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Preface

This thesis is written by group DMS4 80a on the fourth semester of the Master’s programme
Design of Mechanical Systems at Aalborg University, spring 2012. The title of the project
is:

Reproducing the response of a structure by optimizing the design of a test rig

The project is conducted in collaboration with FS Dynamics AB, who provided a model of
the wind turbine used in this project.

The project group would like to thank Professor Erik Lund, who supervised the project,
for competent guidance and always questioning the findings of the group. His guidance has
given birth to many discussions, thus increasing the groups knowledge and helped keeping
the project on track.

Furthermore Hans Buus from FS Dynamics is thanked for help with the project proposal,
and assistance with specific questions concerning the provided wind turbine model.

The notation used for vectors, matrices and units are as follows:

Vectors:
{

φ

}
Matrices:

[
K
]

Units: [kg]

A general list of nomenclature is found on page IX at the back. Further notation and nomen-
clature is presented where relevant.

In the back of the report a CD is located including:

• A PDF version of the report

• The provided model from FS Dynamics AB

• The 2D version of the code

• The 3D version of the code
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Abstrakt

Denne master afhandling omhandler udviklingen af en kode, som på baggrund af et ønsket
respons kan optimere en struktur således det ønskede respons er reproduceret.

Projektforslaget er fremsat i samarbejde med FS Dynamics. Ønsket er at udvikle en
teststand, som kan reproducere responset fra et vindmølle tårn. Teststanden skal benyttes
til fuldskala test af vindmølle naceller, således arbejdsbelastningerne kan genskabes af en
meget lavere struktur. Arbejdsbelastningen er defineret af et sæt af egenfrekvenser, egensv-
ingningsformer samt en tøjningstilstand i nacellen.

Fokus i rapporten er på udvikling af en metode, som ved hjælp af topologioptimering
kan matche flere egenfrekvenser og tilhørende svingningsformer til et givent sæt af ønskede
frekvenser og svingningsformer. Tøjningstilstanden er ikke inkluderet i projektet.

Før koden præsenteres er den grundlæggende teori beskrives. De benyttede stivheds- og
masseinterpoleringsmetoder er først præsenteret sammen med en beskrivelse af hvorledes
fænomenet “lokale svingningsformer ” fjernes. Derefter er de styrende ligninger for frie
svingninger præsenteret og på baggrund af disse er følsomhederne for simple egenfrekvenser
udledt.

For at kunne genfinde egensvingningsformerne under optimering af topologien benyttes
“Modal Assurance Criterion”. Dette kriterie sikrer, at de korrekte følsomheder benyttes til at
matche reference frekvenserne.

To optimeringsformuleringer er implementeret i koden. Den ene er maksimering af den
fundamentale egenfrekvens, og den anden er optimering efter referencefrekvenser. Under
optimering for reference frekvenser kan den endelige topologi indeholde elementer hvis
densitet ligger mellem nul og et (grå elementer), og er uønskede i den endelige topologi.
Derfor indføres et mål for løsningens diskretion, det vil sige hvor mange grå elementer der
er til stede i modellen, og ved at inkludere dette som en restriktion kan et design med flere
diskrete elementer opnås.

Efter den grundlæggende teori er etableret kan koden udvikles. Dette er foretaget i MAT-
LAB, hvor ANSYS kan benyttes som løser til egenværdiproblement. Både en 2D og 3D ver-
sion af koden er implementeret. Da 2D problemener er hurtigere at løse end 3D problemener
valideres implementeringen af koden i 2D, og efterfølgende løses et simpelt designproblem
ved benyttelse af 3D koden.

For at validere koden benyttes bjælkeproblemener af “akademisk natur”. Gennem disse
er indflydelsen af det valgte startgæt, maksimal ændring af design variable, materiale re-
striktion, materialeinterpolering samt element valg undersøgt. Slutteligt er det valideret, at
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topologier som rammer de ønskede frekvenser og svingningsformer med et lavt antal grå
elementer kan opnås.

Slutteligt er teststanden forsøgt udviklet. Dette er gjort på baggrund af en analyse af den ud-
leverede vindmølle model, hvor de ønskede egenfrekvenser samt svingningsformer er fundet.
Frekvenserne er fundet til 0.174 samt 0.263 [Hz].

Tårnet på den udleveret model udskiftes med teststandens design domæne. Gennem
analyser ses det, at med en elementstørrelse på 100 [mm] er det ikke muligt at komme under
5.5 og 6.5 [Hz] i referencefrekvenser.

Selvom det ikke er muligt at opnå de lave frekvenser er det stadig vist at det udviklede
program kan frembringe designs der har et ønsket respons, hvor både egenfrekvenser og
svingningsformer er specificeret fra start.
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CHAPTER 1

Introduction

The process of designing structures has been developed over centuries. Inspired by nature
(and e.g. economical/resource aspects) a continuous search for improved (optimized) struc-
tures has always been carried out. Based on engineering experience and “trial and error”
structural optimization started out as an “art”, from the analytical work by Michell, Prager
and Rozvany structural optimization has developed into continuum material density meth-
ods by e.g. Bendsøe and Kikuchi, where the SIMP type schemes are dominating the field
today, see references in Bendsøe and Sigmund [2003]. Present the finite element method is
used in conjunction with optimization providing new possibilities for the use of optimization.

Structural optimization has developed into a wide field of methods, techniques and commer-
cial optimization programs such as TOSCA and OptiStruct are available. Now optimization
is widely used as a design tool in the industry. Due to a strong competition the need for faster
development and optimized (improved) products is greater than ever. Optimization tools are
being developed for a vast type of problems in all engineering fields, and the ability to pro-
duce products with specific properties are increasing. Now demands for tools which can
produce designs with specific eigenfrequencies, mode shapes and strain states are requested.

The proposal for the thesis is made in collaboration with the Danish division of the Swedish
consultancy company FS Dynamics AB. On basis of this collaboration one application of the
previously described tool is found. It is desired to conduct full scale testing of a wind turbine
nacelle without mounting it on the tower. Advantages are, that it is easier to mount and test
the nacelle in e.g. four meters height compared to the 90 [m] of the tower. Furthermore this
increases the accessibility when testing the nacelle. From this the objective is to design a
test rig which provide the possibility for full scale fatigue testing of a wind turbine nacelle.
Mounted on the test rig, the nacelle should be able to experience real-life in service loads.

From FS Dynamics the in service loads are defined by a set of eigenfrequencies, mode
shapes and a strain state in the nacelle. The frequencies are given as a set of distinct (simple)
eigenfrequencies.

The test rig is limited to a much smaller volume than the tower, see Figure 1.1 and 1.2.
FS Dynamics has specified the maximum dimensions for the test rig, which are (height ×
width × depth): 4000 × 5000 × 6500 [mm]. The purpose of the test rig is to provide the
possibility of testing the nacelle without mounting it on a tower.
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1 Introduction

Figure 1.1: Top section of the provided
structure from FS Dynamics.

Figure 1.2: The nacelle on top of the
maximum permitted design space.

To the authors knowledge it is possible to specify a upper and lower boundary for the fre-
quencies and track a mode, in commercial optimization software such as TOSCA. However it
is desired to obtain frequencies as close to the desired frequencies as possible while tracking
the mode shapes and being able to associate a specific mode to a specific frequency. Since it
is unclear whether this is possible or convenient in the commercial software it is decided to
develop a specialized program which is capable of handling the problem at hand.

During the development of the code it is seen, that the task of matching eigenfrequencies
and mode shapes is not trivial and it is chosen to focus on this area, thus neglecting the strain
state in the nacelle due to lack of time in the project period. On basis of this the following
project framework is established.

1.1 Project Framework

On basis on the above problem the framework for the project is established. The framework
will be used to outline and restrict the approach taken to develop the optimization tool in
general terms. The first step is to present the problem statement for the project, which is
given as:

Design a code which can match a specified number of eigenvalues and -modes
to a set of predetermined eigenvalues and -modes.
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1 Introduction

This problem statement gives a broad window for approaches which can be used to solve
this problem. The problem statement set up three main areas of interest:

1. Design an eigenfrequency optimization code.

2. Track the eigenmodes as the eigenfrequencies change throughout the optimization.

3. Implement an algorithm which makes the code able to match a given number of eigen-
values to a desired value with the desired eigenmodes.

The problem statement gives a broad definition of the area of interest. It is important to
narrow this area in order to gain a more precise description of the objective for the problem,
thus clarifying the overall approach taken to solve the problem at hand.

For structural optimization three different categories exist i.e. sizing, shape and topology
optimization [Bendsøe and Sigmund, 2003]. These are depicted in Figure 1.3. From the
figure it is seen, that a change in topology is only possible for topology and sizing optimiza-
tion (if a sizing value of zero is permitted). For shape optimization a change in topology
is not possible, thus one must have decided on the topology for the structure prior to the
optimization, and on basis of a given topology find the shape which gives the optimum.

Figure 1.3: Illustration of the different categories of structural optimization. Top sizing
optimization. Middle shape optimization. Bottom topology optimization

In sizing optimization all the possible connections for the domain must be predetermined
and the set of sizing (e.g. cross sectional area) constants which optimizes the structure is
found. Topology optimization is a material distribution method, where the objective is to
find the optimum lay-out of material in the design domain. This includes information re-

3



1 Introduction

garding the topology, shape and sizing of the structure making topology optimization the
most general of the three since it is only bonded by the admissible design domain.

On basis of this topology optimization is chosen as the structural optimization category.
For topology optimization the only necessary quantities are the applied loads, possible sup-
ports conditions and prespecified void or material domains [Bendsøe and Sigmund, 2003].
This gives the opportunity to have designs where only the most necessary parts are specified,
thus keeping the largest design space.

From the above discussion a further reduction of the problem is conducted, by limiting to
topology optimization, on basis of this the research objective is formulated:

Match a specified number of distinct (simple) eigenfrequencies and -modes to a
desired set of frequencies and modes by making a topology optimization code.

The focus of this project is to develop a program, which is able to fulfill the research ob-
jective. Whereas the problem proposed by FS Dynamics act as a problem from the industry
which the developed program can be used to solve.

A code is developed in MATLAB, which will have the ability to interact with the com-
mercial finite element program ANSYS in order to have a more versatile solver, and have the
ability to model more complex structures. The optimization is conducted in MATLAB with
initial analyzes in 2D before 3D analyzes are initiated. For simple 2D problems MATLAB
is used as a solver to validate the code.

As implied the combination of MATLAB and ANSYS will use a finite element (FE) dis-
cretization. This approach of discretizing the design domain into finite elements is typically
used in conjunction with topology optimization, since a continuum approach will be difficult
to formulate in a general manner. When using a discrete representation of the design domain,
a black-white raster representation of the design domain defining the optimal topology by the
finite element representation is sought [Bendsøe and Sigmund, 2003]. This means, that the
optimal solution for a given problem is limited to the quality of the discretization, and a finer
discretization gives the possibility for a better representation of the design domain, thus a
solution closer to the continuum solution is found.

4



1 Introduction

1.2 Organization of Thesis

The thesis is organized as follows: Chapter 2 gives a summary of the theory used to design
the test rig. In chapter 3 a presentation of the developed code is given. This chapter gives a
qualitative description of the codes to provide an overview of the code in order to ease the
understanding of the choices made during the implementation.

Chapter 4 provides a deeper description of the codes where an investigation of the differ-
ent parts and a verification of these are conducted. This will mainly be conducted in the 2D
code, since 3D is a simple extension of this, and by limiting to a 2D verification the models
are kept much smaller, thus they are faster to calculate.

In chapter 5 an example of application of the code is given. Here the topology for a test
rig for a wind turbine nacelle is found. The volume of the test rig is limited to be much
smaller than a wind turbine tower and a design based on the developed code is found. This
design will be conducted in 3D.

Lastly in chapter 6 the findings are summed up.
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CHAPTER 2

Definition of the Mathematical Problem

In this chapter the theory needed to solve the optimization problem is established. The
mathematics described in this chapter provides the body of the developed code. It is chosen
to describe the steps taken in stead of mathematical derivations, since it provides a good
overview of the theory.

2.1 Topology Optimization

The problem is solved using topology optimization. This is a material distribution method
where the optimum topology is sought. The "lay-out" of the structure includes informa-
tion on the topology, shape and sizing of the structure. Topology optimization allows for
addressing all three problems simultaneously, as described in Bendsøe and Sigmund [2003].

Most problems in topology design are not convex. Furthermore multiple optima exist for
many problems, meaning the there exist no unique solution to the problem. The final topol-
ogy may change depending on the starting guess and the configuration of the optimization
algorithm [Bendsøe and Sigmund, 2003].

One simple method of demonstrating this is by designing a rod in tension. It is known
that the maximum load capability of the rod is defined by the cross sectional area. This
means, that one can use a solid rod, a tube, an I-profile etc. and as long as the cross sectional
area is the same then it is the optimum solution to the problem, thus providing in principle
an infinite number of optima. This property of the optimization will be shown for the cur-
rent problem in chapter 4. When targeting a set of specified eigenvalues local minima can
be found as the solution. However, this is not a problem, since a design which fulfills the
requirements is desired, and not necessary the exact global optimum.

The final topology should contain a 0(void)-1(material) design which is a discrete valued
(or “integer”) problem. The discrete valued problem is not differentiable, therefore the opti-
mization formulation is relaxed by creating continuous variables often referred to as densi-
ties, xi. Since a finite element representation of the geometry these densities are the element
densities.In order to obtain a discrete solution the most commonly used approach is to pe-
nalize the mass and stiffness such that the element densities steer towards either 0 or 1, thus
avoiding intermediate densities.

In order to make it advantageous for the element to obtain either a zero or one density an
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2 Definition of the Mathematical Problem

interpolation scheme favoring 0 and 1 densities must be chosen. For the stiffness matrix this
is done by penalizing the Youngs modulus such the stiffness is low compared to the density of
the element. One approach is the SIMP (Solid Isotropic Material with Penalization) stiffness
interpolation described in [Bendsøe and Sigmund, 2003].

E(x) = xpE0, p > 1, 0 < xmin ≤ x≤ 1 (2.1)

Here x is the density of the element, p is the penalization factor and E0 is the Youngs mo-
dulus for the solid isotropic material. Eventhough a 0-1 design is desired a zero density in
equation (2.1) will result in computational difficulties due to the stiffness matrix becomes
singular , thus a minimum density, xmin, is specified to overcome this problem.The SIMP
interpolation is illustrated on Figure 2.1 for various penalties. From Bendsøe and Sigmund
[2003] it is seen, that in order to have a good 0-1 design a sufficiently high penalty fac-
tor must be chosen. Andreassen et al. [2011] states, that a penalty factor of 3 typically is
selected.

An other stiffness interpolation is the RAMP (Rational Approximation of Material Prop-
erties) given by [Rietz, 2001] and [Stolpe and Svanberg, 2001]:

E(x) =
x

1+q(1− x)
E0 (2.2)

It is seen that the stiffness is described as a term varying with the density x, multiplied with

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x (Density)

E
(x

) 
(S

tif
fn

es
s)

SIMP and RAMP

 

 
SIMP    p = 1
SIMP    p = 3
SIMP    p = 6
RAMP  q = 0
RAMP  q = 4
RAMP  q = 8

Figure 2.1: SIMP and RAMP stiffness interpolations for various penalties.

the Youngs modulus for full material. The RAMP interpolation is seen to have a nonzero
gradient for x approaching zero as illustrated on Figure 2.1. The advantage of this will be
shown in the following for eigenvalue problems.
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2 Definition of the Mathematical Problem

Since a FE based approach is used the interpolation scheme must be incorporated into the
stiffness and mass matrix. As seen in equation (2.1) and (2.2) it is possible to extract the pe-
nalization function from the element matrices. The element stiffness matrix can be calculated
as: [

ke

]
= E(x)

[
k0

e

]
(2.3)[

k0
e

]
is the element stiffness matrix with a unit Youngs modulus. A similar approach is taken

for the mass matrix: [
me

]
=W (x)

[
m0

e

]
(2.4)

Here W (x) is the penalization function for the mass and
[
m0

e

]
is the mass matrix obtained

using a unit value for mass density ρ. Thus it is also possible to extract the penalty function
for the mass matrix. Choosing the simplest interpolation function i.e. W (x) = xρ results in
problems when using the SIMP material function. With inspiration of Rayleigh’s coefficient
a measure of the local (element) frequency is estimated. Hansen [2005] defines a measure of
the inverse Rayleigh coefficient as:

Ω =
W (x)
E(x)

Inserting into the equation gives:

Ω(x) =
W (x)
E(x)

=
xρ

xpE0
=

1
xp−1

ρ

E0
, p > 1 (2.5)

which clearly goes towards infinity for x approaching zero as illustrated on Figure 2.2. This
introduce a phenomena in vibration problems known as local modes or "artificial modes" in
low density regions. If the RAMP interpolation is used it is seen, that the value is limited to
q+1 times the material properties, where q is the penalty, see equation (2.6). Thus the local
modes are avoided.

Ω =
W (x)
E(x)

=
xρ

x
1+q(1−x)E0

= (q+1−qx)
ρ

E0
, q > 1 (2.6)

In order to avoid the localized modes, Ω must be bounded (or zero) when x approaches
zero. This gives the low density elements a finite (infinite when Ω = 0) frequency which is
higher than the global, thus avoiding localized modes. For the SIMP interpolation this can
be accomplished using the mass interpolation schemes from [Du and Olhoff, 2007]. In the
Olhoff-Du interpolation x > 0.1 is interpolated linearly and the following interpolations are

9



2 Definition of the Mathematical Problem
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Figure 2.2: Inverse Rayleigh’s coefficient with linear mass interpolation ans SIMP and
RAMP stiffness interpolations for various penalties ane ρ

E0
= 1.

used for x≤ 0.1.

W (x) = x6
ρ Olhoff-Du(a) (2.7)

W (x) = 105x6
ρ Olhoff-Du(b) (2.8)

W (x) = (6 ·105x6−5 ·106x7)ρ Olhoff-Du(c) (2.9)

It is seen on Figure 2.3, that Olhoff-Du(a) is discontinuous at x = 0.1, whereas Olhoff-Du(b)
and Olhoff-Du(c) are C0 and C1 continuous, respectively. The effects of this are investi-
gated in section 4.7. Comparing to equation (2.5) it is seen, that when using these mass
interpolations Ω→ 0 as x→ 0, thereby avoiding the localized modes.
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Figure 2.3: The Olhoff-Du mass inter-
polations from equation (2.7) to (2.9).
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Figure 2.4: Inverse Rayleigh’s coefficient
with the Olhoff-Du(c) mass interpolation,
using SIMP and RAMP stiffness interpo-
lation for various penalties and ρ

E0
= 1.

In Figure 2.4 a plot of the inverse Rayleigh coefficient when using Olhoff-Du(c) as mass
interpolation and either SIMP or RAMP as stiffness interpolation for varying penalization
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2 Definition of the Mathematical Problem

factors. Raising the penalty factor yields a steeper gradient in both high and low density
areas. Furthermore a kink is seen at x = 0.1 which is due to the mass formulation changes at
that density.

It is also seen, that Ω for the SIMP interpolation generally are higher than for RAMP,
and attains a high value around 0.1 density. A too high penalty factor for SIMP stiffness
interpolation local modes will occur, which is as expected, since both the stiffness and mass
interpolations are power functions, thus the function with the highest power defines whether
or not local modes occur, and it is seen, that the lowest power in the mass interpolation must
be higher than the power for the stiffness interpolation.

Localized modes can also be present for densities around x = 0.1 when using the Olhoff-
Du interpolations even if the penalty for SIMP stiffness interpolation is lower than 6. This
can be seen in Figure 2.4 where Ω attains a high in this area, e.g. if p = 3 then Ω = 100 ρ

E0
,

which may cause a localized mode. During the development and testing of the code it is
observed, that the phenomena of localized modes is more complex than described in this
section. This is further discussed in section 4.7.

2.2 Eigenvalue Problem

In chapter 1 the problem is defined as a vibrational problem. The governing equation for the
problem is given as: [

M
]{

D̈
}
+
[
K
]{

D
}
=
{

0
}

(2.10)

Here it is assumed, that the structure is undamped and under free vibrations. The solution
to equation (2.10) has the form {D} = {φ}sin(ωt). Inserting this into equation (2.10) and
rearranging the state equation for the problem is found.[

K
]{

φ

}
= λ

[
M
]{

φ

}
(2.11)

Here λ=ω2 is the eigenvalue. Together with the corresponding eigenvector {φ} an eigenpair
is formed. [K] and [M] are the global stiffness and mass matrix respectively, which are
symmetric and positive definite [Cook et al., 2002]. This ensures that the eigenvalues will
be positive thus no imaginary terms are present for the frequencies [Zienkiewicz and Taylor,
2005]. Symmetry will also be used in section 2.2.1 Equation (2.11) can be reshaped into the
eigenvalue problem given as [Rao, 2004]:([

K
]
−λ j

[
M
]){

φ

}
j
=
{

0
}
, j = 1, . . . ,N (2.12)

11
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Here N is the number of eigenpairs extracted. Since a non trivial solution is desired the
determinant of the coefficient matrix, ([K]−λ[M]), must be zero. This gives a polynomial
in λ where the eigenvalues can be obtained. For continuum structures an infinite number of
eigenpairs exist, however for FE problems one eigenpair exist for each degree of freedom,
thus the number of eigenpairs is large. Since only the N lowest eigenpairs are needed it is
computationally inefficient to calculate all, thus solution algorithms which only extract the
needed eigenvalues are used to make the algorithm computational efficient. Furthermore the
eigenvalues are ordered by magnitude as:

0 < λ1 ≤ λ2 ≤ . . .≤ λ j ≤ . . .≤ λN

In the following it is assumed, that the eigenvectors {φ} are [M] orthonormalized, which
means: {

φ

}T

k

[
M
]{

φ

}
j
= δ jk, j,k = 1, . . . ,N (2.13)

Where δ is the Kronecker’s delta.

From equation (2.11) it is seen by premultiplying with {φ}T
k and using equation (2.13), that:{

φ

}T

k

[
K
]{

φ

}
j
= λ jδ jk, j,k = 1, . . . ,N (2.14)

Thus the eigenvectors {φ} are also [K] orthogonal.

2.2.1 Design Sensitivity Analysis of Simple Eigenvalues

In the following it is assumed, that only simple eigenvalues are present. This is done since
the problem proposed by FS Dynamics provides a set of distinct eigenvalues, see chapter
5, thus the necessity for taking multiple eigenvalues into account is not present making the
analysis for multiple eigenvalues is not needed during the analyzes and will be omitted.

When multiple eigenvalues are present, the problem in equation (2.12) can be solved
using any linear combination of the eigenvectors, the problem becomes nondifferentiable in
the common sense, and measures described in e.g. [Seyranian et al., 1994] and [Lund, 1994]
must be taken fore the sensitivity analysis.

Since the element densities are used as design variables the derivatives with respect to
these are needed. In order to obtain the design sensitivities equation (2.12) is differentiated

12
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with respect to the design variables xi, thus obtaining, [Lund, 1994]:

∂

[
K
]

∂xi

{
φ

}
j
+
([

K
]
−λ j

[
M
]) ∂

{
φ

}
j

∂xi
−

∂λ j

∂xi

[
M
]
+λ j

∂

[
M
]

∂xi

{φ

}
j
=
{

0
}

(2.15)

Here j = 1, . . . ,N and i = 1, . . . ,NE. NE is the number of elements (design variables) in the
model. Premultiplying equation (2.15) by {φ}T

j and rearranging yields:

∂λ j

∂xi

{
φ

}T

j

[
M
]{

φ

}
j
=
{

φ

}T

j

([
K
]
−λ j

[
M
]) ∂

{
φ

}
j

∂xi

+
{

φ

}T

j

∂

[
K
]

∂xi
−λ j

∂

[
M
]

∂xi

{φ

}
j

(2.16)

From equation (2.13) {φ}T
j [M]{φ} j = 1. Since [M] and [K] are symmetric it is seen from

equation (2.12) that the first part of the right hand side equals zero leaving.

∂λ j

∂xi
=
{

φ

}T

j

∂

[
K
]

∂xi
−λ j

∂

[
M
]

∂xi

{φ

}
j

(2.17)

From equation (2.17) the sensitivities are found. These equations can be further reduced
using equation (2.3) and (2.4). Based on these equations it is seen, that no coupling between
the different densities is present, thus equation (2.17) can be rewritten to:

∂λ j

∂xi
=
{

φ

}T

ji

∂

[
ke

]
i

∂xi
−λ j

∂

[
me

]
i

∂xi

{φ

}
ji

(2.18)

Here
{

φ

}
ji

is the part of eigenvector j whose entries match element i. This reduces the

system of equations substantially since all the sensitivities can be calculated on element
basis.

2.2.2 Design Sensitivity Analysis Using ANSYS

When using a commercial finite element package like ANSYS it is not possible to extract
the sensitivities of the stiffness and mass matrices directly. One method is to use the overall
finite difference (OFD) where the design is perturbed in order to find the sensitivities. This

13
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method is here shown as a first order forward difference:

∂ f
∂xi
≈ f (x1, . . . ,xi +∆x, . . . ,xn)− f (x1, . . . ,xi, . . . ,xn)

∆x
(2.19)

As it can be seen one function evaluation is needed for each design variable, thus this method
is highly inefficient. A more efficient method can be found by examining equations (2.3),
(2.4) and (2.18). By first looking at the stiffness term, it is seen, that the sensitivity is given
as:

∂

[
ke

]
∂x

= E ′(x)
[
k0

e

]
(2.20)

Here E ′(x) = dE(x)
dx . Dividing and multiplying equation (2.20) by E(x) the following equa-

tion for the sensitivity is obtained:

∂

[
ke

]
∂x

=
E ′(x)
E(x)

E(x)
[
k0

e

]
=

E ′(x)
E(x)

[
ke

]
(2.21)

From equation (2.21) it is seen, that if the element stiffness matrices are extracted, then the
sensitivities can be calculated. However the sensitivities can be found based on the energies,

since
{

φ

}T

ji

[
ke

]
i

{
φ

}
ji
= 2Ue,i j where Ue,i j is the element strain energy in element i due to

a displacement field {φ} j, it is seen, that the sensitivities of the stiffness matrix can be found
from the strain energies of the model as:

{
φ

}T

ji

∂

[
ke

]
i

∂xi

{
φ

}
ji
= 2

E ′(xi)

E(xi)
Ue,i j (2.22)

Similarly for the mass term it is seen, that it can be expressed based on the element kinetic
energy, Te,i j:

1
2

λ j

{
φ

}T

ji

∂

[
me

]
i

∂xi

{
φ

}
ji
=

W ′(xi)

W (xi)
Te,i j (2.23)

Here W ′(xi) =
dW (xi)

dxi
. This result is obtained, since the element kinetic energy for mode{

φ

}
ji

is given as:

Te,i j =
1
2

{
φ̇

}T

ji

[
me

]
i

{
φ̇

}
ji{

φ̇

}
ji

can be related to
{

φ

}
ji

by the following equation:

{
φ̇

}
ji
= ω j

{
φ

}
ji
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Thus it can be seen, that:

Te,i j =
1
2

{
φ̇

}T

ji

[
me

]
i

{
φ̇

}
ji
=

1
2

ω
2
j

{
φ

}T

ji

[
me

]
i

{
φ

}
ji
=

1
2

λ j

{
φ

}T

ji

[
me

]
i

{
φ

}
ji

This means, that the sensitivities in equation (2.18) can be expressed using equations (2.22)
and (2.23) as [Kim and Kim, 2000]:

∂λ j

∂xi
= 2

[
E ′(xi)

E(xi)
Ue,i j−

W ′(xi)

W (xi)
Te,i j

]
(2.24)

This formulation for the sensitivity has the advantage, that the energies can be extracted from
the finite element code. Thus the sensitivities can be found from two different equations i.e.
(2.18) when the sensitivities of the stiffness and mass matrix are known, and (2.24) in terms
of kinetic and strain energies. When validating the code it is possible to check whether or not
the sensitivities are correct since the results from the OFD and the design sensitivity analysis
(DSA), equations (2.18) and (2.24), must be the same.

2.3 Mode Tracking

During the optimization the topology changes from the initial to the final design. In addition
the sequence of the eigenmodes can change e.g. the first eigenmode may switch from a bend-
ing to a breathing mode. Since specific eigenmodes can be desired for a given eigenfrequency
a method to track the different eigenmodes is needed. [Kim and Kim, 2000] recommends
using the Modal Assurance Criterion (MAC) to track the mode shapes as the topology of
the structure changes. The MAC was originally developed to measure the difference be-
tween modes from measurements and numerical calculations. It can also be used to track the
modes when the topology changes. The MAC value is calculated as in equation (2.25).

MAC
({

φ

}
j
,
{

φR

}
k

)
=

∣∣∣∣{φ

}T

j

{
φR

}
k

∣∣∣∣2({
φ

}T

j

{
φ

}
j

)({
φR

}T

k

{
φR

}
k

)100%
j = 1, . . . ,N
k = 1, . . . ,NT

(2.25)

Here NT is the number of reference modes. {φR}k is the k’th reference eigenmode. It is
seen that the MAC value gives a measure of the least squares deviation and is still a scalar
quantity if a complex mode shape is given [Ewins, 2000].

It is seen, that the MAC gives a value between 0 (an entirely different mode) and 100 (the
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same mode). Intermediate values are present as the topology changes since the overall mode
is present, but the individual elements might not have the same relative displacement.

MAC has some nice properties: (1) The criterion is calculated using only vector op-
erations, meaning that the criterion is fast to calculate, thus it is good to use in topology
optimization. (2) If the two mode shapes differ by a scalar, i.e. {φ} j = γ{φR}k, it is seen,
that MAC

(
{φ} j,{φR}k

)
= 100 as it should be since the mode shapes are perfectly correlated

[Ewins, 2000].

When optimizing the structure to match modes to specific eigenvalues the Modal Assur-
ance Criterion is used to adjust the constraint functions so the eigenvalues with the highest
MAC values are used to target the desired eigenvalues.

2.4 The Optimization Problem Formulation

Based on chapter 1 it is seen, that a problem formulation which can handle several objective
functions is needed, since several eigenpairs are extracted during the analyzes, and all of
these are needed to be taken into account. In general two different methods exist to treat
multiobjective optimization. One is scalar optimization, where the individual objective func-
tions are weighted and summed up to a single scalar value. Weighted sum and weighted
global criterion methods are examples of scalar optimization [Arora, 1999].

The other method is vector optimization where each objective function is treated indi-
vidually [Arora, 1999]. One of these methods is a weighted min-max formulation (or equiv-
alently a max-min formulation). The min-max formulation will be used to formulate the
optimization problem. The advantage of this formulation is the focus on the “worst” of the
objective functions, e.g. when maximizing the lowest eigenfrequency it is the lowest fre-
quency that is of primary interest and when targeting e.g. two eigenfrequencies the largest
deviation is of most interest.

The min-max (max-min) problem formulation focuses on the "worst" case, if e.g. the
vector of deviation is used, the optimum could include one error which is large while the rest
is small. When targeting eigenfrequencies it is still possible to add a weighting such e.g. the
lowest frequency is of highest interest.

Here the min-max problem is formulated as:

min
xi

(
max

(
w j f j(xi)

))
, j = 1, . . . ,N (2.26a)
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Subject to:

gk (xi)−gk ≤ 0 k = 1, . . . ,K (2.26b)

C (xi)−R≤ 0 (2.26c)

xi ≤ xi ≤ xi, i = 1, . . . ,NE (2.26d)

State equations (2.26e)

The different parts of equation (2.26) are defined as follows. Equation (2.26a) are the N
objective functions f j and the corresponding weightings w j, which are to be minimized
over a set of design variables xi. The gk terms in equation (2.26b) denotes global behavior
constraints such as compliance or eigenvalue constraints. In equation (2.26c) a resource con-
straint is shown. This could be, for a material distribution problem, the amount of material
present. The upper and lower bounds on the design variables are given in equation (2.26d)
and lastly the state equations describe the governing equations of the structural problem.

Taking the basis on the problems at hand, i.e. topology optimization for eigenfrequency
design, some parts can be identified. Equation (2.26a)

can be seen to be the equations containing the eigenvalues to be optimized e.g. maxi-
mizing the minimum eigenfrequency. Equation (2.26c) is the amount of material available
for the structure and equation (2.26d) is the upper and lower bonds (1 and 0) for the design
variables. Equation (2.26e) is the eigenvalue problem from equation (2.12). When targeting
eigenvalues equation (2.26b) gives the lower bound for the eigenvalues not used to target
specific values.

The convention is to solve optimization problem as minimization problems, thus the ob-
jective functions when e.g. maximizing the lowest eigenvalue has to be rewritten into a
min-max formulation. Defining an objective function which has to be maximized (Λ j) it is
seen, that it can be transformed into a minimization formulation having the same optimum
meaning:

max
(
min

(
Λ j
))

= min
(
max

(
f j
))

(2.27)

Here the equality sign means the optimization parameters has the same value at optimum.
This is achieved if for example f j = −Λ j or f j = Λ

−1
j . This gives two simple methods to

convert a max-min problem into a min-max problem as equation (2.26).
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2.4.1 The Bound Formulation

It is seen, that equation (2.26a) is not differentiable at all points, this is the case when the
objective function switches between two different functions e.g. fk and f j, j 6= k. One
method to solve this is by using the bound formulation [Olhoff, 1989]. The bound formu-
lation replaces the non differentiable objective function by an artificial objective function in
the additional variable β.

The min-max problem is interpreted as a simple min problem for the mini-
mum of a bound value, where (the measures of) the criteria are related to the
bound through constraints [Bendsøe et al., 1983].

The above quotation states that the bound formulation replaces the multiobjective function
by a single objective function and the objective functions in equation (2.26a) are treated as
constraints to the bound value.

Since linear programming will be used to solve the problem there is no reason not choosing
the simplest convex descent function Ψ(xi,β) = β, thus making the cost function differen-
tiable. The statement in equation (2.26a) is transformed into constraints as:

Ψ(xi,β) = β≥ w j f j, j = 1, . . . ,J (2.28)

This means, that equations (2.26) now consist of additional constraints, thus making the
min-max problem on the form:

min
xi,β

Ψ(xi,β) = β (2.29a)

Subject to:

w j f j(xi)−β≤ 0 j = 1, . . . ,J (2.29b)

gk (xi)−gk ≤ 0 k = 1, . . . ,K (2.29c)

C (xi)−R≤ 0 (2.29d)

xi ≤ xi ≤ xi, i = 1, . . . ,NE (2.29e)

State equations (2.29f)

It is seen, that the formulation in equation (2.29) reflects a simple minimization problem,
which reflects minimization of an upper bound β on all separate criteria f j [Bendsøe et al.,
1983]. From equations (2.29) it is seen, that in order to minimize β, then one must minimize
f j. This is due to no coupling exist between the design variables in both Ψ and f j, so the xi

values minimizing f j will also minimize Ψ.
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In order to solve different optimization problems equation (2.29b) and (2.29c) are changed
in accordance to the problem. For the two kind of problems solved the formulations are given
in the following. Maximizing the lowest eigenvalue:

f j(xi) =C−λ j (2.30)

Here C is a positive constant large enough to make f j positive. One example could be
C = 2λmax. When targeting NT specific eigenvalue the eigenvalues are sorted according to
the MAC. The NT eigenvalues with the highest values are used to target the specified value,
and is used in equation (2.31). The remaining eigenvalues are subjected to a constraint, thus
moving them away from the highest value to be targeted, the lowest value which can be
attained for these is denoted λsa f ety.

f j(xi) =
(

λ j−λ
(t)
j

)2
j = 1, . . . ,NT (2.31)

gk(xi)−gk = λsa f ety−λk k = NT , . . . ,N (2.32)

It can be seen, that both of these formulations uses a min-max problem formulation.

2.5 Filtering

When using the standard density approach to topology optimization three insufficiencies are
present. These insufficiencies are formation of checker-boards, one node hinges between
elements and mesh dependency of the results. In order to avoid these insufficiencies mesh-
independent filtering is used [Sigmund, 2007].

Two filters are implemented, these are Sigmunds sensitivity filter and a cone shaped den-
sity filter. These filters are implemented on basis of Sigmund [2001] and Andreassen et al.
[2011].

In sensitivity filtering the main idea is to base the design update on filtered sensitivities
in stead of the true sensitivities. The filtered sensitivities are given as:

∂̂λ j

∂xi
=

1
xi ∑k∈Ne Hik

∑
k∈Ne

Hikxk
∂λ j

∂xk
(2.33)

Here Ne are the elements where the center to center distance between the elements i and k,
∆(i,k), is smaller than the filter radius. Hik is a weight factor given as:

Hik = max(0,r−∆(i,k))
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r is the filter radius. Sigmund [2007] states, that the filtered sensitivities correspond to the
sensitivities of a smoothed version of the original objective function, even though the exact
work-wise of the filter is not known.

The density filter works by modifying the element densities, thus the stiffness and mass
of an element, to be a function of the densities in a neighborhood of an element. The filtered
densities are given in equation (2.34).

x̂i =
1

∑k∈Ne Hik
∑

k∈Ne

Hikxk (2.34)

The filtered densities x̂i are in Andreassen et al. [2011] defined as the physical densities
whereas xi are the mathematical densities used in the optimization. This means, that the
densities {x} looses the physical meaning, and a distinction between the design variables
{x} and the physical densities {x̂} is made.

Since the stiffness and mass matrices are functions of the physical densities the eigenval-
ues from equation (2.12) are also a function of {x̂}. Since a separation between the design
variables {x} and physical densities are made the sensitivities are not found directly. Using
the chain rule the sensitivities of a function ψ with respect to the design variables are found
[Andreassen et al., 2011]:

∂ψ

∂xi
= ∑

k∈N j

∂ψ

∂x̂k

∂x̂k

∂xi
=

1
∑k∈Ne Hik

∑
k∈Ne

Hik
∂ψ

∂x̂k
(2.35)

Here ψ can represent both the objective functions (λ j) or the material volume, since the
filtered densities must fulfill the volume constraint. It is important to notice, that the H-terms
in equation (2.35) do not represent a filtering of the sensitivities, these terms are obtained by
differentiation of equation (2.34).

2.6 Measure of Discreteness

In order to tell whether or not a found solution is a discrete design a measure of the discrete-
ness is required. When maximizing the lowest frequency a measure of discreteness can also
be used in the comparison. For targeting a specific eigenvalue some of the solutions might
be a nondiscrete solution, thus the measure of discreteness can be used to assess the amount
of discreteness.

Sigmund [2007] suggests a method to measure the discreteness. This measure is modified
in order to have the ability to get a discreteness value of zero since the densities used in this
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work is not allowed to attain a value of zero.

MoD =
NE

∑
i=1

4(xi− xmin)(1− xi)

NE
100% (2.36)

Here MoD is the measure of discreteness. From equation (2.36) it is seen when all elements
has a density 0.5 MoD≈ 100%, thus a fully gray design is present. If all elements are either
1 or xmin then MoD = 0% and a fully discrete design is obtained.

Naturally the measure of discreteness needs to be as low as possible when the algorithm
has converged, since it can be used as a measure of the “quality” of the solution.
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CHAPTER 3

Presentation of the Code

After the theory required to solve the problem is established the next step is to implement this
into a code which can conduct the eigenfrequency optimization, both for targeting specific
eigenvalues, but also maximizing eigenvalues.

This chapter forms together with with chapter 4 a description of the properties of the
developed code. In chapter 3 the code is presented in order to provide an overview of the
code, the flow of the code and how to control the code, whereas chapter 4 validates the im-
plementation of the different parts of the code.

As stated in chapter 1 it is chosen only to show the 2D implementation of the code. 3D
is simply an extension of 2D. The 2D code has the advantage, that iterations are faster to
complete, and results obtained from a 2D simulation are easier to interpret and visualize
than the results from a 3D. Since the 3D code uses ANSYS as solver the flow of the code is
similar to the 2D code with ANSYS as solver.

The code is based on Sigmund [2001] and Andreassen et al. [2011]. These contain an imple-
mentation of topology optimization for minimum compliance design, and provides the basis
on which the eigenfrequency code is implemented.

For the code two different methods of extracting the eigenpairs have been implemented,
namely the eigs-function in MATLAB and modal analysis in ANSYS. These two versions
contain minor differences, and will be referred to MATLAB and ANSYS code respectively.

After the flow of the code is described the input options for the code are presented, and
lastly the preprogrammed boundary conditions for the 2D codes are shown.

3.1 Overall Flow of the Code

The code is described in several steps, this is done in order to first provide an overall de-
scription of the code. Afterwards the two different solvers are described more detailed. In
Figure 3.1 the steps in the code is seen together with the steps where the different optimiza-
tion parameters are updated.

The first part of the code defines the configuration of the problem, including the user
defined input described in section 3.2 with boundary conditions and design domain for the
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User Input

Memory 

allocation and 

initial 

calculations

Calculate element 

stiffness, densities 

and derivatives

ANSYS

Solver

MATLAB 
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Calculate 

sensitivities

Calculate 

sensitivities

Sensitivity 

filtering

Calculate MAC
Update design 

variables
Plot

Density filtering

Converged

No

Save plots and 

animate modes

Yes

Optimization Loop

xold 

E(xi)

E’(xi)

W(xi)

W’(xi)

λ, ϕ,Te, Ue

λ

ϕ

∂λ

∂x

∂λ

∂x

xnew
xnew

Figure 3.1: Overall flow of the code. The most important output are shown in brackets.

problem. Furthermore memory is allocated to speed up the optimization. In this part of
the code one minor difference between the two solvers is present. In the ANSYS version a
boundary condition file is executed in order to get a file containing the geometry described
by the elements, thus making it possible to control the stiffness and density on element level
in stead of structural level, since material properties must be defined for each element.

In the optimization loop the difference between the codes is the choice of solver, besides
this the codes are similar. Using the equations in section 2.1 the element stiffnesses and
densities are calculated, these are then used to form the global stiffness and mass matrices in
either MATLAB or ANSYS to solve equation (2.12). After calculating and perhaps filtering
of the sensitivities and mode tracking the optimization problem is solved. If mode tracking
is used the MAC values are calculated and the eigenpairs with the highest MAC values are
used in equation (2.31) whereas the remaining eigenfrequencies are used in equation (2.32).

In the design update step the Method of Moving Asymptotes (MMA) algorithm by Krister
Svanberg [Svanberg, 1987]. An implementation made by Krister Svanberg can be obtained
for academic purposes. This implementation of the algorithm is directly used.
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MMA has a slightly different method for setting up the bound formulation than presented
in section 2.4.1, this is shown in appendix A and Svanberg [2007].

If a density filter is used the design variables are filtered before the intermediate results
are plotted since the design variables are not the physical densities as described in section
2.5, and as the last step in the optimization loop a convergence check is conducted.

The last step in the code after convergence is to save the plots and if desired animate the
mode shapes.

Referring to Figure 3.1 the two boxes ANSYS and MATLAB solver are here described in
more details. The first step in the MATLAB solver is to calculate the global stiffness and
mass matrices, which are afterwards used in the eigs-solver, which can extract a desired
number of eigenpairs to be used in the sensitivity analysis.

The ANSYS solver is shown in Figure 3.2. Here the ANSYS part of the code reads the
stiffness and density files created in MATLAB and conduct a modal analysis, where the re-
sults are read in MATLAB in order to calculate the sensitivities.

After the code is presented, the user input to the code is given in the following section.

Write density 

and stiffness 

files

Read variables

Solve

Input from 

optimization

Write results 

files
Read results

ANSYS

Output

MATLAB

Read mesh

Figure 3.2: Steps in the ANSYS solver

3.2 Input to the Code

The code is controlled through an input file. This file is split up into two parts. The first part
of the input file defines the general set up of an analysis, whereas the second part contain
input related to different implementations of e.g. sensitivity calculations.
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The first part of the input file contain the input where the general set up of the analyzes are
defined, see Table 3.1. These setting controls the maximum number of iterations, number of
elements and eigenpairs extracted. The solver and boundary conditions are also defined in
this part of the input file. It is possible to select whether a maximization of the fundamen-
tal frequency or target specific frequencies is desired. Furthermore the stiffness and mass
interpolation formulations are defined.

The plotting routine and if the modes are to be animated is also defined here.

Table 3.1: Input to the optimization code which are often used.

Name in input file Description

VolumeFraction Admissible amount of material, value between 0 and 1

meshsize Size of elements

Neig Number of eigenpairs extracted

maxIter Maximum number of iterations

change_stop Stop criteria

move_limit Maximum change for the design variables per iteration

Plot_optimization_vector Desired plots per iteration

Plot_after_optimization_vector Plots to be saved

Animate_modes Animate modes after optimization

Solver_type MATLAB or ANSYS solver used

ANSYS and ANSYS_path ANSYS home folder

BC_N Boundary conditions, see section 3.3

Opt_type Optimization algorithm used

TargetEigenvalue Eigenfrequencies to target

Safetyzone Size of safety zone

WeightTarget Constraints weight

Discreteness_Target Target measure of discreteness in percent

MAC Enable or disable mode tracking

Filter_type Sensitivity or density filter

filter_r Filter radius in element lengths

Stiffness_Interpol Definition of stiffness interpolation function

pK Penalty for SIMP or RAMP stiffness interpolation

minDensity_e Minimum element density

Mass_Interpol Mass interpolation function

pM Penalty for mass interpolation

The second part of the input to the code are input which in general does not affect the final
topology of the optimization, see Table 3.2. The input are primarily used when validating
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a faster implementation. However two entries in these input can have an interest, these are
the MMA_c_const which controls the c constants in the MMA algorithm, see appendix A,
and the Element_type which controls the element used in the ANSYS models, a further
description of these are given in section 3.2.1.

Table 3.2: Input to the optimization code which are not used.

Name in input file Description

conv_check Convergence check function

tolerance Tolerance in the optimality criteria

Reduction Trust region reduction factor for SLP

MMA_c_const c constant values for MMA

Element_type Element used in ANSYS

Mass_function Consistent or lumped mass matrix

Global_Mass_Stiffness_function Algorithm used to assemble mass and stiffness matrix

Sensitivity_function Sensitivity calculation algorithm

Furthermore the mass formulation (consistent or lumped) is defined in this part. This is
due to all elements are axis parallel, thus the lumped mass formulation provides a good
representation of the design domain.

3.2.1 Available Elements

The elements available in the code can be grouped into three different categories: MATLAB,
ANSYS 2D and ANSYS 3D elements. A short introduction to the elements is given in the
following. For the ANSYS elements a more elaborate description is available in the ANSYS
Element Reference Manual [ANSYS Inc., 2010].

If the MATLAB code is used only one element is available. This is a 2D solid four node
bilinear element. The bilinear formulation of the element is sufficient since the elements
used in the models are rectangular, and the edges are axis parallel thus fulfilling the com-
patibility conditions [Cook et al., 2002]. This element is directly implemented on basis of
Sigmund [2001]. In the following this element is referred to as MATLAB Q4.

In Table 3.3 the elements available in the 2D ANSYS code are shown. Names from ANSYS
are used to clarify which element is used in the optimization. The elements are included to
give the ability of investigating the effect different element formulations.
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Table 3.3: Elements implemented in the 2D ANSYS code.

Element name Number of nodes Element technology

PLANE42 4

PLANE182 4 Full integration with B-bar method

PLANE42QM6
4 with extra
displacement shapes

PLANE182QM6
4 with 5 internal

Enhanced strain formulation
degrees of freedom

PLANE82 8

PLANE183 8

Eight elements are available in the 3D code. These are seen in Table 3.4. As for the 2D code
the names from ANSYS are used.

Table 3.4: Elements implemented in the 3D code.

Element name Number of nodes Element technology

SOLID45 8 Full integration

SOLID45RI 8
Uniform reduced integration

with hourgalss control

SOLID185 8 Full integration with B-bar method

SOLID185ES 8 Enhanced strain formulation

SOLID95 20 Full integration

SOLID95RI 20 Reduced integration

SOLID186 20 Full integration

SOLID186RI 20 Uniform reduced integration

It is recommended to use the elements with the simplest formulation, this is due to the differ-
ence when using a more advanced element formulation is negligible as seen in section 4.9,
thus the cheapest elements with respect to computation time are recommended. Furthermore
since the model will require a fine mesh to provide a good topology, thus using expensive
elements will increase the computation time unnecessary. Thus the elements recommended
are the MATLAB Q4, PLANE42 and SOLID45 elements.
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3.3 Preprogrammed Boundary Conditions

For the 2D code five different boundary conditions (BC’s) are preprogrammed. In this section
these boundary conditions are presented.

Since the codes are based on Sigmund [2001] and Andreassen et al. [2011] the method
of creating the boundary conditions is similar to the one presented in these.

3.3.1 Bendsøe BCs

Inspired by Fig. 2.1 in [Bendsøe and Sigmund, 2003, p.73] two beam-like structures illus-
trated on Figure 3.3 are included in the MATLAB program. These two problems are named
Bendsøe (a) and (b). Both beams have size a = 5 and b = 1. Since Bendsøe (a) has a solid
frame of thickness t the design domain is narrowed to a smaller size, i.e. length a− t and
height b−2t. The second Bendsøe problem has the full beam size as design domain.

Bendsøe (a) is a reinforcement problem where the outer frame structure is fixed as solid.
Bendsøe (b) is basically the same problem but without the frame structure fixed as solids.
Therefore the second problem has a trivial solution where an infinite eigenvalue is obtained
by removing the entire structure. This situation is avoided when formulating the problem as
a reinforcement problem or by adding non-structural masses to parts of the admissible design
domain. It is chosen to include three discrete masses which will be used in the subsequent
chapters.

a

b Admissible design domain

Bendsøe (a)

a

b Admissible design domain

Bendsøe (b)

m1

m2

m3

Figure 3.3: Bendsøe (a) and (b) boundary conditions.
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3.3.2 Olhoff BCs

From Du and Olhoff [2007] three beam-like structures are included, these are illustrated on
Figure 3.4. The admissible design domains (a = 8,b = 1) are either clamped or simply sup-
ported at the ends giving three different combinations for supports. These three problems
are named Olhoff (a), (b) and (c). The material is isotropic with Young’s modulus E = 107,
mass density ρ = 1 and Poisson’s ratio ν = 0.3. These results are shown in [rad/s] for easy
comparison to the results from Du and Olhoff [2007].

The fundamental eigenfrequencies of the initial designs are all unimodal. With a density
of 50% the fundamental eigenfrequencies are for the initial design ω1a = 68.4, ω1b = 103.7
and ω1c = 145.7 [rad/s]. As for many eigenfrequency problems the max-min optimum so-
lution for these problems all contains bimodal modes. The optimum solutions found in Du
and Olhoff [2007] are shown in Figure 3.5. To obtain the presented results 3200 trilinear
3D solid elements with incompatible modes are used in a plane stress configuration using a
sensitivity filter.

a

b Admissible design domain

Olhoff (a)

a

b Admissible design domain

Olhoff (c)

a

b Admissible design domain

Olhoff (b)

Figure 3.4: Olhoff (a),(b) and (c)
boundary conditions [Du and Ol-
hoff, 2007].

Figure 3.5: Optimum solution to
Olhoff (a),(b) and (c) boundary con-
ditions. Fundamental frequencies:
(a) 174.7 [rad/s], (b) 288.7 [rad/s]
and (c) 456.4 [rad/s] [Du and Olhoff,
2007].

All of the boundary conditions will be used when validating the developed code in the fol-
lowing chapter.
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CHAPTER 4
Code Development and Verification

Now that the code is described in general terms this chapter goes a step deeper in order to
get a detailed description of the code, investigate the performance, and how different settings
influences the performance of the code.

This chapter is build up by 13 sections, where one problem is analyzed at a time. Start-
ing by verifying the sensitivities and ending with a simple 3D example targeting specified
eigenvalues, switching two modes and obtaining a topology with a low measure of discrete-
ness all in the same optimization.

4.1 Standard Configurations for the Analyzes

There are many options available in the program and in order to have a common basis for the
analyzes a set of standard configurations are used. These are listed in Table 4.1. If nothing
else is written the configurations from this table is used to produce the results.

Table 4.1: Standard configurations for the analyzes.

BC Olhoff(c)
NE 3200
Resource Constraint 50 %
Solver MATLAB
Element MATLAB Q4

Algorithm
MaxMin MMA Bound
Negative cost function

c constants
15 for ωi

1.1 for Resource
N 4
Stiffness Interpolation RAMP, q = 8
Mass Interpolation Linear
Filter Sensitivity r=1.5
Max Iterations 1000
Move limit 0.08
Convergence max(∆x)≤ 0.02
Mass Matrix Lumped

These settings are not randomly generated and in the following a short reasoning for the
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values in Table 4.1 are given. 3200 elements are used (20 elements in the height) as a com-
promise between detail in the topology and computational time. A similar discretization is
used in Du and Olhoff [2007] for the same boundary conditions also with a resource con-
straint of 50%.

The eigs solver from MATLAB is used since the computational time in each iteration is
less for the eigs solver when the number of elements is below 30,000, this is described in
section 4.9.

Furthermore RAMP stiffness interpolation is used over SIMP interpolation since studies
in section 4.7 shows that RAMP is a more robust stiffness interpolation scheme.

As optimization algorithm the MMA algorithm from Svanberg [2007] is used since opti-
mality criteria can not be formulated as a bound formulation and it converges slightly faster
than the Sequential Linear Programming algorithm. MMA has a nice property: it is possible
to violate the constraints without operating in the infeasible region. This penalize the objec-
tive function and can be seen in appendix A. The MMA algorithm is used with the negative
cost function since it showed slightly better performance for this problem compared to the
inverse formulation also available in the program.

It is shown in section 4.3, that the number of eigenpairs included for this problem, must
be at least three. Since multi-core processes are used a number of eigenpairs dividable with
the number of cores are preferable because of the cheap computational cost of additional
eigenpairs.

The sensitivity filter is used since it provides a better performance than the density filter.
The filter help obtaining mesh independent topologies as shown in section 4.10. The radius
of the filter is chosen to 1.5 times the element size. This radius is the smallest which provides
satisfying results as seen in section 4.10.

Also a maximum number of iterations are necessary if for some reason the problem
cannot converge. Choosing a too small number there is a risk of obtaining a bad or wrong
topology due to it is not converged, whereas a too large value the calculation takes too much
time without obtaining a useful topology. The maximum number of iterations allowed is
closely related to the converges criteria, it is found that the values in Table 4.1 provide a
good topology within a reasonable time span.

4.2 Verification of Sensitivities

In gradient based optimization naturally the sensitivities are of great importance. Here the
aim is to verify that the sensitivities calculated during the analyzes are correct. The two
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analytic sensitivities from equation (2.18) and (2.24) (in the following called Direct equa-
tion (2.18), since it is obtained by direct differentiation of equation (2.12), and Energy based
(2.24)) are verified for distinct eigenvalues. In the case of repeated eigenvalues the sensitivity
analysis is more complicated as described in section 2.2.1.

In order to verify the sensitivities the standard settings are used with the exception, that
SIMP stiffness interpolation with a penalty of 3 and a consistent mass matrix are used. The
sensitivities from Table 4.2 are produced during the first iteration, where all elements have a
uniform density of 50%.

In order to verify the analytic sensitivities they are compared to a Forward finite differ-
ence, Backward finite difference and Central finite difference and a Semi-Analytic design
sensitivity analysis (Semi-Analytical method). The Semi-Analytical method is similar to
equation (2.17) but ∂[K]

∂xi
and ∂[M]

∂xi
are calculated using a forward difference scheme as in

equation (2.19). The step size used is ∆x = 10−4.
The Central finite difference is used as a reference method, calculated sensitivities are

compared with this to estimate the accuracy. The Semi-Analytical method is included to
have an extra verification of the implemented sensitivity calculations.

From Table 4.2 it is seen, that all sensitivities are close, and the difference between these
are at the fifth decimal. The largest difference is between the Forward finite difference and
either the Backward finite difference or the Semi-Analytical method, with a relative differ-
ence below 1‰. The two analytic methods yields the same sensitivity, which is as expected
since they are derived on basis of the same equation, thus the same result should be obtained.
Meaning, that the implementation of the two are equivalent.

Table 4.2: The sensitivities using Forward finite difference (2.19), Backward finite dif-
ference, Central finite difference, Semi-Analytic design sensitivity analysis, Direct (2.18),
Energy and PLANE42 sensitivities (2.24).

Element No. Forward Backward Central Semi-Analytic Direct Energy PLANE42
181 (10,1) 0.18921 0.18929 0.18925 0.18929 0.18925 0.18925 0.18907
852 (80,20) 0.10423 0.10429 0.10426 0.10429 0.10426 0.10426 0.10414

Comparing the results from the analytical to the Central finite difference it is seen, that these
results are the same. A small difference on the fifth decimal exist in the Forward and Back-
ward finite difference, this is as expected, since the perturbation is 10−4 and a Forward/Back-
ward finite difference has first order precision, thus the order of the error is proportional to
the perturbation magnitude. Since the precision of the central difference method is second
order the analytical sensitivities are expected being closer to the central different method this
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verifies, that the implementation is correct.

The Direct and Energy based formulations are implemented in the MATLAB program. The
OFD’s and the Semi-Analytic is too slow to be used with many variables as used in Topology
Optimization. Only the energy based formulation is implemented when using ANSYS, since
the derivatives of the global stiffness and mass matrix is not directly available. It is seen, that
a small difference of 1% exist between the sensitivities from ANSYS and MATLAB. This
difference might be due to rounding errors or the element formulation is slightly different
between the codes. In the following this is seen not to affect the final topology.

4.2.1 Asymmetric Designs

During the iterations when maximizing the fundamental eigenfrequency it is observed, that
the design tends to become asymmetric. Since the boundary condition is doubly symmetric,
and the first mode is a symmetric mode, thus the topology is expected to be doubly sym-
metric, thus a measure of the largest asymmetry, xunsym, between the actual density and the
doubly symmetric density is calculated. At a value of 0.001 for xunsym it is seen, that the
value rises significantly in the following iterations.

The first assumption was, that is was due to multiple eigenvalues are not accounted for.
Since at first it was experienced when the two lowest eigenvalues had similar values.

However by changing the step size it is seen, that multiple eigenvalues do not initiate
asymmetry, see Table 4.3. The setting to obtain the results is the default, with a convergence
criteria of max(∆x) ≤ 0.0005. A tight convergence criteria is chosen to monitor whether or
not the design returns to a symmetric design.

From Table 4.3 it is seen, that multiple eigenvalues are not present at the onset of asymmet-
ric designs, however it is seen, that some peaks are present before the asymmetry is initiated,
which might influence the asymmetry, see Figure 4.1 and 4.2. Furthermore it is observed,
that the iteration where asymmetry occur is larger for RAMP than for SIMP. This might be
because the gradient for RAMP does not vary as much as for SIMP.
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Table 4.3: Number of iterations for asymmetry to occur.

Move Limit
Iteration where

ω1 ω2xunsym > 0.001
1.00 45 418.8 559.8
0.75 47 420.7 455.8
0.60 50 422.1 485.3
0.50 35 395.7 420.0
0.40 34 397.4 495.9
0.30 16 353.3 372.0
0.20 27 376.0 414.7
0.10 22 371.1 400.6
0.05 31 369.7 410.4
0.01 122 377.3 408.4
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Figure 4.1: Obtained eigenfrequencies
by the optimization of the Olhoff(c)
problem.
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Figure 4.2: The corresponding maxi-
mum asymmetry of the densities.
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Figure 4.3: Average asymmetry of the elements.
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The average asymmetry is seen in Figure 4.3. It is seen, that the average value of asymmetry
is more than a factor ten lower than the absolute value, thus the asymmetry is likely to be
related to a minority of the elements. This can also be assessed by visual inspection. Looking
at an asymmetric design it is seen, that the visible asymmetry is present near the supports,
see Figure 4.4 where the area of the most occurring asymmetry is marked. Here the beam is
much stiffer than the middle of the beam, thus the effect of asymmetry is smaller than if it is
present at the center of the beam.

Figure 4.4: Areas where asymmetry often is present for the Olhoff (c) boundary conditions.

4.3 Number of Eigenpairs Included

The number of eigenvalues used in the optimization can have an effect on the result obtained.
This is primarily when too few eigenvalues are taken into account, then the higher eigenfre-
quencies might interfere with the fundamental frequency. In Table 4.4 a study of the effect
of the number of eigenvalues included in the optimization is seen.

Table 4.4: Results when varying the number of eigenpairs extracted.

N 1 2 3 4 6
Iter 4 135 125 124 130
MoD [%] 85.5 10.0 12.1 12.1 12.4
Volume Fraction [%] 50 58.5 50 50 50
ω1[rad/s] 187.17 401.08 407.77 407.57 408.74
ω2[rad/s] None 406.55 412.82 412.26 414.51
ω3[rad/s] None None 607.89 619.45 616.12
ω4[rad/s] None None None 644.98 642.75
ω5[rad/s] None None None None 734.37
ω6[rad/s] None None None None 773.49

From the table it is seen, that when more than two eigenpairs are calculated, then the topol-
ogy obtained is independent of the number of eigenpairs extracted, see Figures 4.5 to 4.7.
The reason is due to the third eigenfrequency does not approach the two lowest. This is seen
on Figure 4.8.
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Density Plot at Iter No.  4 Volume Fraction  49.8%

Figure 4.5: Topology obtained for Ol-
hoff (c) boundary condition when includ-
ing one eigenfrequency.

Density Plot at Iter No.125 Volume Fraction  50.0%

Figure 4.6: Topology obtained for Ol-
hoff (c) boundary condition when includ-
ing three eigenfrequencies.

Density Plot at Iter No.130 Volume Fraction  50.0%

Figure 4.7: Topology obtained for Olhoff (c) boundary condition when including six eigen-
frequencies.
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Figure 4.8: The eigenfrequency plot for Figure 4.6.

On basis of this it is recommended for maximizing the lowest eigenfrequency to choose
the number of eigenpairs in accordance with the number of threads in the CPU, since the
developed code is programmed to run on multi-core processors. Furthermore when tracking
eigenmodes as in section 4.13 it is important to take enough eigenpairs into account in order
to secure the modes to be tracked are included in the set. This is further described in section
4.13.
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4.4 Effect of Penalization Constants

As described in appendix A only the c constants can be varied in the MMA algorithm. In
this section the effect of changing these is examined. The standard settings, except for a
consistent mass matrix, is used. In Svanberg [2007] it is seen, that the c constants from ap-
pendix A must fulfill ciai > a0 for all ai > 0, and it is recommended, that the c constants are
chosen reasonable large, which Krister Svanberg defines as ci = 1000. From this different c
constants are tested in order to see how these guidelines affect the result obtained.

In Table 4.5 it is seen, that aici = a0 produces no change in the final results even though

Table 4.5: Results when modifying the c constants in MMA.

Test case 1 2 3 4 5 6 7 8
c1 1 † 15 1.1 1000 0.1 † 1.1 105 1010‡

c2 1 † 15 1.1 1000 0.1 † 0.1† 105 1010‡

c3 1 † 15 1.1 1000 0.1 † 0.1† 105 1010‡

c4 1 † 15 1.1 1000 0.1 † 0.1† 105 1010‡

c5 1 1.1 15 1000 0.1 1 1 1
Iter 136 140 142 138 318 151 136 149
ω1 [rad/s] 401.97 401.88 401.95 401.88 295.13 400.86 401.91 402.09
ω2 [rad/s] 409.96 409.60 408.96 409.22 783.59 407.95 409.45 409.03
ω3 [rad/s] 619.08 617.44 614.14 616.63 1054.60 622.53 618.93 611.88
ω4 [rad/s] 637.29 636.92 636.42 635.79 1065.47 634.05 636.52 637.30
MoD 11.7 11.8 11.7 11.7 12.1 11.9 11.7 11.7
† Violates the assumptions in Svanberg [2007]
‡ Violates the recommendations in Svanberg [2007]

aici > a0, see Figure 4.9 and 4.10, whereas a serious violation produces completely different
results, see Figure 4.11. Test case number 7 produced no difference from the ones which
fulfilled all the guidelines, whereas the huge number in 8 made it difficult for a subproblem
to converge, however the same topology is obtained as for the other, as seen in Figure 4.12.

An interesting result is seen in test case number 6, where only the first and volume frac-
tion c constant fulfill the assumptions, but the performance is seen being similar to the test
cases where all guidelines are fulfilled. This might be because no multiple eigenvalues are
present in the final topology.
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Density Plot at Iter No.139 Volume Fraction  50.0%

Figure 4.9: The topology from test num-
ber 1 in Table 4.5.

Density Plot at Iter No.133 Volume Fraction  50.0%

Figure 4.10: The topology from test
number 2 in Table 4.5.

Density Plot at Iter No.289 Volume Fraction  74.6%

Figure 4.11: The topology from test
number 5 in Table 4.5.

Density Plot at Iter No.153 Volume Fraction  50.0%

Figure 4.12: The topology from test
number 8 in Table 4.5.

From this it can be concluded, that following the guidelines in [Svanberg, 2007] produces
consistent results.

4.5 Move Limit

The MMA solver has a build in (default) move limit strategy, which is based on changing
the asymptotes in accordance to the change in densities where fluctuations narrows the trust
region, see Svanberg [2007].

It is observed, that the build in move limits has a tendency of causing fluctuations in the
frequencies, see Figure 4.13, thus additional move limit strategies are considered, where a
maximum move limit is added on top of the default move limit strategy.
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Figure 4.13: Flucturations of eigenfrequencies due to use of a large move limit.

The alternative strategies are based on the default increase and reduction in trust region is
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kept, but the maximum change in one element is limited to e.g. 10% of the total change
possible. Throughout this section the effects of choosing different move limit strategies are
tested, using the standard settings with the exception of SIMP stiffness interpolation with p
= 3 and Olhoff-Du(c) mass interpolation.

Maximum move limit strategies are tested in a range from 0.025 to 1.0, where 1.0 repre-
sent the default move limit strategy. On Figure 4.14 the fundamental frequency is shown as
a function of the move limit. Using a move limit above 0.2 it is seen, that the fundamental
frequencies are within 15 [rad/s].
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Figure 4.14: The lowest eigenfrequency
obtained by the optimization of the Ol-
hoff(c) problem various different move
limits.
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Figure 4.15: The number of itera-
tions before convergence of the Olhoff(c)
problem various different move limits.

The number of iterations is shown on Figure 4.15. It is seen, that with small move limits
fewer iterations are needed to converge than for large move limits. This might be due to
fewer reductions of the asymptotes are needed before convergence.

Varying the move limit strategy it is seen, that different topologies are obtained as seen in
Figure 4.16 to 4.21. Comparing this to the fundamental frequencies in Figure 4.14 an other
proof of the non-convexity for the problem is seen, thus the final topology is (as expected)
dependent on the move limit strategy.

Density Plot at Iter No. 25 Volume Fraction  50.0%

Figure 4.16: The topology with a move
limit of 0.025, ω1=254.8[rad/s].

Density Plot at Iter No.101 Volume Fraction  50.0%

Figure 4.17: The topology with a move
limit of 0.080, ω1=403.4[rad/s].
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Density Plot at Iter No.230 Volume Fraction  50.0%

Figure 4.18: The topology with a move
limit of 0.2, ω1=431.1[rad/s].

Density Plot at Iter No.300 Volume Fraction  50.0%

Figure 4.19: The topology with a move
limit of 0.5, ω1=421.7[rad/s].

Density Plot at Iter No.223 Volume Fraction  50.0%

Figure 4.20: The topology with a move
limit of 0.7, ω1=426.8[rad/s].

Density Plot at Iter No.344 Volume Fraction  50.0%

Figure 4.21: The topology with a move
limit of 1.0, ω1=427.4[rad/s].

Comparing the results from the SIMP stiffness interpolation scheme to a RAMP interpolation
in Figure 4.22 to 4.25 it is seen, that using a RAMP interpolation results in similar topologies
and fundamental frequencies regardless of the move limit strategy chosen.

Density Plot at Iter No.130 Volume Fraction  50.0%

Figure 4.22: The topology with a move
limit of 0.08, ω1=407.04[rad/s] using
RAMP stiffness interpolation.

Density Plot at Iter No.100 Volume Fraction  50.0%

Figure 4.23: The topology with a move
limit of 0.5, ω1=404.15[rad/s] using
RAMP stiffness interpolation.

Density Plot at Iter No. 97 Volume Fraction  50.0%

Figure 4.24: The topology with a move
limit of 0.7, ω1=401.46[rad/s] using
RAMP stiffness interpolation.

Density Plot at Iter No.157 Volume Fraction  50.0%

Figure 4.25: The topology with a move
limit of 1.0, ω1=408.07[rad/s] using
RAMP stiffness interpolation.

4.6 Start Guess and Resource Constraint

Since the problem is inherently nonconvex, the start guess has an influence on the final
topology obtained. In this section the influence of these is investigated. The standard settings
are used in the analyzes.
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The most common start guess is to use the material constraint and evenly distribute this
over the design domain. In Figure 4.26 and 4.27 results obtained by evenly distributed ma-
terial with different initial volume fractions between 30 and 110% (meaning the maximum
density is violated in all elements) still keeping the resource constraint of 50%.

It was observed, that a start guess below 30% yields the trivial solution. SIMP is even
more sensitive and results in the trivial solution if the start guess is ≤40%. As long as the
start guess is larger than 40% the solution obtained converges towards the same optimum.
The MMA algorithm has no trouble with the volume constraint being violated and it does
not have any significant effect on the number of iterations needed in order to converge. The
measure of discreteness is also unaffected as illustrated on Figure 4.27.
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Figure 4.26: The fundamental fre-
quency as a function of the evenly dis-
tributed start guess with different ini-
tial volume fractions. An initial volume
fraction ≤30% for RAMP stiffness in-
terpolation and ≤40% for SIMP stiff-
ness interpolation result in the trivial so-
lution.
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Figure 4.27: The Measure of Discrete-
ness as a function of the evenly dis-
tributed start guess with different initial
volume fractions.

Since the cost function is strictly non-convex an unevenly distributed start guess results in
different topologies due to the non-convexity. This is illustrated in Table 4.6 where all ele-
ments are assigned a random value between zero and one as the start guess. It is clear that the
start guess has influence on the topologies obtained, since neither of the obtained topologies
correspond to the one obtained with an evenly distributed density.

In appendix B a table with different start guesses is shown, this is done to see how guesses
which might reassemble the final topology will affect the optimization. One example could
be, that it is desired to track a “breathing” mode, thus guessing on an uniformly distributed
density then that particular mode might not be present among the lowest eigenpairs. As also
seen from the random start guesses that the final topology is affected.

As shown previously and in appendix B the start guess has a rather big influence on the
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Table 4.6: Final topologies for five random start guesses.

ω1[rad/s]
TopologyIter

MoD[%]
438.73 Density Plot at Iter No.198 Volume Fraction  50.0%

198
7.9

393.65 Density Plot at Iter No.163 Volume Fraction  50.0%

163
12.7

391.78 Density Plot at Iter No.115 Volume Fraction  50.0%

115
13.3

440.33 Density Plot at Iter No.260 Volume Fraction  50.0%

260
8.0

396.17 Density Plot at Iter No.189 Volume Fraction  50.0%

189
13.1

topology obtained, which of course also applies for the material available, if the solution is
bounded by the volume fraction constraint.

The results in Table 4.7 are obtained using the program configurations from Table 4.1,
but with different resource constraints, where the start guess are evenly distributed. This
shows some alarming results. For a low resource constraint as 40% it is obvious that the
optimum found might be lower since the objective function can be constrained from the high
frequencies. For resource constraints greater than 50% the algorithm should find optimums
better or as good as the one found for 50%. In Table 4.7 it is seen, that this is not the case.
The same problem occur even though a larger move limit is chosen.

For higher volume fractions, it is seen, that the outer shapes reassemble the shape on
Fig. 29 in Seyranian et al. [1994], which is a discretisation of the classical clamped-clamped
continuum column determined by Niels Olhoff and Steen Rasmussen in 1977.
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Table 4.7: Dependency of resource constraint on the final topology.

Resource ω1[rad/s]
Topologyconstraint / Iter

Final volume fraction MoD [%]

390.46 Density Plot at Iter No. 80 Volume Fraction  40.0%

40%/40% 80
16.1

401.84 Density Plot at Iter No.134 Volume Fraction  50.0%

50%/50% 134
11.7

395.58 Density Plot at Iter No. 96 Volume Fraction  60.0%

60%/60% 96
9.3

372.17 Density Plot at Iter No. 75 Volume Fraction  70.0%

70%/70% 75
7.2

345.08 Density Plot at Iter No. 83 Volume Fraction  80.0%

80%/80% 83
6.3

324.93 Density Plot at Iter No.514 Volume Fraction  88.6%

90%/88.6% 514
3.8

325.05 Density Plot at Iter No. 87 Volume Fraction  88.3%

100%/88.3% 87
4.4

On Figure 4.28 the frequency plot for the 90% topology in Table 4.7 is shown. From the
figure it is seen, that the lower frequency is not due to bimodaliy, however by disabling the
filter the topology is seen on Figure 4.30, and the frequencies on Figure 4.29 From this it
is seen, that the filter prevents the removal of material, thus obtaining a lower fundamental
frequency.
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Figure 4.28: The first four frequencies
for the Olhoff (c) beam with 90% vol-
ume fraction in Table 4.7.
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Figure 4.29: The same set up as in
Figure 4.28 with disabled filter.

Density Plot at Iter No.156 Volume Fraction  64.0%

Figure 4.30: The topology obtained for the Olhoff (c) beam with 90% volume fraction in
Table 4.7 and disabled filter.

4.7 Mass and Stiffness Interpolation

In this section the phenomenon of local modes are discussed and some solutions to the prob-
lem are presented and investigated. The classical solutions to the problem are described in
section 2.1 and are further investigated in this section.

First to illustrate the problem on Figure 4.31 the lowest eigenfrequency is maximized
using the program configuration from Table 4.1 with linear mass interpolation and a mini-
mum density of 10−12. As explained in section 2.1 the local modes occur when the stiffness
approaches zero faster than the mass, i.e. the frequency of a single element becomes lower
than the mode which are maximized. Furthermore as will be shown in the following, an
other aspect must also be considered when having a patch of elements with low stiffness.

Mode 1: 96.2[rad/s]

Mode 3: 107.4[rad/s]

Mode 2: 102.3[rad/s]

Mode 4: 108.7[rad/s]

Figure 4.31: SIMP stiffness interpolation with penalty p=3 and linear mass interpolation.
Local modes are shown in the red circle.
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4.7.1 SIMP with Olhoff-Du Mass Interpolations

As described in section 2.1 one of the methods which can be used to avoid the local modes
is to use SIMP with either one of the Olhollf-Du mass interpolations. Varying the penalty of
SIMP different results are obtained. On Figure 4.32 the fundamental frequency obtained in
the optimization is illustrated as a function of the stiffness penalty p.
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Figure 4.32: Fundamental frequency when varying the penalty for SIMP stiffness interpo-
lation for the implemented mass interpolations.

When a linear mass interpolation is used the local modes are present when the penalty is
≥ 2.5 as illustrated on Figure 4.31. On the other hand if p≤ 2.5 the solution goes toward the
trivial solution with zero material. On Figure 4.32 this is seen as very high frequencies, and
when the penalty is too high the local modes result in low frequencies. With the Olhoff-Du
mass interpolations the local modes are occasionally still present in some iterations when
the penalty is ≥ 3. This is due to the "peak" in the Ω function, see Figure 2.4 on page 10,
combined with a patch of low stiffness elements. The algorithm is able to pass this point
when using the Olhoff-Du mass interpolations. If the linear mass interpolation is used “Ω”
approaches infinity as the density goes to zero.

Topologies when varying the SIMP penalty are shown in Figures 4.33 to 4.36. On the
figures different mass interpolations are shown. As stated in Du and Olhoff [2007] the differ-
ence between the three Olhoff-Du mass interpolations are negligible, and the figures display
the effect of altering the penalty of the stiffness interpolation. In Figure 4.33 a linear mass
interpolation is used. Here it is seen, that the topology in Figure 4.35 can be identified, but
due to local modes it is not possible to obtain that topology. This shows, that the Olhoff-Du
mass interpolations eliminate local modes in the final topology. Figure 4.34 shows, that a
too high penalty results in local modes due to the mass and stiffness penalty are too close.
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Density Plot at Iter No.133 Volume Fraction  49.8%

Figure 4.33: The final topology
for SIMP stiffness interpolation with
penalty p=3 and linear mass interpola-
tion. The lowest frequency is a local
mode at 96.2[rad/s]. The mode shape is
shown on Figure 4.31.

Density Plot at Iter No.1001 Volume Fraction  49.9%

Figure 4.34: The topology at iteration
1001 using SIMP stiffness interpolation
with penalty p=5.5 and Olhoff-Du(b)
mass interpolation. The lowest fre-
quency is a local mode at 180.5[rad/s].
The optimization has not converged as
a result partly of the local modes and
partly of the close to singular matrices.

Density Plot at Iter No. 99 Volume Fraction  50.0%

Figure 4.35: SIMP stiffness interpola-
tion with penalty p=3 and Olhoff-Du(c)
mass interpolation. The lowest fre-
quency is 402[rad/s] without any local
modes.

Density Plot at Iter No. 60 Volume Fraction  50.0%

Figure 4.36: The final topology us-
ing SIMP stiffness interpolation with
penalty p=4 and Olhoff-Du(a) mass in-
terpolation. The lowest frequency is
380.3[rad/s]. The solution is obtained in
60 iterations.
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Figure 4.37: The number of iterations
necessary for convergence as a function
of the stiffness penalty.
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Figure 4.38: The Measure of Dis-
creteness as a function of the stiffness
penalty.

On Figure 4.37 and 4.38 the number of iterations and the measure of discreteness are illus-
trated as a function of the stiffness penalty p. It is seen that a penalty > 4.5 in general results
in slow convergence and a poor measure of discreteness. However as mentioned in Du and
Olhoff [2007] the difference between the three Olhoff-Du mass interpolations are small and
all three solves the problem associated with local modes compared to the linear mass in-
terpolation. In this specific problem a slightly lower number of iterations are needed for
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the Olhoff-Du(a) mass interpolation when p>3.5 as seen on Figure 4.37 the lowest eigenfre-
quency and the measure of discreteness is nearly the same for all three mass interpolations.
A penalty between 2.5 and 4 results in roughly the same topology and frequency when using
SIMP with either one of the Olhoff-Du mass interpolations.

4.7.2 RAMP Stiffness Interpolation

Another solution to the problems associated with the local modes is to use the RAMP stiff-
ness interpolation. The RAMP stiffness interpolation can also be used together with the
Olhoff-Du mass interpolations as shown on Figure 4.39. The RAMP stiffness interpola-
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Figure 4.39: The results of the lowest eigenfrequency optimized using RAMP stiffness
interpolation and the implemented mass interpolations.

tion with linear mass interpolation has been tested using penalties as high as 106 without
any problem associated with localized modes with a minimum density of 10−3. However
using such a large stiffness it is seen, that a measure of the condition number (q = 16) is
max(K(i,i))
min(K(i,i)) = 3.83 · 104, i = 1, . . . ,NE meaning, that for penalties ≥ 16 the penalty is too
large. This also results in low frequencies because the intermediate stiffnesses are close to
zero. Despite the large penalty the topology obtained is much alike (nearly the same) as
illustrated in Figure 4.41 and 4.43.

However if the penalty is too small the topology will converge toward the trivial solution
as with the SIMP this is illustrated on Figure 4.40. With a penalty of 3 to 5 the topology
obtained is similar to the SIMP solutions as illustrated on Figure 4.42 but the void areas
contributes with too much stiffness resulting in too high frequencies. The RAMP stiffness
interpolation is much more robust than the SIMP stiffness interpolation since no problems
with local modes or singular stiffness matrices which occur if the penalty is too large.
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Density Plot at Iter No. 76 Volume Fraction  35.3%

Figure 4.40: The topology with RAMP
interpolation with penalty q=2 and lin-
ear mass interpolation. As for SIMP in-
terpolation if the penalty is too low the
topology found during the optimization
converges toward the trivial solution.

Density Plot at Iter No.134 Volume Fraction  50.0%

Figure 4.41: RAMP interpolation with
a penalty of q = 8 results in a different
topology than SIMP stiffness interpola-
tion. Here ω1 = 400.8[rad/s]. Nearly the
same topology is found with 6≤q≤50.

Density Plot at Iter No. 90 Volume Fraction  49.9%

Figure 4.42: RAMP stiffness interpo-
lation with a penalty of q=4 and linear
mass interpolation result in a topology
close to the one obtained using SIMP
stiffness interpolation and a Olhoff-Du
mass interpolation.

Density Plot at Iter No.104 Volume Fraction  50.0%

Figure 4.43: The topology using RAMP
stiffness interpolation with a penalty
of q=100. The lowest frequency is
252.4[rad/s]. The same topology is ob-
tained for 100≤q≤ 106. These penalties
are too high to be used.

RAMP Stiffness Interpolation with Olhoff-Du Mass Interpolation

The topologies obtained using RAMP stiffness interpolation with any of the Olhoff-Du mass
interpolations schemes are similar to the ones obtained using RAMP with linear mass in-
terpolation. On Figure 4.45 it is shown that the measure of discreteness is nearly the same
regardless of the interpolation chosen, and on Figure 4.44 it is seen that the number of iter-
ations needed for convergence is reduced when using RAMP together with the Olhoff-Du
mass interpolations for larger values of q. It is difficult to conclude anything general from
this, but using RAMP together with Olhoff-Du(b) and (c) seems to reduce the number of
iterations needed for convergence. During testing it is experienced, that RAMP stiffness
interpolation with either Olhoff-Du(c) or a fully linear mass interpolation provides a better
convergence than the other mass interpolations.
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Figure 4.44: The number of iterations
necessary for convergence as a function
of the RAMP stiffness penalty. With
a penalty of 4 convergence was never
achieved within 1000 iterations using
Olhoff-Du(a) mass interpolation.
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Figure 4.45: The Measure of Discrete-
ness as a function of the RAMP stiffness
penalty.

RAMP and Local Modes

Through the development of the code it is seen, three conditions has to be fulfilled in order
for local modes to occur:

1. A high inverse Rayleigh’s coefficient (Ω)

2. Low element stiffness

3. The above two conditions must be fulfilled for all elements surrounding a single node

On Figure 2.1 it is seen that RAMP stiffness interpolation has a lower stiffness for densities
≥0.5 and the opposite is the case for densities <0.5. When using Olhoff-Du mass interpola-
tions with either SIMP or RAMP stiffness interpolation Ω goes toward 0 for low densities.
When using SIMP stiffness interpolation the minimum density allowed in the optimization
is 10−3 due to the stiffness matrix becomes badly scaled, in many cases this lower bound
works fine with RAMP stiffness interpolation, but because RAMP has a higher stiffness than
SIMP for the low density regions, RAMP becomes stiffer in the void elements. When the
resource constraint is low this becomes a problem as seen in chapter 5.

Since a low stiffness is desired in low density areas the density for RAMP interpolation
(q = 8) providing the same stiffness as SIMP (p = 3) for x = 10−3 is 10−8. If a minimum ele-
ment density of 10−8 is used RAMP stiffness interpolation will produce local modes, unless
one of the Olhoff-Du mass interpolations are used. But if a Olhoff-Du mass interpolation is
used with RAMP stiffness interpolation the local modes are completely avoided since RAMP
does not have a peak in the inverse Rayleigh coefficient as illustrated on Figure 4.46. If the
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lower bound for the design variables are lower than 10−3 for SIMP and 10−8 for RAMP the
system of equations becomes close to singular.

MMA tend to stay close to the upper and lower bound of the design variables while never
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Figure 4.46: The inverse Rayleigh’s coefficient for SIMP and RAMP stiffness interpolations
both using Olhoff-Du(c) mass interpolation. Note that RAMP stiffness interpolation avoids
the same peak in Ω as SIMP stiffness interpolation.

reaching exact xmin and 1. The effect of forcing low density elements to xmin, and high
density elements to 1 has been investigated, and the difference is negligible, for the tested
examples. If values larger than 10−4 are forced to the lower bound of 10−8 it will interfere
with the solution and more iterations are needed before convergence.

4.7.3 Comparison of RAMP and SIMP Stiffness Interpolation

Comparing the two stiffness interpolations with each other it is seen, that the penalty q has
to be a larger value than the penalty p used in SIMP. The frequencies obtained with SIMP
and RAMP stiffness interpolations are similar although for fair comparison of the results,
the intermediate values have to be penalized consistently, e.g. p = 3 and q = 8. SIMP con-
verges using slightly fewer iterations as illustrated on Figure 4.47, whereas RAMP obtains
topologies with a lower measure of discreteness as illustrated on Figure 4.48.
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Figure 4.47: The number of iterations
necessary for convergence as a function
of the RAMP and SIMP stiffness penal-
ties.
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Figure 4.48: The Measure of Discrete-
ness as a function of the RAMP and
SIMP stiffness penalties.

Since discrete designs are desired the results obtained using a RAMP stiffness interpolation
are considered being better than the results using a SIMP stiffness interpolation even though
the frequencies are lower, as seen on Figure 4.49.
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Figure 4.49: Comparison of frequencies using SIMP and RAMP stiffness interpolation.

In Figures 4.50 to 4.57 a comparison between SIMP (p = 3) with Olhoff-Du(a) and RAMP
(q = 8) with Olhoff-Du(c) mass interpolation are tested with the preprogrammed BC’s in
Figure 3.3 and 3.4 except for Bendsøe(b) since it will give the trivial solution.

For all boundary conditions the lowest frequency is within 5% and the number of itera-
tions are nearly the same for the two test set up. However the set up using RAMP stiffness
interpolation consistently obtains results with a lower measure of discreteness. For some
unknown reason RAMP with the Olhoff-Du(c) mass interpolation has difficulties with the
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Bendsøe(a) problem. The solution obtained using RAMP stiffness interpolation can be im-
proved by using a linear mass interpolation.

Density Plot at Iter No. 74 Volume Fraction  50.0%

Figure 4.50: Bendsøe (a) boundary
condition for SIMP stiffness interpola-
tion with a penalty of p=3 and Olhoff-
Du(a) mass interpolation. Convergence
achieved in 74 iterations, ω1=43.64
[Hz], MoD=22.9 %.

Density Plot at Iter No.136 Volume Fraction  50.0%

Figure 4.51: Olhoff (a) boundary con-
dition for SIMP stiffness interpolation
with a penalty of p=3 and Olhoff-
Du(a) mass interpolation. Convergence
achieved in 136 iterations, ω1=159.82
[rad/s], MoD=27.2 %.

Density Plot at Iter No.177 Volume Fraction  50.0%

Figure 4.52: Olhoff (b) boundary con-
dition for SIMP stiffness interpolation
with a penalty of p=3 and Olhoff-
Du(a) mass interpolation. Convergence
achieved in 177 iterations, ω1=251.65
[rad/s], MoD=26.6 %.

Density Plot at Iter No.105 Volume Fraction  50.0%

Figure 4.53: Olhoff (c) boundary con-
dition for SIMP stiffness interpolation
with a penalty of p=3 and Olhoff-
Du(a) mass interpolation. Convergence
achieved in 105 iterations, ω1=397.29
[rad/s], MoD=22.9 %.

Density Plot at Iter No.143 Volume Fraction  50.0%

Figure 4.54: Bendsøe (a) boundary
condition for RAMP stiffness interpola-
tion with a penalty of q=8 and Olhoff-
Du(c) mass interpolation. Convergence
achieved in 143 iterations, ω1=41.92
[Hz], MoD=21.3 %.

Density Plot at Iter No. 96 Volume Fraction  50.0%

Figure 4.55: Olhoff (a) boundary con-
dition for RAMP stiffness interpola-
tion with a penalty of q=8 and Olhoff-
Du(c) mass interpolation. Convergence
achieved in 96 iterations, ω1=159.81
[rad/s], MoD=14.7 %.

Density Plot at Iter No.180 Volume Fraction  50.0%

Figure 4.56: Olhoff (b) boundary con-
dition for RAMP stiffness interpola-
tion with a penalty of q=8 and Olhoff-
Du(c) mass interpolation. Convergence
achieved in 180 iterations, ω1=261.39
[rad/s], MoD=13.8 %.

Density Plot at Iter No.112 Volume Fraction  50.0%

Figure 4.57: Olhoff (a) boundary con-
dition for RAMP stiffness interpola-
tion with a penalty of q=8 and Olhoff-
Du(c) mass interpolation. Convergence
achieved in 112 iterations, ω1=406.47
[rad/s], MoD=12.1 %.

It is impossible to declare one single interpolation method being better at all times. There
are some differences, and what is best for one case is not necessarily the best for all cases.
At least the optimum compromise between the mass and stiffness interpolation is not found
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here, but RAMP with q = 8 and Olhoff-Du(c) mass interpolation is in general resulting in well
defined topologies with a low measure of discreteness, although the void areas contributes
with more stiffness than the SIMP interpolation. In cases where the void ares contributes
with to much stiffness the lower limit for the densities can be reduced to 10−8 and if neces-
sary it is possible to force MMA to use the upper and lower bound for the design variables.

In Du and Olhoff [2007] a penalty of about 3 is used for the SIMP stiffness interpolation.
This can be due to the local modes which occur when a patch of elements reach a density
close to 0.1. The problem is increasing as number of elements is increased, but it can be
reduced by tuning the move limit and the penalty for the problem. E.g. for the Olhoff(c)
problem with 3200 elements, a SIMP penalty of 3.2 and a move limit of 0.08 result in a good
solution without encountering local modes. It is difficult to know what penalty exactly is
used in Du and Olhoff [2007],and the move limit also have an influence if the peak in the
inverse Rayleigh must be avoided, and if the number of elements are increased the problem
enhances. In Figure 4.58 and 4.59 the Olhoff(c) problem with 12800 elements are solved
with SIMP and RAMP stiffness interpolation. From this it is seen that RAMP stiffenss in-
terpolation avoids local modes as opposed to the SIMP stiffness interpolation, which is the
main reason for using the RAMP interpolation rather than SIMP.

0 50 100 150 200 250
0

100

200

300

400

500

600

700

800
Eigenfrequency (407.19 [rad/s])

Iter

Fr
eq

ue
nc

y 
[r

ad
/s

]

Figure 4.58: The frequency plot from
solving Olhoff(c) boundary conditions
using 12800 elements, SIMP stiffness
interpolation with a penalty of 3, sen-
sitivity filter with r=3 and Olhoff-Du(c)
mass interpolation.
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Figure 4.59: The frequency plot from
solving Olhoff(c) boundary conditions
12800 elements, RAMP stiffness inter-
polation with a penalty of 8, sensitivity
filter with r=3, Olhoff-Du(c) mass inter-
polation and a lower bound of 10−8.

4.8 Mass Matrix

Two different mass matrix representations are available in the code, a consistent and a
lumped. In the MATLAB code both matrices are implemented on basis of Cook et al. [2002].
In ANSYS the implemented matrices are used.
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The consistent element mass matrix [me] is symmetric, full and positive definite, and the
global mass matrix [M] has the same sparse topology as the global stiffness matrix [K]. The
lumped mass matrix has only entries on the diagonal.

To show the difference between the two matrices a mesh refinement study is conducted.
The boundary condition is Olhoff(c), and all elements have a density of 50%.

The relative error ε is calculated as in equation (4.1), the ten lowest eigenfrequencies are
used and ω

re f
i are the converged eigenfrequencies with a precision of two decimals, which

are found during mesh refinement.

ε =
10

∑
i=1

∣∣∣ωi−ω
re f
i

∣∣∣
ω

re f
i

100 (4.1)
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Figure 4.60: The relative error in fre-
quencies for the MATLAB Q4 element
using consistent and lumped mass ma-
trix.
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Figure 4.61: The relative error in fre-
quencies for the PLANE82 element us-
ing consistent and lumped mass matrix.

As illustrated on Figure 4.60 and 4.61 the difference between a consistent and lumped mass
matrix is minor for this case.
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Figure 4.62: Convergence of the ninth eigenfrequency. Calculated using MATLAB Q4
element with mesh refinement.

If the element stiffness is not softened by low-order integration rules, and the mass matrix is
consistent, then computed natural frequencies are upper bounds to the exact frequencies of
the mathematical model. [Cook et al., 2002]. On Figure 4.62 it is seen that using the consis-
tent mass matrix the computed eigenfrequencies are upper bounds of the exact frequencies,
this is not the case when using lumped masses as also illustrated on Figure 4.62.

In this specific case the lumped mass matrix often results in improved results using the
same mesh. This is partly due to the simple geometry and the square elements. If a complex
shape and distorted elements were used the error using lumped mass matrix might have been
larger than using a consistent mass matrix.

Using lumped mass the reduction in computational is time negligible for small problems.
But when using ANSYS as solver, ANSYS will write relatively large amounts of data to the
hard drive if the computer is lacking memory, and since only the diagonal is saved when us-
ing lumped masses the mass matrix uses a lot less memory. Furthermore the slow process of
writing to the hard drive can be avoided. Therefore the lumped mass matrix is recommended
especially for large problems.

4.9 Choice of Element

As described in section 3.2 different elements are implemented. In the MATLAB code a 2D
bilinear Q4 plane stress element is implemented in the MATLAB program. The element is
implemented in the same manner as in Sigmund [2001]. This simple element requires a filter
in order to avoid the checkerboard pattern in the topology as described in section 4.10. Thus
a sensitivity filter is used to obtain mesh independent solutions. When ANSYS is used as the
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solver it is easy to switch between different types of elements as described in section 3.2. The
difference between the elements is investigated in this section. The standard configuration is
used. The result for each of the different element types is listed in Table 4.8.

Table 4.8: Dependency of the element type on the final topology.

Element Type
ω1[rad/s]

TopologyIter
MoD [%]

MATLAB Q4
402.16 Density Plot at Iter No.138 Volume Fraction  50.0%

138
11.7

PLANE42
401.62 Density Plot at Iter No.132 Volume Fraction  50.0%

132
11.8

PLANE42QM6
400.60 Density Plot at Iter No.139 Volume Fraction  50.0%

139
11.7

PLANE82
396.31 Density Plot at Iter No.148 Volume Fraction  50.0%

148
11.8

Table 4.8 shows the difference between the different element types is negligible, as long as
the sensitivity filter is used. The MATLAB element is the fastest for small problems, and the
PLANE42 for large problems. Especially the PLANE82 elements is significantly slower and
the results are remarkable similar for constant volume fractions.

Three more elements are available in the ANSYS code which are newer versions of the
shown elements, but there are no advantages by using them, thus these are not discussed.
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As Figure 4.63 shows the MATLAB solver is faster when using less than 30,000 elements.
This is due to the time spend on opening and closing ANSYS. It is clear, that the eight
node PLANE82 element is relatively slow compared to the ANSYS PLANE42 Q4. When
using the different elements with a mesh independent filter no benefits are obtained using
the PLANE82 element it is recommended using Q4 elements. One advantage using a higher
order element is that a filter is not necessary to avoid checker boards, this is shown in section
4.10.
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Figure 4.63: Computation time for ten iterations as a function of number of elements

Exactly the same is the case when using SIMP, the same topology is obtained using different
elements as long as the filter settings are the same.

4.10 Filtering

As stated in section 4.9 Q4 elements has a problem of creating the so-called checkerboard,
see Table 4.9. As seen in the table it is not a problem for Q8 elements. Using filtering it is
possible to remove these checkerboards which is also shown in Table 4.9. Using a too small
filter, e.g. filter radius of 1.1, it is seen that the one node hinges are not avoided, thus a filter
which both prevents checkerboards and one node hinges are desired.
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Table 4.9: Formation of checkerboard. Results using a sensitivity filter with radius of 1.5
are seen in Table 4.10.

Filter radius ω1[rad/s]
Topologyand Iter

Element Type MoD [%]

0 437.22 Density Plot at Iter No.147 Volume Fraction  49.8%

MATLAB Q4 147
6.6

0 418.09 Density Plot at Iter No. 92 Volume Fraction  49.8%

ANSYS Q8 92
12.3

1.1 426.74 Density Plot at Iter No.270 Volume Fraction  49.9%

MATLAB Q4 270
10.9

1.1 421.66 Density Plot at Iter No.238 Volume Fraction  49.9%

ANSYS Q8 238
9.9

Furthermore if mesh refinement is used while keeping the filter radius constant, then the
solution becomes mesh dependent, as seen in the latter three topologies in Table 4.10. How-
ever by keeping the filter radius constant with respect to the geometry, it is seen, that mesh
independent designs can be obtained as seen in the first three topologies in Table 4.10. As
seen in the table a mesh dependent solution allows for the construction of small members,
thus it is possible to obtain higher fundamental frequencies compared to the mesh indepen-
dent filtering.
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Table 4.10: Mesh independent filtering for Olhoff(c) boundary conditions

Filter radius ω1[rad/s]
Topologyand Iter

Mesh MoD [%]

1.5 401.98 Density Plot at Iter No.141 Volume Fraction  50.0%

3200 141
11.8

3.0 398.18 Density Plot at Iter No.154 Volume Fraction  50.0%

12800 154
11.8

4.5 404.93 Density Plot at Iter No.163 Volume Fraction  50.0%

28800 163
12.3

1.5 437.22 Density Plot at Iter No.178 Volume Fraction  50.0%

12800 178
7.1

1.5 454.51 Density Plot at Iter No.363 Volume Fraction  50.0%

28800 363
6.0

1.5 462.36 Density Plot at Iter No.531 Volume Fraction  50.0%

51200 531
5.7

The results in Table 4.10 are obtained using RAMP with sensitivity filtering. A density filter
is also implemented, which is done on basis of Sigmund [2007] and Andreassen et al. [2011].
During testing of the density filter it is observed, that the performance is much worse than
using the sensitivity filter this is shown in Table 4.11.
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Table 4.11: Density filtering for Olhoff(c) boundary conditions.

Filter radius ω1[rad/s]
Topologyand Iter

Mesh MoD[%]

1.5 518.00 Density Plot at Iter No. 90 Volume Fraction  44.4%

3200 90
12.8

1.5 413.85 Density Plot at Iter No.209 Volume Fraction  49.9%

12800 209
16.6

1.5 442.03 Density Plot at Iter No.210 Volume Fraction  49.4%

28800 210
13.8

4.11 Optimizing for Specific Frequencies

Up until now the focus has been on maximizing the lowest frequency and investigate the
different behavior of the code when changing the settings. Now the focus will change on
how to obtain a topology that fulfills the request of matching a set of specific eigenfrequency.
Optimization in this section is conducted using the standard configuration.

In order to target specific frequencies the f and g constraints must be changed. As de-
scribed in section 2.4.1 the new constraint functions are split up into two types, i.e. target
frequencies and remaining frequencies. The NT target frequencies are formulated so the
deviation must be minimized as stated in equation (2.31) and repeated here.

f j(xi) =
(

λ j−λ
(t)
j

)2
, j = 1, . . . ,NT (2.31)

From this it is seen, that in order to minimize f j, λ j = λ
(t)
j . The sensitivities are given as:

∂ f j

∂xi
= 2

(
λ j−λ

(t)
j

)
∂λ j

∂xi
(4.2)

The remaining eigenvalues are subjected to a “safety-zone” constraint which defines the
minimum value for the remaining eigenfrequencies. Later in this section the effect of the
safety-zone is shown. The purpose of the safety-zone is to force non specified modes away
from the target eigenpairs, this will ensure that the response is governed by the specified
eigenfrequencies.

61



4 Code Development and Verification

In Table 4.12 a list of results obtained targeting various (lowest) frequencies are shown. It
is easily seen that the algorithm is able to obtain topologies with specific frequencies. If the
target frequency is too low it is not possible to obtain a topology with a frequency as low at
the target frequency. On the other hand if the target frequency is too high, the algorithm will
violate the volume constraint in an attempt to obtain a topology with the target frequency.

Table 4.12: Results when targeting various specified fundamental frequencies using Ol-
hoff(c) boundary conditions. No safety-zone is applied.

Target ω1[rad/s]
Topologyω1[rad/s] Iter

MoD [%]

399.17 Density Plot at Iter No.360 Volume Fraction  50.0%

MAX-MIN 360
13.2

397.90 Density Plot at Iter No.229 Volume Fraction  50.0%

400 229
12.4

349.84 Density Plot at Iter No. 60 Volume Fraction  49.9%

350 60
32.7

150.03 Density Plot at Iter No.  8 Volume Fraction  49.8%

150 8
98.4

15.56 Density Plot at Iter No. 41 Volume Fraction  40.4%

10 41
32.6

329.75 Density Plot at Iter No.105 Volume Fraction  86.9%

500 105
3.8

The penalty on the stiffness alone is not sufficient in order to obtain 0-1 designs, since the
algorithm has no disadvantage by choosing a non discrete density. It might be advantageous
to choose intermediate densities if the frequency is higher than the target frequency (ωt),
whereas it is beneficial from a max-min point of view to choose 0 or 1. One solution to this
problem is suggested in section 4.12.

It is possible to target as many eigenfrequencies as the number of eigenpairs extracted. How-
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ever in order to have information concerning the higher frequencies it is recommended to
extract at least twice the amount of eigenpairs.

In Table 4.13 three topologies are shown here the fundamental frequency is specified to tar-
get 300 [rad/s]. The difference exist for the second target eigenfrequency (ω(t)

2 ). For the first
topology ω

(t)
2 is not specified, whereas for the latter two it is given as 400 and 500 [rad/s]

respectively.
From the table it is seen, that it is possible to target a higher and lower frequency for the

second eigenfrequency than the one where it is not specified.

Table 4.13: Topologies obtained for various specified frequencies illustrating the capability
of obtaining different frequencies for ω2.

Target ω1[rad/s]

Topology
ω
(t)
1 [rad/s] ω2[rad/s] Iter

ω
(t)
2 [rad/s] ω3[rad/s] MoD [%]

ω4[rad/s]

ω1=298.0 Density Plot at Iter No. 81 Volume Fraction  50.0%

ω
(t)
1 = 300 ω2=461.1 81

ω
(t)
2 = None ω3=662.5 50

ω4=763.2
ω1=299.3 Density Plot at Iter No. 50 Volume Fraction  50.0%

ω
(t)
1 = 300 ω2=402.4 50

ω
(t)
2 = 400 ω3=637.7 52.8

ω4=652.0
ω1=300.1 Density Plot at Iter No. 55 Volume Fraction  49.9%

ω
(t)
1 = 300 ω2=500.0 55

ω
(t)
2 = 500 ω3=694.3 45.4

ω4=811.4

When targeting eigenvalues it might be, that the higher eigenfrequencies are too close to the
target frequencies, thus these must be removed.

The safety-zone is given as a relative number i.e.:

ωsa f ety = ωsz +max
(

ω
(t)
)

ωsa f ety can be rewritten to eigenvalues (λsa f ety), thus giving the g constraints from equa-
tion (2.32) as:

gk(xi)−gk = λsa f ety−λk ≤ 0, k = NT +1, . . . ,N (4.3)
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Table 4.14: Effect of safety-zone on final topology.

Target ω1[rad/s]

Topology
ω
(t)
1 [rad/s] ω2[rad/s] Iter

ω
(t)
2 [rad/s] ω3[rad/s] MoD[%]

ωsz[rad/s] ω4[rad/s]

ω1=299.5 Density Plot at Iter No. 50 Volume Fraction  50.0%

ω
(t)
1 = 300 ω2=400.2 50

ω
(t)
2 = 400 ω3=637.0 52.8

ωsz = 410 ω4=648.4
ω1=299.9 Density Plot at Iter No. 44 Volume Fraction  49.9%

ω
(t)
1 = 300 ω2=400.6 44

ω
(t)
2 = 400 ω3=658.1 59.7

ωsz = 625 ω4=688.4
ω1=300.0 Density Plot at Iter No. 91 Volume Fraction  49.9%

ω
(t)
1 = 300 ω2=399.8 91

ω
(t)
2 = 400 ω3=721.4 60.4

ωsz = 700 ω4=792.7
ω1=299.8 Density Plot at Iter No.1001 Volume Fraction  53.7%

ω
(t)
1 = 300 ω2=399.8 1001

ω
(t)
2 = 400 ω3=1194.5 20.6

ωsz = 1200 ω4=1195.4

From Table 4.14 it is seen, that when the safety-zone is small, then the final topology is not
affected, which is as expected since the constraint is inactive. Raising the safety-zone it is
seen, that the topology changes, and if a too large safety-zone is chosen it is not possible to
fulfill the constraint.

But it is also seen, that even though the safety-zone is not fulfilled the lowest frequencies
are close to the target frequency. Still many gray elements are present as seen in the table.
One method to eliminate these is presented in the following section.

4.12 Eliminating Gray Elements

Since RAMP and SIMP stiffness interpolations are used no information concerning the phys-
ical properties of gray elements are present. When topology optimizing a 3D structure
the density represent the material properties, and if the optimum topology contains a large
amount of intermediate densities it is difficult to interpret the design. Therefore the results
shown in Tables 4.12 to 4.14 are of little interest. In this section one method to obtain a dis-
crete design is presented, first the method is tested on the max-min Olhoff(c) problem, and
it is then implemented in order to reduce the intermediate densities when targeting specific
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frequencies.

The method used here is based on the measure of discreteness from equation (2.36). In
appendix A it is seen, that the “y” variables are present both in the descent function, but also
in the constraints. This is used to obtain a low measure of discreteness.

Using the same approach as for the “safety zone” the constraint based on the measure of
discreteness is defined as:

g = MoD−MoD(t)

Here MoD(t) is the target measure of discreteness. Inserting this into the MMA formulation
in equation (A.1) the constraint will have the form:

MoD−MoD(t)− y≤ 0 (4.4)

It is seen, that the y variable will attain a value higher than zero when the measure of dis-
creteness is above the target measure of discreteness. The value of the y variable is included
in the descent function, thus raising the value of this. When the target eigenfrequencies
are reached the measure of discreteness must be lowered in order to attain a lower descent
function value, thus making it uneconomical to have intermediate densities.

In order to have a small as possible influence on the solution, this constraint is weighted
very low at the beginning of the optimization and then gradually raised to penalize gray
elements. This is done by altering the c constant of the MMA algorithm.
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Table 4.15: Effect of discreteness constraint on the final topology when varying the element
size using a mesh independent sensitivity filter.

Discreteness ω1[rad/s]
TopologyTarget and Iter

Mesh MoD [%]

400.74 Density Plot at Iter No.275 Volume Fraction  50.0%

MoD(t) = None 275
3200 12.0

406.71 Density Plot at Iter No.185 Volume Fraction  50.0%

MoD(t) = 0% 185
3200 7.4

403.52 Density Plot at Iter No.432 Volume Fraction  51.4%

MoD(t) = 0% 432
12800 3.6

In Table 4.15 the effect of the discreteness constraint is shown. It is clear from the two top
figures that the same topology and a more discrete design is obtained. The topology has
generally not changed by adding the discreteness constraint, even though the discreteness
target is as low as 0%.

Note that the discreteness constraint is not fulfilled, this is due to the low c constant for
the measure of discreteness used in the MMA formulation. The goal here is to obtain a solu-
tion with a clear topology not to obtain a solution where the measure of discreteness is 0%. In
the lower illustration of Table 4.15 the topology when using a finer discretization is shown.
It shows how the measure of discreteness can be improved when using a finer mesh. This is
an effect of the better representation of the topology. Note that the radius of the sensitivity
filter is set, so mesh independent solutions as described in section 4.10 are obtained, and
the convergence criteria is lowered to 0.005 to avoid convergence before a discrete design is
obtained.

On Figure 4.64 the c constant for the measure of discreteness of the middle solution in
Table 4.15 is shown as a function of the iterations. The constraint is active in the first it-
eration since the measure of discreteness starts at 50%, but because the discreteness constant
in the MMA formulation starts at 5 ·10−5 it has nearly no influence on the descent function.
The c constant is gradually increased by 0.004 if the change in MoD is less than 3% over the
last four iterations. This ensures a steady decrease in MoD.
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Figure 4.64: The discreteness penalty (c constant) as a function of iterations. The Measure
of Discreteness target is 0%. This target is newer reached as seen on Figure 4.66.

The difference in MoD when using the discreteness constraint and not using it is illustrated
in Figure 4.65 and 4.66, where it is seen, that there is no difference in the first 50 iterations
until the c constant from Figure 4.64 gradually is increased. The discreteness c constant is
intentionally kept low at the beginning, and raised in small steps. This is done it order to
give the targeting of the frequencies more importance, and then remove the gray elements
after the frequencies are targeted.
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Figure 4.65: The Measure of Discrete-
ness as a function of the iterations with-
out a discreteness target, corresponding
to the top picture in Table 4.15.
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Figure 4.66: The Measure of Discrete-
ness as a function of the iterations with a
discreteness target of 0%, corresponding
to the middle picture in Table 4.15.

4.12.1 Targeting frequencies

As described in section 4.11 the problem is more difficult when targeting a specific fre-
quency, especially if the frequency is relatively low. In Table 4.16 5 results are listed. Here
three of them are constrained with a measure of discreteness of 0%. It is not recommended
to specify a measure of discreteness of 0% and it is highly unlikely that any algorithm will
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achieve a measure of discreteness that low. This is only conducted here to show the extreme
case and investigate how low a measure of discreteness it is possible to obtain.

In the first two illustrations in Table 4.16 only one target frequency is desired. The difference
between using a discreteness constraint and not is seen. Using the measure of discreteness
as a constraint effects the topology, since it nearly only consisting of 0 and 1 densities.

Table 4.16: Effect of Measure of Discreteness on the final topology when targeting frequen-
cies.

Target ω1[rad/s]

Topologyω
(t)
1 [rad/s] ω2[rad/s] Iter

ω
(t)
2 [rad/s] ω3[rad/s] MoD[%]

MoD(t)[%] ω4[rad/s]
ω1=298.0 Density Plot at Iter No. 81 Volume Fraction  50.0%

ω
(t)
1 = 300 ω2=461.1 81

ω
(t)
2 = None ω3=662.5 50

MoD(t)= None ω4=763.2
ω1=298.9 Density Plot at Iter No.174 Volume Fraction  49.8%

ω
(t)
1 = 300 ω2=303.5 174

ω
(t)
2 = None ω3=405.1 1.8

MoD(t)= 0 ω4=428.5
ω1=300.1 Density Plot at Iter No. 55 Volume Fraction  49.9%

ω
(t)
1 = 300 ω2=500.0 55

ω
(t)
2 = 500 ω3=694.3 45.4

MoD(t)= None ω4=811.4
ω1=297.2 Density Plot at Iter No.206 Volume Fraction  50.0%

ω
(t)
1 = 300 ω2=494.5 206

ω
(t)
2 = 500 ω3=499.5 2.9

MoD(t)= 0 ω4=618.3
ω
(t)
1 = 300 ω1=299.4 Density Plot at Iter No.266 Volume Fraction  50.0%

ω
(t)
2 = 500 ω2=498.9 266

MoD(t)= 0 ω3=549.6 3.2
ωsz= 50 ω4=622.3

In illustration three and four the two lowest frequencies are targeted, note that ω2 is moved
from 303.5[rad/s] to 494.5[rad/s] and how the topology change. The measure of discrete-
ness is slightly higher compared to targeting only one frequency and ω2 and ω3 are relative
close. This could be a problem, therefore a safety zone of 50[rad/s] is added to the problem
formulation. The results are shown as the last illustration in Table 4.16. The two targeted
frequencies are within 0.3% of the desired values, which is better than expected and the mea-
sure of discreteness are still sufficiently low.
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It seems that the method of constraining the design to a low measure of discreteness
results in discrete topologies. One problem is, that the connectivity of the last topology is
lost, and many one-node hinges are present. These problems are due to the target for measure
of discreteness has been 0% , this is the extrema and depending on the mesh size, geometry
and material at disposal. A measure of discreteness of less than 10% should be enough in
practical applications, since it provides a clear topology without the existence of one-node
hinges.

4.13 Mode Tracking

Mode tracking, as described in section 2.3, is a method for measuring the difference between
two eigenvectors. This method can be used to track or identify the modes as the topology
changes. First a reference vector is created which represent the mode shape to be tracked.
This reference vector is then compared to the eigenvectors obtained in an iteration. If the
MAC value is close to one the modes are considered identical and the mode shape is identi-
fied. Since the eigenmodes are linear independent one mode should have a MAC value much
higher than the others, meaning it is possible to track the modes through the iterations.

The important part is how to create a reference vector which represent the desired mode,
since it is difficult to construct a reference vector which describes the global shape of a
mode before the optimization is initiated. Therefore the method presented here will use an
eigenvector calculated during the optimization as the reference vector.

It is convenient to pick the reference mode as the eigenvectors obtained in the first itera-
tion, this might create some problems. Since the topology changes during the optimization
the desired mode is not necessarily one of the lowest eigenmodes, thus cannot be selected
in the first iteration. If one of these modes are to be tracked the user is able to associate the
modes during the optimization using the "Associate Modes" button. Only the modes associ-
ated with a reference frequency are tracked using MAC. This allows higher modes to switch
and ensuring that the problem is not unnecessary constrained.

The button enables the user to select the reference modes during the optimization and
makes it possible to reselect a new set of reference modes as the topology change during
the optimization. In some cases the best strategy is to associate the modes in the first few
iterations while in other cases it may be advantageous to wait until a desired mode is present.

The MAC values for global modes appears to retain a value close to one although the
topology might have changed considerably. Therefore there is no reason to redefine the ref-
erence mode in each iteration.
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The implemented method has some drawbacks. It is difficult to produce the same results
several times, since it requires user input to associate the modes. But if the desired modes
are present after the first iteration it is relatively quick to associated the modes.

4.13.1 Mode Switching

An example where the fourth mode shape is moved down as the second mode is illustrated on
Figure 4.67 and 4.68. This example is based on the last solution from Table 4.16. The target
frequencies are still ω

(t)
1 =300, ω

(t)
2 =500 and ωsz=50, but MoD(t) is increased from 0% to 5%.

The modes are associated in iteration 37, because the fourth mode in Figure 4.67 needs to be
present before it can be associated as a reference mode shape. The MoD is approximately
16% when the modes are associated in iteration 37.

Mode 1: 300.8[rad/s]

Mode 2: 483.9[rad/s]

Mode 3: 645.4[rad/s]

Mode 4: 670.5[rad/s]

Figure 4.67: The four mode shapes
in iteration 37 where the first mode
is associated with a target frequency
of 300[rad/s] and the fourth mode is
associated with a target frequency of
500[rad/s].

Mode 1: 302.6[rad/s]

Mode 2: 502.4[rad/s]

Mode 3: 550.2[rad/s]

Mode 4: 646.1[rad/s]

Figure 4.68: The four mode shapes af-
ter convergence in iteration 120. Here
the breathing mode is moved from the
fourth to the second mode.

This results in a clear 0-1 topology where the frequencies and modes are close to the desired
values. The change in frequencies through the iterations is shown on Figure 4.69. Since
the topology changes the most in the first 20 iterations the modes also changes a lot while
they are switching. This appears as a "zig zag" behavior in the frequency plot. After ap-
proximately 20 iterations the four lowest frequencies stop switching until the fourth mode
is associated with the second eigenfrequency at iteration 37. Here it is seen, that the third
eigenvalue drops, thus switches with the second while the fourth mode is moved down as the
second mode shape.
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Figure 4.69: The change in frequencies through the iterations. The fourth mode is asso-
ciated with the second frequency target of 500[rad/s] in iteration 37, after which the three
highest modes are switching.

In Table 4.17 the results with and without the mode switching is listed. The two topologies
are alike but the small difference is enough to change the respond of the structure signifi-
cantly. As it is clear form Figure 4.67 and 4.68 the breathing mode is moved from the fourth
mode all the way down to the second mode, and this is while the frequency of the modes are
changed to the target value. The difference between the desired frequencies and the actual
frequencies are less than 1%. The safety zone is nearly fulfilled and the design is a clear 0-1
design. This proves that it is possible to use optimization methods to produce designs with a
specific response.

Table 4.17: Targeting frequencies with measure of discreteness, safety zone and associating
modes. Top result: without mode switching. Bottom result: A breathing mode is associated
with the second eigenfrequency.

Target ω1[rad/s]

Topologyω
(t)
1 [rad/s] ω2[rad/s] Iter

ω
(t)
2 [rad/s] ω3[rad/s] MoD[%]

MoD(t)[%] ω4[rad/s]

ω
(t)
1 = 300 ω1=299.4 Density Plot at Iter No.266 Volume Fraction  50.0%

ω
(t)
2 = 500 ω2=498.9 266

MoD(t)= 0 ω3=549.6 3.2
ωsz= 50 ω4=622.3

ω
(t)
1 = 300 ω1=302.6 Density Plot at Iter No.120 Volume Fraction  49.8%

ω
(t)
2 = 500 ω2=502.4 120

MoD(t)= 5 ω3=550.2 4.8
ωsz= 50 ω4=646.1
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Although this example seems to be relatively easily solved one could be mislead to believe,
that this is always the case. In this example the breathing mode which is relatively decoupled
from the three bending modes, making it easer to switch with the bending modes. It is much
tougher to switch two bending modes because they are closely related.

4.14 3D Implementation of the Code

Before the test rig for the nacelle is designed the 3D implementation of the code is tested on
a structure which resemble the nacelle.

Since the 3D code is an extension of the 2D code the flow of the code is the same as in
Figure 3.1 with the only exception of ANSYS being the only implemented solver.

Compared to a 2D problem, a 3D problem requires more elements to provide a good
description of the design area since a representation in 3D is needed. Furthermore more
degrees of freedom are present in each element. This is seen by considering the simplest 3D
brick element i.e. the 8 node trilinear brick element to its 2D counterpart; the 4 node plane
bilinear Q4 element. It is seen, that three times as many degrees of freedom are present in
the brick element compared to the plane element. Furthermore, the bandwidth of the global
stiffness matrix is much larger. This results in a longer computation time, and higher memory
requirement. A problem can easily be formulated larger than a normal or fast desktop PC
can possible handle, and the computational times easily multiplied with of factor of 100
compared to a 2D problem. For simple structures this results in computation time increases
from a couple of minutes to several hours.

An other problem is, that a fine representation of the design space is desired, thus causing
the amount of elements to increase dramatically since a halving of the element size result in
eight times as many elements. An ANSYS Academic Teaching Advanced license is used and
a too fine mesh will violate the license restrictions. Using an ANSYS Academic Teaching
Advanced license the maximum number of nodes and elements is restricted to 256,000.

This will also pose a problem when optimizing the test rig. This is further discussed in
chapter 5.

To verify it is possible to handle a 3D problem just as well as the 2D problems the struc-
ture in Figure 4.70 is optimized. The structure is a rectangular design domain fixed at the
bottom with a volume of (2200 × 3000 × 4000 [mm]), as illustrated on Figure 4.70. The
settings for the optimizations are seen in Table 4.18. This example represents a version of the
test rig problem in chapter 5. Therefore a plate with a thickness of 200 [mm] is predefined
at the top. As seen in Table 4.18 the model is meshed with 100 [mm] SOLID45 elements
giving 22 × 30 × 40 elements in each direction. The elements in the plate are specified

72



4 Code Development and Verification

being massive and represents the nacelle in this example.

Massive

?

3000mm 2200mm

4
0
0
0
m

m

Figure 4.70: The rectangular design domain fixed at the bottom.

In the rectangular design domain the density is initially evenly distributed. The first two
modes are bending modes. These modes are used when optimizing for specific frequencies.

The problem is solved in four different ways. In the first example the fundamental fre-
quency is maximized. The second where the lowest bending mode is matched to the lowest
target frequency and the other bending mode to the second target frequency. The third is
similar to the second besides a safety zone of 20 [Hz] is applied, and finally in the fourth
example the two modes are swapped, and is otherwise similar to the third example.

Treating the problem as a max-min the topology in Figure 4.71 is found. The four fre-
quencies listed in Table 4.19 indicate the maximum frequency possible to specify as target
frequency.

Subsequently the example is treated as a problem where ω1 and ω2 are specified to 30
and 80 Hz. In the second row of Table 4.19 the results from the topology optimization is
seen. It is seen, that the frequencies are within 1.5 [Hz] of the target frequencies. However
the Measure of Discreteness is not fulfilled. The topology on Figure 4.72 is seen to contain
elements which are connected to low density elements. This does not cause local modes and
when interpreting the design these elements are removed.

Since the second and third eigenfrequencies are close a safety zone of 20 [Hz] is applied.
From Table 4.19 it is seen, that all constraints are fulfilled while the frequencies are within
1.5 [Hz] of the target frequencies. The topology is seen in Figure 4.71.

Finally the first two bending modes are associated with the opposite frequencies in the
second iteration, this results in a completely different topology although the two first frequen-
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cies are nearly the same, as illustrated on Figure 4.73 and 4.74. It is seen, that the deviation
is slightly larger (2.2 [Hz]), however the constraints are fulfilled.

Table 4.18: Settings for the 3D analyzes.

NE 26,400
Element Size 100 [mm]
Element Type SOLID45
Volume Fraction 30 %
N 12
BC As Figure 4.70
Filter Sensitivity r=1.5
Convergence max(∆x)≤ 0.01
Mass Matrix Lumped
Stiffness Interpolation RAMP q = 8
Mass Interpolation Olhoff-Du(c)
Min Density 10−8

Max Iterations 1000
Discreteness Target 5%
Material Stiffness 210,000 [MPa]
Material Density 7800 [kg/m3]

Table 4.19: The results for a max-
min, two target and a target optimization
where mode 1 and 2 are switch during
the optimization.

No.

ω
(t)
1 [Hz] ω1[Hz] Topology

ω
(t)
2 [Hz] ω2[Hz] Iter

ωsz[Hz] ω3[Hz] MoD [%]
MoD(t)[%] ω4[Hz] Resource [%]

1

ω
(t)
1 = None ω1=92.1 Figure 4.71

ω
(t)
2 = None ω2=92.2 737

ωsz= None ω3=141.6 5.2
MoD(t)=5 ω4=155.1 30

2

ω
(t)
1 = 30 ω1= 29.8 Figure 4.72

ω
(t)
2 = 80 ω2= 81.3 161

ωsz= None ω3= 84.3 5.5
MoD(t)= 5 ω4= 88.7 29.3

3

ω
(t)
1 = 30 ω1=29.8 Figure 4.73

ω
(t)
2 = 80 ω2=81.1 181

ωsz= 20 ω3=101.2 5.0
MoD(t)= 5 ω4=107.9 26.4

4

ω
(t)
1 = 30 ω1=32.2 Figure 4.74

ω
(t)
2 = 80 ω2=81.7 135

ωsz= 20 ω3=104.9 5.0
MoD(t)=5 ω4=112.8 27.6

From the different examples it is seen, that the 3D code (as the 2D code) is able to obtain
discrete topologies both when maximizing the fundamental frequency, and when targeting
frequencies while using mode tracking.

As seen throughout this chapter a method which has the ability to match the eigenpairs
from a model to a specified number of eigenpairs successfully is implemented. Referring to
section 1.1 it is seen, that the research objective, i.e. Match a specified number of distinct
(simple) eigenfrequencies and -modes to a desired set of frequencies and modes by making a
topology optimization code, is fulfilled.

Since the objective is fulfilled the problem from FS Dynamics is now undertaken. Here
the code is used to design a test rig for a wind turbine nacelle.
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Figure 4.71: The topology obtained af-
ter 737 iterations using the configura-
tions from Table 4.18 and 4.19 solving
the maxmin problem.

Figure 4.72: The topology obtained af-
ter 161 iterations using the configura-
tions from Table 4.18 and 4.19 targeting
two frequencies.

Figure 4.73: The topology obtained af-
ter 181 iterations using the configura-
tions from Table 4.18 and 4.19 targeting
two frequencies and with a safety zone of
20 Hz.

Figure 4.74: The topology obtained af-
ter 135 iterations using same configura-
tions as Figure 4.73. Here ω1 and ω2
are associated with mode 2 and 1 respec-
tively in the second iteration.
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CHAPTER 5
Design of Test Rig for Wind Turbine Nacelle

In this chapter the code presented in chapter 3 and 4 is used to design a test rig for a wind tur-
bine nacelle. As stated in chapter 1 this application of the code comes from the collaboration
with FS Dynamics AB. The wind turbine model provided by FS Dynamics AB represents a
simple version of a wind turbine. This poses no problem, since the final topology is a proof
of concept showing the capabilities of the developed code. If the code has the ability of find-
ing a suitable topology for the simple wind turbine nacelle it is also able to find a topology
for a more complex structure.

The test rig is limited to a much smaller height than the wind turbine tower and it has to
have the same response. The requests for the test rig are:

• Maximum dimensions 4000×5000×6500 [mm] (Height × width × depth)

• Match the two lowest eigenfrequencies from the wind turbine model

• Match the two lowest mode shapes from the wind turbine model

This chapter contains a presentation of the provided wind turbine model, an analysis of the
model, preparations of the model in order to reduce the iteration time and lastly the code is
applied to design the topology of the test rig for the wind turbine nacelle.

5.1 Presentation and Analysis of the Provided Model

In this section the wind turbine model provided by FS Dynamics is analyzed. The structure
is a simple version of a wind turbine model, and is created in ANSYS ADPL programming
language.

The top part of the model is depicted on Figure 5.1. The model consists of a tower and
a nacelle structure. The tower is 90 [m] high, and conically shaped with an outer diameter
of 4200 [mm] at the bottom and 3000 [mm] at the top. The wall thickness of the tower is 22
and 16 [mm] at the bottom and top respectively.
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Figure 5.1: The top part of the wind turbine model provided by FS Dynamics AB [FS
Dynamics, 2012].

An illustration of the different parts of the nacelle is seen on Figure 5.2 (bed frame, bearings,
frame structure, shaft, hub + blades, gearbox and generator) and a plot of the beam sections
and solid elements are seen on Figure 5.3. In Table 5.1 the masses for the parts are listed. As
seen in Table 5.1 the model consists of different element types. To couple these, constraint
equations are defined. In the model all couplings are rigid and are illustrated on Figure 5.4.
The following couplings exist:

• Bed frame - Bearings

• Bed frame - Gearbox

• Bed frame - Frame structure

• Frame structure - Generator

• Bearings - Shaft

• Shaft - Hub + blades

• Shaft - Gearbox

Furthermore a coupling exists between the bed frame and an artificial dummy mass in the
origin (on Figure 5.1 to 5.4). The artificial mass is used to model the interface between the
nacelle and tower/test rig. Furthermore when analyzing the nacelle without the tower the
support is located in the artificial mass.
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Figure 5.2: Plot of the provided nacelle. * displays discrete masses.

Figure 5.3: Plot of the solid elements and beam sections for the nacelle.

Shaft – Hub 

+ blades

Shaft – 

Gearbox

Frame - 

Generator
Bed frame – 

Gearbox

Bed frame – 

Frame

Bed frame – 

Frame
Bearing - 

Shaft

Bed frame – 

Dummy mass

Bed frame – 

Bearings

Figure 5.4: Plot of the couplings in the nacelle.
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In Table 5.2 the elements used to model the nacelle are listed. Together with 10 BEAM189
elements in the tower, a total of 28,072 elements are used.

Table 5.1: Parts and corresponding mass
for the nacelle.

Part Mass [tonne] Element type

Bed frame 72 Solid
Bearings 30 Solid
Shaft 6 Beam
Frame 11 Beam
Hub + blades 60 Mass
Gearbox 55 Mass
Generator 52 Mass
Total 286

Table 5.2: Elements in the nacelle.
Names from ANSYS are used.

Element type Number

SOLID187 24,837
BEAM189 77
MASS21 4
TARGE170 3,052
CONTA174 92

A simulation where the first ten eigenpairs are calculated is preprogrammed for the provided
model. The calculated eigenpairs are seen in Table 5.3.

Table 5.3: Eigenfrequencies and associated eigenmodes for the wind turbine model.

Frequency [Hz] Mode shape

ω1 0.174 First tower bending around x-axis (Figure 5.5)

ω2 0.263 First tower bending around y-axis (Figure 5.6)

ω3 1.769 Second tower bending around x-axis

ω4 1.897 Nacelle frame wriggle

ω5 2.630
Second tower bending around y-axis +

nacelle frame wriggle

ω6 3.696
Second tower bending around x-axis +

first nacelle frame bending

ω7 5.895 Second tower and nacelle bending around x-axis

ω8 6.743 Second tower bending around y-axis

ω9 7.612
Second tower bending around x-axis +

shaft and nacelle frame bending

ω10 9.605
Third tower bending around x-axis +

shaft and nacelle frame bending

From Table 5.3 it is seen that the two bending eigenpairs which are desired for the test rig
have corresponding eigenfrequencies of ω1 = 0.174[Hz] and ω2 = 0.263[Hz]. In Figure 5.5 and 5.6
the mode shapes corresponding to the frequencies are shown. These are the eigenpairs which
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represent the response of the structure, thus are the eigenpairs desired to replicate in the test
rig.

Figure 5.5: First bending mode, ω1 =
0.174 [Hz].

Figure 5.6: Second bending mode, ω2 =
0.263 [Hz].

5.1.1 Model Preparation

When designing the test rig, the total number of elements has a big influence on the com-
putational time. Many elements in the nacelle will limit the number of elements which can
be "afforded" in the design domain. Therefore it is beneficial only to use the necessary ele-
ments in the nacelle structure. Thereby the design domain can be constructed with as many
elements as desired in a compromise between computational time and the representation of
the discrete topology.

One approach is to create a super element to replace the nacelle. This approach resulted
in the first two bending modes becoming a multiple eigenvalue with the frequency of ω2.
Although the approach reduced the computational time from 37 to 3 [s] this method is dis-
carded due to lack of accuracy.

Another approach is to use a coarser discretization in the nacelle. Therefore an analysis
of the mesh size is conducted. In order to only analyze the nacelle the tower is not included
in the analyzes. The reason for doing this is to monitor the change in the response from the
nacelle, and since the tower structure is replaced by the design space for the test rig it is the
change in nacelle response which is of interest.
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To keep the test simple two factors α1, α2 ≥ 1 are introduced. The factors are used to scale
the element size for the solid (α1) and beam (α2) elements. In Table 5.4 the results while
varying α1 and α2 are seen.

Table 5.4: Eigenfrequencies in the nacelle when altering α1 and α2.

α1 1 1 1 1.5 2 2.5 3
α2 1 1.5 3 1.5 1.5 1.5 1.5

Time [s] 37 37 38 15 8 3 5
Solid 24,837 24,837 24,837 8257 2587 1806 1240
Beam 77 72 67 72 72 72 72
Contact 3052 3052 3052 1524 764 568 360
Target 92 92 92 42 28 24 24

ω1 [Hz] 1.751 1.751 1.751 1.751 1.751 1.751 1.751
ω2 [Hz] 5.835 5.835 5.835 5.841 5.853 5.863 5.884
ω3 [Hz] 10.053 10.053 10.053 10.097 10.097 10.100 10.145
ω4 [Hz] 10.533 10.533 10.533 10.552 10.552 10.572 10.579
ω5 [Hz] 11.186 11.186 11.186 11.184 11.184 11.188 11.188
ω6 [Hz] 11.889 11.889 11.890 11.909 11.909 12.080 12.057
ω7 [Hz] 17.867 17.867 17.867 17.867 17.867 17.867 17.867
ω8 [Hz] 17.867 17.867 17.867 17.867 17.867 17.867 17.867
ω9 [Hz] 17.868 17.868 17.868 17.868 17.868 17.868 17.868
ω10 [Hz] 17.869 17.870 17.870 17.870 17.870 17.870 17.870

From Table 5.4 it is seen that it is possible to remove many elements from the model while
keeping a good precision of the frequencies. Furthermore this approach reduces the compu-
tational time by a factor of 12. It is seen, that the computational time rises for the coarsest
models. This might be due to the time is calculated per second, thus small differences in
computational time can be shown as a “large” difference.

A coarser mesh is tested with the tower to verify that the change in response is negligi-
ble. Defining α1 = 2.5 and α2 = 1.5 the frequencies of the model together with the relative
difference is given in Table 5.5. These values are chosen since a short computational time is
obtained, which is important for an iterative process. It is seen, that the difference between
the frequencies in the model are negligible, thus the coarse model can be used in the design
of the test rig.
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Table 5.5: Eigenfrequencies for original and new (α1 = 2.5 and α2 = 1.5) wind turbine
model and the differences between the two.

Original Frequency [Hz] New frequency [Hz] Difference ‰

ω1 0.174 0.175 5.74
ω2 0.263 0.264 3.79
ω3 1.769 1.774 2.74
ω4 1.897 1.899 2.83
ω5 2.630 2.639 3.42
ω6 3.696 3.704 2.16
ω7 5.895 5.899 0.68
ω8 6.743 6.769 3.86
ω9 7.612 7.615 0.39
ω10 9.605 9.653 5.00

5.2 Design of Test Rig

After the wind turbine model is analyzed the tower is replaced by the design domain for the
test rig, as depicted on Figure 5.7. As for the tower model the artificial mass is used to model
the interface between design domain and nacelle. Since the beam elements from the tower
are replaced by solid elements a new rigid connection is established. The nodes included in
the rigid connection are located within one element side length of the 2500 [mm] bed frame
hole. An illustration of this is presented on Figure 5.8. In order to ensure a good connection,
the top plan of elements is prescribed with a density of one.
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Figure 5.7: The nacelle on top of
the maximum allowable design domain.
The size of the design domain is 4000×
5000 × 6500 [mm]. It contain 130,000
elements with a size of 100 [mm] (40 ×
50 × 65 elements).

Figure 5.8: Illustration of the coupling
between the nacelle and design domain.
Red dots are the nodes on the design do-
main which are coupled to the artificial
mass (blue dot).

Some limitations to the model need to be taken into account. Since the top wall thickness
of the tower is 16 [mm] it is advantageous to have an element size smaller than this. This
provides the ability of modeling the smallest geometrical size in the tower. This however will
introduce too many elements in the model e.g. choosing an element side length of 16 [mm]
result in 31.7 million elements for the full design domain (4000 × 5000 × 6500 [mm]), thus
violating the license restrictions. Furthermore since a desktop computer is used for the op-
timization including 31.7 million elements render a too long iteration time, therefore some
compromises have to be made.

Increasing the element size to 100 [mm] reduces the number of elements to 130,000, which
is illustrated on Figure 5.7. Together with the elements from the nacelle, this yield an iter-
ation time around 5 minutes. From the 3D example in section 4.14 it can be expected that
a few hundred iterations are needed to obtain a clear 0-1 design, resulting in a solution time
of about 15 hours. This iteration time is considered being too long. On basis of the top dia-
meter of the tower (3000 [mm]) the design is reduced to 4000 × 3000 × 3000 [mm] with an
element side length of 100 [mm] this result in 36,000 elements. The smaller design domain
should not reduce the possibility of obtaining a test rig design with low eigenfrequencies,
since the large design domain mainly provides the opportunity of obtaining a large bending
stiffness, which lead to high eigenfrequencies. Furthermore the iteration time is reduced to
approximately one minute.
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5.2.1 Targeting the Specific Frequencies

The specified eigenfrequencies desired are low compared to the ones from the design do-
main of 4000 × 3000 × 3000 [mm]. E.g. using RAMP stiffness (q=8) and Olhoff-Du(c)
mass interpolations with an evenly distributed element density of 30% as start guess. The
eigenfrequency for the first tower mode is 7 [Hz], which is 40 times the lowest specified
eigenfrequency (0.174 [Hz]). Combined with a large element size (a coarse topology) and
a filter radius of 1.5 element length, the possibility of obtaining a coherent topology which
fulfill the requirements is very poor.

Since the first desired tower mode has a frequency of 0.174 [Hz] the volume fraction re-
quired for a solution can be expected being very low. This causes the low density elements
to have a significant influence on the result since a stiffness of zero is not possible. In this
case the SIMP stiffness interpolation should have an advantage over the RAMP interpola-
tion, due to the higher penalty for low density elements, as described in section 4.7.

When the design domain of 4000× 3000× 3000 [mm] is prescribed with an element density
of 0.001, using the RAMP stiffness interpolation (q=8) and the Olhoff-Du(c) mass interpo-
lation, the lowest eigenfrequency obtained is 1 [Hz]. The measure of discreteness is close
to 0%, thus well below the normally used discreteness target of 5%. This reintroduces the
problem of gray elements in the final topology described in section 4.11. In section 4.12
the problem is solved by introducing the measure of discreteness constraint, but when the
constraint is satisfied the algorithm is still able to manipulate with the almost void elements
in order to satisfy the specified frequencies. Therefore the topology obtained only contains
low density elements, naturally this solution is futile.

For the SIMP stiffness interpolation the low density elements have a much lower stiff-
ness, compared to the RAMP stiffness interpolation, which in theory should benefit the SIMP
interpolation. With SIMP stiffness interpolation (p=3), Olhoff-Du(a) mass interpolation and
an element density of 0.001 the measure of discreteness is 0%, and the lowest eigenfrequency
is 0.003 [Hz]. However although SIMP stiffness interpolation is able to obtain the low fre-
quencies it also produces a topology where all elements are close to void, since an element
density of 0.09 is enough to obtain a fundamental eigenfrequency of 0.174 [Hz].

As discussed above, the void elements contribute with too much stiffness to the structure,
mostly because of the low volume fraction which results in these elements being in absolute
majority. This problem can be reduced by confining the design domain to a smaller volume.

One option is to remove the elements at the center of the design domain. This however
is not an option for the program developed in this project due to the filters used. The filters
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implemented can only handle rectangular continuous design domains. Therefore the only
option is to further reduce the rectangular volume which has to be at least 2500 [mm] plus
the element size (100 [mm]), due to the connection with the nacelle. The model obtained
with this additional reduction in the design domain is illustrated on Figure 5.9. It is not
possible to reduce the design domain further in the program, and therefore it is not expected
that it is possible to obtain a coherent topology with a eigenfrequency as low as 0.174 [Hz].

Figure 5.9: The nacelle on top of the design domain. The size of the design domain is 4000
× 2600 × 2600 [mm] and it contains 27,040 elements with a size of 100 [mm] (40 × 26 ×
26 elements).

5.2.2 Treating Nacelle Modes

As seen in section 5.1 some eigenpairs are independent or nearly independent of the structure
below (tower or test rig). These are modes governed by the nacelle. Still some displacements
in the design domain are present, thus the sensitivities for these modes do exist although the
difference in frequency is nearly unchanged by the topology of the design domain.

To overcome these modes in the nacelle three different approaches are proposed. (1) The
nacelle mode is completely ignored during the optimization, because the reference eigenpairs
are unaffected by these frequencies. If a nacelle mode has a frequency below the safety zone
the descent function for MMA will have a higher value due to the violation of the safety
zone constraint otherwise no effect of the nacelle mode is present. (2) The nacelle mode
can also be targeted, as one of the specified frequencies, and since the nacelle frequency is
nearly constant through the optimization this term is almost zero. (3) It is also possible to
use a negative safety zone, but this can introduce problems where higher order modes obtain
a frequency below, between or close to the specified frequencies, which might affect the
response of the structure. This method is not tested.
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5.2.3 Standard Configurations

The program configurations used in the attempt to solve this problem are listed in Table 5.6.
The number of modes extracted are increased form 4 to the 12 lowest eigenpairs, since a
3D structure exhibit more mode shapes than a 2D structure. The SIMP interpolation is used
due to the higher penalty for low element densities and the start guess is evenly distributed
material of 30% in all non prescribed elements in the design domain. Keep in mind the
prescribed elements at the top of the design domain, which ensures a connection between
the design domain and the nacelle.

Table 5.6: Standard configurations for the design of the test rig.

Resource Constraint 30 %
Elements 27040 SOLID45
Element size 100 [mm]

Algorithm
MMA Bound Target

Discrete

c constants
15 for frequencies
1.1 for Resource

N 12
Stiffness Interpolation SIMP, p = 3
Mass Interpolation Olhoff-Du(a)
Filter Sensitivity r=1.5
Max Iterations 1000
Move limit 0.08
Discreteness Target 5%
Convergence max(∆x)≤ 0.01
Mass Matrix Lumped
MAC ON
E0 210,000 [MPa]
ρ 7800 [kg/m3]

5.2.4 Lowest Possible Target Frequencies

In this section the lowest possible target frequencies using steel as material for the test rig is
presented.

When using the reduced design domain (4000 × 2600 × 2600 [mm]) and the SIMP
stiffness interpolation the lowest target frequencies obtained, while the topology is coherent,
are 5.5 and 6.5 [Hz] with a safety zone of 0.5 [Hz]. In this case a local nacelle mode is
present at approximately 2.93 [Hz]. This frequency is targeted together with the two desired
frequencies, and does not affect the solution. The modes shapes are associated in the third
iteration where all three mode shapes are selected.
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The final topology is illustrated on Figure 5.10 and the corresponding results are given in
Table 5.7. It is probably possible to improve this result by applying an advanced start guess,
but it is unlikely that a perfect start guess will be able to achieve a frequency of 0.174 [Hz].

Figure 5.10: The topology obtained with ω1=2.93, ω2=5.50 and ω3 = 6.48 [Hz]. The
volume fraction is 7.9% in the final topology.

Table 5.7: The result for the lowest possible target frequencies for the test rig design. The
results are obtained using the configurations in Table 5.6.

ω
(t)
1 [Hz] ω1[Hz]

Topology
ω
(t)
2 [Hz] ω2[Hz] Iter

ω
(t)
3 [Hz] ω3[Hz] MoD [%]

MoD(t)[%] ω4[Hz]

ω
(t)
1 = 2.93 ω1=2.93

Figure 5.10
ω
(t)
2 = 5.5 ω2=5.50 244

ω
(t)
3 = 6.5 ω3=6.48 4.6

MoD(t)= 5 ω4=7.43

From this example it is seen, that the code is able to optimize for specific eigenfrequencies
with mode tracking when the nacelle is attached to the design domain. Using steel as material
with the current discretization it is seen, that achieving the reference frequencies of 0.174
[Hz] is not possible. However a finer discretization and a smaller design domain might solve
the problem since it provides the possibility of representing a more detailed design. To show
that it is possible to obtain the low eigenfrequencies with the program, the material model
is altered in appendix C and topologies with a ω1=0.174 [Hz] is obtained. Furthermore a
discussion and recommendations for further work is presented in section 6.3.
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CHAPTER 6

Conclusion

Through this Master’s thesis a method for obtaining topologies with prespecified eigenmodes
and -frequencies is presented. The method is tested on a real life problem, i.e. designing a test
rig for a wind turbine nacelle. The real life problem is provided by the Danish department of
the consultancy company FS Dynamic AB. The goal is to reproduce the response of a wind
turbine tower model in a test rig where the maximum height is severely restricted. The test
rig will provide easier access to the nacelle under testing, thereby making it easier, faster and
cheaper to test new nacelle designs.

Ideally it is desired to obtain a test rig design where both frequencies, mode shapes
and the strain state are the same for the nacelle, as in the real wind turbine. The two lowest
frequencies and the associated mode shapes are of most importance thus are used as reference
frequencies and modes. Throughout the project period the focus has been on developing
a code which is capable of matching a desired set of specified eigenpairs using topology
optimization.

Methods to obtain a given strain state in the nacelle are not investigated in this Master’s
thesis. Some thoughts on the subject are presented in section 6.3.1.

6.1 The Developed Code

A MATLAB program is developed to investigate the behavior of the eigenfrequency opti-
mization for distinct (simple) eigenvalues. The program is able to solve 2D problems as
verification, including problems found in Du and Olhoff [2007]. The sensitivity analysis is
only capable of addressing distinct eigenvalues, since the desired frequencies in the test rig
all are distinct the necessity of including multiple eigenvalues is not present. The program is
able to target prespecified frequencies and associate an user defined mode shape to the target
frequencies, where examples are presented as proof of concept. It is added the capability to
use ANSYS as the solver while performing the optimization inside MATLAB.

The code is extended into a 3D version, where only the ANSYS solver is available. This
version of the code is used to solve the test rig design problem.

The program is developed on basis of Sigmunds 99 lines code [Sigmund, 2001] and the
88 lines code [Andreassen et al., 2011]. These codes are extended and rewritten in order to
obtain the capability of conducting eigenfrequency optimization using the MMA algorithm
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developed by Krister Svanberg [Svanberg, 1987].

6.1.1 Maximizing the Fundamental Eigenfrequency

As the first step, maximization of the fundamental frequency is implemented. Multiple
eigenvalues often occur during topology optimization, which is also encountered for the
preprogrammed boundary conditions. Since this is not taken into account the solutions ob-
tained are only considered being close to the optimum solution. As the simplest form of
eigenfrequency optimization this allows for closer investigation on the effects of move lim-
its, start guess, resource constraint, mass and stiffness interpolation, choice of elements and
filtering.

Through the analyzes it is seen, that the start guess and resource constraint have a large
effect on the final topology. However since a local optimum is sufficient for the goal of
the project it is important to be aware of the possibility of obtaining multiple topologies
dependent upon variables such as start guess and resource constraint.

The choice of elements did not show any effect on the final topology when using mesh
independent filtering, whereas the move limits had a large influence on the topology when
using the SIMP stiffness interpolation, but not for the RAMP stiffness interpolation.

In order to eliminate local modes (low density areas with a local mode having a lower fre-
quency than the general structure) different mass and stiffness interpolations are investigated.
It is observed, that three conditions can provoke local modes. This differ from what is found
in the literature, where the focus is on the local inverse Rayleigh’s coefficient (Ω).

The following three conditions need to be fulfilled for local modes to occur:

1. A high inverse Rayleigh’s coefficient (Ω)

2. Low element stiffness

3. The above two conditions must be fulfilled for all elements surrounding a single node

It is seen, that SIMP stiffness interpolation has problems with local modes if a linear mass
interpolation is used. Using one of the mass interpolations in Du and Olhoff [2007] (shown
in equation (2.7) to (2.9) on page 10) the problem is eliminated except for a peak in Ω

(see Figure 4.46 on page 51) which cause local modes in a few iterations obstructing the
optimization, while having little effects on the final topology.

If the RAMP stiffness interpolation is used local modes are in most cases eliminated, but
a low density (e.g. 10−8) can result in local modes when using linear mass interpolation. This
problem is addressed using the mass interpolations in Du and Olhoff [2007]. Using RAMP
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stiffness interpolation with the mass interpolation in equation (2.9) removes the problem of
local modes completely, since Ω approaches zero as the density is lowered.

6.1.2 Targeting Specified Frequencies

In order to obtain topologies with prespecified eigenfrequencies the objective function is for-
mulated such the deviation between a calculated and target frequency is minimized. A safety
zone is introduced to ensure that eigenpairs which are not prespecified are forced above the
target frequencies, thus avoiding these eigenpairs to interfere with the response of the struc-
ture.

When targeting frequencies many gray elements might be present especially when speci-
fying low frequencies. Nothing is favoring the algorithm to obtain clear 0-1 topologies, as
explained in section 4.12. It is proposed to remove these with a constraint on the measure of
discreteness. The constraint is gradually enabled during the optimization such the algorithm
can slowly alter the topology while still satisfying the specified frequencies. Specifying a
maximum value of 10% or less for the measure of discreteness provided sufficient 0-1 de-
signs to gain a clear topology.

6.1.3 Associating Modes

The ability to track modes using Modal Assurance Criterion (MAC) is incorporated into
the program. When matching eigenmodes with the specified frequencies a set of reference
modes can be chosen during the optimization, and new reference modes can be reselected at
any time during the optimization.

The reference modes and the current modes are compared and the eigenmodes with the high-
est MAC values are matched to the corresponding target frequencies. It is shown in section
4.13 that it is possible to switch two modes while optimizing for two specified frequencies.

6.1.4 3D Code

The program is extended into a 3D version. This version is verified in section 4.14 to ensure
the program is functioning properly. It is shown that the 3D version is able to obtain topolo-
gies with a predefined response, where specified modes vibrate with the target frequencies
showing that the algorithm can solve these types of problems.
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6.2 Design of Test Rig

To test the capabilities of the code a real life problem is provided by FS Dynamic AB. The
problem is to design a test rig for a provided wind turbine model. The wind turbine model is
initially analyzed, and the number of elements in the model is reduced to improve the itera-
tion time during optimization. It is possible to reduce the number of elements by a factor of
11 while keeping the maximum change in frequency below 1%.

Replacing the tower by the design domain for the test rig it is shown that the program can
handle advanced models as long as the design domain is a rectangular volume.

Local modes are present in the nacelle. These modes are independent or nearly indepen-
dent of the structure below. In section 5.2 different methods are proposed to eliminate the
significance of these in the optimization.

It is possible to obtain a topology with a predefined response where specified modes
vibrate with the target frequencies as shown for both the 2D and the simple 3D problem.
However obtaining topologies satisfying the very low frequencies from the original wind
turbine model was not possible. Among other things due to the low volume fraction required
to obtain the low frequencies.

Although it was not possible to obtain a topology satisfying the low frequencies desired
for the test rig, the program developed still have the ability to identify a specific mode shape
and obtain topologies with specific frequencies for the identified mode shapes.

6.3 Further Work

In this section some thoughts on the project in general are presented and discussed. Some
proposals for further work on omitted issues in this Master’s thesis are presented.

Although the program is able to obtain a topology with one or more specific eigenpairs
there is no guarantee that a solution obtained actually can support the heavy nacelle or any
other load case. It is therefore suggested to introduce one or more static load cases as a com-
pliance constraint which will ensure that the topology has a minimum stiffness for the given
load cases. This is a simple extension, where one or more constraints are added to the MMA
formulation. This requires additional static load cases in the analyzes, but it is a "cheap"
analysis compared to the eigenvalue problem and should not provide an unreasonable large
increase in computational time.

Even though a compliance constraint is included in the formulation, this is no guarantee
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that the structure can withstand the life cycle of the test rig. Structural failure criteria such
as fatigue, buckling and yielding have to be addressed before production. This requires a
interpretation of the design in order to conduct a detailed stress analysis which is necessary
before the test rig is ready to contribute to the development of the new generation of nacelles.

6.3.1 Reproducing a Strain State

Ideally it is desired to obtain the same strain state in the nacelle when using the test rig in
stead of the wind turbine tower. From FS Dynamics no detailed definition of the strain state
is presented and this subject is not investigated in this Master’s thesis, but in the following
methods of including this are given.

Topology optimization is inherently a large scale problem, thus it is recommended to use
global measures for the objectives [Bendsøe and Sigmund, 2003]. Since the strain state in
the nacelle is a local phenomena it is inefficient to include this in the formulation. One
method to avoid this is to rewrite the strain state in the nacelle as a global measure and in-
cluding this into the topology optimization. This is not a trivial task, and possible methods
for conducting this has not been sought for.

Another method is to conduct a topology optimization followed by e.g. a shape optimiza-
tion or a parameter study. Here the optimal topology is found which satisfies the global
criteria (the specified eigenfrequencies and modes). On basis of the topology optimization a
parametrization is conducted (e.g. the boundaries of the topology or interpretation the design
as a beam structure.) allowing the finer details of the test rig to be modified by a moderate
number of design variables which is better suited for studying local problems [Bendsøe and
Sigmund, 2003].
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APPENDIX A
The Method of Moving Asymptotes

This appendix describes the formulations used in the Method of Moving Asymptotes (MMA)
algorithm to update the design variables. The solver is used as a black box call where the
files made by Krister Svanberg are directly used. The formulation of the algorithm is based
on Svanberg [2007].

The MMA solver is a non-linear programming algorithm primarily used for structural op-
timization. It is an iterative process which solves a set of subproblems all strictly convex
[Svanberg, 1987].

MMA is a trust region method where the asymptotes controls the trust region. Here the
approximation is assumed accurate within the trust region, as opposed to line search algo-
rithms (e.g. steepest descent [Arora, 1999]) where the minimum in a given search direction
is found. In the following all is based on Svanberg [2007]. The MMA problem is defined as
in equation (A.1).

minimize f0
(k)(xi)+a0z+∑

j

(
c jy j +

1
2

d jy2
j

)
, i = 1, . . . ,NE (A.1a)

Subject to:

f j(xi)−a jz− y j ≤ 0, j = 1, . . . ,J (A.1b)

0 < xmin ≤ xi ≤ 1, y j ≥ 0, z≥ 0 (A.1c)

Here xi are the NE design variables. f0 and f j are given, continuously differential functions,
and J are the number of constraint functions f j . z and y j are artificial variables ≥ 0 which
helps the convergence of a subproblem. a0, a j, c j and d j are given real numbers satisfying:
a0 > 0, a j ≥ 0, c j ≥ 0, d j ≥ 0, c j +d j > 0 and a jc j > a0 for all j with a j > 0.
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A The Method of Moving Asymptotes

MMA has an equivalent to the bound formulation in equation (2.29). By choosing f0 = 0,
a0,a1, . . . ,aJ = 1, aJ+1, . . . ,aK = 0, d1, . . . ,dK = 1 and the c constants “a large number” e.g.
1000 the MMA equivalent bound formulation is obtained.

minimize z+∑
l

(
clyl +

1
2

y2
l

)
, l = 1, . . . ,K (A.2a)

Subject to:

f j(xi)− z− y j ≤ 0, i = 1, . . . ,NE j = 1, . . . ,J (A.2b)

fk(xi)− yk ≤ 0, k = J+1, . . . ,K (A.2c)

0 < xmin ≤ xi ≤ 1, yl ≥ 0, z≥ 0 (A.2d)

This formulation replaces the formulation in equation (2.29) as the bound formulation. K is
the number of constraints which is either K = N +2 or K = N +1 depending on whether or
not the measure of discreteness is included as a constraint and N is the number of eigenpairs
extracted.

As described in chapter 4 two formulations are available, i.e. maximizing the fundamen-
tal these are presented in the following. Here the measure of discreteness is included as a
constraint.

When maximizing fundamental frequency the bound formulation is given as:

minimize z+∑
l

(
clyl +

1
2

y2
l

)
, l = 1, . . . ,K (A.3a)

Subject to:

f j(xi)− z− y j =C−λ j− z− y j ≤ 0, j = 1, . . . ,N (A.3b)

fN+1(xi)− yN+1 = MoD−MoD(t)− yN+1 ≤ 0 (A.3c)

fK(xi)− yK = ∑
i

xi

vi
−V − yK ≤ 0, i = 1, . . . ,NE (A.3d)

0 < xmin ≤ xi ≤ 1, yl ≥ 0, z≥ 0 (A.3e)

Here the first N f functions are replaced by the bound formulation for the eigenvalues (equa-
tion (2.30)). C is a constant making the f functions positive. Equation (A.2c) is replaced by
the discreteness (equation (4.4)) and resource constraint.

When targeting eigenvalues the formulation is changed as described in section 4.11. Im-
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plemented in the MMA algorithm it has the following form:

minimize z+∑
l

(
clyl +

1
2

y2
l

)
, l = 1, . . . ,K (A.4a)

Subject to:

f j(xi)− z− y j =
(

λ j−λ
(t)
j

)2
− z− y j ≤ 0, j = 1, . . . ,NT (A.4b)

fk(xi)− z− yk = λsa f ety−λk− z− yk ≤ 0, k = NT +1, . . . ,N (A.4c)

fN+1(xi)− yN+1 = MoD−MoD(t)− yN+1 ≤ 0 (A.4d)

fK(xi)− yK = ∑
i

xi

vi
−V − yK ≤ 0, i = 1, . . . ,NE (A.4e)

0 < xmin ≤ xi ≤ 1, yl ≥ 0, z≥ 0 (A.4f)

Here equation (A.4b) are the NT equations for targeting the specified set of eigenvalues λ(t).
Equation (A.4d) contain the “safety zone” constraint, and as in equation (A.3) the last two
equations are the discreteness and resource constraints.

For both formulations the equations are normalized in order to give an initial order of mag-
nitude for the equations in the area around 1.
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APPENDIX B

Adavnced Start Guesses

In this appendix “advanced” start guesses are investigated, in order to see the effect of varying
start guesses. Here “advanced” refer to guesses where the available material is not evenly
distributed.

Different start guesses are shown in Table B.1 all with the standard settings from Ta-
ble 4.1 on page 31. These guesses are chosen in order to gain a broad field of start guesses,
thus a set of final topologies are obtained which represent different local minima.

From Table B.1 it is seen, that all topologies are single symmetric, and some are doubly
symmetric. The only exception is number three, where the areas around the supports differ.

In general two topologies are present i.e. a double arc (e.g. number 1) and a single arc
(e.g. number 3). Guessing a large non coherent area results in the trivial solution (number
9). Otherwise it is seen, that the double symmetric topology is present when the initial guess
is double symmetric.

The double arc topologies are seen to have a lower fundamental frequency than the sin-
gle arc topologies. The reason for this is unknown and is irrelevant for the project, since it
is not the purpose to maximize the fundamental frequency, but the eigenfrequencies are still
lower than the ones obtained in Du and Olhoff [2007]. The number of iterations before con-
vergence are higher than the evenly distributed start guess (130 iterations) except for number
4 which is in the same area of iterations.
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Table B.1: Start Guesses, all results are obtained using the standard configuration.

Start Guess
ω1[rad/s]

TopologyNo Iter
MoD [%]

405.00 Density Plot at Iter No. 99 Volume Fraction  50.0%

1 217
6.2

385.52 Density Plot at Iter No.199 Volume Fraction  50.0%

2 199
12.3

449.13 Density Plot at Iter No.175 Volume Fraction  50.0%

3 175
8.8

Density Plot at Iter No.  1 Volume Fraction  49.5% 396.58 Density Plot at Iter No.118 Volume Fraction  50.0%

4 118
12.0

267.06 Density Plot at Iter No. 17 Volume Fraction  49.9%

5 17
60.1

406.10 Density Plot at Iter No.213 Volume Fraction  50.0%

6 213
12.5

449.21 Density Plot at Iter No.411 Volume Fraction  50.0%

7 411
8.5

375.87 Density Plot at Iter No.154 Volume Fraction  50.0%

8 154
12.6

543.13 Density Plot at Iter No.185 Volume Fraction  45.6%

9 185
6.5

387.76 Density Plot at Iter No.170 Volume Fraction  50.0%

10 170
13.5

397.82 Density Plot at Iter No.154 Volume Fraction  50.0%

11 154
11.7
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APPENDIX C

Artificial Material

Through section 5.2.4 it is seen, that the stiffness of the test rig design domain and the
large mass of the nacelle governs the frequencies obtainable. The mass of the nacelle is
unchanging and much larger than the mass of the test rig, the nacelle weighs 286 [tonne] and
the test rig on Figure 5.10 on page 88 only weighs 16.7 [tonne]. Therefore the mass of the
test rig only has a small influence on the responds of the structure.

A material with a lower stiffness will result in a lower influence from the void elements.
This can result in a clear 0-1 design for lower frequencies. It might be possible to obtain a
topology using artificial material properties and transform this topology into a steel structure,
which can be optimized using a parameter study.

This approach is attempted by using material properties one thousandth the material prop-
erties of steel (keeping the Poisson’s ratio at 0.3, E0 = 210[MPa] and ρ = 7.8[kg/m3]). The
settings used are seen in Table 5.6 on page 87.

The start guess is found to have a large influence on the ability to obtain a coherent design
and the results are highly related to the start guess. Using an evenly distributed density
as start guess results in all elements in the design domain ends as nearly void elements.
Therefore a sensible coherent start guess is preferable. Here two designs are shown obtained
with the two design guess in Figure C.1 and C.2.

Figure C.1: A start guess consisting of
four beams supporting the nacelle.

Figure C.2: A start guess consisting of
a single beam supporting the nacelle.
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C Artificial Material

Figure C.3: The topology obtained with
Figure C.1 as start guess. The desired
bending modes are reached as the two
lowest modes at the desired frequencies
as listed in Table C.1.

Figure C.4: The topology obtained with
Figure C.2 as start guess. The desired
bending modes are reached as the two
lowest modes at the desired frequencies
as listed in Table C.1

Table C.1: The result obtained for the test rig design. The results are obtained using the
configurations in Table 5.6 on page 87 together with the artificial material properties.

ω
(t)
1 [Hz] ω1[Hz]

Topology
ω
(t)
2 [Hz] ω2[Hz] Iter

ωsz[Hz] ω3[Hz] MoD [%]
MoD(t)[%] ω4[Hz] Recource [%]

ω
(t)
1 = 0.174 ω1=0.172

Figure C.3
ω
(t)
2 = 0.263 ω2=0.261 213
ωsz= 0.2 ω3=0.679 4.6

MoD(t)= 5 ω4=3.080 8.4

ω
(t)
1 = 0.174 ω1=0.174

Figure C.4
ω
(t)
2 = 0.263 ω2=0.263 247
ωsz= 0.2 ω3=0.676 4.6

MoD(t)= 5 ω4=3.080 9.5

As illustrated on Figure C.3 and C.4 and the results in Table C.1 the artificial material prop-
erties makes it possible to obtain coherent designs where both the desired eigenmodes and
frequencies are reached. Showing that the program is able to reach designs with low fre-
quencies.

It should however be noted, that a material with a young’s modulus of 210 [MPa] cor-
responds to low-density polyethylene (used for water bottles) and the total mass of the two
topologies are approximately 20 [kg] each. Therefore this is a strictly theoretical example
illustrating that the program has no problems with low frequencies. On basis of this it is
expected, that with more elements and a good start guess it might be possible to obtain a
topology with steel as the material.
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Nomenclature
[
K
]

Global stiffness matrix[
M
]

Global mass matrix[
k0

e

]
Element stiffness matrix with unit
Youngs modulus[

m0
e

]
Element mass matrix with unit mass
density[

ke

]
Element stiffness matrix[

me

]
Element mass matrix{

φ

}T

ji
Entries in eigenvector j matching ele-

ment i{
φR

}
k

Reference eigenvector k{
φ

}
j

Eigenmode or eigenvector for eigen-

value j

gk Maximum value for constraint func-
tion k

E ′(x) Derivative of Youngs modulus for a
density x

E(x) Youngs modulus for a density x

E0 Youngs modulus for solid material

f j Objective function j

gk Constraint function k

MAC Modal Assurance Criterion value

MoD Measure of discreteness

N Number of eigenpairs extracted

NT Number of eigenmodes to be tracked

NE Number of elements in a model

p Penalty factor for SIMP

q Penalty factor for RAMP

Te,i j Element kinetic energy for element i
due to a velocity field j

Ue,i j Element strain energy for element i
due to a displacement field j

W ′(x) Derivative of mass density interpola-
tion function

W (x) Mass density interpolation function

w j Weighting for objective function j

x Element densities (design variables)

β Bound variable

λ
(t)
j Reference (target) eigenvalue number

j

λ j Eigenvalue number j

λsa f ety Minimum eigenvalue for non-target
eigenvalues

Ω Inverse Rayleighs coefficient

ω j Eigenfrequency for eigenvalue j

ρ Mass density of the material
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