recision, intent(out) :: f
double precision :: c, H
integer, intent(out) :: region, error

en

ardening Mohr-Coulomb Model
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sor. thisxs ty

else if (thigig_ty5é==4) then
allocate(A(6,6))
end if

call this%getcH(ep, c, H)
call toprincipal(sigb, sigbp, A, pein=this%s type)
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D, Si , erro
&g, Depcp)

ep, Depcp)

, sigcp, errq
ep, Depcp)

uble precision =39€S
ger, intent(out) =%

is%s_type)







&

AALBORG UNIVERSITY
STUDENTS STUDYREPORT

Title: Elasto-plastic Hardening Mohr-
Coulomb Model - Derivation and Implemen-
tation into the Finite Element Method Using
Principal Stress Space

Theme: Master Thesis

Project period: M.Sc. 4th semester, spring
2012

Project group: B124C

Participants:

Emil Smed Sgrensen

Supervisor: Johan Clausen

Circulation: 3
Number of pages:70
Submitted: 8th of June 2012

School of Engineering
and Science
Sohngardsholmsvej 57
Telefon 96 35 97 31
Fax 98 13 63 93
httpy/ses.aau.dk

Summary:

The purpose of this report is to derive and implemg
a strain hardening Mohr-Coulomb model based on
turn mapping in principal stress space by the use
boundary planes. The report aims at modeling str

Firstly, the classification of rock materials as we
as the generalized Hoek-Brown criterion are pr
sented. Afterwards follows an introduction to th

for the generalized Hoek-Brown criterion.

ping in general stress space, including the derivat
of the consistent constitutive matrix used in the gloh
FEM equilibrium iterations. Then the advantages

Following is the derivation of a non-associats
isotropic strain hardening Mohr-Coulomb mod
based on the introduced theory.

Finally, the derived model is implemented in two e
amples. The first example tries to model a strip fog
ing while the second example models a tunnel ex
vation. The obtained results are compared with p
fectly plastic solutions utilizing the peak and residu
strength of the rock material.

hardening rock material through a Mohr-Coulomb ajp-
proximation of the generalized Hoek-Brown criterion.

Mohr-Coulomb criterion and the approximations used

Next, the fundamentals of plasticity and hardening|i
presented along with the theory behind return map-

return mapping in principal stress space is outlined.
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CHAPTER 1

Introduction

A large part of the earth’s crust consists of material which can be ckdsf rock. With advances
within the field of civil engineering and the ever growing need for redtesand infrastructure, more
and more structures are build in or on rock material. For some civil engjrgestructures, this is a

major advantage, since rock material is often very strong afid Btioperties which are beneficial for
a foundation. However, rock material also tends to be quite brittle and po¥eeor tensile strength.

Properties, which are dangerous to tunnel excavations.

Civil engineering problems involving rock material, as well as many othdslpnas, are often hand-
led by the use of finite element modeling, where the generally non-linearrgogeequations of the
model are discretized into a finite number of elements, for which the solution ¢gotteening equations
can be approximated with polynomials. Afterwards the system of equatiookléisn an incremental
iterative manner until equilibrium is reached. A crucial part in the finite elénregthod is the choice
of constitutive model, which gives the relationship between the strains astrésses in a given point.

Part of the constitutive model is to predict when plastic straining of the mataaalrs, which is
dictated by the yield criterion. For rock materials, two often used yield critegale old-fashioned
and thoroughly tested Mohr-Coulomb criterion and the fairly new genedatitek-Brown criterion.
The Mohr-Coulomb criterion describes a linear relationship between ttreg stress in the material
and the corresponding normal stress, which when satisfied, resultsstic@taining of the material.
The Hoek-Brown criterion is an empirical non-linear refinement of the Mobdulomb criterion and
is specifically designed for rock-like materials. However, due to the simpli¢itgeoMohr-Coulomb
criterion, many calculations regarding rock-like material is still carried surtguithis simpler criterion.

Another part of the constitutive model is to predict how the material behawdsr plastic straining.
Generally, materials respond in thre@eient ways, see Figufel One possibility is, that the material
strengthens during plastic loading until some ultimate strength is reached, in gdse the material is
said to harden. Another possibility is, that the material maintains a constamjtstrand the material
is said to be perfectly plastic. The third possibility is, that the material has agpesigth, and weakens
until a residual strength is reached, a phenomenon known as soft@hiegghenomenon of gaining or
losing strength during plastic loading is sometimes referred to simply as hagdeegardless that the
material is softening.

The rate of change of the strength of the material is also a significant,fadtimh has to be consid-
ered when modeling materials. The behavior of rock materials generallyeevailiree possible ways.
Hard, good quality rock material tends to show an elastic-brittle behaviorhichvthe strength drops
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A a) Hardening A b) Perfectly plastic A c) Softening

| Ultimate strength
%) ) . )
g - g | Yield strength ) g | Peakstrength
& Initial yield strength ¢3 T &

| / Residual strength
Strain Strain Strain

Figure 1.1:Material behaviour under plastic loading.

rapidly, once the material is introduced to plastic straining, see Fiy@réAverage quality rock mate-
rial tends to show a strain softening behavior similar to the one shown in Figlaewhile very poor
guality rock material shows an elastic-perfectly plastic behavior, seed-iglin, [Hoek and Brown
1997. Many finite element models rely on the material to behave in a perfectly plastinenavith a

A Elastic-Brittle

Peak strength

Stress

Residual sttength

Y

Strain

Figure 1.2:Elastic-brittle behavior in hard rock material

yield strength equivalent to the residual strength. This greatly reduegzdblem and thus makes it
easier to solve. However, it could also possibly lead to over sized stegdfithe material is softening,
because local zones of high plastic straining dictate the strength of theraatieeal. For example if a
perfectly plastic approach is used with a strength above the residuajtstrematerial located in plastic
zones is stronger than it should be, and hence the model is on the uideaf®is the other hand, if the
residual strength is used for the entire material, the model might be too vatiger
Constitutive models based on the Mohr-Coulomb criterion which include hergleoftening are

already available, see e.de Souza Neto et gl2008. However, a model based on the principal stress

space framework presented 6lauserf2007 has yet to be developed.
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1.1 Statement of Intent

The aim of this project is to derive a strain hardepsodtening constitutive model for use in finite
element calculations based on the Mohr-Coulomb criterion which utilize diengin principal stress
space, both regarding the updated stress state and the consistent tbanstiturix needed for the
global equilibrium iterations.

To test and demonstrate the usefulness of the model, it is used to estimate tBacmfbf the
hardeningsoftening properties on the bearing capacity of a strip footing as well assthef failure
during a tunnel excavation.

1.2 Prerequisites

Strains and stresses are tensors of the 2nd order and the constitlati@rbetween them is a 4th
order tensor. However, symmetric properties of the strain and stressdailow for a formulation in
which they can be expressed equally accurate as vectors, and thigutivagelation can be expressed
as a matrix. In this report, the latter formulation will be used due to its simplicity asel @ause when
writing computer code. Throughout the report, a number of variablesorseeand matrices are used.
To keep track of these, a number of guidelines will be presented in the fotiow

A scalar is presented in ordinary text@s, whereas a vector or a matrix is symbolized in bold as
e.g.o or D. By default, vectors are61 and matrices are»66. Vectors and matrices with an overline,
e.g. o andD are related to the principal stress components and have dimensionslof®d 3x 3
respectively. Vectors and matrices with a tilde, égandT are related to the shear stress components
and have dimensions of3L and 3« 3 respectively. Vectors and matrices with a hat, é-.gandf) are
full 6 x 1 vectors and & 6 matrices, where the axes are aligned with those of the principal stresses.

The ordering of the strain vectar, and the stress vectar, is given as

T
€= [8X 8y Ez 28)(y 28)(2 28yz] (11)
T
a':[o'x Oy Oz Oxy Oxz O'yz] (1.2)
Stresses are taken as positive in tension unless otherwise sBtisdthe elastic constitutive matrix
relating elastic strains to stresses and is given by

D 0
D= % 1.3
0 & (1.3)
3x3
whereD andG are given by
1-v v %
D- - = 1 (1.4)
T '
% v 1l-v
E 1 00
G= 15
2(Lev) 010 (1.5)
0 01

E is Young’s modulus and is Poisson’s ratio.






CHAPTER 2

Classification of Rock Materials and the
Generalized Hoek-Brown Criterion

Rock material is a wide expression used to describe a solid made up of miizepknding on the size
of a rock sample, see Figupel, rock material typically ranges from isotropic intact rock mass without
any discontinuities, through very anisotropic rock mass with a few dominatsupmtinuities, to an
isotropic jointed rock mass with an indistinct number of randomly oriented ewpalye discontinuities
with the same characteristidglrifield et al, 2004.

Structure

Intact rock ﬁ PSS L,

Single discontinuity E

Two discontinuities E

Several
discontinuities

Jointed rock mass

Figure 2.1: The material which is modeled, should be isotropic compared to the size of th
structure.

If a representative sample of the rock material, which is sought modeledhecagarded as either
intact rock or as jointed rock mass, then the material can be regardedrapisoprovided that the
sample size is small compared to the structure at hand. If the discontinuitiessdriiple are oriented
in a non-random order, it might be necessary to model the rock matedalasisotropic continuum. If
large fractures(faults) dominate the construction site of the structure, ialsaype necessary to include
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such fractures in the model mesh. In the following, it is assumed, that tkerraterial can be modeled
as an isotropic continuum.

In order to be able to include rock material in finite element models, the propetftithe rock
material need to be known and somehow quantified. Extensive empiriearobshas lead to the
formulation of the generalized Hoek-Brown criterion, equatigrl)( which predict the stress states
that cause failure in rock materialddek and Brown1997.

12 a
a"1=0'§+o-ci(moﬁ+s) (2.1)
Oci

oy ando are the major and minoffective principal stresses respectively, where compression is taken
as positive. As the criterion suggests, four parameters are neededeintorasses the strength of
the rock material, namely the uniaxial compressive strength of the intactmatérial,o ¢, and the
constantsmn,, sanda. The constants can be estimated based on the Geological Strength I88ex(G
the disturbance factoB), and the intact rock material constamt, by using the following expressions
[Hoek et al, 2002

GSI-100
”‘b‘”‘ex"(m) (2:2)
GSI-100
S- ( 9-3D ) 2:3)
1 1 -GSl -20
a'§+é(ex'°(—15 )'eXp(T)) (24)

The Geological Strength Index is a measure of the rock material’s qualigdlmasfield observations,
which takes into account the composition and structure of the in-situ rockialaevell as the surface
conditions, see Figur2.3 on page8. Based on this, the GSl is assigned on a scale ranging from 0 to
100, where 100 indicates a very good qualliogk 2007.

The disturbance factoD, is used to take into account the blast damage, that part of the rock mate-
rial might sufer from. It ranges from O to 1, where 0 indicates undisturbed rock mht&ha material
constanim, and the uniaxial compressive strength of the intact rock matetigljs found using labo-
ratory tests on the intact rock material. The elastic modulus of the rock matendlecestimated by
[Hoek and Diederich200q4

1-D/2
Em = 100,000 Mpa( 1+exp((75+ 25|é ~GS1)/11) ) (2:5)
Once the rock material has reached a stress state which causes failosesisome of its strength,
as mentioned irchapter 1 The manner in which the strength drops is not entirely determined, but
three possible characteristics are mentiondddek and Browrj1997. One possibility is to assume an
elastic-brittle behavior, where the strength of the rock material rapidlystikmpome residual strength
once the failure criteria is reached, see Figlr2 Another possibility is to assume a strain soften-
ing relationship between the strength of the material and the plastic straining ivhicdergoes, see
Figurel.1c. The third options is to assume that the rock material exhibits in a elastictepeastic
way, see Figurd.1b. In this report, it is assumed that the rock material behaves in a straensgf
manner. For an implementation of an elastic-perfectly plastic generalized Btogkn criterion see
Clauser{2007 and Sgrensef2013.
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In order to conform with most finite element codes, where tension is takpositive, the gener-
alised Hoek-Brown criterion can be expressed as

a

o1

0'3=0'1—0'ci(3—mo_) (2.6)
Oci

where the apostrophes signifyinfjextive stresses have been omitted for simplicity. In order to express

the above as a yield function, resulting in a negative number for elastic atatespositive number for

non-allowable states, it can further be rewritten to the following

o1\2
f (07, 0ci, s, b, Q) :0'1—0'3—0'ci(3—rrb;) =0 (2.7)
Cl
The stress states which are solutions to the above equation form a six grdatighalong the hydro-
static axis with curved sides as can be seen in FiguzeAny stress state inside the pyramid is elastic,
whereas any stress state located outside is unobtainable.

* _vyHydrostatic axisg1=02=073

02

Figure 2.2:The generalized Hoek-Brown criterion visualized in principal stressspa
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GEOLOGICAL STRENGTH INDEX FOR
JOINTED ROCKS (Hoek and Marinos, 2000) -
From the lithology, structure and surface condi- " é E‘
tions of the discontinuities, estimate the ” § g di:
average value of GSI. Do not try to be too § “g 2 2
precise. Quoting a range from 33 to 37 is more ‘%‘ < *§ =
realistic than stating that GSI = 35. Note that " z 5 2 2 i
the table does not apply to structurally § 2 =] E g §
controlled failures. Where weak planar L'g g = 5 g,) “’g
structural planes are present in an unfavourable 35 g %’ é & <5
orientation with respect to the excavation face, 5 2= % 55 5
these will dominate the rock mass behaviour. % f«g 3 % % go %
The shear strength of surfaces in rocks that are S 4 E 4 = s 4
prone to deterioration as a result of changes in E g s %‘ T? ° >
moisture content will be reduced if water is Z @ i = .E“ %D @)éﬁ
present. When working with rocks in fair to 8 8 & = —“g’ - E % ﬁ =
very poor categories, a shift to the right may be &3 | & 5 20 g S5 |8%5
made for wet conditions. Water pressure is < ~ 2 A % g 2% |~ 25
. . . | o> = = 2 X S g |>» 8 g
dealt with by effective stress analysis. 2| &> Q& | g Q¥ E |x3E
2 =2 | 82 |28 |B58 (2528
STRUCTURE DECREASING SURFACE QUALITY ——>
INTACT OR MASSIVE - intact rock
specimens or massive in situ rock with 90
few widely space discontinuities L N/A N/A
@
8 80
BLOCKY - well interlocked undis- =
turbed rock mass consisting of cubical 5 / 70
blocks formed by three intersecting e)
discontinuity sets i
o 60
VERY BLOCKY - interlocked, S
partially disturbed mass with multi- & 50
faceted angular blocks formed by 4 or 8
more joint sets =
m
BLOCKY/DISTURBED/SEAMY - & 40
folded with angular blocks formed by 5
many intersecting discontinuity sets. £
Persistence of bedding planes or 2 30
schistosity g:-‘
DISINTEGRATED - poorly 2
interlocked, heavily broken rock mass - 20
with mixture of angular and rounded
rock pieces @
= LAMINATED/SHEARED - lack of
%// blockiness due to close spacing of weak N/A N/A 10
/ schistosity or shear planes
r((( (

Figure 2.3:Geological strength index for jointed rock masskkfinos and Hoek200(Q.



CHAPTER 3

The Mohr-Coulomb Criterion

Even though the Hoek-Brown criterion is specifically developed with rodlerias in mind, a lot of the
finite element models made today still utilize the much older Mohr-Coulomb failureiontewhich
states, that once the shear stressand the normal stressy,, is reached in a plane in a continuum,

which satisfies
T=Cc-optan(y) (3.1)

yielding occurs.c is a measure of the cohesion present in the material, whilgsjais a measure of
the friction codficient between the grains, thyss denoted the friction angle. In the above expression,
tension is taken as positive. This linear relationship can be visualized s $hé&igure3.1

AT

T=C-optan(y)

(____

Figure 3.1:The Mohr-Coulomb criterion iar,-7 Space.

Any Mohr circle situated below the Mohr-Coulomb line denotes an elastic stéiereas a Mohr
circle, which touches the line denotes a state of yielding. From Figurethe shear stress causing

failure can be shown to be
_01-03

2
whereo; ando; are respectively the largest and smallest principal stresses. Similamgrtmal stress
on the failure plane is given by

B 01+03 4 01—03

I 2

cos(¢) (3.2)

T

sin(e) (3.3)
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Substitution back into3.1) and rewriting results in
o1-03+ (01+03)sin(¢) = 2ccos(¢) (3.4)

If the implicit function above is plotted in principal stress space, it is forming-aisied pyramid along

the hydrostatic axis as shown on Fig@&€ This shape represents the yield surface, and it is evident
from the figure, that the criterion is pressure dependent. Any strdessgitzated inside the stress space
bounded by the six planes is elastic, while stress states outside are noakddiow

YHydrostatic axisg1=02=03

Figure 3.2:The Mohr-Coulomb criterion plotted in principal stress space.

Written as a yield function, the Mohr-Coulomb criterion takes the following fdation
f(o,c,p)=01-03+(01+03)Sin(¢) —2ccos(¢) =0 (3.5)

which can be refined to give

f(o,0¢,K)=ko1—03-0c=0 (3.6)
wherek is given by
1+sin(y)
k= ——"~ 7
1-sin(y) 3.7)

and the uniaxial compressive strengty, is given by

oe=2cVk (3.8)

3.1 Mohr-Coulomb Approximation of Hoek-Brown criterion

In order to use the Mohr-Coulomb criterion to model rock materials, a methoglatfirg the Mohr-
Coulomb parameters to the rock properties obtained using the Hoek-Braemon needs to be iden-
tified. According toHoek et al[2003 the friction angle can be calculated using

(3.9)

<p:sin‘l( 6am, (S+Myoran)® * )
2(1+a) (2+4a) +6am, (S+Myoan)?
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and the corresponding cohesion is given by

. oci (1+23) s+ (1-a) Myoran) (S+Myoran)
(1+a)(2+a) \/1+ (6arrb(s+ rTbO'gn)a_l)/((1+a) (2+a))

(3.10)

whereo s, is given by

orgn = L2max (3.11)
Ti

ando3maxis the upper bound over which the Mohr-Coulomb criterion is sought fittedsigure 3.3.
Notice that compression is taken as positive in these derivations.

Approximated Mohr-Coulomb criterio10€k-Brown Criterion /gt

<
Z _____________________ 03 max

Y 03

Figure 3.3:Mohr-Coulomb approximation of Hoek-Brown criterion. Compressidaken as
positive.

The upper boundary of the stress range should be chosen basednlttem at hand, such that it
covers the stress range of the model. For deep tunnels, the following mekipa@ives a good estimate
[Hoek et al, 2002

-0.94
Tmax _ 0.47(—“‘3’“) (3.12)
Ocm yH

where L
(mp+4s-a(m,-8s)) (2 + s)a_

2(1+a)(2+a)

andy is the unit weight of the rock mass, ahtis the depth of the tunnel below the surface. For slope

stability, the following gives a good estimate®f max

(3.13)

Ocm=0Oci

-0.91
Tamax _ 0.72(@) (3.14)
Ocm yH

A more general approach is to defilmgmaxas [Rocscience In¢2007

Oci

03 max= 7 (3.15)






CHAPTER 4

Plasticity Fudamentals

In this chapter, some of the basics of material plasticity is outlined. Howewstaaled description
is beyond the scope of this report. For a more thorough expositionrdes&euza Neto et aj200§,
Ottosen and Ristinmg2003 and Crisfield[2000.

4.1 The Yield Function

The strains that develop within a material when exposed to a load can basiealiyided into two
separate parts. Part of the strains are what is known as elastic strhgseslIstrains are characterized
by the fact that once the external load disappears, so does the elaatic $itrat developed during
loading. The part of the strains which are not elastic are known as plds$tase strains remain even
after the material has been unloaded. See Figuke

A

Stressesy

Strainsg

N

& &

Figure 4.1:Elastic and plastic strains.

So the total straing, are made up of elastic strains and plastic strains, which can be written as
e=£%+gP 4.1)

wheres® is the elastic strain vector and is the plastic strain vector. Plastic strains start to develop
once the material reaches its yielding limit, which is defined by some yield fun€tiob. This could,
for example, be the Hoek-Brown criterion or the Mohr-Coulomb criterionwdised earlier. The yield

13
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function, f, is a function of the stresses as well as some hardening paranketevhjch describe the
strength of the material, i.e.
f=f(oK) (4.2)

Sometimes, a material might require more than one yield function in order to bdedafficiently
accurate, this is discussedsection 4.7 The hardening parameters are usually determined by some
state parameters, that determine the internal state of the material

K =K (k) (4.3)

The yield function is a scalar valued function, which gives a negativeeVialuall stress states that are
elastic. Once the yield function reaches a value of zero, plastic straihtosi@velop. The stress states
which fulfill this criterion form a surface in stress space known as the gigithce, see e.g. Figue2
and3.2 Further, the yield function remains zero during plastic loading, which impliassttie time
derivative of f during plastic loading is zero, which can be written as

ﬂ:ﬁd_u(ﬂ)Td_a(ﬁ)T%d_K:O

dt otdt \do/ dt \oK/ ok dt
which is known as the consistency relation. Since the yield function is time-émdigmt, it simplifies
to

(4.4)

df cdo [0f\' oK dk
a2 (k) GeaO (4-3)
wherea is given by
of
a=— 4.6
g (4.6)

The time-dependency is discussed furthesaation 4.5 A stress state which returns a positive value
of the yield function is inadmissible. The stress state within the material is deterioyni elastic
strains through the constitutive matrD, as

o=D&®*=D(eg-&£") 4.7)
where @.1) has been used. If no plastic straining has occurred in the material, tienshdp between
stresses and strains is one-to-one. l.e. it is possible to determine thessitessased on the total

strains, which merely consist of elastic strains. However, if plastic straimasgdeveloped within the
material, the one-to-one relationship is lost, see Figu2eThe stress state is said to be path-dependent.

A

Stressesy

———————————— -—--0p

Strains,e

N
>

Figure 4.2: The one-to-one relationship between strains and stresses are lostptaste
strains have developed.
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Because of this path-dependence, it is necessary to adopt an intabaygproach in order to find
matching strain-stress relations. This is done by taking the time derivativé. 9f (vhich can be
written as

= -D—=D
dt - dt

do de de deP
( dt dt ) (4.8)

4.2 Plastic Potential

Once the yield function reaches zero and plastic strains start to develpruicial to know in which
direction they develop. However there is no conclusive way to determine Ahgay to get around
this, is to define a plastic potential functiam, The plastic potential is a scalar valued function, which
usually depends upon the stress state and some hardening parameters

g=9g(o.K) (4.9)

The partial derivative of this plastic potential with respect to the stressisedthe direction of the
plastic strains. A common choice for the plastic potential is to use the yield funttithis is the case,
it is referred to as associated plasticity. If another function is chosengtaesred to as non-associated
plasticity. The length of the incremental plastic strain is controlled by a so cddstiqgomultiplier,dA,
which is a non-negative scalar. Thus the plastic strain increment is giwen b

deP _didg _di

dt  dtdo dt
where the abbreviatidmhas been introduced to improve readability. This relation is known as the flow
rule.

(4.10)

4.3 Hardening and Softening

As mentioned earlier, rock material tend to lose some of its strength once plaatiirg occurs,
which is known as softening. However many metals tend to show an incresserigth during plastic
straining, see Figuré.1a, which is known as hardening. Usually both phenomena are simplyeadferr
to as hardening. If the material is considered perfectly plastic, the yieldiorits independent of the
hardening parametek§, and simply reduces to

f(o,K)=f(o)=F(o)=0 (4.12)

whereF has been introduced for readability and designates a perfectly plastidymekibn. If harden-
ing is employed in the model, two distinct methods are normally chosen, namelytitopisdardening
model and the kinematic hardening model, see FiguBe The isotropic hardening model expands or
contracts the yield surface, which can be achieved by adding or stibyao appropriate amount from
the yield criterion based upon the state variaklddowever, the position and shape of the yield surface
in stress space is unaltered. This can be expressed as

f(o,K)=F(0)-K=0 (4.12)

On the other hand, kinematic hardening shifts the yield surface from oaédodn stress space to
another. The size and shape of the yield surface remains unalteredahntis achieved by shifting the
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stresses by some amount defined by the state variables as
f(o,K)=F(c-K)=0 (4.13)

The two diferent hardening models can be used simultaneously, in which case irredafeas mixed
hardening. Mixed hardening alters the size and position of the yield sudad leaves the shape
unaltered. This can be written as

f (0,K) = F (0~ Kiin) ~Kiso = 0 (4.14)

whereKyin andKjso are the hardening parameters associated with kinematic hardening angiésotro
hardening respectively.

F (0'— Kkin) -Kiso

Y

/
/
— N _

>
»
/ / /
/ I /
7/ \ 7/
7 7
- -
-

F (o) F (o)

Figure 4.3:Isotropic, kinematic and mixed hardening.

4.4 State Parameters

The state parameters which control the hardening of the material need tritiéed and their time rate
of change has to be established, the so-called evolution law. The two mosi@ostate parameters
are the accumulated plastic strain, deno&#dand the dissipated plastic wolk/P, defined by

&P T
szfo o7 deP (4.15)

The accumulated plastic strain can be defined ffedént manners, in which the most common is the
Von Mises accumulated plastic strain defined by

t /2 (deP\T deP
gP = —|—| ——dt 4.16

¢ /0 3 ( dt ) dt (4.16)
Alternatively, the state parameters can also be defined by some potenti@ iy, which is a function
of the stress state and the hardening variables

j=](o.K) (4.17)
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and a plastic multiplier, using the following expression

de __d1dj
dt  dtoK

For instance, if the state parameter is the accumulated plastic &ftaamd the hardening parameter is
the cohesiong, the increment of the accumulated plastic strain is given as

(4.18)

deP ~dao]

dt  dtac
If jis assumed equal tb, the evolution law is said to be associated, anflif different fromf, the
evolution law is said to be non-associated.

(4.19)

4.5 Time-Independency

As can be seen from the above equations, there are a lot of firsttoraederivatives, which represent
the load rate of the problem. If a solution is sought, which is independentedb#d rate, these time
rate of changes can simply be thought of as changes in the variablesavbibbing dierentiated. For
example, the time rate of change of the plastic strains

deP
- 4.20
at (4.20)
can be replaced with
deP (4.21)

and thought of as a nothing more than an infinitesimal change in the plasticstegardless of time.
By adopting this independency, the consistency relation, equatin ¢an be written as

T
df:aTdm(ﬂ) Kik-0 (4.22)
oK/ ok
The stress increment, equatiah8), can be written as
do =D (de-deP) (4.23)
The flow rule, equatior4(10), can be written as
deP = dab (4.24)

and finally, the evolution law defined by a potential function, equatobd], can be written as

9]
di = —da2L 4.25
7K (4.25)

4.6 Infinitesimal Constitutive Matrix

The infinitesimal constitutive matrixD®P, relates infinitesimal strain increments with infinitesimal
stress increments as follows
do = D®Pde (4.26)
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Combining the consistency relation, equatidt2Q), the infinitesimal stress increment, equatidr2@),

the plastic flow rule, equatior®(24), and the evolution law, a solution for the infinitesimal increment
of the plastic multiplierda, can be found. If the hardening law is assumed to be defined by a potential
function, j, as in equation4.25), dA is found to be

T
A= a' Dde

= T .
T It )" oK 9]
a'Db-+ ((9K ) ok 0K

(4.27)

If this solution is substituted back into equati@gnd3), the infinitesimal constitutive matrix can be found

to be ba
Dba' D
DP=D- — 5 \T oK 0] (4.28)

4.7 Multiple Yield Functions
Some yield criteria might consist of multiple yield functions
fi(o,K), f2(0,K), ..., fn(0,K) (4.29)

Each yield function defines a surface in stress space. In this caséastie stress states are bounded
by the stress states which return a negative value of all the yield funcBemsFiguret.4

A

fi=0

Discontinuity

f1<0n f, <|0

Discontinuity

Figure 4.4:The elastic stress states (blue) of a yield criterion with multiple yield functions
(green).

In these cases, the combined yield surface contains intersections bétweedividual yield func-
tions, which require special attention. These intersections can be viglakzeurves and points in
principal stress space and is known as yield curves and yield points,gdeigure2.2and Figure3.2
These intersections usually result in discontinuities where the surfatkes wield functions intersect,
see Figuret.4. If multiple yield functions are utilized, each yield function typically have a uaiglas-
tic potential,g;, and hardening potentiaj;. In such cases, the strain direction at a discontinuous part
of a yield criterion, see Figurd.5, is a linear combination of the flierent strain directions involved
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[Koiter, 1953

k
deP = Z dib; (4.30)
i=1

wherek is the number of plastic potentials, that is part of the intersection at hand. Hymtlas
evolution law is given by

d = —idai—' (4.31)

f1<00f2<

Figure 4.5:The plastic strain direction at a discontinues part of the yield criteria.






CHAPTER 5

Return Mapping in General Stress
Space

In this chapter, the theory behind return mapping is introduced. Howa\sdprt introduction to the
non-linear finite element method is given first, in order show the need aidapility of return map-
ping. For a more detailed description of the theory behind return mappinfjratedelement methods,
seede Souza Neto et dl2008, Cook et al[2003 andCrisfield[2000. The derivations of this chapter
rely on a evolution law of the form given by equatighZ5 and @.31).

5.1 Non-linear Finite Element Method

Problems involving the displacement and stress distribution throughout a maddie formulated
as partial diterential equations made up of the governing equations behind the probktrsoae
boundary conditions, which make the model unique. However, for compledels, an analytical
solution to these boundary value problems is very hard or simply impossibldatioliss. Because
of this, the problem is sought solved through numerical integration, whiathése the finite element
method comes into play.

As the name suggests, the model is discretized into a finite number of elementdhiéh the
solution to the governing equations can be approximated with polynomials. & fange of dierent
elements exist, each with advantages and disadvantages, however thicnid thee scope of this report.
Based on this discretization, theflitiess of the entire model can be calculated. Because theest
of the model is non-linear and path dependent, the boundary conditierspplied incrementally in
what is known as load steps. The system of equations is solved iterativeacimload step, to make
sure that equilibrium is fulfilled. Usually by the use of a Newton-Raphsbeme. This process can be
schematized as shown in Tallel. The highlighted points of the procedure are material dependent and
is the main focus of this report. The updated stress state should ideallyrizbtfoough and integration
of the infinitesimal elasto-plastic constitutive matrix along the path of the straierimemt as

Ex_1+Ae Ek_1+Ae
Ok=0k 1+ f d0':a'k_1+f D®Pde (5.1)
Ek-1 Ek-1
where equation4.26) has been used. However, the integration of equatal) {s no easy task, since

the strain path is unknown amfP is stress dependent. Several methods exist, which try to circumvent
this problem. Return mapping is one of these methods, and is the method useghtutathis report.

21
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(Q Loadstek=12,...

o Pk=Pr-1+APk Initiation of thekth load vector

o Au;=0 Initiation of the displacement increment
o OK=0k-1 Initiation of start guess afy

o ( Global equilibrium iterationg=1,2,...

o o r=p«—q(ok) Force residual;, from px and internal forceq
o o K(D&P9 Form the global tangent fithess matrixK
o o su=K7r Solve the FEM equations

o o Auj;1=Auj+du Update displacement increment

o o Ag=BAuj,1 Calculate strain increment

o o ok(ok-1,A€) Update stresses

o o D®P%ay) Update consistent constitutive matrix

o @ Stop iterations whefir | < €| px|| € is a prescribed tolerance

o Uk=Uk1+AUj1 Update displacement vector

o g&K=Bu Update strain vector

® End of load step

Table 5.1: Schematic of the incremental nature of the non-linear finite element matiwd
the Newton-Raphson procedure used in the global equilibrium iteraticarsedBon Clausen
2007

Further, if the infinitesimal constitutive matri€P, relating infinitesimal strain increments with
infinitesimal stress increments, is used in the global equilibrium iteration schémhe dinite ele-
ment code, where finite increments are used, the quadratic convergetiee problem will be lost
[Nagtegaal1983. Because of this, a consistent constitutive matbXPS, is developed, which main-
tains the quadratic convergence by relating infinitesimal changes of thedirdie increments with
infinitesimal changes of the finite stress increments

dAo = D®PdAe (5.2)

5.2 Return Mapping Basics

The fundamental idea of return mapping is to try out, whether the entire stcagnientAg, is elastic
by introducing the elastic predictor stress increment

Ao =DAe (5.3)
Adding this, to the initial stress state, see Figbrg

o= k-1 (5.4)
the predicted elastic stress stat€, becomes

oB=0"+Ac® (5.5)
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Figure 5.1:Sketch of the updating scheme.

If o® returns a negative value of the yield function, if§o-®) < 0, the entire strain increment is purely
elastic, and no further calculations are needed. However, if the prédititess state falls outside the
yield surface, a part of the strain increment must consist of plastic stragesrding to equatiord.23),
the stress increment must be given by

Ex_1+Ae
Ao = f D (de - deP) = DAe - DA&P (5.6)
&1

where use has been made of the fact, Dia¢ independent of, because linear elasticity is assumed.
Introducing the plastic corrector stress increment, see Figre

AoP = DAgP (5.7)
together with equatiorb(3), the stress increment is given by
Ao = Acd® - AcP (5.8)
and the final updated stress stat&, becomes
oC =o"+Ac (5.9)

which can also be written as
o€ =0B-AcP (5.10)

Using equation4.24), the plastic strain incremengP, used in calculating the plastic correctaer®,

is given by
A+AA

AeP= [ bda (5.11)
/

The integration of equatiorb(11) is just as complicated as equatidnl), however, in the return map-
ping framework, the plastic strain increment is approximated with

A&P ~ AL b (5.12)



24 Chapter 5. Return Mapping in General Stress Space

which results in the plastic corrector increme;P, can be written as
AcP ~ AAD bl (5.13)

and thus the problem boils down to finding the updated stress afatevhich fulfills equation 5.10

and lies on the yield surface. If the updated stress state belongs to a gitigéeyéeld function, cf.
equation 4.24), the plastic corrector increment is given as shown above. Howevbe ifpdated stress
state belongs to an intersection of two or more yield functions, the plastic stragtion is given by
equation 4.30. Because of this, slightly fferent return mapping procedures have to be deployed,
depending on the number of active yield functions that the updated sta¢ssS, belongs to.

5.3 Return to One Active Yield Function

The updated stress stae, belongs to the yield surface defined by the yield function hence

f (o, K®) =0 (5.14)
whereKC are the updated hardening variables

K® =K (k%) (5.15)

and«® are the updated state parameters. In case of a hardening law baseal ppential function,
this could be written as follows

9]

cC_,A

K- =Kk"—Adl—
oK lc

In order to find the correct updated stress state and the plastic multiplieti@y®.10 and 6.14) are

solved using an iterative procedure, for instance a Newton-Raphsoedure, which is used in this

text.

(5.16)

5.3.1 Consistent Constitutive Matrix

DEéPCis derived by taking the total derivative &.8) with respect ta\e, using 6.3) and 6.13 as follows
dAo B dDAe - 0AADb dAA  6AADb dAc

. - . 5.17
dAe dAe 0Al dAe OAoc dAe ( )
Multiplying with dAe on both sides yields
dAo = DdAg — DbdAA - AﬂD%dAa (5.18)
Rearranging leads to
-1
dAo - (| +AAD%) D (dAe - dAb) (5.19)
which can be written on the form
dAo = D°dAg - dAADb (5.20)
where
D°=TD (5.21)

-1
T=|(I +A/1D6—b (5.22)
oo
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T is known as the modification matrix. Using the consistency condit22(, an expression failAa
can be found in much the same way as it was foundti@q), and substituted back int®.20, which
gives the consistent constitutive matrix as
D¢ TDC
D®P°=D°- ba T : (5.23)

Kk 0O

If ais equal td, it is seen, thaD®P¢is symmetric.

5.4 Return to Two Active Yield Functions

If the yield criterion consists of two yield function$, and f,, with the appertaining plastic potentials

g1 andg, and the hardening potentiajgs and j,, it is possible, that the updated stress state belongs to
the intersection of these two yield surfaces, see Figutdf this is the case, the direction of the plastic
strains is given by equatiod 30, and thus the corrector stress is also a linear combination of the stress
directions involved giving

AO’p = A/llD b1|C + A/lzD b2|C (524)
where
by, = 99 (5.25)
oo
b, = 2% (5.26)
oo
(5.27)

Similarly, the hardening law, equatioB.( 6 expands to

o
KC:KA—A/ll 9l

dj2
_A/l =
oK

c PoK
when using the hardening potential method. The updated stress stateifiglmnipe yield curve still
needs to fulfill 6.10 as well asf; (©,K®) =0 andf, (K<) = 0. This results in eight equations with
eight unknowns, namely®, A1; andAA,. To find the updated stress sta#;, an iterative procedure
is implemented in which the residual,of equation $.10 is defined by

(5.28)

C

r (O'C,A/ll,A/lz) =oC- (O'B -A11D bl‘C -AALD b2|C) =0 (5.29)
Expanding in a first order Taylor series leads to

r (O'i(il, AVERFER A/lz,i”_) =r (0'|C +do, Ay + dA/ll,A/lz,i + dA/lz)

or or (5.30)
dAA; + ——dAd
oAty A,

or
=r (0", Adyi, Adpj ) + %dcn

where

or _90° do® 0ALDby  9A1;Db

% - do oo oo oo

1+a1,0%  A2,0%2 (5.32)
oo oo

(5.31)
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and
or
=Db 5.33
A0 1 (5.33)
or
=Db 5.34
FT¥R 2 (5.34)
substituting back intoH.30) yields
r (O'-C Ad1is1, Al 1) =r (O'-C Al A/lz') + (| +A/11Da—bl +A/12D8—b2)d0'+
i+1> S+1s I+ i N L (90' (90' (535)

+Db;-dAA; +Dby-dAA,

C

and solving forr (o5 ,Ad1j,1,A22,1) = 0 gives

1
do = (| + A/llDaa—bl + A/lzDaa—bz) (—I" (O'iC,A/ll,i,A/lz’i) —Db;dAA, - Dbsz/lz)
g g

(5.36)
=-Tr (o, Adyj,Adzj ) —~ DbrdAA, - DobrdAL,
where .
T- (l +A/11Da—bl+A/lzDa—bz) (5.37)
oo oo

Having an initial guess Qf‘ic, AA1j andAAy;, a Taylor expansion of the two yield criteria results in

f1 (oﬁl, KiCJrl) =f (0',C +do, KE + dK)

_ fl(a-iC,KiC)JraIdo-Jr(a—K) dK
where
oK 0Ok oK Ok
dK =— A — dAaAa
ok oA, Bk oA, 2
9K dj1 9K djs
=— ———dAl1 - ——5dAA 5.39
ok Kt koK P (5.39)
which gives
f1 (O'i(il, K,C) =f (O'ic, Kﬁl) —aITr (O'iC,A/ll,i,A/h,i) —aIDCbldA/lz —a;D%b,dA -
(afl)T (aK oK oK O ) (5.40)
1) (- Edadg+ = dA,
oK ok 0AA1 0k 0AA»

and similarly forf,
fo (O'i(il, K,C) =f, (O'ic, Ki(il) - a{Tr (O'ic, Ay, Aﬂz,i) - azDCbldA/lz —ayDbydAL—
T (5.41)
(a—fz) (% oK dA/11+ % oK dA/lz)
oK 0K 3A/11 0K aAﬂ.z
Equating 6.40 and 6.41) with 0, leads to two equations with two unknowns, nantyl, anddAA,

which can be found. Ona#AA1; anddAA, are obtaineddo can be found usings(36), which leads to
anewo . FurtherAl; andAl, are updated by

A/l]_’i+1 = A/ll’i +dAA (542)
Ad2ji1=Ad2; +dAA (5.43)

And new values otiA1; anddAA, can again be found. The above-mentioned steps are repeated until
satisfactory precision is reached.
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5.4.1 Consistent constitutive matrix

The consistent constitutive matrix of a point belonging to two active yieldtfans is found in much the
same was as it was found for the point belonging to one yield function, ndygegking the derivative
of (5.8) and utilizing 6.24)

dAO'_dDAS_aA/thl dA/ll_aA/llDbl dAO’_aA/lszz dAﬂz_aAﬁszz dAo
dAe  dAe OAl  dAe dAc  dAe  9A,  dAe dAc  dAe

(5.44)

which can be rewritten to

dAo = TD (dAe - dAA1b; — dAA2D,) (5.45)
Using the consistency condition of both yield criteria together with equafid©(and 6.39), results
in

)
aldAc+ (Z—fé) dK =al TD (dAe - dAd1b; - dALsby) -

of oK 9] K 9] (5.46)
1 1 J2
——dAy + ——==dAA 0
(aK) (ax oK T o oK 2)
aldAc+ (‘;:(1) dK -al TD (dAe — dAdsb; — dALsby) -
(5.47)
ot oK 611 oK (9]2 )
— — ——dAl + ——=2dAA 0
(aK) (81( oK "o Bk oK
This can also be written as
THC
agDCAs da, 0
where
_| A A (5.49)
Az Ax
afi\" K djx
T RC |
ik =a Db (—) —_—— 5.50
Ak =a Dby + K) ¢ K (5.50)
Thus,dA; anddA, can be found to be
SR
dA; B a;D°dAe (5.51)
da, _achdAs_
where 3 )
Boal_|Bu Bu (5.52)
| B21 B2z
Substituting back intoH.45 gives
dAo =D°¢ (dAs - BllaI DCdASb]_ - Blzag DCdASbl (5 53)

- lea-{ DCdAsbz - Bzza-zr DCdAsbz)

Using 6.53, DP°can be derived to

DéPc=D° - B]_lbla-{ D°- Blzblag D°- 821b2aI D°- Bzzbzag D¢ (5.54)
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which can also be written as ,

pePe_ DC—ZZBijbia-erc (5.55)
i=1j=1

If needed, the infinitesimal constitutive matrix is found by repladdign (5.55 with D.

5.5 Return to Three Active Yield Functions

An updated stress state might also be returned to the intersection of thresuyifelces f1, f, and fs,
with the plastic potentialgs, g» andgz and the hardening potentiglg, j» andj3. This scenario is very
similar to the scenario with two active yield surfaces, which was discussed prévious section, and
will only be touched upon briefly. The plastic corrector is given by

AO‘p = A/llD bllC +A/12D b2|C + A/lgD b3|C (556)

and the evolution law is assumed to be given by

6]1

C A

K~ =K _A/l .
1(9K

dj2 dj3
-Al —=—=| —Alz3 — 5.57
. 2 79K | 39K | (5.57)

The return algorithm is almost identical to the one mentioned in the previous seeticept that an
extra unknown A3z needs to be found, which is possible because of the extra equation icecbdu
by the consistency condition of the third yield criterion. The derivation of phigcedure is omitted,
however the modification matri¥;, is given by

-1
T- (| +a1p 2t Ar,p %2 +A/13Da—b3) (5.58)
oo do do
Similarly, the consistent constitutive matrix can be found to be given by
3 3 .
DePC= DC—Z Bijbiaj D¢ (5.59)

i=1j=1

whereB is the 3x 3 equivalent matrix to the one in the previous section.

5.6 Determination of Correct Return Type

In the general six-dimensional stress space, there is no easy wateaideng, which of the above
mentioned return algorithms, that should be applied to a certain predictos.sBesause of this, a
commonly used strategy is to start out with returning to a single yield surfdeeupdated stress state
is then evaluated based upon some specific requirements. In case thessments are not met, the
predictor stress is returned using a return to two yield surfaces and $o ganeral stress space, it is
theoretically possible, that an updated stress state has to be returnedsisigh as six active yield
surfaces. However, in the three dimensional principal stress spam®gairic arguments can be applied,
to establish which method is to be applied.



CHAPTER 6

Return Mapping in Principal Stress
Space

If the material in question is isotropic, the stress states within the material capiessed in principal
stresses through a coordinate transformation, see Fi@gjdreThus the updated stress state can be

€l<> Coordinate transformation

\/

T
0-:[0-)( O-y (o ny O xz O‘yz]

T
0'2[0'1 g2 0'3]

Figure 6.1:Coordinate transformation of general stress space into principal sspase

found in principal stress space, and only the three principal stregsesto be found. And since
only three values are involved, the problem can be visualized in 3D spdege advantages can be
made of geometrical arguments, which can be used to simplify the expressiehinchapter 5 The
drawback is, that coordinate transformation calculations have to berpedo The predictor stress,
o8B, is transformed into principal stresses using ordinary coordinate tranafion. Afterwards, the
updated principal stress stad&;, and the consistent constitutive matrix aligned with the principal axes,
D" is found and then transformed back into the original coordinate systéme afodel, cf. Tablé.1

The derivations othapter 5should of course still hold in principal stress space for an isotropic
material. Howeverg is reduced from the six components &f2) to only three components, namely

U:[ffl o2 U3]T (6.1)

where the overbar,, is used to indicate, that we are dealing with principal stresses.

29
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o oB-oP Transform predicted stress state into principal stresses

o o° EB) Find the updated principal stress state

o D°F° EC) Find consistent constitutive matrix aligned with principal axes

o o¢-0C Transform updated principal stress state to general stresses
aligned with model axes

o D°P°- pere Transform consistent constitutive matrix into general stresses
aligned with model axes

Table 6.1:Schematic of return mapping in principal stress space.

6.1 Modificaton Matrix

The modification matrix used in finding the consistent constitutive malrixs still created as a full
6x6 matrix, however, it is aligned with the principal stress axes, meaningfiatin the same direction
asoy, oy is in the same direction as; ando is in the direction ofrz. This is denoted by a hat, T

is divided into two parts
T- [T 0] (6.2)

ofT

whereT relates to the principal stresses dncklates to the shear stresses. For a return to a yield surface

using 6.22 results in
— (- b\
oo

and for a return to two yield surfaces usirtg37) results in

(6.4)
o

- 1
T-(1+a0,0% , A1,0%02
oo O

and so on. FurtheT. is given by Clausen et al2006

of-05
o1-03
= o] -0
T= % (6.5)

01703

c_.cC
02703

02703

OnceT is found, the consistent constitutive matrix aligned with the principal AET, is calculated
analogous to equatio® 23, (5.59, or (5.59, except thaa, b andD¢ is replaced by

a=[a" o0 o o]T (6.6)

-[6" 0 o 0]T (6.7)
D°=TD (6.8)

o
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6.2 Boundary Planes

As mentioned earlier, the principal stress space is a three dimensionalispatch the yield criterion
can be visualized. Further, frorB.(L3), it is known, that if a predicted stress state should be returned to
a surface, the directiors, see Figuré.2, of the plastic correcton\o P, is given by

5=Db (6.9)

Figure 6.2:Direction of the plastic corrector of a return with one active yield function

By evaluating this expression along the boundaries of the yield surfee@rddictor stress states,
which can be returned to the yield surface is outlined. The principle is slioma Mohr-Coulomb
criterion on Figures.3. The stress space within these boundaries is known as a return regjmmging
to the specific yield surface.

Figure 6.3:0utlining of a return region by the use of boundary planes.
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Similarly, the direction of the plastic corrector for a predictor stress whichbie t@turned to two active
yield surfaces, see Figufe4, is given by

S$=15+p% (6.10)

Figure 6.4:Direction of the plastic corrector of a return with two active yield functions is a
linear combination of the two plastic corrector directions involved

wheren andp are some arbitrary positive scalars. Similar arguments apply for a preslicgss with
three active yield surfaces and so on. With this knowledge, it is possibletéondine which part of
the yield criterion, a specific predictor stress state should be returnedrtbeF if the plastic potential
is linear, the diferent return regions are made up of planes, s&iscindependent of the position in
yield space. With this knowledge, it is possible to determine the correct rakgonithm, without the
trial-and-error approach of the general stress space updatingeche



CHAPTER 7

Implementation of Strain Hardening
Mohr-Coulomb Model

In this chapter, the theory of the previous chapters will be applied to a {@olitomb model using
linear elasticity, non-associated plasticity and isotropic strain hardeningy alith the evolution laws
of equation 4.25 and @.31).

7.1 Basic Premises

As mentioned irchapter 3the Mohr-Coulomb yield criterion can take the form of
f(o,0¢,K)=ko1-03-0:=0 (7.1)

which will be used in the current implementation due to its simplicity compare8.8. (The yield
criterion is a function of both the friction angle, and the cohesion. In this implementation, it is
assumed, that the friction angle remains constant. Thus, the hardenamygtars vectok, simplifies
to a scalar, namely the cohesian,Further the state parameters vecikoipf the material, is chosen to
be the scalar accumulated plastic strafh, Thus

K (k) =c(&") (7.2)
The plastic potential, is chosen as
g=(o,c¢) =01-03+(01+03)sin(y) —2ccos(y) (7.3)

wherey represents the angle of dilation. The evolution of the accumulated plasticistganen by the
hardening potential functiorj, cf. equation 4.25, and is chosen as

j=(o,¢cp)=01-03+(01+03)sin(¢p)—2ccos(p) (7.4)

7.2 Derivatives

The derivative off with respect tar is given by

k
a2t | g (7.5)
oo
-1

33
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The derivative off with respect to the harding variable,is given by

ot _of ot doe

—=—= =-2Vk 7.
oK dc oo dc vk (7.6)
The derivative ofy with respect t@r is given by
1+sin(y)
b= 8—9 = 0 (7.7)
-1+sin(y)

The derivative ofj with respect to the hardening variables is given by

0] 0]
— = —=-2c0¢( 7.
oK oc cos(y) (7:8)

Finally, the derivative of the hardening paramet&swith respect to the state parametasss given

by
oK dc
-2 _-H 7.9
ok O&P (7.9)

whereH is the gradient of the chose? = c-curve at the current point of accumulated plastic strain.

This curve could be modeled as a function, however, in the current imptatiwem it is defined by

a number of predefineeP,c) points, which makes it possible to choose an arbitrary curve, without
changing the computer code . The specific value ahdH is interpolated between these points, see

Figure7.1 Using this approach, the model is able to handle all of the hardening mdu®is sn
Figurel.1as well as the elastic brittle behavior shown in Figlir2

A

Y

0 zP

Figure 7.1:Example of arbitrarys” - c-curve defined by a set (P, c) points.

7.3 Yield Criterion Regions

As shown in Figure3.2, the Mohr-Coulomb vyield criterion consists of six yield surfaces in principal

stress space. However, if by definitian; is the major principal stress, aiwd is the minor principal
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stress when transforming the general stress state into principal steess #pis only necessary to
operate with the yield surface, that satisfies this condition, nafmeand the two neighboring yield
surfacesf, and fg. See Figur&.2

o3

o3>01>072 03202201

fs

01203202 f6 f3 02203201

f fo

01

02

01202203 02201203

Figure 7.2: The Mohr-Coulomb criterion seen from the hydrostatic axis. The primesid y
surface, {, is shown in blue, while the remaining yield surfaces are faded out.

f1, f, andfg is given by

fi(o,0¢,K) =ko1-03-0¢=0 (7.10)
fo(o,0¢,K) =koa—03-0¢=0 (7.11)
f6 (O',O'C,k) = kO'l—O'z—O'CZO (7.12)

le. o1 is switched witho, for yield surfacef,, andoj is switched witho, for yield surfacefg. This
leads to the following derivatives

K 0 k
a=(o0 a=|k a=|-1 (7.13)
-1 -1 0

The index swapping is also valid for the plastic and hardening potentialsdietpto these yield sur-
faces. Thus, the plastic strain direction is given by

1+sin(y) 0 1+sin(y)
b, - 0 by =| 1+sin(y) bs = [-1+sin(y) (7.14)
-1+sin(y) -1+sin(y) 0

The intersection between vyield surfaéeand f, is a line in principal stress space denotgdsee
Figure7.3 Along this linec1 = o and is thus given by

01
o, = o1 (7.15)

ko1-o¢
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03

o1 g2

Figure 7.3:Naming convention for the Mohr-Coulomb criterion.

Similarly, the intersection betweef and fg is denotedg whereo, = o3, and is given by

o1
Ols = | ko1 —0o¢ (7.16)

ko1 —-o0¢

The intersection of, f, andfg is a point in principal stress space, and is denategiven by

1
_ ()
= 7.17
Oa k—1 1 ( )
1

Any predicted stress state falling outside the yield criterion is to be returnethés the primary yield
surface,f1, the yield lines]; or lg, or the apexa.

7.4 Return Regions and Boundaries

The region of principal stress space, that return§; tis denominated R. Stress points which are to
be returned td; is denominated R and similarly for R, and R,. Due to the linearity of the Mohr
Coulomb criterion, the diierent return regions are bounded by planes. Based on the prediess s
state’s location relative to these planes, the correct return region castaklished and hence the
correct return algorithm can be applied. A plane can be defined by ittealosector,n, and a point
belonging to the planeg, as

n' (x-%) =0 (7.18)

Any vector, X, for which the above is satisfied is situated on the plane. A point lying belowléme
gives a negative number, and a point lying above the plane results intav@osimber. Thus, it is
necessary to identify the normals of each plane, which can be calculaged ba the directions, in
which the planes span.



7.4. Return Regions and Boundaries 37

The plastic corrector direction belonging to a surface return to yieldsiffas given by

£ 1+sin(¢) -2v
§12551=—m 2vsin(y) (7.19)
2v—1+sin(y)

and the intersection between tleyield surface and thé,-yield surface is fully determined by,
(7.19, which by dtterentiation gives the direction of the intersection ling,see Figur&.3,

1
o
r, = ao—lll -1 (7.20)

By taking the cross product between ands,, the normal of the plane separating the return region
belonging to yield surfacé;, and those belonging to lifgcan be established as

anl_’Rll =§;|_><l'|l (721)
where the arrow designates, that the normal of the plane is pointing froradlmn belonging td;, to

the region belonging th. Similarly, the direction ofg is given by

1
oo
iy = (%'f - |k (7.22)

and thus the normal of the plane which creates the boundary betweeryitie o€ predictor stresses
belonging tof; and those belonging tg can be found to give

MR, Ry, =81 xIyq (7.23)

The boundary plane separating Rom R; is spanned by the direction 8f ands,, which is the plastic
corrector direction belonging t&. Thus

anlﬁRa =51 xS (7.24)
and similarly for the boundary plane which separatgdi@m R,
MR, R, = S5 81 (7.25)

In order to completely define the boundary planes, a point on each plafsoiseeded. Since all the
planes go through the apex of the criterion, this point is simply chosen tesepirall four boundary
planes. Based upon this, four boundary planes, see Figdirean be defined by

PR, R, (0 B):ngf R, (68-7a)=0 (7.26)
pRIGQRfl( ) an SRy (0' a'a) 0 (7.27)
PR, R, (0 ):an R, (F%-Ta)=0 (7.28)
PR, ~Ra (0 B) = an R, (@%-7a) =0 (7.29)

Using these boundary planes, a rule set can be set up, which detethenasrect return algorithm
based upon the evaluation of these planes, which has been done 7 Tlable
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] Rule # \ Conditions \ Return to
1 prlﬁRll (O'B) <0A pRl6%Rf1 (O'B) >0 f1
2 prlﬁRll (O'B) >0A pRllﬂRa (O'B) <0 I
3 pRlﬁqul (O'B) <0A pRleéRa (O'B) <0 le
4| prer(09)200pr, 5, (09)20 | a

Table 7.1:Rule set for retun algorithms. See Figufel for further details of boundary plane
location and naming.

?ﬂ/ PRy -Ra

prl_’R'l

02

Figure 7.4:Boundary planes of the Mohr-Coulomb criterion. The visible side of éacimd-
ary plane in the figure is defined as the positive direction of the normal.

7.5 Return Algorithms

The return algorithms used for the Mohr-Coulomb criterion are particulaniple. Because of the
linearity of the plastic potential, which has been utilized, the plastic strain direistionlependent of
the stresses. This means, that the plastic strain direction is the same, whéthevraituated at the
predictor stress poing;°, or at the updated stress poiax;. Thus, equations,13 can be simplified to

AcP ~ AAD b (7.30)

This means, that the only unknown in calculating the plastic corresidt, is the plastic multiplienA.

7.5.1 Return to yield surfacef;

If the predictor point qualifies for a return tia, only one yield surface is active, and hence only one
plastic multiplier needs to be found. The updated stress stétds given as

¢ =2 AoP =a° - A1Db, (7.31)
which have to satisfy the condition

f1(0%,05.k) =kof -5 -0S =0 (7.32)
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With the use of equatior7(31), o5 ando§ can be expressed as

O'% = 0'1B -AAS11 (7.33)
oS =P -Als;3 (7.34)

wheres; 1 ands; 3 is the first and third component 8f respectively. Further, with the use of equation
(5.16), the uniaxial compressive strength of the updated stress sfatelepends on the accumulated
plastic strain at the updated stress stat&, which is given as

9]

gPC-gPA_AL-
oc

=gPA 4 AL2cos(p) (7.35)

where equation.8) has been used. Thus, the compressive uniaxial strength of the dtiates state,
o<, is given by
o¢ =2¢(eP°) vk (7.36)

Substituting back into equatioi.32 gives
f1 (A1) =k(0F ~As11) - (05 - Adsiz) —oS =0 (7.37)

which is solved using an ordinary Newton-Raphson iteration procedtheaspect taA1. The gradient
of the equation with respect t is

df; do$ d& dsPC
-k e 7 Tk d 7.38
Al OHTIT G qepC gay T o a e (7.38)
where C 4 depC
dog dc- deP
doc=-—%——=——=4Hco k 7.39
7¢7 74 dgPC dAa () vk (7:39)
using equationq.9), (7.35 and (7.36). An initial guess ofA1 is made and then updated via
Adivy = Adi— ( df )1f (AL) (7.40)
i+1 = i dAL i 1 i .

until the required precision is reached.

7.5.2 Returntoyield linesl, andlg

Returning to one of the yield line$;, andlg is a simple expansion of the procedure used for fthe
return. However, in this case, the plastic corrector is given by

7C =02 - AoP =52 - A1.Db; — A1, Db, (7.41)

whereA; andAl, are unknownga< has to fulfill both yield criteria. For thl return, this results in

f1 (EC,O'g,k) =ko§-05-05=0 (7.42)
f2(0%,05.k) =ko§ -5 -aS =0 (7.43)
where
0§ =B AlsI - A (7.44)
05 =05 - Al1S12- AdoSy2 (7.45)

05 =05 - AliS13 - A3 (7.46)
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The accumulated plastic strain of the updated stress state is given by

2 i
AT AL, % ~PA_2c05p) (Ady + Ad) (7.47)
i=1

The two yield criteria are embedded in the residual veEtas
[ 1 (A1 AR)

F (All) ) -fz(Aﬁl,Aﬂ.z)]

(7.48)
_ k(O‘? -AA1S11— A/IZSQ’]_) - (O'g -A1S13— A/1282,3) — O'g _ 0
~k(O‘ZB - A/l]_Sl’z - A/leQ’z) - (0‘5’ - A/11$13 - A/1252,3) - O'E 0
where
AA
A=~ (7.49)
Ao
The gradient is found to be
aFT _ —kSl,1+Sl,3+d0'C —k52’1+ Sz’3+d0'c (7.50)
0AA —kS_|_,2+Sl,3+dO'C —kSz’2+82’3+dO'c

wheredo is given by 7.39. The system of equations is solved using a Newton-Raphson iteration,
where an initial guess afA is made, an afterwards updated as

oF

-1
e i) F(Ad) (7.51)

Adiv1 = Ad —(

until the required precision is reached. The return algorithm fofgheturn is analogous to the above,
except that thd; yield surface is replaced by tHg yield surface. This gives

[ £, (AL A
F(A2) 1(A1,A7)
fG(A/ll,A/lz)
- (7.52)
_ k(O'lB - A/llsl,l - A/lgSQ,l) - (O'g’ - A/1151,3 - A/1282,3) - O'g _ 0
_k(O':? -AA1S11— AAZSQ’]_) - (O'ZB -A1S12— A/lez,z) - O'g 0
with the corresponding gradient
(9_FT _ —kSl’1+Sl,3+d0'C —kSZ,1+SQ,3+dO'C (7.53)
oAl —Kksp1+Si2+doe —k1+So+doe

7.5.3 Return to apex pointa

The return algorithm to the apex of the Mohr-Coulomb criterion is a furthpaesion of thé, andlg
algorithms, in which casé,, f, and f3 needs to be fulfilled. The approach is similar to the above and
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only the main results will be given here. The residual vector is found taves dpy

[ f1(Ad1,Ad2,A03)

F (A1) =| f2(A11,A12,A13)

| f6 (A11,A2,A03)

k(08 - Ad1S11-AdoSp1—AdzSzr) — (05— AiSia— AdoSp 3~ AdgSaz) — 05

= k(08 -AliS12-AdoSpo - Adsss2) — (05 - AdiS13— AdaSp3—Adssgs) —oS | (7.54)
k(0B -Ad1s11-AdoSp 1~ AdzSz1) — (05— AdiSio— AdoSp o~ AdgSgp) — 08

i

o O O

where
Adq

A=A, (7.55)
A3

and the gradient matrix is given by

—kS_|_’1+S;|_’3+d0'c —k82,1+52’3+d0'(; —kSg’;|_+Sg’3+dO'c
=|-ksio+s13+doe —kSo+S3+doe Ko+ S33+doe (7.56)
—kS_|_’1+Sg_’2+d0'c _kSQ,]_"FSQ’Z"r‘dO'C —kS3’1+S3’2+dO'c

OF_
OAAT

7.6 Consistent Constitutive Matrix

In the evaluation of the consistent constitutive matrix, the modification matrix aligite the principal
stresses] is needed. The part related to the principal stresEesee equations(3), simplifies to the
unit matrix

1 00

T=|l0 1 0 (7.57)
0 0 1

because the derivative bfwith respect tar results in the zero-matrix

b 0 0O

—=/0 0 O (7.58)

oo
0 0O

The part ofT, that relates to the shear stressksjs simply evaluated by equatio®.p). Thus it is
possible to evaluatB®. Afterwards, the consistent constitutive matrix aligned with the principad,axe
D°™ is calculated using either equatidn3, (5.55 or (5.59, depending on the return algorithm used
in finding the updated stress state.






CHAPTER 8

Computational Example: Strip Footing

To test the hardening Mohr-Coulomb model, a simple bearing capacity calcutdtéostrip footing is
carried out in plane strain. This has been done by implementing the straieniveagdviohr-Coulomb
model in FORTRAN and then utilizing it in a FEM-code written in MatLab, which refya Newton-
Raphson procedure in the global equilibrium iterations, as shown in Bable

8.1 The Model

The model consists of a rigid rough foundation resting on top of a straiteharg Mohr-Coulomb
material. Since a strip footing in plain strain is examined, advantage is made gfntimeetry line of
the problem, see Figu&1l The domain size is governed hyandH, which has been set to 30 m and
20 m respectively. The total width of the foundation is 2 m. The domain is mesdied 2-dimensional
6-node triangular linear strain elements utilizing a gaussorder of 6. Thedb#te foundation is
modeled using a prescribed displacement of 21000 mm in the negadivection of the nodes situated
directly under the foundation.

Y Rigid foundation

X

Strain softening
Mohr-Coulomb &£

Symmetry line

O O 0O O O O O O OrF

L

Figure 8.1:Sketch of the model of the foundation. Not to scale.

43
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8.2 Material Parameters

The parameters of the Mohr-Coulomb material are found based on aoxapption to a material with
the Hoek-Brown parameters listed in TaBld

State GSI | my O D a my S E % 0%
Peak 50 |12 | 80MPa| 0 | 051|201 | 0.0039| 9GPa| 0.25 | 20 kN/ma
Residual| 25 | 12| 80MPa| 0.5 | 0.53 | 0.34 0 9GPa| 0.25| 20 kN/mz

Table 8.1: Hoek-Brown material parameters of the peak and residual strengtheofock
material at hand.

As can be seen, for the peak strength of the rock material, intact rocklimasl D = 0, with a uniaxial
compressive strength of 80 MPa, a GSI value of 50 angl @onstant of 12. For the residual strength,
the GSl value is lowered to 25, and the disturbance faEtpis set to 6. The Hoek-Brown constants

a, My ands are calculated based on equati@2j-(2.4). Young’s modulus is assumed to be 9 GPa.
The parameters orignate frofharar{2008 and the material associated with it is described as average
quality rock mass, which according moek and Browrj1997 should behave in a strain softening way.
Further, the rock mass is assumed to have a specific weiglaf, 20kN/m3. Using the equations in
chapter 3 the corresponding Mohr-Coulomb parameters can be seen in 8ablerhere the general
approach of equatior8(15 has been applied.

Parametern ¢ C
Peak 3207 | 421 MPa
Residual | 17.93 | 1.91 MPa

Table 8.2:Mohr-Coulomb approximation of the Hoek-Brown parameters listed inetal.
The approximation utilizes equati¢8.15.

Due to the restrictions of the current model, where only the cohesion ekaluging plastic loading, the
model is unable to account for the change in friction angle. Because pthbipeak friction angle is
used for the residual strength as well. In order to fully implement the strétiersiog behavior, it is also
necessary to know how fast the strength drops. l.e. arelationshipdretheeaccumulated plastic strain
and the cohesion. In the current example, this is modeled using threesagweents, as illustrated on
Figure8.2 The first segment consists of a linear softening curve with a constam@ efdd, which is
defined between the two poin{®, cpea) and the intermediate poitﬁ‘éfm,cmt). The second segment,
defined between the intermediate poi&f,,,cint) and the residual poing;.s Cres), is modeled as a
Bézier curve, with an initial slope dfi, and an end slope of 0. The last segment defines a perfectly
plastic behavior, once the residual strength is reached. This is donedsfingpa line segment with a
slope of 0, which extents to infinity. The intermediate cohesigy, is taken as

Cint = CRes+ 0.3+ (Cpeak— CRes) (8.1)

The intermediate and residual accumulated plastic strafysandzh., are varied, to study the influ-
ence on the results. For simplicity and numerical stability, associated plastickgusnad. The final
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Figure 8.2:Sketch of theP - c-curve used in the example.

parameters used in the model are listed in T&xBe Further, two perfectly plastic cases are computed.
Namely one where the strength is equal to the peak strength, and onetlhsteength is equal to the
residual strength.

Parameter ¢ CPeak Cint CRes Y
Value 3207 | 421 MPa| 260 MPa| 1.91 MPa| 3207

Table 8.3:Material parameters used in the model.

8.3 Mesh Coarseness

In order to estimate the needed coarseness of the mesh, a convengalysesdas been performed on

a model, where], andzh . have been set to 1 and 2 respectively. The mesh has then been génerate
with increasingly more degrees of freedom in order to estimate the influentteegeak and residual
bearing capacity of the model. Based on this, a mesh coarseness is,chibeesn further refinement
only results in minor changes of the bearing capacity. As can be seerFigpre8.3, the peak and
residual bearing capacity is dependent upon the coarseness of the kh@sever, at around 10000
degrees of freedom, the bearing capacities start to stabilize, and only diffesences in the bearing
capacities can be observed. Based on this, the model is meshed with 382htslegiving a total of
15692 degrees of freedom and 22950 gauss points. The mesh is ishieigore8.4.

8.4 Results

The load displacement curve for fivefidirent scenarios along with theif — c-curves are shown in
Figure8.5and FigureB.6 respectively. The curves named “Perfectly Plastic Peak Strength”Rerd “



46 Chapter 8. Computational Example: Strip Footing
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Figure 8.3:Convergence analysis of the peak and residual bearing capacity afdelnwith
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Figure 8.4:Mesh used in the current model, consisting of 3825 elements, 15682cdeaqf
freedom and 22950 gauss points.

fectly Plastic Residual Strength” are the perfectly plastic models using thegpebresidual strength
respectively, which give a load carrying capacity of 209V, and 1416 N/,
To verify these results, they are compared to the analytical solution givéretzaghi’s bearing
capacity formula
R= %yb2N7+quq+chc (8.2)
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whereR is the bearing capacitl,is the foundation widthg is the overburden pressure aNg, Ny and
N¢ are the dimensionless bearing capacity factors giverOwggen et al2007]

Ng = exp(rtan(e)) %:Ei; (8.3)

N, = % ((Ng-1)cos(¢))¥? (8.4)
Ng-1

" tan(y) (55

Using the values of Tablg.3together with equatior8(2), results in a peak and residual load carrying
capacity of 2964MN/, and 1372MN/,. However, equatiorg(2) is known to give a conservative bearing
capacity, and thus, the perfectly plastic models seems to be in tune with the aagtidions. The
load carrying capacity of these models should mark the upper and lowadlwfuthe expected load
carrying capacity of the strain softening materials.

The three other curves of FiguBe5 utilize strain softening, where the numbers indicgtgandeg,.
respectively. The figure shows, that the strain softening materials reaar the load carrying capacity

350
300F
250+
£
Z
2200t
o
k=]
a
L 150r
Q
£
-l
100+ —— Strain softening 0.10-0.20
——— Strain softening 0.15-0.30
50 Strain softening 1.00-2.00
— — — Perfectly Plastic Peak Strength
—— Perfectly Plastic Residual Strength | -
0 1 1 1 1 J
0 0.2 0.4 0.6 0.8 1.0

Displacementy [m]

Figure 8.5: Load displacement curve of strip footing. u is the vertical displacemetiieof
foundation. The numbers following the strain softening modelgfyrandeh, respectively.

of the perfectly plastic model utilizing the peak strength. On the other handdthaot approach the
load carrying capacity of the perfectly plastic model utilizing the residuahgtreeither. This seems
realistic, since some gauss points reach plasticity before others andnseakel thus should not be
able to carry the peak load. Similarly, not all gauss points reach the réstderagth in the model, and
should thus be able to carry more than the residual load.
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4.5 r

— Strain softening 0.10-0.20
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Figure 8.6:The strain softening behavior of the models shown in Fi@.be

Figure 8.7 shows the relationship between the residual accumulated plastic gifainand the
peak and residual bearing capacity of 1&atient strain softening models, as well as the peak and
residual strength of the perfectly plastic models. Together with Figuget can be seen, that smaller

300 F S T s o
-~ . o o e o} :
£ O
3 &
:? 250 O Peak bearing capacity
< x  Residual bearing capacity
g — — — Perfectly Plastic Peak Strength
o 200 r Perfectly Plastic Residual Strength
£ ‘ : -
2 ‘ ‘
150 | XXX X XX
0.0 0.5 1.0 15 2.0

=P
€Res

Figure 8.7:The peak and residual bearing capacity of 1gatent strain softening models as
a function ofeP. The bearing capacity of the perfectly plastic models is also shown.

Elpm and Eges result in a lower peak bearing capacity, as well as a more rapid dedredise load
carrying capacity towards a residual bearing capacity. The maximum &saihlg capacity of the strain
softening models is influenced by the choicelyf andeR, . The 100-2.00 model predicts a maximum
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bearing capacity of 298MN/,,, while the 015-0.30 model predicts a maximum bearing capacity of
2681 MN/.,. which is significantly less than that of the bearing capacity of the perfelztstip model
utilizing the peak strength. However, it is also almost twice the size of the lpeaaipacity of the
perfectly plastic model using the residual strength. T®12.00 model predicts a residual bearing
capacity of 152 MN/., while the 015-0.30 model predicts a residual bearing capacity of. 851/,

An improvement compared to the bearing capacity of the perfectly plasticusdgigodel of about
5-10%. Thus, using the perfectly plastic model with the peak strength results unsafe model,
while use of the residual strength results in a very conservative estimtite béaring capacity.

Further, it is noticed, that theT0- 0.20 model failed to converge, at some point just after the peak
bearing capacity was reached, see Fidife The Q15-0.30 model was the steepest model, which was
found to converge. This is troublesome if even steeper drops in the loadncacapacity is needed.
However, this might be solved by utilizing a more advanced global equilibriuatios procedure than
the standard Newton-Raphson. For example an arc-length method.

Figure8.8 shows a plot of the cohesion throughout the soil of tH&0 0.30 model, which shows,
that the material located along the slip lines have reached the residuakistréhgp is consistent with
the fact, that these zones experience the most plastic straining. Theaudsele these slip lines are
almost un&ected by the softening behavior.

c[MPa]

0 5 10 15 20 25 30

Figure 8.8:Plot of the cohesion throughout the soil at the end of the 0.15-0.30 model.

Figure 8.9 show a comparison of the accumulated plastic strains around the ruptweoizdme
model. The topmost graph shows the perfectly plastic model utilizing the pesaiggtr and the bot-
tommost graph shows the perfectly plastic model utilizing the residual stredgth. model in the
middle is the strain softeningIb-0.30 model. From the figure, it is seen, that the accumulated plastic
strains of the softening model are more concentrated around the slip limggmoed to the perfectly
plastic models. This is probably due to the fact, that once plastic strains yaspled in a point, the
point weakens and thus further plasticity is more likely in this point, than in thenbeiing material
which surrounds it.
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Figure 8.9:Plot of the accumulated plastic strain throughout the soil of the perfectiytiplas
peak strength model, strain softening 0.15-0.30 model and perfectly plasidual strength

model.



CHAPTER 9

Computational Example: Tunnel
Excavation

To further test the approach, a tunnel excavation is carried out usiagisymmetric model, where the
purpose is to estimate the tunnel wall displacement as well as the plastic zone.

9.1 The model

The idea behind the model is to simulate a tunnel excavation in an infinite rock iffsisss done by
reducing the pressur@, on the tunnel wall, from the in situ stress statgs, to zero, see Figur8.1,
and record the ensuing tunnel wall displacement. The radius of the tisnggen byrr, which has
been set to 5 m. The tunnel axis is aligned in the z-direction.

Figure 9.1:Concept of the tunnel model.

The axisymmetric properties of the problem is utilized, and a 1 m section of tineltimthe z-
direction is modeled, see Figuge2 Further, the infinite rock mass is bounded by a domain with a
radius ofrgc, which has been set to 50 m in the example at hand. As with the exangiejter 8the
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Figure 9.2:Sketch of the tunnel model.

mesh is generated with 2-dimensional 6-node triangular linear strain elements.

9.2 Material Parameters

The model tries to simulate an excavation in rock material with the Hoek-Brovanyers listed in
Table9.1

State GSl | m Ui D a my S E % 0%
Peak 30 | 8 | 20MPa| 0 | 052 | 0.66 | 0.0004 | 1.4GPa| 0.3 | 26 kN/ms
Residual| 15 | 8 | 20MPa| 05 | 0.56 | 0.14 0 14GPal 0.3 | 26 kN/mz

Table 9.1: Hoek-Brown material parameters of the peak and residual strengtheofock
material at hand.

The parameters of the peak strength are taken 8bararf200§, which describe the rock material
as very poor. According tbloek and Browr{1997, very poor rock material tends to behave perfectly
plastic. However, in the current example, it is assumed that the materialsdiieng plastic straining.
Thus the residual strength is found in much the same way as it was datajmer 8 Namely by
reducing the GSl-value to half of the original value and setting the distaestactor to (6.

Assuming the excavation takes place 100 m below the surface and usingptuxienations of
chapter 3long with the estimate af; maxbased on deep tunnels, equatiBril@, the Mohr-Coulomb
parameters listed in Tab#2 are obtained.
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Parametern ¢ C
Peak 3374 | 256 kPa
Residual | 19.28° | 103 kPa

Table 9.2:Mohr-Coulomb approximation of the Hoek-Brown parameters listed ineTali.
The approximation utilizes equati@8.12.

Similarly to the example of the strip footing, the friction angle of the model is takeretgien
by the peak friction angle, and the softening behavior is modeled accdalifigure8.2 and equation
(8.1). Thus, the final material parameters are given in Takde

Parameter ¢ CPeak Cint CRes 4
Value 3374 | 256 kPa| 149 kPa| 103 kPa| 33.74°

Table 9.3:Material parameters used in the model.

The in situ stress state of the rock mags;, is assumed to be a hydrostatic pressure, given by the
depth, and the unit weight of the rock

Pinf = 26"Y/5-100 m= 2.6 MPa (9.1)

The dfects of gravity are neglected in the model. Similarly to the example of the strip fodkiag
model is tried with diferent values of the intermediate and residual accumulated plastic sffaamd

Egeg as well as two perfectly plastic cases with the peak and residual strexsgtbctively.

9.3 Mesh Coarseness

Similar to the example athapter 8a convergence analysis has been made in order to find an appropri-
ate mesh coarseness. This has been done with a model #}er€.025 andsp, = 0.050. The tunnel

wall displacement as a function of the number of degrees of freedonoignsin Figure9.3. From this
figure it is seen, that only minor changes in the wall displacement is foucel the number of degrees

of freedom is above 10000. Based on this, the model is meshed using8@énts, resulting in 28800

gauss points and 19602 degrees of freedom. The mesh can be seam@dkg

9.4 Results

The load displacement curve of the tunnel wall of eight models is shown urd8y5 together with

a close up in Figur®.6. The strain softening behavior of the models can be seen on F&jdre
From the figures, it is seen that the perfectly plastic model using the pesig#irgives a tunnel wall
displacement of 30 mm, while the model using the residual strength giveslaadisgent of 126 mm.
Using the analytical solution for the perfectly plastic case present&himanza-Torre$2003, the
tunnel wall displacement is found to be.80nm and 130 mm respectively, which suggests that the
finite element model is sound. All of the strain softening models predict wallatisments in between
the two perfectly plastic models, which is what was expected. Further, thatef the plastic zone,
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Figure 9.3:Displacement of the tunnel wall as a function of the number of degrde=eafom
of a model witte], = 0.025andgh, .= 0.050.
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Figure 9.4:Mesh used in the current model, consisting of 4800 elements, 19662danf
freedom and 28800 gauss points.

sketched in Figur®.8, ranges from 4.2 m for the peak strength model t@%n for the residual strength
model as shown in Figui@9. The analytical solution d€arranza-Torre2003 results in plastic zones
of 4.11 m and 572 m for the perfectly plastic peak and residual models.
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Figure 9.5: Displacement of the tunnel wall. The numbers following the strain softening
models ares]),, andzh, respectively.

0.10
< —— Strain softening 0.005-0.010
= 0.08 Strain softening 0.010-0.020
= ——— Strain softening 0.025-0.050
g —— Strain softening 0.050-0.100
< 0.06 Strain softening 0.100-0.200
< Strain softening 1.000-2.000
=i — — — Perfectly Plastic Peak Strength ‘
5 0.04 —— Perfectly Plastic Residual Strength
P ‘
5
# 0.02
o
o

0.00 1 1 1 1 1 J

0.02 0.04 0.06 0.08 0.10 0.12 0.14

Wall displacement im-direction[m]

Figure 9.6:Close up of Figureé.5.
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Figure 9.7:The strain softening behavior of the models.

Figure 9.8:lllustration of the extent of the plastic zone.
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CHAPTER 1 O

Conclusion

The successful derivation and implementation of the strain hardening-®ahiomb criterion de-
scribed inchapter 7shows, that it is possible to make use of return mapping in principal strass sp
for materials, which exhibit hardenifgpftening properties.

The proof-of-concept examples of the strip footing and tunnel exicavahow the expected results,
where the strain softening materials result in solutions somewhere in betvestsvotbxtremities of the
perfectly plastic models using the peak and residuals strengths. Thugdeaing properties allow for
a more detailed description of the problem at hand, which should result in@sate solution, than a
model utilizing perfect plasticity along with the peak strength, as well as lesseceative solution than
a model utilizing perfect plasticity along with the residual strength.

Since the implemented model can handle any arbitrary development of thearotleeng plastic
straining, it should be applicable to a great deal of problems. However gaident from the examples,
approximations to the Hoek-Brown parameters with a Mohr-Coulomb failuterion suggest, that the
friction and dilation angles change during plastic straining as well. Somethihthéhaurrent model is
unable to account for.

To further test the use of hardening properties along with principalsstygedating schemes, a more
advanced constitutive model, utilizing several hardening and state paramet#d be developed. For
example a Mohr-Coulomb model, where the friction and dilation angles arendepeof the state
parameters of the material. Moreover, the expressions for the congietesiitutive matrix of two and
three active yield surfaces, equaticngd and 6.59, together with return mapping in principal stress
space, allows for a fairly straight forward way of developing a haraghloek-Brown model, which
eliminate the need for the Mohr-Coulomb approximation of hardening rock rakater

Next step would be to implement these models into commercial finite element prognaser to
be truly useful for the professional engineering community, which reqase of use and accessibility.
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