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Title sheetTopi
: Master ThesisTitle: A new �exible triangular �nite element for geote
hni
al problemsPeriode: 2012/01/02 - 2012/14/06Supervisors: Lars DamkildeRonnie Refstrup PedersenNumber of pages: 80Abstra
tThis work deals with the formulation and testing of a new �exible triangular element. Theformulation of the element is based on the quadrati
-strain triangular element, whi
h isa 10-node element with 20 d.o.f. The new element is obtained by repla
ing the 2 nodesand their translational d.o.f. on the sides with 1 midside node with both translational androtational d.o.f. Furthermore, it is redu
ed from 20 to 12 global d.o.f. using stati
 
onden-sation. The stati
 
ondensation allows the element to be in
ompatible in the rotationald.o.f.A new �exible element would be useful e.g in analysis of geote
hni
al problems, in whi
hthe bearing 
apa
ity of the soil is often overestimated. This is indi
ated by analysis of two
ommon geote
hni
al problems performed with meshes of 6-node and 15-node elements.It turns out that the 15-node element, whi
h is more �exible, provides better a

ura
y
ompared to the 6-node element. If the advantages of the a

ura
y of a �exible element
an be 
ombined with the low 
omputational 
osts of the 6-node element, the pro
edureof geote
hni
al problems 
an be improved a great deal.The element is implemented in a nonlinear elasti
-plasti
 �nite element program, 
om-puted in Matlab. Both linear and nonlinear tests of the element is performed. The resultsfor the linear tests shows that the element provides reasonable results when the mesh isre�ned su�
iently. For a 
oarse mesh, the element does not provide good results due tothe in
ompatibility.Von Mises yield 
riteria is implemented in the �nite element program in order to performnonlinear tests of the element. The tests indi
ates that the element is not working properlyin a nonlinear appli
ation. This is due to the 
ondensed d.o.f. whi
h e�e
ts the globalsolution.Finally, several tests of the non-
ondensed element is done in order to demonstrate howthe 
ondensed element is supposed to perform in geote
hni
al problems. Mohr-Coulomb'syield 
riteria is implemented for these tests, whi
h are tests of the bearing 
apa
ity of astrip footing on a soil layer. The non-
ondensed element provides better results than a thelinear-strain triangle element. Furthermore, it does not overestimate the bearing 
apa
ityof the strip footing for most of the 
ases 
onsidered.ii
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1 Introdu
tionOver the past de
ades, the �nite element method has been the most 
ommon numeri
almethod used within various �elds of engineering problems. The �nite element method isparti
ularly widespread be
ause it is very general and is 
apable of des
ribing any materialstrain-stress relations. Furthermore, it is 
apable of handling both geometri
 and materialnonlinearities, whi
h are often important in geote
hni
al problems, su
h as soil me
hani
sand soil-stru
ture intera
tion problems. This is due to the fa
t that the behaviour of soilmaterials is highly nonlinear, even at very small strains [24℄. However, it turns out thatproblems with 
onvergen
e in analysis of even simple geote
hni
al problems may arise [14℄.A large amount of resear
h has been 
arried out on the improvement of �nite elements,and yet more e�e
tive elements regarding the number of d.o.f. are still needed for solvingthe 
onvergen
e problems mentioned above. The purpose of this paper is to test whether anew triangular �nite element is more e�e
tive when dealing with nonlinearities, 
omparedto the standard triangular elements used today.The 
onventional �nite elements used are the triangular elements, due to the topologi
aladvantages 
ompared to re
tangular elements. However, when the simple 3-node triangu-lar element is used in 
oarse meshes the 
onvergen
e may not be optimal, primarily dueto the shear lo
king e�e
t. The lo
king e�e
t refers to the in
reased shear sti�ness inthe mesh in 
onne
tion with loading. Thus, the lo
king e�e
t may pre
lude reasonablea

ura
y [11℄. Therefore, higher-order triangular elements are preferable, e.g. 6-node and15-node elements.
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Figure 1.1: The 6-node triangular element and the 15-node triangular element.The geote
hni
al software Plaxis 
ontains both 6-node and 15-node elements. In the fol-lowing some 
ommon geote
hni
al problems are analysed in Plaxis in order to 
ompare theperforman
e of the 6-node and 15-node elements. The 
omparison between the elementsis performed with the purpose of demonstrating the importan
e of the number of d.o.f. in
onne
tion with the formulation of a new e�e
tive triangular element.1



1 INTRODUCTION1.1 Geote
hni
al problemsOne of the geote
hni
al problems 
onsidered is the stability of a simple slope model 
on-sisting of one soil layer. Another geote
hni
al problem 
onsidered is the bearing 
apa
ityof a strip footing on a soil layer. Common to these problems are that they 
an be assessedby analyti
al solutions. Thus, the �nite element results from Plaxis 
an be 
ompared withthe results obtained by analyti
al 
al
ulations.1.1.1 Slope stability analysisThe stability analysis of a slope model is 
arried out in Appendix A.1. The slope is 20 mwide and 10 m high, and on the top of the slope an external load of 50 kN/m is applied,see Figure 1.2. Furthermore, the slope itself is 
omposed of a 
lay material.
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Figure 1.2: Slope model with an external load of 50 kN/m.The stability analysis of the slope model is �rst 
arried out by analyti
al 
al
ulations asshown in Appendix A.1. Subsequently, the �nite element analysis of the stability is 
arriedout for the slope model using the program Plaxis. A plane strain model of the slope isde�ned in Plaxis by a mesh of 6-node elements and 15-node elements, respe
tively.The fa
tor of safety and the 
riti
al slip surfa
e obtained with a mesh of 15-nodeelements is given in Figure 1.3, where the 
riti
al slip surfa
e is indi
ated with a 
ontourplot of the total displa
ements.
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Geote
hni
al problems

Figure 1.3: Deformed mesh with 6-node elements (deformations are s
aled 500*10−6).It is shown in Figure 1.4 that the 6-node elements provides a slower 
onvergen
e rate thanthe 15-node elements. Convergen
e is not fully obtained before 29309 elements and 118312d.o.f., whereas 
onvergen
e is attained by only 1556 elements and 25378 d.o.f. with themesh of 15-node elements. Thus, it requires a signi�
antly higher 
omputing 
osts toa
hieve 
onvergen
e with 6-node elements as 
ompared to 15-node elements.
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Figure 1.4: Convergen
e rate for FE and LE analyses.Compared to the fa
tor of safety obtained from the software Slope/w, as shown in Figure 1.4,the fa
tor is overestimated when using a 
oarse mesh of 6-node elements, where as the fa
-tor is more a

urately estimated when using a 
oarse mesh of 15-node elements. Thus, amesh of 15-node elements provides reasonable a

ura
y even for 
oarse meshes.Further studies of the 
onvergen
e and a

ura
y in analysis with 6-node and 15-nodeelements is ne
essary, to validate the bene�ts of the 15-node elements.3



1 INTRODUCTION1.1.2 Bearing 
apa
ity of a strip footingThe 
al
ulations of the bearing 
apa
ity for a strip footing is 
arried out in Appendix A.2.The purpose is to show that the results from a mesh of 15-node elements provides a better
onvergen
e toward the exa
t value of the bearing 
apa
ity 
ompared to the result from amesh of 6-node elements. The 
onsidered strip footing pla
ed on the top of a soil layer isshown in Figure 1.5.
Load Q

Footing

Soil layer

ϕ′ = 25
◦

γ′ = 16 kN/m3

c′ = 1 - 5 - 10 kN/m2

E = 5000 kN/m2

ν = 0.3
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Figure 1.5: Geometry and material property of the strip footing.In Appendix A.2, the exa
t value of the bearing 
apa
ity for the strip footing is 
al
ulatedwith di�erent values of the 
ohesion. Subsequently, the 
al
ulations of the bearing 
apa
ityof the footing is 
arried out in Plaxis. In the 
al
ulations the settlement of the footing issimulated by a uniform displa
ement at the top of the soil layer instead of modelling thefooting itself. This approa
h lead to a very simple model of the soil domain. As the soildomain is axisymmetri
 only half of the soil domain is modelled. The width and hight ofthe soil domain is 5 x 5 m. The 
onsidered domain with the given boundary 
onditions isshown in Figure 1.6.a.

Figure 1.6: (a) The 
onsidered soil domain with boundary 
onditions, (b) Example of a meshwith 7905 elements and 3671 d.o.f. 4



Geote
hni
al problemsThe soil domain is modelled with both 6-node and 15-node elements and a for
ed displa
e-ment of u = 0.5− 1 m is applied to the nodes lo
ated at the footing area. An example ofthe element mesh is seen in Figure 1.6.b.The bearing 
apa
ity for the footing is given by the load-displa
ement 
urves 
omputed inPlaxis with meshes of 6-noded and 15-node elements, see Appendix A.2. In Figure 1.7 the
onvergen
e of the bearing 
apa
ity is shown for a 
ohesion of 10 kN/m2, and it appearsthat the 6-node elements provides a signi�
antly slower 
onvergen
e rate than the 15-nodeelements.
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Figure 1.7: The 
onvergen
e of the bearing 
apa
ity for a 
ohesion of 10 kN/m2.For both 6- and 15-node element it is seen that the bearing 
apa
ity is overestimated when
omparing with the analyti
al solution. The bearing 
apa
ity is overestimated the mostwhen using a 
oarse mesh of 6-node elements, whereas the bearing 
apa
ity is more a

u-rately estimated when using a 
oarse mesh of 15-node elements. Thus, a mesh of 15-nodeelements provides reasonable a

ura
y even for 
oarse meshes. This validates the previousresults in Se
tion 1.1.1.It is 
lear that the 
ombination of fewer equilibrium equations, as the 6-node element pro-vides, and the a

ura
y and �exibility of the 15-node element is preferable to the 
ommonelements used today. However, even with the 15-node element the bearing 
apa
ity is stilloverestimated.A way to not overestimate the bearing 
apa
ity 
ould be to use in
ompatible elements. Anin
ompatible element allows a d.o.f. of an element to not 
onform to the 
orrespondingd.o.f. of the adja
ent element, see Figure 1.8.
5



1 INTRODUCTION
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Figure 1.8: Internal in
ompatibility within elements.The in
ompatible elements are known to be overly �exible for 
oarse meshes. But for asu�
iently re�ned mesh, the error 
aused by the in
ompatability be
omes insigni�
ant.Furthermore, these elements 
onverges �from the opposite side� than 
ompatible elements,i.e. an in
ompatible element would 
onverge from below and towards the analyti
al valueof the bearing 
apa
ity. This means that the in
ompatible elements probably will notoverestimate the bearing 
apa
ity, and therefore be on the safe side.This leads to the s
ope of the thesis.
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S
ope of work1.2 S
ope of workThe geote
hni
al software Plaxis 
ontains the triangular 15-node element, whi
h providesa higher a

ura
y 
ompared to the standard triangular 6-node element. It has been shownthat the a

ura
y of the 15-node element is preferable even though there is a signi�
antlylarger 
omputational e�ort to solve the problems due to the extra degrees of freedom(d.o.f.).If the advantages of the a

ura
y and �exibility of higher-order elements 
an be 
ombinedwith the low 
omputational 
osts of the standard 6-node element, the numeri
al pro
edureof geote
hni
al problems 
an be improved a great deal. This leads to the aim of this work:Formulate a new extended triangular plane element with a high 
onvergen
e rateand low 
omputational 
osts.In Figure 1.7 it has been shown that both the 6-node and the 15-node elements overesti-mates the stability of a slope and overestimates the bearing 
apa
ity for at strip footingas well, whi
h is a 
ommon geote
hni
al problems.The purpose of the new extended element is to improve the �nite element analyses ofgeote
hni
al problems. It has been shown that �nite element analyses performed withboth 6-node and the 15-node elements leads to an overestimation of the stability of a slopeand an overestimation of the bearing 
apa
ity of a strip footing as well.It is known that in
ompatible elements 
onverges �from below" as opposed to �from above"whi
h the 6-node and 15-node elements do. This imply that in
ompatible elements maynot overestimate the bearing 
apa
ity. This feature is taken in to a

ount in the formula-tion of the new extended element.The new element is implemented in a Matlab program for solving both linear elasti
 prob-lems as well as nonlinear elasti
-plasti
 problems. First it is veri�ed that the implementa-tion of the element in the program, is 
orre
t. This is done by simple linear tests su
h aspat
h tests, Cook's membrane and a plate with a 
ir
ular hole.Subsequently, nonlinear tests of the element are performed with von Mises yield 
riteria inorder to ensure that the the nonlinear part of the program is implemented 
orre
tly.Finally, nonlinear tests of the element are performed using the Mohr-Coulomb materialmodel. A set of tests is 
arried for the 
ase of a strip footing resting on a soil layer in orderto examine the performan
e of the element in the evaluation of the bearing 
apa
ity. Theperforman
e of the new extended element is 
ompared with the performan
e of the LSTelement in the above-mentioned tests.
7



2 Formulation of the extendedtriangular elementIn the following, the formulation of the new extended triangular element (EXT) is out-lined. The element is based on the idea of 
ombining the 
omputational speed of havingfew global d.o.f. with the a

ura
y of having more internal d.o.f.The new extended element is based on the quadrati
-strain triangular element (QST),whi
h is a 10-node element of 3. order. The element with its 10 nodes and 20 d.o.f., isshown in Figure 2.1.As the aim of this work is to redu
e the 
omputational 
osts of solving geote
hni
al prob-lems, it is intended to des
ribe the QST element with fewer global nodes and d.o.f. Thisis done by redu
tion and stati
 
ondensation of d.o.f. [11℄.
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Figure 2.1: The quadrati
-strain triangle and its 20 nodal d.o.f.The QST element is reformulated to an element with 7 nodes by 
onverting the 6 sidenodes to 3 midside nodes. For ea
h midside node, this results in 2 translational d.o.f. and2 gradient d.o.f. As seen on Figure 2.2, the element still have 20 d.o.f. but only 7 nodes.This element forms the basis for the extended triangular element, and is subsequentlymentioned as the full extended element (F-EXT).
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Figure 2.2: The full extended triangle element (F-EXT) and its 20 nodal d.o.f.In order to produ
e the extended triangular element, the 2 gradient d.o.f. at ea
h midsidenode and the 2 translational d.o.f. at the 
enter node are expressed in terms of the remain-ing d.o.f. This 
an be done by allowing an in
ompatibility of gradients between elements.The redu
tion of d.o.f. is done by stati
 
ondensation, whi
h will be des
ribed in Se
tion2.1.
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Figure 2.3: The extended triangle element (EXT) and the 8 
ondensed nodal d.o.f. representedwith a red 
olor.The extended triangular element is illustrated in Figure 2.3, where the d.o.f. to be 
on-densed are represented with a red 
olor. These d.o.f. only a
ts within the element, givingthe EXT element the advantages of rotations of the sides of the element.The bla
k d.o.f. are the global d.o.f. 
onne
ted to adja
ent elements. Globally, theEXT element has 6 external nodes; 3 
orner nodes and 3 midside nodes. This is similar tothe linear-strain triangular element (LST) whi
h is shown in Figure 2.4.
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2 FORMULATION OF THE EXTENDED TRIANGULAR ELEMENT
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Figure 2.4: The linear-strain triangle and its 12 nodal d.o.f.As mentioned, the 2 rotational d.o.f. at ea
h midside node and the 2 translational d.o.f.at the 
enter node are 
ondensed before assembling the elements, i.e. the 20 d.o.f. are
ondensed to 12 d.o.f. When assembling the elements sti�ness matri
es into the globalsti�ness matrix, a less storages spa
e is needed due to the redu
tion in global d.o.f. Hen
e,the 
ost of solving the global equations will pra
ti
ally be the same as for a regular 6-nodetriangular element.Thus, the new element 
an possibly be very e�
ient in geote
hni
al problems due tothe low 
omputational 
osts of few global d.o.f., the a

ura
y provided by the internald.o.f. and the �exibility from being an in
ompatible element.2.1 Condensation of element ve
tors and matri
esThe EXT element is de�ned internally by 20 d.o.f. as des
ribed in the previous se
tion.When the element is assembled in a global system, 8 of these d.o.f. are 
ondensed inorder to express the element by 12 translational d.o.f. This means that the d.o.f. to be
ondensed are not 
onne
ted to the d.o.f. of the other elements. The d.o.f. to be retainedare d.o.f. on the element boundary, and are 
onne
ted to the 
orresponding d.o.f. of theother elements. Stati
 
ondensation is also known as a spe
ial 
ase of substru
turing [11℄.The 
ondensation is 
arried out by expli
it matrix operations. The general term forea
h element [K] {u} = {Fr} is given by:
[

[Krr] [Krc]
[Kcr] [Kcc]

]{

{ur}
{uc}

}

=

{

{Frr}
{Frc}

}Where the residual for
e ve
tor applied to the element nodes is asso
iated with the externalfor
e ve
tor {F ext} and the internal for
e ve
tor {F int}:
{Fr} = {F ext} − F int} (2.1)The indi
es r and c are retained and 
ondensed d.o.f., respe
tively. The d.o.f. to beretained are all translational d.o.f. at 
orner nodes and midside nodes and are markedwith a blue 
olor on Figure 2.5: 10



Condensation of element ve
tors and matri
es
r = [1 2 3 4 5 6 7 8 9 10 11 12] (2.2)While the d.o.f. to be 
ondensed are the rotational gradients at midside nodes and trans-lations of the middle node, and are marked with a red 
olor on Figure 2.5:
c = [13 14 15 16 17 18 19 20] (2.3)
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Figure 2.5: The EXT element with its 6 global nodes marked with bla
k, 12 global d.o.f. markedwith blue and 8 internal d.o.f. marked with red.The 
ondensed sti�ness matrix for an element 
an be determined by:
[Kred] = [Krr]− [Krc] [Kcc]

−1 [Kcr] (2.4)The 
ondensed residual load ve
tor for an element 
an be determined by:
{Frred} = {Frr} − [Krc] [Kcc]

−1{Frc} (2.5)Thereby the 
ondensed sti�ness matrix 
an be assembled in a global sti�ness matrix [SysK℄and the 
ondensed residual load ve
tor 
an be assembled in a global load ve
tor SysFr toprodu
e the global equation:
[SysK]{SysU} = {SysFr} (2.6)where SysU 
ontains the retained d.o.f. ur from all elements. After solving the globalequation, the retained d.o.f. ur are known, and the 
ondensed d.o.f. uc 
an be determinedby solving:

{uc} = [Kcc]
−1 ({Fr}c − [Kcr] {ur}) (2.7)Thereby the full displa
ement ve
tor 
ontaining 
ontributions from both the retained and
ondensed d.o.f. 
an be assembled and used to determine the strains/stresses and theinternal for
e ve
tor. 11



2 FORMULATION OF THE EXTENDED TRIANGULAR ELEMENT2.2 Interpolation fun
tionsIn this se
tion the interpolation fun
tions of the F-EXT element are des
ribed. Thesefun
tions are identi
al for the EXT element. Within the element the translational dis-pla
ements {u} = (u v)T and gradients of the displa
ements {u} are obtained from thenodal values {d} = (d1 d2 . . . dn)
T using interpolation fun
tions assembled in the matrix

[N ]:
{u} = [N ] · {d} (2.8)Hen
e, the interpolation fun
tions Ni are used to interpolate values inside the elementbased on known values in the nodes. The interpolation fun
tions are also denoted as theshape fun
tions.The derivatives of the shape fun
tions are used to 
ompute the element sti�ness matrix,as shown in Se
tion B. Furthermore, the shape fun
tions are used to 
onvert distributedsurfa
e loads to 
onsistent nodal loads. This is done in Se
tion 2.3.For triangular elements it is 
onvenient to express the shape fun
tions in terms of area
oordinates, shown in Figure 2.6. The shape fun
tions are all proposed by L. Damkilde [15℄.

λ1 =
A1

A
λ2 =

A2

A
λ3 =

A3

A
(2.9)

P

A2

A3

A1

1 2

3

Figure 2.6: A triangle divided into areas in order to produ
e area 
oordinates.For the translational displa
ement of a 
orner node the shape fun
tion is given as:
Ni = λi (2 λ

2
i + 2 λ2j + 2 λ2k + 3 λj λk − 1) for i = 1, 2, 3 (2.10)The shape fun
tion for the translation displa
ement of a 
orner node is seen in Figure 2.7.As seen on the �gure, the two sides adja
ent to the 
orner node is stret
hed in the y-dire
tion, while the side opposite to the 
orner node remains undeformed.12



Interpolation fun
tions

Figure 2.7: Shape fun
tion for the translational displa
ement in the y-dire
tion the top 
ornernode.The shape fun
tions for the translational displa
ements in the midside nodes are given byEq. 2.11 and illustrated in Figure 2.8. The side on whi
h the midside node is lo
ated isthe only side that deforms when the shape fun
tion is a
tivated.
N3+i = 12 λi λj

(

−λk +
1

3

) for i = 1, 2, 3 (2.11)

Figure 2.8: Shape fun
tion for the translational displa
ement in the bottom midside node.The shape fun
tions for the gradients in the midside nodes are given by Eq. 2.12 and areillustrated in Figure 2.9.
N6+i = lk 2 λi λj(λi − λj) for i = 1, 2, 3 (2.12)13



2 FORMULATION OF THE EXTENDED TRIANGULAR ELEMENT

Figure 2.9: Shape fun
tion for rotational gradients in the midside nodes.The shape fun
tion for the translational displa
ements in the 
enter node is given byEq. 2.13. It is de�ned by the triangle-bubble fun
tion as illustrated in Figure 2.10. Allsides of the triangle remain undeformed by the shape fun
tion.
N10 = 27 λi λj λk (2.13)

Figure 2.10: Shape fun
tion for the displa
ement in the 
enter node.2.3 Nodal loadsIn this se
tion it is explained how distributed loads applied to the side lines of an elementare 
onverted to 
onsistent nodal loads. The distributed loads are 
onverted by use of theshape fun
tions [11℄: 14



Nodal loads
{F} =

∫

s
{N}T p dS (2.14)where

{F} is the ve
tor of 
onsistent nodal loads,
{N} is the shape fun
tion ve
tor, and
p is the distributed load fun
tion.As an example of equation Eq. 2.14 a distributed load varying over the side of an elementis 
onsidered, see Figure 2.11. The load p is given by a fun
tion of the side length x:

p = q1 + (q2 − q1)
x

L
(2.15)

b

bb

bb

b

1 2

3

56

q
1

q
2

L

4

xFigure 2.11: Distributed load on a side line of the EXT element.Thus, the nodal loads asso
iated with the distributed load on the side of the element withthe length L 
an then be determined by:
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dx (2.16)
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q1 + (q2 − q1)
x

L

}

dx (2.17)The shape fun
tions used in Eq. 2.17 is stated in Eq. 2.10 - Eq. 2.12. Noti
e, that thearea 
oordinate λ3 in the shape fun
tions is equal to zero, as shown Figure 2.12.15



2 FORMULATION OF THE EXTENDED TRIANGULAR ELEMENT
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A = x
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Figure 2.12: Area 
oordinates de�ned at side 3 of the triangular element.In order to integrate Eq. 2.17 the area 
oordiantes is formulated as fun
tions of the sidelength x, as illustrated in Figure 2.12. Thereby the integration of Eq. 2.17 gives the nodalloads:
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

Hen
e, if the applied load is uniformly distributed (q1 = q2) then the equation suggeststhat 1
6 of the load on the side line is applied to ea
h 
orner node and 2

3 to the midside nodeof the element, see Figure 2.13. These results do not require that the distributed load a
tnormal to the line.
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Nodal loads
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Figure 2.13: Appli
ation of uniformly distributed side load.
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3 Linear tests of the extendedelementThe linear tests presented in Appendix C is 
ondu
ted in order to validate the implemen-tation of the extended element (EXT) and the full extended element (F-EXT) in the �niteelement 
ode in Matlab. The tests performed in
lude simple pat
h tests, Cook's mem-brane, a plate with a hole, and a strain energy test. These tests makes use of most of theparameters whi
h in�uen
es the element a

ura
y. Parameters whi
h in�uen
es a

ura
yare loading, element geometry, test geometry, material properties et
.Ina

ura
ies of the element 
an o

ur by the presen
e of spurious modes indu
ed of inad-equate 
onne
tions of elements, rank faults e.g. in 
onne
tion with d.o.f., lo
king e�e
ts,elementary defe
ts like rigid body motion et
. [11℄. The pat
h tests should ensure thatthese defe
ts is not present.3.1 Pat
h and stability testsThe pat
h test performed in Appendix C.1 shows that the EXT and F-EXT elements areable to display a 
onstant state of strains/stresses and thereby pass the pat
h test. It ispossible for an element to pass the pat
h test even though it is unstable. Provided that theelement is stable, it is able to exhibit rigid body motion without strains/stresses, states of
onstant strains/stresses, and 
ompatibility between elements [11℄. These requirement isne
essary to guarantee 
onvergen
e. A

ordingly, the pat
h test is also applied to verifystability.A stability test, see Appendix C.2, displays 
onsisten
y between applied loads and 
al
u-lated displa
ements. Another way to 
he
k stability of an element, is by determining if alleigenvalues of the sti�ness matrix are positive. This is the 
ase with the extended element,and therefore it passes the stability test.However, the previous tests do not show how well the EXT and the F-EXT elementsperforms in other appli
ations. The elements may in other appli
ations provide a poora

ura
y in a 
oarse mesh or provide a slow 
onvergen
e rate. Thus, additional tests ofthe elements are performed with the intention to 
ompare the performan
e of the elementto the performan
e of the LST element.3.2 Cook's membrane testIn Appendix C.3 the well-known test 
on
erning Cook's membrane is performed with di�er-ent meshes. This test veri�es whether the extended element 
an provide a better a

ura
yand 
onvergen
e rate for a linear elasti
 problem, than the linear-strain element [6℄.The geometry of Cook's membrane is shown in Figure 3.1 with two di�erent meshes, andit appears that the problem in
lude both shear and bending 
ombined with the geometry18



Cook's membrane testdistortion. The right side of the model is loaded by a 
onstant tra
tion of P=1 in they-dire
tion, and the left side of the model is restrained in the x- and y-dire
tion. Themodulus of elasti
ity is E = 1 and Poisson's ratio is ν = 0.333.
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Mesh 2x2.
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P

Mesh 4x4.Figure 3.1: Cook's membrane with mesh 2x2 and mesh 4x4.The verti
al displa
ement at point C and the maximum and minimum prin
ipal stress atthe points A and B, respe
tively, are 
ompared for the elements mentioned in Se
tion 2.There is no known theori
ti
al solutions, but the results provided by Bergan & Felippa [18℄and Felippa & Alexander [4℄ are used for 
omparison purposes.The 
onvergen
e of displa
ements of the point C with respe
t to number of d.o.f. aredisplayed in Figure 3.2.
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3 LINEAR TESTS OF THE EXTENDED ELEMENT
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Figure 3.2: Convergen
e of displa
ements uC with respe
t to number of d.o.f., 
lose-up.When 
omparing the displa
ement results with the best known results, it is seen that the
onvergen
e of EXT is poor 
ompared to LST. It is also evident that the displa
ements
al
ulated by EXT is higher than the displa
ements 
al
ulated by LST. This indi
ates thatthe extended element is too �exible to provide a

urate results in a linear analysis.Likewise, it is seen that the 
onvergen
e of the F-EXT in
ompatible element is poor
ompared to LST. On the other hand it is seen that the F-EXT 
ompatible element 
on-verges as fast as LST, and that the a

ura
y of the F-EXT 
ompatible element is higheven for 
oarse meshes.In Figure 3.3 and Figure 3.4 the 
onvergen
e of maximum and minimum prin
ipal stressesin the points A and B are illustrated with respe
t to d.o.f.
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Cook's membrane test

0 1000 2000 3000 4000 5000 6000 7000 8000
0.21

0.215

0.22

0.225

0.23

0.235

0.24

0.245

0.25

D.o.f. number

S
tr

es
s 

(σ
m

ax
) A

 

 

LST
EXT
FEXT − comp
FEXT − incomp
Best known

Figure 3.3: Convergen
e of stress (σmax)A with respe
t to number of d.o.f.
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Figure 3.4: Convergen
e of stress (σmin)B with respe
t to number of d.o.f.Likewise, it is seen that the 
onvergen
e of prin
ipal stresses 
omputed for the EXT elementand the F-EXT in
ompatible element is poor 
ompared to LST. However, it is seen that the
onvergen
e of the prin
ipal stresses 
omputed for the F-EXT 
ompatible is good 
omparedto LST. 21



3 LINEAR TESTS OF THE EXTENDED ELEMENT3.3 Plate with holeThe problem 
onsidered in the following test is a plate with a 
ir
ular hole, whi
h is loadedby a for
e per unit area on its edge. The plate is shown in Figure 3.5. The plate is assumedto be made of a linear elasti
 material, with the material parameters E = 1 and ν = 0.3.Furthermore the plate is 
onsidered to be very thin, and thereby the tests 
an be solvedfor a plane stress state.
y

D = 1.0 2r = 0.2

σ = 1

θ

a

σ = 1

x

b

Figure 3.5: Plate with a 
ir
ular hole, loaded in tension.The problem is solved numeri
ally with 
ontinuous mesh re�nements, as shown in Ap-pendix C.4, Figure C.9. The meshes is generated so that the elements near the hole are�ner than those further from the hole, in this way the stress 
on
entration around the holeis better des
ribed. Due to the axis symmetry only a quarter of the plate is dis
retizedinto a mesh.The numeri
al results 
an be 
ompared with the analyti
al solution given for a plate withan in�nite length 
ompared with the diameter for the hole. The solution for the stressthroughout the plate is given by:
σθ =

σ

2

(

1 +
r2

a2
− (1 + 3

r4

2 a4
) cos(2 θ)

) (3.1)where
r is the radius of the 
ir
ular hole,
a is the radius of the stress lo
ation, and
θ is the related angle.In Figure 3.6 the 
onvergen
e of the maximum stress {σx}θ=90◦ at the edge of the hole isdisplayed for LST, EXT, F-EXT 
ompatible and in
ompatible elements. It appears thatthe 
onvergen
e of the EXT and F-EXT elements is poor 
ompared to the 
onvergen
e ofthe LST element. Furthermore problems with memory o

urs in 
omputation of the max-22



Plate with holeimum stress with a very �ne mesh of F-EXT in
ompatible elements due to the in
reasingnumber of d.o.f.
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Figure 3.6: Convergen
e of maximum stress {σx}θ=90◦ at the edge of the hole.Results of the normal stress along the verti
al symmetry plane {σx}θ=90◦ 
omputed fordi�erent meshes of LST elements, EXT elements, F-EXT 
ompatible and in
ompatible ele-ments are 
ompared with the analyti
al solution of Eq. C.1. This is displayed in Figure 3.7,and in Figure C.12, Figure C.13 for re�ned meshes.

23



3 LINEAR TESTS OF THE EXTENDED ELEMENT
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Figure 3.7: Normal stress σx along the verti
al symmetry axis - mesh 1.When 
omparing the numeri
al test results with the analyti
al results, it is seen that theresults are not 
ompletely a

urate for the numeri
al tests. The test results obtained withLST elements is more a

urate than the results obtained with EXT elements, F-EXT
ompatible and in
ompatible elements. It appear that the results obtained with the EXTelement are equal to the results obtained with the F-EXT in
ompatible element, and there-fore it is evident that the behavior of the EXT and the F-EXT in
ompatible element isthe same.Common for the EXT element, the F-EXT 
ompatible and in
ompatible element is thatthe in�uen
e of the gradients be
omes signi�
ant for the stress results 
omputed for a
oarse mesh. The e�e
t of the gradients is more expressive in the area around the hole,where large stress 
on
entrations o

urs. This is evident from the 
lose-up on Figure 3.8,Figure ?? and Figure ??:
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Plate with hole
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Figure 3.8: Close-up of the stress along the verti
al symmetry axis - mesh 1.
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Figure 3.9: Close-up of the stress along the verti
al symmetry axis - mesh 2
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3 LINEAR TESTS OF THE EXTENDED ELEMENT
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Figure 3.10: Close-up of the stress along the verti
al symmetry axis - mesh 3The in�uen
e of the gradients is more signi�
ant for the the EXT and the F-EXT in-
ompatible 
ompared with the F-EXT 
ompatible element. Only for a very �ne mesh thein�uen
e of the gradients be
omes insigni�
ant.3.4 Con
lusionThe tests presented in the previous se
tions indi
ates that the extended element is too�exible to provide a

urate results for 
oarse meshes in linear analyses. However, this is anormal behaviour for in
ompatible elements and does not imply that it will perform poorlyin other appli
ations [11℄.As shown in Se
tion 1.1, the 
onventional elements overestimates the stability of a slopeand the bearing 
apa
ity of a footing resting on soil. This suggests that the in
ompatibilityof the element 
an be an advantage in nonlinear geote
hni
al analyses, be
ause the elementmay not overestimate the bearing 
apa
ity of soil materials.Therefore in the following the implementation of the element in Matlab is extended tononlinear �nite element analysis. Two material models is implemented, in
luding the vonMises yield 
riteria and the Mohr-Coulomb yield 
riteria. The latter of the two 
riteriashas been the basis in the 
al
ulations of geote
hni
als problems for many years.
26



4 Nonlinear Finite Element ProgramIn this 
hapter the basi
 prin
iples for 
omputing the nonlinear �nite element program isreviewed. This involves the iteration pro
edure, stress return to the yield surfa
e, 
hoi
eson updating the sti�ness matrix, 
riteria and toleran
e for 
onvergen
e. The review isbased on the 
ase of perfe
t plasti
ity. In the following 
hapters, the von Mises and Mohr-Coulomb yield 
riterias are evaluated and tested for the di�erent element types.4.1 In
remental iteration pro
edureThe iteration pro
edure used in the program is the well-known Newton-Raphson routine.In this routine, the applied loads and pres
ribed displa
ements are divided into in
rementsdenoted i. For ea
h in
rement, the routine iterates towards a solution that ful�lls a giventoleran
e for equilibrium.To start up the iteration pro
edure, with iterations denoted j, an initial guess of thedispla
ement ve
tor is needed, {dU}i,j . The initial guess is taken as the 
onverged dis-pla
ement ve
tor at the end of the last load step:
{dU}i,j = {dU}i−1,j (4.1)In the �rst load step the guess is initialized, {dU}i−1,j = 0. Furthermore in the �rst itera-tion step the 
orre
tor displa
ement ve
tor is initialized, {ddU}i,j = 0. Consequently, thestrains, stresses and internal for
es 
omputed in the �rst load step and the �rst iterationis zero.The in
remental strain ve
tor, {dε}i,j , is 
omputed from the in
remental displa
ementve
tor, {dU}i,j , using:
{dε}i,j = [B]{dU}i,j (4.2)The in
remental strain ve
tor {dε}i,j is used together with the strain ve
tor from the lastin
rement dε}i,j−1 to 
ompute an updated stress ve
tor {σ}i,j , see Se
tion 4.2 and Se
tion4.3.Depending on the updating method, see Se
tion 4.4, the updated stress {σ}i,j 
an be usedto 
ompute the updated 
onstitutive matrix [D]pi,j . The 
onsitutive matrix is then used todetermine the lo
al tangent sti�ness matri
es:

[Ke]i,j =

∫

[B]T [D]pi,j [B] dV (4.3)The updated stress {σ}i,j is also used to 
al
ulate the lo
al internal for
e ve
tor:27



4 NONLINEAR FINITE ELEMENT PROGRAM
F int
i,j,k =

∫

[B]T {σi,j}dV (4.4)Subsequently, the lo
al residual for
e ve
tor is determined using the external for
e ve
torand the internal for
e ve
tor:
{Fr}i,j = {F}exti − {F}inti,j (4.5)When the global residual for
e ve
tor is assembled, the rea
tion for
es are take into a

ount,i.e.:

{SysFr}i,j = {SysF}i,j + {SysR}i,j − {SysI}i,j (4.6)where {SysF}i,j is the global external for
e ve
tor, {SysR}i,j is the global rea
tion for
eve
tor, and {SysI}i,j is the global internal for
e ve
tor.The global rea
tion for
e ve
tor is extra
ted from the global internal for
e ve
tor:
{SysR}i,j = {SysI(bdof )}i,j + {SysI(pdof )}i,j (4.7)where bdof indi
ates the restrained d.o.f. and pdof indi
ates the d.o.f. with pres
ribeddispla
ements.The global equation is then solved for the unknown iterative displa
ements {ddUi,j}, i.e.only the part of the global equation 
on
erning the displa
ements in free d.o.f. is solved.In the �rst iteration Eq. 4.8 is used, and in the following iterations Eq. 4.9 is used:

{ddU}i,j = [SysK(fdof , fdof )]
−1([SysFr(fdof )]− [SysK(fdof , ppdof )]{d(ppdof )}) (4.8)

{ddU}i,j = [SysK(fdof , fdof )]
−1 [SysFr(fdof )][SysFr(fdof )] (4.9)where fdof are the free d.o.f., ppdof are the restained and pre
ribed d.o.f., {d(ppdof )} arethe displa
ement values in the restrained and pres
ribed d.o.f.With the soultion of {ddU}i,j a 
orre
tion of the in
remental displa
ement 
an be 
om-puted:

{dU}i,j = {dU}i,j−1 + {ddU}i,j (4.10)Then the next iteration step j + 1 is 
arried out, with displa
ement input:28



In
remental iteration pro
edure
{dU}i,j+1 = {dU}i,j (4.11)The iterations are repeated untill 
onvergen
e 
riteria is satis�ed, se Se
tion 4.1.1. Whenthe iterations in an in
remental step is terminated, the global displa
ement is updatedwith {dU}i,j and the next in
remental step is 
arried out. If the 
onvergen
e 
riteria isnot satis�ed within a reasonable number of iterations, the solution is terminated. Theiteration pro
edure is outlined in Flow
hart 4.1.Flow
hart 1: Iteration pro
edure for nonlinear FEMSysU = 0 Initialize global displa
ement ve
torLoad Loop i=1:numstep

dUi = 0 Initialize in
remental displa
ement ve
torIteration Loop j=1:itstep
dUi,j = dUi,j−1 Initial guess of in
remental displa
ement
ddUi,j = 0 Initialize 
orre
tor displa
ement ve
tor
SysK = 0 Initialize global sti�nes matrix
SysI = 0, SysR = 0 and SysFr = 0 Initialize global internal for
e ve
tor,rea
tion ve
tor and residual for
e ve
torElement Loop k=1:numel

dεi,j,k = B · dUi,j,k Cal
ulate in
remental strain
σi,j,k(dεi,j−1,k, dεi,j,k) Update stress
F int
i,j,k =

∫

BTσi,j,k Cal
ulate lo
al internal for
e ve
tor
Dp

i,j,k(σi,j,k) Update 
onstitutive matrix
Kei,j,k (Dp

i,j,k) Cal
ulate lo
al sti�ness matri
es
SysKi,j, SysIi,j , SysFi,j Assemble global sti�ness matrix, globalinternal for
e and external for
eEnd Element Loop k=numel

SysFri,j = SysF + SysR− SysI Cal
ulate global residual for
e ve
tor
ddUi,j = SysK−1SysFr Cal
ulate iterative displa
ement
dUi,j = dUi,j−1 + ddUi,j Corre
t in
remental displa
ementChe
k 
onvergen
eEnd Iteration Loop j=itstep

SysUi+1 = SysUi + dUi,j+1 Update global displa
ement ve
torEnd Load Loop i=numstep4.1.1 Convergen
e 
riteria and toleran
eThe termination of the iterations in a in
remental step is determined by the 
onvergen
e
riteria. The 
riteria relates to the 
onvergen
e of the iterative solution, not the 
onvergen
eof the dis
rete solution. In the matlab 
ode the energy 
riteria is used to terminate theiterations:
U = ΣeU

e = Σe{d}′[Ke]{d} (4.12)29



4 NONLINEAR FINITE ELEMENT PROGRAMThe energy 
riteria measures the sum of every elements' energy resulting from the residual.If the energy 
riteria is not satis�ed, U 6= 0, there is an error in the iterative solution. Theerror toleran
e used in the 
ode determines the pre
ision with whi
h the 
riteria shouldbe satis�ed before terminating the iterations. The error toleran
e have an in�uen
e onthe speed and a

ura
y of the solution. If the toleran
e is too high, the solution maybe ina

uate. In the other hand, a toleran
e whi
h is too small results in unne
essary
omputations.Usually an error toleran
e of tol = 1e−5 is used. In Se
tion 9.2.2 a sensitivity analysisof the F-EXT in
ompatible element is 
arried out by 
hanging the toleran
e in the rangeof 1e−6 < tol < 1e−4.4.2 Determining the plasti
 
ontributionsTo determine the plasti
 part of a solution a trial elasti
 stress is 
omputed, representingthe stress state in point B, and it is determined if this point is outside the yield surfa
e, seeFigure 4.1. If so, a lo
al iteration s
heme is applied in order to return to the yield surfa
e.
f = 0f < 0

σB

σC

σA

−∆λDaB

Figure 4.1: Ba
kward-Euler stress return from inside the yield surfa
e.First, the di�eren
e between the trial stress and the yield surfa
e is determined for theiteration in
rement j:
σB = D (εi,j − εi,j−1) (4.13)
fB = σe − σB (4.14)where the equivalent stress σeff is 
al
ultated with respe
t to the yield fun
tion, see Chap-ter 5 for von Mises and Chapter 8 for Mohr-Coulomb.If the di�eren
e fB > 1e−10, the trial stress is outside the yield surfa
e. The trial stress 
anbe returned to the yield surfa
e with the use of a s
alar, ∆λ, 
alled the plasti
 multiplier,whi
h is 
omputed by: 30



Returning to the yield surfa
e
∆λ =

f

aT D a
(4.15)With a being the �ow ve
tor, given as:

a =
∂f

∂σ
(4.16)This leads to a 
al
ulation of stress in point C, whi
h is the �rst estimate of a stress onthe yield surfa
e:

σC = σB −∆λ D aB (4.17)A graphi
 representation of this is seen in Figure 4.1. It is 
lear that if f = 0, the plasti
multiplyer will also be 0, and the stress is on the yield surfa
e.4.3 Returning to the yield surfa
eThe estimate of σC , des
ribed in the previous se
tion, will most likely not be on the yieldsurfa
e. Therefore, an iteration s
heme 
alled Ba
kward-Euler is implemented in order to
orre
t the trial stress ba
k to the yield surfa
e.

f = 0f < 0

σB

σA

σC

σD

Figure 4.2: Return mapping.With the stress in point C known, the yield state for C 
an be determined with use ofeither von Mises or Mohr-Coulomb's yield 
riteria. This gives the yield fun
tion fC andthe �ow ve
tor aC .It is inteded to redu
e the di�eren
e between the 
urrent stress σC and the stress 
al
ulatedwith the use of aC to almost zero: 31



4 NONLINEAR FINITE ELEMENT PROGRAM
rC = σC − (σB −∆λ D aC) < 1e−8 (4.18)This is done by determining the 
hange in the plasti
 multiplier:

λ̇ =
fC − aTC Q

−1 rC

aTC Q
−1 D aC

(4.19)where Q is de�ned in Eq. 4.24. The 
hange in the stress in point C is also 
al
ulated:
σ̇C = −Q−1 rC − λ̇ Q−1 D aC (4.20)Then, the plasti
 multiplier and the stress is updated, and a new set of fC and aC 
an be
omputed:

∆λ = ∆λ+ λ̇ (4.21)
σC = σC + σ̇C (4.22)If the relation between λ̇ and ∆λ is less than 1e−8, rC is redu
ed to almost zero, and theiteration pro
edure is done. If not, the iteration 
ontinues with the use of the new values.4.4 Updating the sti�ness matrixThe sti�ness matrix 
an either be updated with the 
orre
ted 
onstitutive matrix, [Dp℄, forea
h iteration or for ea
h loadstep or not be updated at all. The methods are also known asthe Full Newton-Raphson, the Modi�ed Newton-Raphson and the Initial Sti�ness s
heme,respe
tively [3℄. The 
hoise of a s
heme has a great in�uen
e on how qui
kly the solution
onverges, as illustrated in Figure 4.3.

F1

F3

u1
u

u3

F2

u2(a) Modi�ed
F1

F3

u1
u

u3

F2

u2 (b) FullFigure 4.3: The 
hoi
e between Newton-Raphson s
hemes has great in�uen
e on how fast thesolution 
onverges. 32



Updating the sti�ness matrixThe simplest way to perform a nonlinear analysis is to use the initial sti�ness matrix forea
h iteration and loadstep. It is a very 
heap method regarding formulation of matri
es,but it needs a lot of iterations to 
onverge.The modi�ed s
heme updates the sti�ness matrix for ea
h loadstep. It therefore needsmore iterations than the previous mentioned method, but does not need as mu
h memoryas the sti�ness matrix is only reformulated for every loadstep.The Full Newton-Raphson s
heme updates the sti�ness matrix for ea
h iteration. Thismeans that it requires signi�
antly more 
omputer memory to reformulate the sti�nessmatrix with every iteration, but it also 
onverges faster. All three methods is implementedin the Matlab program, but most analysis are done by the Full Newton-Raphson s
heme.The sti�ness matrix is updated by the 
onsistent 
onstitutive matrix [D]ep:
[Q] = [I] + ∆λ [D]

{∂a

∂σ
} (4.23)

[R] = [Q]−1 [D] (4.24)
[D]ep = [R]

(

[I]− {a} [R] {a}T
{a}T [R] {a}+A

) (4.25)where
[I] is a unit matrix,
∆λ is the plasti
 multiplier,
[D] is the elasti
 matrix,
[D]ep is the elasti
-plasti
 matrix,
[R] is a helping matrix,
A is a hardning parameter, and
{a} is the �ow ve
tor.The �ow ve
tor {a} dependent on the yield surfa
e, is given by Chapter 5.
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5 Von Mises yield 
riteriaIn this 
hapter a short presentation of von Mises yield 
riteria for the states of plane stressand plane strain is provided. In the following 
hapter, pat
h tests with von Mises yield
riteria are performed in order to validate the implementation of the extended element inthe nonlinear �nite element 
ode.By von Mises yield 
riteria asso
iative plasti
ity is assumed (f = g) in whi
h yieldingen
ounter when the e�e
tive stress σe rea
hes a limiting value:
f = σe − σ0 (5.1)where the e�e
tive stress in plane 
al
ulations is given by:

σe =
1√
2

(

(σx − σy)
2 + (σy − σz)

2 + (σz − σx)
2 + 6τ2xy

)1/2 (5.2)Two kinds of pat
h tests are performed - plane stress and plane strain tests. For planestress, equation Eq. 5.2 is redu
ed by σz = 0, while for plane strain, i.e. εz = 0, theequation is the same as stated. The �ow ve
tor a used in the updating pro
edure is givenby:
a =

∂f

∂σ
(5.3)whi
h for an asso
iative plasti
ity imply that the �ow dire
tion is normal to the yieldsurfa
e. For plane stress the �ow ve
tor is then given by:

a =
1

2σe





2 −1 0
−1 2 0
0 0 6









σx
σy
τxy



 (5.4)while for plane strain:
a =

1

2σe









2 −1 −1 0
−1 2 −1 0
−1 −1 2 0
0 0 0 6

















σx
σy
σz
τxy









(5.5)
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6 Tests with von Mises yield 
riteriaThe pat
h test with the use of von Mises yield 
riteria is performed for LST, EXT, F-EXT
ompatible and F-EXT in
ompatible in order to ensure that the elements 
an 
onvergetowards the exa
t solution. The 
ases of plane stress and plane strain are 
onsidered inthe following se
tions.Furhtermore, a test of a strip footing is 
arried out in order to examine how the elementsperforms, 
ompared to the analyti
al solution.6.1 Plane stressIn this se
tion, the pat
h test is performed for plane stress. The geometry, mesh andboundary 
onditions are shown in Figure 6.1. The pat
h is subje
ted to a uniformlyapplied displa
ement of u = 50 in the x-dire
tion.

10

10

y

xFigure 6.1: The geometry, mesh and boundary 
onditions for the plane stress pat
h test, with
u = 50, E = 1, ν = 0.3 and yield stress y0 = 1.The test is done for both the Full and Modi�ed Newton-Raphson iteration s
hemes. Theresults are displayed in Figure 6.2 and Figure 6.3.It is 
lear from the graph that the EXT and the F-EXT elements do not 
onverge whenusing the Modi�ed and the Full Newton-Raphson s
hemes. Be
ause it is a prerequisite forthe EXT element to work, that the F-EXT element works properly, it is �rst examinedwhy F-EXT does not 
onverge. 35



6 TESTS WITH VON MISES YIELD CRITERIA
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Figure 6.2: The results for the plane stress pat
h test using the Modi�ed Newton-Raphson.
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Figure 6.3: The results for the plane stress pat
h test using the Full Newton-Raphson s
heme.36



Plane stress6.1.1 The gradients in�uen
e on 
onvergen
eA 
loser look at the geometry and mesh of the pat
h test reveals that ea
h element israther large 
ompared to the size of the entire geometry. The 
onstraints are only appliedto the translational d.o.f. whi
h means that the gradients on the 
onstrained side of thepat
h is free to move, see Figure 6.4.

Figure 6.4: The gradients are free to move along the boundary of the geometry.Be
ause the shape fun
tions for the gradients depend on the length of the elements sides,the size of the elements e�e
t the a

ura
y of the solution. A mesh re�nement of the pat
htest, as seen in Figure 6.5 will 
larify if gradients in fa
t disrupt the 
onvergen
e of theF-EXT element.

Figure 6.5: The e�e
t of the gradients will be smaller when re�ning the mesh. u = 50, E = 1,
ν = 0.3 and y0 = 1.The gradients depend on a smaller element, and will be equally smaller, as shown inFigure 6.5. This means that the solution is now 
onverging for F-EXT 
ompatible afterthe elements starts yielding. The results for the re�ned mesh of the pat
h, for Modi�ed37



6 TESTS WITH VON MISES YIELD CRITERIAand Full Newton-Raphson s
hemes, are shown in Figure 6.6 and Figure 6.7, respe
tively.
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Figure 6.6: The results for the pat
h test of plane stress with the re�ned mesh, using the Modi�edNewton Raphson s
heme.
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Plane stress
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Figure 6.7: The results for the pat
h test of plane stress with the re�ned mesh, using the FullNewton Raphson s
heme.From the results, it is 
lear that EXT and F-EXT in
ompatible are unable to 
onvergefor the Full and Modi�ed Newton-Raphson s
hemes. A 
loser look at where the programbreaks, shows that the problem lies in updating the sti�ness matrix after the elementsyield. This is 
on�rmed by running the same pat
h test, but with use of the Initial Sti�-ness Method. Here, the solution 
onverges, see Figure 6.8.
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6 TESTS WITH VON MISES YIELD CRITERIA
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Figure 6.8: The results for the pat
h test of plane stress with the re�ned mesh, using the InitialSti�ness Method.The results for the Initial Sti�ness Method, whi
h is 
onverging, the Modi�ed and the FullNewton-Raphson s
hemes indi
ates that the problem appears when the sti�ness matri
esare updated.G. De Roe
k et al. [12℄ mentions the phenomenon of singular sti�ness matri
es. This 
anarise in the 
ase of a perfe
tly plasti
 analysis, where two adja
ent elements are in a stateof yielding. To test if the 
onvergen
e problems are due to the state of perfe
t plasti
ity,a small hardening parameter is implemented in the following subse
tion.6.1.2 Implementing a hardening parameterAs seen in the previous subse
tion, the EXT and F-EXT in
ompatible elements are unableto 
onverge for the simple pat
h test. The 
onvergen
e di�
ulties appear when the sti�-ness matri
es are updated in the plasti
 solution. The tangent sti�ness matri
es be
omessingular when the elements rea
hes a state of perfe
t plasti
ity.Therefore, it 
an be an advantage to introdu
e a small hardening parameter, to ensurethat the elements never a
ts fully perfe
tly plasti
.The geometry, mesh and boundary 
onditions are the same as used before for the pat
htest with the re�ned mesh, see Figure 6.5. A range of hardening and softening parametersare applied, and the results are plotted in Figure 6.9.40



Plane strain
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h=0.01
h=0.001
s=0.001
s=0.01
s=0.1
LSTFigure 6.9: The pat
h test with di�erent hardening (h) and softening (s) parameters.As seen in Figure 6.9, the pat
h test is passed for a wide range of hardening parameters. Itis also seen that adding a softening parameter is only valid for very small values of softening.6.1.3 Con
lusion on plane stress pat
h testThe EXT and the F-EXT in
ompatible elements are not able to 
onverge for a plane stresspat
h test. The problem en
ounters after the �rst update of the sti�ness matrix when theelements are yielding.It is illustrated by adding di�erent hardening parameters, that the 
onvergen
e problemmight only be for perfe
tly-plasti
 elements. For plane stress, the state of perfe
t plasti
-ity is rea
hed in the instan
e the elements of the pat
h starts to yield. For plane strain,however, perfe
t plasti
ity does not happen at the �rst yielding point.Therefore, the 
ase of plain strain for the pat
h is examined in the following se
tion.6.2 Plane strainIn the 
ase of plane strain, the load-displa
ement 
urve is in
reasing after the �rst yieldingis en
ountered. The in
rease 
ontinues until the 
urve rea
h a point where it be
omes �at.This is be
ause the magnitude of the normal stresses, σx and σz, in
reases until a 
onstantvalue is attained. During this, the e�e
tive stress, σe, whi
h is a fun
tion of the threenormal stresses, remains 
onstant.
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6 TESTS WITH VON MISES YIELD CRITERIAAs seen in the previous se
tion, the EXT and the F-EXT in
ompatible elements are unableto 
onverge for a perfe
tly plasti
 state. As des
ribed, this state does not en
ounter at the�rst yielding point for the 
ase of plane strain. Therefore, it is examined if the elementsare able to 
onverge for plane strain, without adding any hardening parameters.The re�ned mesh is used, see Figure 6.5. As seen on Figure 6.10, the elements do 
onvergefor the Full Newton-Raphson s
heme. Identi
al results are obtained for the Initial Sti�nessMethod and the Modi�ed Newton-Raphson s
heme.
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Figure 6.10: The results for the pat
h test of plane strain.Be
ause the elements are sensitive to the update of the sti�ness matrix in the iterations
heme, it is interesting to examine what happens to the eigenvalues for the sti�ness matrixduring the in
rease on the load/displa
ement 
urve, as shown in Figure 6.11.

42



Plane strain
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Figure 6.11: The EXT results for the pat
h test of plane strain, 
lose up.The eigenvalues for the points marked Y1-5 are given in Table 6.1. It is 
lear that thenumber of zero-values is not in
reasing, but the lowest eigenvalues are approa
hing zero.
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6 TESTS WITH VON MISES YIELD CRITERIATable 6.1: Eigenvalues for element 16 (see Figure 6.12) in the pat
h test of the extended element.Y1 Y2 Y3 Y4 Y515.7900 15.5364 15.4015 15.2915 15.202010.2008 10.0422 9.9609 9.8942 9.83975.0764 4.9837 4.9667 4.9536 4.94344.3939 4.3244 4.2982 4.2765 4.25873.2393 3.2020 3.1949 3.1892 3.18462.6842 2.6663 2.6639 2.6622 2.66102.0071 1.9625 1.9503 1.9406 1.93301.5114 1.4618 1.4451 1.4321 1.42200.9842 0.9539 0.9469 0.9415 0.93740.4660 0.4486 0.4428 0.4384 0.43510.3347 0.3251 0.3229 0.3213 0.32010.3053 0.2980 0.2971 0.2966 0.29630.0244 0.0163 0.0111 0.0075 0.00500.0161 0.0107 0.0072 0.0049 0.00320.0083 0.0057 0.0039 0.0027 0.00180.0060 0.0041 0.0028 0.0019 0.00130.0008 0.0006 0.0004 0.0003 0.00020.0000 0.0000 0.0000 0.0000 0.00000.0000 0.0000 0.0000 0.0000 0.00000.0000 0.0000 0.0000 0.0000 0.0000Thus, it is investigated why some of the eigenvalues are approa
hing zero-values.6.2.1 The in�uen
e of residal for
es on the global solutionW. Pan et al. 
omments on the on sub-modelling:"In theory the approa
h 
an be applied generally to non-linear problems. Inpra
ti
e, however, the sub-modelling approa
h 
annot be used in 
ases wherethe lo
al non-linear response of the sub-model, not in
luded in the global model,even mildly a�e
ts the global model response." [23℄This means that the lo
al respons, in this 
ase the residual for
es in the 
ondensed d.o.f.,must not in�uen
e the global solution. Thus it is investigated if the residual for
e ve
torfor the 
ondensed d.o.f., Frc, is large enough to have an impa
t on the global solution. InTable 6.2 the residual for
e ve
tor for element 16, shown in Figure 6.12, is given for theloadstep marked Y5 in Figure 6.11.
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Plane strain

16

Figure 6.12: The geometry, mesh and boundary 
onditions for the pat
h test, with element 16marked.
Table 6.2: Residual for
es for element 16 in the plane strain pat
h test of the extended element.Displa
ements in 
orner nodes - retained d.o.f.Iteraion 1 Iteraion 2 Iteration 3 Iteration 5

Fr1 0.382709218334343 0.416181125550998 0.383825524396519 0.383429652246723
Fr2 0.000000027732312 0.017175053915695 0.000205490664015 0.000000027248940
Fr3 -0.382709218334056 -0.416181125550684 -0.383825524396232 -0.383429652246438
Fr4 0.000000110929248 0.068700215662733 0.000821962656062 0.000000108995768
Fr5 -0.000000000000313 -0.000000000000335 -0.000000000000317 -0.000000000000314
Fr6 -0.000000138661524 -0.085875269578398 -0.001027453320043 -0.000000136244677Displa
ements in midside nodes - retained d.o.f.Iteraion 1 Iteraion 2 Iteration 3 Iteration 5
Fr7 0.000000000001191 0.000000000001297 0.000000000001197 0.000000000001195
Fr8 0.000000554646183 0.343501078313660 0.004109813280247 0.000000544978776
Fr9 -1.530836873337319 -1.664724502203947 -1.535302097586027 -1.533718608986840
Fr10 -0.000000110929258 -0.068700215662796 -0.000821962656075 -0.000000108995782
Fr11 1.530836873336146 1.664724502202676 1.535302097584847 1.533718608985681
Fr12 -0.000000443716923 -0.274800862650882 -0.003287850624172 -0.000000435983029Gradients in midside nodes - 
ondensed d.o.f.Iteraion 1 Iteraion 2 Iteration 3 Iteration 5
Fr13 0.000000000000000 -0.000000000000003 0.000000000000006 -0.000000000000002
Fr14 -0.000000000000002 -0.000000000000001 -0.000000000000015 0.000000000000008
Fr15 -0.000000000000002 -0.000000000000000 -0.000000000000004 0.000000000000003
Fr16 -0.000000000000002 -0.000000000000004 -0.000000000000001 -0.000000000000001
Fr17 -0.000000000000004 -0.000000000000002 0.000000000000003 -0.000000000000006
Fr18 0.000000000000022 0.000000000000003 0.000000000000012 -0.000000000000001Displa
ements in middle node - 
ondensed d.o.f.Iteraion 1 Iteraion 2 Iteration 3 Iteration 5
Fr19 0.000000000000007 -0.000000000000005 0.000000000000014 -0.000000000000007
Fr20 -0.000000000000037 -0.000000000000011 -0.000000000000034 0.000000000000004It is seen that Frc rea
hes a value of almost zeros when the loadstep has 
onverged.The residual for
e ve
tor for element 16 in the 
ase of plane stress is quite di�erent, seeTable 6.3. At yielding point Frc has a small value, but as the sti�ness matrix is updatedfor ea
h iteration, the values for the gradients in
rease signi�
antly and thereby impa
tsthe global solution. 45



6 TESTS WITH VON MISES YIELD CRITERIATable 6.3: Residual for
es for element 16 in the plane stress pat
h test of the extended element.Displa
ements in 
orner nodes - retained d.o.f.Iteraion 1 Iteraion 2 Iteration 3 Iteration 5
Fr1 0.333333333334481 0.339269471270347 -0.052487347744191 0.055916273800580
Fr2 0.000000000000000 0.006103835769673 0.009513595277478 -0.046087149445755
Fr3 -0.333333333334219 -0.339269471270080 0.048988457704825 -0.100312162759481
Fr4 -0.000000000000001 0.024415343078670 0.104097746148590 -0.227624883186249
Fr5 -0.000000000000261 -0.000000000000266 0.005971395231174 -0.048109177507434
Fr6 -0.000000000000000 -0.030519178848343 -0.028331290229273 -0.025463331989333Displa
ements in midside nodes - retained d.o.f.Iteraion 1 Iteraion 2 Iteration 3 Iteration 5
Fr7 0.000000000001040 0.000000000001058 0.015441680502742 -0.083505721740749
Fr8 -0.000000000000001 0.122076715393374 0.137502862798224 -0.228351316011182
Fr9 -1.333333333337913 -1.357077885081373 -1.183518536206551 1.149609545086807
Fr10 0.000000000000002 -0.024415343078688 -0.126019286412382 0.501245973275580
Fr11 1.333333333336871 1.357077885080312 1.326832021759944 -1.257189737149031
Fr12 -0.000000000000001 -0.097661372314685 -0.053046483915117 0.117031235746863Gradients in midside nodes - 
ondensed d.o.f.Iteraion 1 Iteraion 2 Iteration 3 Iteration 5
Fr13 -0.000000000000000 -0.000000000000008 1.168595782212472 -1.257995027840322
Fr14 0.000000000000001 0.000000000000001 -0.089957765959764 0.299613305903213
Fr15 0.000000000000000 0.000000000000001 0.092491869399998 -0.159911049481703
Fr16 -0.000000000000002 0.000000000000000 -0.069141338725196 -0.088289224558179
Fr17 0.000000000000000 0.000000000000005 0.078164173535174 -0.053932767911452
Fr18 0.000000000000000 -0.000000000000000 -0.006290459928105 0.041039836290726Displa
ements in middle node - 
ondensed d.o.f.Iteraion 1 Iteraion 2 Iteration 3 Iteration 5
Fr19 0.000000000000001 0.000000000000004 -0.161227671247944 0.283590980269307
Fr20 0.000000000000001 -0.000000000000001 -0.043717143667520 -0.0907505283899246.2.2 Con
lusion on plane strain pat
h testSin
e EXT and F-EXT in
ompatible shows good results for the 
ase of plane strain, theelements are tested in an example of a strip footing. This will show if the elements 
an beused in other appli
ations where plane strain is assumed.6.3 Strip footing with von Mises yield 
riteriaIn this se
tion tests are 
arried out for the 
ase of a strip footing, in order to examine theperforman
e of the EXT element with a small hardening parameter introdu
ed.The strip footing has a width of b = 1 m and the length is assumed to be in�nite inrelation to the width. The soil layer is assumed to be weigthless and is modelled as anelasti
-perfe
tly plasti
 material satisfying the von Mises yield 
riteria [8℄. The material
onstants used in the tests is, E = 107 kPa, nu = 0.48, y0 = 848.7 kPa.Due to the in�nite length of the footing the tests is solved for a plane strain state. Dueto the symmetry only half of the soil layer is dis
retized into a �nite element mesh. Theboundaries of the mesh are su�
iently far from the footing, extending 4.5 m horizontallyand 5 m verti
ally. The �nite element model for the 
oarse mesh is shown in Figure 6.13,whereas the two �ner mesh are shown in Appendix D.
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Strip footing with von Mises yield 
riteria

Figure 6.13: Geometry and boundary 
onditions for strip footing.The footing is 
onsidered to be rigid and smooth, i.e. there is no fri
tion at the footing/soilinterfa
e. The settlement of the footing is then simulated by applying a uniform verti
aldispla
ement of u = 0.002m in in
rements to the nodes loa
ted at the top of the interfa
eelements. The load bearing 
apa
ity is then 
omputed by summing up the verti
al rea
tionat the nodes, whi
h have been subje
ted to displa
ements. The sum rea
tion at the nodesis divided by the width.A theoreti
al solution of the bearing 
apa
ity have been derived by Prandtl and Hill [8℄.They give the following equation for the bearing 
apa
ity in the 
ase of a fri
tionlessfooting/soil interfa
e:
Plim = (2 + π)c ≈ 5.14c ≈ 2.97σy (6.1)where the 
ohesion of the soil is given by c = σy/

√
3 for the von Mises yield 
riteria.The bearing 
apa
ity for the �rst mesh, 
omputed in the �nite element program, is plottedin Figure 6.14 as a fun
tion of the settlement. The bearing 
apa
ity found by the othertwo mesh 
an be seen in Appendix D.
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6 TESTS WITH VON MISES YIELD CRITERIA
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Figure 6.14: Settlement of a strip footing with pp indi
ating perfe
t plasti
ity and h=0.1 indi-
ating a hardening parameter.As seen on the �gures, the EXT element does not 
onverge towards the exa
t solution.This 
an be due to the residual for
e in the gradients, whi
h might not be going towardszero in a test with a load a
ting on only some of the top boundary line, while the otherboundarys are restrained in some way.A hardening parameter has also been implemented, but this does not help the EXT ele-ment to 
onverge.It should be noted that the F-EXT in
ompatible element does not overestimate the bearing
apa
ity of the soil, while LST and F-EXT 
ompatible is on the unsafe side. This indi-
ates that the F-EXT in
ompatible element is better suited to soil-stru
ture intera
tionanalysis than the LST and F-EXT 
ompatible elements. Further investigation of this isdone in Chapter 9, where Mohr-Coulombs yield 
riteria is used, as it is more appropriatefor geote
hni
al problems.If the EXT element had been able to 
onverge in the analysis of the strip footing per-formed in this se
tion, the results would be similar to F-EXT in
ompatible and therebynot overestimating the bearing 
apa
ity.In the next se
tion, a test of the pat
h is performed again to verify that the EXT elementis unable to 
onverge for plane strain, when an unsymmetri
ally applied displa
ement.6.3.1 Test with an unsymmetri
ally applied displa
ementThe pat
h with the re�ned mesh is submitted to the boundary 
onditions shown inFigure 6.15. The displa
ements are applied to only half of the pat
hs' height, while the48



Strip footing with von Mises yield 
riteria
onstraints remain the same as previous.

Figure 6.15: The pat
h with an unsymmetri
ally applied displa
ement of u = 50. The materialparameters are E = 1, ν = 0.3 and y0 = 1.The results for the di�erent element types are shown in Figure 6.16, from whi
h it is 
learthat EXT does not 
onverge.
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Figure 6.16: Load-displa
ement 
urve for the test with the unsymmetri
ally applied displa
e-ment.The residual for
e ve
tors for the �rst four iterations of the loadstep, for whi
h the elementdoes not 
onverge, are shown in Table 6.4. As seen in the table, the residual for
e ve
toris subje
ted to a small value in the 
ondensated d.o.f. The values of the ve
tor shifts49



6 TESTS WITH VON MISES YIELD CRITERIAbetween the shown values from iteration to iteration until the limit of maximum iterationsis rea
hed.Table 6.4: Residual for
es for element 16 in the plane strain pat
h test with the unsymmetri
allyapplied displa
ement.Displa
ements in 
orner nodes - retained d.o.f.Iteraion 1 Iteraion 2 Iteration 3 Iteration 4
Fr1 0.056001916971212 0.075017196543187 0.068398477213653 0.068192809890429
Fr2 0.011214321470858 0.015008542479844 0.013856735778070 0.013824306141399
Fr3 0.179570835619354 0.239262465811755 0.253380761671432 0.252557191510664
Fr4 0.019740501452271 0.026076289706092 0.023928771718140 0.024555499983120
Fr5 -0.079635982519485 -0.106339251431946 -0.105572155188004 -0.104441523103936
Fr6 0.040975585208491 0.054742979589391 0.055315992275102 0.055439550254920Displa
ements in midside nodes - retained d.o.f.Iteraion 1 Iteraion 2 Iteration 3 Iteration 4
Fr7 0.189859081609423 0.254287422306575 0.238798517914633 0.237537964313874
Fr8 0.178891811718250 0.238194074005424 0.243423013678773 0.243335803450497
Fr9 -0.597992128474481 -0.799501876427534 -0.767605358192722 -0.766569982373887
Fr10 -0.285303101764242 -0.380680446573383 -0.377026498790213 -0.376517751488201
Fr11 0.252196276793974 0.337274043197965 0.312599756581006 0.312723539762856
Fr12 0.034480881914395 0.046658560792630 0.040501985340154 0.039362591658261Gradients in midside nodes - 
ondensed d.o.f.Iteraion 1 Iteraion 2 Iteration 3 Iteration 4
Fr13 0.000000000000006 -0.000000000000000 0.000000000000006 -0.000000000000000
Fr14 -0.000000000000018 0.000000000000001 -0.000000000000017 -0.000000000000001
Fr15 -0.000000000000001 0.000000000000000 -0.000000000000001 0.000000000000001
Fr16 -0.000000000000002 0.000000000000001 -0.000000000000002 0.000000000000000
Fr17 0.000000000000002 0.000000000000000 0.000000000000002 0.000000000000001
Fr18 -0.000000000000001 -0.000000000000002 0.000000000000004 0.041039836290726Displa
ements in middle node - 
ondensed d.o.f.Iteraion 1 Iteraion 2 Iteration 3 Iteration 4
Fr19 0.000000000000002 -0.000000000000001 0.000000000000002 -0.000000000000005
Fr19 -0.000000000000022 0.000000000000003 -0.000000000000026 -0.0000000000000016.4 Con
lusion on tests with von Mises yield 
riteriaIn the present 
hapter, a varied range of tests have been performed on the di�erent elementtypes used in this thesis. The tests involves perfe
t plasti
ity, hardening and softening pa-rameters, plane stress and plane strain, subje
ted to both uniformly and asymmetri
aldistributed displa
ements.As des
ribed in the foregoing se
tions, the EXT element is unable to 
onverge when thesti�ness matri
es are updated in a nonlinear analysis. When two adja
ent elements are ina state of perfe
t plasti
ity yielding, the sti�ness matri
es be
omes singular whi
h makesit impossible to solve the governing equations.Furthermore, when the residual for
es in the 
ondensed d.o.f. have an impa
t on theglobal solution, it is hard for the extended elements to 
onverge. It is evident that somee�ort should be made to over
ome these di�
ulties.A solution method 
ould be to add a small hardening parameter in order to prevent thestate of perfe
t plasti
ity. The results for the plane stress pat
h test are good. But thehardening parameter is not able to solve the 
onvergen
e di�
ulties in the plane strainexample of a strip footing. Thus, adding a hardening parameter does not mean that the50



Con
lusion on tests with von Mises yield 
riteriaelement is able to 
onverge for all 
ases. The out
ome varies from 
ase to 
ase, and thesolution method should be tested thoroughly.The litterature reports on 
ombining nonlinearity and substru
turing, with the 
on
lusionthat nonlinear parts of a stru
ture must be regarded as a single substru
ture, while thelinear parts may be des
ribed with one or more substru
tures [11℄, [12℄, [20℄. The substru
-turing is a spe
ial 
ase of stati
 
ondensation, where the element itself is the substru
ture.�The part of (the) stru
ture whi
h is known to remain elasti
 during theloading pro
ess is de�ned as either one or several substru
tures, while the partof the stru
ture whi
h undergoes plasti
 deformation is de�ned as one nonlinearsubstru
ture.� Han & Abel, [22℄.Other arti
les mentions that the nonlinear parts of a stru
ture must remain in isolatedregionsand those regions are de�ned as separate substru
tures [13℄, [7℄.Be
ause every EXT element is a substru
ture in itself, the statements above is obviouslynot met. Sheu Chyi-Horng et al. [21℄ des
ribes how multilevel substru
turing 
an be usedin fully nonlinear problems. However, this method does not apply here, as it would requirealmost as many levels as elements used, due to the status of a single EXT element as asubstru
ture.W. Pan et al. has developed an iterative substru
ture method, whi
h 
an be used forelasti
-plasti
 analysis [23℄. The 
on
lusion is, however, that the interfa
e nodes betweenthe substru
tures must not be too 
lose to the nonlinear regions.Clearly the proposed method of substru
turing does not apply to the single-elementsubstru
turing used in this thesis. This is due to, as previously stated, every element inan analysis is a substru
ture by itself and therefore it is impossible to keep the nonlinearregions (elements) distant from the global nodes of an adja
ent element.It is evident that some e�ort should be made to over
ome these di�
ulties. A solution
ould be to only 
ondensate non-yielding elements, as done in [2℄. This is examined in thefollowing 
hapter.
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7 Condensation of non-yieldingelementsSeveral arti
les and litterature suggests that stati
 
ondensation, or substru
turing, shouldonly be applied for the linear domains in a non-linear analysis. In an analysis it is soughtto treat all elements in a mesh as EXT elements untill an element starts to yield. Whenthis happens, the program should 
hange the element type for that parti
ular element toF-EXT, i.e. the same element but without 
ondensation of the gradients and the trans-lations in the 
enter node. By applying this to the program, the advantages of few d.o.f.and the a

ura
y of many d.o.f. should be maintained.7.1 Pat
h testThe same pat
h test with the re�ned mesh, as used previously, is performed in order tovalidate the results. To 
ontrol whi
h elements are yielding, a yield 
riteria of y0 = 100 isapplied to all elements but one. The last element, element 16, is given a yield 
riteria of
y0 = 1. This means that element 16 will start to yield and the rest of the elements willremain elasti
. In Figure 7.1 the geometry, mesh, boundary 
onditions and element 16 isdepi
ted.

16

Figure 7.1: The geometry, mesh and boundary 
onditions for the pat
h test.Running the pat
h test shows that the solution method of only 
ondensating the elasti
elements are not resulting in 
onvergen
e, see Figure 7.2. This may be a 
onsequen
e ofthe assemblage of the elements into global matri
es and ve
tors. When element 16 starts toyield, the residual for
e ve
tor of the element is applied to the global residual for
e ve
tor.
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Figure 7.2: Results for pat
h test, where 'ad' indi
ates that the adja
ent elements to element 16is also treated as F-EXT elements.But for the adja
ent elements, shown on Figure 7.3, the lo
al residual for
es are 
on-densated and represented through the 12 remaining d.o.f be
ause these elements are elasti
.When an element is unpa
ked, the displa
ements for the 8 
ondensated d.o.f. are 
al
ulatedwithout taking the residual for
es from element 16 into a

ount.
16

3 12

14Figure 7.3: The geometry, mesh and boundary 
onditions for the pat
h test.This problem is 
orre
ted by treating the adja
ent elements to element 16 as F-EXTelements, i.e. not 
ondensating the elements, but remain a yield 
riteria of y0 = 100. Thepat
h test is performed with this small 
orre
tion to the program, resulting in a 
onvergingsolution, as indi
ated with red in Figure 7.2.53



7 CONDENSATION OF NON-YIELDING ELEMENTSFurthermore, it is investigated if this 
hange in the program is also able to 
onverge if twoadja
ent elements are yielding. The mesh, boundary 
onditions, yielding elements and newadja
ent elements are shown on Figure 7.4.
16

3 12

14

5

2

Figure 7.4: The geometry, mesh and boundary 
onditions for the pat
h test.The test with two adja
ent elements in a state of perfe
t plasti
ity shows that the solutionis able to 
onverge. Compared to results obtained with a full mesh of F-EXT elements,shown in Figure 7.5, it is 
lear that the results are 
oherent with ea
h other. This meansthat the proposed method of only 
ondensating the non-yielding elements provides a validsolution.
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Figure 7.5: Results for pat
h test, where 'ad' indi
ates that the adja
ent elements to element 16is also treated as F-EXT elements.Another important feature of this method is that it allows the program to only update theelements that are in fa
t yielding, and thereby saving a 
onsiderable amount of re
al
ula-tions, 
ondensations and unpa
king of elements.7.1.1 Con
lusionObviously, it is di�
ult to identify, whi
h elements that are yielding, in order to regardthem as F-EXT in
ompatible elements instead of EXT elements. This requires extensive
omputations, where the yielding elements are identi�ed. A. Hadoush and A. H. van denBoogaard has developed su
h a pro
edure, see [2℄.Eventhough the EXT element is not able to 
onverge for the tests performed in the pre-vious 
hapter, it is possible to predi
t the out
ome of nonlinear tests by using the F-EXTin
ompatible element.Therefore it 
an still be investigated if EXT would give more a

urate results and notoverestimate the bearing 
apa
ity for geote
hni
al problems. In the following 
hapter theMohr-Coulomb material model is presented and implemented in the nonlinear �nite el-ement program, in order to investigate how the EXT element should work when this isapplied in geote
hni
al problems.In the subsequent 
hapter, the bearing 
apa
ities of a strip footing resting on three di�erentsoil layers is determined for F-EXT in
ompatibel and LST, and 
ompared to analyti
alsolutions.
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8 Mohr-Coulomb yield 
riteriaIn the following 
hapter the Mohr-Coulomb yield 
riteria is presented. For many yearsthis yield 
riteria has been the basis in the 
al
ulations of geote
hni
als problems. TheMohr-Coulomb 
riteria is implemented in the nonlinear �nite element 
ode, so that testsof the F-EXT in
ompatible element 
an be 
arried out for di�erent geote
hni
al problems.When working with the Mohr-Coulomb yield 
riteria, there are two 
ases to 
onsider: theasso
iated plasti
ity 
ase (f=g=0), and the non-asso
iated plasti
ity 
ase (f=0, g6=0). Inthis 
hapter both 
ases will be dis
ussed, but the main fo
us will be on the non-asso
iatedplasti
ity.8.1 Implementation of the Mohr-Coulomb 
riteriaIn prin
ipal stress spa
e the Mohr-Coulomb yield 
riteria is usually des
ribed by:
f(σ̄) = (σ1 − σ3) + (σ1 + σ3) sinϕ− 2 c cosϕ (8.1)where ϕ is the angle of fri
tion and c is the 
ohesion. If the prin
ipal stresses are arrangeda

ording to Eq. 8.2 the yield 
riterion forms a triangular plane.

σ1 ≥ σ2 ≥ σ3 (8.2)If the interrelationship between the prin
ipal stresses 
hanges, so must the equation. Thisimply that the yield 
riteria 
ontains six equations, all on the form of Eq. 8.1. In theprin
ipal stress spa
e these equations forms an irregular hexagonal pyramid with the apexlo
ated in σ1 = σ2 = σ3 = c cotϕ, see Figure 8.1.
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Figure 8.1: Graphi
al representation the Mohr-Coulomb 
riteria, ϕ = 30 c = 0.
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Implementation of the Mohr-Coulomb 
riteria8.1.1 Asso
iated �ow ruleIn a yield 
riteria where an asso
iated �ow rule applies, the plasti
 potential is equal to theyield plane, (f = g = 0). An asso
iated �ow rule for the Mohr-Coulomb 
riteria indi
atesthat the dilatation angle is equal to the fri
tion angle (ϕ = ψ), and that the 
ohesion iszero, see Eq. 8.3 and Eq. 8.4.8.1.2 Non-asso
iated �ow ruleWith a non-asso
iated �ow rule, the plasti
 potential is not equal to the yield 
riteria,
(f 6= g). For a Mohr-Coulomb material f and g are given by:

f = σ1 − σ3 + (σ1 + σ3) sinϕ− 2c cosϕ = 0 (8.3)
g = σ1 − σ3 + (σ1 + σ3) sinψ (8.4)where ϕ is the angle of fri
tion, c is the 
ohesion and ψ is the dilatation angle. As seenin the equations, the angle of fri
tion and the 
ohesion of the soil material is in
luded inthe yield 
riteria, whereas the dilataion angle is the only material property in�uen
ing theplasti
 potential.For 
omputational purposes the equations for the yield plane, Eq. 8.3, and the plasti
potential, Eq. 8.6, are rewritten:

f(σ̄) = āT1 (σ̄ − σ̄a) = kσ1 − σ3 − σc = 0 (8.5)
g(σ̄) = b̄T1 (σ̄) = mσ1 + σ3 (8.6)where ā1 and b̄1 are gradients of the yield plane and plasti
 potential, respe
tively.

ā =
∂f

∂σ̄
=







k
0
−1







, k =
1 + sinϕ

1− sinϕ
(8.7)

b̄ =
∂g

∂σ̄
=







m
0
−1







, m =
1 + sinψ

1− sinψ
(8.8)

σc is the uniaxial strength and σ̄a is the apex point of the 
riteria:
σc = 2 c

√
k (8.9)

σ̄a =
σc

k − 1







1
1
1







(8.10)
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8 MOHR-COULOMB YIELD CRITERIAEq. 8.5 des
ribes a triangular plane in the prin
ipal stress spa
e, when the stresses are ar-ranged a

ording to σ1 ≥ σ2 ≥ σ3, as shown in Figure 8.2. Likewise for other arrangementsof the stresses.

l̄1

l̄2

l1

l2

f = 0

σ3

σ2

σ1

h

Figure 8.2: Mohr-Coulomb yield plane in prin
ipal stress spa
e.The edge lines of the triangular yield plane, l1 and l2, are expressed by:
l1 : σ̄ = t1l̄1 + σ̄a, and l2 : σ̄ = t2 l̄2 + σ̄a, (8.11)where

l̄1 =







1
1
k







and l̄2 =







1
k
k







(8.12)and t1 and t2 are unit parameters.8.2 Return mapping for the Morh-Coulomb 
riteriaThe Mohr-Coulomb 
riteria imply four di�erent 
ases of stress returns:- Return to a yield plane- Return to a line, l1 or l2- Return to the apex pointWhen the return mapping s
heme is used to return the stress ba
k to a yield plane, line orpoint, it is important to know where the trial stress is lo
ated. The lo
ation is des
ribed58



Return mapping for the Morh-Coulomb 
riteriain terms of a stress region, whi
h are separated by boundary planes.In the following se
tions, the de�nition of the boundary planes and as well as stress regionsis examined further, and the routine for returning to a yield plane, line and point isdes
ribed.8.2.1 Mohr-Coulomb boundary planesBoundary planes are de�ned by the interse
tion line between two yield planes, l̄, and bythe plasti
 
orre
tor r̄p. The dire
tions of these two ve
tors form a boundary plane, seeFigure 8.3.

l̄1

l̄2

l1

l2
f = 0

σ3

σ2

σ1

h

r
p

1

r
p

2

Figure 8.3: Interse
tion lines l̄1, l̄2 and the plasti
 
orre
tor r̄pde�ning the boundary planes.The normal to the boundary plane points into one of the stress regions from another stressregion. This is indi
ated by the indi
es II (into) and I (from). A boundary plane 
an beexpressed with the following equation:
pII-I(σ̄) = (

r̄p × l̄
)T

(σ̄ − σ̄l) = n̄TII−I (σ̄ − σ̄l) (8.13)A Mohr-Coulomb 
riteria appli
able with σ1 ≥ σ2 ≥ σ3 has four boundary planes. Forother arrangements of the prin
ipal stresses there will also be four boundary planes.8.2.2 Mohr-Coulomb stress regionsStress regions are limited by boundary planes and they are as mentioned de�ned by in-terse
tion lines and apex points. Therefore, a Mohr-Coulomb yield 
riteria will have fourstress regions. 59



8 MOHR-COULOMB YIELD CRITERIARegion I is limited by two boundary planes, pI-II and pI-III. They are de�ned by thetwo interse
tions lines and their 
orresponding plasti
 
orre
tors.Region II and Region III is limited by pI-II and pI-III, respe
tively, and the boundary planesformed by the apex, pII-IV and pIII-IV. These boundary planes lies perpendi
ular on pI-II and
pI-III, and they form Region IV. An illustration of the stress regions is seen on Figure 8.4.

I

III

II

IV

pI-III

pI-II

pII-IV

pIII-IV

σ3

σ2

r
p

Figure 8.4: Stress regions illustrated by roman numerals.Depending on whi
h region the trial stress is lo
ated, there are four possible out
omes forthe Mohr-Coulomb stress return, as given in Table 8.1.Table 8.1: The possible out
omes for the Mohr-Coulomb stress return.Region Conditions for boundary planes Return toI pI-II ≥ 0 ∧ pI-III ≤ 0 Plane, f = 0II pI-II < 0 ∧ pI-III < 0 Line, l1III pI-II > 0 ∧ pI-III > 0 Line, l2IV t1 > 0 ∧ t2 > 0 Apex point, σ̄a8.2.3 Return mappingWith the stress regions and boundary planes de�ned, and the possible out
omes des
ribed,the return mapping pro
edure 
an take pla
e. A

ording to the previous se
tions, there arethree di�erent return s
hemes to 
onsider: Returning to a yield plane, to the interse
tionof two planes i.e. a line, and to the interse
tion of three or more planes i.e. a point.With three return s
hemes follows three 
onstitutive matri
es. The returns and 
on-stitutive matri
es for a plane, line and point are outlined in the following subse
tion.Returning to a planeThe yield plane is linear in the prin
ipal stress spa
e, see Eq. 8.5, and is given by:
f(σ̄) = āT

(

σ̄ − σ̄f
)

= 0 (8.14)60



Return mapping for the Morh-Coulomb 
riteriaThe plasti
 potential is also linear in the prin
ipal stress spa
e, see Eq. 8.6, and is givenby:
g(σ̄) = b̄T σ̄ (8.15)In the equations above ā and b̄ are gradients of the yield plane and the plasti
 potential,respe
tively. With the gradients known, see Eq. 8.7 and Eq. 8.8, the s
aled dire
tion ofthe plasti
 
orre
tor 
an be determined:̄
rp =

D̄b̄

b̄T D̄ā
(8.16)With all 
ontributions to the plasti
 
orre
tor stress know, it 
an be established:

∆σ̄p = f
(

σ̄B
)

r̄p (8.17)With the plasti
 
orre
tor stress determined, the stress 
an be returned to the Mohr-Coulomb plane:
σ̄C = σ̄B −∆σ̄p (8.18)It is seen that the return mapping for a plane is similar to the s
heme outlined in [5℄.Constitutive matrix for return to a Mohr-Coulomb planeThe 
onstitutive matrix should be determined by:

[D̄]ep =
E

(1− ν)(mk −mkν −mν − kν + 1 + ν)

·





1 (m+ 1)ν m
(k + 1)ν 1−mν − kν +mk m(k + 1)ν

k (m+ 1)kν mk



 (8.19)And the shear part is de�ned by:
[Ḡ] =

E

2 (1 + ν)
[I] (8.20)Returning to a lineThe line is de�ned as an interse
tion between two yield planes f1 and f2, and is de�nedby the equation:

σ̄ = tl̄ + σ̄l (8.21)61



8 MOHR-COULOMB YIELD CRITERIAHere σ̄l is a point on the interse
tion line, and l̄ is the dire
tion ve
tor of the interse
tionline. The latter is given by Eq. 8.12. The parameter t of Eq. 8.21 is then given by:
t =

(r̄p1 × r̄p2)
T (

σ̄B − σ̄l
)

(r̄p1 × r̄p2)
T
l̄

(8.22)Constitutive matrix for returning to a Mohr-Coulomb lineWhen a trial stress should be returned to a Mohr-Coulomb line, there are two returnsto 
onsider and therefore two 
onstitutive matri
es to 
al
ulate. The shear part of the
onstitutive matri
es is given by Eq. 8.20, and the normal 
omponent part for l1 and l2,respe
tively:
[D̄]epl,1 =

E

2− 2ν − 2kν − 2mν +mk





1 1 m
1 1 m
k k mk



 (8.23)
[D̄]epl,2 =

E

1− 2kν − 2mν − 2mk + 2mkν





1 m m
1 mk mk
k mk mk



 (8.24)8.2.4 Returning to a pointWhen the out
ome of the analysis of stress regions is to return to a point, it 
an obviouslyonly be to the apex point. The apex point is a known point, whi
h leaves no need for
al
ulations, as the returned stress is:
σ̄C = σ̄a (8.25)Sin
e the apex is lo
ated on the hydrostati
 line, the 
onstitutive matrix for returning toa point is:

[D̄point]
ep = [0] (8.26)
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9 Bearing 
apa
ity of a strip footingon a Mohr-Coulomb materialEven though the appli
ation of the extended element in a nonlinear program did not su
-
eed, it is still investigated how EXT should behave for a Mohr-Coulomb yield 
riteria.This 
an be done by using the F-EXT in
ompatible element, whi
h behaves exa
tly likethe EXT element.In this 
hapter nonlinear tests of the F-EXT element are performed using the Mohr-Coulomb material model. A set of tests is 
arried out using the asso
iated Mohr-Coulombmaterial model for the 
ase of a strip footing resting on a soil layer in order to examine theperforman
e of the element in the evaluation of the bearing 
apa
ity. The performan
e ofthe F-EXT in
ompatible element is 
ompared with the performan
e of the LST element.9.1 Analyti
al solutionThe performan
e of the elements is examined by how well the �nite element results 
onvergetoward the analyti
al solution of the bearing 
apa
ity.The analyti
al solution of the bearing 
apa
ity of a strip footing resting on a soil layeris usually determined by Terzaghi's expression, whi
h implies an asso
iated perfe
t plasti
Mohr-Coulomb material model:
p = γ r Nγ + q Nq + c Nc (9.1)where r is the halfwidth of the strip footing, q is the surfa
e load and c is the 
ohesion ofthe soil. The Nγ , Nq and Nc are bearing 
apa
ity fa
tors, whi
h all are fun
tions of thefri
tion angle, ϕ.The fa
tors Nγ , Nq and Nc have a 
onsiderable in�uen
e on the the bearing 
apa
ity. Theexa
t values of Nq and Nc 
an be determined using Prandtl's equations, see [9℄. Di�erentmethods of determination have been proposed for the values of Nγ . Re
ently values of

Nγ has been determined for both rough and smooth footings by Martin, see [16℄ and [17℄.These values are 
onsidered as exa
t values, and therefore the values for a rough footingare used throughout this study.The bearing 
apa
ity will be 
al
ulated for three soil materials. The �rst soil materialis sand whi
h is also referred to as a fri
tion material, the se
ond material is 
lay witha varying 
ohesion, and the last material is undrained 
lay also re�ered to as a 
ohesionmaterial.9.2 Finite element analysesThe following study fo
uses on the appli
ation of the F-EXT in
ompatible element in the�nite element analyses of the bearing 
apa
ity for the strip footing.63



9 BEARING CAPACITY OF A STRIP FOOTING ON A MOHR-COULOMBMATERIAL9.2.1 Finite element modelDue to the summetry of the footing only half of the problem is dis
retized, in order toredu
e the 
omputational 
osts. Only the soil is dis
retized into an element mesh, and anexample of the mesh is shown in Figure 9.1. The boundaries of the mesh are su�
ientlydistant from the footing, 6 m horizontally and 5 m verti
ally. The verti
al sides of themesh are restrained in the horizontal dire
tion, while the base of the mesh is restrained inthe verti
al dire
tion. Along the top of the mesh, both horizontal and verti
al movementsare allowed.

Figure 9.1: Geometry, boundaries and an example of element mesh with 540 elements.The footing is 
onsidered to be rough, whi
h means that the interfa
e nodes at the footingare �xed in the horizontal dire
tion. The loading is then applied in in
rements of anuniform verti
al displa
ement to the same interfa
e nodes. The load bearing 
apa
ity isthen obtained by summing up the verti
al rea
tion at the nodes, whi
h have been subje
tedto displa
ements.9.2.2 The in�uen
e of toleran
e on the resultsIn the �nite element tests, the energy 
onvergen
e 
riteria is used, see Se
tion 4.1.1. It isinvestigated if the solutions obtained for LST and F-EXT in
ompatible are sensible to the
hoi
e of toleran
e.The normalized bearing 
apa
ity is plotted as a fun
tion of the toleran
e of energy errorfor both fri
tion soil and 
ohesion soil, see Figure 9.4. The Full Newton-Raphson s
hemeis used to obtain these results, whi
h are not sensible to the 
hoi
e of a toleran
e value.
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Finite element analyses
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Figure 9.2: The normalized bearing 
apa
ity plottet as a fun
tion of the toleran
e of energy error,
φ = ψ = 30◦, c = 0. Full Newton-Raphson Method.However, with the Initial Sti�ness Method, 
onsistent solutions of the bearing 
apa
ityis not obtained with F-EXT in
ompatible, when the toleran
e value of energy error is
hanged. This is shown in Figure 9.3, where the normalized bearing 
apa
ity is plottet asa fun
tion of the toleran
e. It is seen that the toleran
e has an in�uen
e on the solution.Furthermore the Initial Sti�ness Method requires a 
onsidereable number of iterations to
onverge, and only more as the toleran
e value de
reases. Therefore the bearing 
apa
atyis not 
omputed with a toleran
e smaller than 1e− 6.
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9 BEARING CAPACITY OF A STRIP FOOTING ON A MOHR-COULOMBMATERIAL
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Figure 9.3: The normalized bearing 
apa
ity plottet as a fun
tion of the toleran
e of energy error,
φ = ψ = 30◦, c = 0. Initial Sti�ness Method.In Figure 9.4 the bearing 
apa
ity and toleran
e is plottet in 3D with the number of d.o.f.in the third dire
tion. It appears that if the number of d.o.f. is in
reased the toleran
e oferror should be de
reased.
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onvergen
eand number of d.o.f, φ = ψ = 30◦, c = 0. Initial Sti�ness Method.66



Finite element analysesThus, the toleran
e has an in�uen
e on the a

ura
y of F-EXT in
ompatible when theInitial Sti�ness Method is used with a Mohr-Coulomb material model, but the toleran
ealso has in�uen
e on the speed of the solution. If the toleran
e is too high, the results maybe ina

uate, and if the toleran
e is too small it results in a high 
omputational time.The results for the Initial Sti�ness Method are obviously not satisfying. In the followingse
tion, the results of analyses 
arried out with the Full Newton-Raphson s
heme arepresented.9.2.3 ResultsTest 1 - SandThe bearing 
apa
ity is at �rst 
omputed for the strip footing resting on a sand material,also re�ered to as a fri
tion material, see Table 9.1.Table 9.1: Material parameters of the sand.Material 1Type of material behaviour Drained -ParametersSoil unit weight γ′ 15 kN/m3Fri
tion angle ϕ′ 30 ◦Dilatation angle ψ′ 30 ◦Cohesion c′ 0 kN/m2Pressure 
oe�
ient at rest K0 0.5 ◦Young's modulus E′ 50000 kN/m2Poisson's ratio ν ′ 0.3 -Interfa
e stregth rough -The bearing 
apa
ity for di�erent meshes of F-EXT in
ompatible and LST are given fromthe load-displa
ement 
urves 
omputed with LST and F-EXT in
ompatible on Figure 9.8.The load-displa
ement 
urves are displayed together with the bearing 
apa
ity 
al
ulatedanalyti
ally, pTerzaghi = 110.657 kN/m.
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9 BEARING CAPACITY OF A STRIP FOOTING ON A MOHR-COULOMBMATERIAL
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AnalyticalFigure 9.5: Load-displa
ement 
urves for a fri
tion material, φ = ψ = 30◦, c = 0.The 
onvergen
e of LST and F-EXT in
ompatible is displayed in Figure 9.9, where thebearing 
apa
ity is normalized with the analyti
al solution.
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Figure 9.6: Convergen
e of the normalized bearing 
apa
ity for a fri
tion material, φ = ψ = 30◦,
c = 0.The error of the bearing 
apa
ity obtained for the dis
retization with the LST element is68



Finite element analyses3.76 % 
ompared to the analyti
al solution, whereas the error for the F-EXT in
ompatibleelement is 10.67 %.LST 
onverges from above and towards the analyti
al solution, while F-EXT in
om-patible 
onverges from below and towards the analyti
al solution. Thereby, the bearing
apa
ity is not overestimated with use of the F-EXT in
ompatible element.Thus, the F-EXT in
ompatible element 
an be used with advantage for 
ohesionless soils,even though the 
omputational time is higher 
ompared to LST. A

ordingly, a set of testsis 
arried out for a soil material with a varying 
ohesion, in order to investigate whetheror not the F-EXT in
ompatible element is bene�tial in 
ases with 
ohesive soil.Test 2 - ClayIf the bearing 
apa
ity is 
omputed for the strip footing on a 
lay material with varying
ohesion, as outlined in Table 9.2, the results displayed in Figure 9.7 are obtained.Table 9.2: Material parameters of the 
lay material.Material 2Type of material behaviour Drained -ParametersSoil unit weight γ′ 15 kN/m3Fri
tion angle ϕ′ 30 ◦Dilatation angle ψ′ 30 ◦Cohesion c′ varying kN/m2Pressure 
oe�
ient at rest K0 0.5 ◦Young's modulus E′ 10000 kN/m2Poisson's ratio ν ′ 0.3 -Interfa
e stregth rough -In addition to the results of the bearing 
apa
ity 
omputed with LST and F-EXT in-
ompatible at di�erent values of 
ohesion, Figure 9.7 shows the 
orresponding analyti
alsolutions.
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9 BEARING CAPACITY OF A STRIP FOOTING ON A MOHR-COULOMBMATERIAL
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LST − 17716 d.o.f.
F−EXT incomp − 35590 d.o.f
AnalyticalFigure 9.7: The bearing 
apa
ity 
omputed with LST and F-EXT in
ompatibel at di�erent valuesof 
ohesion.It is evident that the bearing 
apa
ity is overestimated with a re�ned mesh of F-EXTin
ompatible elements, when the 
ohesion of the material in
reases. However, the resultsare still 
loser to the analyti
al solutions 
ompared to LST.Test 3 - Undrained 
layThe bearing 
apa
ity for the strip footing resting on an undraind 
lay material is 
omputed,i.e. in the 
ase of a 
ohesion material. However, the 
omputation 
an not run with zerovalue of fri
tion and dilatation when the Mohr-Coulomb model is used, and thereforethe bearing 
apa
ity of the 
ohesion material is 
omputed by assigning a low value of

φ = ψ = 0.001◦.Table 9.3: Material parameters of the undrained 
lay material.Material 3Type of material behaviour Undrained -ParametersSoil unit weight γ 15 kN/m3Fri
tion angle ϕ 0.001 ◦Dilatation angle ψ 0.001 ◦Cohesion cu 50 kN/m2Pressure 
oe�
ient at rest K0 1 ◦Young's modulus E 10000 kN/m2Poisson's ratio ν 0.3 -Interfa
e stregth rough -
70



Finite element analysesOn Figure 9.8 load-displa
ement 
urves for LST and F-EXT in
ompatible are displayedwith the analyti
ally bearing 
apa
ity, pTerzaghi = 257.091 kN/m.
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AnalyticalFigure 9.8: Load-displa
ement 
urves for a fri
tion material, φ = ψ = 0.001◦, c = 50 kN/m2.The 
onvergen
e of the normalized bearing 
apa
ity 
omputed with LST and F-EXT in-
ompatible is displayed in Figure 9.9:
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9 BEARING CAPACITY OF A STRIP FOOTING ON A MOHR-COULOMBMATERIAL
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Figure 9.9: Convergen
e of the normalized bearing 
apa
ity for a fri
tion material, φ = ψ =
0.001, c = 50 kN/m2.The bearing 
apa
ity obtained for the re�ned mesh of LST gives an error of 0.88 % in error
ompared to the analyti
al solution. The error for the F-EXT in
ompatible element is1.30 %. As seen in the 
ase of 
ohesionless soil, the F-EXT element 
onverges from belowtowards the analyti
al solution in the 
ase of 
ohesion soil. Thereby, the bearing 
apa
ityis not overestimated.When the bearing 
apa
ity of the footing is rea
hed, the following failure me
hanism ofthe soil o

urs with the F-EXT in
ompatible element. Figure 9.10 shows the failure of thesoil in x-dire
tion, whi
h is 
onsistent with the theoreti
al failure �gure for 
ohesion soil.The theoreti
al failure �gure 
onsists of straight lines and 
ir
ular ar
, as shown on the�gure [9℄.

Figure 9.10: Plot of failure in x-dire
tion72



Con
lusion on tests of a strip footing with Mohr-Coulomb's 
riteriaFigure 9.11 shows the failure of the soil in y-direk
tion

Figure 9.11: Plot of failure in y-dire
tion.9.3 Con
lusion on tests of a strip footing with Mohr-Coulomb's
riteriaFor a strip footing resting on a fri
tion soil material it appears that the F-EXT in
ompat-ible 
onverges from below and towards the analyti
al solution. Thereby, the load bearing
apa
ity is not overestimated with use of this element, as opposed to when the LST elementis used.It is seen for a material with both fri
tion and 
ohesion that the bearing 
apa
ity is over-estimated with use of F-EXT, when the 
ohesion is in
reased. However, the results are
loser to the analyti
al solutions 
ompared to LST, and the F-EXT in
ompatible elementis therefore preferable.For a strip footing in a fri
tionless 
ohesive material it is also evident that F-EXT in
om-patibel does not overestimate the bearing 
ap
ity. Thus, it 
an be 
on
luded that theF-EXT element with advantage 
an be used in the �nite element analysis of the bearing
apa
ity of a strip footing, even though the 
omputational time is higher 
ompared to LST.
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10 Dis
ussionA new triangular element has been implemented in a nonlinear, elasti
-plasti
 �nite elementprogram in order to test the abilities of the element. The performan
e of the extended ele-ment (EXT) as well as the full extended element (F-EXT) is 
ompared to the well-knownLST element.The �rst tests of the element was linear-elasti
 analyses in order to ensure that the elementis stable and provides the expe
ted results. The element was able to pass the pat
h test.For the test of Cook's membrane, the element overestimated the displa
ements and stresses.The same 
on
lusion was made for the test of a plate with a 
ir
ular hole.The stress at the edge of the hole was highly overestimated for 
oarse meshes, butas the mesh was re�ned, the results improved. The stresses along the symmetri line wasplottet, revealing that the gradients in the EXT and F-EXT elements had a signi�
antimpa
t on the stress distribution. For �ner meshes, that impa
t was redu
ed a great deal.The results for the linear-elasti
 tests revealed that the new extended element does notperform well in those kinds of analyses, and espe
ially not for 
oarse meshes, as the elementis too �exible and overestimates the displa
ements. However, this behavior is expe
ted forin
ompatible elements. The overly �exible properties of EXT and F-EXT in
ompatiblede
reases and eventually be
omes insigni�
ant for a su�
ient re�ned mesh.The elements were also tested in a nonlinear �nite element program with von Mises yield
riteria, in order to ensure that the appli
ation of the nonlinear part of the �nite elementprogram was implemented 
orre
tly. The 
ase of plane stress applied to a pat
h test was�rst 
onsidered, and it qui
kly be
ame apparent that the extended element has seriousdi�
ulties with perfe
tly-plasti
 nonlinearities.The problem arise when the sti�ness matrix for ea
h element is updated. This generatesadditional zero-eigenvalues whi
h results in a singular sti�ness matrix. This phenomenomis limited to perfe
t-plasti
ity, and 
an appear when two adja
ent elements are in a stateof yielding [12℄.The authors have been unable to resolve the problem, but suggests an approa
h ofadding a small hardening parameter in order to prevent the state of perfe
t-plasti
ity. Forthe pat
h test this method was useful, but the subje
t must be examined further.The 
ase of plane strain applied to a pat
h has also been tested with the use of von Misesyield 
riteria. In this test, the EXT element was able to 
onverge.A

ording to W. Pan et. al. [23℄ the solution in the 
ondensed d.o.f. must not e�e
t theglobal solution. Therefore it is examined what happens to the residual for
e ve
tor for anelement in the pat
h for plane stress and plane strain, respe
tively. It turns out that thenonlinearity with the following update of the sti�ness matrix does not in�uen
e the globalsolution in the 
ase of plane strain. This is seen in the residual for
e for the 
ondensedd.o.f. where the values stays 
lose to zero.However, in the 
ase of plane stress the residual for
es in the 
ondensed d.o.f. in
reasesdrasti
ally. Sin
e the residual for
e ve
tor is used to unpa
k the displa
ements for the nextiteration, this in
rease has an imidiate impa
t on the solution. The high residual for
esleads to an overestimation of the displa
ement of the 
ondensed d.o.f., whi
h then again74



gives an even higher residual for
es and thus the element is unable to 
onverge.Sin
e a pat
h test does not represent any real stru
ture, regarding boundary 
onditions orloadings, it is useful to examine plane strain in other appli
ations. The bearing 
apa
ityof a strip footing on a soil layer was therefore analysed as an analyti
al bearing 
apa
ityhas been 
al
ulated for von Mises yield 
riteria. The analyses shows that LST and F-EXT
ompatible overestimates the bearing 
apa
ity, as expe
ted.However, EXT is not able to 
onverge after it rea
hes the yielding point. This may bedue to the residual for
es of the 
ondensed d.o.f. If they be
ome too large, the element isunable to 
onverge. As seen in the plane stress test, good results were obtained by addinga small hardening parameter. A hardening parameter has also been implemented in this
ase, but the solution still do not 
onverge.The bearing 
apa
ity has also been determined with use of F-EXT in
ompatible ele-ments, in order to investigate whi
h results 
ould have been obtained for EXT if it had beenable to 
onverge. The bearing 
apa
ity for F-EXT in
ompatible is less than the analyti
albearing 
apa
ity, and therefore on the safe side. This is in good 
orrespondan
e with oneof the aims of this thesis: to obtain a more a

urate solution to geote
hni
al problems.As a �nal demonstration of the problems with using the EXT elements in a nonlinearanalysis, a test of the pat
h subje
ted to an unsymmetri
ally applied displa
ement is per-formed. Again, EXT is unable to 
onverge, whereas the other three element types do
onverge. The residual for
es of the 
ondensed d.o.f. are subje
t to investigation again,and it is seen that the values herein shifts within a 
ertain range. The values are too smallto 
ause severe problems when updating the sti�ness matrix, but large enough to prevent
onvergen
e. Instead, the program runs through iterations until the maximum limit isallowed - even at a maximum number of iterations of 500.Even though the EXT element was not able to 
onverge with the somewhat simple vonMises yield 
riteria, the F-EXT in
ompatible element is tested with the appli
ation ofMohr-Coulomb's yield 
riteria. This is be
ause F-EXT in
ompatibel gives the same resultsas EXT should have given if the authors had su

eeded on implementing the element ina nonlinear program. The 
omputational 
osts of using F-EXT in
ompatibel are, whenlooking at number of d.o.f., higher, but it 
an be doubted how mu
h 
omputational time
ould be saved by using EXT.Normally, the substru
turing method implies that the global sti�ness matrix 
an beformulated ones, and when using this sti�ness matrix several times throughout the sameanalysis, 
omputational 
osts are saved. But with the use of a Full Newton-Raphsons
heme, all sti�ness matri
es of yielding elements must be reformulated for every iteration.Thus, a lot of the inteded savings will be outrun by reformulation and 
ondensation withevery iteration.The method of only 
ondensating the linear part of the stru
ture is to the author'sbelief the most e
onomi
 way to perform a nonlinear analysis. However, the user must beable to identify whi
h parts of a stru
ture that remains elasti
 and 
an be represented byEXT, and whi
h parts should be represented by F-EXT in
ompatible.If the nonlinear region is unknown, an identifyer of how 
lose an element is to yielding,should be implemented. W. Pan et al. suggests that an element who has rea
hed 60-70 %of the yielding limit, should be in
luded in the nonlinear region [23℄.75



10 DISCUSSIONNote should be taken on the importan
e of having a su�
iently large nonlinear region,as the solution 
an be disrupted if a yielding element is too 
lose to the boundary of thenonlinear region.The purpose of the EXT element was to improve the �nite element analyses of geote
h-ni
al problems. The purpose is not a
hieved with the EXT element, however it is shownthat the F-EXT in
ompatible element improves the �nite element analyses of a 
ommongeote
hni
al problem signi�
antly. This is seen in the analyses of the bearing 
apa
ity fora strip footing resting on a fri
tion soil material and a 
ohesion soil material, respe
tively.In both 
ases the F-EXT in
ompatible 
onverges from below and towards the analyti
alsolution. Thus, the bearing 
apa
ity is not overestimated with the F-EXT, as opposed towhen the LST element is used.It is seen for a material with both fri
tion and 
ohesion that the bearing 
apa
ity isoverestimated with use of F-EXT, when the 
ohesion is in
reased. However, the results are
loser to the analyti
al solutions 
ompared to LST, and the F-EXT in
ompatible elementis therefore preferable even though the 
omputational 
ost is higher. The 
omputational
osts 
an be redu
ed if the 
ondensation of the element (EXT) 
an be solved in 
onne
tionwith nonlinear problems.Although the F-EXT in
ompatible element provides good results it would be advisable toperform additional tests of the 
onvergen
e and a

ura
y of the element in other geote
h-ni
al appli
ations. This may be done for a �nite element analysis of slope stability, wherethe fa
tor of safety is often overestimated with use of 
onventional elements.
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11 Con
lusionThe purpose of this thesis was to formulate a new �exible triangular element, that was suit-able for geote
hni
al analyses. The element is based on the a

ura
y of the quadrati
 straintriangular element and the 
omputational speed of the linear strain triangular element.By redu
tion of nodes of the QST element and the following stati
 
ondensation ofd.o.f., the element 
onsists of only 6 nodes and 12 d.o.f. when it is assembled in the globalsystem. But internally, the element 
onsists of 7 nodes and 20 d.o.f. This formulationmaintains the a

ura
y of the strains 
al
ulated for ea
h element, but has the advantagethat the global equilibrium equations are faster to solve due to the fewer d.o.f. used in theglobal sti�ness matrix.Furthermore, 
ondensation of the gradients allows an in
ompatibility between elementsfor these d.o.f. This adds to the �exibility of the element, and makes the element 
onvergefrom �the opposite side� 
ompared to 
ompatible elements. This is favorable in geote
hni-
al problems, as numeri
al solutions tends to overestimate the bearing 
apa
ity. i.e. thesolution is on the unsafe side.Several tests has been 
arried out to verify if the element is in fa
t able to 
ombine a

ura
yand low 
omputational 
osts. First of all, it was validated that the element was able topass the pat
h test and provides a stable solution.The results for the linear tests was 
onsistent with the expe
tations: the element didnot perform well for 
oarse meshes, but with su�
ient re�nements of the mesh, reasonableresults are obtained.The results for the tests with von Mises yield 
riteria did not meet the expe
tations. Theelement was unable to 
onverge for a plane stress pat
h test. It was nes
esarry to add ahardening parameter to over
ome the di�
ulties, and the initial test with hardening didlook promising.Subsequently, the same test was performed for the 
ase of plane strain. In this test theelement 
onverged. A study of the residual for
e ve
tors for the 
ondensed d.o.f. for planestress and plane strain showed that for the latter, the values of the residual for
e ve
torfor the 
ondensed d.o.f. remained 
lose to zero during the analysis.This was opposite to the residual for
e ve
tor for the 
ase of plane stress, where theresidual for
e in the 
ondensed d.o.f. in
reased drasti
ally and thereby making the sti�nessmatrix singular.In other tests of plane strain, the element was not able to 
onverge. The residual for
eve
tor was again examined, and the residual for
es for the 
ondensed d.o.f. shifted betweena few values large enough to prevent the solution to 
onverge.The bearing 
apa
ity of a strip footing on a soil layer was also investigated for vonMises yield 
riteria. For this problem, the element was not able to 
onverge either. How-ever, the full extended in
ompatible element performed well and therefore the full extendedin
ompatible element has been tested for Mohr-Coulomb's yield 
riteria.The full extended in
ompatible element is identi
al to the extended element prior to thestati
 
ondensation. Therefore it 
an be used to show how the results would look like ifthe extended element was able to 
onverge in a nonlinear analysis.77



11 CONCLUSIONThe results are promising as the full extended in
ompatible element, for most of the
ases 
onsidered, did not overestimate the bearing 
apa
ity of the strip footing. If theextended element 
an be formulated in su
h a way that it 
an be used in nonlinear analyses,the number of d.o.f. needed in the global analysis 
an be redu
ed a great deal.But as dis
ussed previously, the question is if the reformulation and 
ondensation ofthe extended element in every iteration for a nonlinear analysis, is in fa
t redu
ing 
om-putational 
osts.
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A Geote
hni
al problemsOne of the geote
hni
al problems 
onsidered in this appendix is the stability of a simpleslope model 
onsisting of one soil layer. Another geote
hni
al problem 
onsidered is thebearing 
apa
ity of a strip footing pla
ed on a soil layer. Common to these problems arethat they 
an be assessed by analyti
al 
al
ulations. Thus, the �nite element results fromthe software Plaxis 
an be 
ompared with the results obtained by analyti
al 
al
ulations.A.1 Slope stability analysisThe stability analysis of a slope model is 
arried out to assess the fa
tor of safety asso
iatedwith a 
riti
al slip surfa
e. The fa
tor of safety for a slip surfa
e is 
al
ulated as a ratio ofresisting for
es and driving for
es:
F =

Sum of resisting for
esSum of driving for
esWithin a slope, various potential slip surfa
es 
an be 
onsidered. Ea
h of these slip surfa
eswill have a di�erent fa
tor of safety. The slip surfa
e for whi
h the fa
tor of safety isminimum is 
alled a 
riti
al slip surfa
e. Thus, the minimum of this fa
tor is regarded inthe slope stability analysis. For a simple slope model 
onsisting of a Mohr-Coulomb soil,this 
an be 
arried out by analyti
al 
al
ulation based on limit equilibrium (LE) methods.However, it is often ne
essary to 
al
ulate a various number of potential slip surfa
es to�nde the 
riti
al slip surfa
e, and therefore it 
an be usefull to use a software based onthe same methods. In the following the slope stability analysis is 
arried out using thesoftware Slope/w based on the LE methods. Similarly, the analysis is 
arried out usingthe software Plaxis based on the �nite element (FE) method.A.1.1 Geometry and material parametersFigure A.1 shows the simple slope model with an external load of 50 kN/m2. The slope is20 m wide and 10 m high, i.e. the slope has an in
lination of 1:2.
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Figure A.1: Slope model with an external load of 50 kN/m2.The slope itself is 
omposed of a 
lay material with the parameters given in Table A.4.Table A.1: Material parameters of the soil layer.General Soil layerMaterial model Model Mohr-Coulomb -Soil Type Clay -Type of material behaviour Drained -ParametersSoil unit weight above p.l. γd 18 kN/m3Cohesion c 10 kN/m2Fri
tion angle ϕ 25 ◦Dilatan
y angle ψ 25 ◦Permeability k 1.0 m/dayYoung's modulus E 50.000 kN/m2Poisson's ratio ν 0.3 -A.1.2 Analyti
al solution using LEThe stability of the slope is �rst assessed by Slope/w 
al
ulations based on the most
ommonly used limit equlibrium (LE) method referred to as the Ordinary method of sli
es[10℄. By this method a 
ir
ular slip surfa
e is assumed as shown in Figure A.2.a, and thesoil mass above the assumed slip surfa
e is divided into verti
al sli
es. The for
es on a sli
eare shown in Figure A.2.b.
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Slope stability analysis

Figure A.2: Ordinary method of sli
es: (a) Cir
ular slipe surfa
e (b) For
es a
ting on a sli
e. [10℄Moment equilibrium about the 
entre of the slip 
ir
le implies the following equationobtained for the fa
tor of safety de�ned as a ratio of resisting and driving moments:
F =

∑

(c′l +N ′ tanϕ′)

W sinα

N ′ = (W cosα− U) (A.1)Where,
c′ is the e�e
tive 
ohesion,
ϕ′ is the e�e
tive fri
tion angle,
l is the base length of the sli
e,
α is the in
lination of slipe surfa
e at the middle of the sli
e,
N is the normal for
e at ea
h sli
e,
U is the for
e due to pre-pressure at ea
h sli
e, and
W is the weight of ea
h sli
e.The stability analysis of the simple slope model shown in Figure ?? is 
arried out inSlope/w. The minimum fa
tor of safety and the 
orresponding 
riti
al slip surfa
e obtainedin the analysis are given in Figure A.3.
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Figure A.3: Fa
tor of safety F=1,403 and 
orresponding 
riti
al surfa
e from Slope/w.The 
riti
al slip found is sear
hed from 125 possible slip surfa
es by de�ning the inputof the entry and exit of slip surfa
es. The 
riti
al slip surfa
e is lo
ated with the 
enter
oordinates (x,y) = (25.9,25.3) and radius R = 20.7, and is obtained at the fa
tor of safetyF = 1.403. This fa
tor is used to 
ompare with the fa
tors obtained from the FE basedsoftware.A.1.3 Finite element solution using PlaxisThe slope stability analysis is then 
arried out for the same slope model using the softwarePlaxis. This software 
omputes the fa
tor of safety by a c−ϕ redu
tion pro
edure [19℄. Inthis pro
edure the strength parameters c′ and tan(ϕ′) of the soil are redu
ed until failureof the slope (the 
riti
al slip surfa
e) o

urs. In this way the fa
tor of safety is 
omputedas the ratio of the input shear strength and the shear strength at failure:
F =

Input strengthStrength at failure (A.2)For a Mohr-Coulomb model, the fa
tor of safety is obtained by:
F =

c− σn tan(ϕ)

cr − σn tan(ϕr)
(A.3)where,

c and ϕ are the input strength parameters,
cr and ϕr are the redu
ed strength parameters,
σn is the a
tural normal stress 
omponent.First, a plane strain model is de�ned using 6-node elements to generate the �nite elementmesh. The results of a re�ned mesh of 3152 elements and 12942 is shown in Figure A.4.
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Figure A.4: Deformed mesh with 6-node elements (deformations are s
aled to 500*10−6 )The fa
tor of safety and the 
riti
al slip surfa
e obtained with this mesh is given inFigure A.5. The 
riti
al slip surfa
e is indi
ated with a 
ontour plot of the total dis-pla
ements.

Figure A.5: Fa
tor of safety and a 
ontour plot og the displa
ements obtained with 6-node ele-ments in PlaxisTable A.2 shows the fa
tor of safety obtained by further mesh re�nements. It is seen thatthe use of 6-node elements 
ause a slow 
onvergen
e, as the 
onvergen
e is not a
hievedbefore 29309 elements and 118312 d.o.f.
85



A GEOTECHNICAL PROBLEMSTable A.2: The fa
tor of safety obtained by di�erent meshes with 6-node elementsMesh re�nement Element nr. Dof nr. Avg. element size Fa
tor of safety1 157 712 1950 mm 1,4892 336 1466 1340 mm 1,4793 747 3156 895 mm 1,4654 1556 6466 620 mm 1,4555 3152 12942 436 mm 1,4506 6713 27332 299 mm 1,4447 13194 53446 213 mm 1,4448 29309 118312 143 mm 1,443Next, a plain strain model is de�ned using 15-node elements to generate the �nite elementmesh. The results of a well-re�ned mesh of elements 747 and 12286 d.o.f. is shown inFigure A.6.

Figure A.6: Deformed mesh with 15-node elements (deformations are s
aled 500*10−6)The fa
tor of safety and the 
riti
al slip surfa
e is given in Figure A.7. The 
riti
al slipsurfa
e is indi
ated with a 
ontour plot of total displa
ements.
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Figure A.7: Fa
tor of safety and a 
ontour plot of the displa
ements obtained with 15-nodeelements in PlaxisThe fa
tor of safety obtained by additional mesh re�nements is given in Table A.3. It 
anbe seen that the mesh re�nements has no signi�
ant impa
t on the fa
tor of safety.Table A.3: The fa
tor of safety obtained by di�erent meshes with 15-node elementsMesh re�nement Element nr. D.o.f. nr. Avg. element size Fa
tor of safety1 57 1030 3240 mm 1,4812 157 2678 1950 mm 1,4503 336 5618 1340 mm 1,4434 747 12286 895 mm 1,4425 1556 25378 620 mm 1,4396 6713 108366 299 mm 1,439It is shown in Figure A.8 that the 15-node elements provides a higher 
onvergen
e ratethan the 6-node elements. The 
onvergen
e is a
hieved by only 1556 elements and 2556d.o.f. with the mesh of 15-node elements, whereas 
onvergen
e is not a
hieved before 29309elements and 118312 d.o.f. with the mesh of 6-node elements.
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Figure A.8: Convergen
e rate for FE and LE analyses.Compared to the fa
tor of safety obtained from the LE based software, as shown inFigure A.8, the fa
tor is overestimated when using a 
oarse mesh of 6-node elements,whearas the fa
tor is more a

urately estimated when using a 
oarse mesh of 15-node el-ements. Thus, a mesh of 15-node elements provides reasonable a

ura
y even for 
oarsemeshes.Further studies of the 
onvergen
e and a

ura
y in analysis with 6-node and 15-nodeelements is ne
essary, to validate the statement of the 15-node elements.A.2 Bearing 
apa
ity of a strip footingIn this se
tion the bearing 
apa
ity of a strip footing is 
al
ulated analyti
al and then nu-meri
al in the software Plaxis. In the numeri
al 
al
ulations 6-node and 15-node elementsis used to generate the meshes of the footing. The purpose is to show that the 15-nodeelement provides a better 
onvergens toward the bearing 
apa
ity 
al
ulated analyti
ally.A.2.1 Geometry and material parametersThe strip footing 
onsidered has a width of b = 1 m and is pla
ed on a soil soil layer of 5m thi
kness as shown in Figure A.9. The footing is 
onsidered rough. Appendix ??
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Bearing 
apa
ity of a strip footing
Load R

Footing

Soil layer

ϕ′ = 25
◦

γ′ = 16 kN/m3
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ν = 0.3
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Figure A.9: Geometry of strip footingIn the 
al
ulations of the bearing 
apa
ity an asso
iated Mohr-Coulomb material is as-sumed, sin
e 
al
ulations with a non-asso
iated Mohr-Coulomb material with diverse val-ues of the fri
tion angle and dilation angle often 
ause 
onvergen
e problems. In this 
asethe soil material is 
onsiting of 
lay with di�erent 
ohesion values. The material parameterof the 
lay is given in Table A.4.Table A.4: Material parameters of the soil layer.ClayMaterial model Model Mohr-Coulomb -Type of material behaviour Type Drained -ParametersSoil unit weight above p.l. γ′ 16 kN/m3Cohesion c′ varied 5 - 10 - 50 kN/m2Fri
tion angle ϕ′ 25 ◦Dilatan
y angle ψ′ 25 ◦Young's modulus E′ 5000 kN/m2Poisson's ratio ν ′ 0.33 -Interfa
e stregth Rinter rough -A.2.2 Analyti
al solutionsThe bearing 
apa
ity of the strip footing is 
al
ulated by Terzaghi's equation [9℄, whi
himplies an asso
iated perfe
t plasti
 Mohr-Coulomb material model:
p =

R′

A′ =
1

2
γ′ b′ Nγ sγ iγ + q′ Nq sq iq + c′ Nc sc ic (A.4)where,

R′ is the e�e
tive verti
al bearing 
apa
ity,
A′ is the e�e
tive area of the footing,
b′ is the e�e
tive width of the footing,
γ′ is the e�e
tive density of the soil under the footing,89



A GEOTECHNICAL PROBLEMS
q′ is the e�e
tive surfa
e load of the soil next to the footing,
c′ is the e�e
tive 
ohesion of the soil,
Nγ , Nq and Nc are bearing 
apa
ity fa
tors,
sγ , sq and sc are shape fa
tors, and
iγ , iq and ic are gradient fa
tors,The e�e
tive dimensions of the footing are equal to the geometri
 dimensions, sin
e theload applied to the footing is uniformly distributed. It is assumed that the length of thefooting is in�nite in relation to the width, b′ ≪ l′. Thus, the area of the footing is givenby:

A′ = 1m2/m (A.5)The dimensionless fa
tors for the bearing 
apa
ity Nγ , Nq and Nc are all fun
tions of thefri
tion angle, ϕ. These fa
tors have a 
onsiderable in�uen
e on the the bearing 
apa
ity.The exa
t values of Nq and Nc 
an be determined using Prandtl's equations:
Nq = eπ·tan(ϕ) · 1 + sin(ϕ)

1− sin(ϕ)
(A.6)

Nc =
Nq − 1

tan(ϕ)
(A.7)Di�erent methods of determination have been proposed for the value Nγ . Most of thesemethods are based on numeri
al solutions of the load-deformation path of failure. Referringto the geote
hni
al textbook [9℄ the fa
tor Nγ 
an be determined by the equation:

Nγ =
1

4
·
(

(Nq − 1) · cos(ϕ)
)

3

2 (A.8)Referring to Euro
ode [1℄ the fa
tor Nγ 
an be determined by the equation:
Nγ = 2 · (Nq − 1) · tan(ϕ) (A.9)Re
ently the exa
t value of Nγ has been determined for both rough and smooth footingsby Martin, see [16℄ and [17℄. The di�erent values of Nγ are stated in Table A.5.The shape fa
tors sγ , sq and sc are 
al
ulated by the expressions [9℄:

sγ = 1− 0.4 · b
′

l′
(A.10)

sq ≈ sc ≈ 1− 0.2 · b
′

l′
(A.11)The gradient fa
tors iq, ic and iγ are 
al
ulated by:90
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iq = ic = 1− H

V +A′ · c′ ∗ cot(ϕ) (A.12)
iγ = i2q (A.13)where,

H is the horixontal load,
V is the verti
al load,
c′ is the e�e
tive 
ohesion,
ϕ is the fri
tion angle.Sin
e it is assumed that b′ ≪ l′ for a strip footing, the shape fa
tors and gradients fa
torsare all equal to 1.The di�erent values of the bearing 
apa
ity fa
tors Nc, Nc and Nγ are stated in Table A.5,and the mat
hing bearing 
apa
ity is 
al
ulated using equation Eq. A.4 with di�erentvalues of the 
ohesion.Table A.5: Bearing 
apa
ities 
al
ulated by Eq. A.4 referring to geote
hni
al textbook [9℄

c′ 5 10 50 [kN/m2℄
ϕ′ 25 25 25 [◦℄
Nq 10.6621 10.6621 10.6621 [-℄
Nc 20.7205 20.7205 20.7205 [-℄
Nγ 6.47829 6.47829 6.47829 [-℄
Q 155.43 259.03 1087.85 [kN/m2℄Table A.6: Bearing 
apa
ities 
al
ulated by Eq. A.4 referring to Euro
ode 7 [1℄
c′ 5 10 50 [kN/m2℄
ϕ′ 25 25 25 [◦℄
Nq 10.6621 10.6621 10.6621 [-℄
Nc 20.7205 20.7205 20.7205 [-℄
Nγ 9.01102 9.01102 9.01102 [-℄
p 175.69 279.29 1108.11 [kN/m2℄Table A.7: Bearing 
apa
ities 
al
ulated by Eq. A.4 referring to Martins [17℄
c′ 5 10 50 [kN/m2℄
ϕ′ 25 25 25 [◦℄
Nq 10.6621 10.6621 10.6621 [-℄
Nc 20.7205 20.7205 20.7205 [-℄
Nγ 6.49131 6.49131 6.49131 [-℄
p 155.53 259.14 1087.96 [kN/m2℄It is seen from Table A.5 - Table A.7 that the methods of determination for the value Nγhas an in�uen
e on the bearing 
apa
ity, parti
ularly in the 
ase the low 
ohesion soil. Thein�un
e be
omes more signi�
ant if the soil weight or the width of the footing is lager.91



A GEOTECHNICAL PROBLEMSComparing with the exa
t value of Nγ determined by Martins, it is seen that value is more
orre
t when using equation Eq. A.9 from the geote
hni
al textbook than when Eq. A.9from Euro
ode is used.The bearing 
apa
ities 
al
ulated with the exa
t value of Nγ determined by Martins isused to 
ompare with the �nite element analysis performed in the following se
tion. It isassumed that the bearing 
apa
ities 
al
ulated analyti
ally is 
onservative 
ompared withthe results from the �nite element analysis.A.2.3 Finite element solutionsIn this se
tion the bearing 
apa
ity of the strip footing is 
arried out in the software Plaxis.The settlement of the footing is in Plaxis simulated by a for
ed uniform displa
ement of
u = 1m applied to the nodes at top of the soil domain instead of modelling the footing itself.This approa
h lead to a very simple model of the soil domain, shown in Figure A.10.a. Dueto symmetry only half of the soil domain is modelled in order to redu
e the 
omputational
osts.Both the 6-node and 15-node elements is used to generate the �nite element meshes ofthe soil domaine. The verti
al sides of the mesh are restrained in the horizontal dire
tion,while the base of the mesh is restrained in the verti
al and the horizontal dire
tion. Anexample of the 15-node element mesh is seen in Figure A.10.b.

Figure A.10: (a) The 
onsidered soil domain with boundary 
onditions, (b) Example of a meshwith 7905 elements and 3671 d.o.f.The bearing 
apa
ity of the footing is 
al
ulated for an asso
iated Mohr-Coulomb 
ondition.ResultsThe bearing 
apa
ity for the footing is evident from the load-displa
ement 
urves 
omputedin Plaxis. On the same 
urves the bearing 
apa
ity 
al
ulated analyti
ally is displayed.The load-displa
ement 
urves for the footing with a 
ohesion of 5, 10 and 50 kN/m2 isshown in Figure A.11, Figure A.12 and Figure A.12 for meshes with 6-node and 15-nodeelements, respe
tively. 92
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ement 
urve from 
al
ulations with a 
ohesion of 50 kN/m2.It is evident by Figure A.11, Figure A.12 and Figure A.12 that the bearing 
apa
ity in-
reases with the 
ohesion. Compared to the analyti
al solutions it is 
lear that the �niteelement solution in Plaxis overestimate the bearing 
apa
ity. The bearing 
apa
ity is morea

urately estimated when using a mesh of 15-node elements instead of 6-node elements.Thus, a mesh of 15-node elements provides reasonable a

ura
y even for 
oarse mesheswhen 
onsidering that the analyti
al solutions is 
onservative.In Figure A.14, Figure A.15 and Figure A.16 the 
onvergen
e of the bearing 
apa
ity isdisplayed for 6- and 15-node elements, respe
tively.
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Figure A.14: The 
onvergen
e of the bearing 
apa
ity for a 
ohesion of 5 kN/m2.94
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Figure A.15: The 
onvergen
e of the bearing 
apa
ity for a 
ohesion of 10 kN/m2.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

1080

1100

1120

1140

1160

1180

1200

1220

1240

1260

Number of d.o.f.

Lo
ad

 [k
N

/m
]

 

 

6−node elements
15−node elements.
Analytical solution

Figure A.16: The 
onvergen
e of the bearing 
apa
ity for a 
ohesion of 50 kN/m2.Compared to the bearing 
apa
ity 
al
ulated analyti
ally the solution obtained with amesh of 6-node element has a slower 
onvergen
e than the solutions with a mesh of 15-node elements. This validate the previous results in Se
tion A.1.3.
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B Computation of the sti�nessmatrixTo 
ompute the element sti�nes matrix [ElemK℄ the strain-displa
ement matrix [B℄ isderived from the shape fun
tions. [B℄ is de�ned by:
[B] = 





∂Ni

∂x 0 ∂Ni+3

∂x 0 ∂Ni+6

∂x 0 ∂N10

∂x 0

0 ∂Ni

∂y 0
∂Ni+3

∂y 0
∂Ni+6

∂y 0 ∂N10

∂y
∂Ni

∂y
∂Ni

∂x
∂Ni+3

∂y
∂Ni+3

∂x
∂Ni+6

∂y
∂Ni+6

∂x
∂N10

∂y
∂N10

∂x







where i = 1, 2, 3. The 
hain rule for di�erentiation gives:
∂Ni

∂x
=
∂Ni

∂λ1

∂λ1
∂x

+
∂Ni

∂λ2

∂λ2
∂x

+
∂Ni

∂λ3

∂λ3
∂x

(B.2)
∂Ni

∂y
=
∂Ni

∂λ1

∂λ1
∂y

+
∂Ni

∂λ2

∂λ2
∂y

+
∂Ni

∂λ3

∂λ3
∂y

(B.3)The derivative of the area 
oordinates is given by the area of the element and the adja
entline to the 
orner node in question:
∂λi
∂x

=
1

2A
li,y

∂λi
∂y

=
1

2A
li,xFor the 
orner nodes, the shape fun
tion di�erentiated with respe
t to the area 
oordinatesis:

∂Ni

∂λi
= 6 λ2i + 2 λ2j + 2 λ2k + 3 λj λk − 1

∂Ni

∂λj
= 4 λi λj + 3 λi λk

∂Ni

∂λk
= 4 λi λk + 3 λi λjFor the midside nodes, the derivatives of the translational shape fun
tion with respe
t toarea 
oordinates are:

∂Ni+3

∂λi
= −12 λj λk + 4 λj96



∂Ni+3

∂λj
= −12 λi λk + 4 λi

∂Ni+3

∂λk
= −12 λi λjAnd the derivatives of the gradient shape fun
tion with respe
t to area 
oordinates are:

∂Ni+6

∂λi
= lk (4 λi λj − 2 λ2j)

∂Ni+6

∂λj
= lk (2 λ

2
i − 4 λi λj)

∂Ni+6

∂λk
= 0Finally, the shape fun
tion for the 
enter node is also di�erentiated with respe
t to area
oordinates:

∂Ni+9

∂λi
= 27 λj λk

∂Ni+9

∂λj
= 27 λk λi

∂Ni+9

∂λk
= 27 λi λjThese expressions are all substituted into Eq. B, whi
h then leads to the 
omputation ofthe element sti�ness matrix [K℄:

[K] =

∫

[B]T [D][B]dV (B.4)where [D℄ is the 
onstitutive matrix.This element sti�ness matrix is a 20-by-20 matrix 
orresponding to the 20 d.o.f. internalto the element. Before assembling the element sti�ness matri
es into the global system,the 8 d.o.f. that only works within the element should be 
ondensed.
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C Linear tests of the extendedelementThe linear tests presented in this appendix is 
ondu
ted in order to validate the imple-mentation of the extended element (EXT) and the full extended element (F-EXT) in the�nite element 
ode in Matlab. The tests performed in
lude simple pat
h tests, Cook'smembrane test and strain energy test. These tests makes use of most of the parameterswhi
h in�uen
es the element a

ura
y. Parameters whi
h in�uen
es a

ura
y are loading,element geometry, test geometry, material properties et
.Ina

ura
ies of the element 
an o

ur by the presen
e of spurious modes indu
ed of inad-equate 
onne
tions of elements, rank faults e.g. in 
onne
tion with d.o.f., lo
king e�e
ts,elementary defe
ts like rigid body motion et
. [11℄. The pat
h tests should ensure thatthese defe
ts is not present.C.1 Pat
h testThe �rst test performed is a simple pat
h test originally presented by Irons (1964). Thistest veri�es whether the extended element 
an provide a 
onstant state of strain/stress.Meeting this requirement is ne
essary to guarantee that an arbitrary mesh of these ele-ments will 
onverge towards exa
t results if the mesh is re�ned su�
iently [11℄.The pat
h test is performed using a simple �nite element model, that is an assemblageof elements, with one of the nodes internal to the model. In this 
ase the assemblage ofelements forms a square model with the side length 10, as shown in Figure C.1.
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h test
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8 2Figure C.1: Geometry, 
onstraints and loads of the pat
h.The rigth side of the model is loaded by a 
onstant tra
tion in the x-dire
tion. For amodel with side length 10 and a tra
tion of 1 unit per length, the nodal loads are 1/6 atthe 
orners and 2/3 at the midside, a

ording to Se
tion 2.3. The left side of the model isrestrained in the x-dire
tion and the lower left 
orner is also restrained in the y-dire
tion.These restraints prevent rigid body motion and ensure that a 
orre
t solution to the 
on-stant strain/stress state may be obtained.If the pat
h test is 
onsidered as a linear elasti
 problem with isotropi
 material properties,Young's modulus E = 1 and Poisson's ratio ν = 0, the expe
ted results of a plane stresssolution are displa
ements:
u = 0.1 x ; v = 0.0strains

εx =
∂u

∂x
= 0.1 ; εy =

∂v

∂y
= 0.0and stresses

σx = E · εx = 0.1 ; σy = E · εy = 0.0The results of displa
ements and stresses 
omputed in ea
h node is given in Table C.1.Due to the proportionality between strains and stresses, only the stresses are 
omputed.It is seen that the expe
ted results are obtained.
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C LINEAR TESTS OF THE EXTENDED ELEMENTTable C.1: Results of the pat
h test for the extended element, E = 1 and ν = 0.Node u v σx σy1 0.000 0.000 0.100 0.0002 1.000 0.000 0.100 0.0003 1.000 0.000 0.100 0.0004 0.000 0.000 0.100 0.0005 0.500 0.000 0.100 0.0006 1.000 0.000 0.100 0.0007 0.500 0.000 0.100 0.0008 0.000 0.000 0.100 0.0009 0.800 0.000 0.100 0.00010 0.400 0.000 0.100 0.00011 0.400 0.000 0.100 0.00012 0.900 0.000 0.100 0.00013 0.900 0.000 0.100 0.000Figure C.2 illustrates that 
orre
t displa
ements and stresses in x-dire
tion are obtainedeverywhere in the pat
h �eld.

Figure C.2: Displa
ement ux and stress σx.Both the EXT element and F-EXT element is able to display a 
onstant state of strains/stressesand thereby pass the pat
h test. It is possible for an element to pass the pat
h test eventhough it is unstable. Provided that the element is stable it is able to exhibit rigid body mo-tion without strains/stresses, states of 
onstant strains/stresses, and 
ompatibility betweenelements [11℄. These requirement is ne
essary to guarantee 
onvergen
e. A

ordingly, thepat
h test is also applied to verify stability.C.2 StabilityA stability test 
an be performed by 
omparison of nodal displa
ements from the previouspat
h test with nodel displa
ement from a slightly higher load. If the displa
ements 
hangedrasti
ally, the element is unstable. 100



StabilityA load 1 % higher than the load in the previous test is applied. The nodal displa
ementsare found to be exa
tly 1 % higher, as shown in Table C.2. This is 
onsistent with theload applied, and sin
e the displa
ement does not 
hange drasti
ally, the extended elementpasses this stability test.Table C.2: Results for the pat
h test with a slightly higher load.Node ux uy σx σy1 0.000 0.000 0.101 0.0002 1.010 0.000 0.101 0.0003 1.010 0.000 0.101 0.0004 0.000 0.000 0.101 0.0005 0.505 0.000 0.101 0.0006 1.010 0.000 0.101 0.0007 0.505 0.000 0.101 0.0008 0.000 0.000 0.101 0.0009 0.808 0.000 0.101 0.00010 0.404 0.000 0.101 0.00011 0.404 0.000 0.101 0.00012 0.909 0.000 0.101 0.00013 0.909 0.000 0.101 0.000Another way to test for instability is by 
omputing the eigenvalues of [K℄ for the pat
h.When the pat
h is supported su�
iently to prevent rigid body motion, the eigenvaluesshould all be positive. In Table C.3 the eigenvalues for the pat
h are given. They are allpositive, whi
h thereby indi
ates that the stability of the extended element is satisfying.Table C.3: Eigenvalues for the pat
h test of the extended element.Eigenvalues9.0558 0.93365.9359 0.70925.3291 0.50634.5893 0.47273.6369 0.38153.2281 0.36192.9175 0.26362.3766 0.14472.0176 0.13621.4774 0.13231.3086 0.00001.2084 0.00001.0796 0.0000The previous tests do not show how well the extended element performs in other appli
a-tions. The element may in other appli
ations provide a poor a

ura
y in a 
oarse meshor provide a slow 
onvergen
e. Thus, additional tests of the elements is performed withthe intention to 
ompare the performan
e of the element to the performan
e of the LSTelement. 101



C LINEAR TESTS OF THE EXTENDED ELEMENTC.3 Cook's membrane testThe following test performed is the well-known problem 
on
erning Cook's membrane withdi�erent meshes. This test veri�es whether the extended element (EXT) 
an provide a bet-ter a

ura
y and 
onvergen
e rate for a linear elasti
 problem, than the LST element [6℄.The geometry of Cook's membrane is shown in Figure C.3 with two di�erent meshes, andit appears that the problem in
lude both shear and bending 
ombined with the geometrydistortion. The rigth side of the model is loaded by a 
onstant tra
tion of P=1 in they-dire
tion, and the left side of the model is restrained in the x- and y-dire
tion. Themodulus of elasti
ity is E = 1 and Poisson's ratio is ν = 0.333.
C

B

A
44

16

48

x,u

y,v

b

b

b

P

Mesh 2x2.

C
B

A
44

16

48

x,u

y,v

b

b

b

P

Mesh 4x4.Figure C.3: Cook's membrane with mesh 2x2 and mesh 4x4.The verti
al displa
ement at point C and the maximum and minimum prin
ipal stress atthe points A and B, respe
tively, are 
ompared for the elements mentioned in Se
tion 2.There is no known theori
ti
al solutions, but the results provided by Bergan & Felippa(1985) [18℄ and Felippa & Alexander (1992) [4℄ are used for 
omparison purposes.The displa
ement results 
omputed for di�erent mesh sizes are listed in Table C.4 for theLST element, the EXT element and the F-EXT element. These results should be 
omparedto the results provided by Felippa & Alexander (1992).
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Cook's membrane testTable C.4: Displa
ement in point C for Cook's membrane.Mesh LST EXT 12x12 FULL-EXT 20x20 FULL-EXT 20x20Mesh 
omp in
omp2X2 23.301 27.299 24.552 27.2994X4 23.856 24.938 24.067 24.9388X8 23.934 24.211 23.978 24.21116X16 23.951 24.007 23.968 24.00720X20 23.955 23.977 23.967 23.97724X24 23.958 23.974 23.967 23.97428X28 23.958 23.974 23.967 23.97432X32 23.958 23.978 23.967 23.978Best known 23.95 23.95 23.95Displa
ements 
onverge faster than stresses, and therefore the 
omputed stresses is listed inTable C.5. These results should be 
ompared to the results provided by Bergan & Felippa(1985).Table C.5: Maximum and minimum stresses in points A and B for Cook's membrane.LST EXT 12x12 
omp FEXT 20x20 
ompMesh (σmax)A (σmin)B (σmax)A (σmin)B (σmax)A (σmin)B2X2 0.2311 -0.1908 0.2151 -0.1194 0.2444 -0.19394X4 0.2364 -0.2041 0.2172 -0.1609 0.2388 -0.20308X8 0.2369 -0.2042 0.2255 -0.1842 0.2371 -0.203616X16 0.2369 -0.2036 0.2305 -0.1932 0.2369 -0.203520X20 0.2369 -0.2036 0.2317 -0.1930 0.2369 -0.203524X24 0.2369 -0.2036 0.2325 -0.1947 0.2369 -0.203528X28 0.2369 -0.2036 0.2331 -0.1959 0.2369 -0.203532X32 0.2369 -0.2036 0.2335 -0.1983 0.2369 -0.2035Best known 0.2359 -0.2012 0.2359 -0.2012 0.2359 -0.2012Table C.6: Maximum and minimum stresses in points A and B for Cook's membrane.FEXT 20x20 in
ompMesh (σmax)A (σmin)B2X2 0.2151 -0.11944X4 0.2172 -0.16098X8 0.2255 -0.184216X16 0.2305 -0.193220X20 0.2317 -0.193024X24 0.2325 -0.194728X28 0.2331 -0.195932X32 0.2335 -0.1983Best known 0.2359 -0.2012However, it is 
onsidered unfair to 
ompare the results only by mesh sizes, due to the fa
tthat it is not the a
tual size of the mesh that indi
ates a di�eren
e in the 
omputational
osts. Instead, it is the number of d.o.f. that indi
ates the 
osts, and the elements should103



C LINEAR TESTS OF THE EXTENDED ELEMENTtherefore be 
ompared with respe
t to d.o.f.In Figure C.4 and Figure C.5 the 
onvergen
e of displa
ements of the point C with respe
tto d.o.f. are illustrated. Figure C.5 is a 
lose-up of Figure C.4.
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Figure C.4: Convergen
e of displa
ements uC with respe
t to d.o.f.
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Cook's membrane test
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Figure C.5: Convergen
e of displa
ements uC with respe
t to d.o.f., 
lose-up.When 
omparing the displa
ement results with the best known results, it is seen that the
onvergen
e of EXT element is poor 
ompared to LST element. It is also evident that thedispla
ements 
al
ulated by the EXT element is higher than the displa
ements 
al
ulatedby the LST element. This indi
ates that the extended element is too �exible to providea

urate results in a linear analysis.Likewise, it is seen that the 
onvergen
e of the in
ompatible F-EXT element is poor
ompared to LST element. On the other hand it is seen that the 
ompatible F-EXT ele-ment 
onverges as fast as the LST element, and that the a

ura
y of the 
ompatible F-EXTelement is high even for 
oarse meshes. This is evident from the 
lose-up on Figure C.5.In Figure C.4 and Figure C.5 the 
onvergen
e of maximum and minimum prin
ipal stressesin the points A and B are illustrated with respe
t to d.o.f.
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C LINEAR TESTS OF THE EXTENDED ELEMENT
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Figure C.6: Convergen
e of stress (σmax)A with respe
t to d.o.f.
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Figure C.7: Convergen
e of stress (σmax)B with respe
t to d.o.f.Likewise, it is seen that the 
onvergen
e of prin
ipal stresses 
omputed for the EXT elementand the in
ompatible F-EXT element is poor 
ompared to LST. However, it is seen that the
onvergen
e of the prin
ipal stresses 
omputed for 
ompatible F-EXT is good 
omparedto the LST. 106



Plat with a holeC.4 Plat with a holeThe problem 
onsidered in the followings test is a plate with a 
ir
ular hole, whi
h isloaded by a for
e per unit area on its edge. The plate is shown in Figure C.8. The plate isassumed to be made of a linear elasti
 material, with the material parameters E = 1 and
v = 0.3. Furthermore the plate is 
onsidered to be very thin, and thereby the tests 
an besolved for a plane stress state.

y

D = 1.0 2r = 0.2

σ = 1

θ

a

σ = 1

x

b

Figure C.8: Plate with a 
ir
ular hole, loaded in tension.The problem is solved numeri
al, and the results 
an be 
ompared with the analyti
alsolution given for a plate with an in�nite length 
ompared with the diameter for the hole,
2r. The solution for the stress throughout the plate is given by:

σθ =
σ

2

(

1 +
r2

a2
− (1 + 3

r4

2 a4
) cos(2 θ)

) (C.1)Large stresses o

urs in a small, lo
alized area around the hole, and the large stresses isreferred to as stress 
on
entrations. The maximum stress σθ = 3σ is lo
alized at a = rand θ = ±90◦, and the minimum stress σθ = −σ is lo
alized at a = r and θ = 0◦ and 180◦.The problem is solved by using the di�erent meshes, and three examples of the meshes areshown in Figure C.9. The meshes is generated so that the elements near the hole are �nerthan those further from the hole, in this way the stress 
on
entration around the hole isbetter des
ribed. Due to the axis symmetry only a quarter of the plate is dis
retized intoa mesh.
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C LINEAR TESTS OF THE EXTENDED ELEMENT
Figure C.9: Mesh 1 - 92 elements and 173 nodes, Mesh 2 - 328 elements and 633 nodes, Mesh 3- 1152 elements and 4834 nodesIn Figure C.10 the 
onvergen
e of the maximum stress {σx}θ=90◦ at the surfa
e of the holeis displayed for LST element, EXT element, F-EXT 
ompatible and in
ompatible elements.It appears that the 
onvergen
e of the EXT and F-EXT elements is poor 
ompared to the
onvergen
e of LST element. Furthermore problems with memory o

urs in 
omputationof the maximum stress with a very �ne mesh of F-EXT in
ompatible elements.
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Figure C.10Results of the problem solved with di�erent meshes of LST elements, EXT elements, F-EXT 
ompatible and in
ompatible elements are 
ompared with the analyti
al solution ofEq. C.1. Therefore a plot of the tests data and the analyti
al solution of the normal stressalong the verti
al symmetry plane is displayed in Figure C.11, Figure C.12, Figure C.13.
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Plat with a hole
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Figure C.11: Nomal stress σx along the verti
al symmetry axis - mesh 1
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Figure C.12: Nomal stress σx along the verti
al symmetry axis - mesh 2
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C LINEAR TESTS OF THE EXTENDED ELEMENT

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

1

1.5

2

2.5

3

3.5

Distance, y [m]

S
tr

es
s 

(σ
x) 

[k
P

a]

 

 

LST
EXT
FEXT −comp
FEXT − incomp
Analytical solution

Figure C.13: Nomal stress σx along the verti
al symmetry axis - mesh 3When 
omparing the numeri
al test results with the analyti
al results, it is seen that theresults are not 
ompletely a

urate for the numeri
al tests. The tests results obtainedwith LST element is more a

urate than the results obtained with EXT element, F-EXT
ompatible and in
ompatible element. It appear that the results obtained with the EXTelement are equal to the results obtained with the F-EXT in
ompatible element, and there-fore it is evident that the linear-elasti
 behavior of the EXT and the F-EXT in
ompatibleelement is the same.Common for the EXT element, F-EXT 
ompatible and in
ompatible element is that thein�uen
e of the gradients be
omes signi�
ant for the stress results 
omputed for a 
oarsemesh. The in�uen
e of the gradients is more signi�
ant for the the EXT and the F-EXTin
ompatible 
ompared with the F-EXT 
ompatible element. Only for a very �ne meshthe in�uen
e of the gradients be
omes insigni�
ant.The in�uen
e of the gradients be
omes more signi�
ant in the area around the hole,where large stress 
on
entrations o

urs. This is evident from the 
lose-up on Figure C.14,Figure C.15 and Figure C.16.
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Plat with a hole
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Figure C.14: Close-up of the stress along the verti
al symmetry axis - mesh 1
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Figure C.15: Close-up of the stress along the verti
al symmetry axis - mesh 2
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C LINEAR TESTS OF THE EXTENDED ELEMENT
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Figure C.16: Close-up of the stress along the verti
al symmetry axis - mesh 3C.5 Convergen
e of strain energyIn the previous tests, the displa
ement- and stress 
onvergen
e rates has been des
ribedfor spe
i�
 nodes in a geometry. The 
onvergen
e rate of one point may be very di�erentfrom another point in the geometry. A

ordingly, in the following a
ademi
 example the
onvergen
e of the strain energy for the entire geometry is 
onsidered.The geometry is shown in Figure C.17. For 
onvenien
e, the length and width of the modelare 
hosen to L = 1. Poisson's ratio is ν = 0.3 and the modulus of elasti
ity is E = 1[TJEK OP PÅ DET℄. The mesh 
onsists of 4 elements, as shown in Figure C.17a, and themesh is to be re�ned 3 times. The �rst mesh re�nement is illustrated in Figure C.17b.Displa
ements in ea
h node is given by:
u = sin(

π x

L
) sin(

πy

L
) v = 0 (C.2)The exa
t solution is found by multiplying strains with stresses and integrating over thearea of the geometry:

Eexact =

∫ 1

0

∫ 1

0
σxεx + σyεy + σxyγxy dx dy = 2.7755 (C.3)To determine the strain energy of the numeri
al model, the internal load ve
tors for ea
helement is 
al
ulated:
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Convergen
e of strain energy

L

L

(a) Mesh 1x1. L

L

(b) Mesh 3x3.Figure C.17: The geometry with di�erent meshes used in the a
ademi
 example.
∂σx
∂x

+
∂σxy
∂y

+ fx = 0 (C.4)
∂σy
∂y

+
∂σxy
∂x

+ fy = 0 (C.5)The load ve
tors are applied to the model, and the displa
ements are 
al
ulated. Thestrain energy 
an then be found by the global displa
ement ve
tor [SysU℄ and the globalsti�ness matrix [SysK℄:
Enumeric = [SysU]′ [SysK] [SysU] (C.6)The strain energy is 
omputed for the LST element, the EXT element and the FEXTelement. The results are shown in Table C.7.Table C.7: Strain energy Enumeric in the model.Mesh LST EXT 12x12 FEXT 20x201X1 2.0010 4.9636 3.89323X3 2.6786 2.0386 2.29377X7 2.7675 2.6128 2.617015X15 2.7749 2.7397 2.7366

Eexact 2.7755 2.7755 2.7755The 
onvergen
e rates are illustrated in a log-log s
ale in Figure C.18. In the x-dire
tionthe relation between the length of the geometry and the 
hara
teristi
 element length isdipi
ted, expressed by h = 1√
Nels

. In the y-dire
tion the di�eren
e between the exa
t andnumeri
al strain energy is depi
ted. 113



C LINEAR TESTS OF THE EXTENDED ELEMENTThe dis
retization error, and thereby the 
onvergen
e rate, of strain energy is [11,Se
tion 9.6℄:
O(h2(p+1−m)) (C.7)whereO is the order of the elements used,h is the 
hara
teristi
 length of an element,p is the degree of the highest 
omplete polynomial, and2m is the order of the highest derivative in the governing di�erential equation.This means that the slope for the LST element should be O(h(2(2+1−1))) = O(h4), and theslope for the EXT and FEXT elements should be O(h(2(3+1−1))) = O(h6).
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Figure C.18: Convergen
e of strain energy.As seen in Figure C.18, the 
onvergen
e rate of the LST element is as expe
ted O(h4).However, the 
onvergen
e rate of the EXT and FEXT element is O(h2) wi
h is remarkablylower than it should be. It is also mu
h lower than the 
onvergen
e rate of the LST element,and this 
orresponds well with the previous example.C.6 Con
lusion on linear testsPrevious tests of the extended element have been only partially su

essful. The pat
htests veri�ed that the extended element provides a stable solution, and is able to 
onvergetowards an exa
t soluion. However, passing the pat
h tests is not a guarantee that theelement will perform well in other appli
ations su
h as a

ura
y and 
onvergen
e rate.114



Con
lusion on linear testsThe tests 
on
erning Cook's membrane showed that the 
onvergen
e rate of both displa
e-ments and stresses of the extended element is poor 
ompared to the LST element. Thebest known results from [18℄ and [4℄ was used for 
omparison of a

ura
y. However, it 
anbe dis
ussed whether the best known results are outdated, sin
e these were proposed morethan twenty years ago.The tests 
on
ering strain energy showed likewise that the 
onvergen
e of the extendedelement is poor 
ompared to the standard element.These tests indi
ates that the extended element is too �exible to provide a

urate resultsin a linear analysis. As shown in Se
tion 1.1, the 
onventional elements overestimatedthe fa
tor of safety and thereby the bearing 
apa
ity of the soil. This suggests that the�exibility of the element 
an be an advantage in nonlinear geote
hni
al analysis, be
ausethe element does not underestimate the displa
ements in soil materials.The 
on
lusion is that the extended element is not well suited for linear analysis, however,this does not mean that the exended element is not well suited for nonlinear analysis.Therefore in the following the implementation of the EXT element in Matlab is extendedto nonlinear analysis.
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D Introdu
ing a hardeningparameter - FiguresIn this appendix, di�erent �gures referred to in Se
tion 6.3 is seen.D.1 MeshThe two mesh sizes not shown in Se
tion 6.3 
an be seen on Figure D.1 and Figure D.2.

Figure D.1
Figure D.2D.2 Bearing 
apa
ityHere the bearing 
apa
ity for the strip footing is seen. Figure D.3 
orresponds to themedium 
oarse mesh shown in Figure D.1, and Figure D.4 
orresponds to the �nest mesh116



Bearing 
apa
ityshown in Figure D.2.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
−3

0

500

1000

1500

2000

2500

Applied displacement in y−directon

Lo
ad

 k
N

/m

 

 

LST pp
F−EXT compatible pp
F−EXT incompatible pp
EXT pp
EXT h=0.1
Analytical result

Figure D.3: Settlement of a strip footing with pp indi
ating perfe
t plasti
ity and h=0.1 indi-
ating a hardening parameter.
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Figure D.4: Settlement of a strip footing with pp indi
ating perfe
t plasti
ity and h=0.1 indi-
ating a hardening parameter.
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D INTRODUCING A HARDENING PARAMETER - FIGURES
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