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Chapter 1

Introduction

1.1 Problem Description

With the evolution and growing of society, human behaviour in public places has
became important to supervise. Since the police forces cannot always be physically
present, the solution of video surveillance was introduced. The United Kingdom was the
first to do so, after the IRA attacks in the early nineties. Since then, many countries
like the USA, France, and several countries in South America are using these systems!.

The limitation of these systems is obvious: the amount of data to handle is way
too massive for human to process it. As an illustration, there are around 1.85 millions
cameras in the UK, including almost 500,000 in London only [1]. Whether these data
is processed locally (institutions with internal security like banks, prisons, universities,
military facilities) or generally (public places like streets, highways), human fatigue
problem still arises. Adding to this issue the human labour cost, the solution of manual
processing becomes completely impossible.

Detractors also mention the burning issue of privacy, mainly because of the possibility
of filing individuals according to their actions and moves.

Computer Vision is the branch of computer sciences that deals with everything re-
lated to images (acquiring, processing, analysing, understanding). Its recent advances
permits a lot of different applications, which are widely used in industry (detecting draw-
backs in production lines), medical imagery, computer interactions and, of course, video
surveillance. When applied to this last purpose, systems usually have two main aspects:
identifying a specific object and tracking it through the video.

Because most of the everyday interaction is with people, our project focuses on
tracking humans in a video stream and analysing their path (e.g. Where can people
walk? Where do they typically appear in a known scene?). Its purposes is to find robust
methods applicable to several usages.

However detecting a human in a given scene is not an easy task as multiple variables
may interfere. The appearance and the wide range of poses that a human can adopt are

!Surveillance systems are often denominated as CCTV, for Close-Circuit Television
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the main concerns that should be taken into account when designing a human detection
system.

Therefore, there is need for an automated system that would track humans and
detect/analyse their movement.

1.2 Applications

The applications of human detection algorithms are very numerous: count how many
people are inside a given area in the same time, generate statistics on pedestrian traffic, or
recognize humans for interaction purposes in robotics or other. However, the applications
for tracking is not that straightforward since its usage is not always relevant (for many
applications, detection is enough). The first one that comes to mind is security issues.
Indeed we can imagine a system that would facilitate human work by automatically
extracting the path of all humans in a scene rapidly.

Another possible usage could be for human behaviour analysis. For instance, we
can imagine a pedestrian aid for traffic: tracking the path taken by pedestrians in one
scene during a long period (several weeks to a couple of months) would show behaviour
and would help some decision making like "is a new pedestrian crossing needed at that
specific point?".

1.3 Previous Work

Several researches have been led in the field of human detection. A method used
for detecting people was introduced by Dalal and Triggs [2] who created a robust detec-
tion technique specially adapted to human detection, called the Histogram of Oriented
Gradients. The method implies the usage of a sliding detection window on an input
image, that would return values corresponding to edges or contours that together define
a person. The respective values are then introduced inside a Support Vector Machine
(SVM) and the retrieved detection will be classified as according to whether they are
human or not. The algorithm is intensively used or improved in new applications.

One approach was developed by Breitenstein et al. [3] who introduced a complete
detection-tracking system. The respective algorithm uses only a part from the Histogram
of Oriented Gradients method presented earlier. After using the detection window, the
algorithm will output a confidence map which will describe the probability of a person
to be detected in each region. The high confidence detections will have a particle filter
assigned for tracking. Particle filtering is a strong method mainly used for multiple-
tracking purposes. The idea is to generate N particles and then estimate their position
for the next prediction. The main problem in this type of system is the association step.
The association is basically the way in which the system determines which detection
matches which track. By doing this one can uniquely identify a specific person through
the whole scene without loosing its ID in case of occlusion. In his system Breitenstein
associates the tracks by using a greedy association algorithm. A scoring matrix is created
for each track-detection pair. Then the pair with the highest score will be selected and
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the rows and columns belonging to the tracks and detection will be deleted until there
will not be any available pair left. In the end only the associations above a certain
threshold will be considered a valid match to a target. However the system’s problem is
that, due to the fact both used algorithms (confidence-detection and particle filtering)
are very computationally intensive, the performance of the system will be quite poor.

Another approach for a human detection-tracking systems was developed by Gavrila
and Munder [4]. It implied the usage of a shape-based human detection on regions of
interest. Using a large number of exemplars that described the human shape distribution,
their system performed a template matching in combination with human texture based
classification that would detect pedestrians. For tracking, their system used a simple
«a — B tracker that estimated the object state parameters. The association step in this
case is done with the Hungarian method by using a cost matrix built from the similarity
between the prediction of the tracks and the associated measurements. Every time an
object appears in the scene it will have an associated track only if the object appears in
m number of frames. The track it will be lost if the track was not detected in n number
of frames.

A common characteristic of these systems is the clear identification of two problems,
Detection and Tracking. The output of the detection is used in the tracking, indepen-
dently of the chosen method. The same structure is used for the system described in
this report.

1.4 Problem Formulation

The problem can be formulated as follow:

How can we realize a robust tracking framework using simple devices and as
few requirements as possible?

More precisely, simple device means that the system should work on any kind of
camera, with no calibration and no specific hardware (e.g. laser rangefinder, infra-red
camera); few requirements means that it intends to adapt to most kinds of situations
and changes.

1.5 General Approach

The aim of this project is to obtain good results with simple and fast computations.
For this a new approach of detection is introduced: it regroups two state of the art
methods, segmentation detection (Mixture of Gaussian [5] with contour detection) and
region detection (Histogram of Oriented Gradients)[2]. The tracking part uses features
comparison and a Kalman filter.

Figure 1.1 represents the two parts of the system. In the Detection part (see
chapeter 3), computer vision techniques are used to process the image obtained from
a camera and find human blobs, using predicted position of previous blobs to enhance
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detection. The Tracking part (see paragraph 4) will match those detected blobs with
the previous ones using some particular features.

Position and
ID of People

video frame ——| Detection Tracking

Figure 1.1: System representation in blocks

1.6 System Requirements

The system should be capable of working in the following conditions:

Long term application The system should work on a long video sequence, with a
640x480 resolution camera. It is important nowadays to have surveillance systems that
work autonomously and detect or track a person during a long period of time.

Adaptability The system should adapt in an autonomous manner to any kind of
environment (indoor or outdoor) changes. Such changes can be represented by repetitive
movement in the scene (trees blown by wind, waves from water) or illumination changes.
The system should work in daylight scenes, in the widest range of different illuminations
as possible. This means that it should work in both cloudy and sunny scenes, indoor
and outdoor.

Classification In every classification system, four states for a detection/classification
couple can occur. Here are these states applied to the relevant possible classifications of
this application.

positive negative
true Human detected as human Non-human detected as non-human
false | Non-human detected as human Human detected as non-human

Table 1.1: Classification of possible results

Nb: False positive and false negative are respectively known in statistics as
Type I and Type II errors.

Considering table 1.1, it has been decided to reduce as much as possible the false-
positive rate (avoiding "false alarms"), and be more flexible on the false-negative rate
(missing people sometimes).

Unique track identification The system should have an autonomous tracking al-
gorithm that would assign an unique ID to a tracked person during the whole video
capture. Moreover if the same person gets out of the scene and re-enters it, the ID
should be reassigned to that person.
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1.7 System Limitations

Shadows In all vision algorithms, the results mainly rely on the illumination conditions
in the scene. Either the system is working in indoor environments, where illumination
conditions are represented by artificial lighting, or with outdoor environments where
natural lighting is involved, there will always be confounding problems given by the
presence of shadow. The presence of shadow brings many disadvantages to the vision
system as there is loss of information of the region covered by the shadow making the
images more difficult to interpret. Also various algorithms like image matching, detection
and tracking will not be able to output optimal results due to shadow presence. There
have been many studies made regarding shadow removal methods. One of them can be
seen in Sanjeev Kumar’s paper on shadow removal [6]. The proposed algorithm firstly
removes the unwanted salt and pepper noise from the frame by applying a mean filter.
Afterwards the image will be split in three channels in order to get a better overview
on the effect that shadows have in the three dimensions of colour. It has been observed
that colours in the shadow regions will have a larger value than the average, while the
regions that are not shadow will have colour values smaller than the average. Then a
threshold piecewise function is created in order to determine which pixels are shadow
and which non-shadow. By convolving the noise-free binary image with the original one
shadow will be detected. Finally shadow is removed by the usage of energy functions.

However in this system the shadow removal problem was not treated at all due to the
fact that more importance was given towards the detection and the tracking. Therefore
it was established that the implemented system should work only on cloudy condition
where lighting sources would not interfere with the used algorithms.

Separating two objects by their colour Another problem that represent a limi-
tation to the proposed system is how can two objects be fully separated and assigned
with an unique ID based on their colour. As the given system is meant to detect and
track human beings, the problem tends to get more complex. It is known that most
people tend to dress more or less the same below their waist (pants usually tend to have
same colours: blue, black and brown) therefore assigning each person with an unique
ID becomes a hard task to solve. On the other hand, the upper body can give relevant
information regarding clothing colour. Although this case can give good outputs, there
are some cases in which these outputs might not give relevant results whatsoever like a
person wearing an opened blue jacket over a green shirt. In this case the frontal view
will give one result while the side-view and the back will give another. Therefore the
respective person will have 2 IDs and it would be really hard to track him/her.

There are numerous methods in which two objects can be separated according to their
colour and all are based on analysing the colour histogram. Comparing two histograms
is one of the approach and this can be seen later in section 2.1.5. Another approach in
which this problem was attacked can be seen in [7] where Swain and Ballard introduce an
algorithm called Histogram Backprojection. Their algorithm de-emphasize the colours
from objects that are not of interest in order not to distract the algorithm.
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Groups of People The segmentation process, and the classification that follows it
gets way more complicated when people are close. Indeed the found blobs do not have
the expected shape for a human, and the possible combinations are just too many to be
trained the same way (with a Support Vector Machine for instance). A possible approach
to solve this problem is the use of the particle filtering as introduced by Breitenstein et
al. [3] and explained in the Previous Work section. This is a limitation to the system.



Chapter 2

Image & Video Processing

This chapter will briefly introduce methods and concepts from the Computer Vision
science, which will be further used in the implementation and development of this project.

2.1 Image Processing operations

2.1.1 Image Processing

Image Processing is one of the most fundamental parts of computer vision science.
It refers to various simple techniques that help analysing images in an easier manner,
but it also contains high-level operations which can be used if, for example, a feature of
high interest is needed. The methods used for processing an image are various ranging
from pixel analysis to image recovery and recognition. However the most important and
trivial method used is image segmentation.

Image segmentation represents a process in which the image is partitioned in seg-
ments (groups of pixels), which allows a simpler representation of the given image making
it more meaningful and therefore easier to analyse. The process implies the usage of some
high-level methods in which the input images can be tested for object recognition or scene
understanding. Segmentation can be done in many ways starting from thersholding or
edge detection to a more complex method such as model-based segmentation. For this
system the segmentation process is represented by four fundamental and straightforward
methods:

— Filtering
— Morphology

— Contour Detection

Histogram Analysis
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2.1.2 Filtering

Filtering an image is also a crucial step in analysing an image. Usually after applying
some segmentation techniques such as thresholding, noise or some small artefacts are
introduced in the image. A good way of eliminating these unwanted aspects is using
some kind of filter which would remove the small isolated silhouette-pixels. The process
is also known as blurring and can be done using different types of filters:

— Mean filter
— Median filter

— Gaussian filter

6 2 0
3 97 4
19 3 10

Table 2.1: A 3x3 window.

The Mean filter implies using a simple sliding-window of any shape over the given
image and replacing the centre pixel of the sliding window with the average of all pixels
inside the window. For example, Table 2.1 shows a 3 x 3 window where the average
value would be 16.

(a) Original (b) Mean Filter

Figure 2.1: Mean Filtering.

The Median filter uses the same sliding-window method like the previous filter does
but it replaces the centre pixel of the window with the median of all the pixel values
inside. Therefore, for the same kernel in Table 2.1 the centre value will be set to 4. The
method works really good when the given image is altered by "salt-and-pepper" noise’.
This method is the most commonly used because of its ability of performing fast and
preserving the edges in the filtered image. The bigger the kernel the more powerful the

filter becomes as it can be seen in Figure 2.2.

!Salt-and-Pepper noise is the presence of isolated pixels which are either white - 0 value - or black -
255 value.
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(a) Median Filter size 3x3 (b) Median Filter size 5x5 (c) Median Filter size 7x7

Figure 2.2: Median Filtering.

The Gaussian filter is one of the best and useful filters, though not the fastest.
The Gaussian filter is a low-pass filter that reduces both noise and detail. The output
image looks as if you are watching the original through a translucent screen. By using
the Gaussian filter, the components with high frequencies are reduced, making it an
important asset in the pre-processing step. The algorithm implies convolving each point
from the given image with a Gaussian kernel like the one in 2.1.

1 4 7 41
4 16 26 16 4
7 26 41 26 7 (2.1)
4 16 26 16 4
1 4 7 4 1

However the presented kernel is just one representation of how a Gaussian kernel looks
like. It is called a "Gaussian hump" because of its specific centred shape [8]. The filter
follows the formula 2.2:

Gla) = ot (2.2)

x) = e 2 .
V2mo

The value of the variance (o) shows how much the image is blurred. Therefore Figure
2.3 the impact of sigma can be seen as it was increased progressively on a 3x3 kernel.

The size of the kernel also matters when applying the Gaussian filter.

2.1.3 Dilation and Erosion

Dilation is a morphological operation which plays an important role in the pre-
processing step of image analysis depending on the application. The goal of this proce-
dure is to increase the dimensions of objects in a binary image. Therefore small unwanted
holes are filled and objects merged. The strength of the dilation’s effect is given by the
size of the structuring element, so the bigger the size the bigger objects will get in the
output image. The method is very useful when one wants to have clear view of the fore-
ground objects in a given scene by enlarging the boundaries of the regions that contain
white pixels. [9].
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(a) kernel size = 3x3 (b) kernel size = 5x5 (c) kernel size = 11x11

Figure 2.3: Gauss Filtering. 0 =5

l g2(x)= f(x)®SE
1

[ T T T T T T 11

Output Imag I

Figure 2.4: Dilation Algorithm. If one of the "1"s from the structuring element correspond with a
"1" from the analysed input then the output will be 1 and "0"otherwise.

However sometimes dilation is not enough to have a good overview of all the objects
in the image, as most of the times objects are being merged and therefore another
operation should be used. Figure 2.5 shows how the number of iterations can influence
the processed image. Its visible that at 5 iterations unwanted noise becomes an unwanted
blob that may interfere with further processing.

(a) 1 iteration (b) 3 iterations (c) 5 iterations

Figure 2.5: Dilation.

Erosion is another operation in mathematical morphology used for pre-processing. In
contrast to the dilation method, erosion will decrease the dimensions of objects enlarging
the holes in the binary image. The method implies using a structuring element that can
have various shapes and that draws conclusions whether the chosen shape can fit or miss
the objects in the input image.[9]
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Input image 1 |” ‘f: ‘” | 1 | 1
Structurmg Element [II[]
1 g(x) = f(x)OSE
owptncee [To T T T T T T 1]

Figure 2.6: Erosion Algorithm. If all the "1"s from the structuring element correspond with the
analysed input then the output will be 1 and "0"otherwise.

1 Jo 1 1]

Figure 2.7 shows how the blobs progressively disappear as the number of iterations
is increased. Depending on the application this operation can be useful when noise that
wasn’t removed with a smoothing filter was applied. Also the shape of the kernel has
an important impact on the processed image as it will be seen later in section 2.1.4.

(a) 1 iteration (b) 3 iterations (¢) 5 iterations

Figure 2.7: Erosion.

2.1.4 Opening / Closing

The combination of the previous morphological operations (dilation and erosion),
form another class of operations called compound methods. The most common used for
these methods are the Closing and Opening operations.

Closing operation is very helpful with dealing with problems that may occur while us-
ing the dilation technique. As stated earlier, the dilation operation has some drawbacks.
As objects are increasing in size they tend to connect with other objects making it hard
to analyse the image. The closing operation introduces a straightforward solution to this
problem by applying an Erosion operation right after Dilation. This will often separate
the old objects bringing them to a way more better segmented form. The method’s re-
sults mainly depends on the chosen structuring element which varies in shape and size.
Figure 2.8 shows the results with structuring elements (SE) of different shapes and sizes.
As it can be seen after one iteration, the rectangular gave better results for the closing
operation. [10]

However Figure 2.9 shows that by increasing the number of iterations the square
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(a) Squared kernel. Size:3x3 (b) Rectangular kernel. Size:3x5 (c) Circlular kernel. Size:3x3

Figure 2.8: Effect of the Kernel shape on the image for the Closing operation.

structuring element and the rectangular one have the same result, while the circular one
still leaves small holes inside the blob.

(a) Squared kernel (b) Rectangular kernel (¢) Circlular kernel

Figure 2.9: Effect of the number of iteration on the image for the Closing Operation, compared to
Figure 2.8. Number of iterations: 3.

Opening operation, in contrast is used to compensate the limitations of the erosion
method. Decreasing the size that objects have in one scene may be useful when the main
goal would be the noise removal. However this will make some of the relevant objects
disappear. Opening operation solves the problem in the same straightforward manner as
closing but this time the erosion operation will be followed by a dilation one. Therefore
the form of the object will not be that altered. [10]

Figure 2.11 shows that contrary to the closing experiment where the square kernel
and the rectangle one gave the same result at 3 iterations, the rectangle kernel alters the
blobs and eliminates even the smaller blobs that were of interest. On the other hand
the circular kernel gave the best results compared to the other two.

2.1.5 Histograms

When one needs to analyse images, video sequence or just particular objects inside,
the most frequently used "tool" that provides relevant information regarding these objects
is the histogram. Histograms can be used in various ways from representing the colour
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(a) Squared kernel. Size:3x3 (b) Rectangular kernel. Size:3x5 (c) Circlular kernel. Size:3x3

Figure 2.10: Effect of the shape of the Kernel on the image for the Opening operation.

(a) Squared kernel. (b) Rectangular kernel. (c) Circlular kernel.

Figure 2.11: Effect of the number of iteration on the image for the Opening Operation, compared to
Figure 2.10. Number of iterations: 3.

distribution of an object, to the distribution of probabilities regarding the location of an
object in a scene.

In the computer vision domain histograms play an important role and they find their
use in numerous applications. One application would be that histograms can be used to
detect transitions that may occur in a video scene checking the changes from one frame
to another regarding the edge and colour statistics. The reason for tracing the colour,
corners or edges, is that they are important features for the object recognition process.

The main principle that a histogram uses is that it collects and the counts of the
analysed feature and then organizes and stores them into a set of predefined bins Fig.2.12.
Usually the histogram dimensions are fewer than the source data has. Fig.2.12 shows a
two-dimensional distribution of points (upper left). A grid is imposed (upper right) and
then date points are counted in each grid. The result is a 1-D histogram (lower right).
1]

An important application with the histograms is found in systems that work with
matching processes. The comparison of two histograms becomes really useful when, for
example, a tracking algorithm is invoked. In order to increase the chances so that the
track would not be lost, histogram comparison really comes in handy. There are many
ways in which histogram comparison can be done. Here are some of these methods [11]:
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Figure 2.12: Histogram principle.

Source: [11]

Correlation The method is given by formula 2.3:
/X Hi (i) - Hy (i)

dcorrel(Hla H2) ==

Where:
Hj (i) = Hy(i) — (%)Z;Hk(j) and N represents the number of bins in the
histogram.
For this method the result of a higher score is better than a lower one. The perfect
match is given by a value of I and a maximal mismatch is given by a value of -1.s

Chi-square method The method is used based on equation 2.4:

N N2
dchi—square(Hla H2) = Z (Ij{’ll(( )) +I;Ié2(( ))) (24)

For this representation the lower the score the better the matching. A score of 0
represents a perfect match, and a total mismatch is unbounded (depending on the size
of the histogram).

Intersection This method follows equation 2.5:

dlntersectwn Hla H2 Zmln Hl ( )) (25)

In this case a good score has a high value Whlle a bad score has a small value. If the
histograms ar normalized to 1 then a perfect score is I and a total mismatch is 0.

Bhattacharyya distance The method uses the following equation 2.6:

chattacharyya(HlaHQ \l Z \/Z H1 77:) H2(Z)( ) (26)
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For the Bhattacharyya distance low scores represent good matches and high scores bad
ones. A perfect match is given by a value of 0 and a maximal mismatch has the value
of 1.

Choosing the correct method is a trade-off between accuracy and speed. According
to [11] the intersection method is fast but not that precise while the chi-square and
Bhattacharyya methods offer more accurate matchings at lower speeds.

2.2 Object Detection and Classification

(g} (h) (i)

Figure 2.13: Object representations. (a) Centroid, (b) multiple points, (c¢) rectangular patch,(d)
elliptical patch, (e) part-based multiple patches, (f) object skeleton,(g)complete object contour, (h)
control points on object contour, (i) object silhouette.

Source: [11]

A major class of image/video processing theory is object detection. It implies
analysing and scanning an image or a video frame and find the objects inside. There
are various methods in which detection can be done depending on the application. The
methods can be roughly separated in to classes : feature-based methods and learning-
based methods.[11]

The feature-based methods imply detection an object in one scene by identifying some
strong characteristics they might have such as: edges, corners, colour, texture, contours
etc.. However if the object is more complex, learning-based methods are used. The
algorithms are more complex and involve training samples from the object’s environment.
An example of such a method is the Viola and Jones Rapid Object Detection which use
a boosted cascade of simple features. Therefore in the detection process an object will
be defined as anything that is of interest or relevant for further analysis. Here follows a
list of terms that are relevant when proceeding in doing object detection [11]:

1. Points. As it can be seen in Figure 2.13(a) an object can be represented as a
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point usually the centroid (centre of mass), or a set of points Figure 2.13(b). This
representation is relevant and also very helpful in tracking procedures

2. Primitive geometric shapes Objects can also be represented as primitive ob-
jects: rectangles, circles, ellipses etc.(Figure 2.13(c,d)). However these primitive
rigid shapes are used for representing rigid objects, but are also very useful when
tracking.

3. Object Contour and Silhouette An object can be very easy to detect and
classify using its own boundaries which are also known as contours (Figure 2.13(g,
h)). Also another relevant representation would be the inner contour which is often
called silhouette.

4. Articulated shape models Articulated objects are composed of parts connected
by joints. For example the human body is an articulated object with the limbs
and head connected with the torso by joints. This representation uses kinematic
models and each connected object can be represented individually by other shapes.
For example in Figure 2.13(e), the human parts are described as ellipses.

5. Skeletal models They are used by applying medial axis to the object’s silhou-
ette.This type of representation seen in Figure 2.13(f) can be used on both rigid
and articulated objects.

2.2.1 Blob Analysis

Before starting explaining what this chapter is all about few examples will be shown
in order to get a full understating of it. One example can be seen in image below (Fig.
2.14), where an algorithm is needed to figure out how many small objects within a certain
area are there in the scene. another

Figure 2.14: Binary image with shapes.

Source: [11]

Another example is presented in Fig. 2.15 where three persons can be seen. An
algorithm is needed in order to determine the position of the persons in the image.
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Figure 2.15: Binary image with three persons.

A solution for solving such a problem would be to separate the three silhouettes and
evaluate them individually. The process is called BLOB extraction. The word stands
for Binary Large OBject which basically is a large group of connected pixels in a binary
image [10].

The chapter refers to blob analysis by extracting and classifying the blobs according
to some specific features.

BLOB Extraction The extraction step stands mainly in separating different blobs
from a given binary image. Connectivity determines whether two pixels are in fact
neighbours and therefore connected. One of the most common methods in which blobs
can be extracted is the contours method.

Contours. The contours in an image represent a list of connected pixels that draw a
curve in the image. The main goal in tracing such a contour is to give some relevant
information about the shapes that objects have in one scene. After extracting the contour
of a certain pattern further analysis can be made and accurate conclusions can be drawn.
The reason for getting a pattern’s contour is that th process of feature extraction will
not be that computational intensive, being more efficient if applied on a contour rather
than the pattern itself. Some of the contour extraction algorithms can be shown below
[12]:

1. Square Tracing Algorithm Given an input image with a certain pattern (a
group of black pixels on a grid of whit pixels ), the idea would be to get the
pattern’s contour. The algorithm is pretty straightforward: first of all the starting
pixel needs to be located. This can be done by starting scanning from the bottom-
left corner of the grid and going upwards and proceeding to the right scanning the
following column until a black pixel is found. When the pixel is found it will be
marked as the anchor. Now there are two situations:

— every time you encounter a black pixel you turn left

— every time you encounter a white pixel you turn right

The Process is over when the anchor pixel is found again.The method is based on
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Figure 2.16: Square-Tracing Algorithm.

the "sense of direction", therefore the way you move (left or right) depends on the
way that the current pixel was encountered.

. Moore-Neighbour Tracing Algorithm Before starting explaining the algo-

rithm the Moore neighbourhood of a pixel needs to be explained. The Moore
neighbourhood of a pixel P is a set of 8 pixels (P1 to P8) that share a vertex or
an edge with it as it can be seen in the figure below.

P1 P2 P3

P8 Pa

P7 P& P5

Figure 2.17: Moore Neighbourhood.

Considering the same 7x7 grid with a different pattern the algorithm for finding
the pattern’s contour will be as it follows. Firstly the anchor pixel needs to be
found and this will be done in the same manner as mentioned earlier in the Square
tracing algorithm. Once the anchor pixel is found the contour will be extracted
going around the pattern in a clockwise direction. The idea of the algorithm is
that every time a black pixel is hit, backtrack to the white pixel previously visited
and start again. The algorithm finishes when you visit the anchor pixel a second
time. A good example can be seen in the figure below Fig.2.18.

Another method that is quite used in computer vision science while extracting blobs,

is the connected-component analysis [13]. The connected-components analysis is a graph
theory algorithm that finds connected regions in a binary image. Therefore, given an
input binary image, a graph is formed containing vertices and edges. The vertices
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Figure 2.18: Moore-Neighbour Tracing Algorithm.

contain the relevant information about the respective pixel while the edges are represent
connected "neighbours". Connectivity is given by how one pixel relates to its neighbours
and it can have several types, the most commonly used being the 4-connected or §-
connected see Figure 2.19.

(a) 4-connected (b) 8-connected

Figure 2.19: Pixel connectivity.

The algorithm is as it follows. Given a binary input image (Figure 2.20 ) the first
foreground pixel (white pixel) is found and all its non-background neighbour pixels. If
none of its neighbours is labeled, then the current analysed pixel will be assigned with
an unique label. The algorithm moves to the next pixel which has an already labeled
neighbour, therefore it will be assigned with the same label as the one of its neighbour.

And if a pixel happens to have neighbours of different labels, then it will be assigned
with the smallest label out of all of its neighbours Figure 2.21. After the image has been
entirely scanned the labels are merged outputting the resulting blobs.

BLOB Features. Given the above mentioned examples another problem interferes
after extracting blobs from an image. Is it possible to classify a blob as unique or as
belonging to a certain class? The answer to this question is yes, if certain characteristics
are taken into account. These characteristics are often called features and comparing
them will give relevant information regarding the problem of blob comparison. The
main idea is to reduce the blobs an transform them into some relevant numbers. An-
other important aspect would be to ignore the blobs that appear at the border of the
image as there is no information whatsoever about the part that stands outside of the
frame. There are numerous features that can be extracted when proceeding in doing
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Figure 2.20: Binary image. First non-background pixel detected labeled with 1

Source: [13]

Figure 2.21: Connected-component analysis result

Source: [13]

blob analysis. Here follows some of the most fundamental ones that describe a blob:[10]

— Area The area of a blob represents the number of pixels of the entire blob. This
feature is very useful when smaller blobs need to be eliminated from the image.
For example, when trying to detect people in one scene it is obvious that a certain
value will be set so that all the blobs with values smaller than the set one will be
discarded.

— Moments Usually in computer vision there are certain applications that need
some specific information regarding the pixels’ intensities from a given image. The
weighted average of these intensities are called moments [14] and are usually used as
an input for dedicated functions that allows the interpretation o the image. Image
moments can describe many things ranging from area of the image or some part
of it, to information regrading the orientation. Because blob extraction basically
implies getting the contours in order to retrieve blobs in one scene, one way of
describing and comparing contours is using the moments. Computing the moments
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that a contour has, is very valuable when contours from one scene need to be
compared. The moment is basically a characteristic of the contour determined by
integrating (or summing) over all the pixels that the respective contour has.The
(p,q) moment of a contour is defined by the following formula [11]:

Mpg = I(x,y)zPy" (2.7)
=1

As it can be seen in formula 2.7 the order for z, and y is p respectively ¢. The
summation si done over all n pixels of the contour. Therefore the moment mg
will represent the length of the contour’s pixels. The information that a contour
gives is rather rudimentary but it is still an important asset when comparing two
contours. In practice normalised contours are used, therefore if two contours have
the same shape but different sizes the returned values for both contours’ moments
will be similar. A common usage for the contours would be to help in computing
fundamental features that a contour has, for example the centroid:

Lcentre = ml,O/m0,0

Yeentre = 10,1 / mo,0

— Bounding Box The bounding box represents the minimum rectangle that contain
the blob. It is computed by scanning through all the blob’s pixels and finding the
minimum and maximum positions on both z and y axis. Having these four values
(Tmins Tmaz, Ymin, Ymaz) the width and height of the rectangle can be computed
using the following formulas [10]:

width = Tmazr — Tmin
height = Ymax — Ymin

The bounding rectangle is of major importance as it can be used as a ROI (region
of interest) while doing detection/tracking procedures.

— Bounding Box ratio The bonding box ratio gives information about the blob’s
elongation determining whether the blob is long or short. It is computed as the
height divided by the width as it can be seen in the following formula.[10]

height _ Ymaz — Ymin
width Tomaz — LTmin

ratio =

(2.8)

— Centre of bounding box The centre of the bounding box is an approximation
of the centre of mass and it is computed using the following formulas:[10]

Toh = Tmin + x'maz;xmin

Yob = Ymin + Ymazx gymin
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— Centre of mass The centre of mass is the point on the blob that you could place
your finger in order to balance it (for example all the blobs that humans create
in one scene will most likely have their centre of mass around their belly button).
The centre of mass is a the point whose z value is computed by summing all the x
coordinates of all the pixels in the blob and then dividing by the total number of
pixels. The process is similar for ty y value. The formulas are shown below : [10]

1 XN 1 XN
NG TN LY
— Perimeter The perimeter represents the length of a blob,and it is computed by
summing/counting all the pixels encountered along the contour of the blob.

2.2.2 Support Vector Machine

A Support Vector Machine (SVM) is a machine learning technique used for classifi-
cation or regression?. It was introduced by Vladimir N. Vapnik and C. Cortes in 1995
[15]. In other words it is a technique that allows to organize data according classes (or
category) in order to determine the class of another sample.

Definition In a n-dimensional space, an hyperplane is a subset of dimension n — 1
which separates the space into two half spaces. It can be described as a set of points x
such as

w-x—b=0 (2.9)

where w is the normal vector to the hyperplane.

In the following, the algorithm uses a set D of n elements of class y as a training set.

D = {(xs,u:) | xi € RP, y; € {~1,1}}), (2.10)

The general idea of the training (or learning) part is to find a linear hyperplane (of
dimension p — 1, p being the number of classes) that separates each class of the training
data (which classes are known, by definition). The classification process is to confront
the unknown data to this hyperplane and decide to which class it belongs. Figure 2.22
represents that system.

As shown in Figure 2.23, there are infinite possible hyperplanes to classify the data.
To optimize this classification, a hyperplane is needed that will maximize the distance to
the nearest points on either side of the hyperplane. This distance is called the margin.

This is equivalent to find two hyperplanes separating the data with the maximum
distance between them. These hyperplanes are respectively as such as: w-x—b =1 and
w - x — b = —1. The points belonging to one of these hyperplanes are called support
vectors. These different items are explicated on Figure 2.24.

2Set of statistical techniques to study the relation of a variable to one or several others.
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Figure 2.22: Description of Support Vector Machines. The first block, executed once, builds the
model according to the training data. The second block, executed as many time as needed, classifies an
input data according to the model.
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Figure 2.23: Hyperplanes separating data. H1 separates the data but is not optimal. H3 doesn’t
separate the classes. H2 is optimal. There are infinite hyperplanes like H1.

Source: [16]

To maximize the margin, which value is , ||w]| needs to be minimized, with

2
[[wll

yi(w-x;—b) > 1, 1<i<n. (2.11)

2.2.3 Histogram of Oriented Gradients

Histogram of Oriented Gradients, commonly called HOG, is a computer vision tech-
nique commonly used to detect all kind of objects. Unlike background subtraction
algorithms, it has a region-based approach which makes it robust against geometric and
photometric transformations.

The motivation for using this technique is mainly its robustness. Indeed, the training
is computed with SVM on a database with hundreds of images. The algorithm is designed
to recognize specific kinds of objects, which makes it a good choice for human detection
purposes.

Compared to other algorithm, like ASM (Active Shape Model), which uses statistical
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Figure 2.24: Description of Hyperplanes and Margins for Support Vector Machines. Plain
line represent the maximum-margin hyperplane. Dashed lines represent the margins. Bold dots are the
Support Vectors.

Source: [16]

models and deform the shape of an object to fit a reference image, HOG shows better
result in both positive and negative matches (meaning that there are rate of true positive
/ true negative is better).

Figure 2.25: HOG Detection.

The algorithm was described by N. Dalal and B. Triggs in [2], from the French Na-
tional Institute for Research in Computer Science and Control (INRIA) at the Conference
of Computer Vision and Pattern Recognition (CVPR) of June 2005

It uses gradients magnitude and direction to describe all parts (or cells) of an image.
It can be combined with a SVM detector for human detection purposes.

Figure 2.26 represents the different steps to compute the histogram of oriented gra-
dients:
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Input Image

|

Gamma'/ Cc?lor Cnseents Clomouiatfion Spatlal/‘ Or}entatlon
Normalization Binning
|
|
Descriptor Block Normalization Block Linear SVM
Classification

Figure 2.26: Block Diagram of HOG Algorithm.

Gamma/Colour Normalization The main purpose of the Gamma/Colour normal-
ization block is to reduce the impact the light has on the given image (local shadowing
and illumination variations). The used images should be in RGB or LAB colour spaces
as the coloured images show better results than the gray-scale ones. The normalization
itself doesn’t improve performance significantly, probably because a similar job is done
again later.

Gradient computation The importance of determining the gradients from one image
is due to the fact they get information related to contours,silhouettes and sometimes tex-
ture. All these aspects are important when defining specific objects such as cars,animals
or humans. The gradients are computed by applying some kind of derivative mask over
the input image.

However it was showed in [2] that the most effective technique for gradient compu-
tation is the application of a 1-D, centred, point discrete derivative mask to filter the
colour or intensity of the image. The following masks are used:

T
10 tforft 0 1]
This gives us the gradient at each point, which allows us to obtain the orientation and

the magnitude, using the following equations (G, and G, and the z and y projections of
the gradient). Th following formulas show the magnitude (Eq.2.12) and orientation

(Eq.2.13):
G=./G.+G, (2.12)

© = arctan % (2.13)
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Figure 2.27: Right and middle image show computed gradients at each location, and the brightness is
proportional to the gradient magnitude at that location

Source: people.seas.harvard.edu/~ely/faceparts/serial.html

Spatial /Orientation Binning. This is the part where the histogram of oriented gra-
dients is built. Each pixel in the image holds a weighted vote for the orientation, based
on the gradients computed in the previous step. The image is divided in small spatial
regions called cells (see Figure 2.28), and for every cell the orientations of the gradients
are accumulated in a 1D histogram with a predefined number of bins. Each pixel votes
for one of the histogram’s bins according to its orientation, and increases it with its
magnitude.

These orientation bins are evenly spaced over 0° — 180° in case the gradient is “un-
signed”, or 0° — 360° in case the gradient is “signed”. The “signed” gradient is of no use
for human detection, but shows better results for other object detection. Usage shows
that 9-class (9 bins) histograms are sufficient.
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Figure 2.28: A Cell (with orientation and magnitude) and its Histogram.

Normalization and Descriptor Block. As mentioned earlier the normalization pro-
cess helps in reducing the light variations or shadowing problems. In this step, cells are
grouped into bigger units called blocks. Usually the blocks are overlapped and the cells
are shared between the blocks and also normalized separately.
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Two representations exist for this grouping: the R-HOG (rectangular) block and the
C-HOG (circular) block.

The R-HOG block is the default descriptor used in [2]. The R-HOGs are similar
to SIFT descriptors (Scale Invariant Feature Transform) but they don’t align to their
dominant orientation. The R-HOGs are computed over m xm grids (m being the number
of cells in each block) of n x n pixel cells and S histogram bins. Figure 2.29 shows an
R-HOG blocks composed of 3x3 cells of 6x6 pixels. However the best configuration is
using a 2x2 cells of 8x8 pixels with 9 histogram bins (see [2] ).

Figure 2.29: Representation of pixels (black), cells (red), and R-HOG block (blue).

There are three methods in which the blocks can be normalized where v is the un-
normalised descriptor vector and e which is a normalisation constant that prevents the

division by zero:
v

[0]3 + €2
v
v
Ln-5Q:f=,—— 2.16
Q f ||'U||1 +€2 ( )

SVM Classifier. Using the created descriptor with a trained Support Vector Machine
(See section 2.2.2) classifier allows determining the presence of a specific object, such
as a human being. This classifier is binary and looks for the optimal hyperplane which
separates matching objects from non-matching ones.
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2.3 Video Processing

2.3.1 Segmentation and detection

Video processing uses the same principles as image processing with slight modifica-
tions. All the operations are now done on a video sequence which is basically a sequence
of images. While working on videos a new notion is introduced that of temporal infor-
mation, therefore the segmentation and all the analysis will be dedicated towards the
moving objects in one scene.

Like image processing the first step in analysing a video stream is segmentation.
In order to detect and analyse a moving object in the scene it’s fair to start with a
background subtraction algorithm. This procedure will "discard" the background (which
will consist of black pixels) leaving the scene only with the wanted relevant objects also
known as foreground (represented by white pixels). However the method is not that
straightforward as it encounters a lot of problems while applying it. In an ideal case
the background is constant and if the scanned environment is for example a room. All
the objects in the scene: walls, tables, chairs are static and, from one frame to another
are supposed to stay the same. However as mentioned earlier in the report, illumination
drastically changes this "static" aspect and therefore if sun enters the room the algorithm
will consider this as "a change" in the scene and unnecessary objects will be detected as
positives. If the canning is done outside the control on illumination is even more harder
and more complex techniques are used such as background-modelling. Therefore the
challenges that should be taken into account while modelling the background consist of
handling some major problems:

— Robustness against changes in illumination

— Adaptability (avoid detecting non-stationary objects such as shadows cast by
moving objects, rain snow or moving leaves, therefore adaptability implies the fact
that the background should react quickly to sudden changes in the scene.

The most used methods for background subtraction are:
— Frame Differencing

— Mixture of Gaussians (MoG) [5]

Frame Differencing

It is one of the easiest method to apply when doing background subtraction. The
main idea that stands behind this algorithm is that in a video sequence, the present
frame will be subtracted from the next one. However a simple algorithm doesn’t always
imply a good efficiency, therefore the frame differencing method presents some major
drawbacks. The first one would be that the algorithm will never detect a new static
object introduced in the scene. So keeping the room example in mind, if a person enters
the scene it will be detected until the point he/she stops. At that point the person
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will disappear and will rapidly become part of the background. Another drawback that
the algorithm presents can be observed when scanning an outdoors environment. The
problem in this case would be that the algorithm has no control whatsoever on the scene
and changes may occur at any moment (leaves moving, clouds affecting illumination).
All these changes will create false detections. Also the algorithm is not that sensible to
colours, therefore it might not always output a good segmentation result, as it can be
seen in Figure 2.30.

Figure 2.30: Frame Differencing Algorithm.

Mixture of Gaussians

The main idea would be to find a compromise between the critical problems that need
to be solved while doing background subtraction by modelling the background. One ap-
proach would be the Mixture of Gaussians (MOG) or Gauss Mixture Model (GMM)
proposed by Stauffer and Grimson [5]. This method belongs to the statistical back-
ground modelling techniques. The main idea that stands beneath the GMM algorithm
is that, instead of modelling all the pixel values as a particular type of distribution, a
particular pixel value is modelled as a combination (mixture) of Gaussians. Knowing the
specific parameters for each Gaussian (persistence and variance), it can be determined
whether a Gaussian belongs to the background or not. Therefore pixel values that do
not correspond to the background will be considered as foreground until there will be a
Gaussian that will eventually include them in the background.

The system adapts well at lighting changes, repetitive motions that may occur in the
scene or slow moving objects. Because the colour of slowly moving objects has a larger
variance than the background, the process of integrating them into the background will
take more time.

Algorithm. The method implies creating a model for each background pixel using
a mixture of K Gaussian distributions (K usually being a number from 3 to 5). The
main idea is that each Gaussian represents a colour from the given scene. The algorithm
introduces some weight parameters that represent the amount of time a particular colour
represented by a Gaussian is staying in the scene. After this, the algorithm forms an
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idea of how the background looks like by an assumption that it contains a number of
B highest most likely colours. Therefore, the colours that will stay longer in the scene
will be chosen as the ones that form the background. An important aspect for this
mixture of Gaussian method is that the system adapts to changes in illumination due to
an update scheme. If a new pixel enters the scene, its value will be checked against the
ones that already form the background model. The colours are checked according their
corresponding cluster. The static colours tend to have tight clusters while moving colours
have wide clusters because of the different reflection it has during the movement. If a
matched is found after doing the checking, then the background model will be updated
accordingly. On the other hand if no match is found, then the system will add a new
Gaussian component to the scene [5].

The changing values of an individual pixel are referred to as a pixel process, and
for each pixel there is a recent history of all its changes X ... X; that is modelled by a
mixture of K Gaussian distributions. The probability of observing the current value of
one pixel is given by formula 2.17:

K
P(Xy) = Z wi g x N( X, i, Xit) (2.17)
i=1
Where:
- w; ¢ is an estimate of the weight showing the proportion of the data used for the
i-th Gaussian (G;;) at time t.
- Mi ¢ is the mean value of G .
- X+ is the covariance matrix of G;; .
- n is the Gaussian probability density function given by the formula 2.18:

n(Xe, p,0) = % x e 7 Ximnn) TETH (Xm) (2.18)
(2m)2 * [X[2
Choosing the number of Gaussians used (K) depends on the available memory but
also on the computational power that the algorithm should use. Usually the values
range between 3 and 5. Because of computational reasons, it was assumed that the
RGB colour components are independent and have the same variances; therefore the
covariance matrix of this form would be of this form (equation 2.19):

Yit = ol (2.19)

The foreground detection is as follows . In the beginning the designed system that
is using K Gaussian distributions will be initialized with some pre-defined parameters
such as the mean, variance (which is set to a high value), and weight (set to a lower
value). Then, while observing a new pixel, in order to determine its type (whether it’s
foreground or background), the RGB vector is checked against the K Gaussians until a
match is found. A match is considered to be a pixel value within a standard deviation
of 2.5 from any of the background distributions [5].
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Having the above mentioned initialization, the system is then updated after equation
2.20:

Wit = (1 — a)wg -1 + My, (2.20)
Where:

- « is the learning rate;

- My is 1 if a match is fond an 0 otherwise.

After this step the weights of the distribution are normalized and the remaining
parameters (mean 2.21 and variance 2.22) are updated as well:

pe = (1= plu—1 + pXs (2.21)
2 _ 2 T
op = (1= p)oi_1 + p(Xe — )" (X — pt) (2.22)
Where:
p = an(X¢|pk, o) (2.23)

The main advantage of this updating method is that whenever changes are made in
the scene (movement in general) the previous state of the background won’t be discarded.
In fact the original colour is kept in the mixture until it becomes the K-th probable and
a new colour is observed. That means that if a moving object becomes stationary for a
period of time enough to become part of the background, and then it moves again, the
previous background still exists and has the same p and o2 but the weight w will be
lower eventually being re-incorporated into the background.

In order to determine whether the new pixel is corresponding to the background or
foreground the K Gaussian distributions are sorted by the value of w/o . An ordered
list is therefore created which will contain, from top to bottom, the most probable back-
grounds. After that a number of B distributions are chosen to model the background,
where B is given by equation 2.24:

b
B = argminb(z w > T (2.24)

1
And T represents the minimum proportion of the pixel data that is needed to model
the background. If T is small then the background is uni-modal. This means that only
the most probable distribution is used. If T is chosen to have a higher value then the
background is using a multi-modal distribution (because of moving objects that belong
to the background such as leaves, a flag in the wind etc.). Therefore the background
model will allow the background to save more separate colours that will be integrated.
The figure below (Fig. 2.31) shows the Gaussian Mixture Model algorithm done on

the same video seen in the frame differencing algorithm:
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Figure 2.31: Gauss Mixture Model Algorithm.

Figure 2.33: Gauss Mixture Model Limitations.Bad detection in a sunny scene.Shadows detected as
positives

Algorithm Limitations. Also, as mentioned earlier in the introduction chapter, there
are some limitations for using this algorithm. The shadow caused by the sun or other
light sources will create unwanted blobs that will be detected as a human (Figure 2.33).
Another problem rises when two or more passengers walk together the blobs that each
other form will be connected (Figure 2.32); therefore that blob will need a thorough
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analysis in order to determine how many persons are in that group or to establish
whether or not that blob is indeed formed by a group of people.

2.3.2 Filtering/Tracking

A major part of the Tracking process (detailed in chapter 4) is the prediction. This
part uses data filtering as used in electronic systems to estimate the position of the
people.

The most commonly used method used for tracking is the Kalman filter described
by R.E Kalman in 1960 [17] in as a solution for filtering linear data, and it has been
developed ever since. What the filter actually does is to estimate the state of a linear
dynamic system from a set of noisy measurements. The idea is that the filter smooths
the measurements by weighting them against their predicted values by their variances.

The filter will output estimates regarding the unknown values and will also give
information about the estimates’ uncertainties.

Because it is quite hard to retrieve accurate results regarding precise measurements,
it is fair to analyse the behaviour of the Kalman filter by it’s gain. This gain is a function
of relative certainty and current measurement estimate and it can be "modelled" in such
manner so you can be able to "set" the system’s performance. A high gain will focus
more on the measurements and therefore will follow them more closely. Using a low
gain, noise will be smoothed and the predictions will have more weight when followed.
If the gain is set to 1 then the state estimate will be fully ignored. On the other hand
if the gain is set to 0 the measurements will be the ignored ones.

The estimation process for the Kalman filter is recursive and can be run in real time.
This recursive aspect means that the in order to compute the current estimate only the
current measurement and the estimated previous step are needed.

The Kalman filter assumes that all the states and noise have a Gaussian distribution.
The Kalman filter uses state vectors to analyse how the system’s behaviour changes in
time, and based on how the state output looks like the corresponding measurement will
be predicted. Therefore the Kalman filter will describe the current state derived from
the previous state according to the following formula [17]:

T = Frap_1 + Brug + wg (2.25)

Where:

- xj is the current state

- F}, transition model matrix applied to the previous state Fj_1

- By is the control input matrix (if you there is control on the analysed object)
applied on the control vector uy

- wy, is the process noise drawn from a zero mean multivariate normal distribution.
wi ~ N (0, Q) where Qy is the covariance matrix of the process noise.

At time k£ a measurement of the current state is made according to the following
formula:

2 = Hpxy + vg (2.26)
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Where:

- 2}, is the measurement or observation

- Hp, is the observation model matrix that maps the true state z in the measurement
space.

- vk, is the observation noise. vg N (0, Rj) where Ry is the covariance matrix of the
measurement noise.

The two distinct phases of the Kalman filter are the Prediction and the Update.
The prediction step uses the previous state estimate in order to detect the current state
estimate. this process is also known as the a priori state estimate because even though
it determines the current state it doesn’t contain measurement information about it.
The update phase combines the prediction with the measurement in order to output an
accurate estimate. This last estimate is also known as a posteriori state estimate.[17]

The prediction phase is represented by formulas of the predicted a priori state eq.2.27
and the predicted estimate covariance eq.2.28:

Xijk—1 = FeXp_1jxg—1 + Br—1uk—1 (2.27)

Pyje—1 = FePe_p—1 Fil + Qra (2.28)

The update phase is represented by the formulas of the Kalman filter gain eq. 2.29,
the updated state estimate eq.2.30 and the updated estimate covariance matrix eq.2.31
[17] [18]:

Ky = Py HE" (Hp Py Hif + Ri) ™! (2.29)
X = Xijo—1 + Kp(zr — He Xpj—1) (2.30)

Py = (I — Ky Hy) Prji—1 (2.31)



Chapter 3

Detection

3.1 Introduction

The previous chapters stated the problem formulation, system requirements and the
description of all the theoretical concepts that were used in the system’s implementation.
The current chapter describes the first part of the algorithm, describing in details the
Human Detection step. The video caption will be taken in an outdoor/indoor envi-
ronment from a camera placed at a certain height around 3 meters parallel with the
side-walk. After the capture is taken the system will determine the correct detections.

Definition A correct Detection represents an extracted blob ,from the given scene,
that has a certain set of features describing a human, as it will be seen further in the
chapter.

3.2 Design

According to the system presented earlier in Chapter 1 this part will only handle the
implementation in detail of the Detection block.

Position and
ID of People

video frame —| Detection Tracking

Figure 3.1: System representation in blocks

The detection part of the system’s framework is simple and straightforward it implies
the usage of to major blocks that output a robust fast human detection. As it can be seen
in Figure 3.2 the first step would be a segmentation approach which enables the blob
detection after a background subtraction algorithm is applied. The block will output
filtered blobs with some specific characteristics that will further help in the system’s
development. For example the bounding rectangle of a specific blob will be used a
region of interest on which the Region Detection block will be used. The region
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based approach will validate whether the analysed blob is a human or not and if so the
tracking process can continue, otherwise the blob will not be taken into account and
therefore no tracking will be done on it.

Segmentation| | Region

) ) ——— Tracking
Detection Detection

Video stream —

Figure 3.2: Detection process representation

3.2.1 Setup

As mentioned in section 1.4, the system is supposed to be as adaptive as possible.
For this reason, the system has simple requirements:

Video Camera The Video Camera used is a simple 2 Mega Pixels web cam, manu-
factured by Logitech®, recording 15 frames per second. See Fig.3.3.

Figure 3.3: The Logitech® Pro 9000, used for recording the video sequences.

Source: http://www.logitech.com

Computer Personal laptops are being used for running the software. Typical config-
uration can be as follow:

— Processor Intel® Centrino® Core™ 2 Duo T8100 @ 2.10GHz.
- RAM 4.0 GB DDR2.
— Operating System Windows® 7 64bits.

— Graphic Card NVIDIA® GeForce™ 8400M GS.

3.2.2 Segmentation Detection

As it can be seen in Figure 3.4 the detection part is realised in a straightforward
way. Firstly a background subtraction algorithm is applied on the input video in order
to fully separate the foreground from the background. The second step consists of the
preprocessing algorithms which prepare the foreground image for the blob extraction
step. The output of this sub-system will be some well defined human blobs.
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video stream — Backgrognd — Preprocessing — BIOb, — Human Blobs
Subtraction Extraction

Figure 3.4: Segmentation detection representation

Background Subtraction

At the beginning of this part many trials have been made in order to gain a good
and robust background subtraction algorithm (see 3.4.1). However as it can be seen in
the Segmentation and detection subsection of Chapter 2 the Gaussian Mixture Model
(GMM)[5] gave the best results.

Figure 3.5 shows how the background subtraction algorithm works. As mentioned
earlier in subsection Segmentation and detection in Chapter 2 the method adapts very
well to lighting changes and other movements belonging to the background. Each pixel
will be modelled according to a mixture of & Gaussians. According to the pixel’s param-
eters (weight and variance) it will be determined whether it belongs to the background
or not. After this step the foreground objects can easily be detected. An important
aspect for this algorithm stands in the update step as some of the foreground objects
will stay longer in the scene therefore becoming part of the background and therefore a
new model is needed as a base. The output will be processed by the preprocessing block
in order to get a good detection.

The system works only on cloudy scenarios as sun creates unwanted shadows in the
scene that would lead to bad detections.

Background

Video Stream Model

Foreground
Detection | Background Model

Update

Preprocessing

Figure 3.5: Background Subtraction Diagram



38 Chapter 3. Detection

Preprocessing

The main goal of video processing is to obtain clear and relevant images that can
be further processed to extract certain features that could describe an object. Various
algorithms are used for processing the input frames such as: thresholding (to obtain
the binary images), morphology algorithms (opening, closing, dilation and erosion) ,
smoothing(used for clearing the images from unwanted noise).

Foreground
Image

——  Closing Ga1.1551an D11at.1 on 1 . Filtered Blobs
Filter Erosion

Figure 3.6: Preprocessing

The order of the processing algorithms is as it can be seen in Figure 3.6. Firstly
a closing operation is used in order to fill the possible small holes inside a blob. After
closing a Median filter is used (in order) followed by a Gaussian filter is used in order
to clear the area of unwanted noise. Although a combination of the two is not that fast
it does not alter the resulting blobs compared to the cases where the filter were used
independently. Also combined with other operations it outputs the best results Figure
2.8. The last operation of the preprocessing block is an alternation of the dilation
and erosion algorithms which proved to output well shaped blobs that could be further
processed for determining whether they are human or not.

Blob Extraction

After the background subtraction and the preprocessing steps are done the system
can finally determine whether certain blobs are human or not according to a certain set of
features that will also help in the tracking framework. The way in which characteristics
of the new processed blobs are extracted can be seen in Figure 3.7. Firstly the contours
of the blobs are retrieved. This measure helps a lot in getting the actual features. As
seen in subsection Blob Analysis of Chapter 2 there are many ways in which constraints
can be added to a blob. The first important feature used for detecting a human blob is
the blob’s area. It has been determined that within a specific range of 1000 pixels a
blob will be considered "human". The next important aspect that is taken into account
is the bounding rectangle of the blob along with its own parameters (area, ratio). The
bounding rectangle is used for the detection improvement as it represents the region of
interest on which the Histogram of Gradients (HOG) algorithm will be applied to (see
paragraph 3.2.3). The last feature extracted is the blob’s centroid (centre of mass). The
centroid is a crucial parameter as it will be used further in the tracking process. The
Kalman filter will use this point as an input and all the measurements will be done
according to it’s coordinates (see paragraph 4.2.3).
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Region
Detection

(HOG)

|

Bounding Rectangle
Filtered Blobs — Contours Area Tracking
Centroid

Figure 3.7: Blob extraction Framework

3.2.3 Region Detection

As mentioned in the previous chapter, the Histogram of Oriented Gradients
[2] is a robust object detector, which is able to detect various types of shapes, ranging
from people to animals or vehicles. However its main purpose is to detect human, which
makes it even more fitting the needs of the system. The algorithm is a bit complex
but rather intuitive: given an input image the HOG algorithm uses a 64x128 pixels
detection window that is slid through the image in order to output a set of vectors
which will be confronted to a Support Vector Machine(SVM) to determine whether the
respective "scan" belongs to a human class or not.

The traditional usage of this algorithm is to run it on the entire image and scale the
detection window to be able to find objects at different depth in the image. However,
this process is an intensive computation and takes a lot of time. See paragraph 3.4.2 for
performance explanations.

As can be seen in Figure 3.7 the proposed system will use the HOG in combination
with segmentation detection to reduce the computation. After blobs are detected and
filtered, their bounding box is used as a region of interest, and apply the HOG to this
part of the image. This significantly increase the speed of the algorithm. The interest
of adding the HOG to the detection is that it deals with the classification. This means
that only humans will be found by this algorithm.

In conclusion, the blob analysis narrows down the work for the HOG to classify each
blob as human or not.

3.3 Implementation

The system was implemented in the C# language using a wrapper for the OpenCV
library called EmguC'V. This library was used due to the fact that it provides the user
with almost all the computer vision functions ranging from video/image processing to
machine learning algorithms.

NB: For clarity in the diagrams, the Properties (which are a specificity of
C+#) are simply represented as attributes with capital first letter. You can
assume for all UML diagrams that in reality they have getters and setters.
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Detection

+ Id: int

+ X :int

4+ Y :int

+ BoundingRectangle : Rectangle
+ Area : int

+ Histograms : BGRHistogram

- Contour : Contour<Point>

+ Detection()
+ Detection(Contour<Point>)

Figure 3.8: The Detection class diagram

As mentioned in the Design section the detection process takes as input the processed
foreground mask provided by the Gaussian Mixture Model background subtraction, and
it returns several features retrieved from detected blobs that are confirmed to be human.
These features will later be fed inside the tracking block. As it can be seen in the
Detection UML diagram in Figure 3.8, the class provides the following attributes: the
centre of the detected blob represented in the diagram by the two integer coordinates
X and Y. Each detection has an unique ID which is automatically incremented. Its
longevity is always of 1 frame, since new detections are made at each frame independently
form the previous. The class also provides the bounding rectangle of the detected blob
which is of type Rectangle. Another feature given by this class is the area of the blob
(of type integer) which will be used, according to a certain threshold, to select the blobs
that are of interest. One of the most interesting features provided by this class is the
colour histogram of each RGB blob (type BGRHistogram, see B.6) which will be useful
to maintain the unique characteristic of the detection.

3.3.1 Segmentation Detection

The segmentation detection was implemented according to the UML diagram pre-
sented in Figure 3.9. As it can be seen in the diagram two interfaces were created
for implementing the segmentation detection: ICaptureManager and IFrameMan-
ager. The CaptureManager deals with capturing the video input. Each frame of
the respective video will be stored as an RGB image. It provides some of the video
stream properties that can be displayed for information or used in some algorithms: the
frame size, FrameSize and the number of frames per second (FPS) that the camera runs
with, FramePerSecond. The Progress property has an informative purpose to show the
progress of the video and is used in the user interface.

The FrameManager interface deals with every frame belonging to the video input.
This interface takes an RGB image as input (the frame) and also the foreground mask
which is a binary image obtained from applying the Gaussian Mixture Model back-
ground subtraction on the input video. This interface loads all the needed parameters
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<<interface>>
IFrameManager
<<interface>> + Frame : Image<Bgr,byte>
ICaptureManager + Foreground : Image<Gray,byte>

+ PathMask : Image<Bgr,byte>
+ Parameters
: PeopleTrackerParameters

+ Frame : Image<Bgr,byte>
+ FrameSize : Size
+ FramePerSecond : double
+ Progress : int + ComputeDetections()
: IEnumerable<Detection>
+ DrawTracks(IEnumerable<Track>)
: void

Iy
Main :I

Il

CaptureManager + IsRunning : bool FrameManager

+ Initialize(string): void
+ Process(): void
+ Terminate(): void

Figure 3.9: UML diagram of the segmentation-detection process.

for both background subtraction algorithm and preprocessing steps. Therefore after the
foreground is extracted, several operations are applied in order to get a reasonable fore-
ground image. The operations implementation have been implemented as in such way
they can be reorganized (added, moved, modified or deleted) at runtime. For this to
be possible there is an interface IOperation and a concrete realization of it for each
operation (Gaussian Filter, Median Filter, Closing, Opening...). See Appendix ?7 for
more details on this implementation.

Each operation relates to a function in OpenCV and its equivalent in the wrapper,
EmguCV.

Morphology Operations OpenCV function cvMorphologyEz, relating to
Image.__MorphologyEzr in EmguCV, can apply morphology operations. A flag of type
CV_MORPH OP determines which operation will be executed: CV_MOP_CLOSE
for the closing, C'V_MOP__OPEN for the opening, and others not relevant. The Struc-
turing Element of the operation is described by a StructuringElementEx structure, con-
taining the size and shape of the element.

Gaussian and Median Filter Respective functions Image._ SmoothGaussian and
Image.SmoothMedian (SmoothGaussian and SmoothMedian in OpenCV. For each func-
tion the size of the kernel needs to be specified.
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Dilation and Erosion The functions Image. Dilate and Image. Erode are used (re-
spectively cvDilate and cvErode in OpenCV), with the number of iterations specified.

3.3.2 Region Detection

As mentioned in paragraph 3.2.3, the Histogram of Oriented Algorithm deals with
the classification of humans, and uses a Support Vector Machine for that purpose. This
SVM needs to be trained on a set of images; this system uses the data provided by the
authors of the HOG algorithm [2], freely available [19]. It is trained on 2416 positive
images cropped to 64x128 and centred on standing humans, and on 1218 negative images
randomly sampled 6 times, for a total of 7308 negative windows. It is important to
have a large number of negative images compared to positives because it prevents false
positives detections [20], which is the most unwanted behaviour. However, with this
configuration, false negative rate will increase too. To avoid that, a combination of
HOG and blob detection is used again, but this time in a different way: blobs found
after contour analysis are tracked, and a score for the number of positive hits of the
HOQG is kept. This allows to determine after just a few frames (which does not need to
be big since false positive are rare) that a blob is really a person.

The used SVM implementation is the one recommended by the authors of the HOG
[2]: SVMLight [21][22]. This implementation is separated in two programs: svm__learn,
which is the learning module, and svm,__classify which is the classification module. Only
the learning module matters in this system, since the classification is done inside the
HOG algorithm. The svm__learn utility is used in linear regression mode as suggested
by [? ]. This utility outputs a file with information like the number of features, the
number of training data, and the number of vectors. Then the actual feature vectors are
given. Example for 500 positive and 1200 negative image, with a 64x128 window size
for the HOG: 1344 support vectors of 3780 features each.

The generated SVM model contains n support vectors of m features. For and j € m,
each line of the model is the represented as follow:

Oél'liXiJ 2:Xi72 m:Xi,m

where i € n, X; is the HOG feature vector at line i, and «; represents the class of X;.

However, the HOG implementation given by OpenCV that is used in the system
requires a single 3780 features vector. Here is how the n support vectors are transformed
to a single one:

ZaiXi (3.1)

where

OpenCV provides an implementation of the Histogram of Oriented Gradients, which
is also available from the EmguCV wrapper, through the HOGDescriptor class. An
object of this class can either be constructed from the default OpenCV parameters or
from custom parameters (see paragraph Testing for more details on the parameters).
Two functions are available for the actual computation of the HOG. The first one,
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HOGDescriptor. Compute gets an array of float which is the feature vector of the input
image, with no scaling or sliding. This function is used to generate the input values
of the SVM. The other available function gets an array of Rectangle, representing the
positions of the detected people in the input image. This function scales and slides the
window, either with default parameters from OpenCV, either with specified parameters
(see paragraph Testing for more details).

This last function is used for the actual detection and classification. It is noted that
default parameters cannot output good results since they are designed to work for a
whole image, and not a region of interest, meaning they are optimized to work in that
case (difference of sliding and scaling mainly).

3.4 Testing

The most important thing while running and assessing a system, is the testing pro-
cess. This section will be separated in two main subsections: parameter testing and
algorithm testing. The parameter testing subsection will show why the applied methods
(background subtraction, pre-processing) are using specific values for their parameters
and will therefore justify the chosen values. The algorithm testing subsection will show
how the overall functionality of the detection system and present some of the limitation
and problems that occurred while running it.

3.4.1 Parameter testing

Gaussian Mixture Model The sequences used for testing are 640x480 images re-
trieved from an un-calibrated RGB normal webcam. The first used parameter ,as it can
be seen in Table 3.1, is the window size which gives the learning rate (v = 1/windowsize
where window size represents the default history measured in frames ) which is set to
a value of 0.001. It had been observed that the lower a’s value the more robust the
algorithm. Increasing this learning rate means using fewer frames to learn therefore, for
an « value of 0.01, choosing a value of 100 for the window size will make the algorithm
work a lot faster. However the background model will be rather unstable. In an outdoor
environment illuminations changes occur frequently and also objects belonging to the
background often move (tree leaves, the presence of water that creates waves) and using
such a big learning rate will lead to unwanted foreground. Several tests have been done
on the testing video and it has been shown that even by using the default value of 0.002
for o is not enough to obtain a reliable foreground as a static person from the scene will
be lost quickly becoming part of the background.

The next parameter is the number of Gaussians needed to model the background.
Testing multiple values showed that choosing a number of only two Gaussians will output
a really bad foreground. The proposed system uses the default value of 5 Gaussians as
an increased number (e.g. 7) will not show any kind of difference in the foreground
image. The background threshold represents the T value in formula 2.2/ from the Video
Processing section in Chapter 2 representing the number of highest probable colours used



44 Chapter 3. Detection

Parameter Value
window size 1000
number of gaussians 5
background threshold 0.5
standard threshold 2.5
minimum area 15
initial weight 0.05
initial variance 30

Table 3.1: Gaussian Mixture Model Parameters

when modelling the background. The purposed algorithm used the default value of 0.7
for the threshold value as it gave the best results. The rest of the parameters’ values
were chosen according to their default values.

Preprocessing steps The preprocessing steps were tested empirically and the order
in which they were applied was done in the same manner. It has been observed that
applying on the foreground mask a closing operation before filtering will provide better
blobs for the later detection. Using only the median filter (with a kernel size of 3)
showed a good noise removal but the alterations of the blob was the major drawback.
However used in combination with a Gaussian filter with a kernel size of § the retrieved
blobs aren’t altered that much and noise is still removed. Then dilating the blobs two
times, eroding them 5 times and then re-dilating them two times, will output optimal
filtered blobs ready to be processed.

Histogram of oriented gradients Because most of the implementation of the entire
system is mainly based on the OpenC'V library, the algorithm is constrained by several
in-built functions. The Histogram of oriented gradients method, is one of that exceptions.
The used parameters can be seen in table 3.2.

Parameter Value
block size 16 x 16
cell size 8x 8
block stride 8x8
number of bins 9
window size 64 x 128
window stride 32 x 32
scale 1.04
hit threshold 0.4

Table 3.2: Histogram of Oriented Gradients Parameters
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The block size represents the size of the R-HOG presented earlier in section 2.2.3
in the block normalization step. The respective block will consist of four cells each of
8x8 pixels. The block stride represents the overlap between the R-HOGs so that one
cell can provide more values when blocks are normalized. As mentioned earlier in this
paragraph the Histogram of Oriented Gradients algorithm used for this system is limited
due to the library’s implementation. Therefore the three above mentioned parameters
are set according to the values from table 3.2. The respective values cannot be modified
in any way as the algorithm won’t function. Their values were chosen according to
Dalal and Triggs tests in [2]. Also according to [2] the best chosen number of bins
for the orientation and binning block from the HOG’s framework (see 2.2.3) was set
to 9 as above values showed no difference whatsoever in the algorithm’s performance.
The window size represents the size of the detection window, and was set to 64x128
as recommended in [2]. Dalal and Triggs paper show various types of window sizes
depending on the application and many others have been established. The detection
window is slid on to the image and can be overlapped over the previous scanned area.
This overlap factor can be set with the window stride value which in this case was chosen
to 32x64 for it gave the best results for a 640x480 video sequence. The scaling factor
determines how much the image and window size are scaled to match smaller objects.
A value of 1.2 is optimal for this system because it implies a small number of scaling,
thus computations.

The hit threshold represents the threshold for which a HOG descriptor is considered
to be a "hit" (a true positive) representing a human. It is basically a distance from the
HOG feature vector to the SVM plane see 2.2.2. It was shown the implemented system
a value of 0./ gives the best hits in one sequence.

3.4.2 Algorithm testing

For determining the robustness of the system, multiple videos were used as input in
order to challenge it. This was done firstly to see where the theoretical notions, that
stated that a particular method will be optimal for this application, will fail. Secondly,
usage of multiple videos taken will definitely provide some answers regarding what is the
"perfect scenario” for the implemented system.

Figure 3.10 shows one of the scenarios where, when parameters presented earlier
in 3.4.1 were used, the system still gave bad results. Illumination proved to have a
major impact when background subtraction was performed and even though the default
history (the frames needed to model the background) was chosen with a value of 1000,
the sudden illumination changes that occurred in the image output blobs that could not
be classified as humans.

Although the system should have adapted (Figure 3.10 shows the beginning of the
video) after several frames, the reflections in the windows constantly changed during the
runtime outputting more bad results. Figure 3.11 shows that even with pre-processing
the human blobs connect to the windows reflections making it impossible to detect the
humans and to track them afterwards.

However under different conditions, were there were no window reflections or major
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(a) Original RGB image (b) Foreground Mask

Figure 3.10: Illumination problems at optimal parameters.

(a) Original RGB image (b) Foreground Mask

Figure 3.11: Illumination problems at optimal parameters.

illumination changes, the system worked perfectly with the same parameters as the
ones used in the previously presented video. Besides some barely visible noise, Figure
3.12.shows how a totally cloudy environment provides good results that correspond with
the system requirements.

The best results were found on a video in which was taken in a totally shaded scene
,although the environment was sunny (Figure 3.13 ). It can be seen in the foreground
mask Figure 3.13b ,that the algorithm is only retrieves the un-altered human blobs with
no noise whatsoever.

Performance Figure 3.14 shows the performance of the implemented detection block.
As it can be seen the algorithm runs faster than the OpenCV’s version, at a frame
rate around 21 F'PS. This shows that applying the HOG only on regions of interest will
drastically improve the algorithm’s performance compared to the one in which the whole
image was scanned. The default HOG and the new algorithm were run using the same
Support Vector Machine data.



3.5. Conclusion 47

(a) Original RGB image (b) Foreground Mask

Figure 3.12: Background subtraction testing. Totally cloudy environment

(a) Original RGB image (b) Foreground Mask

Figure 3.13: Background subtraction. Totally shaded environment

3.5 Conclusion

The chapter presents a custom approach to detect people in a 640x480 video se-
quence, taken with a commercial webcam. By using a background subtraction tech-
nique, foreground is separated from the background retrieving the relevant objects in
the scanned scene. Preprocessing steps are then used in order to get good segmented
blobs that will further represent the regions of interest (ROIs) for the actual detection
step. The Histogram of Oriented Gradients (HOG, [2]) proved to be a useful tool when
detecting humans. Moreover applying the HOG on the detected ROIs proved to be a
faster approach than the original version proposed by Dalal and Triggs [2], implemented
in OpenCV. The HOG features extracted from the ROIs are classified using a Support
Vector Machine (SVM) trained with images from the INRIA pedestrian data set.

Training with a different dataset from the one given in OpenCV also proved to
increase the system’s robustness. Although the testing was done on a video sequence
where only two people interact in the scene, compared to the OpenCV version, the
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Figure 3.14: Comparison of the system to the OpenCV HOG default implementation.

persons were almost always detected (see 5.1).
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Tracking

4.1 Introduction

As the detection part was taken care of the tracking process can be enabled. As seen
in the previous chapter Detection the detection block outputs trivial information used
further for the tracking process.

In Detection, only the background model is time dependent, meaning that it is
updated through frames; all the other processes can be process on a static image. Con-
trariwise, the Tracking process is completely time dependant, meaning that it has to
know about previous states.

Definition A Track is the object that is assigned to a blob once and which is updated
at each frame to follow it through time.

4.2 Design

Figure 4.1 is a reminder of the general organization of the system and the role of
Tracking.

. Positi d
video frame — Detection Tracking |——— If))s(l)fl(;;j;e

Figure 4.1: System representation in blocks

The input of this part of the system can be of three types:
e Detection of a new person.
e Detection of a person that was already there before.

e Detection of something that is not a person.

49
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Indeed, even if the Detection includes a classification to ensure that it takes only
human blobs, errors can still occurs.

The states are determined in the Matching part, and the system is updated accord-
ingly. When a Track is lost, the Prediction is used to guess its next position.

) Add/Update/Delete
Detections —— Matching Prediction

Tracks

Figure 4.2: Tracking process

Figure 4.2 shows that the Tracks are kept through time and that decisions are made
at every frame with a new set of detections. Prediction helps making decision about lost
tracks and enhances the chances of matching the correct detection to a track.

4.2.1 Setup

There is no specific setup for this part, since this subsystem is entirely dependant of
the output of the Detection subsystem. See 3.2.1 for the detection subsystem setup.

4.2.2 Matching

The Matching updates the set of Tracks by adding, deleting and updating Tracks.
It is a complex decision making that is described later on.

Detections

|

Tracks —| Matching —— Tracks

Figure 4.3: Tracking process

At each new frame, all existing Tracks and all the Detections and compared in order
to find the optimal track/detection pair.
When associating a set of Detections to a set of Tracks, the following cases can occur:

— A single suitable Track is found for the Detection (common case). The Track is
then updated with the data of the Detection.

— No Track is found for the Detection. The Detection is considered as new, and a
new Track is associated.

— A Track is not matched by any Detection. In this case the Track is considered
(temporarily) lost.
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The decision making for deciding whether a Track and a Detection are matchable
takes into account the different properties of each entity.

Features

The Matching process relies on different features, described hereafter. The choice of
features and their correct usage is a major concern of this problem.

Distance The distance is computed from the estimated position of the Track (see
subsection 4.2.3) and the gravity centre of the Detection. Doing this enhances the
chances to get the correct association because direction and speed of the person are
included, so the position can be accurately predicted, as soon as the direction does not
change too much.

Histograms Another important feature that helps in matching a track from one frame
to another is the colour histogram comparison. The algorithm uses the Bhattacharyya
distance to determine whether one match state corresponds to its previous one. The
smaller the distance the more certain it will be that the current track matches the
previous state increasing the tracking robustness. This aspect will also help when, for
example, two blobs will connect and separate afterwards. It will then be easier to asso-
ciate which track belongs to which detection, by having the value of the Bhattacharyya
distance.

Area Comparing the Area of the Track and the Detection allows to avoid major dif-
ferences between the two. A threshold of Area variation is set to find merging blobs (or
groups), and therefore avoiding to affect an ID of a person to a group.

Association

The next step is to associate a Track to a Detection according to the features pre-
sented above. This part is challenging because of the multiplicity of the features to
optimize in order to find the best track / detection pair. Indeed, taking into account a
single feature is not possible. For instance, if only the distance is taken into account, the
matching will fail in a lot of crossing cases, the same applies to the histogram of colours
(which was stated to be difficult to use, because of similarity of clothing among people).

The solution is to find a way to weight one and the other in order to make it as
precise as possible. This weighting process is described in the Implementation part (see
4.3.1).

4.2.3 Prediction

The prediction part consists in the estimation of the next position of a Track accord-
ing to its previous position and velocity. For that, the Kalman Filter [17] is used, as
described in section 2.3.2. As it can be seen in diagram 4.4 the Kalman structure works
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like a feedback control. The filter estimates the state and it gets a feedback(represented
by noisy measurements) from the corrector.

Time Update Measurement Update
(Predictor) (Corrector)

Figure 4.4: Kalman structure

In the proposed system the state is given by the matrix 4.1, where (x, y) represent the
coordinates of the centre of mass retrieved from the detection block, and (i, ¢) represent
its corresponding velocity.

x
_ 1Y

S = 5 (4.1)
Yy

According to equation 2.27 in section 2.3.2 the first step of the "predictor" consists

of determining a state estimate. As the state has only four variables the state-transition
model matrix F' will be a 4x4 matrix 4.2 [18]:

1 0 AT 0
01 0 AT

F= 00 1 0 (4.2)
0 0 O 1

The second step in the "predictor" consists of determining the error covariance matrix
P (equation 2.31). For this system P is a 4x4 matrix which provides trivial information
regarding how accurate the state estimates are. Basically it shows how the variables
inside the state vector vary with respect to each other, therefore the matrix will hold
the differences between the estimate state values and the actual ones. Usually the
initial values of the covariance matrix are set by the user according to the certainty
of the prediction. Bigger values on the P matrix diagonal represent more uncertainty
regarding how S looks like at start-up while values closer to 0 represent the contrary.

A a major influence in the prediction step stands in the covariance matrix of the
process noise ) from equation 2.31.Covariance @ is a measure that shows how the input
state varies away from the initial transition. The matrix has the same dimension as
P (see matrix 4.3) and its q value is also set by the user. Larger values represents
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larger variance for the input state and the filter needs to be more adaptable to changes.
Contrariwise if smaller values are used the output will be smoother but in conditions of
massive changes the filter will not adapt.

g 000

o g o0

Q=100 ¢q 0 (4.3)
000 g

The corrector block uses a measurement vector equation 2.26 to correct the state
estimate from equation 2.27. Because the z and y are mapped to the measurement
vector z and the derivative variables (velocities) from state S are not directly measured,
the measurement matrix H will have the form of 4.4.

1 0 0O
w300 "

The trivial aspect of the corrector block is the Kalman gain K (equation 2.29) which
measures "how much" the system updates state S. If K is small than the measurements
are not trusted, otherwise the measurements will have more weight when running the
process. Using this gain a new covariance matrix is computed, equation 2.31. However
the gain is influenced ,like in the prediction case, by the covariance matrix of the mea-
surement noise R and has the form of 4.5 If the r value is much grater than the value of
q in the process noise covariance matrix, then K is small, otherwise K is big.

r 0
R:<O ) (4.5)

Similarly to chapter 3, the system implementation details are given here for C#
implementation.

The Track class is described by the UML diagram in Figure 4.5 which presents the
tracking system. It describes a rectangle (defined by location, height and width) where
the tracked object was last detected. To ensure matching will be possible at next frame,
it also saves some more information about this detection, like the location of the center
of mass of the blob, the color histograms, and the area of the blob. A unique ID is
assigned to each object and is kept through time thanks to the matching process. The
Track structure also contains an Age attribute which represents how many times a track
was found, or in other words how many time a detection has been matched to it. The
Lost Score attribute represents the number of consecutive frames in which a Track was
not matched to a detection. During the matching process, if this counter exceed a given
threshold, the Track is considered completely lost, and is deleted to prevent memory loss
and increase the computation speed. Finally, the velocity of the object is kept in the
Track to be used in the Kalman Filtering. (see paragraph 4.2.3)

4.3 Implementation
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Track

+ Id : int

+ Age : int

+ LostScore : int

+ X :int

+ Y :int

+ Width : int

+ Height :int

+ Area : int

+ BoundingRectangle : Rectangle
+ Histograms : BGRHistogram
+ Velocity : Vector

+ Update(Detection):void
+ Predict():void

Figure 4.5: UML Representation of the Tracking system

Another attribute of the Track class is the Histograms which is of type BGRHis-
togram. The attribute has the role of storing the colour information for each detected
blob, which will be further used in the matching part.

A better overview of the tracking system implementation can be seen in the appendix
section B.9.

4.3.1 Matching
Features

The features introduced earlier are computed according to the following details.
Distance The distance between the estimated position of the Track - given by the

Kalman filter - and the Gravity Center - given by the moments of the contour of the
blob - is easy to compute:

distance(d,t) = \/(xd —x4)? + (ya — y1)? (4.6)

Histogram The comparison of two histograms is implemented in OpenCV with the
function cvCompareHist, and not re-implemented in EmguCV (thus accessed via the
CvInvoke class). This method takes two DenseHistogram, which represents a multi-
dimension histogram, and a comparison method (of type HISTOGRAM__COMP_METHOD).
The system uses the Bhattacharyya distance, described in section 2.1.5, for which the
comparison method is CV_COMP_BHATTACHARYYA. As the system uses RGB col-
ored images, three dimensions are needed for the histogram. However, it was more
convenient to implement a new class (BGRHistogram, see appendix B.6) containing
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three one-dimension histogram. To compare two histograms, the following product is

applied:
3

histgistance(hg, hy) = H(l + bhattacharyya(hqg, ht.i)) (4.7)
i=1
This will give a result such as a perfect match will be 1, and the maximum difference
will output 8 (since the Bhattacharyya outputs a result between 0 and 1).

Area The area ratio between a Track and a Detection is computed from their bounding
box in the following way:

max(Ag, At)
min(Ag, As)
where t and d represent the bounding box of the track, respectively the detection. With

this equation, a ratio is obtained, that will always be one or above, and which permits
to find a threshold for maximum variation of size from a frame to the next.

(4.8)

area_ratio(d,t) =

Association

The association matter, which determines which finds the most appropriate track/detection
pair, can be implemented following algorithm 4.1. The algorithm is of complexity O(n?).
The Update function, which belongs to the Track class (see figure 4.5), allows the T'rack
to modify some of its value according to the Detection given as parameter (see algorithm
4.2).

Given the features described in the previous section, a score following next form
could be computed:

score(d,t) = hist_ distance(d,t) x (8 + distance(d,t)) (4.9)

This score, inspired from the work of Breitenstein et al [3] would give the ’closest’
(in terms of features, not only distance) Track from each Detection and allow to match
them.

However, this solution gave poor results for many cases and was dropped. The
realized approach is less computational and more case dependant. It is based on a set
of threshold values, found empirically, which isolate the possible matches by distance,
then choose the closest acceptable colour histogram.

4.3.2 Prediction

The prediction part is given by the Kalman filter, which was implemented according
to the UML diagram presented in Figure 4.6.

The implementation follows the exact steps presented in the design part (see 4.2).
The KalmanFilter class takes as input the State attribute which is of type Matriz. As
presented earlier the State matrix will consist of the centre coordinates (X and Y') of
the detected person and its velocity (dx and dy). Also the class will take as input all
the matrices presented in the Design section 4.2.
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Algorithm 4.1 The matching algorithm

T : Set of all tracks
D : Set of all detections

S(t,d) = 1000 : Array of all track/detection values

for t € T do
for d € D do
s < Score(d,t)
if s > 1,5 < S(d,t) then
S(d,t) « s
end if
end for
end for
for t € T do
if t € S then
t.Update(d)
D+ D-—d
else
t.LostScore < t.LostScore + 1
end if
end for
for d € D do
T <+ T + Track(d)
end for

> Calculate all scores

> Update matched scores

> Mark unmatched tracks as lost

> Mark unmatched detections as new Tracks

Algorithm 4.2 The Update function

function UPDATE(track, detection)

{track.X,track.Y} + {detection.X, detection.Y }

track.Histogram < detection.Histogram

track.LostScore < 0
track.Age < track.Age + 1
return track

end function
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KalmanFilter

+ State: Matrix<float>

+ TransitionMatrix: Matrix<float>

+ MeasurementMatrix: Matrix<float>

+ ProcessNoiseCovariance: Matrix<float>

+ MeasurementNoiseCovariance: Matrix<float>
+ ErrorCovariancePost :Matrix<float>

+ Predict(Matrix<float>): Matrix<float>
+ GoToNextState(): void

Figure 4.6: UML Representation of the Prediction step

4.4 Testing

Depending on the application, the Kalman filter can be adjusted by changing the ¢
value from the covariance matrix ¢) 4.3 and also the r from the measurement covariance
matrix R 4.5.

Several tests were made in order to see the impact of the above mentioned parameters.
Figure 4.7 shows the results used on a single track where the chosen values were ¢ =
0.001 and r = 0.05. As it can be seen if the ¢ value is much more lower than the 7 one,
more importance is given for the prediction and the corrected estimated values (blue
graph) will "follow" the predicted ones (red graph). In this case the system is fast but
not that robust as the filter is not that stable to sudden changes. The next figure 4.8,
shows that increasing the value of r even more to 0.5, measurements will be weighted
less and less.

On the other hand as the ¢ value is increased, it can be seen in figures 4.9 and 4.10
that the measurements are given more importance and the estimated values (blue line)
will "follow" the measurement ones (green line). In this case the system adapts better
to sudden changes but the speed of the filter drastically decreases and the results will
not be as smooth as in the previously presented case.

In Figure 4.11 it can be seen how the Kalman filter works when a detection is found.
The parameter used are q=0.001 and r=0.05 therefore it can be seen that the results are
more smooth when more importance is given to the predicted values. The filter works
fast and it follows the human closely.

Figure 4.12 shows the results of the Kalman filter on the same video presented above,
but the chosen parameters were: q=0.1 and r=0.05. In this case more importance is
given to the measurement values. However, as it can be seen, the filter will run rather
slow and it will not follow the detection as close as the previous case loosing the track
more rapidly.

Matching As it was presented earlier in the Design section 4.2 the matching is de-
pendent on three parameters: area ratio, distance of blobs from one frame to another
and the histogram of the tracked blobs. Since getting an overview on the ratio and the
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Figure 4.7: Impact of ¢ and r on the Kalman filter. ¢=0.001, r=0.05
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Figure 4.8: Impact of ¢ and r on the Kalman filter. q=0.001, r=0.5

distance was fairly intuitive and visible, the colour comparison was the actual problem in
this case. Therefore several tests were made on some videos to challenge the algorithm
and determine some solid threshold values when comparison is done.

For the video seen in Figure 4.13 , the results weren’t too satisfactory as both persons
in the scene were wearing clothing of the same colour. Moreover, the lighting conditions
alter the colours making them darker, and this often known as the "contre-jour" effect.
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Figure 4.9: Impact of ¢ and r on the Kalman filter. q=0.01, r=0.05
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Figure 4.10: Impact of ¢ and r on the Kalman filter. q=1, r=0.05

As the idea of matching is to reassign, after an occlusion, the lost ID of the track, the
problem in this case is that all the blobs will have their colour data in the same range.
This will make the histogram comparison algorithm irrelevant for the matching step.
When tested on a video where the persons were dressed completely different, the
results were slightly better regarding the histogram comparison. However ,this is quite
a limitation, as one cannot predict whether two persons will or will not dress the same.
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(a) (©)

Figure 4.13: Bad video for histogram comparison.

Figure 4.14 shows an ideal case where a person dressed in red meets another one dressed
in green. Here the histogram comparison’ s results are better.

4.5 Conclusion

The chapter presents a classical approach for a tracking framework by using the
Kalman filter [17] and colour histogram comparison. The main idea of this part of the
system is to keep track of the different human detections that were found by the detection
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(b)

Figure 4.14: Good video for histogram comparison.

block. It ensures that in simple cases and more complex ones, like when people cross
each other, the tracking IDs will be reassigned to the right person. It also prevents a
person to be confused with a group of people (people merging) using the area ratio. The
three used features (area, distance, histograms) represent a fairly simple and fast, though
robust, set of attributes to be used in the matching step. This aspect performance will
be demonstrated in Chapter 5.

As the Kalman filter works with predicted and measured values in order to get the
estimation, improving the accuracy of the tracker is in fact a trade-off choosing between
having a slow but adaptable system or a fast but not that adaptable one. The second case
was chosen as more weight was given to the predictions in the Kalman filter, resulting
with a fast prediction but with a few errors in some cases. Therefore the results were
more smooth and suited the application better (see section 4.4).






Chapter 5

Closure

Given the presented system, this chapter is meant to show final results of the entire
framework. A discussion will be made based on these results and conclusions will be
drawn in contrast to the imposed requirements stated at the beginning of the report
(1.6). Furthermore the chapter will conclude with some future work aspects that will
show how the system could be improved .

5.1 Results

The proposed system works on 640x480 resolution videos taken with an ordinary we-
bcam. Its final results are slightly different from the expected ones but still demonstrate
a good detection-tracking framework. As it can be seen in Figure 5.1 the detection and
tracking is done in an area of interest where the whole human blob appears. That means
that the system will not perform at the upper and lower border of the frame. However
when the full person enters the scene, they will be bounded by its own rectangle and a
track (in this case 0) will be assigned.

(a) (b)

Figure 5.1: Detection/Tracking done only when the entire human blob appears in the scene.

Given the chosen parameters presented in the testing sections of Chapter 3 and
Chapter 4, the system presents good results in the video seen in figures 5.2, 5.3 and

63
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5.4. The figures shows how two persons are detected and each have an assigned track.
This is indeed a good result as the tracking block will only be active if, after background
subtraction and pre-processing, a human is detected over the region of interest described
by the blob. As it can be seen, the matching part works smooth as the track of each
blob is re-assigned after the two persons intersect in different ways.

Figure 5.2: Simple intersection of two persons.

Figure 5.3: Simple intersection of two persons.

s Vaduiee Dopbor Vs Projctsom| Vi Fame e 15

(a)

Figure 5.4: Complex intersection of two persons.
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However the same video sequence contains also few flaws regarding the performance
of the system. The set of videos that was used was not "natural", meaning that they
are not recordings of people walking freely, but scenes in which the movement and
events were controlled. These videos were meant to challenge and push the system’s
performance in different situations (different types of intersections between persons in
order to test the matching robustness, different lighting conditions to see how the system
responds or adapts).

It should be mentioned that most videos in the set contain only interaction between
two persons as it was considered that resolving this issue is the first step to get a clear
overview about particular used methods, such as the Kalman filter or the Histograms of
Oriented Gradients, where parameters needed to be tuned in order to gain an optimal
result.

Figure 5.5 shows a case where the matching fails. As it can be seen the track of the
person dressed in green (track 5) is lost and assigned to the other person (track 4). An
explanation for this situation is that the Kalman filter does not have time to predict
the future values of track 4. By the time prediction is done, the two persons will have
intersected, thus the prediction fails. If the prediction fails then the matching part will
be more difficult to be done and it is highly probable that it will fail. This kind of error
is a limitation of the system but is also a very tricky situation.

Figure 5.5: Algorithm mismatch when two persons intersect.

The performance of the system is given by formula 5.1:

FN+FP
error rate = + (5.1)

Where:

- F'N are the false negative values

- F'P are the false positive values

- N represents the total number of frames

The error was computed as it follows. Firstly a ground truth data' is created which
illustrate the real position of the detected human. After that, the algorithm is run and

!Ground Truth Data is the real data measured by human. It is used to estimate the system’s
performance.
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the false positive and false negative are obtained. Usually a value is considered to be
good if it is within an acceptable distance from the one in the ground truth. If one value
exists in the ground truth case but not in the real one, then it will be considered as false
negative. On the other hand if one value is found in the real case but it does not exist
in the ground truth one then it will be established as a false positive value.

The error rate was computed for several videos as it can be seen in Table 5.1.

Input  Number of frames FP FN Error rate

Videol 0 11 158 6.9 %
Video?2 8 33 157 26 %
Video3 7 16 147 15.6 %
Video4 1 31 192 16.6 %
Videob 1 40 200 25.5 %

Table 5.1: Error Rate

The data presented in table 5.1 is given by videos where the system is challenged a
lot. Videol shows a crossing of two people walking on different directions. Video2 shows
two people intersecting in diagonal. Video3 shows two people crossing in one direction
(one walking to the right, the other to the left), but some noise is noticed due to the
camera autofocus. In Video4 two people meet (one direction crossing) and then turn
back on their steps. Finally, Video is an example of border problem.

The average error rate for these five challenging videos is 18.12%.

The tracking system is demonstrated with figures 5.6 and 5.7. These data represent
the comparison between the ground truth data and the system output. The used scenes
were chosen for their interest, meaning that they show either good results (e.g. crossing
where the matching is correctly done), or on the opposite scenes with mistakes (e.g.
people not detected by the system).

5.2 Conclusion

An overall functionality of the proposed system was taken with respect to the imposed
requirements from section 1.6. The system is able to run on long term videos. Even
though all the testing samples have an average of 3 minutes each, the performance of
the system on long video sequences is influenced by additional problems. As it could
be seen in section 3.4 of the Detection chapter the adaptability of the system is highly
dependent on the environment that the scanning is performed on. Testing showed that
optimal results were obtained only for totally cloudy or totally shaded environments.
It was seen in other video tests (see 3.4), that sudden changes of the light, mess up
the foreground detection step, and not even the preprocessing framework can give a
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better segmentation result. However, shaded or cloudy scenes present no problem for
the system to adapt on a long period of time.

The detection part runs smooth when a newly trained support vector machine (SVM)
was used in order to classify the descriptor vectors provided by the Histogram of oriented
gradients (HOG). It should be stated that the system doesn’t handle groups (see 1.7).
That means that each time two persons will intersect their resulting blob will not be
taken into consideration when doing the detection.

Another relevant aspect of the system presented in the requirements section, is the
unique ID assignment. It was seen earlier in this chapter that this part is done by solving
a matching problem. When two human blobs split after a crossing they are reassigned.
However due to clothing colour limitations and also lighting conditions, the matching
will fail. It was shown that for a totally shaded environment where persons wear clothing
of distinct colour, the matching gives good results as IDs are reassigned. Another issue
that has been stated earlier is that the system doesn’t handle the grouping problem.
This will also interfere with the matching part as it can be seen in Figure 5.5 where the
reassignment of IDs fails.

5.3 Perspective

The perspectives for future work on this system are mainly related to fixing some of
the system’s limitations.

Firstly, the grouping problems could be solved by detecting merging blobs and ap-
plying a different technique. The easiest one to apply would probably be head detection,
that would give a reasonable idea of how many people are in that group.

The tracker could be improved by finding a better way of combining the used features.
Indeed as mentioned in this report (section 4.2.2), the scoring should give a result such
as a small score means a high probability of matching (relative to distance and histogram
similarity). Emerging ideas were to use normalized values (for distance and histogram)
and weight them according to a coefficient (that should be found by testing on every
possible values to generate a phase diagram and give the optimal values). Another idea
would be to use an exponential form to be tolerant on small differences but dismiss
drastically the big ones.
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Figure 5.8: System results






Appendices

71






Appendix A

Application

In this appendix the different features of the final application are introduced.

_ People Tracker

B>

File  Actions View Tools 7
DEH/ = S v m G

Al@

D:vtest_videos\backl4.avi | Video Frame Rate: 15 ‘ 12.85 fps

-

Figure A.1: The application interface

Figure A.1 shows the main window of the application. It displays the image with

human tracks in blue.

The main window displays, in addition to the video with tracks, the running file
(bottom left corner), the video frame rate (bottom middle left), the program frame rate
(bottom middle right) and the progress of the video (bottom right corner).
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A.1 Features

Load video stream. Loading a video can either be done by doing drag & drop from
the OS explorer to the software, or using the browse dialog. The last 10 videos are also
kept in registry to facilitate the access. It is possible to directly use a live video stream
from a webcam. Video can be paused at any time use space bar or "Pause" button.
Opening a new video clears the memory and reinitializes the system.

File | Actions View Tools 7
] Open Most Recent Ctrl+N
5 Open Crl+0
Open From Stream Ctrl+Maj+0
1 D\test videos\back02.avi
2 Di\test videos\backld.avi
3 D\test_videos\backl2.avi
4 D\test_videos\others\pedestrian_IRLwmy
5 D\test_videos\others\crowd3.avi
6 D\test videos\back01.avi
o Eit Ctrl+Q

Figure A.2: Opening a video.

Views The interface offers some information panels, as can be seen in figure A.3, like
a Foreground mask. Some other information on the selected track (displayed in red)
can be obtained in the property panel (internal ID, Age, Area, Position...), and in the
histogram panel (one histogram for each channel R, G, B).

| Video FrameRater15 | 1391fps

Figure A.3: The different available panel views.

Parameters The most interesting and useful feature of the application is the customiz-
ability. Indeed, every single parameter used by the algorithms are customizable. Figure
A .4 shows the editors used to modify these parameters. The update is live, meaning that
the parameters can be changed while the system is running (opening a parameter editor
actually pauses the system to avoid conflicts during computation). However, for some
parameters (HOG parameters for instance) modification is highly unstable and might
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make the system crash. Indeed it has been decided to leave the values completely free

so the user can try everything that crosses his mind.

r Yy
ot TrackerParameters EIEIQ - GaussParameters Lo l-—-“@-g (HE H%Pamneﬁr%
I I 3=
- 4 Construction -
Human threshold 15 B BgThreshold 0.5 [» BlockSize 16: 16 F
Minimum Area 1000 MinArea 15 [>  BlockStride 8:8
4 Divers NGauss 5 i CellSize 88
GaussParameters Gauss Parameters L StdThreshold 25 DerivAperture 1
HOGP; HOGF T Variancelnt 10 | GammaComection True L
4 Kalman Fiter Weightnit 0.05 Il LoHysThreshold 02 3
P 1000 WinSize 1000 NEBins 9
Q 0.001 SVMFile CA\Users\Dev\Desktoy
R 0.05 b WinSigma -1
4  Matching = WinSize 64: 128 P
Area Coeff 15 | 4 Divers
Distance Cosff 200 | GroupThreshold 0
Histogram Bins 8 il 1 Hit Threshold 14 il
Area Coeff BgThreshold 1 |i| BlockSize
q M
|
o+ ok ] (oo | [ e ([ ok ]| || [osax ] Canece

(a) General Parameters (b) MoG Parameters (c) HOG Parameters

Figure A.4: Parameters Editors
To conclude with the customizability of the system, the preprocessing operations

editor allows the user to completely reorganize, edit, add or delete some operations to
fit his needs. Figure A.5 shows the editor.

Editeur de collections ErosionOperation (9 B
Membres Propriétés Morphalogy: CV_MOP_CLOSE :
[{] Morphology: CV_MOP_CLOSE +
Median Filter
Gaussian Filter
Dilation I>  AnchorSize 11
Erosion ElemertShape CV_SHAPE_RECT
Dilation lterations 3
Cperation CV_MOFP_CLOSE
[» StructuringEleme 2; 2
[ Ajouter '] [ Supprimer

Figure A.5: Parameters Editors

A.2 Utilities

Finally the software also provides two utilities, that can be run using a command
line option. (see previous point).
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Histogram Comparison Utility Using the same functions as the main appli-
cation, this software allows to compare two images by comparing their histograms of
colour.

!‘ tstogramComparsonror T — —— P

=

Method: CV_COMP_BHATTACHARYYA | Bins: 8 | Score: 2516117903893 _;

Figure A.6: Histogram Comparator Utility

Manual Tracking Utility With the same methods (detection, classification, match-
ing) and the same parameters, this software allows to record the real position of the
tracked humans. Indeed, it allows to pause and correct the recorded position of each
track. We are then able to compare those ideal values to the one obtained by the system.

* Manual Tracker é

5 A BI]» Recors
| Popeties | Fecords [Fies

Track Frame +

i|_.=,_..:1_..=_..:._.-=—c—.:._.

Figure A.7: Manual Tracker Utility

A.3 Command Line

The application provides a command line interface:

-h, --help Show this message and exit

-f, ——filename=FILENAME Loads the video FILENAME.

-c, ——config=FILENAME Loads the configuration file FILENAME.
--histogram Launch Histogram Comparison utility.

-m, —--manual Launch Manual Track Recorder utility
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Implementation Detalils

B.1 General presentation

The organization of the project, as seen in figure B.1 clearly separates different parts
of the program. The Core contains the main processing like image acquisition, prepro-
cessing, blobs extraction...(see chapter 3), and deals with the tracking (see chapter 4).
The Ul is the Graphical User Interface which presents the video to the user and provides
some features that can modify the Core behaviour. The HOG contains some tools for
the Histogram of Oriented Gradients computation. The Utils part are functionalities
which are useful for several parts of the system.

PeopleTracker

Utils

Core

- - - -5

&

Figure B.1: Solution Description
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B.2 Choices

In this paragraph we explain the choices that were made for the development process.

C# .NET The system was developed in C# using Microsoft® NET framework 4.
Indeed this high level approach suited both the group members because it enhances the
organization of the project, facilitates the sharing

EmguCV Library We are using an OpenCV wrapper for C# called EmguCV. This
library provides high level structures and classes for most OpenCV functions, as well as
a low level access to the all functions (basically for those which were not implemented)
through the Cvlnvoke class. According to the EmguCV documentation [23]:

The Cuvlnvoke class provides a way to directly invoke OpenCV function
within .NET languages. Each method in this class corresponds to a function
in OpenCV of the same name.

GIT We used the distributed Source Code Management (SCM) system Git. The main
reason of this choice is the distributed aspect, which allows each developer to handle its
own part without messing with the main development repository. The use of an SCM in
this project appears essential for keeping previous versions of our code and to simplify
the integration of the other’s modifications.

B.3 Structures

This appendix introduces the main structures used in the system. Classes from
EmguCV library are not detailed here. For more information on this library, see its
documentation [23].

All structures presented in this appendix are part of the namespace PeopleTracker.
Core. Structure.

B.4 Detection

B.4.1 Properties
NET classes

¢ System.Drawing.Point
According to documentation, it "represents an ordered pair of integer x- and y-
coordinates that defines a point in a two-dimensional plane."
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Detection

+ Id: int

+ X :int

+ Y :int

+ BoundingRectangle : Rectangle
+ Area : int

+ Histograms : BGRHistogram

- Contour : Contour<Point>

+ Detection()
+ Detection(Contour<Point>)

Figure B.2: The Detection class diagram

EmguCV classes

¢« Emgu.CV.Contour<T>
This class is a set of points (7' is Point or PointF, which is a Point with float
values) used to describe a blob. It can be used to find the moments of the shape,
though give the gravity center of the blob. It also provides the bounding box and
the area.

Custom classes
e PeopleTracker.Core.Structure. BGRHistogram
See paragraph B.6 for definition.
B.4.2 Operations

o Constructor
The constructor either builds an empty Detection, either makes one from a Con-
tour.

B.5 Track

B.5.1 Properties
INET classes

e System.Drawing.Rectangle
According to documentation, it "stores a set of four integers that represent the
location and size of a rectangle."

EmguCV classes There is no undefined EmguCV class in Track.
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Track

+ Id : int

+ Age : int

+ LostScore : int

+ X :int

+ Y :int

+ Area : int

+ Coutour : Contour<Point>

+ BoundingRectangle : Rectangle
+ Histograms : BGRHistogram
+ Velocity : Vector

+ Track()
+ Track(Detection)
+ Update(Detection):void

Figure B.3: The Track class diagram

Custom classes

e PeopleTracker.Core.Structure. Vector
This class, which will not be further detailed, defines a mathematical 2 dimensions
Vector with a set of methods (dot product, sum, ...) and properties (magnitude,...)

B.5.2 Operations

o Constructor
The constructors either create an empty Track, or create one from an associated
Detection.

o Update
This function allows to modify the Track with the Detection it has been matched
with.

B.6 BGRHistogram

This class is just a helper for the EmguCV DenseHistogram, to adapt the fact
that we are keeping a histogram for each of the 3 channels of the image (Blue, Green
and Red). The values are normalized to 1 so the number of pixels does not matter.

B.6.1 Properties
.NET classes We do not use .NET classes BGRHistogram.
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Histogram

+ Histograms : List<DenseHistogram>

-+ BGRHistogram(Image<Bgr, byte>, Image<Gray, byte>, int)
+ CompareTo(BGRHistogram, HISTOGRAM__COMP_ METHOD): double

Figure B.4: The BGRHistogram class diagram

EmguCV classes

¢ Emgu.CV.DenseHistogram
It is a "Uniform Multi-dimensional Dense Histogram", according to the documen-
tation. Although, we are only using one dimension for our purposes, since the
multi dimension is not flexible enough.

¢ Emgu.CV.CvEnum.HISTOGRAM__COMP_METHOD
This enumeration is used to specify the Histogram Comparison method to apply
among these:
— CV_COMP_CORRFEL: Correlation
— CV_COMP_CHISQR: Chi-Square
— CV_COMP_INTERSECT: Intersection
CV_COMP_BHATTACHARYYA: Bhattacharyya distance.

Custom classes There are no custom structures in this class.

B.6.2 Operations

e Constructor
The constructor takes an image, an optional gray scale mask, and a number of bins.
The mask allows to build the histogram on a blob, getting rid of the background.

e CompareTo
The CompareTo method uses the OpenCV cvCompareHist method on the three
B, G, and R channels and returns the sum of the three comparisons. See section
2.1.5 for details.

B.7 PeopleTrackerParameters

This class regroups all the parameters used in the algorithm. This class gives the
system great testing possibilities. See sections 3.4 and 4.4 to understand the choices of
the parameters.
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PeopleTrackerParameters

<<interface>>

+ MatchingScoreThreshold: int

+ MatchingDistanceCoeff: double

+ MatchingAreaCoeff: double

+ MatchingHistogramCoeff: double

+ MatchingHistogramMethod:
HISTOGRAM__COMP_METHOD

+ HistogramBins: int

+ MinimumArea: int

+ MaxLostScore: int

IOperation

7 + Apply(Image<Bgr,byte>): void
*

GaussParameters

+ WinSize: int
S| + NGauss: int
1 + BgThreshold: double
+ StdThreshold: double

+ Load(string): PeopleTrackerParameters

+ Save(): void

+ MinArea: double
+ WeightInit: double

+ Variancelnit: double

+ ToMCvGaussBGStatModelParams():
MCvGaussBGStatModelParams

Figure B.5: The PeopleTrackerParameters class diagram

B.7.1 Properties
B.7.2 Operations

B.8 Preprocessing Operations

These structures represent the operations applied to the foreground in order to find
the contours of the blobs. It basically wraps EmguCV functions in classes implementing
the same interface, in order to add modularity.

The details for these classes have already been given in section ?7. Diagram B.6
shows the modularity of these classes. It gives the convenience introduced in Appendix
A concerning the possibility of modifying the applied operations at runtime.

B.9 Tracking

Figure B.7 shows the Tracking system organization.
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<<interface>>
IOperation

+ Apply(Image<Bgr,byte>):void

OperationBase

DilationOperation

ErosionOperation

+ Iterations: int

+ Iterations: int

GaussianFilterOperation

MedianFilterOperation

+ KernelSize: int

+ KernelSize: int

MorphologyOperation

+ Iterations: int

+ AnchorSize: Size

+ Operation: CV_MORPH_OP
+ StructuringElementSize: Size

+ ElementShape: CV_ELEMENT_ SHAPE
+ StructuringElementEx: StructuringElementEx

Figure B.6: Operation class diagram
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PeopleTrackerParameters

11

<<interface>>
ITracker

+ Process(IEnumerable<Detection>): void
+ GetTrackByld(int): Track

Track

+ Id : int

+ Age : int

+ LostScore : int

+ X :int

+ Y :int

+ Area : int

x| + Contour : Contour<Point>

+ BoundingRectangle : Rectangle
+ Histograms : BGRHistogram
+ Velocity : Vector

+ Track()
+ Track(Detection)
+ Update(Detection):void

0..1

KalmanFilter

+ State: Matrix<float>

+ TransitionMatrix: Matrix<float>

+ MeasurementMatrix: Matrix<float>

+ ProcessNoiseCovariance: Matrix<float>

+ MeasurementNoiseCovariance: Matrix<float>
+ ErrorCovariancePost :Matrix<float>

+ Predict(Matrix<float>): Matrix<float>

Figure B.7: UML Representation of the Tracking system




Appendix C

Sources

FEnclosed is a DVD-ROM containing the following.

— "VGIS 1021 - Mater Thesis - 2012.pdf": this Thesis Report.
— "setup.exe' - installer of the software.

— "Sample Videos": some videos to be used with the software.
— "References": some of the articles used for this master thesis.
— "Binaries":

— "PeopleTracker.exe": Binary files of the main program

— "HOG.exe": utility to extract HOG features from a set of images

— "SVM.exe": utility to train a SVM model (to be used with output of HOG).
Nb: this software uses SVMLight[22].

— "Sources":

— "PeopleTracker": sources of the main program and the different utilities

— "packages": all the NuGet packages for the sources, to be used with Visual
Studio plugin NuGet Package Repository. Nb: put these files in a local nuget
repository or in the packages of the solution.

85






Bibliography

1]

[9]
[10]

[11]

Wikipedia, “Closed-Circuit Television — Wikipedia, the Free Encyclopedia.”
http://en.wikipedia.org/wiki/Closed-circuit_television, 2002. [Online;
accessed 22-February-2012].

N. Dalal and W. Triggs, “Histograms of oriented gradients for human detection,”
2005 IEEE Computer Society Conference on Computer Vision and Pattern Recog-
nition CVPRO0S, vol. 1, no. 3, pp. 886-893, 2004.

M. D. Breitenstein, F. Reichlin, B. Leibe, E. Koller-Meier, and L. Van Gool, “On-
line multi-person tracking-by-detection from a single, uncalibrated camera.,” IEFEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 33, no. October,
pp- 1-14, 2010.

D. M. Gavrila and S. Munder, “Multi-cue pedestrian detection and tracking from a
moving vehicle,” International Journal of Computer Vision, vol. 73, no. 1, pp. 41—
59, 2006.

C. Stauffer and W. E. L. Grimson, “Adaptive background mixture models for real-
time tracking,” Proceedings 1999 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition Cat No PR00149, vol. 2, no. ¢, pp. 246252, 1999.

S. Kumar, “Shadow detection and removal in colour images using matlab,” Inter-
national Journal of Engineering Science, vol. 2, no. 9, pp. 4482-4486, 2010.

M. J. Swain and D. H. Ballard, “Color indexing,” International Journal of Computer
Vision, vol. 7, no. 1, pp. 11-32, 1991.

A. W. R. Fisher, S. Perkins and E. Wolfart., “Gaussian smoothing.” http://
homepages.inf.ed.ac.uk/rbf/HIPR2/gsmooth.htm. [Online; accessed 26-April-
2012].

T. B. Moeslund, Image and Video Processing, vol. 2. Aalborg University, 2009.

T. B. Moeslund, Introduction to video and image processing. Springer, 2012.

G. Bradski and A. Kaehler, Learning OpenCV. O’Reilly Media Inc., 2008.

87


http://en.wikipedia.org/wiki/Closed-circuit_television
http://homepages.inf.ed.ac.uk/rbf/HIPR2/gsmooth.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/gsmooth.htm

88

Bibliography

[12]

[13]

[17]

[18]

[20]

[21]

22]

A. Ghuneim, “Contour Tracing Algorithms.” http://www.imageprocessingplace.
com/. [Online; accessed 17-May-2012].

Wikipedia, “Connected-Component Labeling — Wikipedia, the Free Encyclopedia.”
http://en.wikipedia.org/wiki/Connected-component_labeling, 2002. [On-
line; accessed 14-May-2012].

Wikipedia, “Image Moment — Wikipedia, the Free Encyclopedia.” http://
en.wikipedia.org/w/index.php?title=Image_moment&oldid=491600617, 2012.
[Online; accessed 14-May-2012].

C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning, vol. 20,
no. 3, pp. 273-297, 1995.

Wikipedia, “Support Vector Machine — Wikipedia, the Free Encyclopedia.” http:
//en.wikipedia.org/wiki/Support_vector_machine, 2002. [Online; accessed 15-
May-2012).

R. E. Kalman, “A new approach to linear filtering and prediction problems 1,”
Journal Of Basic Engineering, vol. 82, no. Series D, pp. 35-45, 1960.

E. T. B. Dereje Woldemedhin Kifle, “Tracking with the kalman filter.
http://mmlab.didi.unitn.it/wiki/index.php?title=Tracking_with_the_
Kalman_Filter&action=edit. [Online; accessed 14-April-2012].

N. Dalal, “Inria person dataset.” http://pascal.inrialpes.fr/data/human/,
2005. [Online; accessed 23-May-2012].

C. Yildiz, “An implementation on histogram of oriented gradients for human detec-
tion,”

T. Joachims, “Making large-scale svm learning practical,” Advances in Kernel Meth-
ods Support Vector Learning, pp. 169-184, 1999.

T. Joachim, “Svmlight. support vector machine” http://svmlight.joachims.
org/. [Online; accessed 23-May-2012].

EmguCV, “EmguCV  Tutorial” http://www.emgu.com/wiki/index.php/
Tutorial, 2008. [Online; accessed 27-April-2012].

H. Shahid, K. Khan, and W. A. Qazi, Using modified mizture of gaussians for
background modeling in video surveillance, vol. 3, pp. 155-159. Ieee, 2008.

J.-M. Pelletier, “A Simple OpenCV Tutorial” http://jmpelletier.com/
category/tutorials/, 2009. [Online; accessed 7-May-2012].

T. B. Moeslund, A. Hilton, and V. Kriger, “A survey of advances in vision-based
human motion capture and analysis,” Computer Vision and Image Understanding,
vol. 104, no. 2-3, pp. 90-126, 2006.


http://www.imageprocessingplace.com/
http://www.imageprocessingplace.com/
http://en.wikipedia.org/wiki/Connected-component_labeling
http://en.wikipedia.org/w/index.php?title=Image_moment&oldid=491600617
http://en.wikipedia.org/w/index.php?title=Image_moment&oldid=491600617
http://en.wikipedia.org/wiki/Support_vector_machine
http://en.wikipedia.org/wiki/Support_vector_machine
http://mmlab.didi.unitn.it/wiki/index.php?title=Tracking_with_the_Kalman_Filter&action=edit
http://mmlab.didi.unitn.it/wiki/index.php?title=Tracking_with_the_Kalman_Filter&action=edit
http://pascal.inrialpes.fr/data/human/
http://svmlight.joachims.org/
http://svmlight.joachims.org/
http://www.emgu.com/wiki/index.php/Tutorial
http://www.emgu.com/wiki/index.php/Tutorial
http://jmpelletier.com/category/tutorials/
http://jmpelletier.com/category/tutorials/

Bibliography 89

[27] R. Duda, P. Hart, and D. Stork, Pattern classification. Pattern Classification and
Scene Analysis: Pattern Classification, Wiley, 2001.

[28] P. KaewTraKulPong and R. Bowden, An improved adaptive background mixture
model for real-time tracking with shadow detection, vol. 1, pp. 1-5. Citeseer, 2001.



	Front page
	Title page
	Preface
	Contents
	List of Figures
	1 Introduction
	1.1 Problem Description
	1.2 Applications
	1.3 Previous Work
	1.4 Problem Formulation
	1.5 General Approach
	1.6 System Requirements
	1.7 System Limitations

	2 Image & Video Processing
	2.1 Image Processing operations
	2.1.1 Image Processing
	2.1.2 Filtering
	2.1.3 Dilation and Erosion
	2.1.4 Opening / Closing
	2.1.5 Histograms

	2.2 Object Detection and Classification
	2.2.1 Blob Analysis
	2.2.2 Support Vector Machine
	2.2.3 Histogram of Oriented Gradients

	2.3 Video Processing
	2.3.1 Segmentation and detection
	2.3.2 Filtering/Tracking


	3 Detection
	3.1 Introduction
	3.2 Design
	3.2.1 Setup
	3.2.2 Segmentation Detection
	3.2.3 Region Detection

	3.3 Implementation
	3.3.1 Segmentation Detection
	3.3.2 Region Detection

	3.4 Testing
	3.4.1 Parameter testing
	3.4.2 Algorithm testing

	3.5 Conclusion

	4 Tracking
	4.1 Introduction
	4.2 Design
	4.2.1 Setup
	4.2.2 Matching
	4.2.3 Prediction

	4.3 Implementation
	4.3.1 Matching
	4.3.2 Prediction

	4.4 Testing
	4.5 Conclusion

	5 Closure
	5.1 Results
	5.2 Conclusion
	5.3 Perspective

	Appendices
	A Application
	A.1 Features
	A.2 Utilities
	A.3 Command Line

	B Implementation Details
	B.1 General presentation
	B.2 Choices
	B.3 Structures
	B.4 Detection
	B.4.1 Properties
	B.4.2 Operations

	B.5 Track
	B.5.1 Properties
	B.5.2 Operations

	B.6 BGRHistogram
	B.6.1 Properties
	B.6.2 Operations

	B.7 PeopleTrackerParameters
	B.7.1 Properties
	B.7.2 Operations

	B.8 Preprocessing Operations
	B.9 Tracking

	C Sources
	Bibliography

