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Synopsis:

The project group will through this report inves-

tigate the uncertainties regarding fatigue design

of a wind turbine jolt. The test series forming

the background of [Eurocode 1993-1-9, 2005]

are analysed, and the significance of the scatter

included is evaluated. A nonlinear SN-curve is

implemented due to the uncertainties regarding

the location of the knee point of bilinear SN-

curves. Estimates of a Low Cycle Fatigue load

is proposed, and the resulting accumulated reli-

ability is analysed by a probabilistic approach.

This is done in order to quantify the possible

trimming of design parameters, when designing

for Fatigue loads.





Preface

This report is the master thesis by group B121b, as part of the Master programme in Structural and Civil Engi-
neering, 4th semester under the School of Engineering and Science at Aalborg University. The project spans from
2nd of February 2012 until 8th of June 2012. The theme of the thesis is Stochastic modelling of uncertainties of
SN-curves and the project is executed in accordance with the guidelines given in the Study Programme Guide. To
answer the problem statement, the project group has independently, with the help from the supervisor, gathered
information about the relevant topics. This knowledge will be documented and evaluated in this report, and later
be defended at a presentation and an exam.

Figures and Table numbering is based on which chapter, Figure and Table it can be found at. Sources are noted
using the Harvard method. Hereby sources regarding literature, magazines, web pages, programs, and figures are
noted as eg. [Dyrbye and Hansen, 1997]. If the source is placed before a full stop, it only refers to the last sentence,
whereas a source placed after a full stop refers to the whole paragraph. It should be noted that figures and tables
without attached source are own productions. In the bibliography further information about the sources can be
found.

All Monte Carlo and First Order Reliability Method calculations are made in FORTRAN, based on files pro-
grammed by Prof. John Dalsgaard Sørensen, later modified by the authors of this report.





Table of Contents

1 Introduction 1
1.1 Scope and limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Structure of report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Loads 5
2.1 Modeling of wind fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Wind Speed Distrubution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Fatigue 9
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Fatigue Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Characteristic SN-curves 15
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Characteristic SN-curve by Background Documentation to Eurocode 3 . . . . . . . . . . . . . . . 16

4.2.1 Example of the Characteristic SN-curve Calculated by the Background Documentaion to
Eurocode 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2.2 Example of the Characteristic SN-curve Calculated by the Background Documentaion to
Eurocode 3 with a Fixed Slope of m = 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.3 Characteristic SN-curve by Eurocode 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3.1 Example of the Characteristic SN-curve Calculated by the Eurocode 3 . . . . . . . . . . . 22
4.3.2 Example of the Characteristic SN-curve Calculated by the Eurocode 3 with a Fixed Slope

of m = -3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4 Characteristic SN-curve by DNV-RP-C203 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.4.1 Example of the Characteristic SN-curve Calculated by DNV-RP-C203 . . . . . . . . . . . 25
4.5 Comments to the Characteristic SN-curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 Code based Fatigue Design, EC 31
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 Design Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.3 Limit State Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.4 Reliability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.4.1 Monte Carlo Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.4.2 First Order Reliability Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6 Low Cycle Fatigue Loads 39
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

V



TABLE OF CONTENTS

6.2 Design Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.3 Low cycle fatigue RISØ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.3.1 Steel connection in tower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.3.2 Composite material: Blades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.4 Low cycle Fatigue Alternative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.5 Reliability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.5.1 Reliability Analysis RISØ Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.5.2 Reliability Analysis, Alternative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.6 Calabration of FDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.7 Comments on Low Cycle Fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7 Nonlinear SN-curve 51
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.2 Random Limit Fatigue Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.2.1 Design Equation DNV F-class SN-curve . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.2.2 Design Equation, RLFM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.2.3 Comparison of Design Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7.3 Reliability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.3.1 Reliability Analysis, DNV-RLFM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.3.2 Reliability Analysis, RLFM-RLFM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.3.3 Reliability Analysis, DNV-DNV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.4 Comments on Random Limit Fatigue Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

8 Reliability Analysis of Test Results 59
8.1 Limit state equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
8.2 Reliability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
8.3 Calibration of the Fatigue Design Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

9 Sensitivity Analysis 63
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
9.2 Sensitivity Analysis of δ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
9.3 Sensitivity analysis of Xwind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
9.4 Sensitivity analysis of Klin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
9.5 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

10 Conclusion 69

11 Wind Distribution 71

12 Sensitivity analysis 73
12.1 Sensitivity Analysis for a Bilinear SN-curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Bibliography 74

VI





Introduction 1
With fear for man-made climate changes, the environmental impact of e.g. the BP and Exxon Valdez accidents,
and the unwillingness to depend on imported fossil fuels, renewable energy is catching more and more interest
worldwide. Of these renewable energy sources, wind power is one of the most promising, with large projects going
on in Europe, North- and South America, and Asia. To promote the construction of wind farms, governments
have been backing up the projects with additional fundings for several years. This subsidy has been necessary, in
order to encourage the development of cost-efficient wind turbines, which can be competitive with the traditional
power plants. The price per kWh produced by wind turbines have steadily decreased the last 30 years with the
improvements in the design of the blades, the implementation of control systems, and the general increase in size
of wind turbines.

Figure 1.1: Arguments against different types of power productions.

Further reduction in the cost of energy, COE, is however still necessary, in order to make the definitive breakthrough
for wind energy. The COE is defined by Equation (1.1)

COE =
Energy

APEX +OPEX
(1.1)

where

APEX Initial expenses of facility
OPEX Operational expenses

To decrease the COE, a larger energy output is needed, or a decrease in expenses. The first can be achieved by
improving the gearing system, better site assessments, or more efficient aerodynamics of the blades. The latter
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1. Introduction

can be reached with a trimming of the design, reducing the material consumption, or lower the cost of operation
and maintenance of the turbine. Trimming the design can naturally only be done to a certain extent, since a paper
thin steel tower supporting a 5 MW wind turbine is likely to fail quite a lot. The key is to reach a design which is
precisely strong enough, with a minimum of extra bearing capacity. This being said, a design which is precisely
strong enough does not mean that the structure will never fail. If the cost of making the structure stronger is greater
than cost of a failure once in a while, this could mean that the chosen design is allowed to fail at a certain probabil-
ity. This economical criteria assumes of course that the environmental consequences and the risk of loosing human
lives in case of failure can be neglected.

1.1 Scope and limitations

The cyclic nature of wind and wave loads on wind turbines means that designing for fatigue is an issue that is highly
relevant. Most design codes are using SN-curves with a linear correlation in a log-scale between the magnitude of
stress ranges and the number of cycles before failure. The SN-curves are the best available theory to describe the
fatigue bearing capacity, but is not very exact. Even with loads perfectly known, results obtained are easily off by a
factor 2 or more. One of the reasons why the theory fails to describe reality could be the linear correlation between
stress ranges and number of cycles to failure, in a lognormal diagram. The influence of the few very large stress
ranges has not yet been analysed thoroughly, even though the topic has been mentioned in some publications. An
interesting algorithm is found [Larsen, G. C. and Thomsen, K , 1996], which presents a theoretical approach to
describe the effect of Low Cycle Fatigue loads, further on abbreviated to LCF. This theory will be implemented
for a connection in a wind turbine, for which load series are found by simulations, using the programs TurbSim
[B. J. Jonkman, M. L. Buhl Jr., b] and FAST [B. J. Jonkman, M. L. Buhl Jr., a]. The fatigue damage, including the
contribution from the low cycle loads, will be compared with the one obtained from the traditional SN curve based
method. Besides LCF, the uncertainties regarding the SN-curves proposed by [Eurocode 1993-1-9, 2005] will be
analysed. The test data forming the basis of the code will be presented, and different SN-curves proposed, based
on these. Hence the scope of this project is captured in the following:

"‘How significant is the impact on the fatigue load for a wind turbine, due to Low Cycle Fatigue, analysed by
a probabilistic approach?"’

and

"‘How are the uncertainties regarding fatigue life implemented in the SN-curves in [Eurocode 1993-1-9, 2005],
and what is the impact on the reliability if other curves are proposed?"’

The resulting reliability of the wind turbine including the contribution from LCF load will be compared to the
reliability of a wind turbine designed without. For simplicity, the load case used in this project is not considering
wave loads. However, since the theory in [Larsen, G. C. and Thomsen, K , 1996] is based on a load series, it is
possible to apply for wave loads, if wanted. With the lack of accuracy of the SN-curves to describe the damage,
the test data from which the EC is based is analysed, with the purpose of modelling the SN-curve stochastic.
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1. Introduction

1.2 Structure of report

The report consist of 10 Chapters, which are divided further into sections and subsections. Chapter 2 contains the
theory applied and limitations for determining the wind load. In Chapter 3 the concepts of SN-curves and damage
summation is explained, and the test data from which the SN-curves origin is analysed. A probabilistic modelling
of the damage calculation is introduced.
Three different methods are proposed in Chapter 4 to determine characteristic SN-curves, and a code based design
of a connection is made in Chapter 5. An algorithm from [Larsen, G. C. and Thomsen, K , 1996] is presented in
Chapter 6 to implement the contribution from Low cycle fatigue. The theory described in previous Chapters are
used to assemble a load series, for which the damage is found.
Instead of the linear SN-curves proposed by [Eurocode 1993-1-9, 2005], a non-linear curve proposed by [Lassen,
T. et al , 2005] is presented in Chapter 7. The reliability obtained designing with this curve is compared to the code
based.
In Chapter 8 the background tests from which [Eurocode 1993-1-9, 2005] is presented, and an analysis is performed
to propose new SN-curves. A sensitivity analysis is made for the stochastic variables modelling the uncertainties
in Chapter 9.
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Loads 2
In this chapter the wind parameters for obtaining a response from a wind turbine will be presented. Due to the
complexity of the wind, simplifications are needed. In this chapter, the wind parameters for obtaining the response
for a wind turbine is presented. With the simplifications made, two programs can be used to determine the response
of the wind turbine: Turbsim generates windfield series, whereas FAST determines the response of the wind turbine,
based on the simulated wind field series.

2.1 Modeling of wind fields

The design lifetime of the wind turbine is set to 20 years in most design situations [Vestas, 2012]. To ensure the
safety of the wind turbine the response over the entire life time is therefore needed to count all stress cycles the
different components will experience. In an ideal situation the response would be based on measurements over at
least 20 years. In reality, this is however seldom possible. Instead, computer simulations are used to propose wind
series, from which the response can be found..
But two problems quickly occurs: The amount of data needed for describing the wind field series for 20 year, is
extremely data-heavy, and makes it hard to handle calculation-wise. Instead assumptions are made to bring data
and time consumption down. One step is to make use of the fact that the metrological conditions repeat them selfs
are a period of time. In this report, the wind fields are modelled as series of 10 minutes each. For each 10 minute
interval the short term fluctuations are well described by a turbulence model.

I(U) =
σU

U
= Ire f

(
0.75

c90%

U

)
(2.1)

where

I Characteristic turbulence intensity [-]
c90% Constant = 5.6 [m/s]
Ire f Reference turbulence intensity (offshore = 0.12) [-]
U Mean wind speed at hub hight [m/s]
σU Turbulence [m/s]

The power in the turbulence is defined by a power spectral density function. A simple and commonly used spectral
density with the correct high-frequency behaviour was proposed by Kaimal, [Dyrbye and Hansen, 1997], and is
the one used in this report to model the wind fields.
To model the wind fields a commercial software, TurbSim [B. J. Jonkman, M. L. Buhl Jr., b] is used. TurbSim
generates series of wind fields, given a mean wind speed and meteorological boundary conditions, (turbulence
model, height of reference wind speed, roughness length, etc.).
The wind fields are modelled by mean wind speeds ranking from 3 to 25 m/s with bins of 2m/s. A square with
dimensions two times rotor radius + two times shaft length is chosen, to ensure that the wind turbine does not move
out of the boundaries of the wind fields. A time step for the sampling frequency is set to 0.05s, as recommended
by [B. J. Jonkman, M. L. Buhl Jr., 2008].
These wind field series are then used as input files to FAST, which then gives the response of the wind turbine. Fur-
ther knowledge about the programs can be gained from [B. J. Jonkman, M. L. Buhl Jr., 2008] and [B. J. Jonkman,
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2. Loads

M. L. Buhl Jr., 2005].

The wind turbine chosen to investigate is the one set to standard by FAST. This wind turbine model is composed
of data from a number of wind turbine models, since enough details could not be obtained for one specific model.
The result is a ’composite’ 5 MW wind turbine. Even though some data is used from offshore wind turbines, wave
induced loads will not be included. The main characteristics of the turbine can be seen at Table 2.1, as well as
some terrain and meteorological conditions.

Parameter Value
Hub height 90 [m]
Rotor radius 61.5 [m]
Number of blades 3 [-]
Cut in wind speed 3 [m/s]
Cut out wind speed 25 [m/s]
Rated wind speed 11.4 [m/s]
Tower width, top 3.87 [m]
Tower width, bot 6 [m]
Turbulence model Kaimal

Table 2.1: Characteristics of wind turbine.

By using the inputs above, 72 time series are made to describe the wind fields affecting the turbine. These concist
of 6x10 min for each mean wind speed, in the range previously described. With the necessary input data for FAST
obtained, the response of the wind turbine can be found. Since the input data is divided in time series for each
mean wind speed, so is the output.

2.2 Wind Speed Distrubution

To determine how many of each 10 minutes wind speed series occur in 20 years a weibull distribution is used, see
Equation (2.2).

P(Vhub) = 1− exp

(
−π

(
Vhub

0.4Vre f

)k
)

(2.2)

Vave =C

√
π

2
(2.3)

According to [International Electronical Commission, 2005] a weibull distribution can be used to describe the wind
distribution over an extended period of time. Normal the shape factor k is set to 2 and the wind condition at the site
is set to Class I where Vre f = 50m/s. In Figure 2.1 the distribution is showed for three different mean wind classes:
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2. Loads

:
IEC 61400-1 uses a Rayleigh distribution (Weibull with form parameter α=2).

( )
2

1 exp
0.4

hub
R hub

ref

VP V
V

π
⎡ ⎤⎛ ⎞
⎢ ⎥= − − ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
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Figure 2.1: Wind distribution for class I, II and III [Henrik S. Toft, 2011].

When windfields are simulated and broken down to 10 minute intervals and then distributed by a weibull distribu-
tion, cycles larger than 10 minutes are neglected. This means that not all cycles the wind turbine will experience
is counted. This problem is dealt with in [Larsen, G. C. and Thomsen, K , 1996] where a algorithm formulated
to take this into account. An alternative algorithm, inspired by this, is also proposed. Both are implemented in
Chapter 6, and their impact on the reliability of the wind turbine is analysed.
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Fatigue 3
In this chapter a description of the SN-curves will be given along with the uncertanties connected to life time
predictions and reliability calculations.

3.1 Introduction

In general, fatigue calculations are associated with large uncertainties. This is due to the fact that structural failure
is a complex interaction between load, time and environment, where environmental loads can be caused by tem-
perature or corrosion. Loads may vary from monotonous to a complete variable load (as for example wind or wave
on a wind turbine) and be uniaxial or multiaxial. The time over which a structure is subjected to a load can vary
from centuries, like for bridges or buildings, down to hours or even seconds.
Making life time predictions of steel structures will always be connected with a great amount of uncertainty. One
way of describing fatigue strength is by an SN- or Wöhler-curve. An SN-curve is defined by the number of cycles
until failure at a given stress range. The SN-curve can be expressed by Equation (3.1)

N = K S−m (3.1)

On a logarithmic scale Equation (3.1) shows a linear dependence between the stress range and the number of cycles
to failure as seen in Equation (3.2).

log(N) = log(K)−m log(S) (3.2)

where

N Number of cycles [-]
S Stress range [MPa]
K Material constant [-]
m Wöhler exponent [-]

Figure 3.1 shows a plot of a bilinear SN-curve with a cut off limit on a logaritmic scale. The bilinear curve is the
most common used for steel and has been proven by fatigue tests, which will be further investigated in the section
below.

9



3. Fatigue

Figure 3.1: Example of an SN-curve.

The first part of the curve describes the linear part. This curve is the most conservative, since it predicts no smaller
damage accumulation from the small stress ranges. The second part have a slope of m = 5 and is less conservative
for the small stresses.

3.2 Uncertainties

The uncertainty of SN-curves can be divided into two groups: a physical uncertainty and statistical uncertainty.
The physical uncertainty comes from locally imperfections on the surface of the material. These imperfections
are associated with local stress concentrations, that for loads well under the yield limit can cause local plastic
deformation because the stresses here can exceed the yield limit. When there is a cyclic loading the yield limit can
be exceeded for each load cycle leading to a crack initiation and crack propagation phase, which eventually will
cause a failure.

Equation (3.1) is based on a number of tests and that makes it affected by a statistical uncertainty. There is only
one way to reduce this uncertainty, and that is by making more tests. But fatigue tests is both time consuming and
can be very expensive.
One way of illustrating the uncertainties is by a reliability analysis of a component. In [Det Norske Veritas, 2010]
an example of a calculated lifetime with mean SN data and design SN data shows the difference when the design
SN-curve is defined as the mean minus two times the standard deviation. See Figure 3.2

10



3. Fatigue

DET NORSKE VERITAS

 Recommended Practice DNV-RP-C203,  April 2010
Page 45

Figure 9-2
Effect of scatter in S-N data on calculated fatigue life

Figure 9-3
Fatigue failure probability as function of design fatigue factor
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Figure 3.2: The influence of scatter shown by mean and design SN data in lifetime calculations. [Det Norske Veritas,
2010]

3.3 Fatigue Tests

SN-curves are made by fitting experimental data by linear regression. In Eurocode 3 the SN-curves are divided into
different categories specified by their strength at 2 million cycles. The connection chosen to design is categorised
as a load carrying welded constructional detail 3 with detail category ∆σc of 36 MPa, see Table 8.5 in [Eurocode
1993-1-9, 2005].
As explained in the previous section there are some uncertainties regarding fatigue life estimations. In this section
the uncertainties regarding the scatter and amount of tests will be evaluated.
Six different tests will be used to examine the uncertainties. The first two test seres are made in the laboratory at
Aalborg University and the last four are from the background document to Eurocode 3. Finally a seventh is assem-
bled by combining all 6 test series, treating them as one, to investigate the influence of the standard deviation. The
seven tests are listed in Table 3.1.

Test nr. Reference
Test 1 Aaborg University
Test 2 Aaborg University
Test 3 LCW 10
Test 4 LCW 30
Test 5 1 1 q
Test 6 1 1 r
Test 7 All combined

Table 3.1: The seven tests investigated.

In Table 3.2 is the results from a fatigue test performed in laboratory at Aalborg University [J. U. Andersen, R. D.
Brandstrup, 2003].
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3. Fatigue

Stress range [MPa] Number of cycles until failure [-]
45.22 2057708
57.55 995783
54.30 1089816
67.59 535911
87.98 268067
100.29 227872
112.07 115163
128.87 75237
136.93 41956
174.85 18766

Table 3.2: Results from test 1.

To obtain the parameters log(K) and m, least square method is used to get the best fit. Along with the least square
fit the regression parameter R2 is calculated to see how well the curve describe the data points.
With log(K) and m it is possible to compute log(N) values with the given stress ranges from test 1. The residuals
can then be calculated by Equation (3.3)

yres = log(N)− y f it (3.3)

where

yres residual values
yfit Fittet log(N) values by least square

R2 is then found from Equation (3.4)

R2 = 1−
Syres

Stotal
(3.4)

Syres =
n

∑
i=1

y2
res (3.5)

Stotal = (n−1)var(log(N)) (3.6)

where

n Number of data points
Syres sum of squared residuals
Stotal total sum of squares of log(N)
var(log(N) Variance of log(N)

With R2 it is possible to determine how many percent the fitted curve describe of the data points. The values of R2

is listed in Table 3.3.
Due to scatter around the fitted curve it is quite difficult to predict the life time of a structure submitted to cyclic
loading, as shown in Figure 3.2.
Several tests has formed the basis for the design SN-curves in [Eurocode 1993-1-9, 2005], where a reference value

12



3. Fatigue

for the stress level at 2 ·106 cycles defines the different curves. On Figure 3.3 Test 1 is plotted along with the fitted
curve.
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Figure 3.3: Test results from fatigue test 1

In Section 3.2, the uncertainties leading to the scatter of the fitted curve is described. One way of describing the
scatter is to add an extra term to Equation (3.7):

log(N) = log(K)−m log(S)+ ε (3.7)

where

ε The lack of fit [MPa]

ε models the lack of fit and is assumed normal distributed with a mean value zero and a standard deviation of
σε. The standard deviation σε describe the physical uncertainty whereas σlog(K) and σσε

describes the statistical
uncertainties.
The parameters σlog(K) and σσε

can be found using the maximum likelihood method. From (3.7) the following
model can be computed:

y = α0 +α1x1 + ε (3.8)

where

y log(N)
x1 log(S)
α0 regression parameter
α1 regression parameter
ε residual

13



3. Fatigue

The residual ε is assumed normal distributed with mean µ = 0 and a standard deviation σε. With n observations
avalible the likelihood function can then be written:

L(α0,α1,σε) =
n

∏
i=1

P(yi = α0,α1,ε) (3.9)

Because ε is assumed to be normal distributed the likelihood function can be rewritten to:

L(α0,α1,σε) =
n

∏
i=1

1√
2πσε

exp
(
−1

2

(
yi−α0 +α1x1i

σε

))2

(3.10)

The product form of the function in Equation (3.10) is difficult to differentiate. By making use of the fact that the
logarithm of a variate must have its maximum at the same place as the maximum of the variate, Equation (3.10)
can be rewritten to Equation (3.11)

lnL(α0,α1,σε) =−nln
(√

2πσε

)
−

n

∑
i=1

1
2

(
yi−α0 +α1xi1

σε

)2

(3.11)

Equation (3.11) can then be optimized to find the maximum and thereby the best fitted parameters. This is done by
using the nonlinear solver NLPQL.
In Table 3.3 the estimated parameters for SN-curves for the seven different test series are listed.

Test Number of tests m log(K) σε σlog(K) σσε
R2

Test 1 10 -3.376 11.940 0.079 0.03312 0.00178 0.98
Test 2 10 -3.080 11.162 0.130 0.04144 0.00440 0.95
Test 3 27 -2.999 12.245 0.218 0.04225 0.00465 0.85
Test 4 48 -2.103 9.775 0.374 0.07680 0.00671 0.66
Test 5 18 -3.294 11.743 0.169 0.04226 0.00192 0.95
Test 6 19 -3.132 11.640 0.212 0.04958 0.00592 0.93
Test 7 132 -2.166 9.898 0.453 0.16850 0.00510 0.58

Table 3.3: Fitted parameters by maximum likelihood.

From this Table, it is worth noticing Test 3 and 4. Test 3 is a very well performed test series, with relatively small
scatter, whereas Test 4 is poorly graded, due to the including of 3 steel classes. The significance of this will be
analysed in Chapter 8.
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Characteristic SN-curves 4
In this chapter three different methods for calculating the characteristic SN-curves will be presented and compared.
Six different tests from the previus chapter is used and finally the influence of scatter will be discussed.

4.1 Introduction

When using standard design SN-curves found in e.g. [Eurocode 1993-1-9, 2005] to calculate the fatigue strength
of a welded joint, the SN-curves are subjected to some conservative choices. This is partly because the SN-curves
are used in a variety of connections and used in many situations. The SN-curves in [Eurocode 1993-1-9, 2005]
are made from a series of different tests with a constant amplitude, see Figure 4.1. Here it can be seen that
different test series yields different slopes and are subject to some scatter. The tests can be found in the background
documentation to Eurocode 3 [G. Sedlacek et al., 2002].
The tests used to calculate the characteristic SN-curves are listed in Table 4.1.

Test nr. Reference Fabrication
Test 1 Aaborg University Submerged Arc Welding
Test 2 Aaborg University Manual arc welding
Test 3 LCW 10 Manual arc welding, run off tabs removed by machining
Test 4 LCW 30 Manual arc welding, no machining
Test 5 1 1 q MIG welded
Test 6 1 1 r TIG welded
Test 7 All combined -

Table 4.1: The seven tests investigated.

15



4. Characteristic SN-curves

102 103 104 105 106 107 108
101

102

103
Fatigue tests

Number of cycles to failure [−]

S
tr

es
s 

ra
ng

e 
[M

P
a]

 

 
Test 3
Test 4
Test 5
Test 6

Figure 4.1: Test series from [G. Sedlacek et al., 2002].

With the test results it is now possible to calculate characteristic SN-curves to make safe estimation on the fa-
tigue strength. There are several ways of constructing characteristic SN-curves. In Table 4.2 are three different
approaches listed.

Document Design criteria
Eurocode 3 75% confidence interval of 95% probability of survival for log(N)
Background for EC 3 95% lower confidence on log(N)
DNV-RP-C203 mean minus two standard deviations

Table 4.2: Characteristic SN-curves from different papers.

In Chapter 3 the welded joint in the wind turbine tower are classified as a load carrying weld joint. In [Eurocode
1993-1-9, 2005] Table 8.5 these are specified by 12 construction detail categories. The joint is classified to have
a detail category of 36 MPa. In Appendix ?? the data for the four tests, plus two extra made at the laboratory at
Aalborg University, are listed. In the following sections the theory for the three different approaches are described
and an example with Test 1 is calculated.

4.2 Characteristic SN-curve by Background Documentation to Eurocode
3

In the Background documentation to Eurocode 3, the characteristic SN-curve are found from a 95% lower con-
fidenceinterval on log(N). First a linear regression is made by least square method to determine the regression
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4. Characteristic SN-curves

parameters to Equation (3.2). This equation is rewritten to:

Y = b0 +b1X (4.1)

where

b0 Regression coefficient
b1 Regression coefficient

The vectors Y and X contains the values yi and xi where the following notation is used:

yi = log(N)

xi = log(S) (4.2)

The two unknown regression coefficients b0 and b1 are found from least square method. They are be found from
following Equation (4.3) and (4.4) [Bilal M. Ayyub et al., 1997].

b1 =

n
∑

i=1
xiyi− 1

n

n
∑

i=1
xi

n
∑

i=1
yi

n
∑

i=1
x2

i −
1
n

(
n
∑

i=1
xi

)2 (4.3)

b0 = Ȳ −b1X̄ (4.4)

In the equations above Ȳ and X̄ express the mean values of Y and X . With the regression parameters found, the
standard error of estimate can be calculated which is used to find the confidence interval. Mathematically, the
standard error of estimate equals the standard deviation of the errors, and has the same units as Y [Bilal M. Ayyub
et al., 1997].

Se =

√
1
ν

n

∑
i=1

(ŷ− yi)
2 (4.5)

In Equation (4.5) ν states the number of degrees of freedom which equals the sample size minus the unknowns.
Because there in equation (4.1) are two unknowns the degrees of freedom becomes ν = n-2.
The confidence interval evaluates the accuracy of a single point ŷ for a given value x0. To evaluate the characteristic
SN-curve a lower 95 % confidence interval is used, corresponding to a level of significance at α = 0.05.
The estimated value of Y , which is denoted by ŷ, is given by:

ŷ = Ȳ +b1(x0− X̄) (4.6)

The point of interest, x0, is the point in which the detail category is defined. In Eurocode 3 this is set to 2.000.000
cycles.

x0 =
b1− log(2.000.000)

b0
(4.7)

Then the confidence interval can be determined by Equaion (4.8).

ŷ−Setα/2

√√√√√1+
2
n
+

(x f − X̄)2

n
∑

i=1
(xi− X̄)2

(4.8)
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4. Characteristic SN-curves

4.2.1 Example of the Characteristic SN-curve Calculated by the Background Documen-
taion to Eurocode 3

Test 1 made in the laboratory at Aalborg University, consist of a series of 10 experiments on a load carrying weld
with constant amplitude, see Table 3.2. The following notation is used from Equation (4.2):

yi = log(N) (4.9)

xi = log(S)

The linear regression with least square is done with:

b1 =

n
∑

i=1
xiyi− 1

n

n
∑

i=1
xi

n
∑

i=1
yi

n
∑

i=1
x2

i −
1
n

(
n
∑

i=1
xi

)2 = 11.940 (4.10)

and

b0 = Ȳ −b1X̄ = −3.376 (4.11)

Then the standard error of estimate can be calculated by

Se =

√
1
ν

n

∑
i=1

(ŷ− yi)
2 = 0.0887 (4.12)

The mean curve can now be found to

log(N) = 11.940−3.376log(S) (4.13)

The characteristic SN-curve can now be found from the results from Test 1 by a 95% lower confidence interval for
log(N) with a level of significance α = 0.05 and a tα/2 = 2.306.

ŷ−Setα/2

√√√√√1+
2
n
+

(x f − X̄)2

n
∑

i=1
(xi− X̄)2

ŷ−0.2352 (4.14)

Then the characteristic SN-cuve can be written:

log(N) = 11.940−3.376log(S)−0.2352

log(N) = 11.7048−3.376log(S) (4.15)
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Figure 4.2: Characteristic SN-curve with a 90% confidence interval.

Figure 4.2 shows how the characteristic SN-curve is parallel translated from the mean curve with the lower confi-
dence. The detail category is found at N = 2.000.000 cycles to:

log(2.000.000) = 11.7048−3.376log(S)

log(S) =
11.7048− log(2.000.000)

3.76
= 39.878MPa (4.16)

4.2.2 Example of the Characteristic SN-curve Calculated by the Background Documen-
taion to Eurocode 3 with a Fixed Slope of m = 3

In Eurocode 3 the curves have a fixed slope at m = -3. This affects the regression parameters and confidence
interval for the characteristic SN-curve. With a fixed slope the regression parameter becomes:

b0 =−3 (4.17)

b1 = Ȳ −b0X̄ = 11.2091 (4.18)

The standard error of estimate becomes

Se =

√
1
ν

n

∑
i=1

(ŷ− yi)
2 = 0.1179 (4.19)
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4. Characteristic SN-curves

The characteristic SN-curve with a fixed slope can now be found from the results from Test 1 by a 95% lower
confidence interval for log(N) with a level of significance α = 0.05 and a tα/2 = 2.306.

ŷ−Setα/2

√√√√√1+
2
n
+

(x f − X̄)2

n
∑

i=1
(xi− X̄)2

ŷ−0.3196 (4.20)

Then the characteristic SN-cuve can be written:

log(N) = 11.2091−3log(S)−0.3196

log(N) = 10.8895−3log(S) (4.21)
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Figure 4.3: Characteristic SN-curve with a 90% confidence interval for a fixed slope of m = 3.

Plottet together with Figure 4.2 it can be seen that with a fixed slope of m = -3 the standard error of estimate
increases and thereby the confidence interval gets wider. This means that from approximate 20000 cycles the
fatigue strength will get more conservative.
The detail category is found for a fixed slope at N = 2 ·106 cycles to:

log(2.000.000) = 10.8895−3 log(S)

log(S) =
10.8895− log(2.000.000)

3
= 33.84MPa (4.22)

In Table 4.3 values for all seven tests are listed.
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4. Characteristic SN-curves

Test Dof tα/2 Se ŷ - * m log(K) Detail kategory
Test 1 8 2.306 0.089 0.2352 -3.376 11.7048 39.88
Test 2 8 2.306 0.146 0.4136 -3.080 10.7484 27.80
Test 3 25 2.060 0.226 0.4820 -2.999 11.7630 66.24
Test 4 46 2.014 0.382 0.8050 -2.103 8.9704 18.60
Test 5 16 2.120 0.179 0.3988 -3.294 11.3442 33.96
Test 6 17 2.110 0.225 0.4994 -3.132 11.1406 35.10
Test 7 130 1.978 0.4563 0.9141 -2.166 8.9842 17.34
Test 1 8 2.306 0.118 0.3196 -3 10.8895 33.84
Test 2 8 2.306 0.147 0.4196 -3 10.5847 26.78
Test 3 25 2.060 0.226 0.4820 -3 11.7649 66.27
Test 4 46 2.014 0.445 0.9200 -3 10.7513 30.44
Test 5 16 2.120 0.191 0.4273 -3 10.7729 30.95
Test 6 17 2.110 0.227 0.5062 -3 10.8756 33.49
Test 7 130 1.978 0.500 0.9975 -3 10.5999 27.10

Table 4.3: Values for characteristisk SN-curves by Background Documentation to EC 3.

4.3 Characteristic SN-curve by Eurocode 3

Because SN-curves are based on test results they are subjected to a statistical uncertainty. To take this statistical
uncertainty into concideration, in Eurocode 3 the characteristic SN-cuve is calculated by a 75% confidence interval
of 95% probability of survival for log(N). The test are described by equation (4.23)

log(N) = log(K)−m log(S) (4.23)

log(K) = log(N)+m log(S) (4.24)

The characteristic value xi,k is determined as a 5% quantile for a distribution function FX (x), where X is modelled
as a stokastic variable (corresponding to an infinite numer of results). In the case where a limited number of results
are avalible, the following metohod is used.[J. D. Sørensen, 2003]
For each test a number of results n are avalible. In the following these will be described by x1,x2, ...,xi and is
assumed to be from a homogeneous population. The characteristic value xk is determined as a lower end point in a
75% confidence q = 0.75 interval for the quantile value p = 0.05.
X is assumed to be normal distributed with with a mean µ and a standard deviation σ, hence is the characteristic
value xk defined as the p-quantile value:

xk = µ+upσ (4.25)

where

up = Φ
−1(p) (4.26)

Φ Standard Normal Distribution

Because the test results is assumed normal distributed and the standard deviation is unknown, the following is used
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4. Characteristic SN-curves

to determine the characteristic value xk. The mean µ and varians s2 is calcualted by:

x̄ =
1
n

n

∑
i=1

xi (4.27)

s2 =
1

n−1

n

∑
i=1

(xi− x̄)2 (4.28)

x̄ i an outcome of the stochastic variable X̄ which is normal distributed with mean µX and standard deviation σ/
√

n.
(n− 1)s2/σ2 is an outcome of the stochastic variable (n− 1)S2/σ2 which is χ2 distributed with n− 1 degrees of
freedom.[H. S. Toft, 2009]
Then on basis of the test results x̄ and s it is possible to estimate the characteristic value xk:

xsk = x̄− kss (4.29)

xsk is an outcome of the stochastic variable Xks. The factor ks is determined in a way such that the probability for
Xks less than xsk is at least q = 0.75. So xsk is on the safe side on Xks [H. S. Toft, 2009].

P(Xsk ≤ xk) = P(X̄− ksS≤ µ+upσ (4.30)

= P

 X̄−µ
σ/
√

n −up
√

n

S/σ
≤ ks
√

n

 (4.31)

= P
(
T
(
n,−up

√
n
)
≤ ks
√

n
)
≥ q (4.32)

Where T (n,−up
√

n) is a noncentral t-distribution with n− 1 degrees of freedom and the noncentrality parameter
λ =−up

√
n. For given values of p, n and q, ks can be determined. Figure 4.4 shows ks dependence of n.
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Figure 4.4: ks dependency of number of test resultes.

Before the characteristic SN-curve can be calculated a linear regression must be performed. This is done by Least
Square Method where the parameter m are found.

4.3.1 Example of the Characteristic SN-curve Calculated by the Eurocode 3

The characteristic SN-curve from Eurocode 3 made by a 75% confidence interval of 95% probability of survival
for log(N) will in this example be calculated for Test 1. Test 1 made in the laboratory at Aalborg University, consist
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of a series of 10 experiments on a load carrying weld with constant amplitude, see table 3.2.
The characteristic curve is made from the model:

x̂ = log(K) = log(N)+mlog(S) (4.33)

From the linear regression the parameter m is found to -3.376. Then the µ and s can be calculated by (4.27) and
(4.28).

x̄ =
1
n

n

∑
i=1

xi = 11.9406 (4.34)

s2 =
1

n−1

n

∑
i=1

(xi− x̄)2 = 0.007 ⇒ s = 0.0836 (4.35)

From figure 4.4 is can be seen that with n=10 the ks can be found to 2.10. Then the characteristic value xks from
equation (4.36) can be evaluated.

xsk = x̄− kss = 11.9406−2.10 · 0.0836 = 11.7650 (4.36)

With xks and equation (4.23) can the characteristic SN-curve now be formulated as:

log(N) = 11.7650−3.376log(S) (4.37)
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Figure 4.5: Characteristic SN-curve with a 75% confidence interval of 95% probability of survival for log(N).

On figure 4.5 it is seen as in figure 4.2 how the characteristic curve is parallel translated from the mean SN-curve.
The detail category is found at N = 2.000.000 cycles to:

log(2.000.000) = 11.7650−3.376log(S)

log(S) =
11.7650− log(2.000.000)

3.376
= 41.55MPa (4.38)
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4.3.2 Example of the Characteristic SN-curve Calculated by the Eurocode 3 with a Fixed
Slope of m = -3

With the characteristic curve made from the model:

x̂ = log(K) = log(N)+3log(S) (4.39)

The parameter m is set to -3. Then from equation (4.27) and (4.28) the mean µ and standard deviation s can be
calculated by:

x̄ =
1
n

n

∑
i=1

xi = 11.2091 (4.40)

s2 =
1

n−1

n

∑
i=1

(xi− x̄)2 = 0.0124 ⇒ s = 0.1112 (4.41)

From figure 4.4 is can be seen that with n=10 the ks can be found to 2.10. Then the characteristic value xks from
equation (4.36) can be evaluated.

xsk = x̄− kss = 11.2091−2.10 · 0.1112 = 10.976 (4.42)

With xks and equation (4.23) can the characteristic SN-curve now be formulated as:

log(N) = 10.976−3log(S) (4.43)
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Figure 4.6: Characteristic SN-curve with a 75% confidence interval of 95% probability of survival for log(N) for a
fixed slope of m = -3.

As for figure 4.3 it can be seen that when the slope is fixed to m = -3 the curve fits the test results poorly. This
results in a more conservative fatige strength for N < 30.000 cycles.
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The detail category is found at N = 2.000.000 cycles to:

log(2000000) = 10.976−3log(S)

log(S) =
10.976− log(2000000)

3
= 36.16MPa (4.44)

In table 4.4 all values for the characteristic SN-curves calculated from Eurocode 3 listed.

Test log(K) m Detail kategory
Test 1 11.765 -3.376 41.55
Test 2 10.874 -3.080 30.53
Test 3 11.826 -2.999 69.52
Test 4 9.089 -2.103 21.17
Test 5 11.403 -3.294 35.39
Test 6 11.216 -3.132 37.10
Test 7 9.100 -2.166 19.60
Test 1 10.976 -3 36.16
Test 2 10.714 -3 29.58
Test 3 11.872 -3 69.54
Test 4 10.838 -3 33.40
Test 5 10.953 -3 32.53
Test 6 10.828 -3 35.54
Test 7 10.721 -3 29.74

Table 4.4: Values for characteristisk SN-curves by Eurocode 3.

4.4 Characteristic SN-curve by DNV-RP-C203

In [Det Norske Veritas, 2010] the characteristic SN-curve is defined as the mean minus two times the standard
deviation for the relevant test data. The SN-curves are thus assosiated with a 97.7 probability of survival.
From the test results a given stress range, S, correspond to a numer of cycles, N, until failure. A linear regresssion
with least square method is then used to describe the linear relationship between log(S) and log(N). With the linear
relationship it is possible to calculate the estimated parameter for log(N̂). Then the residual ε can be found by:

ε = log(N̂)− log(N) (4.45)

The residual ε is assumed to be normal distributed with mean µ = 0 and a standard deviation σ. From equation
(4.46) it is possible to determine the standard deviation and therby the characteristic SN-curve:

S =

√
1

n−1

n

∑
i=1

ε2
i (4.46)

4.4.1 Example of the Characteristic SN-curve Calculated by DNV-RP-C203

From the linear regression the mean SN-curve is found to:

log(N) = 11.940−3.376log(S) (4.47)
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From equation (4.46) the standard deviation on the residual ε is found to:

S =

√
1

n−1

n

∑
i=1

ε2
i = 0.0836 (4.48)

Then the characteristic SN-curve becomes:

log(N) = 11.940−3.376log(S)−2 ·0.0836⇒ (4.49)

log(N) = 11.7728−3.376log(S) (4.50)
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Figure 4.7: Characteristic SN-curve with mean minus two times the standard deviation.

The detail category is found at N = 2.000.000 cycles to:

log(2.000.000) = 11.7728−3.376log(S)

log(S) =
11.7728− log(2.000.000)

3.376
= 36.45MPa (4.51)

In table 4.5 are the values for the characteristic SN-curves calculated by DNV-RP-C203 listed.
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Test log(K) m Detail category
Test 1 11.7728 -3.376 41.77
Test 2 10.8876 -3.080 30.85
Test 3 11.8010 -2.999 68.20
Test 4 9.0185 -2.103 19.61
Test 5 11.3952 -3.294 35.19
Test 6 11.2035 -3.132 36.76
Test 7 8.9891 -2.166 17.43
Test 1 10.9867 -3 36.47
Test 2 10.7280 -3 29.90
Test 3 11.8029 -3 68.23
Test 4 10.7914 -3 31.39
Test 5 10.8292 -3 32.31
Test 6 10.9403 -3 35.19
Test 7 10.6011 -3 27.12

Table 4.5: Values for characteristic SN-curves by DNV-RP-C203.

4.5 Comments to the Characteristic SN-curves

In the previous sections three different methods for obtaining a characteristic SN-curve is described. In this section
Test 3, Test 4 and Test 7 will be further commented and the results will be presented with the design method found
in the background document to Eurocode 3. Test 7 will also be used to compare the three different methods for
calcualting the characteristic SN-curve to see what influence this have.
As stated in chapter 3 calculating the fatigue strength of a cyclic loaded welded joint is quite difficult. From the
test results in section 4.2, 4.3 and 4.4 is seen that for some tests the agreement with [Eurocode 1993-1-9, 2005]
is not totally clear. Two test in particularly are of interest. If we look at Test 3 the slope of the curve is found to
m = 2.999 which is in good accordance with [Eurocode 1993-1-9, 2005], whereas for Test 4 the slope is found to
m = 2.103. In Figure 4.8 Test 3 and Test 4 is plotted, for both a free slope and slope rotated to m = 3, together with
the design curve from [Eurocode 1993-1-9, 2005].
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Figure 4.8: Test 3 and Test 4 with mean and characteristic curves calculated from the Background Documentation
to Eurocode 3.

Figure 4.8(a) shows the best fitted curves and 4.8(b) the best fitted curves with a fixed slope of m = 3. Test 3
shows the very small difference there is between a free and fixed slope, whereas for Test 4 the difference is more
significant. The scatter around the mean curves is seen to be larger for Test 4 than for Test 3, and if we look at the
results from table table 4.3, the standard error of estimate becomes larger for Test 4. When the curves are rotated
to a fixed slope of m = 3 the alignment of Test 3 is very small and therefore results in very small changes. For Test
4 the rotation results in the standard error of estimate increases and the the confidence interval therefor gets wider.
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4. Characteristic SN-curves

But because the slope is changed from m = 2.103 to m = 3 the estimate on the fatigue strength becomes slightly
less conservative.
The impact on the stress range at 2.000.000 cycles gives the same tendency. In table 4.6 the stress range for which
the joint will fail at 2.000.000 is listed.

Test m = free m = 3
[MPa] [MPa]

Test 3 66.24 66.27
Test 4 18.60 30.44

Table 4.6: Stress ranges at 2.000.000 cycles for which the test will fail.

The difference between Test 3 and Test 4 can be explained by the fact that Test 3 have had some post treatment. The
fabrication of Test 3 and Test 4 are made with manual arc welding, but as seen from table 4.1 there is a significant
difference between the the two tests. Test 3 had run off tabs removed by machining which could help the test
results to get more homogeneous and thereby reduce the level scatter.
Another difference is that Test 4 consist of three different steel grades HT 60, HT 70 and HT 80. This could also
contribute to the larger scatter in Test 4.
Test 7 is made from combining the two tests made in the laboratory at Aalborg University and the four tests related
to load carrying welded joint from [G. Sedlacek et al., 2002], with detail category 36, and should therefore be
representative to compare to the design SN-curve from Eurocode 1993-1-9 [2005].
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Figure 4.9: Characteristic SN-curves compared to the design SN-curve from Eurocode 3.

In Figure 4.9 the characteristic SN-curves calculated by the methods listed in Table 4.2 is plotted with a fixed slope
of m = 3 along with the design SN-curve from [Eurocode 1993-1-9, 2005]. With data from all tests added together
the scatter of course increase and the standard deviation for the residual to the best fitted line also increase. This is
seen from both table 3.3 and Table 4.3.
It is interesting to see that the methods from [Det Norske Veritas, 2010] and [G. Sedlacek et al., 2002] agrees very
well with a detail category of 27.10 MPa and 27.12 MPa for 2 ·106 cycles. The method from [Eurocode 1993-1-9,
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4. Characteristic SN-curves

2005] is slightly less conservative with a detail category of 29.74 MPa. But still all three methods are under the
design value of 36 MPa.
It can be concluded that there are a lot of things influencing the fatigue strength. All data comes from experiments,
and when making a test-specimen it is impossible to make two of the same kind. Both the human factor and im-
perfections in the metal will give different results each time a test is conducted. There fore a lot of time consuming
tests are necessary to make a fairly accurate estimate of the life time for a cyclic affected joint.
Then there are different ways of making the characteristic SN-curve to adjust for these uncertainties. The three
different approaches were analysed and the general tendency is that [Det Norske Veritas, 2010] and [G. Sedlacek et
al., 2002] agrees very well for tests with high standard deviation. Where as the method from [Eurocode 1993-1-9,
2005] is slightly less conservative. For low standard deviations the methods from [Eurocode 1993-1-9, 2005] and
[Det Norske Veritas, 2010] agrees. Which method to use is in the end up to the owner of the given structure.
In Table 4.7 the detail category for N = 2.000.000 cycles are summarised. In chapter 8 the probability of failure is
calculated and the effect of the different SN-curves will be discussed.

Test Background Documentation to EC 3 Eurocode 3 DNV-RP-C203
Test 1 39.88 41.55 41.77
Test 2 27.80 30.53 30.85
Test 3 66.24 69.52 68.20
Test 4 18.60 21.17 19.61
Test 5 33.96 35.39 35.19
Test 6 35.10 37.10 36.76
Test 7 17.34 19.60 17.43

m = 3
Test 1 33.84 36.16 36.47
Test 2 26.78 29.58 29.90
Test 3 66.27 69.54 68.23
Test 4 30.44 33.40 31.39
Test 5 30.95 32.53 32.31
Test 6 33.49 35.54 35.19
Test 7 27.10 29.74 27.12

Table 4.7: Values for characteristic SN-curves by DNV-RP-C203.
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Code based Fatigue Design, EC 5
In this Chapter, the design according to [Eurocode 1993-1-9, 2005] is implemented, and a reliability analysis is
performed.

5.1 Introduction

The design will be made with respect to a design parameter, z, for the response series of the wind turbine modelled
in FAST. A reliability analysis will be performed of the connection, as a result of the code based determination of
z, to check whether the required reliability is reached. The reliability analysis will be made by two approaches: 1)
a Monte Carlo realisation of stochastic variables modelling the uncertainties of key parameters, and 2) an imple-
mentation of First Order Reliability Method, based on the same stochastic model. The SN-curves used for design
and reliability analysis are from [Eurocode 1993-1-9, 2005], but the requirements to the reliability index is found
implicit from DNV-RP-C203, since no one is defined in Eurocode 3.

As previously discussed, the design codes for fatigue damage is based on the correlation between the magnitude
and number of stress cycles, called SN-curves. [Eurocode 1993-1-9, 2005] propose three types of SN-curves:
Linear, Bilinear and Bilinear with cut-off. A series of bilinear SN-curves with cut-off can be seen at Figure 5.1
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Figure 5.1: Bilinear SN-curves with cut-off, [Eurocode 1993-1-9, 2005]

For a linear case, only the slope of the first part of the curve is used. For a bilinear case, the last part of the curve,
the cut-off, is ignored. The connection in the wind tower that is to be designed is considered detail category 36,
see Figure 5.1. The data defining this curve is therefore used for the further design, see Table 5.1.

Parameter Value
logKlinear 10.9699 [-]
logKbilinear 13.8172 [-]
mlinear 3 [-]
mbilinear 5 [-]
ND 5x106

NL 1x108

Table 5.1: Data defining the SN-curve.

The fatigue life may be calculated by the use of linear accumulation of damage summation implemented by
Palmgren-Miner rule, (5.1).

D =
k

∑
i=1

ni

N(Si)
=

k

∑
i=1

ni

K ·S−m
i
≥ 1 (5.1)

where

ni Number of occuring stress cycles [MPa]
N(Si) Number of stress cycles to failure with constant stress Si [-]

Based on the SN-curve described by the data in Table 5.1 and the Palmgren-Miner rule in equation (5.1), a design
equation, G, can be formulated to optimise the design parameter. The design parameter is used in a limit state
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5. Code based Fatigue Design, EC

equation to calculate the accumulated reliability index. An acceptable accumulated reliability index for a lifetime
of 20 years, βacc, is implicit accepted according to [Det Norske Veritas, 2010], as the values in Table 5.2.

Parameter Value
FDFlinear 1.5 [-]
FDFbilinear 2.0 [-]
β acc,linear 1.6 [-]
β acc,bilinear 2.6 [-]

Table 5.2: Stochastic parameters.

The index of FDF and β in Table 5.2denotes which SN-curve has been used as design curve. The FDF implements
the partial safety factors, γ f and γm for the load and strength respectively. This implementation can be seen in
Equation (5.2)

FDF = (γ f γm)
m (5.2)

With the SN-curve described in Table 5.1 and the FDF defined in Table 5.2, the design equations can be assembled.

5.2 Design Equation

The design equations are assembled for the three SN-curves: linear, bilinear and bilinear w. cut-off. These can be
seen as Equation (5.3), (5.4) and (5.5)

G = 1−
nU

∑
i=1

nQ

∑
j=1

FDF TLni j ∑
s j

sm1
j

KC
1
= 0 (5.3)

G = 1−
nU

∑
i=1

nQ

∑
j=1

FDF TLni j

(
∑

s j≥∆sD

sm1
j

KC
1
+ ∑

sD≥∆si

sm2
j

KC
2

)
= 0 (5.4)

G = 1−
nU

∑
i=1

nQ

∑
j=1

FDF TLni j

(
∑

s j≥∆sD

sm1
j

KC
1
+ ∑

∆sD≥s j≥∆sL

sm2
j

KC
2

)
= 0 (5.5)

where

Gi Design equation

∑
nU
i=1 Summation of wind speeds [m/s]

∑
nQ
j=1 Summation of response [kNm]

TL Life time [years]
ni j Number of stress cycles per year, [-]
s j Stress ranges [MPa]
sD Constant amplitude fatigue limit [MPa]
sL Cut-off limit [MPa]
m1 Wöhler exponent, linear part [-]
m2 Wöhler exponent, bilinear part [-]
KC

1 Material parameter characteristc, linear part [-]
KC

2 Material parameter characteristc, bilinear part [-]
FDF Fatigue design factor [-]
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5. Code based Fatigue Design, EC

and where the stress ranges can be found by

s j =
Q j

z
(T/Tre f )

α (5.6)

where

Q j Tower responce [kNm]
z Resistance torque [m3]
T Thickness of specimen [mm]
Tre f Reference thickness [mm]
α Scale exponent [-]

The last part of Equation (5.6) takes thickness effects of the connection into consideration. The tower response is
determined from the FAST simulations described in Chapter 2, and with the input data from Table 5.1 and the FDF
defined in Table 5.2, the design parameter, z, can be found. Since the response from FAST is found as a moment,
the design parameter z is chosen as a resistance torque, so stress ranges can be obtained by Equation (5.6). This is
done for the three cases of SN-curves, and the results can be seen in Table 5.3

Parameter Value Percentage
zlinear 4209 [m3] 100 %
zbilinear 3115 [m3] 74 %
zbilinearw.cut−o f f 2967 [m3] 70 %

Table 5.3: Stochastic parameters.

The reliability of the wind turbine is analysed with respect to these values, to check if an acceptable safety is
reached.

5.3 Limit State Equation

With a design parameter found in section 5.2 the corresponding limit state equation can be assembled. As for the
design equations, the limit state equations, g, are assembled for the three cases of SN-curves. These equation can
be seen at Equation (5.7), (5.8) and (5.9) respectively.

g(t) = ∆−
nU

∑
i=1

nQ

∑
j=1

tni j ∑
s j

sm1
j

KC
1
= 0 (5.7)

g(t) = ∆−
nU

∑
i=1

nQ

∑
j=1

tni j

(
∑

s j≥∆sD

sm1
j

KC
1
+ ∑

sD≥∆s j

sm2
j

KC
2

)
= 0 (5.8)

g(t) = ∆−
nU

∑
i=1

nQ

∑
j=1

tni j

(
∑

s j≥∆sD

sm1
j

KC
1
+ ∑

∆sD≥s j≥∆sL

sm2
j

KC
2

)
= 0 (5.9)

where the stress ranges are found by Equation (5.10)

s j = XW XSCF
Q j

z
(T/Tre f )

α (5.10)
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and where

g Limit state equation, [-]
∆ Stochastic variable, Miners rule, [-]
t Time, [year]
XW Stochastic variable, wind load [-]
XSCF Stochastic variable, stress concentration factor [-]
α Scale exponent [-]

The stochastic variables used for the modelling of the limit state equations are defined in Table 5.4.

Parameter Distribution Mean value, µi Standard deviation, σi

Miners rule, X∆ Lognormal 1 0.3
Wind load, Xw Lognormal 1 0.2
Stress calculation, XSCF Lognormal 1 0.1
Material parameter, linear part, Klin Normal 11.3699 0.2
Material parameter, bilinear part, Kbilin Normal 14.2172 0.2

Table 5.4: Stochastic parameters.

The K-parameters are modelled fully correlated, using the characteristic values from [Eurocode 1993-1-9, 2005],
added two times the standard deviation. The standard deviation is assumed to be 0.2 for both K-parameters. Miners
rule, wind load and stress concentration are modelled as fully uncorrelated. The distribution, mean value and stan-
dard deviations of the three remaining parameters are obtained from [J. D. Sørensen, 2011] and by recommendation
of supervisor of the thesis, Prof. John Dalsgaard Sørensen.

5.4 Reliability Analysis

As mentioned in the beginning of this chapter, two methods are proposed to determine the accumulated reliability
index of the wind turbine. First a Monte Carlo simulation is performed with 100.000 simulations, and secondly
First Order Reliability Method is used. The Monte Carlo simulation and FORM are both calcualted to validade
each other and to check the results are converging.

5.4.1 Monte Carlo Simulation

The Monte Carlo simulation is made for each case of SN-curve, with their corresponding z-parameter, see Table
5.3 The independent stochastic variables defined in Table 8.2 are realised by Equation (5.11)

Xi = µi +σixi (5.11)

where

Xi Outcome of stochastic variable
ui Outcome of a standard normal- or lognormal distribution [-]

With the uncertainties modelled by the stochastic variables and realised by Equation (5.11), the Monte Carlo
simulation can be made. The resulting accumulated reliability index can be seen at Figure 5.2.
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Figure 5.2: Accumulated reliability index for linear, bilinear, and bilinear w. cut-off.

It can be seen that the reliability index does not provide usable results the early years. This is due to no failures
occurring, resulting in a limit value of the reliability of 36.69. This pin-points the shortcomings of Monte Carlo
simulations, but can be helped with more simulations. The highest reliability index from 100.000 simulations is
caused by only one failure, giving a β value of 4.26. A higher number of simulations could have been run, but since
the scope of interest is the accumulated reliability index for a lifetime of 20 year, this is not deemed necessary. A
visualisation of the simulations are made at Figure 5.3 for the design using a bilinear SN-curve with cut-off.

Figure 5.3: Outcome of limit state equations, bilinear with cut-off.

The Figure shows the realisation of the resulting damage and the model uncertainties regarding Miners rule. It can
be see that the uncertainty regarding miners rule is dominant with the shape of lognormal distribution seen around
the damage. The failure criteria based on Equation (5.9) is marked, showing the failures to the left side of this line.
Results can be seen in Table 5.5
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5.4.2 First Order Reliability Method

Another method to determine the reliability index is by the First Order Reliability Method, further on abbreviated
to FORM. Here the reliability index is calculated by normalising the stochastic variables from X-space into the
normalized U-space [J. D. Sørensen, 2004]. The stochastic variables are denoted Xi and assumed to be independent.
Normal distributed variables are nomalized by Equation (5.12)

Ui =
Xi−µXi

σXi

i = 1,2, ...,n (5.12)

The limit state function defined by the equations (5.8), (5.9) and (5.10) consist of the stochastic variables listed in
Table 5.4. The lognormal distributed stochatic variables can transformed to the U-space by following definition:

Φ(Ui) = FXi(Xi) (5.13)

where FXi is the distribution function for Xi. Given a realisation u of U a realisation x of X can be determined by:

x1 = F−1
Xi

(Φ(ui)) (5.14)

For a lognormally distributed variable X with expected value µ and standard deviation σ the distribution function
is:

Fx(x) = Φ

(
lnx−µL

σL

)
(5.15)

where

σL =

√
ln
(

σ2

µ
+1
)

(5.16)

µL = lnµ− 1
2

σ
2
L (5.17)

The transformation for a lognormal stochastic variable then becomes, [J. D. Sørensen, 2004]:

x = exp(σLu+µL) (5.18)

With the stochastic variables transformed into the nomalized U-space the reliability index β can be found by the
following iteration:

1. Guess u set i = 0

2. Calculate g(ui)

3. Calculate ∇ g(ui)

4. Calculate an improved guess of the β point using

ui+1 = ∇g(ui)
∇g(ui)

T ui−g(ui)
∇g(ui)T−∇g(ui)
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5. Calculate the corressponding reliability index

βi+1 =
√
(ui+1)T ui+1

6. If β convergence (βi+1 - βi ≤ 10−3 the reliability index is found, else go back to step 2.

When convergence is achieved in step 6, the results at Figure 5.4 are found.
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Figure 5.4: Accumulated reliability index for linear, bilinear, and bilinear w. cut-off, FORM.

As for the results obtained from the Monte Carlo simulations, a good correspondence with the code recommenda-
tions is achieved. In contradiction with the Monte Carlo method, no problems with small probabilities of failure
is occurring when using FORM. The resulting accumulated reliability can be seen in Table 5.5 for both the Monte
Carlo simulation and FORM.

Parameter Reliability Probability
index, EC of failure

Linear 1.58 0.0571
Bilinear 2.63 0.0043
Bilinear w. cut-off 2.76 0.0029
Linear 1.58 0.0571
Bilinear 2.63 0.0043
Bilinear w. cut-off 2.77 0.0028

Table 5.5: Z-values for linear and bilinear SN-curves, obtained from Monte Carlo and FORM, for t = TL.

The reliability is seen to correspond fairly well with the required, according to the code. For comparison, the code
recommendations can be found in Table 5.2.
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Low Cycle Fatigue Loads 6
In this Chapter, an extra load contribution, Low Cycle Fatigue Load, will be quantified. A reliability analysis is
performed to analyse the impact of implementing this load.

6.1 Introduction

As explained in the Chapter 1, the SN-curves and the linear damage accumulation by Miners rule is the most
common method to design for fatigue load cases. The loads applied are usually found from independent simulated
wind series, of 10 minutes length. From this load, the response of the tower is found, also in independent 10
minute intervals. By assuming independency of the load series, the cycles with longer duration than 10 min. are
neglected This topic has been treated in [Larsen, G. C. and Thomsen, K , 1996], in where a simple algorithm has
been presented to include low cycle fatigue. The algorithm will be implemented for a wind turbine case, which will
be shown in this chapter. Beside the theory described in [Larsen, G. C. and Thomsen, K , 1996], another method
proposed by the authors of this project is presented. This method is inspired by [Larsen, G. C. and Thomsen, K ,
1996]. The resulting increase in fatigue damage will be quantified for both methods, and due to this, an updated
reliability of the wind turbine will be evaluated.

6.2 Design Equation

To include the Low cycle Fatigue contribution to the damage, the design equation (6.1) is used. This equation is
for the case of a bilinear SN-curve, and the Low cycle Fatigue is included in the last part.

G =1−
nU

∑
i=1

nQ

∑
j=1

FDF TLni j

(
∑

s j≥∆sC

sm1
j

KC
1
+ ∑

sD≥∆s j

sm2
j

KC
2

)
−

nQ

∑
j=1

TLn0 j

(
∑

s j≥∆sD

sm1
j

KC
1
+ ∑

sD≥∆s j

sm2
j

KC
2

)
= 0 (6.1)

where

n0 j Number of stress cycles, Low cycle Fatigue, [-]

To determine the impact on the accumulated damage, the design parameter, z, of wind turbine tower is designed
with a bilinear SN-curve, without Low cycle Fatigue. This parameter is then kept constant for the other cases of
SN-curves, to see the change in damage.

6.3 Low cycle fatigue RISØ

To include the extra contribution induced by the stress cycles from the low frequency loads, the theory in [Larsen,
G. C. and Thomsen, K , 1996] is applied. This theory include an extra stress cycle when moving from a simulated
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series with one mean value to another. The magnitude of this cycle is determined from the global max and min of
each of the series. An example of the simulated series of response can be seen at Figure 6.1, where 5 series are
shown.
Besides the simulated series of response, an order for them to appear in, is necessary. This is obtained by using the
order of measurements from an offshore location. This data contains the mean wind speed over 30 min. from Horns
Rev, over a period of 3 years. The order and frequency in which the wind speed changes in the measurements, is
used for the series. For a given mean wind speed the time series in this 10-minute period is chosen randomly from
the available 6 time series for that mean wind speed. An example of the final series of the tower response providing
the low frequency cycles can be seen at Figure 6.1.
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Figure 6.1: Response series of tower with low cycles marked red.

The red markings shows the cycles that are added by the LCF algorithm. As can be seen from Figure 6.1, the
LCF is only included if a change in mean wind speed is happening. A histogram of the measurements with a fitted
Weibull distribution can be seen in Appendix 11, to verify the data. By using the order from Horns Rev and the
simulated response, a new series is obtained, for which the damage can be found. This is illustrated by Figure 6.2,
which shows the extra yearly contribution to the load, due to LCF.
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Figure 6.2: Histogram of yearly response series, due to low cycle fatigue.

The plot at Figure 6.2 can be seen to have a significantly scatter. This is due to the limited number of simulations
made. Since only 6 series are produced for each mean wind speed, and the change in mean wind speed tends to
change with one bin at the time, the possible outcome for the LCF contribution is somewhat limited. The resulting
yearly load can be seen at Figure 6.3
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Figure 6.3: Histogram of yearly response series, with and without low cycle fatigue.

As can be seen at Figure 6.3, the number of cycles caused by LCF is rather small compared to the entire load. The
magnitude of the load cycles is however among the largest ones occurring. The extra LCF load is applied to the
case of a connection described by detail category 36, and a composite material.

6.3.1 Steel connection in tower

With the response series known, a rainflow counting and a damage summation with Miners rule is made, with and
without the extra contribution, to determine the impact of the applied theory. The data for the used SN-curve can
be seen in Table 6.1, where the z-parameter is fitted for a design with bi-linear SN-curve, without LCF included.

41



6. Low Cycle Fatigue Loads

Parameter Value
Detail category 36 [MPa]
mlinear 3
mbi−linear 5
Bi-linear limit, cycles 5x106 [-]
Cut-off limit, cycles 1x108 [-]
Bi-linear limit, stress 26.5 [MPa]
Cut-off limit, stress 14.6 [MPa]
Design parameter, z, linear 4209 [m3]
Design parameter, z, bilinear 3115 [m3]
Design parameter, z, bilinear w. cut-off 2967 [m3]

Table 6.1: Characteristics of SN-curve.

The results obtained can be seen in Table 6.2

Case Linear Bi-linear Bi-linear w. cut-off
Without LCF 2.468 1.000 0.747
With LCF 2.485 1.019 0.766
Percentage increase 0.68% 1.90% 2.48%

Table 6.2: Damage to the tower.

The results correspond fairly well with [Larsen, G. C. and Thomsen, K , 1996], where increase in damage is found
to be in the order of 1%, with Wöhler coefficients of 3 and 5. From the results it can be seen that the the impact on
the damage is increasing with the use of bi-linear and cut-off SN-curves. This is as expected, since the low cycle
fatigue loads in general are of a larger magnitude, and therefore does not get influenced by a cut-off for the lower
stress ranges .

To investigate the importance of which detail category is used, the damage is found with and without LCF for
three other cases. The detail categories chosen can be seen in Table 6.3, as well as the rest of the data describing
the SN-curves. The z-parameter is determined for a bi-linear SN-curve, Equation (5.4), without LCF.

Detail category
Parameter 71 [MPa] 112 [MPa] 160 [MPa]
mlinear 3 3 3
mbi−linear 5 5 5
Bi-linear limit, cycles 5x106 [-] 5x106 [-] 5x106 [-]
Cut-off limit, cycles 1x108 [-] 1x108 [-] 1x108 [-]
logKlinear 11.8548 [-] 12.4487[-] 12.9134[-]
logKbi−linear 15.2920 [-] 16.2818[-] 17.0563[-]
Design parameter, z 1579 [m3] 1001 [m3] 701 [m3]

Table 6.3: Characteristics of SN-curves.

Using the data in Table 6.3 and the load including LCF, the corresponding damage can be found. As for detail
category 36, all three cases of SN-curves are used, both with and without LCF. The results can be seen in 6.4.
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SN-curve Linear Bi-linear Bi-linear w. cut-off
Detail cat. 71

Without LCF 2.470 1.000 0.835
With LCF 2.488 1.020 0.846
Percentage increase 0.19% 2.02% 1.31%

Detail cat. 112
Without LCF 2.469 1.000 0.748
With LCF 2.487 1.020 0.767
Percentage increase 0.16% 2.01% 1.18%

Detail cat. 160
Without LCF 2.466 1.000 0.746
With LCF 2.484 1.018 0.765
Percentage increase 0.16% 1.81% 2.48%

Table 6.4: Damage to the tower.

As can be seen, the difference in damage due to LCF is almost independent of the detail category used.

6.3.2 Composite material: Blades

From Equation 3.1 it can be seen that the Wöhler coefficient, m, is of great influence, since it is powering the the
stress range. For most construction steel, the m coefficient ranges in the order of 3-5, but for other materials it
can differ significantly. Composite materials, which are used for most wind turbine blades, can reach m-values
up to 6-10. Different values of m and K are therefore found from [Sørensen, J. D. and Toft, H. S. , 2010], for
which the damage is found to see what impact LCF makes for composite materials. The damage is found using a
representative linear SN-curve, since composite material only operate with this. The results can be seen in Table
6.5. The design parameter is fitted for each case of m and K values, without Low cycle Fatigue. The required
z-parameter for a design including Low cycle Fatigue, resulting in a damage of 1 can be seen in Table 6.5 as well.

m=6.719 m=10.541
K=21.359 K=27.768

SN-curve Linear Linear
Damage, without LCF 1 1
Damage, with LCF 1.07 1.26
Percentage increase 7% 26%
z-parameter, without LCF 450 698
z-parameter, with LCF 454 713
Percentage increase 0.9% 2.1

Table 6.5: Damage for composite material

As expected, the impact on the damage is seen to accelerate rather quickly when increasing the Wöhler coefficient.
The underestimation of the fatigue damage by up to 26% is of a magnitude that indicates that this issue should be
taken into account, when designing composite materials for fatigue.
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6.4 Low cycle Fatigue Alternative

The method proposed in [Larsen, G. C. and Thomsen, K , 1996] to include Low cycle Fatigue includes the cycles
from the maximum and minimum of 2 consecutive 10 minutes time series, if the mean wind between these series
change. However, a large cycle could also occur between the maximum and minimum of 2 consecutive time series,
with the same mean wind speed. Another approach to quantify the Low cycle Fatigue load is therefore presented,
which take this into account.

An ideal approach would be to perform a rainflow count over a single time series of the length of the life time. The
assembling of this time series proves some difficulties, though. The data required to assemble a 20 year response
series is, with the sample frequency of 20 Hz, is 365x24x60x60x20x20 = 1.2x1010. This exceeds the maximum
vector size of the program used, [MATLAB, The MathWorks, 2009]. Instead of using 20 a single 20 year series,
smaller series of e.g. a year each can be assembled, to counter this problem. This solution falls short to describe the
actual load as well, but a significantly improvement is nonetheless achieved. As an alternative, another program
with larger data capacity can be used.

Another problem is the linking of the 10 min. series. A "‘jump"’ in wind load is occurring each time a new
series is added. This is illustrated at Figure 6.4
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(b) Sorted Coupling of two 10 min. series.

Figure 6.4: Coupling of two 10 min. series.

As can be seen, this jump will lead to an unintended stress cycle for each 10 minutes interval. To avoid the issues
with the heavy data handling and the jump in stresses when coupling the time series, another approach is proposed.
Inspired by the algorithm presented in [Larsen, G. C. and Thomsen, K , 1996], the minimum and maximum for
each of the 10 min. series are identified, and assembled in a separate load series. By using the order of mean wind
speeds from Horns Rev, described in Section 6.3, a new series is assembled for which a rainflow counting can be
done to find the stress cycles. This way, the largest cycles from the entire lifespan of the wind turbine is included.
Some cycles will however be included, that already are counted. These cycles are the ones running from maximum
to minimum in each 10 min. series. This means that this method will result in a too large contribution to the fatigue.

The main difference between this method and the one presented in [Larsen, G. C. and Thomsen, K , 1996] is
that every minimum and maximum response for the 10 minutes series are extracted regardless of whether a change
in mean wind speed is occurring. For convenience, the maximum and minimum values are listed in the order of
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max-min-max-mix, regardless of if this is actually the case. This simplification will lead to a larger number of
cycles, see Figure 6.5.
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Figure 6.5: Coupling of three 10 min. series.

By implementing this theory, the damage can be found by the design equations described in Section 5.2 and 6.2,
with a design parameter, z, kept constant. This is done for the case of a linear SN-curve, a bilinear, and a bilinear
with cut-off. The results can be seen in Table 6.6.

Parameter Linear Bi-linear Cut-off
Without LCF 2.58 1 0.84
With LCF 2.75 1.18 1.02
Percentage increase 6.6% 18% 21.4%

Table 6.6: Damage to the tower.

If compared with the results in Section 6.3, a significantly increase in damage can be seen.

6.5 Reliability Analysis

Based on the design equations described in Section 6.2, limit state equations can be formulated. These can be seen
as Equation (6.2), (6.3) and (6.4), for linear, bilinear, and bilinear w. cut-off respectively.
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where the stress is found by Equation (6.5)

s j = XwXSCF
Q j

z j
(6.5)

These equations will be used to determine the reliability of the wind turbine due to the extra load contribution
found in Section 6.3 and 6.4.

6.5.1 Reliability Analysis RISØ Model

Implementing the LCF from [Larsen, G. C. and Thomsen, K , 1996] in the limit state equations, an updated
reliability is found. The stochastic variables used in the equations are defined in Table 6.7. The design parameter,
z, is found by the linear design equation, (5.3) for detail category 36.

Parameter Distribution Mean value, µi Standard deviation, σi

Miners rule, X∆ LogNormal 1 0.3
Wind load, Xw Lognormal 1 0.2
Stress calculation, XSCF Lognormal 1 0.1
Material parameter, linear part, Klin Normal 11.3699 + 2x σi 0.2
Material parameter, bilinear part, Kbilin Normal 14.2172 + 2x σi 0.2

Table 6.7: Stochastic parameters.

A Monte Carlo simulation with 105 realisations of the stochastic variables is run, and the accumulated reliability
index is found for the 20 year lifetime. The results are plotted at Figure 6.6, as well as the reliability for the wind
turbine without LCF. The limit value of the accumulated reliability index, as defined in Table 5.2, are marked as
well, both for a linear and bilinear based limit state.
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Figure 6.6: Accumulated reliability index for linear, bilinear and bilinear w. cut-off. With and without LCF, RISØ.

From Figure 6.6 it can be seen that the impact of LCF on the reliability of the wind turbine, implemented by the
theory described in [Larsen, G. C. and Thomsen, K , 1996], is marginal. As with the reliability analysis in Section
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5.2, the Monte Carlo simulation does not provide reliable results the first couple of years. The resulting reliability
index can be seen in Table 6.8

Parameter Reliability Reliability
index, EC index, LCF

Linear 1.58 1.57
Bilinear 2.63 2.62
Bilinear w. cut-off 2.76 2.75

Table 6.8: Z-values for linear and bilinear SN-curves, with and without Low cycle Fatigue, for t = TL.

As can be seen from Table 6.8, the impact on the reliability index caused by LCF is marginal.

6.5.2 Reliability Analysis, Alternative

Implementing the proposed LCF load found from Section 6.4 in the limit state equations, an updated reliability is
found. The stochastic variables used in the limit state equations are defined in Table 6.7. As for the LCF load found
by [Larsen, G. C. and Thomsen, K , 1996], a Monte Carlo simulation is run with 105 realisations of the stochastic
variables, and the accumulated reliability index is found for the 20 year lifetime. The results are plotted at Figure
6.7, as well as the reliability for the wind turbine without LCF. The desired accumulated reliability index according
to DNV is marking the desired value.
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Figure 6.7: Accumulated reliability index for linear, bilinear and bilinear w. cut-off. With and without LCF, Alter-
native.

From Figure 6.7 it can be seen that the reliability is decreased significant by LCF, implemented by the theory
described in Section 6.4. If looking at the reliability based on the bilinear SN-curve, it can be observed that the
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code based limit is reached more than 4 years earlier, than if no LCF is included. The damage contribution due to
LCF was determined in Table 6.2, and found to increase with the use of a bilinear SN-curve. Hence, tthe reliability
index is expected to decrease when a bilinear SN-curve is used, compared to a linear. This proves to be the case
indeed, according to Figure 6.7.

6.6 Calabration of FDF

A small study is made to calibrate the partial safety factors, in this case implemented in the Fatigue Design Factor.
The z-parameter is determined using different values of FDF , and the resulting accumulated reliability index is
found. Results can be seen at Figure 6.8
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From Figure 6.8, it can be seen that the required reliability is reached by implementing a FDF between 1.5 and
2.0, instead of the 1.5 proposed by the code. This corresponds to a combined partial safety factor, γ f γm of between
1.15 to 1.25.

6.7 Comments on Low Cycle Fatigue

In the previous sections, two methods have been proposed to include a Low Cycle Fatigue load. The resulting load
series of the two methods are of a significantly different magnitude.
The method presented in [Larsen, G. C. and Thomsen, K , 1996] is presenting a load contribution that includes the
largest cycle between two consecutive 10 minutes simulated load series. But only if the mean wind of the simula-
tion change, from one 10 minutes series to the next. The drawback of this method is that the cycle ranging from
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maximum to minimum in the 10 minutes series is counted twice. Once from the original rainflow counting over
the load series, and one more time from LCF. This method identifies some of the stress ranges from low cycles, but
might fall short to include the largest ones. The load contribution proposed by this method is therefore expected to
be lower than the actual load.
The method proposed in Section 6.4 identifies the largest stress cycles by including the maximum and minimum
of each 10 minutes load series, whether a change in mean wind is happening or not. As for the Risø approach,
the issue with counting some cycles twice is present. For this method, the error will be larger though, since more
maximum and minimums are included. This method is therefore expected to produce a too large load contribution
from Low Cycle Fatigue.

The real contribution from LCF is somewhere in between the two methods, so a proper solution on the quan-
tification of the impact of this is not achieved. It is however showed that LCF is an interesting issue, which should
be given further attention, due to the large impact obtained in Section 6.4. This is especially the case when dealing
with composite materials, since the increase in Wöhler coefficient greatly increase the sensitivity to large stress
cycles.
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Nonlinear SN-curve 7
In this chapter a non-linear SN-curve is presented and compared with a code based linear. A reliability analysis is
performed to analyse the impact of designing with the non-linear curve.

7.1 Introduction

Both Eurocode 3 and DNV-RP-C203 design codes uses the three cases of SN-curves: linear, bilinear, and bilin-
ear with cut-off. The location of the knee point of the SN-curves is important, since even a small change in the
location of these can lead to a significant change in damage. This is especially the case if large concentrations of
stress ranges are present around this part of the curve. To avoid the abrupt change in the SN-curve, an alternative
is presented in [Lassen, T. et al , 2005]. Instead of assuming a linear correlation between the number of cycles and
the stress ranges, in a logarithmic scale, a nonlinear curve is fitted. The theory behind the non-linear SN-curve will
be briefly explained, and a stochastic modelling of the uncertainties involved will be made, resulting in an analysis
of the reliability obtained by designing with this theory.

7.2 Random Limit Fatigue Model

The SN-curve described in [Lassen, T. et al , 2005] is denoted Random Limit Fatigue Model and will further on
be referred to as RLFM. The method is proposed due to the large uncertainties on the location of the knee point.
To take this into consideration, a nonlinear correlation between stress ranges and number of cycles is proposed,
and the uncertainty regarding the location of the knee point is incorporated. This nonlinear correlation is assumed
valid for the entire span of stress ranges, instead of only partly, as for the bilinear case. Equation (7.1) describes
the nonlinear SN-curve

lnN = β0−β1ln(∆σ− γ)+ ε (7.1)

where

N0 j Number of cycles to failure, [-]
β0 Fitting parameter, [-]
β1 Fitting parameter, [-]
∆σ Stress ranges, [MPa]
γ Fatigue limit, [MPa]
ε Error term, [-]

The stress ranges, ∆σ, are determined by Equation (5.6). The RLFM-curve is fitted to the median of a linear SN-
curve from [Det Norske Veritas, 2010], class F, with cut-off. The values used for both can be seen in Table 7.1, and
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the resulting SN-curves are shown at Figure 7.1.
To investigate the impact in the reliability, the design parameter, z, is found for a linear SN-curve with cut off. This
parameter is then used in the limit state equation for the RLFM case.

Parameter Value
β0 22.480 [MPa]
β1 2.1 [-]
γ 4.1 [MPa]
ε 0 [MPa]
mlinear 3 [-]
logKlinear, median 12.255[-]
logKlinear, 97.7 fractile 11.855[-]
nL 5x106

FDF 2

Table 7.1: Data for SN-curves, RLFM and bilinear

The error term, ε, is used later, when modelling the SN-curve with stochastic variables. The logK-value describing
the median curve is found by Equation (7.2)

logKcharacteristic = logKmedian +2σlogK (7.2)

where

σ Standard deviation, logK

The standard deviation is assumed to be 0.2. WELDING RESEARCH
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Data for Fatigue Life at High Stress 
Levels (Database 1)

Database 1 contains experimental fa-
tigue lives in the finite life regime where
all tests are continued until fracture oc-
curs. The test series consist of 34 non-
load-carrying cruciform and T joint test
specimens — Fig. 1. All the test specimens
were fabricated from C-Mn steel plate 25
mm (1 in.) thick. The nominal yield stress
was 345 MPa (50 ksi). The welding proce-
dures were taken from normal offshore
fabrication practice. The joints were
proven free from cracks and undercuts.
The specimens were tested under constant
amplitude axial loading at ∆S = 150 MPa
(21.7 ksi) with a loading ratio of R = 0.3.
Experimental details are found in Ref. 7.
The total fatigue lives for the 34 specimens
have been plotted in Fig. 2. The median
life of the series (N = 460,000 cycles) is
only 12% less than the prediction of the F-
class (N = 513,000 cycles).

Hence, the test series is of normal qual-
ity and comparable with population per-
taining to the F-class and category 71.
However, due to the homogeneity of the
test series, the COV is as expected much
smaller — COV = 0.22. In addition to
recording the fatigue life, crack growth

measurements were made during the
course of each test. These data are impor-
tant information for modeling the fatigue
process, but not for the present fatigue life
statistical analysis. 

Data for Fatigue Lives at Low Stress 
Levels (Database 2)

Data points pertaining to the F-class 
S-N curve have the center of gravity at a
stress range in the region of 120–150 MPa
(17.4–21.7 ksi). This regime is well repre-
sented by database 1. In addition, we have
in the present work assembled results at
lower stress level from fatigue life test se-
ries in several large experimental investi-
gations carried out in Europe (Ref. 8).
The applied stress ranges are between 80
and 105 MPa (11.6–15.2 ksi) and the thick-
nesses of the plates range from 16 to 38
mm (0.63–1.5 in.). Other thicknesses are
excluded to minimize the so-called thick-
ness effect. All the selected specimens are
as-welded and the loading ratio R is be-
tween 0 and 0.3. These data-points are
also plotted in Fig. 2. 

As can be seen, most of the data points
have substantially longer lives than the
predictions of the F-class curve, with only
a few exceptions. Furthermore, some of
the results are run outs. The scatter is con-
siderably greater than for database 1, as
expected. This is partly due to the fact that

database 1 contains only one homogeneity
test series, but mostly due to the fact that
scatter increases at low stress levels as al-
ready discussed.

Comparison between the F-Class Curve,
the RFLM Based Curve, and the Data

By applying Equation 4 to 9 for the
databases presented above, the parame-
ters for the RFLM are determined and
given in Table 1. The 90% confidence in-
tervals are also listed.

The confidence intervals are obtained
from plots of the profile ratio as shown for
µγ and σγ in Fig. 3. As can be seen, the
point estimate for the fatigue limit is near
60 MPa. The BS 5400 fatigue limit of 56
MPa is well within the 90% confidence in-
terval and is quite close to the point esti-
mate of 60 MPa. The Eurocode fatigue
limit of 70 MPa is far outside our confi-
dence interval. 

Although the present database is lim-
ited, it is a surprise that the Eurocode fa-
tigue limit is so far outside the 90% confi-
dence interval. The median curve (p =
0.5) for the fatigue life pertaining to the
point estimates in Table 1 is drawn in Fig.
4 along with the F-class curve and the data
points. As can be seen, the F-class curve,
the RFLM curve, and the data points at a
stress range of 150 MPa (Database 1) are
in good agreement. At lower stress ranges
the RFLM curve becomes nonlinear and
predicts substantially longer fatigue lives
than does the F-class. At a stress range of
80 MPa the RFLM predicts more than
three times longer fatigue life, and at 70
MPa, the RFLM predicts close to 10 times
longer fatigue life than the F-class. 

It can also be seen from the figure that
the RFLM is obviously more in accor-
dance with the data-points. The quadratic
sum of the error terms ε in Equation 3 will
be much less than the corresponding sum

Fig. 4 — Bilinear and RFLM based median S-N curves together with test
data.

Fig. 5 — Median and quantile S-N curves based on the RFLM together with
test data. 

Table 1 — Parameters for the Random Fatigue-Limit Model

Parameter Point Estimate 90% Confidence Interval

ß0 22.4800 22.407 22.555
ß1 2.100 2.084 2.118
σ 0.14 0.089 0.240
µγ 4.100 (60.3 MPa) 4.044 (57 MPa) 4.154 (63.7 MPa)
σγ 0.16 0.120 0.216

Lassen Corrected  11/9/05  6:05 PM  Page 186

Figure 7.1: RFLM and fitted median curve from DNV and Eurocode 3 [Lassen, T. et al , 2005].

The database values at Figure 7.1 are test data from which the linear SN-curve for F-class details in [Det Norske
Veritas, 2010] are formed. As can be seen from Figure 7.1, the RLFM curve fits rather well with the test data. It
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can also be seen that the bilniear SN-curve is much more conservative, especially around the knee point, whereas
for high and low stress ranges, they more or less agree.

7.2.1 Design Equation DNV F-class SN-curve

Since the RLFM is fitted to the F-class from [Det Norske Veritas, 2010], linear SN-curve with cut-off, this SN-
curve is used in the design equation. This equation can be seen at Equation (7.3). The used FDF and K-value,
97.7% fractile of logK, can be seen in Table 7.1.
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where

sL Stress, cut-off, [MPa]
FDF Fatigue Design Factor, DNV

The Fatigue Design Factor according to [Det Norske Veritas, 2007] set to 1.5 and 2.0 for a linear and bilinear
SN-curve respectively. These values are based on the assumption that failure of the detail is critical, and that
inspections are possible. The resulting z-value can be seen in Table 7.1, with a FDF of 1.5.

7.2.2 Design Equation, RLFM

A design equation is assembled based on RLFM as well. No data was available for the authors of this thesis, so
the 97.75% fractile RLFM based SN-curve is only fitted visiualy. The fitted curve is shown at Figure 7.2, and the
parameters describing it can be seen in Table 7.2
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Hence, the test series is of normal qual-
ity and comparable with population per-
taining to the F-class and category 71.
However, due to the homogeneity of the
test series, the COV is as expected much
smaller — COV = 0.22. In addition to
recording the fatigue life, crack growth

measurements were made during the
course of each test. These data are impor-
tant information for modeling the fatigue
process, but not for the present fatigue life
statistical analysis. 

Data for Fatigue Lives at Low Stress 
Levels (Database 2)

Data points pertaining to the F-class 
S-N curve have the center of gravity at a
stress range in the region of 120–150 MPa
(17.4–21.7 ksi). This regime is well repre-
sented by database 1. In addition, we have
in the present work assembled results at
lower stress level from fatigue life test se-
ries in several large experimental investi-
gations carried out in Europe (Ref. 8).
The applied stress ranges are between 80
and 105 MPa (11.6–15.2 ksi) and the thick-
nesses of the plates range from 16 to 38
mm (0.63–1.5 in.). Other thicknesses are
excluded to minimize the so-called thick-
ness effect. All the selected specimens are
as-welded and the loading ratio R is be-
tween 0 and 0.3. These data-points are
also plotted in Fig. 2. 

As can be seen, most of the data points
have substantially longer lives than the
predictions of the F-class curve, with only
a few exceptions. Furthermore, some of
the results are run outs. The scatter is con-
siderably greater than for database 1, as
expected. This is partly due to the fact that

database 1 contains only one homogeneity
test series, but mostly due to the fact that
scatter increases at low stress levels as al-
ready discussed.

Comparison between the F-Class Curve,
the RFLM Based Curve, and the Data

By applying Equation 4 to 9 for the
databases presented above, the parame-
ters for the RFLM are determined and
given in Table 1. The 90% confidence in-
tervals are also listed.

The confidence intervals are obtained
from plots of the profile ratio as shown for
µγ and σγ in Fig. 3. As can be seen, the
point estimate for the fatigue limit is near
60 MPa. The BS 5400 fatigue limit of 56
MPa is well within the 90% confidence in-
terval and is quite close to the point esti-
mate of 60 MPa. The Eurocode fatigue
limit of 70 MPa is far outside our confi-
dence interval. 

Although the present database is lim-
ited, it is a surprise that the Eurocode fa-
tigue limit is so far outside the 90% confi-
dence interval. The median curve (p =
0.5) for the fatigue life pertaining to the
point estimates in Table 1 is drawn in Fig.
4 along with the F-class curve and the data
points. As can be seen, the F-class curve,
the RFLM curve, and the data points at a
stress range of 150 MPa (Database 1) are
in good agreement. At lower stress ranges
the RFLM curve becomes nonlinear and
predicts substantially longer fatigue lives
than does the F-class. At a stress range of
80 MPa the RFLM predicts more than
three times longer fatigue life, and at 70
MPa, the RFLM predicts close to 10 times
longer fatigue life than the F-class. 

It can also be seen from the figure that
the RFLM is obviously more in accor-
dance with the data-points. The quadratic
sum of the error terms ε in Equation 3 will
be much less than the corresponding sum

Fig. 4 — Bilinear and RFLM based median S-N curves together with test
data.

Fig. 5 — Median and quantile S-N curves based on the RFLM together with
test data. 

Table 1 — Parameters for the Random Fatigue-Limit Model

Parameter Point Estimate 90% Confidence Interval

ß0 22.4800 22.407 22.555
ß1 2.100 2.084 2.118
σ 0.14 0.089 0.240
µγ 4.100 (60.3 MPa) 4.044 (57 MPa) 4.154 (63.7 MPa)
σγ 0.16 0.120 0.216

Lassen Corrected  11/9/05  6:05 PM  Page 186

(b) Mean and fractile SN-curve by [Lassen, T. et al , 2005]

Figure 7.2: RLFM based SN-curves.

To fit the fractile curve, the only parameter changed is the limit stress, γ, as can be seen in Table 7.2
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7. Nonlinear SN-curve

Parameter Value
β0 22.480 [MPa]
β1 2.1 [-]
lnγ 3.8 [MPa]
ε 0 [MPa]

Table 7.2: Data for fractile RLFM based SN-curve

The design equation can now be assembled, from which the z-parameter can be determined. This is done in
Equation (7.4)

g = 1−
nU

∑
i=1

nQ

∑
j=1

FDF ni jTL

exp(β0−β1log(s j− γ))+ ε
(7.4)

The FDF is not previously defined for a RLFM based SN-curve, so initially, this is set to 1. A further analysis will
be made for calibration of this, to ensure an acceptable safety when using this design equation.

7.2.3 Comparison of Design Equations

The SN-curves used for the design equations can be seen at Figure 7.3, as well as the mean curves. It can be seen
that for stress ranges between 70 and 130 MPa the RLFM predict less damage than the linear with cut-off.
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Figure 7.3: Mean and fractile SN-curves, linear w. cut-off and RLFM

To compare the design equations, z-values are found for both. The FDF used is set to 1.0 in this case, and the
results can be seen in Table 7.3

Parameter Value
zRLFM 913 [m3]
zlin 1487 [m3]

Table 7.3: Data for SN-curves, RLFM and bilinear
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7. Nonlinear SN-curve

The design by linear SN-curve is seen to give a z-parameter much larger than by RLFM. These values are used
later in the reliability analysis. Figure 7.3 shows the large reliability implemented in the code, compared to the
RLFM proposed. The difference between the characteristic and mean curves can be seen to larger than for the
RLFM, especially for the higher stress ranges. For the linear w. cut-off based design curve it is worth noticing the
location of the cut-off. This is expected to have a significant influence on the reliability, since a large part of the
stress ranges is below the cut-off value.

7.3 Reliability Analysis

Based on the SN-curve described in Section 7.2, a limit state equation can be formulated. This can be seen as
Equation (7.5).

g(t) = ∆−
nU

∑
i=1

nQ

∑
j=1

ni jt
exp(β0−β1log(s j−Xγ)+Xε

(7.5)

where the stress is found by Equation (7.6)

s j = XwXSCF
Q j

z j

(
T

Tre f

)α

(7.6)

This limit state equation will be used to determine the reliability of the wind turbine, when RLFM is implemented.
The stochastic variables and design parameters can be seen in Table 7.4. For comparison, a limit state equation
based on a linear SN-curve with cut-off from [Det Norske Veritas, 2010] is defined as well. This can be seen at
Equation (7.7), and the data used as input can be seen in Table 7.4.

g(t) = ∆−
nU

∑
i=1

nQ

∑
j=1

tni jFDF ∑
s j≥∆sD

sm1
j

KC
1
= 0 (7.7)

The stresses are found by Equation 7.6.

Parameter Distribution Mean value, µi Standard deviation, σi

X∆ Lognormal 1 0.3
Xw Lognormal 1 0.2
XSCF Lognormal 1 0.1
lnγ Normal 4.1 0.16
ε Normal 0 0.14
logKlin Normal 11.3699 0.2
zlinear Deterministic 1487 -
zRLFM Deterministic 913 -

Table 7.4: Stochastic parameters.

The index on the design parameters, z, states which design equation has been used to determine it.

7.3.1 Reliability Analysis, DNV-RLFM

The reliability of the wind turbine is analysed by running a Monte Carlo simulation of the limit state equation
based on RLFM, from Equation (7.5). The design parameter is found by the linear SN-curve with cut-off from
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7. Nonlinear SN-curve

[Det Norske Veritas, 2010], see Equation (7.3). 105 realisations of the stochastic variables are made, and the
resulting reliability can be seen at Figure 7.4
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Figure 7.4: Accumulated reliability index, RLFM based

It can be seen that a very low FDF is required to provide the acceptable reliability, according to the one stated
in [Det Norske Veritas, 2010]. Implementing a FDF below 1, means effectively that the partial safety factor is
reducing the strength of the structure. This indicates that either RLFM is overestimating the strength, or the code is
too conservative. If looking at Figure 7.1, it can be seen that the mean linear SN-curve is to the left of the majority
of the test made. If a more realistic mean curve was to be proposed, the test should be more evenly distributed on
each side.

7.3.2 Reliability Analysis, RLFM-RLFM

The reliability of the wind turbine is analysed by running a Monte Carlo simulation of the limit state equation
based on RLFM, see Equation (7.5). The design parameter, z, is found by the RLFM based SN-curve, see Equation
(7.4). 100000 realisations of the stochastic variables are run, and the results can be seen at Figure 7.5.
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Figure 7.5: Accumulated reliability index, RLFM based

As can be seen, the FDF required to ensure an acceptable reliability index is higher than for a design with the linear
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7. Nonlinear SN-curve

SN-curve.

7.3.3 Reliability Analysis, DNV-DNV

The reliability of the wind turbine is analysed by running a Monte Carlo simulation of the limit state equation
based on a linear SN-curve with cut-off, see Equation (7.7). The design parameter, z, is found for the same case of
SN-curve, see Equation (7.3). 100000 realisations of the stochastic variables are run, and the results can be seen at
Figure 7.6.
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Figure 7.6: Accumulated reliability index, DNV based

From Figure 7.6 it can be seen that the reliability achieved is significantly smaller than by using the limit state
equation based on RLFM. This is due to the knee point of the linear SN-curve with cut-off, which accumulates
more damage than RLFM in the same stress ranges. See Figure 7.3 for visualisation.

7.4 Comments on Random Limit Fatigue Model

As can be seen from Figure 7.4, the FDF of 2 results in an acceptable reliability, according to the code proposed.
This is as expected, since both the design and limit state equation is based on SN-curves from the code. When
comparing with the reliability obtained when using the RLFM-based limit state equation, see Figure 7.4, the re-
sulting reliability is however seen to be of a much larger magnitude. This shows the potential for improvements by
a better modelling of the knee-point.

To show the importance of the knee point, the accumulated reliability can be seen at Figure 7.7 for different
cut-off stresses.
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7. Nonlinear SN-curve
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Figure 7.7: Accumulated reliability index.

It can be seen that the reliability is heavily affected by the change in cut-off stress. As illustrated at Figure 7.3, the
two design codes does not agree on the location of thee knee point, ranging from a cut-off stress of 52 to 71.

As seen from Figure 7.4, 7.5, and 7.6, a high level of safety is reached when designing for the code based. This is
due to the distribution of stress ranges and the location of the knee point. From the comparison of the the design
curves at Figure 7.1, it can be seen that for stress ranges below the cut-off, RLFM will predict a higher damage.
For comparison, the reliability index is plotted versus the z-parameter for the different SN-curves at Figure
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Reliability Analysis of Test
Results 8
In this chapter the reliability of the wind turbine tower will be analysed with the results of Test 3, Test 4 and Test 7
to see what influence the different tests have on the reliability.
In order to be able to compare the reliability level for different SN-curves, the design equation will be based on the
the characteristic SN-cuve from Eurocode 3 with a detail category 36.

8.1 Limit state equation

Allmost every test in the Background documentation to Eurocode 3 is made in the range of 60 MPa to 250 MPa
where the slope of the curve is found to m = 3. This is also case for all tests considered in this report and means
that the tests only are valid for the linear SN-curve. The design equation is therefore choosen to Equation (5.3).
From the design curve in [Eurocode 1993-1-9, 2005] the design parameter, z, is found to 4209.
With a design parameter, z, the limit state equation can be assembled:

g(t) = ∆−
nU

∑
i=1

nQ

∑
j=1

tni j ∑
s j

sm1
j

KC
1
= 0 (8.1)

The stochastic variables in Equation (8.1) are listed in Table 8.1.

Parameter Distribution Mean value, µi Standard deviation, σi

Miners rule, X∆ Lognormal 1 0.3
Wind load, Xw Lognormal 1 0.2
Stress calculation, XSCF Lognormal 1 0.1
Material parameter, linear part, Klin Normal µKlin σKlin

Table 8.1: Stochastic parameters.

The mean value and standard deviation describing the material parameter, Klin, are found for each test series
individual, and can be seen in Table 3.3.

8.2 Reliability Analysis

In both [Det Norske Veritas, 2010] and [Eurocode 1993-1-9, 2005] the slope of the design curves is set to m = 3.
In order to compare the test results with the standards it is chosen to investigate the reliability level for Test 3, Test
4 and Test 7 with a fitted slope to m = 3.
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8. Reliability Analysis of Test Results
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Figure 8.1: Reliability index for Test 3, Test 4 and Test 7

In figure 8.1 the accumulated reliability index is plotted. Here it is seen that the reliability index for Test 3 is very
high compared to Eurocode 3. If looked at what was found in Chapter 3 the change in standard deviation when the
SN-curve was rotated to m = 3 was very small, as well as the scatter around the mean SN-curve. In Chapter 4, this
resulted in a high fatigue strength at 2 ·106 cycles, as seen in Table 4.7 for the characteristic SN-curve.
Test 4 and Test 7 have a significantly higher standard deviation when the curve is rotated. Especially Test 7 which
is a combination of all other tests and therefore takes different welding methods, steel classes and test specimens
into account. This resembles the SN-curve from Eurocode 3 and therefore have a reliability index lying in the same
region. In Table 8.2 the accumulated reliability index after 20 years is listed.

Case βacc by Monte Carlo βacc by FORM
Test 3 3.75 3.80
Test 4 1.65 1.64
Test 7 1.39 1.38

Table 8.2: Accumulated reliability index.

8.3 Calibration of the Fatigue Design Factor

In Eurocode 3 the Fatigue Design Factor, FDF , is set to 1.5 to include the safety from both loads and fatigue
strength. But in Figure 8.1 this is seen to give a very high reliability index for Test 3. It is therefore sought to
calibrate the FDF to obtain the required accumulated reliability index, as specified in Table 5.2. In figure 8.2 the
FDF is adjusted for Test 3 to see what influence it has on the reliability.
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Figure 8.2: Calibration of FDF for Test 3

The target accumulated reliability index βacc is set to 1.6, and it can be seen from figure 8.2 that with a FDF
between 0.2 and 0.3 you get an acceptable accumulated reliability index. This shows that a significant reduction in
partial safety factors can be made, if test series with low scatter is available. If a FDF of 0.3 is used, this would
according to Equation (5.2) effectively lower the product of the partial safety coefficient factors, γ f γm, to 0.67.

To see the effect of a test where the slope is not rotated, the reliability index for Test 1 is calcualted with the
specifications listed in table 3.3.
With a slope larger than three it can be seen from Equation (3.1) that the fatigue strength increases, but because of
the log(K) value, which determines where the vertical location is, the strength is not increased compared to Test 3.
Interesting is it to see that with the low standard deviation the reliability index is less affected by calibrations of the
FDF . The calibration of the FDF for Test 1 can be seen in figure 8.3.

0 2 4 6 8 10 12 14 16 18 20
1

2

3

4

5

6

7

8
Reliability index Test 1

Time, [year]

R
el

ia
bi

lit
y 

in
de

x

 

 
Test 1 FDF = 1.5
Test 1 FDF = 1.4
Test 1 FDF = 1.3
Test 1 FDF = 1.2
Test 1 FDF = 1.1
Test 1 FDF = 1
Eurocode 3

Figure 8.3: Calibration of FDF for Test 1
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8. Reliability Analysis of Test Results

Still the FDF can be reduced significantly to a value around one. As for Test 3 the test results for Test 1 shows
very little scatter around the best fitted curve which gives the small standard deviation, and thereby reduceses the
uncertainty of calculating the fatigue strength. This means that if a design is made with a design equation from
Eurocode 3, it could be beneficial to make some more accurately fatigue test and thereby obtain a better SN-curve.
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Sensitivity Analysis 9
In this chapter a sensitivity analysis is performed for three different design and limit state equations. The influence
of the stochastic variables on the reliability index will be investigated to see which uncertainties influence the most.

9.1 Introduction

In the previous chapters the reliability index was derived for different design equations where the uncertainties
were modelled by stochastic variables. The impact of how these stochastic variables are modelled is sought anal-
ysed, by evaluating the reliability when changing the distribution and/or standard deviation.

9.2 Sensitivity Analysis of δ

To determine the importance of Xδ, three Monte Carlo simulations are made, with the uncertainties defined in Table
9.1, for a linear SN-curve.

Parameter Distribution Mean value, µi Standard deviation, σi

Miners rule, X∆,1 Lognormal 1 0.1
Miners rule, X∆,2 Lognormal 1 0.3
Miners rule, X∆,3 Lognormal 1 0.5
Wind load, Xw Lognormal 1 0.2
Stress calculation, XSCF Lognormal 1 0.1
Material parameter, linear part, Klin Normal 10.9699+2σK,lin 0.2

Table 9.1: Stochastic parameters.

Since Xδ is the stochastic variable subject to the analysis, this is modelled with the three different standard devia-
tions defined in Table 9.1. The accumulated reliability can be seen at Figure 9.1
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Figure 9.1: Reliability index for different standard deviations of Xδ

From Figure 9.1 it can be seen that the reliability index is decreasing with an increase in standard deviation. This
is as expected, since the extreme realisations are causing the failures, and a higher standard deviation affect the
magnitudes of these extreme. It is also visualised at Figure 9.2, 9.3, and 9.4, where the concentration of the
realisations can be seen to widen up corresponding with an increase in standard deviation.
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Figure 9.2: Realisations, σδ = 0.1
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Figure 9.3: Realisations, σδ = 0.3
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Figure 9.4: Realisations, σδ = 0.5

It can be seen from the realisations that the influence of σδ is significant. This is due to the direct impact on the
fatigue strength from the realisation of Xδ, whereas the damage is affected for a number of stochastic variables.
This way, a high outcome of a stochastic variable affecting the load can be evened out by outcomes of the other
variables.

9.3 Sensitivity analysis of Xwind

To determine the importance of Xw, the accumulated reliability index is found with the uncertainties defined in
Table 9.2.
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Parameter Distribution Mean value, µi Standard deviation, σi

Miners rule, X∆,1 Lognormal 1 0.3
Wind load, Xw Lognormal 1 0.1
Wind load, Xw Lognormal 1 0.2
Wind load, Xw Lognormal 1 0.3
Stress calculation, XSCF Lognormal 1 0.1
Material parameter, linear part, Klin Normal 10.9699+2σK,lin 0.2

Table 9.2: Stochastic parameters.

Since Xw is the stochastic variable subject to the analysis, this is modelled with the three different standard devia-
tions defined in Table 9.2. The accumulated reliability can be seen at Figure 9.5
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Figure 9.5: Reliability index for different standard deviations of Xw

As for Xδ, an increase of the standard deviation can be seen to decrease the reliability index.

9.4 Sensitivity analysis of Klin

To determine the importance of Klin, the accumulated reliability index is found with the uncertainties defined in
Table 9.3.
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Parameter Distribution Mean value, µi Standard deviation, σi

Miners rule, X∆,1 Lognormal 1 0.3
Wind load, Xw Lognormal 1 0.2
Stress calculation, XSCF Lognormal 1 0.1
Stress calculation, XSCF Lognormal 1 0.1
Material parameter, linear part, Klin Normal 10.9699+2σK,lin 0.1
Material parameter, linear part, Klin Normal 10.9699+2σK,lin 0.2
Material parameter, linear part, Klin Normal 10.9699+2σK,lin 0.3

Table 9.3: Stochastic parameters.

Since Klin is the stochastic variable subject to the analysis, this is modelled with the three different standard devia-
tions defined in Table 9.2. The accumulated reliability can be seen at Figure 9.6
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Figure 9.6: Reliability index for different standard deviations of Klin

From Figure 9.6 it can be seen that an increase of the reliability index is caused by an increase in the standard
deviation of Klin. This is due to method used to model the mean curve for Klin.

9.5 Comparison

To compare the influence of each of the three analysed stochastic variables, Figure 9.7
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Figure 9.7: Reliability index for different standard deviations of X∆, Xw and Klin

It can be seen that the largest impact on the reliability is caused by an increase in the standard deviation of Klin.

For a case of bilinear SN-curve and bilinear with cut-off, the trend is found to correspond with the linear case.
This can be seen in Appendix 12
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Conclusion 10
The aim of this master thesis was to estimate the structural reliability of an off shore wind turbine tower with
respect to fatigue loads namely low cycle fatigue. Further more the uncertainties regarding SN-curves and their
use was to be analysed with a probabilistic apporach.

With nine years of messurements from Horns reef II a weibull distribution was fitted to the data to get a yearly
distribution of the mean windspeeds from 3 m/s to 25 m/s in bins of 2 m/s. By the software TurbSim, six wind
fields for each mean wind speed was simulated and randomly picked for the assembly of the wind for one year.
The one year of simulated wind fields was then put through another software program, FAST, and the response of a
5 MW wind turbine was calculated. From FAST, the output in the form of a tower bending moment was extracted
to analyse the stress ranges in the tower.

In order to calcucalte the fatigue strength, SN-curves is the most common way to describe the relationship be-
tween the magnitude of stress ranges, and the number of stress cycles until failure. SN-cuves are found from
numerous tests and in [G. Sedlacek et al., 2002], the tests used to determine the design SN-curves in [Eurocode
1993-1-9, 2005] are found. From all tests in this background document, the slopes for a bilinear SN-curve is de-
termined to 3 and 5 for the first and second part. Because the SN-curves in [Eurocode 1993-1-9, 2005] are made
from all kinds of different tests and welding methods, these are implemented with a lot of conservatism, to ensure
a wide usage. In Chapter 3, the general uncertainties were investigated, for six tests and then for a seventh test,
combining all six. It could be confirmed that both slope and location of the curve is influenced by a large natural
variation, that is difficult to improve.

Eurocode 3, Det Norske Veritas and The Background Documentation to Eurocode 3 have all three a different
method for calculating a characteristic SN-curve from tests. These methods are listed in Table 4.2. In Chapter
4 the methods were used to calculate the characteristic SN-curves for all seven tests. It could be concluded that
all methods agrees fairly well with each other by looking at the fatigue strength at 2 · 106 cycles. By rotating the
curves to a common slope so that m = 3, the curves which had a slope of m < 3 got a less conservative strength for
cycles of stress ranges less than 100 MPa.

As stated in the introduction, one of the scopes in this thesis was to investigate the significance of Low Cycle
Fatigue. The issue occurs when the wind is modelled in series of 10 minutes and then assembled for the entire
lifetime. Large cycles gets "lost" when 10 minute series are evaluated individually. An algorithm from [Larsen, G.
C. and Thomsen, K , 1996] is therefore implemented, and the reliability index is calculated both with and without
the contribution.
Both the literature and our findings shows that the contribution is of little influence. The damage is increased by
up to 2.48 % with a bilinear SN-curve with cut-off, and changing the detail category does not make any significant
difference. If another material is used with a Wühler coefficient of 10, which is the composite material used in the
blades, the results are increased. Here the damage is increased up to 26 % which indicates that LCF needs to be
considered.
For the damage in the tower caused by cyclic loading an alternative algorithm is used where every minimum and
maximum stress cycle from each 10 minute wind series is used. This algorithm may over estimate the total num-
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10. Conclusion

ber of cycles but still gives an improved contribution of the large cycles, which occur with a low frequency. This
method predict an extra load contribution, causing the accumulated reliability index to reach the maximum allowed
4 years before intended, if designed without LCF taken into account. The alternative algorithm to low cycle fatigue
may overestimate the damage and the algorithm from [Larsen, G. C. and Thomsen, K , 1996] is deemed to under
estimate. In the authors opinion, the real contribution fro LCF lies somewhere in between the two loads proposed.

In chapter 7 a nonlinear SN-curve is proposed by [Lassen, T. et al , 2005]. This is done to avoid the knee point in
the bilinear SN-curve from Eurocode 3. The location of the knee point can have a critical impact on the reliability,
but by using the Random Limit Fatigue Model this can be decreased. Instead, a stochastic variable, γ, models the
fatigue limit. This combined with a nonlinar form of the curve gives a less conservative estimation on the fatigue
damage. By designing with the SN-curve proposed by the code and implementing a limit state equation based on
RLMF, a FDF can be applied which is below one. This corresponds effectively to implement partial safety factors
below one as well. The product of the partial safety factors, γmγ f is found to 0.92. This illustrates well the safety
implemented in the design codes, especially around the knee point.

With the response of the tower found in Chapter 2 the accumulated reliability is calculated for Test 3, Test 4
and Test 7. With the design equation from the linear SN-curve in Eurocode 3, the design parameter z is found.
With this design parameter, the accumulated reliability index is calculated with limit state equations for each test.
From figure 8.1 is can be seen that the difference between Test 3 and the rest is quite noticeable. The design fatigue
factor is calibrated in Figure 8.2 for Test 3, to a value of 0.3 .
From this result, it can be concluded that if a good description of the detail and tests with limited scatter are avail-
able, significant reduction in partial safety factors can be achieved. The safety implemented in Eurocode 3 is large
due to the mixed test series being used as background data. If test series are made for the same detail, using the
same steel class, a significant reduction in scatter is expected to be achieved.
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Figure 11.1: Mean wind speed, Horns Rev
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11. Wind Distribution
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Sensitivity analysis 12
12.1 Sensitivity Analysis for a Bilinear SN-curve

In Table

COV∆ COVXw COVXSCF βacc

0.3 0.2 0.1 2.63
0.1 0.2 0.1 2.75
0.2 0.2 0.1 2.70
0.4 0.2 0.1 2.55
0.5 0.2 0.1 2.45
0.3 0.1 0.1 3.52
0.3 0.3 0.1 2.07
0.3 0.4 0.1 1.74
0.3 0.5 0.1 1.53
0.3 0.2 0.2 2.23
0.3 0.2 0.3 1.88
0.3 0.2 0.4 1.64
0.3 0.2 0.5 1.47

Table 12.1: Sensitevity analysis for bi-linear SN-curve.

COV∆ COVXw COVXSCF βacc

0.3 0.2 0.1 2.77
0.1 0.2 0.1 2.89
0.2 0.2 0.1 2.84
0.4 0.2 0.1 2.69
0.5 0.2 0.1 2.60
0.3 0.1 0.1 3.77
0.3 0.3 0.1 2.17
0.3 0.4 0.1 1.81
0.3 0.5 0.1 1.59
0.3 0.2 0.2 2.33
0.3 0.2 0.3 1.96
0.3 0.2 0.4 1.70
0.3 0.2 0.5 1.53

Table 12.2: Sensitevity analysis for bi-linear with cut off SN-curve.
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12. Sensitivity analysis

COVXS COVγ COVε β

0.3 0.16 0.14 1.75
0.3 0.18 0.14 1.71
0.3 0.20 0.14 1.66
0.3 0.40 0.14 1.25
0.3 0.10 0.14 1.86
0.3 0.16 0.16 1.75
0.3 0.16 0.20 1.74
0.3 0.16 0.40 1.71
0.3 0.16 0.50 1.69
0.3 0.16 0.60 1.66

Table 12.3: Sensitevity analysis for Random Limit Fatigue Model.
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