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Summary:

The purpose of this report is to derive and implement
a strain hardening Mohr-Coulomb model based on re-
turn mapping in principal stress space by the use of
boundary planes. The report aims at modeling strain
hardening rock material through a Mohr-Coulomb ap-
proximation of the generalized Hoek-Brown criterion.
Firstly, the classification of rock materials as well
as the generalized Hoek-Brown criterion are pre-
sented. Afterwards follows an introduction to the
Mohr-Coulomb criterion and the approximations used
for the generalized Hoek-Brown criterion.
Next, the fundamentals of plasticity and hardening is
presented along with the theory behind return map-
ping in general stress space, including the derivation
of the consistent constitutive matrix used in the global
FEM equilibrium iterations. Then the advantages of
return mapping in principal stress space is outlined.
Following is the derivation of a non-associated
isotropic strain hardening Mohr-Coulomb model
based on the introduced theory.

Finally, the derived model is implemented in two ex-

amples. The first example tries to model a strip foot-

ing while the second example models a tunnel exca-

vation. The obtained results are compared with per-

fectly plastic solutions utilizing the peak and residual

strength of the rock material.
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Chapter1

Introduction

A large part of the earth’s crust consists of material which can be classified as rock. With advances
within the field of civil engineering and the ever growing need for real estate and infrastructure, more
and more structures are build in or on rock material. For some civil engineering structures, this is a
major advantage, since rock material is often very strong and stiff. Properties which are beneficial for
a foundation. However, rock material also tends to be quite brittle and posses inferior tensile strength.
Properties, which are dangerous to tunnel excavations.

Civil engineering problems involving rock material, as well as many other problems, are often hand-
led by the use of finite element modeling, where the generally non-linear governing equations of the
model are discretized into a finite number of elements, for which the solution to thegoverning equations
can be approximated with polynomials. Afterwards the system of equations is solved in an incremental
iterative manner until equilibrium is reached. A crucial part in the finite element method is the choice
of constitutive model, which gives the relationship between the strains and thestresses in a given point.

Part of the constitutive model is to predict when plastic straining of the materialoccurs, which is
dictated by the yield criterion. For rock materials, two often used yield criteria are the old-fashioned
and thoroughly tested Mohr-Coulomb criterion and the fairly new generalized Hoek-Brown criterion.
The Mohr-Coulomb criterion describes a linear relationship between the shear stress in the material
and the corresponding normal stress, which when satisfied, results in plastic straining of the material.
The Hoek-Brown criterion is an empirical non-linear refinement of the Mohr-Coulomb criterion and
is specifically designed for rock-like materials. However, due to the simplicity of the Mohr-Coulomb
criterion, many calculations regarding rock-like material is still carried out using this simpler criterion.

Another part of the constitutive model is to predict how the material behavesunder plastic straining.
Generally, materials respond in three different ways, see Figure1.1. One possibility is, that the material
strengthens during plastic loading until some ultimate strength is reached, in which case the material is
said to harden. Another possibility is, that the material maintains a constant strength, and the material
is said to be perfectly plastic. The third possibility is, that the material has a peakstrength, and weakens
until a residual strength is reached, a phenomenon known as softening.The phenomenon of gaining or
losing strength during plastic loading is sometimes referred to simply as hardening, regardless that the
material is softening.

The rate of change of the strength of the material is also a significant factor, which has to be consid-
ered when modeling materials. The behavior of rock materials generally evolve in three possible ways.
Hard, good quality rock material tends to show an elastic-brittle behavior, in which the strength drops
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Figure 1.1:Material behaviour under plastic loading.

rapidly, once the material is introduced to plastic straining, see Figure1.2. Average quality rock mate-
rial tends to show a strain softening behavior similar to the one shown in Figure1.1c, while very poor
quality rock material shows an elastic-perfectly plastic behavior, see Figure 1.1b, [Hoek and Brown,
1997]. Many finite element models rely on the material to behave in a perfectly plastic manner with a
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Figure 1.2:Elastic-brittle behavior in hard rock material

yield strength equivalent to the residual strength. This greatly reduces the problem and thus makes it
easier to solve. However, it could also possibly lead to over sized structures if the material is softening,
because local zones of high plastic straining dictate the strength of the entirematerial. For example if a
perfectly plastic approach is used with a strength above the residual strength, material located in plastic
zones is stronger than it should be, and hence the model is on the unsafe side. On the other hand, if the
residual strength is used for the entire material, the model might be too conservative.

Constitutive models based on the Mohr-Coulomb criterion which include hardening/softening are
already available, see e.g.de Souza Neto et al.[2008]. However, a model based on the principal stress
space framework presented byClausen[2007] has yet to be developed.
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1.1 Statement of Intent

The aim of this project is to derive a strain hardening/softening constitutive model for use in finite
element calculations based on the Mohr-Coulomb criterion which utilize derivations in principal stress
space, both regarding the updated stress state and the consistent constitutive matrix needed for the
global equilibrium iterations.

To test and demonstrate the usefulness of the model, it is used to estimate the influence of the
hardening/softening properties on the bearing capacity of a strip footing as well as therisk of failure
during a tunnel excavation.

1.2 Prerequisites

Strains and stresses are tensors of the 2nd order and the constitutive relation between them is a 4th
order tensor. However, symmetric properties of the strain and stress tensors allow for a formulation in
which they can be expressed equally accurate as vectors, and the constitutive relation can be expressed
as a matrix. In this report, the latter formulation will be used due to its simplicity and ease of use when
writing computer code. Throughout the report, a number of variables, vectors and matrices are used.
To keep track of these, a number of guidelines will be presented in the following.

A scalar is presented in ordinary text asσ1, whereas a vector or a matrix is symbolized in bold as
e.g.σσσ or DDD. By default, vectors are 6×1 and matrices are 6×6. Vectors and matrices with an overline,
e.g. σσσ andDDD are related to the principal stress components and have dimensions of 3×1 and 3×3
respectively. Vectors and matrices with a tilde, e.g.σ̃σσ andT̃TT are related to the shear stress components
and have dimensions of 3×1 and 3×3 respectively. Vectors and matrices with a hat, e.g.σ̂σσ andD̂DD are
full 6×1 vectors and 6×6 matrices, where the axes are aligned with those of the principal stresses.

The ordering of the strain vector,εεε, and the stress vector,σσσ, is given as

εεε = [εx εy εz 2εxy 2εxz 2εyz]T (1.1)

σσσ = [σx σy σz σxy σxz σyz]T (1.2)

Stresses are taken as positive in tension unless otherwise stated.DDD is the elastic constitutive matrix
relating elastic strains to stresses and is given by

DDD =
⎡⎢⎢⎢⎢⎢⎣
DDD 000

3x3

000
3x3

G̃GG

⎤⎥⎥⎥⎥⎥⎦
(1.3)

whereDDD andG̃GG are given by

DDD = E(1+ν)(1−2ν)
⎡⎢⎢⎢⎢⎢⎢⎣
1−ν ν ν

ν 1−ν ν

ν ν 1−ν
⎤⎥⎥⎥⎥⎥⎥⎦

(1.4)

G̃GG = E

2(1+ν)
⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0

0 1 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
(1.5)

E is Young’s modulus andν is Poisson’s ratio.





Chapter2

Classification of Rock Materials and the
Generalized Hoek-Brown Criterion

Rock material is a wide expression used to describe a solid made up of minerals. Depending on the size
of a rock sample, see Figure2.1, rock material typically ranges from isotropic intact rock mass without
any discontinuities, through very anisotropic rock mass with a few dominating discontinuities, to an
isotropic jointed rock mass with an indistinct number of randomly oriented evenlyspace discontinuities
with the same characteristics [Merifield et al., 2006].

Intact rock

Single discontinuity

Two discontinuities

Several
discontinuities

Jointed rock mass

Structure

Figure 2.1:The material which is modeled, should be isotropic compared to the size of the
structure.

If a representative sample of the rock material, which is sought modeled, canbe regarded as either
intact rock or as jointed rock mass, then the material can be regarded as isotropic, provided that the
sample size is small compared to the structure at hand. If the discontinuities of the sample are oriented
in a non-random order, it might be necessary to model the rock material asan anisotropic continuum. If
large fractures(faults) dominate the construction site of the structure, it mayalso be necessary to include
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such fractures in the model mesh. In the following, it is assumed, that the rock material can be modeled
as an isotropic continuum.

In order to be able to include rock material in finite element models, the properties of the rock
material need to be known and somehow quantified. Extensive empirical research has lead to the
formulation of the generalized Hoek-Brown criterion, equation (2.1), which predict the stress states
that cause failure in rock materials [Hoek and Brown, 1997].

σ′1 =σ′3+σci(mb
σ′3

σci
+ s)a

(2.1)

σ′1 andσ′3 are the major and minor effective principal stresses respectively, where compression is taken
as positive. As the criterion suggests, four parameters are needed in order to asses the strength of
the rock material, namely the uniaxial compressive strength of the intact rockmaterial,σci, and the
constantsmb, s anda. The constants can be estimated based on the Geological Strength Index(GSI),
the disturbance factor,D, and the intact rock material constant,mi , by using the following expressions
[Hoek et al., 2002]

mb =mi exp(GSI−100
28−14D

) (2.2)

s= exp(GSI−100
9−3D

) (2.3)

a= 1
2
+ 1

6
(exp(−GSI

15
)−exp(−20

3
)) (2.4)

The Geological Strength Index is a measure of the rock material’s quality based on field observations,
which takes into account the composition and structure of the in-situ rock material as well as the surface
conditions, see Figure2.3 on page8. Based on this, the GSI is assigned on a scale ranging from 0 to
100, where 100 indicates a very good quality [Hoek, 2007].

The disturbance factor,D, is used to take into account the blast damage, that part of the rock mate-
rial might suffer from. It ranges from 0 to 1, where 0 indicates undisturbed rock material. The material
constantmi and the uniaxial compressive strength of the intact rock material,σci, is found using labo-
ratory tests on the intact rock material. The elastic modulus of the rock material can be estimated by
[Hoek and Diederichs, 2006]

Erm = 100,000 MPa( 1−D/2
1+exp((75+25D−GS I)/11)) (2.5)

Once the rock material has reached a stress state which causes failure, itloses some of its strength,
as mentioned inchapter 1. The manner in which the strength drops is not entirely determined, but
three possible characteristics are mentioned inHoek and Brown[1997]. One possibility is to assume an
elastic-brittle behavior, where the strength of the rock material rapidly drops to some residual strength
once the failure criteria is reached, see Figure1.2. Another possibility is to assume a strain soften-
ing relationship between the strength of the material and the plastic straining which it undergoes, see
Figure1.1c. The third options is to assume that the rock material exhibits in a elastic-perfectly plastic
way, see Figure1.1b. In this report, it is assumed that the rock material behaves in a strain-softening
manner. For an implementation of an elastic-perfectly plastic generalized Hoek-Brown criterion see
Clausen[2007] andSørensen[2012].
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In order to conform with most finite element codes, where tension is taken aspositive, the gener-
alised Hoek-Brown criterion can be expressed as

σ3 =σ1−σci(s−mb
σ1

σci
)a

(2.6)

where the apostrophes signifying effective stresses have been omitted for simplicity. In order to express
the above as a yield function, resulting in a negative number for elastic statesand a positive number for
non-allowable states, it can further be rewritten to the following

f (σσσ,σci,s,mb,a) =σ1−σ3−σci(s−mb
σ1

σci
)a = 0 (2.7)

The stress states which are solutions to the above equation form a six sided pyramid along the hydro-
static axis with curved sides as can be seen in Figure2.2. Any stress state inside the pyramid is elastic,
whereas any stress state located outside is unobtainable.

σ3

σ2

σ1

Hydrostatic axis,σ1 =σ2 =σ3

Figure 2.2:The generalized Hoek-Brown criterion visualized in principal stress space.
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structural planes are present in an unfavourable 

orientation with respect to the excavation face, 

these will dominate the rock mass behaviour. 

The shear strength of surfaces in rocks that are 

prone to deterioration as a result of changes in 

moisture content will be reduced if water is 

present. When working with rocks in fair to 

very poor categories, a shift to the right may be 

made for wet conditions. Water pressure is 

dealt with by effective stress analysis.
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Figure 2.3:Geological strength index for jointed rock masses [Marinos and Hoek, 2000].



Chapter3

The Mohr-Coulomb Criterion

Even though the Hoek-Brown criterion is specifically developed with rock materials in mind, a lot of the
finite element models made today still utilize the much older Mohr-Coulomb failure criterion, which
states, that once the shear stress,τ, and the normal stress,σn, is reached in a plane in a continuum,
which satisfies

τ = c−σn tan(ϕ) (3.1)

yielding occurs.c is a measure of the cohesion present in the material, while tan(ϕ) is a measure of
the friction coefficient between the grains, thusϕ is denoted the friction angle. In the above expression,
tension is taken as positive. This linear relationship can be visualized as shown in Figure3.1.

σ1σ2σ3
c ϕ

ϕ

τ = c−σn tan(ϕ) τ

σn

Figure 3.1:The Mohr-Coulomb criterion inσn-τ space.

Any Mohr circle situated below the Mohr-Coulomb line denotes an elastic state, whereas a Mohr
circle, which touches the line denotes a state of yielding. From Figure3.1, the shear stress causing
failure can be shown to be

τ = σ1−σ3

2
cos(ϕ) (3.2)

whereσ1 andσ3 are respectively the largest and smallest principal stresses. Similarly, thenormal stress
on the failure plane is given by

σn = σ1+σ3

2
+ σ1−σ3

2
sin(ϕ) (3.3)

9
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Substitution back into (3.1) and rewriting results in

σ1−σ3+(σ1+σ3)sin(ϕ) = 2ccos(ϕ) (3.4)

If the implicit function above is plotted in principal stress space, it is forming a six-sided pyramid along
the hydrostatic axis as shown on Figure3.2. This shape represents the yield surface, and it is evident
from the figure, that the criterion is pressure dependent. Any stress state situated inside the stress space
bounded by the six planes is elastic, while stress states outside are non-allowable.

σ1

σ2

σ3

Hydrostatic axis,σ1 =σ2 =σ3

Figure 3.2:The Mohr-Coulomb criterion plotted in principal stress space.

Written as a yield function, the Mohr-Coulomb criterion takes the following formulation

f (σσσ,c,ϕ) =σ1−σ3+(σ1+σ3)sin(ϕ)−2ccos(ϕ) = 0 (3.5)

which can be refined to give
f (σσσ,σc,k) = kσ1−σ3−σc = 0 (3.6)

wherek is given by

k= 1+sin(ϕ)
1−sin(ϕ) (3.7)

and the uniaxial compressive strength,σc, is given by

σc = 2c
√

k (3.8)

3.1 Mohr-Coulomb Approximation of Hoek-Brown criterion

In order to use the Mohr-Coulomb criterion to model rock materials, a method of relating the Mohr-
Coulomb parameters to the rock properties obtained using the Hoek-Brown criterion needs to be iden-
tified. According toHoek et al.[2002] the friction angle can be calculated using

ϕ = sin−1( 6amb(s+mbσ3n)a−1

2(1+a)(2+a)+6amb(s+mbσ3n)a−1) (3.9)
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and the corresponding cohesion is given by

c= σci ((1+2a)s+(1−a)mbσ3n)(s+mbσ3n)a−1

(1+a)(2+a) √1+(6amb(s+mbσ3n)a−1)/((1+a)(2+a)) (3.10)

whereσ3n is given by
σ3n = σ3,max

σci
(3.11)

andσ3,max is the upper bound over which the Mohr-Coulomb criterion is sought fitted, cf. Figure3.3.
Notice that compression is taken as positive in these derivations.

σ1

σ3

σ3,max

σtApproximated Mohr-Coulomb criterionHoek-Brown Criterion

Figure 3.3:Mohr-Coulomb approximation of Hoek-Brown criterion. Compression istaken as
positive.

The upper boundary of the stress range should be chosen based on the problem at hand, such that it
covers the stress range of the model. For deep tunnels, the following relationship gives a good estimate
[Hoek et al., 2002]

σ3,max

σcm
= 0.47(σcm

γH
)−0.94

(3.12)

where

σcm=σci
(mb+4s−a(mb−8s))(mb

4 + s)a−1

2(1+a)(2+a) (3.13)

andγ is the unit weight of the rock mass, andH is the depth of the tunnel below the surface. For slope
stability, the following gives a good estimate ofσ3,max

σ3,max

σcm
= 0.72(σcm

γH
)−0.91

(3.14)

A more general approach is to defineσ3,max as [Rocscience Inc., 2007]

σ3,max= σci

4
(3.15)





Chapter4

Plasticity Fudamentals

In this chapter, some of the basics of material plasticity is outlined. However, adetailed description
is beyond the scope of this report. For a more thorough exposition, seede Souza Neto et al.[2008],
Ottosen and Ristinmaa[2005] andCrisfield[2000].

4.1 The Yield Function

The strains that develop within a material when exposed to a load can basicallybe divided into two
separate parts. Part of the strains are what is known as elastic strains. Theses strains are characterized
by the fact that once the external load disappears, so does the elastic strains that developed during
loading. The part of the strains which are not elastic are known as plastic.These strains remain even
after the material has been unloaded. See Figure4.1.

S
tr

es
se

s,σ

Strains,εεε

εεεp εεεe

1

E

Figure 4.1:Elastic and plastic strains.

So the total strains,εεε, are made up of elastic strains and plastic strains, which can be written as

εεε = εεεe+εεεp (4.1)

whereεεεe is the elastic strain vector andεεεp is the plastic strain vector. Plastic strains start to develop
once the material reaches its yielding limit, which is defined by some yield functionf = 0. This could,
for example, be the Hoek-Brown criterion or the Mohr-Coulomb criterion discussed earlier. The yield

13
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function, f , is a function of the stresses as well as some hardening parameters,KKK, which describe the
strength of the material, i.e.

f = f (σσσ,KKK) (4.2)

Sometimes, a material might require more than one yield function in order to be modeled sufficiently
accurate, this is discussed insection 4.7. The hardening parameters are usually determined by some
state parameters,κκκ, that determine the internal state of the material

KKK =KKK (κκκ) (4.3)

The yield function is a scalar valued function, which gives a negative value for all stress states that are
elastic. Once the yield function reaches a value of zero, plastic strains start to develop. The stress states
which fulfill this criterion form a surface in stress space known as the yieldsurface, see e.g. Figure2.2
and3.2. Further, the yield function remains zero during plastic loading, which implies that the time
derivative of f during plastic loading is zero, which can be written as

d f

dt
= ∂ f

∂t

dt

dt
+( ∂ f

∂σσσ
)T dσσσ

dt
+( ∂ f

∂KKK
)T ∂KKK

∂κκκ

dκκκ

dt
= 0 (4.4)

which is known as the consistency relation. Since the yield function is time-independent, it simplifies
to

d f

dt
=aaaT dσσσ

dt
+( ∂ f

∂KKK
)T ∂KKK

∂κκκ

dκκκ

dt
= 0 (4.5)

whereaaa is given by

aaa= ∂ f

∂σσσ
(4.6)

The time-dependency is discussed further insection 4.5. A stress state which returns a positive value
of the yield function is inadmissible. The stress state within the material is determinedby the elastic
strains through the constitutive matrix,DDD, as

σσσ =DDDεεεe=DDD(εεε−εεεp) (4.7)

where (4.1) has been used. If no plastic straining has occurred in the material, the relationship between
stresses and strains is one-to-one. I.e. it is possible to determine the stressstate based on the total
strains, which merely consist of elastic strains. However, if plastic straininghas developed within the
material, the one-to-one relationship is lost, see Figure4.2. The stress state is said to be path-dependent.

S
tr

es
se

s,σ

Strains,ǫ

σa

σb

ǫx

Figure 4.2: The one-to-one relationship between strains and stresses are lost onceplastic
strains have developed.
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Because of this path-dependence, it is necessary to adopt an incremental approach in order to find
matching strain-stress relations. This is done by taking the time derivative of (4.7), which can be
written as

dσσσ

dt
=DDD

dεεε

dt
=DDD(dεεε

dt
− dεεεp

dt
) (4.8)

4.2 Plastic Potential

Once the yield function reaches zero and plastic strains start to develop, itis crucial to know in which
direction they develop. However there is no conclusive way to determine this. A way to get around
this, is to define a plastic potential function,g. The plastic potential is a scalar valued function, which
usually depends upon the stress state and some hardening parameters

g= g(σσσ,KKK) (4.9)

The partial derivative of this plastic potential with respect to the stresses define the direction of the
plastic strains. A common choice for the plastic potential is to use the yield function. If this is the case,
it is referred to as associated plasticity. If another function is chosen, it isreferred to as non-associated
plasticity. The length of the incremental plastic strain is controlled by a so called plastic multiplier,dλ,
which is a non-negative scalar. Thus the plastic strain increment is given by

dεεεp

dt
= dλ

dt

∂g

∂σσσ
= dλ

dt
bbb (4.10)

where the abbreviationbbb has been introduced to improve readability. This relation is known as the flow
rule.

4.3 Hardening and Softening

As mentioned earlier, rock material tend to lose some of its strength once plastic straining occurs,
which is known as softening. However many metals tend to show an increase instrength during plastic
straining, see Figure1.1a, which is known as hardening. Usually both phenomena are simply referred
to as hardening. If the material is considered perfectly plastic, the yield criterion is independent of the
hardening parametersKKK, and simply reduces to

f (σσσ,KKK) = f (σσσ) = F (σσσ) = 0 (4.11)

whereF has been introduced for readability and designates a perfectly plastic yieldfunction. If harden-
ing is employed in the model, two distinct methods are normally chosen, namely the isotropic hardening
model and the kinematic hardening model, see Figure4.3. The isotropic hardening model expands or
contracts the yield surface, which can be achieved by adding or subtracting an appropriate amount from
the yield criterion based upon the state variablesκκκ. However, the position and shape of the yield surface
in stress space is unaltered. This can be expressed as

f (σσσ,KKK) = F (σσσ)−KKK = 0 (4.12)

On the other hand, kinematic hardening shifts the yield surface from one location in stress space to
another. The size and shape of the yield surface remains unaltered. Thiscan be achieved by shifting the
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stresses by some amount defined by the state variables as

f (σσσ,KKK) = F (σσσ−KKK) = 0 (4.13)

The two different hardening models can be used simultaneously, in which case it is referred to as mixed
hardening. Mixed hardening alters the size and position of the yield surface and leaves the shape
unaltered. This can be written as

f (σσσ,KKK) = F (σσσ−KKKkin)−KKK iso= 0 (4.14)

whereKKKkin andKKK iso are the hardening parameters associated with kinematic hardening and isotropic
hardening respectively.

F (σσσ)F (σσσ)F (σσσ)

F (σσσ)−KKK F (σσσ−KKK)
F (σσσ−KKKkin)−KKK iso

Figure 4.3:Isotropic, kinematic and mixed hardening.

4.4 State Parameters

The state parameters which control the hardening of the material need to be identified and their time rate
of change has to be established, the so-called evolution law. The two most common state parameters
are the accumulated plastic strain, denoted,εp, and the dissipated plastic work,Wp, defined by

Wp = ∫ εεεp

0
σσσTdεεεp (4.15)

The accumulated plastic strain can be defined in different manners, in which the most common is the
Von Mises accumulated plastic strain defined by

εp = ∫ t

0

√
2
3
(dεεεp

dt
)T dεεεp

dt
dt (4.16)

Alternatively, the state parameters can also be defined by some potential function, j, which is a function
of the stress state and the hardening variables

j = j (σσσ,KKK) (4.17)
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and a plastic multiplier, using the following expression

dκκκ

dt
= −dλ

dt

∂ j

∂KKK
(4.18)

For instance, if the state parameter is the accumulated plastic strain,εp, and the hardening parameter is
the cohesion,c, the increment of the accumulated plastic strain is given as

dεp

dt
= −dλ

dt

∂ j

∂c
(4.19)

If j is assumed equal tof , the evolution law is said to be associated, and ifj is different from f , the
evolution law is said to be non-associated.

4.5 Time-Independency

As can be seen from the above equations, there are a lot of first ordertime derivatives, which represent
the load rate of the problem. If a solution is sought, which is independent of the load rate, these time
rate of changes can simply be thought of as changes in the variables whichare being differentiated. For
example, the time rate of change of the plastic strains

dεεεp

dt
(4.20)

can be replaced with
dεεεp (4.21)

and thought of as a nothing more than an infinitesimal change in the plastic strains, regardless of time.
By adopting this independency, the consistency relation, equation (4.5), can be written as

d f =aaaTdσσσ+( ∂ f

∂KKK
)T ∂KKK

∂κκκ
dκκκ = 0 (4.22)

The stress increment, equation (4.8), can be written as

dσσσ =DDD(dεεε−dεεεp) (4.23)

The flow rule, equation (4.10), can be written as

dεεεp = dλbbb (4.24)

and finally, the evolution law defined by a potential function, equation (4.18), can be written as

dκκκ = −dλ
∂ j

∂KKK
(4.25)

4.6 Infinitesimal Constitutive Matrix

The infinitesimal constitutive matrix,DDDep, relates infinitesimal strain increments with infinitesimal
stress increments as follows

dσσσ =DDDepdεεε (4.26)
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Combining the consistency relation, equation (4.22), the infinitesimal stress increment, equation (4.23),
the plastic flow rule, equation (4.24), and the evolution law, a solution for the infinitesimal increment
of the plastic multiplier,dλ, can be found. If the hardening law is assumed to be defined by a potential
function, j, as in equation (4.25), dλ is found to be

dλ = aaaTDDDdεεε

aaaTDDDbbb+( ∂ f
∂KKK )T ∂KKK

∂κκκ

∂ j
∂KKK

(4.27)

If this solution is substituted back into equation (4.23), the infinitesimal constitutive matrix can be found
to be

DDDep=DDD− DDDbbbaaaTDDD

aaaTDDDbbb+( ∂ f
∂KKK )T ∂KKK

∂κκκ

∂ j
∂KKK

(4.28)

4.7 Multiple Yield Functions

Some yield criteria might consist of multiple yield functions

f1(σσσ,KKK) , f2(σσσ,KKK) , . . . , fn(σσσ,KKK) (4.29)

Each yield function defines a surface in stress space. In this case, the elastic stress states are bounded
by the stress states which return a negative value of all the yield functions.See Figure4.4

f1 = 0

f2 = 0

f1 < 0

f2 < 0

f1 < 0∩ f2 < 0

Discontinuity

Discontinuity

Figure 4.4:The elastic stress states (blue) of a yield criterion with multiple yield functions
(green).

In these cases, the combined yield surface contains intersections betweenthe individual yield func-
tions, which require special attention. These intersections can be visualized as curves and points in
principal stress space and is known as yield curves and yield points, seee.g. Figure2.2and Figure3.2.
These intersections usually result in discontinuities where the surfaces ofthe yield functions intersect,
see Figure4.4. If multiple yield functions are utilized, each yield function typically have a unique plas-
tic potential,gi , and hardening potential,j i . In such cases, the strain direction at a discontinuous part
of a yield criterion, see Figure4.5, is a linear combination of the different strain directions involved
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[Koiter, 1953]

dεεεp = k∑
i=1

dλibbbi (4.30)

wherek is the number of plastic potentials, that is part of the intersection at hand. Similarly, the
evolution law is given by

dκκκ = − k∑
i=1

dλi
∂ j i
∂KKK

(4.31)

bbb1

bbb2

dεεε

f1 < 0∩ f2 < 0 f1

f2

Figure 4.5:The plastic strain direction at a discontinues part of the yield criteria.





Chapter5

Return Mapping in General Stress
Space

In this chapter, the theory behind return mapping is introduced. However,a short introduction to the
non-linear finite element method is given first, in order show the need and applicability of return map-
ping. For a more detailed description of the theory behind return mapping andfinite element methods,
seede Souza Neto et al.[2008], Cook et al.[2002] andCrisfield[2000]. The derivations of this chapter
rely on a evolution law of the form given by equation (4.25) and (4.31).

5.1 Non-linear Finite Element Method

Problems involving the displacement and stress distribution throughout a modelcan be formulated
as partial differential equations made up of the governing equations behind the problem and some
boundary conditions, which make the model unique. However, for complexmodels, an analytical
solution to these boundary value problems is very hard or simply impossible to establish. Because
of this, the problem is sought solved through numerical integration, which iswhere the finite element
method comes into play.

As the name suggests, the model is discretized into a finite number of elements, for which the
solution to the governing equations can be approximated with polynomials. A large range of different
elements exist, each with advantages and disadvantages, however this is beyond the scope of this report.
Based on this discretization, the stiffness of the entire model can be calculated. Because the stiffness
of the model is non-linear and path dependent, the boundary conditions are applied incrementally in
what is known as load steps. The system of equations is solved iteratively ineach load step, to make
sure that equilibrium is fulfilled. Usually by the use of a Newton-Raphson scheme. This process can be
schematized as shown in Table5.1. The highlighted points of the procedure are material dependent and
is the main focus of this report. The updated stress state should ideally be found through and integration
of the infinitesimal elasto-plastic constitutive matrix along the path of the strain increment as

σσσk =σσσk−1+∫ εεεk−1+∆εεε

εεεk−1

dσσσ =σσσk−1+∫ εεεk−1+∆εεε

εεεk−1

DDDepdεεε (5.1)

where equation (4.26) has been used. However, the integration of equation (5.1) is no easy task, since
the strain path is unknown andDDDep is stress dependent. Several methods exist, which try to circumvent
this problem. Return mapping is one of these methods, and is the method used throughout this report.
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ÿ Load stepk= 1,2, ...○ pppk = pppk−1+∆pppk Initiation of thekth load vector○ ∆uuu1 =000 Initiation of the displacement increment○ σσσk =σσσk−1 Initiation of start guess ofσσσk○ ÿ Global equilibrium iterationsj = 1,2, ...○ ○ rrr = pppk−qqq(σσσk) Force residual,rrr, from pppk and internal forces,qqq○ ○ KKK (DDDepc) Form the global tangent stiffness matrix,KKK○ ○ δuuu=KKK−1rrr Solve the FEM equations○ ○ ∆uuu j+1 = ∆uuu j +δuuu Update displacement increment○ ○ ∆εεε =BBB∆uuu j+1 Calculate strain increment○ ○ σσσk(σσσk−1,∆εεε) Update stresses○ ○ DDDepc(σσσk) Update consistent constitutive matrix○  Stop iterations when∥rrr∥ < ǫ∥pppk∥ ǫ is a prescribed tolerance○ uuuk =uuuk−1+∆uuu j+1 Update displacement vector○ εεεk =BBBuuuk Update strain vector

 End of load step

Table 5.1:Schematic of the incremental nature of the non-linear finite element methodand
the Newton-Raphson procedure used in the global equilibrium iterations. Based on [Clausen,

2007]

Further, if the infinitesimal constitutive matrix,DDDep, relating infinitesimal strain increments with
infinitesimal stress increments, is used in the global equilibrium iteration scheme of the finite ele-
ment code, where finite increments are used, the quadratic convergenceof the problem will be lost
[Nagtegaal, 1982]. Because of this, a consistent constitutive matrix,DDDepc, is developed, which main-
tains the quadratic convergence by relating infinitesimal changes of the finitestrain increments with
infinitesimal changes of the finite stress increments

d∆σσσ =DDDepcd∆εεε (5.2)

5.2 Return Mapping Basics

The fundamental idea of return mapping is to try out, whether the entire strain increment,∆εεε, is elastic
by introducing the elastic predictor stress increment

∆σσσe=DDD∆εεε (5.3)

Adding this, to the initial stress state, see Figure5.1,

σσσA =σσσk−1 (5.4)

the predicted elastic stress state,σσσB, becomes

σσσB =σσσA+∆σσσe (5.5)
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∆σσσe -∆σσσp

∆σσσ

σσσA

σσσB

σσσC

f (σσσA,KKKA) = 0

f (σσσC,KKKC) = 0

Figure 5.1:Sketch of the updating scheme.

If σσσB returns a negative value of the yield function, i.e.f (σσσB) ≤ 0, the entire strain increment is purely
elastic, and no further calculations are needed. However, if the predicted stress state falls outside the
yield surface, a part of the strain increment must consist of plastic strains. According to equation (4.23),
the stress increment must be given by

∆σσσ =∫ εεεk−1+∆εεε

εεεk−1

DDD(dεεε−dεεεp) =DDD∆εεε−DDD∆εεεp (5.6)

where use has been made of the fact, thatDDD is independent ofεεε, because linear elasticity is assumed.
Introducing the plastic corrector stress increment, see Figure5.1

∆σσσp =DDD∆εεεp (5.7)

together with equation (5.3), the stress increment is given by

∆σσσ = ∆σσσe−∆σσσp (5.8)

and the final updated stress state,σσσC, becomes

σσσC =σσσA+∆σσσ (5.9)

which can also be written as
σσσC =σσσB−∆σσσp (5.10)

Using equation (4.24), the plastic strain increment,∆εεεp, used in calculating the plastic corrector,∆σσσp,
is given by

∆εεεp =
λ+∆λ

∫
λ

bbbdλ (5.11)

The integration of equation (5.11) is just as complicated as equation (5.1), however, in the return map-
ping framework, the plastic strain increment is approximated with

∆εεεp ≈ ∆λ bbb∣C (5.12)
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which results in the plastic corrector increment,∆σσσp, can be written as

∆σσσp ≈ ∆λDDD bbb∣C (5.13)

and thus the problem boils down to finding the updated stress state,σσσC, which fulfills equation (5.10)
and lies on the yield surface. If the updated stress state belongs to a single active yield function, cf.
equation (4.24), the plastic corrector increment is given as shown above. However, ifthe updated stress
state belongs to an intersection of two or more yield functions, the plastic strain direction is given by
equation (4.30). Because of this, slightly different return mapping procedures have to be deployed,
depending on the number of active yield functions that the updated stress state,σσσC, belongs to.

5.3 Return to One Active Yield Function

The updated stress state,σσσC, belongs to the yield surface defined by the yield function hence

f (σσσC,KKKC) = 0 (5.14)

whereKKKC are the updated hardening variables

KKKC =KKK (κκκC) (5.15)

andκκκC are the updated state parameters. In case of a hardening law based upona potential function,
this could be written as follows

κκκC = κκκA−∆λ ∂ j

∂KKK
∣
C

(5.16)

In order to find the correct updated stress state and the plastic multiplier, equation (5.10) and (5.14) are
solved using an iterative procedure, for instance a Newton-Raphson procedure, which is used in this
text.

5.3.1 Consistent Constitutive Matrix

DDDepc is derived by taking the total derivative of (5.8) with respect to∆εεε, using (5.3) and (5.13) as follows

d∆σσσ

d∆εεε
= dDDD∆εεε

d∆εεε
− ∂∆λDDDbbb

∂∆λ
⋅ d∆λ
d∆εεε
− ∂∆λDDDbbb

∂∆σσσ
⋅ d∆σσσ
d∆εεε

(5.17)

Multiplying with d∆εεε on both sides yields

d∆σσσ =DDDd∆εεε−DDDbbbd∆λ−∆λDDD
∂bbb

∂σσσ
d∆σσσ (5.18)

Rearranging leads to

d∆σσσ = (III +∆λDDD
∂bbb

∂σσσ
)
−1

DDD(d∆εεε−d∆λbbb) (5.19)

which can be written on the form
d∆σσσ =DDDcd∆εεε−d∆λDDDcbbb (5.20)

where

DDDc =TTTDDD (5.21)

TTT = (III +∆λDDD
∂bbb

∂σσσ
)
−1

(5.22)
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TTT is known as the modification matrix. Using the consistency condition, (4.22), an expression ford∆λ
can be found in much the same way as it was found in (4.27), and substituted back into (5.20), which
gives the consistent constitutive matrix as

DDDepc=DDDc− DDDcbbbaaaTDDDc

aaaTDDDcbbb+( ∂ f
∂KKK )

T
∂KKK
∂κκκ

∂ j
∂KKK

(5.23)

If aaa is equal tobbb, it is seen, thatDDDepc is symmetric.

5.4 Return to Two Active Yield Functions

If the yield criterion consists of two yield functions,f1 and f2, with the appertaining plastic potentials
g1 andg2 and the hardening potentialsj1 and j2, it is possible, that the updated stress state belongs to
the intersection of these two yield surfaces, see Figure4.4. If this is the case, the direction of the plastic
strains is given by equation (4.30), and thus the corrector stress is also a linear combination of the stress
directions involved giving

∆σσσp = ∆λ1DDD bbb1∣C+∆λ2DDD bbb2∣C (5.24)

where

bbb1 = ∂g1

∂σσσ
(5.25)

bbb2 = ∂g2

∂σσσ
(5.26)

(5.27)

Similarly, the hardening law, equation (5.16) expands to

κκκC = κκκA−∆λ1
∂ j1
∂KKK
∣
C
−∆λ2

∂ j2
∂KKK
∣
C

(5.28)

when using the hardening potential method. The updated stress state belonging to the yield curve still
needs to fulfill (5.10) as well asf1(σσσC,KKKC) =0 andf2(σσσC,KKKC) =0. This results in eight equations with
eight unknowns, namelyσσσC, ∆λ1 and∆λ2. To find the updated stress state,σσσC, an iterative procedure
is implemented in which the residual,rrr, of equation (5.10) is defined by

rrr (σσσC,∆λ1,∆λ2) =σσσC−(σσσB−∆λ1DDD bbb1∣C−∆λ2DDD bbb2∣C) =000 (5.29)

Expandingrrr in a first order Taylor series leads to

rrr (σσσC
i+1,∆λ1,i+1,∆λ2,i+1) =rrr (σσσC

i +dσσσ,∆λ1,i +d∆λ1,∆λ2,i +d∆λ2)
=rrr (σσσC

i ,∆λ1,i ,∆λ2,i)+ ∂rrr
∂σσσ

dσσσ+ ∂rrr

∂∆λ1
d∆λ1+ ∂rrr

∂∆λ2
d∆λ2

(5.30)

where

∂rrr

∂σσσ
= ∂σσσ

C

∂σσσ
− ∂σσσB

∂σσσ
+ ∂∆λ1DDDbbb1

∂σσσ
+ ∂∆λ2DDDbbb2

∂σσσ
(5.31)

= III +∆λ1DDD
∂bbb1

∂σσσ
+∆λ2DDD

∂bbb2

∂σσσ
(5.32)
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and
∂rrr

∂∆λ1
=DDDbbb1 (5.33)

∂rrr

∂∆λ2
=DDDbbb2 (5.34)

substituting back into (5.30) yields

rrr (σσσC
i+1,∆λ1,i+1,∆λ2,i+1) =rrr (σσσC

i ,∆λ1,i ,∆λ2,i)+(III +∆λ1DDD
∂bbb1

∂σσσ
+∆λ2DDD

∂bbb2

∂σσσ
)dσσσ+

+DDDbbb1 ⋅d∆λ1+DDDbbb2 ⋅d∆λ2

(5.35)

and solving forrrr (σσσC
i+1,∆λ1,i+1,∆λ2,i+1) = 0 gives

dσσσ = (III +∆λ1DDD
∂bbb1

∂σσσ
+∆λ2DDD

∂bbb2

∂σσσ
)
−1

(−rrr (σσσC
i ,∆λ1,i ,∆λ2,i)−DDDbbb1d∆λ2−DDDbbb2d∆λ2)

= −TTTrrr (σσσC
i ,∆λ1,i ,∆λ2,i)−DDDcbbb1d∆λ2−DDDcbbb2d∆λ2

(5.36)

where

TTT = (III +∆λ1DDD
∂bbb1

∂σσσ
+∆λ2DDD

∂bbb2

∂σσσ
)
−1

(5.37)

Having an initial guess ofσσσC
i , ∆λ1,i and∆λ2,i , a Taylor expansion of the two yield criteria results in

f1(σσσC
i+1,KKK

C
i+1) = f1(σσσC

i +dσσσ,KKKC
i +dKKK)

= f1(σσσC
i ,KKK

C
i )+aaaT

1 dσσσ+(∂ f1
∂KKK
)

T

dKKK
(5.38)

where

dKKK =∂KKK
∂κκκ

∂κκκ

∂∆λ1
d∆λ1+ ∂KKK

∂κκκ

∂κκκ

∂∆λ2
d∆λ2

=− ∂KKK
∂κκκ

∂ j1
∂KKK

d∆λ1− ∂KKK
∂κκκ

∂ j2
∂KKK

d∆λ2 (5.39)

which gives

f1(σσσC
i+1,KKK

C
i ) = f1(σσσC

i ,KKK
C
i+1)−aaaT

1TTTrrr (σσσC
i ,∆λ1,i ,∆λ2,i)−aaaT

1DDDcbbb1d∆λ2−aaa1DDD
cbbb2d∆λ2−

(∂ f1
∂KKK
)

T

(∂KKK
∂κκκ

∂κκκ

∂∆λ1
d∆λ1+ ∂KKK

∂κκκ

∂κκκ

∂∆λ2
d∆λ2)

(5.40)

and similarly for f2

f2(σσσC
i+1,KKK

C
i ) = f2(σσσC

i ,KKK
C
i+1)−aaaT

2TTTrrr (σσσC
i ,∆λ1,i ,∆λ2,i)−aaaT

2DDDcbbb1d∆λ2−aaa2DDD
cbbb2d∆λ2−

(∂ f2
∂KKK
)

T

(∂KKK
∂κκκ

∂κκκ

∂∆λ1
d∆λ1+ ∂KKK

∂κκκ

∂κκκ

∂∆λ2
d∆λ2)

(5.41)

Equating (5.40) and (5.41) with 0, leads to two equations with two unknowns, namelyd∆λ1 andd∆λ2

which can be found. Onced∆λ1 andd∆λ2 are obtained,dσσσ can be found using (5.36), which leads to
a newσσσC

i+1. Further∆λ1 and∆λ2 are updated by

∆λ1,i+1 = ∆λ1,i +d∆λ (5.42)

∆λ2,i+1 = ∆λ2,i +d∆λ (5.43)

And new values ofd∆λ1 andd∆λ2 can again be found. The above-mentioned steps are repeated until
satisfactory precision is reached.
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5.4.1 Consistent constitutive matrix

The consistent constitutive matrix of a point belonging to two active yield functions is found in much the
same was as it was found for the point belonging to one yield function, namelyby taking the derivative
of (5.8) and utilizing (5.24)

d∆σσσ

d∆εεε
= dDDD∆εεε

d∆εεε
− ∂∆λ1DDDbbb1

∂∆λ1
⋅ d∆λ1

d∆εεε
− ∂∆λ1DDDbbb1

∂∆σσσ
⋅ d∆σσσ
d∆εεε
− ∂∆λ2DDDbbb2

∂∆λ2
⋅ d∆λ2

d∆εεε
− ∂∆λ2DDDbbb2

∂∆σσσ
⋅ d∆σσσ
d∆εεε

(5.44)

which can be rewritten to
d∆σσσ =TTTDDD(d∆εεε−d∆λ1bbb1−d∆λ2bbb2) (5.45)

Using the consistency condition of both yield criteria together with equation (5.36) and (5.39), results
in

aaaT
1 d∆σσσ+(∂ f1

∂KKK
)

T

dKKK =aaaT
1TTTDDD(d∆εεε−d∆λ1bbb1−d∆λ2bbb2)−
(∂ f1
∂KKK
)

T

(∂KKK
∂κκκ

∂ j1
∂KKK

d∆λ1+ ∂KKK
∂κκκ

∂ j2
∂KKK

d∆λ2) = 0

(5.46)

aaaT
2 d∆σσσ+(∂ f1

∂KKK
)

T

dKKK =aaaT
2TTTDDD(d∆εεε−d∆λ1bbb1−d∆λ2bbb2)−
(∂ f2
∂KKK
)

T

(∂KKK
∂κκκ

∂ j1
∂KKK

d∆λ1+ ∂KKK
∂κκκ

∂ j2
∂KKK

d∆λ2) = 0

(5.47)

This can also be written as ⎡⎢⎢⎢⎢⎣
aaaT

1DDDc∆εεε

aaaT
2DDDc∆εεε

⎤⎥⎥⎥⎥⎦
−AAA
⎡⎢⎢⎢⎢⎣
dλ1

dλ2

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎣
0

0

⎤⎥⎥⎥⎥⎦
(5.48)

where

AAA=
⎡⎢⎢⎢⎢⎣
A11 A12

A21 A22

⎤⎥⎥⎥⎥⎦
(5.49)

Aik =aaaT
i DDDcbbbk+(∂ fi

∂KKK
)T ∂KKK

∂κκκ

∂ jk
∂KKK

(5.50)

Thus,dλ1 anddλ2 can be found to be

⎡⎢⎢⎢⎢⎣
dλ1

dλ2

⎤⎥⎥⎥⎥⎦
=BBB
⎡⎢⎢⎢⎢⎣
aaa1DDDcd∆εεε

aaa2DDDcd∆εεε

⎤⎥⎥⎥⎥⎦
(5.51)

where

BBB=AAA−1 =
⎡⎢⎢⎢⎢⎣
B11 B12

B21 B22

⎤⎥⎥⎥⎥⎦
(5.52)

Substituting back into (5.45) gives

d∆σσσ =DDDc(d∆εεε−B11aaa
T
1DDDcd∆εεεbbb1−B12aaa

T
2DDDcd∆εεεbbb1

−B21aaa
T
1DDDcd∆εεεbbb2−B22aaa

T
2DDDcd∆εεεbbb2) (5.53)

Using (5.53), DDDepc can be derived to

DDDepc=DDDc−B11bbb1aaa
T
1DDDc−B12bbb1aaa

T
2DDDc−B21bbb2aaa

T
1DDDc−B22bbb2aaa

T
2DDDc (5.54)
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which can also be written as

DDDepc=DDDc− 2∑
i=1

2∑
j=1

Bi jbbbiaaa
T
j DDDc (5.55)

If needed, the infinitesimal constitutive matrix is found by replacingDDDc in (5.55) with DDD.

5.5 Return to Three Active Yield Functions

An updated stress state might also be returned to the intersection of three yieldsurfaces,f1, f2 and f3,
with the plastic potentialsg1, g2 andg3 and the hardening potentialsj1, j2 and j3. This scenario is very
similar to the scenario with two active yield surfaces, which was discussed in the previous section, and
will only be touched upon briefly. The plastic corrector is given by

∆σσσp = ∆λ1DDD bbb1∣C+∆λ2DDD bbb2∣C+∆λ3DDD bbb3∣C (5.56)

and the evolution law is assumed to be given by

κκκC = κκκA−∆λ1
∂ j1
∂KKK
∣
C
−∆λ2

∂ j2
∂KKK
∣
C
−∆λ3

∂ j3
∂KKK
∣
C

(5.57)

The return algorithm is almost identical to the one mentioned in the previous section, except that an
extra unknown,∆λ3 needs to be found, which is possible because of the extra equation introduced
by the consistency condition of the third yield criterion. The derivation of thisprocedure is omitted,
however the modification matrix,TTT, is given by

TTT = (III +∆λ1DDD
∂bbb1

∂σσσ
+∆λ2DDD

∂bbb2

∂σσσ
+∆λ3DDD

∂bbb3

∂σσσ
)−1

(5.58)

Similarly, the consistent constitutive matrix can be found to be given by

DDDepc=DDDc− 3∑
i=1

3∑
j=1

Bi jbbbiaaa
T
j DDDc (5.59)

whereBBB is the 3×3 equivalent matrix to the one in the previous section.

5.6 Determination of Correct Return Type

In the general six-dimensional stress space, there is no easy way of determining, which of the above
mentioned return algorithms, that should be applied to a certain predictor stress. Because of this, a
commonly used strategy is to start out with returning to a single yield surface. The updated stress state
is then evaluated based upon some specific requirements. In case these requirements are not met, the
predictor stress is returned using a return to two yield surfaces and so on. In general stress space, it is
theoretically possible, that an updated stress state has to be returned usingas much as six active yield
surfaces. However, in the three dimensional principal stress space, geometric arguments can be applied,
to establish which method is to be applied.



Chapter6

Return Mapping in Principal Stress
Space

If the material in question is isotropic, the stress states within the material can be expressed in principal
stresses through a coordinate transformation, see Figure6.1. Thus the updated stress state can be

σσσ = [σx σy σz σxy σxz σyz]T
σσσ = [σ1 σ2 σ3]T

Coordinate transformation

Figure 6.1:Coordinate transformation of general stress space into principal stressspace

found in principal stress space, and only the three principal stresses need to be found. And since
only three values are involved, the problem can be visualized in 3D space,where advantages can be
made of geometrical arguments, which can be used to simplify the expressionsused inchapter 5. The
drawback is, that coordinate transformation calculations have to be performed. The predictor stress,
σσσB, is transformed into principal stresses using ordinary coordinate transformation. Afterwards, the
updated principal stress state,σσσC, and the consistent constitutive matrix aligned with the principal axes,
D̂DD

epc
, is found and then transformed back into the original coordinate system ofthe model, cf. Table6.1.

The derivations ofchapter 5should of course still hold in principal stress space for an isotropic
material. However,σσσ is reduced from the six components of (1.2) to only three components, namely

σσσ = [σ1 σ2 σ3]T (6.1)

where the overbar, , is used to indicate, that we are dealing with principal stresses.

29
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○ σσσB
→σσσB Transform predicted stress state into principal stresses

○ σσσC(σσσB) Find the updated principal stress state

○ D̂DD
epc(σσσC) Find consistent constitutive matrix aligned with principal axes

○ σσσC
→σσσC Transform updated principal stress state to general stresses

aligned with model axes

○ D̂DD
epc
→DDDepc Transform consistent constitutive matrix into general stresses

aligned with model axes

Table 6.1:Schematic of return mapping in principal stress space.

6.1 Modificaton Matrix

The modification matrix used in finding the consistent constitutive matrix,TTT, is still created as a full
6×6 matrix, however, it is aligned with the principal stress axes, meaning thatσx is in the same direction
asσ1, σy is in the same direction asσ2 andσz is in the direction ofσ3. This is denoted by a hat,ˆ . T̂TT
is divided into two parts

T̂TT =
⎡⎢⎢⎢⎢⎣
TTT 000

000 T̃TT

⎤⎥⎥⎥⎥⎦
(6.2)

whereTTT relates to the principal stresses andT̃TT relates to the shear stresses. For a return to a yield surface
using (5.22) results in

TTT = (III +∆λDDD
∂bbb

∂σσσ
)
−1

(6.3)

and for a return to two yield surfaces using (5.37) results in

TTT = (III +∆λ1DDD
∂bbb1

∂σσσ
+∆λ2DDD

∂bbb2

∂σσσ
)
−1

(6.4)

and so on. Further,̃TTT is given by [Clausen et al., 2006]

T̃TT =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

σC
1−σ

C
2

σB
1−σ

B
2

σC
1−σ

C
3

σB
1−σ

B
3

σC
2−σ

C
3

σB
2−σ

B
3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6.5)

OnceT̂TT is found, the consistent constitutive matrix aligned with the principal axes,D̂DD
epc

, is calculated
analogous to equation (5.23), (5.55), or (5.59), except thataaa, bbb andDDDc is replaced by

âaa= [aaaT 0 0 0]T (6.6)

b̂bb= [bbbT
0 0 0]T (6.7)

D̂DD
c = T̂TTDDD (6.8)
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6.2 Boundary Planes

As mentioned earlier, the principal stress space is a three dimensional space in which the yield criterion
can be visualized. Further, from (5.13), it is known, that if a predicted stress state should be returned to
a surface, the direction,sss, see Figure6.2, of the plastic corrector,∆σσσp, is given by

sss=DDDbbb (6.9)

sss
bbb

f (σσσC,KKK) = 0

g(σσσC,KKK) = 0
σσσC

Figure 6.2:Direction of the plastic corrector of a return with one active yield function

By evaluating this expression along the boundaries of the yield surface, the predictor stress states,
which can be returned to the yield surface is outlined. The principle is shownfor a Mohr-Coulomb
criterion on Figure6.3. The stress space within these boundaries is known as a return region, belonging
to the specific yield surface.

σ1

σ2

σ3

sss

sss

sss

Figure 6.3:Outlining of a return region by the use of boundary planes.
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Similarly, the direction of the plastic corrector for a predictor stress which is tobe returned to two active
yield surfaces, see Figure6.4, is given by

sss= ηsss1+ρsss2 (6.10)

g1(σσσC,KKK) = 0

f1(σσσC,KKK) = 0
g2(σσσC,KKK) = 0

f2(σσσC,KKK) = 0

bbb2

bbb1
sss1

sss2

σσσC

Figure 6.4:Direction of the plastic corrector of a return with two active yield functions is a
linear combination of the two plastic corrector directions involved

whereη andρ are some arbitrary positive scalars. Similar arguments apply for a predictorstress with
three active yield surfaces and so on. With this knowledge, it is possible to determine which part of
the yield criterion, a specific predictor stress state should be returned to. Further, if the plastic potential
is linear, the different return regions are made up of planes, sincesss is independent of the position in
yield space. With this knowledge, it is possible to determine the correct returnalgorithm, without the
trial-and-error approach of the general stress space updating scheme.



Chapter7

Implementation of Strain Hardening
Mohr-Coulomb Model

In this chapter, the theory of the previous chapters will be applied to a Mohr-Coulomb model using
linear elasticity, non-associated plasticity and isotropic strain hardening, along with the evolution laws
of equation (4.25) and (4.31).

7.1 Basic Premises

As mentioned inchapter 3, the Mohr-Coulomb yield criterion can take the form of

f (σσσ,σc,k) = kσ1−σ3−σc = 0 (7.1)

which will be used in the current implementation due to its simplicity compared to (3.5). The yield
criterion is a function of both the friction angle,ϕ, and the cohesionc. In this implementation, it is
assumed, that the friction angle remains constant. Thus, the hardening parameters vector,KKK, simplifies
to a scalar, namely the cohesion,c. Further the state parameters vector,κκκ, of the material, is chosen to
be the scalar accumulated plastic strain, ¯εP. Thus

KKK (κκκ) = c(ε̄P) (7.2)

The plastic potential,g, is chosen as

g= (σσσ,c,ψ) =σ1−σ3+(σ1+σ3)sin(ψ)−2ccos(ψ) (7.3)

whereψ represents the angle of dilation. The evolution of the accumulated plastic strainis given by the
hardening potential function,j, cf. equation (4.25), and is chosen as

j = (σσσ,c,ϕ) =σ1−σ3+(σ1+σ3)sin(ϕ)−2ccos(ϕ) (7.4)

7.2 Derivatives

The derivative off with respect toσσσ is given by

aaa= ∂ f

∂σσσ
=
⎡⎢⎢⎢⎢⎢⎢⎣

k

0

−1

⎤⎥⎥⎥⎥⎥⎥⎦
(7.5)
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The derivative off with respect to the harding variable,c, is given by

∂ f

∂KKK
= ∂ f

∂c
= ∂ f

∂σc

dσc

dc
= −2
√

k (7.6)

The derivative ofg with respect toσσσ is given by

bbb= ∂g

∂σσσ
=
⎡⎢⎢⎢⎢⎢⎢⎣

1+sin(ψ)
0

−1+sin(ψ)

⎤⎥⎥⎥⎥⎥⎥⎦
(7.7)

The derivative ofj with respect to the hardening variables is given by

∂ j

∂KKK
= ∂ j

∂c
= −2cos(ϕ) (7.8)

Finally, the derivative of the hardening parameters,KKK, with respect to the state parameters,κκκ, is given
by

∂KKK

∂κκκ
= ∂c

∂ε̄P
= H (7.9)

whereH is the gradient of the chosen ¯εP−c-curve at the current point of accumulated plastic strain.
This curve could be modeled as a function, however, in the current implementation, it is defined by
a number of predefined(εp,c) points, which makes it possible to choose an arbitrary curve, without
changing the computer code . The specific value ofc andH is interpolated between these points, see
Figure7.1. Using this approach, the model is able to handle all of the hardening models shown in
Figure1.1as well as the elastic brittle behavior shown in Figure1.2.

c

0 εp

1
H

Figure 7.1:Example of arbitrarȳεP−c-curve defined by a set of(εp,c) points.

7.3 Yield Criterion Regions

As shown in Figure3.2, the Mohr-Coulomb yield criterion consists of six yield surfaces in principal
stress space. However, if by definition,σ1 is the major principal stress, andσ3 is the minor principal
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stress when transforming the general stress state into principal stress space, it is only necessary to
operate with the yield surface, that satisfies this condition, namedf1, and the two neighboring yield
surfaces,f2 and f6. See Figure7.2.

f1 f2

f3

f4f5

f6

σ1 ≥σ2 ≥σ3 σ2 ≥σ1 ≥σ3

σ2 ≥σ3 ≥σ1

σ3 ≥σ2 ≥σ1σ3 ≥σ1 ≥σ2

σ1 ≥σ3 ≥σ2

σ1 σ2

σ3

Figure 7.2:The Mohr-Coulomb criterion seen from the hydrostatic axis. The primary yield
surface, f1, is shown in blue, while the remaining yield surfaces are faded out.

f1, f2 and f6 is given by

f1(σσσ,σc,k) = kσ1−σ3−σc = 0 (7.10)

f2(σσσ,σc,k) = kσ2−σ3−σc = 0 (7.11)

f6(σσσ,σc,k) = kσ1−σ2−σc = 0 (7.12)

Ie. σ1 is switched withσ2 for yield surfacef2, andσ3 is switched withσ2 for yield surfacef6. This
leads to the following derivatives

aaa1 =
⎡⎢⎢⎢⎢⎢⎢⎣

k

0

−1

⎤⎥⎥⎥⎥⎥⎥⎦
aaa2 =
⎡⎢⎢⎢⎢⎢⎢⎣

0

k

−1

⎤⎥⎥⎥⎥⎥⎥⎦
aaa6 =
⎡⎢⎢⎢⎢⎢⎢⎣

k

−1

0

⎤⎥⎥⎥⎥⎥⎥⎦
(7.13)

The index swapping is also valid for the plastic and hardening potentials belonging to these yield sur-
faces. Thus, the plastic strain direction is given by

bbb1 =
⎡⎢⎢⎢⎢⎢⎢⎣

1+sin(ψ)
0

−1+sin(ψ)

⎤⎥⎥⎥⎥⎥⎥⎦
bbb2 =
⎡⎢⎢⎢⎢⎢⎢⎣

0

1+sin(ψ)
−1+sin(ψ)

⎤⎥⎥⎥⎥⎥⎥⎦
bbb6 =
⎡⎢⎢⎢⎢⎢⎢⎣

1+sin(ψ)
−1+sin(ψ)

0

⎤⎥⎥⎥⎥⎥⎥⎦
(7.14)

The intersection between yield surfacef1 and f2 is a line in principal stress space denotedl1, see
Figure7.3. Along this lineσ1 =σ2 and is thus given by

σσσl1 =
⎡⎢⎢⎢⎢⎢⎢⎣

σ1

σ1

kσ1−σc

⎤⎥⎥⎥⎥⎥⎥⎦
(7.15)
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σ1 σ2

σ3
a

l1l6

f1

rrr l1

rrr l6

Figure 7.3:Naming convention for the Mohr-Coulomb criterion.

Similarly, the intersection betweenf1 and f6 is denotedl6 whereσ2 =σ3, and is given by

σσσl6 =
⎡⎢⎢⎢⎢⎢⎢⎣

σ1

kσ1−σc

kσ1−σc

⎤⎥⎥⎥⎥⎥⎥⎦
(7.16)

The intersection off1, f2 and f6 is a point in principal stress space, and is denoteda, given by

σσσa = σc

k−1

⎡⎢⎢⎢⎢⎢⎢⎣

1

1

1

⎤⎥⎥⎥⎥⎥⎥⎦
(7.17)

Any predicted stress state falling outside the yield criterion is to be returned to either the primary yield
surface,f1, the yield lines,l1 or l6, or the apex,a.

7.4 Return Regions and Boundaries

The region of principal stress space, that returns tof1 is denominated Rf1. Stress points which are to
be returned tol1 is denominated Rl1 and similarly for Rl6 and Ra. Due to the linearity of the Mohr
Coulomb criterion, the different return regions are bounded by planes. Based on the predictor stress
state’s location relative to these planes, the correct return region can beestablished and hence the
correct return algorithm can be applied. A plane can be defined by it’s normal vector,nnn, and a point
belonging to the plane,xxx0, as

nnnT (xxx−xxx0) = 0 (7.18)

Any vector,xxx, for which the above is satisfied is situated on the plane. A point lying below theplane
gives a negative number, and a point lying above the plane results in a positive number. Thus, it is
necessary to identify the normals of each plane, which can be calculated based on the directions, in
which the planes span.
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The plastic corrector direction belonging to a surface return to yield surface f1 is given by

sss1 =DDDbbb1 = − E

(1+ν)(2ν−1)
⎡⎢⎢⎢⎢⎢⎢⎣

1+sin(ϕ)−2ν

2νsin(ϕ)
2ν−1+sin(ϕ)

⎤⎥⎥⎥⎥⎥⎥⎦
(7.19)

and the intersection between thef1-yield surface and thef2-yield surface is fully determined byσσσl1,
(7.15), which by differentiation gives the direction of the intersection line,rrr l1, see Figure7.3,

rrr l1 = ∂σσσl1

∂σ1
=
⎡⎢⎢⎢⎢⎢⎢⎣

1

1

k

⎤⎥⎥⎥⎥⎥⎥⎦
(7.20)

By taking the cross product betweenrrr l1 andsss1, the normal of the plane separating the return region
belonging to yield surfacef1, and those belonging to linel1can be established as

nnnRf1→Rl1
= sss1×rrr l1 (7.21)

where the arrow designates, that the normal of the plane is pointing from theregion belonging tof1, to
the region belonging tol1. Similarly, the direction ofl6 is given by

rrr l6 = ∂σσσl6

∂σ1
=
⎡⎢⎢⎢⎢⎢⎢⎣

1

k

k

⎤⎥⎥⎥⎥⎥⎥⎦
(7.22)

and thus the normal of the plane which creates the boundary between the region of predictor stresses
belonging tof1 and those belonging tol6 can be found to give

nnnRl6
→Rf1
= sss1 ×rrr l6 (7.23)

The boundary plane separating Rl1 from Ra is spanned by the direction ofsss1 andsss2, which is the plastic
corrector direction belonging tof2. Thus

nnnRl1→Ra = sss1×sss2 (7.24)

and similarly for the boundary plane which separates Rl6 from Ra

nnnRl6
→Ra = sss6×sss1 (7.25)

In order to completely define the boundary planes, a point on each plane isalso needed. Since all the
planes go through the apex of the criterion, this point is simply chosen to represent all four boundary
planes. Based upon this, four boundary planes, see Figure7.4, can be defined by

pRf1→Rl1
(σσσB) =nnnT

Rf1→Rl1
(σσσB−σσσa) = 0 (7.26)

pRl6
→Rf1
(σσσB) =nnnT

Rl6
→Rf1
(σσσB−σσσa) = 0 (7.27)

pRl1→Ra (σσσB) =nnnT
Rl1→Ra

(σσσB−σσσa) = 0 (7.28)

pRl6
→Ra (σσσB) =nnnT

Rl6
→Ra
(σσσB−σσσa) = 0 (7.29)

Using these boundary planes, a rule set can be set up, which determinesthe correct return algorithm
based upon the evaluation of these planes, which has been done in Table7.1.
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Rule # Conditions Return to

1 pRf1→Rl1
(σσσB) ≤ 0∧ pRl6

→Rf1
(σσσB) ≥ 0 f1

2 pRf1→Rl1
(σσσB) ≥ 0∧ pRl1→Ra (σσσB) ≤ 0 l1

3 pRl6
→Rf1
(σσσB) ≤ 0∧ pRl6

→Ra (σσσB) ≤ 0 l6
4 pRl1→Ra (σσσB) ≥ 0∧ pRl6

→Ra (σσσB) ≥ 0 a

Table 7.1:Rule set for retun algorithms. See Figure7.4 for further details of boundary plane
location and naming.

σ1 σ2

σ3

pRl1→Ra

pRf1→Rl1

pRl6
→Ra

pRl6
→Rf1

Figure 7.4:Boundary planes of the Mohr-Coulomb criterion. The visible side of eachbound-
ary plane in the figure is defined as the positive direction of the normal.

7.5 Return Algorithms

The return algorithms used for the Mohr-Coulomb criterion are particularly simple. Because of the
linearity of the plastic potential, which has been utilized, the plastic strain directionis independent of
the stresses. This means, that the plastic strain direction is the same, whether itis evaluated at the
predictor stress point,σσσB, or at the updated stress point,σσσC. Thus, equation (5.13) can be simplified to

∆σσσp ≈ ∆λDDD bbb∣B (7.30)

This means, that the only unknown in calculating the plastic corrector,∆σσσp, is the plastic multiplier∆λ.

7.5.1 Return to yield surfacef1

If the predictor point qualifies for a return tof1, only one yield surface is active, and hence only one
plastic multiplier needs to be found. The updated stress state,σσσC, is given as

σσσC =σσσB−∆σσσp =σσσB−∆λDDDbbb1 (7.31)

which have to satisfy the condition

f1(σσσC,σC
c ,k) = kσC

1 −σC
3 −σC

c = 0 (7.32)
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With the use of equation (7.31), σC
1 andσC

3 can be expressed as

σC
1 =σB

1 −∆λs1,1 (7.33)

σC
3 =σB

3 −∆λs1,3 (7.34)

wheres1,1 ands1,3 is the first and third component ofsss1 respectively. Further, with the use of equation
(5.16), the uniaxial compressive strength of the updated stress state,σC

c , depends on the accumulated
plastic strain at the updated stress state,εp,C, which is given as

εp,C = εp,A−∆λ∂ j

∂c
= εp,A+∆λ2cos(ϕ) (7.35)

where equation (7.8) has been used. Thus, the compressive uniaxial strength of the updated stress state,
σC

c , is given by
σC

c = 2c(εp,C) √k (7.36)

Substituting back into equation (7.32) gives

f1(∆λ) = k(σB
1 −∆λs1,1)−(σB

3 −∆λs1,3)−σC
c = 0 (7.37)

which is solved using an ordinary Newton-Raphson iteration procedure with respect to∆λ. The gradient
of the equation with respect to∆λ is

d f1
d∆λ

= −ks1,1+ s1,3− dσC
c

dcC

dcC

dεp,C

dεp,C

d∆λ
= −ks1,1+ s1,3+dσc (7.38)

where

dσc = −dσC
c

dcC

dcC

dεp,C

dεp,C

d∆λ
= 4H cos(ϕ) √k (7.39)

using equation (7.9), (7.35) and (7.36). An initial guess of∆λ is made and then updated via

∆λi+1 = ∆λi −( d f1
d∆λ
∣
i
)−1

f1(∆λi) (7.40)

until the required precision is reached.

7.5.2 Return to yield linesl1 and l6

Returning to one of the yield lines,l1 and l6 is a simple expansion of the procedure used for thef1
return. However, in this case, the plastic corrector is given by

σσσC =σσσB−∆σσσp =σσσB−∆λ1DDDbbb1−∆λ1DDDbbb2 (7.41)

where∆λ1 and∆λ2 are unknown.σσσC has to fulfill both yield criteria. For thel1 return, this results in

f1(σσσC,σC
c ,k) = kσC

1 −σC
3 −σC

c = 0 (7.42)

f2(σσσC,σC
c ,k) = kσC

2 −σC
3 −σC

c = 0 (7.43)

where

σC
1 =σB

1 −∆λ1s1,1−∆λ2s2,1 (7.44)

σC
2 =σB

2 −∆λ1s1,2−∆λ2s2,2 (7.45)

σC
3 =σB

3 −∆λ1s1,3−∆λ2s2,3 (7.46)
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The accumulated plastic strain of the updated stress state is given by

εp,C = εp,A− 2∑
i=1
∆λi

∂ j i
∂c
= εp,A−2cos(ϕ)(∆λ1+∆λ2) (7.47)

The two yield criteria are embedded in the residual vectorFFF as

FFF (∆λλλ) =
⎡⎢⎢⎢⎢⎣

f1(∆λ1,∆λ2)
f2(∆λ1,∆λ2)

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎣
k(σB

1 −∆λ1s1,1−∆λ2s2,1)−(σB
3 −∆λ1s1,3−∆λ2s2,3)−σC

c

k(σB
2 −∆λ1s1,2−∆λ2s2,2)−(σB

3 −∆λ1s1,3−∆λ2s2,3)−σC
c

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎣
0

0

⎤⎥⎥⎥⎥⎦
(7.48)

where

∆λλλ =
⎡⎢⎢⎢⎢⎣
∆λ1

∆λ2

⎤⎥⎥⎥⎥⎦
(7.49)

The gradient is found to be

∂FFF

∂∆λλλT
=
⎡⎢⎢⎢⎢⎣
−ks1,1+ s1,3+dσc −ks2,1+ s2,3+dσc

−ks1,2+ s1,3+dσc −ks2,2+ s2,3+dσc

⎤⎥⎥⎥⎥⎦
(7.50)

wheredσc is given by (7.39). The system of equations is solved using a Newton-Raphson iteration,
where an initial guess of∆λλλ is made, an afterwards updated as

∆λλλi+1 = ∆λλλi −( ∂FFF

∂∆λλλT
∣
i
)−1

FFF (∆λλλi) (7.51)

until the required precision is reached. The return algorithm for thel6 return is analogous to the above,
except that thef2 yield surface is replaced by thef6 yield surface. This gives

FFF (∆λλλ) =
⎡⎢⎢⎢⎢⎣

f1(∆λ1,∆λ2)
f6(∆λ1,∆λ2)

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎣
k(σB

1 −∆λ1s1,1−∆λ2s2,1)−(σB
3 −∆λ1s1,3−∆λ2s2,3)−σC

c

k(σB
1 −∆λ1s1,1−∆λ2s2,1)−(σB

2 −∆λ1s1,2−∆λ2s2,2)−σC
c

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎣
0

0

⎤⎥⎥⎥⎥⎦
(7.52)

with the corresponding gradient

∂FFF

∂∆λλλT
=
⎡⎢⎢⎢⎢⎣
−ks1,1+ s1,3+dσc −ks2,1+ s2,3+dσc

−ks1,1+ s1,2+dσc −ks2,1+ s2,2+dσc

⎤⎥⎥⎥⎥⎦
(7.53)

7.5.3 Return to apex pointa

The return algorithm to the apex of the Mohr-Coulomb criterion is a further expansion of thel1 andl6
algorithms, in which casef1, f2 and f3 needs to be fulfilled. The approach is similar to the above and
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only the main results will be given here. The residual vector is found to be given by

FFF (∆λλλ) =
⎡⎢⎢⎢⎢⎢⎢⎣

f1(∆λ1,∆λ2,∆λ3)
f2(∆λ1,∆λ2,∆λ3)
f6(∆λ1,∆λ2,∆λ3)

⎤⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎣

k(σB
1 −∆λ1s1,1−∆λ2s2,1−∆λ3s3,1)−(σB

3 −∆λ1s1,3−∆λ2s2,3−∆λ3s3,3)−σC
c

k(σB
2 −∆λ1s1,2−∆λ2s2,2−∆λ3s3,2)−(σB

3 −∆λ1s1,3−∆λ2s2,3−∆λ3s3,3)−σC
c

k(σB
1 −∆λ1s1,1−∆λ2s2,1−∆λ3s3,1)−(σB

2 −∆λ1s1,2−∆λ2s2,2−∆λ3s3,2)−σC
c

⎤⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎣

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎦

(7.54)

where

∆λλλ =
⎡⎢⎢⎢⎢⎢⎢⎣

∆λ1

∆λ2

∆λ3

⎤⎥⎥⎥⎥⎥⎥⎦
(7.55)

and the gradient matrix is given by

∂FFF

∂∆λλλT
=
⎡⎢⎢⎢⎢⎢⎢⎣

−ks1,1+ s1,3+dσc −ks2,1+ s2,3+dσc −ks3,1+ s3,3+dσc

−ks1,2+ s1,3+dσc −ks2,2+ s2,3+dσc −ks3,2+ s3,3+dσc

−ks1,1+ s1,2+dσc −ks2,1+ s2,2+dσc −ks3,1+ s3,2+dσc

⎤⎥⎥⎥⎥⎥⎥⎦
(7.56)

7.6 Consistent Constitutive Matrix

In the evaluation of the consistent constitutive matrix, the modification matrix aligned with the principal
stresses,̂TTT is needed. The part related to the principal stresses,TTT, see equation (6.3), simplifies to the
unit matrix

TTT =
⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0

0 1 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
(7.57)

because the derivative ofbbb with respect toσσσ results in the zero-matrix

∂bbb

∂σσσ
=
⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0

0 0 0

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
(7.58)

The part ofT̂TT, that relates to the shear stresses,T̃TT, is simply evaluated by equation (6.5). Thus it is
possible to evaluatêDDD

c
. Afterwards, the consistent constitutive matrix aligned with the principal axes,

D̂DD
epc

, is calculated using either equation (5.23), (5.55) or (5.59), depending on the return algorithm used
in finding the updated stress state.





Chapter8

Computational Example: Strip Footing

To test the hardening Mohr-Coulomb model, a simple bearing capacity calculation of a strip footing is
carried out in plane strain. This has been done by implementing the strain hardening Mohr-Coulomb
model in FORTRAN and then utilizing it in a FEM-code written in MatLab, which relyon a Newton-
Raphson procedure in the global equilibrium iterations, as shown in Table5.1.

8.1 The Model

The model consists of a rigid rough foundation resting on top of a strain hardening Mohr-Coulomb
material. Since a strip footing in plain strain is examined, advantage is made of the symmetry line of
the problem, see Figure8.1. The domain size is governed byL andH, which has been set to 30 m and
20 m respectively. The total width of the foundation is 2 m. The domain is meshedusing 2-dimensional
6-node triangular linear strain elements utilizing a gaussorder of 6. The loadof the foundation is
modeled using a prescribed displacement of 1000 mm in the negativey-direction of the nodes situated
directly under the foundation.
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Figure 8.1:Sketch of the model of the foundation. Not to scale.
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8.2 Material Parameters

The parameters of the Mohr-Coulomb material are found based on an approximation to a material with
the Hoek-Brown parameters listed in Table8.1.

State GSI mi σci D a mb s E ν γ

Peak 50 12 80 MPa 0 0.51 2.01 0.0039 9 GPa 0.25 20kN/m3

Residual 25 12 80 MPa 0.5 0.53 0.34 0 9 GPa 0.25 20kN/m2

Table 8.1: Hoek-Brown material parameters of the peak and residual strength ofthe rock
material at hand.

As can be seen, for the peak strength of the rock material, intact rock is assumed,D = 0, with a uniaxial
compressive strength of 80 MPa, a GSI value of 50 and ami constant of 12. For the residual strength,
the GSI value is lowered to 25, and the disturbance factor,D, is set to 0.5. The Hoek-Brown constants
a, mb and s are calculated based on equation (2.2)-(2.4). Young’s modulus is assumed to be 9 GPa.
The parameters orignate fromSharan[2008] and the material associated with it is described as average
quality rock mass, which according toHoek and Brown[1997] should behave in a strain softening way.
Further, the rock mass is assumed to have a specific weight,γ, of 20kN/m3. Using the equations in
chapter 3, the corresponding Mohr-Coulomb parameters can be seen in Table8.2, where the general
approach of equation (3.15) has been applied.

Parameter ϕ c

Peak 32.07○ 4.21 MPa

Residual 17.93○ 1.91 MPa

Table 8.2:Mohr-Coulomb approximation of the Hoek-Brown parameters listed in Table 8.1.
The approximation utilizes equation(3.15).

Due to the restrictions of the current model, where only the cohesion changes during plastic loading, the
model is unable to account for the change in friction angle. Because of this, the peak friction angle is
used for the residual strength as well. In order to fully implement the strain softening behavior, it is also
necessary to know how fast the strength drops. I.e. a relationship between the accumulated plastic strain
and the cohesion. In the current example, this is modeled using three curvesegments, as illustrated on
Figure8.2. The first segment consists of a linear softening curve with a constant slope ofH, which is
defined between the two points(0,cPeak) and the intermediate point(εp

Int,cInt). The second segment,
defined between the intermediate point(εp

Int,cInt) and the residual point(εp
Res,cRes), is modeled as a

Bézier curve, with an initial slope ofH, and an end slope of 0. The last segment defines a perfectly
plastic behavior, once the residual strength is reached. This is done by modeling a line segment with a
slope of 0, which extents to infinity. The intermediate cohesion,cInt, is taken as

cInt = cRes+0.3 ⋅ (cPeak−cRes) (8.1)

The intermediate and residual accumulated plastic strains,ε
p
Int andεp

Res, are varied, to study the influ-
ence on the results. For simplicity and numerical stability, associated plasticity is assumed. The final
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Figure 8.2:Sketch of theεp−c-curve used in the example.

parameters used in the model are listed in Table8.3. Further, two perfectly plastic cases are computed.
Namely one where the strength is equal to the peak strength, and one wherethe strength is equal to the
residual strength.

Parameter ϕ cPeak cInt cRes ψ

Value 32.07○ 4.21 MPa 2.60 MPa 1.91 MPa 32.07○

Table 8.3:Material parameters used in the model.

8.3 Mesh Coarseness

In order to estimate the needed coarseness of the mesh, a convergence analysis has been performed on
a model, whereεp

Int andεp
Reshave been set to 1 and 2 respectively. The mesh has then been generated

with increasingly more degrees of freedom in order to estimate the influence on the peak and residual
bearing capacity of the model. Based on this, a mesh coarseness is chosen, where further refinement
only results in minor changes of the bearing capacity. As can be seen fromFigure8.3, the peak and
residual bearing capacity is dependent upon the coarseness of the mesh. However, at around 10000
degrees of freedom, the bearing capacities start to stabilize, and only minordifferences in the bearing
capacities can be observed. Based on this, the model is meshed with 3825 elements, giving a total of
15692 degrees of freedom and 22950 gauss points. The mesh is shownin Figure8.4.

8.4 Results

The load displacement curve for five different scenarios along with theirεp− c-curves are shown in
Figure8.5 and Figure8.6 respectively. The curves named “Perfectly Plastic Peak Strength” and “Per-
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Figure 8.4:Mesh used in the current model, consisting of 3825 elements, 15692 degrees of
freedom and 22950 gauss points.

fectly Plastic Residual Strength” are the perfectly plastic models using the peak and residual strength
respectively, which give a load carrying capacity of 309.2 MN/m and 141.6 MN/m.

To verify these results, they are compared to the analytical solution given by Terzaghi’s bearing
capacity formula

R= 1
2
γb2Nγ+qbNq+cbNc (8.2)
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whereR is the bearing capacity,b is the foundation width,q is the overburden pressure andNγ, Nq and
Nc are the dimensionless bearing capacity factors given by [Ovesen et al., 2007]

Nq = exp(π tan(ϕ))
1+sin(ϕ)
1−sin(ϕ)

(8.3)

Nγ = 1
4
((Nq−1)cos(ϕ))3/2 (8.4)

Nc = Nq−1

tan(ϕ)
(8.5)

Using the values of Table8.3 together with equation (8.2), results in a peak and residual load carrying
capacity of 296.4MN/m and 137.2MN/m. However, equation (8.2) is known to give a conservative bearing
capacity, and thus, the perfectly plastic models seems to be in tune with the analytical solutions. The
load carrying capacity of these models should mark the upper and lower bound of the expected load
carrying capacity of the strain softening materials.

The three other curves of Figure8.5utilize strain softening, where the numbers indicateε
p
Int andεp

Res

respectively. The figure shows, that the strain softening materials neverreach the load carrying capacity
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of the perfectly plastic model utilizing the peak strength. On the other hand, they do not approach the
load carrying capacity of the perfectly plastic model utilizing the residual strength either. This seems
realistic, since some gauss points reach plasticity before others and weakens, and thus should not be
able to carry the peak load. Similarly, not all gauss points reach the residual strength in the model, and
should thus be able to carry more than the residual load.
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Figure 8.7 shows the relationship between the residual accumulated plastic strain,ε
p
Res, and the

peak and residual bearing capacity of 12 different strain softening models, as well as the peak and
residual strength of the perfectly plastic models. Together with Figure8.5, it can be seen, that smaller
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ε
p
Int and εp

Res result in a lower peak bearing capacity, as well as a more rapid decreasein the load
carrying capacity towards a residual bearing capacity. The maximum load bearing capacity of the strain
softening models is influenced by the choice ofε

p
Int andεp

Res. The 1.00−2.00 model predicts a maximum
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bearing capacity of 298.2 MN/m, while the 0.15−0.30 model predicts a maximum bearing capacity of
268.1 MN/m, which is significantly less than that of the bearing capacity of the perfectly plastic model
utilizing the peak strength. However, it is also almost twice the size of the bearing capacity of the
perfectly plastic model using the residual strength. The 1.00−2.00 model predicts a residual bearing
capacity of 157.2 MN/m, while the 0.15−0.30 model predicts a residual bearing capacity of 150.8 MN/m.
An improvement compared to the bearing capacity of the perfectly plastic residual model of about
5−10 %. Thus, using the perfectly plastic model with the peak strength results in an unsafe model,
while use of the residual strength results in a very conservative estimate ofthe bearing capacity.

Further, it is noticed, that the 0.10−0.20 model failed to converge, at some point just after the peak
bearing capacity was reached, see Figure8.5. The 0.15−0.30 model was the steepest model, which was
found to converge. This is troublesome if even steeper drops in the load carrying capacity is needed.
However, this might be solved by utilizing a more advanced global equilibrium iteration procedure than
the standard Newton-Raphson. For example an arc-length method.

Figure8.8shows a plot of the cohesion throughout the soil of the 0.15−0.30 model, which shows,
that the material located along the slip lines have reached the residual strength. This is consistent with
the fact, that these zones experience the most plastic straining. The zonesoutside these slip lines are
almost unaffected by the softening behavior.
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Figure 8.8:Plot of the cohesion throughout the soil at the end of the 0.15-0.30 model.

Figure 8.9 show a comparison of the accumulated plastic strains around the rupture zone of the
model. The topmost graph shows the perfectly plastic model utilizing the peak strength, and the bot-
tommost graph shows the perfectly plastic model utilizing the residual strength.The model in the
middle is the strain softening 0.15−0.30 model. From the figure, it is seen, that the accumulated plastic
strains of the softening model are more concentrated around the slip lines compared to the perfectly
plastic models. This is probably due to the fact, that once plastic strains has developed in a point, the
point weakens and thus further plasticity is more likely in this point, than in the neighboring material
which surrounds it.
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Chapter9

Computational Example: Tunnel
Excavation

To further test the approach, a tunnel excavation is carried out using an axisymmetric model, where the
purpose is to estimate the tunnel wall displacement as well as the plastic zone.

9.1 The model

The idea behind the model is to simulate a tunnel excavation in an infinite rock mass. This is done by
reducing the pressure,p, on the tunnel wall, from the in situ stress state,pinf , to zero, see Figure9.1,
and record the ensuing tunnel wall displacement. The radius of the tunnelis given byrT, which has
been set to 2,5 m. The tunnel axis is aligned in the z-direction.

Tunnel wall

Strain softening Mohr-Coulomb material

rT

p

z
r

θ

Figure 9.1:Concept of the tunnel model.

The axisymmetric properties of the problem is utilized, and a 1 m section of the tunnel in thez-
direction is modeled, see Figure9.2. Further, the infinite rock mass is bounded by a domain with a
radius ofrBC, which has been set to 50 m in the example at hand. As with the example inchapter 8, the
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Figure 9.2:Sketch of the tunnel model.

mesh is generated with 2-dimensional 6-node triangular linear strain elements.

9.2 Material Parameters

The model tries to simulate an excavation in rock material with the Hoek-Brown parameters listed in
Table9.1.

State GSI mi σci D a mb s E ν γ

Peak 30 8 20 MPa 0 0.52 0.66 0.0004 1.4 GPa 0.3 26kN/m3

Residual 15 8 20 MPa 0.5 0.56 0.14 0 1.4 GPa 0.3 26kN/m2

Table 9.1: Hoek-Brown material parameters of the peak and residual strength ofthe rock
material at hand.

The parameters of the peak strength are taken fromSharan[2008], which describe the rock material
as very poor. According toHoek and Brown[1997], very poor rock material tends to behave perfectly
plastic. However, in the current example, it is assumed that the material softens during plastic straining.
Thus the residual strength is found in much the same way as it was done inchapter 8. Namely by
reducing the GSI-value to half of the original value and setting the disturbance factor to 0.5.

Assuming the excavation takes place 100 m below the surface and using the approximations of
chapter 3along with the estimate ofσ3,max based on deep tunnels, equation (3.12), the Mohr-Coulomb
parameters listed in Table9.2are obtained.
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Parameter ϕ c

Peak 33.74○ 256 kPa

Residual 19.28○ 103 kPa

Table 9.2:Mohr-Coulomb approximation of the Hoek-Brown parameters listed in Table 8.1.
The approximation utilizes equation(3.12).

Similarly to the example of the strip footing, the friction angle of the model is taken to be given
by the peak friction angle, and the softening behavior is modeled accordingto Figure8.2and equation
(8.1). Thus, the final material parameters are given in Table9.3.

Parameter ϕ cPeak cInt cRes ψ

Value 33.74○ 256 kPa 149 kPa 103 kPa 33.74○

Table 9.3:Material parameters used in the model.

The in situ stress state of the rock mass,pinf , is assumed to be a hydrostatic pressure, given by the
depth, and the unit weight of the rock

pin f = 26kN/m3 ⋅100 m= 2.6 MPa (9.1)

The effects of gravity are neglected in the model. Similarly to the example of the strip footing, the
model is tried with different values of the intermediate and residual accumulated plastic strain,ε

p
Int and

ε
p
Res, as well as two perfectly plastic cases with the peak and residual strength respectively.

9.3 Mesh Coarseness

Similar to the example ofchapter 8, a convergence analysis has been made in order to find an appropri-
ate mesh coarseness. This has been done with a model whereε

p
Int = 0.025 andεp

Res= 0.050. The tunnel
wall displacement as a function of the number of degrees of freedom is shown in Figure9.3. From this
figure it is seen, that only minor changes in the wall displacement is found once the number of degrees
of freedom is above 10000. Based on this, the model is meshed using 4800elements, resulting in 28800
gauss points and 19602 degrees of freedom. The mesh can be seen in Figure9.4.

9.4 Results

The load displacement curve of the tunnel wall of eight models is shown in Figure 9.5 together with
a close up in Figure9.6. The strain softening behavior of the models can be seen on Figure9.7.
From the figures, it is seen that the perfectly plastic model using the peak strength gives a tunnel wall
displacement of 30 mm, while the model using the residual strength gives a displacement of 126 mm.
Using the analytical solution for the perfectly plastic case presented inCarranza-Torres[2003], the
tunnel wall displacement is found to be 30.5 mm and 130 mm respectively, which suggests that the
finite element model is sound. All of the strain softening models predict wall displacements in between
the two perfectly plastic models, which is what was expected. Further, the extent of the plastic zone,
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Figure 9.4:Mesh used in the current model, consisting of 4800 elements, 19602 degrees of
freedom and 28800 gauss points.

sketched in Figure9.8, ranges from 4.12 m for the peak strength model to 5.8 m for the residual strength
model as shown in Figure9.9. The analytical solution ofCarranza-Torres[2003] results in plastic zones
of 4.11 m and 5.72 m for the perfectly plastic peak and residual models.
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Conclusion

The successful derivation and implementation of the strain hardening Mohr-Coulomb criterion de-
scribed inchapter 7shows, that it is possible to make use of return mapping in principal stress space
for materials, which exhibit hardening/softening properties.

The proof-of-concept examples of the strip footing and tunnel excavation show the expected results,
where the strain softening materials result in solutions somewhere in between the two extremities of the
perfectly plastic models using the peak and residuals strengths. Thus the hardening properties allow for
a more detailed description of the problem at hand, which should result in a more safe solution, than a
model utilizing perfect plasticity along with the peak strength, as well as less conservative solution than
a model utilizing perfect plasticity along with the residual strength.

Since the implemented model can handle any arbitrary development of the cohesion during plastic
straining, it should be applicable to a great deal of problems. However, as is evident from the examples,
approximations to the Hoek-Brown parameters with a Mohr-Coulomb failure criterion suggest, that the
friction and dilation angles change during plastic straining as well. Something that the current model is
unable to account for.

To further test the use of hardening properties along with principal stress updating schemes, a more
advanced constitutive model, utilizing several hardening and state parameters could be developed. For
example a Mohr-Coulomb model, where the friction and dilation angles are dependent of the state
parameters of the material. Moreover, the expressions for the consistentconstitutive matrix of two and
three active yield surfaces, equation (5.55) and (5.59), together with return mapping in principal stress
space, allows for a fairly straight forward way of developing a hardening Hoek-Brown model, which
eliminate the need for the Mohr-Coulomb approximation of hardening rock material.

Next step would be to implement these models into commercial finite element programs, in order to
be truly useful for the professional engineering community, which require ease of use and accessibility.
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