to the angle between the surface normal and the reflected
vector, R. This is also depicted in Figure 2.2a.

2.5.3 Refraction/Distortion

Refraction is what happens when a ray of light moves through translucent mate-
rials with different densities (e.g. water and glass). A popular explanation is that
the light travels slower in materials with large densities and visa versa, and so the
direction of the ray is changed. E.g. light travels fast in a vacuum, slower in air
and much slower in diamond. In computer graphics this is given by a refractive
index which varies from material to material; air = 1.0003, water = 1.3333, honey
= 1.484-1.504, diamond = 2.417. The equation for refraction is given by Snell’s
Law [28] in the following equation:

η1 sin(θI) = η1 sin(θT ),

where η1 and η2 are the refractive indices for two materials, θI is the angle
between the camera ray I and the surface normal N, and θT is the angle between
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(a) (b)

Figure 2.2: (a) shows how reflection is calculated; the reflected ray R is given by the
incoming camera ray I and its angle to the surface normal N. The reflective
surface hit by the camera ray is given the color hit by the reflected ray.
(b) If a ray is shot through the boundary between materials with different
densities, the incoming camera ray I will be refracted.

the surface normal below the surface −N and the refracted vector T, also called
transmitted, as depicted in Figure 2.2b.

2.5.4 The Fresnel Effect

The Fresnel effect is a term used to describe the situation wherein a ray of light
moves through translucent materials with different densities, and part of the ray
is reflected while the remaining is refracted. The Fresnel equation dictates that
the larger the angle between the surface normal, N, and the camera ray, I, the
more will be reflected and the less will be refracted. The opposite goes as well, in
that the lower the angel, the less will be reflected and the more will be refracted.
Equation 2.15 by (Fernando, 2003) [29] is a Fresnel equation focusing on the
visual effect rather than the mathematical precision. It depends on a reflection
coefficient RCoeff which is given by equation 2.14:

RCoeff = max(0,min(1, bias+ scale(1 + I ·N)power)) (2.14)

CFinal = RCoeffCReflected + (1−RCoeff)CRefracted, (2.15)

where C is the color, and bias, scale, and power are control parameters used
to adjust the final rendering.
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2.5.5 Chromatic Dispersion

If a single ray of light is pointed at a prism, as in Figure 2.3b, it will result in
a rainbow of colors. The reason behind this is that wavelengths (colors) refract
at different angles, e.g. as seen in Figure 2.3a red refracts more than blue. In
computer graphics the simple solution to this problem is to refract the red, green
and blue color-channel individually using their material- and color-depending
refractive indices. For water, the color-depending refractive indices are:

• Red: 0.700 µm = refractive index of 1.3300

• green: 0.520 µm = refractive index of 1.3342

• Blue: 0.480 µm = refractive index of 1.3358

(a) (b)

Figure 2.3: (a) Chromatic Dispersion: Colors refract differently, e.g. red refracts
more than green, which refract more than blue. (b) http://en.wikipedia.

org/wiki/File:Prism_rainbow_schema.png.
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3
Implementation

If debugging is the process of removing bugs,
then programming must be the process of putting
them in.

Edsger W. Dijkstra

The basics of the fluid simulation is based on the equations from the previous
chapter, as well as the work of (Stam, 2003) [30]. The total amount of code is
extensive, and so only a little part will be described in this chapter.

3.1 Memory Management

The majority of the simulation is written in C# which by default passes parame-
ters by value, meaning essentially that when passing parameters to a method,
copies of parameters are passed. While C# is optimized to handle pass-by-
value parameters, copying large arrays every iteration would put pressure on the
garbage collector. To avoid this, all arrays are passed by reference using the C#
keyword ref , ensuring that the same arrays are used throughout the simulation.

3.2 Fluid Simulation

This section describes the various parts of the implementation of the fluid simu-
lation.
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3.2.1 Setup

Unity has two “startup” methods, Awake(), which is called first, and Start(),
both of which are called before the main program is started. All variables are
initialized in the Awake() method in the simulation script since other scripts are
dependent on the variables initialized here. Other scripts then pass information
back and forth in their Start() method. Most of the calculations that only has
to be performed once are done in the Awake() and Start() methods, to increase
performance. This is also where all arrays are initialized along with grid, texture
and height field setup. Listing 3.1 show a few of the variables initialized in the
Awake() method. Note that scalar fields as well as vector fields are represented
using floating point arrays; as seen in line 1-2 a vector field consist of two floating
point arrays.

1 private f loat [ , ] u ; // Flu id ( vec tor ) v e l o c i t y ( f low ) f i e l d a long the x−ax i s
2 private f loat [ , ] v ; // Flu id ( vec tor ) v e l o c i t y ( f low ) f i e l d a long the y−ax i s
3

.

.

.
4 //Constant Jacobi va lues for alpha and beta
5 private f loat viscAlpha , viscBeta , v i scRec iBeta ;
6 private f loat projAlpha , projBeta , projRec iBeta ;
7

.

.

.
8 private void Awake ( ) {
9

.

.

.
10 u = new f loat [ xLengthOfHeightField , yWidthOfHeightField ] ;
11 v = new f loat [ xLengthOfHeightField , yWidthOfHeightField ] ;
12

.

.

.
13 viscAlpha = ( ( deltaX∗deltaX )/( deltaT∗ k inemat i cV i s co s i ty ) ) ;
14 v i scBeta = 4 .0 f + viscAlpha ;
15 v i scRec iBeta = 1 .0 f / v i scBeta ; //Reciproca l Beta
16
17 projAlpha = ( deltaX∗deltaX ) ∗ (−1 f ) ;
18 projBeta = 4 .0 f ;
19 projRec iBeta = 1 .0 f / projBeta ; //Reciproca l Beta
20

.

.

.

Listing 3.1: Setup of the simulation program. Here all variables are initialized and
precomputed if possible.

3.2.2 Main Loop

The main loop of the program is given by Listing 3.2. FixedUpdate() is a
Unity3D-specific method, which run every 0.02 seconds. Besides performing the
Navier-Stokes step, this is also where data from solids, user input etc. is added.
Note that the arrays xVar and yVar are temporary arrays used to hold old values
during computations and are therefore swapped with the velocity field twice every
iteration. Once all calculations are done, the results are stored in a texture and
passed on to the shader.
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1 private void FixedUpdate ( ) {
2

.

.

.
3 //FULL NAVIER−STOKES STEP
4 //Add Force
5 AddForce ( N, ref u , ref xVar ) ;
6 AddForce ( N, ref v , ref yVar ) ;
7 U t i l s . Swap<f loat >(ref xVar , ref u ) ;
8 U t i l s . Swap<f loat >(ref yVar , ref v ) ;
9 //Viscous Di f fus ion

10 Jacobi ( N, 1 , ref u , ref u , viscAlpha , v iscReciBeta , v i s c I t e r a t i o n s ) ;
11 Jacobi ( N, 2 , ref v , ref v , viscAlpha , v iscReciBeta , v i s c I t e r a t i o n s ) ;
12 U t i l s . Swap<f loat >(ref xVar , ref u ) ;
13 U t i l s . Swap<f loat >(ref yVar , ref v ) ;
14 //Advect
15 Advect ( N, 1 , ref u , ref xVar , ref xVar , ref yVar , ref gridPos , dX, dT ) ;
16 Advect ( N, 2 , ref v , ref yVar , ref xVar , ref yVar , ref gridPos , dX, dT ) ;
17 //Projec t
18 Pro j ec t ( N, ref u , ref v , ref xVar , ref yVar ,
19 projAlpha , projReciBeta , p r o j I t e r a t i o n s ) ;
20

.

.

.
21 }

Listing 3.2: This is the main loop running every 0.02 seconds. The main part
happening here is the computation of the Navier-Stokes equations.

3.2.3 Force

Force is applied in a separate script attached to the active camera object. The
user can add force by click-and-drag on a separate plane standing beside the
fluid in the scene. The plane has a texture attached and when the user clicks
the mouse, force is added to the grid cell which correspond to the pixel in the
texture. If the user click-and-drags the mouse over the plane, force is added in
the direction of the vector created with this drag. Force is saved in the temporary
arrays xVar and yVar in the simulation program and added to the program in
line 5-6 in Listing 3.3.

1 private void AddForce ( int N , ref f loat [ , ] x , ref f loat [ , ] f ) {
2 for ( int i = 1 ; i <= N ; i++ ) {
3 for ( int j = 1 ; j <= N ; j++ ) {
4 x [ i , j ] += f [ i , j ] ;
5 }
6 }
7 }

Listing 3.3: This is where the user input is added to the program.

3.2.4 Advection

The backward Euler, which is the part of advection that traces a fluid quantity
back in time, is given by Equation 2.4, repeated here for convenience:

q(x, t+ ∆t) = q(x(t)− u(x, t)∆t, t)

27



3. IMPLEMENTATION

The implementation of this equation is seen in line 20 in Listing 3.4. The
previous quantity is then found using bilinear interpolation in line 21-23.

1 private Vector2 velTmp , po s Imp l i c i t ;
2
3 private stat ic void Advect ( int N ,
4 int boundary ,
5 ref f loat [ , ] d ,
6 ref f loat [ , ] d0 ,
7 ref f loat [ , ] u ,
8 ref f loat [ , ] v ,
9 ref f loat [ , ] g r i dPo s i t i o n s ,

10 f loat dX ,
11 f loat dT)
12 {
13 //Used for changing between po s i t i on s and indexes of g r id po in t s
14 f loat posToGrid = 1 .0 f / dX ;
15
16 for ( int i = 1 ; i <= N ; i++) {
17 for ( int j = 1 ; j <= N ; j++) {
18 velTmp . x = u [ i , j ] ;
19 velTmp . y = v [ i , j ] ;
20
21 //Fol low the v e l o c i t y f i e l d ”back in time”
22 po s Imp l i c i t = g r i dPo s i t i o n s [ i , j ] − ( dT ∗ dX ∗ velTmp ) ;
23
24 // In t e r po l a t e the va lues according to the neares t four cubes ,
25 // and g i v e the i n t e r po l a t e d va lue to the f i r s t f i r s t argument q [ x , y ]
26 Ut i l s . B i l i n e a r I n t e r p o l a t i o n ( ref d [ i , j ] ,
27 new Vector2 ( po s Imp l i c i t . x∗posToGrid ,
28 po s Imp l i c i t . y∗posToGrid ) ,
29 ref d0 ) ;
30 }
31 }
32 }

Listing 3.4: Advection.

3.2.5 Jacobi

The Jacobi iteration given by Equation 2.8, repeated here for conveniency:

xk+1
i,j =

xki−1,j + xki+1,j + xki,j−1 + xki,j+1 + αbi,j

β,

The implementation of this equation is seen in line 14-15 in Listing 3.5.

3.2.6 Viscous Diffusion

The viscous diffusion a Jacobi iteration implemented in Listing 3.5 with constant
α and β values given by Listing 3.1, and both x and b is the velocity field. Notice
that the reciprocal of β is used and precomputed, since this should give a minor
increase in performance as opposed to dividing with β.
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3.3 Fluid Coupling

1 private stat ic void Jacobi ( int N ,
2 int boundary ,
3 ref f loat [ , ] x ,
4 ref f loat [ , ] b ,
5 f loat alpha ,
6 f loat r e c i p r o ca lBe ta ,
7 int j a c o b i I t e r a t i o n s )
8 {
9 for ( int k = 0 ; k < j a c o b i I t e r a t i o n s ; k++) {

10 for ( int i = 1 ; i <= N ; i++) {
11 for ( int j = 1 ; j <= N ; j++) {
12 //Mul t ip ly with r e c i p r o ca l Beta
13 x [ i , j ] = ( x [ i −1, j ] + x [ i +1, j ] + x [ i , j −1] + x [ i , j +1] +
14 a lpha ∗ b [ i , j ] ) ∗ r e c i p r o c a lBe t a ;
15 }
16 }
17 }
18 }

Listing 3.5: Jacobi Method.

3.2.7 Project

As described in Section 2.2.4, the projection step is what ensures mass conser-
vation in the program. It is implemented in Listing 3.6; First the divergence is
calculated using Equation 2.2 and implemented in line 16. Following this the
Poisson-pressure equation is solved using the Jacobi() method again, this time
with the values for α and β given in Listing 3.1, x is the pressure, initially set
to zero in line 17, and b is the divergence from before. Finally in line 28-29 the
gradient is calculated using Equation 2.1 and subtracted from the pressure field.

3.3 Fluid Coupling

This section describes the implementation of the solid-to-fluid and fluid-to-solid
coupling. Due to time limitations only interaction with cubes and spheres are
possible at the moment.

The buoyancy for a sphere is given by Equation 2.9 and calculated in Listing
3.7.

fbuoyancy = −gρVsub

The drag of the object is given by Equation 2.11 and calculated in Listing 3.8.

fdrag = −1

2
ρCDA|urel|urel

Once calculated buoyancy is applied to the center of the submerged volume
and the drag is added to the center of the object.
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3. IMPLEMENTATION

1 private stat ic void Pro j ec t ( int N ,
2 ref f loat [ , ] u ,
3 ref f loat [ , ] v ,
4 ref f loat [ , ] p ,
5 ref f loat [ , ] d iv ,
6 int j a c o b i I t e r a t i o n s ,
7 f loat projAlpha ,
8 f loat projRec iBeta ,
9 f loat dX ,

10 f loat dT)
11 {
12 // Instead of d i v i d i n g the grad ien t sub t rac t i on part with 2∗deltaX ,
13 // we ins t ead mu l t i p l y with (1/2)∗ d e l t a x
14 f loat hal fDeltaX = 0.5 f ∗ dX ;
15 f loat h = 1.0 f / N ;
16
17 //Calc d ivergence
18 for ( int i = 1 ; i <= N ; i++) {
19 for ( int j = 1 ; j <= N ; j++) {
20 d iv [ i , j ] = −0.5 f ∗ h ∗ ( u [ i +1, j ] − u [ i −1, j ] + v [ i , j +1] − v [ i , j −1 ] ) ;
21 p [ i , j ] = 0 .0 f ;
22 }
23 }
24
25 //Poisson−pressure
26 Jacobi ( N , 0 , ref p , ref div , projAlpha , projRec iBeta , dT ,
27 j a c o b i I t e r a t i o n s ) ;
28
29 //Helmholtz−Hodge Decomposition − Gradient Sub trac t ion
30 for ( int i = 1 ; i <= N ; i++) {
31 for ( int j = 1 ; j <= N ; j++) {
32 u [ i , j ] −= ( p [ i +1, j ]− p [ i −1, j ] )∗ hal fDeltaX ;
33 v [ i , j ] −= ( p [ i , j+1]− p [ i , j −1])∗ hal fDeltaX ;
34 }
35 }
36 }

Listing 3.6: Project.

1 //Finds the volume V submerged of the submerged part of the sphere
2 V submerged = findV Submerged ( transform . po s i t i o n . y , r , su r f aceHe ight ) ;
3
4 //Calc buoyancy : Gravity∗dens i t y∗submergedVolume
5 F buoyancy = grav i ty ∗ d e n s i t y f l u i d ∗ V submerged ∗ new Vector3 ( 0 , 1 , 0 ) ;

Listing 3.7: Buoyancy Listing.

3.4 Rendering

This section describes the part of the visualization which handles vertices dis-
placement of the fluid surface. This is implemented in a shader, written in CG.

3.4.1 Setup

Listing 3.9 contains the initialization of the shader, and of control parameters. It
is a surface shader and the parts described in the following parts of this section
are implemented where the dotted line is in Listing 3.9.

30



3.4 Rendering

1 private void FixedUpdate ( ) {
2 F iner t i aDrag = ca l cu la teDrag (
3 0 .47 f , //drag c o e f f i c i e n t for a sphere
4 Mathf . PI∗ r∗r , //
5 new Vector3 ( f l u i d . u [ cubeI , cubeJ ] ,
6 0 ,
7 f l u i d . v [ cubeI , cubeJ ] ) ,
8 r ig idbody . v e l o c i t y ) ;
9 }

10
11 private stat ic Vector3 ca l cu la teDrag ( f loat d ragCoe f f i c i e n t ,
12 f loat area ,
13 Vector3 ve l o c i tyOfF lu id ,
14 Vector3 v e l o c i t yO fSo l i d )
15 {
16 Vector3 r e l a t i v eV e l o c i t y = ve l o c i t yO fSo l i d − ve l o c i t yO fF lu i d ;
17 return ( 0 . 5 f )∗ d r a gCo e f f i c i e n t ∗ area ∗
18 Vector3 . Magnitude ( r e l a t i v eV e l o c i t y )∗ r e l a t i v eV e l o c i t y ;
19 }

Listing 3.8: Inertia Drag Listing.

1 Shader ”Custom/HeightFieldFluid” {
2 Properties {
3 MainTex (”Base (RGB)” , 2D) = ”white” {}
4 FluidTex (”Fluid texture” , 2D) = ”white” {}
5 CubeMap (”Cube Map” , CUBE) = ”” {}
6 //1.0003 for air , 1.3333 = water , 1.5 = g l a s s / p l a s t i c , 2.417 = diamond
7 Re f r a c t i v e Index (”Refractive Index” , Float ) = 1.3333
8 AlphaOfFluid (”Alpha of Fluid” , Range ( 0 , 1 ) ) = 0 .5
9 }

10 SubShader {
11 Tags { ”Queue”=”Transparent” ”RenderType”=”Transparent” }
12
13 CGPROGRAM
14 #pragma g l s l
15 #pragma target 3.0
16 #pragma surface surf Lambert vertex : vert alpha
17
18

.

.

.
19
20 ENDCG
21 }
22 }

Listing 3.9: Vertice Displacement.

3.4.2 Vertice Displacement

The result of the fluid simulation is a height field which is transferred to an 8bit
texture, which is passed to this shader every time step. The vertices displacement
is performed in line 3-4 in Listing 3.10. Note that the tex2Dlod method is a GLSL
method, and the code is therefore translated to GLSL in line 14 in Listing 3.9.
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3. IMPLEMENTATION

1 void ver t ( inout appda ta fu l l v , out Input o ) {
2 //For p i x e l d isp lacement
3 f loat f lu idTex = tex2Dlod ( FluidTex , f l o a t 4 (v . texcoord . xy , 0 . 0 , 0 . 0 ) ) . r ;
4 v . ver tex . y = f lu idTex ;
5 }

Listing 3.10: Vertice Displacement.

32



4
Results and Discussion

Testing is an infinite process of comparing the
invisible to the ambiguous in order to avoid the
unthinkable happening to the anonymous.

James Bach

The goal of this thesis was to create a fluid simulation for the Unity3D game en-
gine version 4.1.3, capable of simulating viscosity and solid coupling at minimum
60 FPS non-compiled. To this end the Navier-Stokes equations were implemented
on a 2D grid which was used to control a height field.

4.1 Results

The tests were performed on a Macbook Pro, 2.66 GHz Intel Core 2 Duo, OS X
10.8.3. The performance of the simulation was tested against various parameters:

• Grid sizes

• Number of Jacobi steps for viscous diffusion

• Number of Jacobi steps for poisson-pressure

• Number of objects

The tests in this section will focus on performance, measured in FPS and lack
of artifacts. For every time step the simulation will run through a number of
Jacobi iterations for respectively viscosity and pressure project, so the first test
was about testing the FPS for various grid sizes against the number of Jacobi
iterations to find a reasonable trade off for the later test. The results in Table 4.1
clearly show that the simulation works at interactive rates for smaller grid sizes.
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4. RESULTS AND DISCUSSION

(a)

(b)

Figure 4.1: (a) The resulting simulation with the velocity field draw on top with
lines. (b) The height behind the simulation.

The subsequent test used 10 pressure iterations and 5 viscosity iterations, since
this combination produced reasonable results with no artifacts, while keeping
below the minimum requirement of 60 FPS for grids of 48x48 and below.

The results in Table 4.2 show FPS at various grid sizes and various numbers
of simple objects in the fluid. The results show that the simulation is capable of
running with up to 40 primitive objects (spheres and cubes) at any of the three
grid sizes while keeping within the minimum of 60 FPS. For smaller grid sizes,
the simulation can handle 100+ primitive objects.

The results prove that the product can be used to simulate small bodies of
fluid with various viscosity, user-applied force and two-way coupling with solids
of adjustable densities at interactive rates (> 60 FPS). This makes it possible to
use the simulation as part of a computer game.

To make the simulation more generally useable the size of the grid should
be upped while still working at interactive rates. Previous research has proven
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4.1 Results

Pressure and Viscosity Iterations

Grid Sizes 40 & 20 30 & 15 20 & 10 10 & 5 4 & 2 2 & 1

64x64 < 3 < 3 5 19 67 75*
48x48 9 20 44 84 110 114*
32x32 65 79 105 130 141 150*
16x16 140 149 162 178 180 184*

Table 4.1: The above table shows the FPS values for various Viscosity and Pressure
iterations for each time step. All results with the ‘*’ symbol produced distinct
artifacts.

Objects

Grid Sizes 1 10 20 40 60 80 100

48x48 80 78 75 60 54 50 45
32x32 129 128 122 102 90 71 61
16x16 178 170 148 155 170 178 190

Table 4.2: Testing the performance with various numbers of objects.

that fluid dynamics do well when implemented on the GPU; GPUs perform com-
putations slowly on every fragment simultaneously as opposed to CPUs which
perform computations fast, one at a time. Many algorithms for CFD based on
the Eulerian method are parallel in nature since the same algorithms are often
performed on each grid cell in a grid, and, as a consequence, are well suited for
GPU implementation, which is also true for the algorithms used in this thesis.
Therefore, the performance should increase with a GPU implementation, and it
should then be possible to increase the grid size. A GPU implementation could
therefore be the next step to increase performance and grid size.
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5
Conclusion

Science is built up with facts, as a house is with
stones. But a collection of facts is no more a
science than a heap of stones is a house.

Henri Poincaré

The results show that the simulation can handle smaller bodies of fluids with
various viscosity, user-applied force and two-way coupling with solids of adjustable
densities at interactive rates (> 60 FPS).

Typically, the research by others focused on realistic appearance (either at
interactive rates or offline rendering), solid coupling, viscosity or waves. There-
fore, simulations exist that are capable of producing fluids that either appear
more realistic, can handle larger grids, can perform more realistic solid coupling,
solid coupling of more complex objects, or can produce more realistic waves than
is possible with the product of this thesis. Many of these have been produced
using CUDA or other platforms capable of handling General-Purpose computing
on Graphics Processing Units (GPGPU).

What has been achieved in this thesis is the creation of a prototype, capable
of handling simple versions of the above mentioned aspects at interactive rates.
The prototype works within the Unity3D game engine on Unity3D-supported
platforms, which make the simulation capable of running as part of a computer
game.
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6
Future Work

Imagine if every Thursday your shoes exploded
if you tied them the usual way. This happens
to us all the time with computers, and nobody
thinks of complaining.

Jef Raskin

The present simulation can be extended in various ways. Here follows a de-
scription of a few that will either produce speed, precision and/or realism to the
simulation.

6.1 GPGPU Implementation

The Unity3D game engine has supported compute shaders since version 4.0, which
allows for massively parallel GPGPU algorithms. Modern CFD models often
use massively parallel algorithms and should therefore benefit from being imple-
mented into a compute shader. As of Unity3D version 4.1.3, GPGPU is built
on top of DirectX 11 and therefore only works on Windows if the GPU supports
Shader Model 5.0.

6.2 Shader Implementation

If the goal is to simulate fluids on multiple platforms, an alternative implemen-
tation into a “normal” shader is also possible, the greatest difference being that
instead of arrays, textures are used to store vector and scalar fields. Textures
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6. FUTURE WORK

typically have four color channels, each of which can store an array of scalars.
Another difference appears when algorithms are performed on texture. Normally
an algorithm would be placed within a nested loop and run on some or all of the
elements of a grid. However, when an algorithm is performed on a texture in a
shader, it runs on every pixel/fragment of the texture, and the algorithm must
take this into account.

6.3 Staggered Grid

Implementing scalar fields in the center of each cell and vector fields in the bound-
aries of each cell should give a more stable and precise simulation. This was never
fully implemented. See Section 1.4.1.1 for further details.

6.4 Fluid Coupling for Non-Simple Solids

Presently, the simulation works with primitive objects, such as spheres and cubes.
However, the equations for complex objects described in Section 2.4 were never
fully implemented. Doing so would make it possible to simulate a two-way fluid
coupling between fluids and non-primitive solids.

6.5 Additional Substances

To make the simulation more useful, it should be made possible to add substances
to the fluid, e.g. dye.

6.6 Vorticity

The occurrence of rotational flow is known as vorticity and is a well-studied
phenomenon, which could add more realism to the simulation.

6.7 Breaking Waves

The present simulation is a height field and therefore cannot handle breaking
waves. This can be implemented in various ways:

• Detect where waves should break and spawn particles for foam, spray and
splashes that follow the underlying height field. Section 1.5 provides a few
more details on the subject.
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6.8 Interactivity and Custom Tool Development

• Implement a Lagrangian or 3D Eulerian simulation on top of the height
field, similar to the tall cell grid, described in Section 1.4.1

6.8 Interactivity and Custom Tool Development

Should the user wish to control the viscosity of the fluid, the density of objects
etc., it is only possible by changing numbers in the editor. A more user-friendly
tool should be implemented to make the simulation useable for non-programmers.
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7
Epilogue

I think computer viruses should count as life ...
I think it says something about human nature
that the only form of life we have created so far
is purely destructive. We’ve created life in our
own image.

Stephen Hawking

The goal of this project was to create an interactive fluid simulation for the
Unity3D game engine, capable of handling different kinds of fluids and coupling of
solids. It was a requirement that the simulation should be stable, appear realistic
and able to run at minimum 60 FPS on consumer hardware in order to be useable
for computer games.

The first two months of this project was spent analyzing the existing work
within the field of CFD for graphics to get an overview of previously used methods
with their pros and cons regarding implementational difficulties, performance,
solid coupling and realism. The purpose of this analysis was to find the optimal
solution which could handle the above mentioned criteria, while also being easy
(and therefore fast) to implement.

A Lagrangian approach was decided against for a number of reasons; a La-
grangian approach will waste a lot of processing power on particles far below the
surface; it is far from clear how to render a smooth surface from a massive amount
of particles. Also, the Unity3D game engine uses the PhysX physics engine de-
veloped by Nvidia, which already contains a fluid simulation based on SPH. As
of Unity3D version 4.1.3, the fluid simulation is not included in Unity3D, but it
is possible that it will be included in a future version.
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7. EPILOGUE

In the end, a CPU-based simulation combining a height field with the Eulerian
approach was chosen for a number of reasons:

• It is relatively easy to implement.

• Coupling with solids can be achieved with a great deal of precision.

• Performance wise the use of a height field gives the appearance of a 3D
simulation, while in effect done on a 2D grid.

• The transfer from a 2D grid to a texture is trivial when the amount of grid
cells equal the amount of pixels in the texture.

• The algorithms used with the Eulerian approach can often be used in a
later implementation on a GPU.

The consequence of this choice is that the detail of the product is in the low
end; the product cannot handle large grids (larger than 48x48), meaning that it
cannot in its present state simulate larger basins or water, such as lakes, rivers
etc., without producing visual artifacts.
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A
Appendix Math

A.1 Vector Calculus

Throughout this thesis, the following three operators have been used; The gradient ∇, the
divergence ∇· and the Laplacian ∇ ·∇. The examples in this appendix are based on (Bridson
and Müller-Fischer, 2007) [2] and assumes that the operators are used in three dimensions,
unless otherwise stated.

A.1.1 Gradient

The gradient, denoted with the nabla operator, ∇, or sometimes grad, takes a function and
returns a vector of the spatial partial derivatives of it.

∇f(x, y, z) =

[
∂f

∂x

∂f

∂y

∂f

∂z

]T
However, the gradient is not always used together with a function, so a different, and

perhaps more useful, notation is:

∇ =

[
∂

∂x

∂

∂y

∂

∂z

]T
In this report, the gradient is often used together with a scalar. This results in a vector;

∇p =

[
∂p

∂x

∂p

∂y

∂p

∂z

]T
If the gradient is used together with a vector, it results in a matrix;

∇u = ∇
[
u v w

]T
=


∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y

∂v
∂z

∂w
∂x

∂w
∂y

∂w
∂z


The finite difference form of the gradient in two dimensions is given by:
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∇p =

[
∂p

∂x

∂p

∂y

]T
=

pi+1,j − pi−1,j
2∆x

,
pi,j+1 − pi,j−1

2∆y
,

where i and j refer to the index of individual grid cells, and ∆x and ∆y is the distance
between neighboring grid cells along the x-axis and y-axis, respectively. In fluid dynamics, it
is often the case that ∆x = ∆y, in which case the previous equation is simplified to:

∇p =
pi+1,j − pi−1,j

2∆x
,
pi,j+1 − pi,j−1

2∆x

In three dimensions:

∇p =

[
∂p

∂x

∂p

∂y

∂p

∂z

]T
=

pi+1,j,k − pi−1,j,k
2∆x

,
pi,j+1,k − pi,j−1,k

2∆y
,
pi,j,k+1 − pi,j,k−1

2∆z
,

where i, j and k refer to the index of individual grid cells, and ∆x, ∆y and ∆z is the
distance between neighboring grid cells along the x-axis, y-axis and z-axis, respectively. In
fluid dynamics, it is often the case the ∆x = ∆y = ∆z, in which case the previous equation is
simplified to:

∇p =
pi+1,j,k − pi−1,j,k

2∆x
,
pi,j+1,k − pi,j−1,k

2∆x
,
pi,j,k+1 − pi,j,k−1

2∆x

A.1.2 Divergence

The divergence, denoted with the ∇· operator, or sometimes div, can only be applied to vector
fields; the input is a vector field and the output is a scalar scalar. It measures how much the
vectors are converging or diverging at any point. In relation to fluid dynamics, it measures
how much of a quantity (which can be velocity, pressure, density etc.) is exiting and entering
a given point:

∇ · u = ∇ ·
[
u v w

]T
=

∂u

∂x
+

∂v

∂y
+

∂w

∂z

The divergence operator looks like the dot-product between a gradient and the vector field
that comes after, which is exactly what it does:

∇ · u =

(
∂

∂x
+

∂

∂y
+

∂

∂z

)
·
[
u v w

]T
=

∂

∂x
u +

∂

∂y
v +

∂

∂z
w

The finite difference form of the divergence in two dimensions is given by:
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∇ · u =
∂u

∂x
+

∂v

∂y

=
ui+1,j − ui−1,j

2∆x
+

vi,j+1 − vi,j−1
2∆y

,

where i and j refer to the index of individual grid cells, and ∆x and ∆y is the distance
between neighboring grid cells along the x-axis and y-axis, respectively. In fluid dynamics, it
is often the case that ∆x = ∆y, in which case the previous equation is simplified to:

∇ · u =
ui+1,j − ui−1,j + vi,j+1 − vi,j−1

2∆x

In three dimensions:

∇ · u =
∂u

∂x
+

∂v

∂y
+

∂w

∂z

=
ui+1,j,k − ui−1,j,k

2∆x
+

vi,j+1,k − vi,j−1,k
2∆y

+
wi,j,k+1 − wi,j,k−1

2∆z
,

where i, j and k refer to the index of individual grid cells, and ∆x, ∆y and ∆z is the
distance between neighboring grid cells along the x-axis, y-axis and z-axis, respectively. In
fluid dynamics, it is often the case the ∆x = ∆y = ∆z, in which case the previous equation is
simplified to:

∇ · u =
ui+1,j,k − ui−1,j,k + vi,j+1,k − vi,j−1,k + wi,j,k+1 − wi,j,k−1

2∆x

A.1.3 Laplacian

The Laplacian is denoted with the ∇ ·∇ operator, ∇2 or ∆. As the operator implies, the
laplacian is the dot-product of two gradients, or, more correctly, the divergence of the gradient:

∇ ·∇f =
∂2f

∂x2
+

∂2f

∂y2
+

∂2f

∂z2

A few notes of interest; the partial differential equation ∇ · ∇f = 0 is called Laplace’s
equation. And if the right-hand side is replaced by something non-zero, ∇ ·∇f = q, it is called
the Poisson equation.

The finite difference form of the Laplacian in two dimensions is given by:

∇ ·∇p =
∂2p

∂x2
+

∂2p

∂y2

=
pi+1,j − 2pi,j + pi−1,j

(∆x)2
+

pi,j+1 − 2pi,j + pi,j−1
(∆y)2

,

where i and j refer to the index of individual grid cells, and ∆x and ∆y is the distance
between neighboring grid cells along the x-axis and y-axis, respectively. In fluid dynamics, it
is often the case that ∆x = ∆y, in which case the previous equation is simplified to:
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∇ ·∇p =
pi+1,j + pi−1,j + pi,j+1 + pi,j−1 − 4pi,j

(∆x)2

In three dimensions:

∇ ·∇p =
∂2p

∂x2
+

∂2p

∂y2
+

∂2p

∂z2

=
pi+1,j,k − 2pi,j,k + pi−1,j,k

(∆x)2
+

pi,j+1,k − 2pi,j,k + pi,j−1,k
(∆y)2

+
pi,j,k+1 − 2pi,j,k + pi,j,k−1

(∆z)2
,

where i, j and k refer to the index of individual grid cells, and ∆x, ∆y and ∆z is the
distance between neighboring grid cells along the x-axis, y-axis and z-axis, respectively. In
fluid dynamics, it is often the case the ∆x = ∆y = ∆z, in which case the previous equation is
simplified to:

∇ ·∇p =
pi+1,j,k + pi−1,j,k + pi,j+1,k + pi,j−1,k + pi,j,k+1 + pi,j,k−1 − 6pi,j,k

(∆x)2

A.1.4 Calculation Rules

(u · v)f = (v · u)f (A.1)

(∇ · u)f 6= (u ·∇)f (A.2)

(∇ · u)f =

(
∂u

∂x
+

∂v

∂y
+

∂w

∂z

)
f =

∂u

∂x
f +

∂v

∂y
f +

∂w

∂z
f (A.3)

(u ·∇)f =

(
u
∂

∂x
+ v

∂

∂y
+ w

∂

∂z

)
f = u

∂f

∂x
+ v

∂f

∂y
+ w

∂f

∂z
(A.4)

(u ·∇)f =



(
u
∂

∂x
+ v

∂

∂y
+ w

∂

∂z

)
f(

u
∂

∂x
+ v

∂

∂y
+ w

∂

∂z

)
g(

u
∂

∂x
+ v

∂

∂y
+ w

∂

∂z

)
h

 (A.5)

=


u
∂f

∂x
+ v

∂f

∂y
+ w

∂f

∂z

u
∂g

∂x
+ v

∂g

∂y
+ w

∂g

∂z

u
∂h

∂x
+ v

∂h

∂y
+ w

∂h

∂z

 (A.6)
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