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Synopsis

The major objective of this thesis
is to refine the novel approach of a
fixation-based segmentation by Mishra
et al. called Active segmentation with
fixation in oder to enable it to run on a
robotic real-time system. In contrast to
classical segmentation methods where an
image of a scene is divided into multiple
individual regions, the fixation-based
approach redefines the segmentation
process by imitating the human visual
system, thus it only separates the fixated
region from the rest of the image. The
key to this approach is the application of
the image segmentation in polar space.

The framework developed in this
thesis implements several optimizations
and extensions of the original approach.
The basic idea is to reduce the strong
dependency of the results on the edge
detection by introducing an additional
optimization step – the Grab Cut algo-
rithm. In order to incorporate the Grab
Cut algorithm, it is examined how to
bridge the information gap between the
given fixation point and the information
needed for the Grab Cut to produce
correct segmentation results.

The solution is to include the origi-
nal method as an intermediate step of
the new algorithm. This yields a new
and more balanced algorithm which can
be used in a robotic real-time system.





Abstract

One of the major high-level tasks in computer vision is the process of object de-
tection and recognition. During this process, it is crucial to separate different
objects in a visual scene – the classical problem of image segmentation. This
thesis presents an algorithm which is based on the novel idea of a fixation-based
segmentation by Mishra et al. called Active segmentation with fixation. The au-
thors rephrase the general segmentation problem as a binary labeling problem in
polar space for a single object. Their result relies highly on the complex compu-
tation of a probabilistic boundary map, as it is the crucial point for an effective
segmentation. However, due to its computational complexity, the algorithm can-
not be used in real-time systems yet.

The major objective of this thesis is to refine this approach in oder to enable the
new algorithm to run on a robotic real-time system. Therefore, the framework
developed in this thesis implements several optimizations and extensions of the
original approach. The basic idea is to reduce the strong dependency of the
results on the edge detection by introducing an additional optimization step –
the grab cut algorithm.

Based thereupon, the proposed framework has several advantages: By using the
output of the graph cut as the input for the grab cut, the framework of Mishra et
al. becomes an intermediate step for computing an appropriate input mask. This
allows to achieve high-quality results even for erroneous segmentations made by
the graph cut. As the grab cut is less dependent on the quality of the edge de-
tection, the computational complexity of this process can be reduced drastically,
hence boosting the overall performance of the image segmentation.

The grab cut, being an extension of the graph cut, also profits from all the advan-
tages of the polar space transformation, especially the scale invariance. The polar
space itself in this approach is replaced in favor of the log-polar space which not
only blurs textures close to the fixation point, but also allows to generate the color
models for the grab cut more precisely, as the log-polar representation increases
the object region. Moreover, a growing kernel size following the increasing cell-
size of the log-polar grid for the edge detection is implemented, thereby imitating
an aspect of the human visual system: The blurred vision outside the focus.



Table of Contents

Table of Contents I

List of Figures III

List of Tables VII

1 Introduction 1

1.1 Interactive Segmentation . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Perspective of a Robot . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 A Fixation-Based Grab Cut Approach in Real-Time . . . . . . . . 14

1.4 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Theoretical Foundation 18

2.1 Edge Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.1 Gradient Computation by Convolution . . . . . . . . . . . 19

2.1.2 Kernel Operators . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.3 Canny Algorithm . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 (Log-)Polar Space Transformation . . . . . . . . . . . . . . . . . . 26

2.2.1 Polar Space and Log-Polar Space . . . . . . . . . . . . . . 27

2.2.2 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.3 Rotation and Scale Invariance . . . . . . . . . . . . . . . . 30

2.3 Graph Cut and Grab Cut . . . . . . . . . . . . . . . . . . . . . . 32

2.3.1 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.2 Markov Random Field . . . . . . . . . . . . . . . . . . . . 36

2.3.3 Graph Cut . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3.4 Grab Cut . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

I



3 Segmentation Framework 44

3.1 Implementational Details . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Algorithm and Modules . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 Fixation Point Selection . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 Color Space Transformation . . . . . . . . . . . . . . . . . . . . . 52

3.4.1 Standard Color Spaces . . . . . . . . . . . . . . . . . . . . 53

3.4.2 Hybrid Color Spaces . . . . . . . . . . . . . . . . . . . . . 55

3.4.3 Microsoft Kinect Camera . . . . . . . . . . . . . . . . . . . 56

3.4.4 Comparison of the Color Spaces . . . . . . . . . . . . . . . 57

3.5 (Log-)Polar Space Transformation . . . . . . . . . . . . . . . . . . 61

3.5.1 (Log-)Polar Coordinate Mapping . . . . . . . . . . . . . . 61

3.5.2 Simple Polar Space vs. Log-Polar Space . . . . . . . . . . 63

3.5.3 Polar Space and Edge Detection . . . . . . . . . . . . . . . 65

3.5.4 Border Handling . . . . . . . . . . . . . . . . . . . . . . . 66

3.6 Edge Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.6.1 Kernel Design . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.6.2 Disparity Edge Map . . . . . . . . . . . . . . . . . . . . . 73

3.6.3 Combining the Edge Maps . . . . . . . . . . . . . . . . . . 74

3.7 Graph Cut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.7.1 Graph Cut in Polar Space . . . . . . . . . . . . . . . . . . 77

3.7.2 Energy Function . . . . . . . . . . . . . . . . . . . . . . . 78

3.8 Grab Cut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.8.1 Energy Function . . . . . . . . . . . . . . . . . . . . . . . 83

3.8.2 The ‘Shortcut’ Problem . . . . . . . . . . . . . . . . . . . 84

3.9 Contour Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4 Experimental Evaluation 88

4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.1.1 Parameter Setup . . . . . . . . . . . . . . . . . . . . . . . 89

4.1.2 Scene Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2 General Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.2.1 Simple Objects . . . . . . . . . . . . . . . . . . . . . . . . 95

II



4.2.2 Small and Large Objects . . . . . . . . . . . . . . . . . . . 96

4.2.3 Objects of Different Shapes . . . . . . . . . . . . . . . . . 97

4.2.4 Textured Objects . . . . . . . . . . . . . . . . . . . . . . . 99

4.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.3.1 Disparity Map . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.3.2 Log-Polar Transformation . . . . . . . . . . . . . . . . . . 104

4.3.3 Edge Detection . . . . . . . . . . . . . . . . . . . . . . . . 106

4.3.4 Graph Cut and Grab Cut . . . . . . . . . . . . . . . . . . 110

4.3.5 Computational Complexity . . . . . . . . . . . . . . . . . . 113

5 Conclusion and Future Work 117

Bibliography IX

III



List of Figures

1.1 Fascinating visual system – the human eye is able to recognize
different objects fast and easily. . . . . . . . . . . . . . . . . . . . 1

1.2 (a) A natural image scene. (b) and (c) The same scene segmented
using the Normalized Cut algorithm with different numbers of re-
gions (10 and 60) respectively.1 . . . . . . . . . . . . . . . . . . . 3

1.3 (a) A woman sitting on the street. (b) The same scene with
marked fixation points and saccades. (c) The ‘puzzle pieces’ ex-
tracted from the fixation points.2 . . . . . . . . . . . . . . . . . . 4

1.4 (a) The user input for the Magic Wand algorithm. The white re-
gions mark preselected regions. (b) The result of the segmentation
process of the Magic Wand method.3 . . . . . . . . . . . . . . . . 7

1.5 (a) The user input for the Live Wire algorithm. The yellow ‘x’es
mark the manually added seed points. (b) The result of the seg-
mentation process of the Live Wire method.4 . . . . . . . . . . . . 8

1.6 (a) The user input for the graph cut algorithm. The red and
white regions mark the preselected regions for background and
foreground respectively. (b) The result of the segmentation pro-
cess of the graph cut method.5 . . . . . . . . . . . . . . . . . . . . 9

1.7 (a) The user input for the grab cut algorithm. The rectangle
roughly marks the object of interest. (b) The result of the segmen-
tation process of the grab cut method (including border matting
of the edges).6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.8 (a) A complex visual scene of a beach with clouds. (b) The cor-
responding saliency map, as computed by the algorithm in [Itti
et al., 1998]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1 The Prewitt, the Sobel, the Laplace of Gaussian and the Canny
edge detector by comparison. . . . . . . . . . . . . . . . . . . . . 21

2.2 A point on the polar grid in Cartesian space. It shows the corre-
lation between the Cartesian and polar space. . . . . . . . . . . . 26

2.3 A comparison of the polar and log-polar grid in Cartesian space. . 27

IV



2.4 The transformation of a region in Cartesian space to the polar grid. 29

2.5 The properties of the polar space transformation. The green and
red regions show the scale invariance, whereas the red and the blue
region show the rotation invariance of the polar space. . . . . . . 31

2.6 A graph and the corresponding cut. . . . . . . . . . . . . . . . . . 39

3.1 The graphical user interface at work. The left window shows the
video player with its controls at the bottom. The top right window
shows the processed image, in this case a resize filter and an edge
detection filter was applied. The bottom right window shows the
registered parameters which can be changed on the fly. . . . . . . 48

3.2 The different substeps and their arrangement proposed by [Mishra
et al., 2009]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 The different substeps and their arrangement proposed in this thesis. 50

3.4 A test image in RGB color space. . . . . . . . . . . . . . . . . . . 54

3.5 A test image in the similar (a) Lab and (b) YCbCr color space. . 54

3.6 A test image in HSV color space. . . . . . . . . . . . . . . . . . . 55

3.7 A test image in the artificial LHG color space. . . . . . . . . . . . 56

3.8 (a) Contrast-enhanced image retrieved from the Kinect camera
in a bright environment. (b) Contrast-enhanced image retrieved
from the Kinect camera in a dark environment. Many red and blue
artifacts appear in the image. . . . . . . . . . . . . . . . . . . . . 57

3.9 The comparison of the k-means clustering with four components
in different color spaces. . . . . . . . . . . . . . . . . . . . . . . . 58

3.10 The comparison of the k-means clustering (k=5) of chromaticity
in different color spaces. . . . . . . . . . . . . . . . . . . . . . . . 59

3.11 The comparison of the k-means clustering (k=5) of the test image
exposed to 10% Gaussian noise. . . . . . . . . . . . . . . . . . . . 60

3.12 The effect of the polar space mapping and the remapping to Carte-
sian space on a mesh. . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.13 The difference between the simple polar space and the log-polar
space of a transformed star. Already elongated regions get stretched
even more in polar space. . . . . . . . . . . . . . . . . . . . . . . . 63

3.14 The difference between the simple polar space and the log-polar
space of transformed squares. The log-polar keeps the aspect ratio
of objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

V



3.15 The difference between the simple polar space and the log-polar
space of transformed squares. The log-polar increases the object
region and therefore allows to build more precise color models for
the grab cut algorithm. . . . . . . . . . . . . . . . . . . . . . . . . 64

3.16 The applied edge detection kernel in log-polar space equals the
edge detection with an increasing kernel in Cartesian space. The
kernel is oriented along rays emanating from the pole. . . . . . . . 65

3.17 Three examples of smooth image edges approximated by a logistic
function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.18 The approximation of the averaged derivation of Gaussian func-
tions by a Gaussian function. . . . . . . . . . . . . . . . . . . . . 72

3.19 The generation of the implemented edge kernel. Red denotes neg-
ative and green positive values. . . . . . . . . . . . . . . . . . . . 73

3.20 A disparity map retrieved from the Microsoft Kinect sensor. . . . 74

3.21 (a) A disc consisting of two circles with different intensities. (b)
The corresponding disc in polar space with the pole in the center
of the disc. The vertical axis represents the angle, the horizontal
axis the radius. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.22 (a) A gray star in Cartesian space with the fixation point marked
in red. (b) The result of the graph cut algorithm in polar space.
Note the cut-off spikes of the star. (c) The result of the grab cut
algorithm with an iteration step. The spikes are now included. . . 84

4.1 The result of different object segmentations composed in a single
image. (a) shows the segmentation of mostly solid objects with
strong depth information. (b) shows the segmentation of soft and
flat objects with weak depth information. The ‘x’ marks the chosen
fixation point for each object respectively. The objects’ contours
are marked in green. . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.2 A segmentation of simple objects. . . . . . . . . . . . . . . . . . . 95

4.3 A segmentation of simple (a) small and (b) large objects. . . . . 96

4.4 A segmentation of objects with (a) elongated and (b) more com-
plicated shapes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.5 A segmentation of textured objects. . . . . . . . . . . . . . . . . . 99

4.6 The effect of the ‘cleaning’ procedure of the disparity map. The
top row shows the original disparity maps, whereas the bottom
row shows the ‘cleaned’ results respectively. . . . . . . . . . . . . 102

4.7 A segmentation with an incorrect disparity map. The error of the
disparity map has no effect on the graph cut algorithm. . . . . . . 103

VI



4.8 A segmentation with an incorrect disparity map. The error of the
disparity map is reintroduced by the grab cut algorithm. . . . . . 103

4.9 The transformation of different sized objects into log-polar space.
The similar shapes are both located near the center. . . . . . . . . 104

4.10 A segmentation of a disc with an internal edge. Due to the scale
invariance the disc is segmented correctly. . . . . . . . . . . . . . 105

4.11 The effect of different fixation point selections on an elongated
object in log-polar space. Depending on the fixation point, parts
of the object are cut off. . . . . . . . . . . . . . . . . . . . . . . . 106

4.12 The effect of different mixing weights for the color and disparity
edge map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.13 The effect of the combined blurring of the edge detector kernel
and the log-polar transformation on the graph cut result. The
edge maps show from top to bottom: Internal edges due to noise,
a small-scaled texture pattern and a large-scaled texture pattern. 109

4.14 The effect of the strong blurring of edges at close quarters which
leads to defects in the contour. . . . . . . . . . . . . . . . . . . . . 110

4.15 The refinement of the graph cut results after applying the grab cut
algorithm with five iterations. The top row shows the graph cut
results. The middle row shows the grab cut results. The bottom
row shows the added regions in green and the subtracted regions
in red. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.16 The effects of the selection of different fixation points. (b) shows
an undesired excluded region due to the fixation point selection. . 112

4.17 The effects of the selection of different fixation points. The object
segmentation depends on the context of the fixation points. . . . . 113

VII



List of Tables

4.1 The measured absolute and relative duration for the different steps
of the proposed algorithm. . . . . . . . . . . . . . . . . . . . . . . 114

4.2 The indicated duration for the different steps of the algorithm pro-
posed by [Mishra and Aloimonos, 2011]. . . . . . . . . . . . . . . 115

4.3 The duration of the implementations as multiples of the graph cut
duration and as a factor of the performance gain for the proposed
implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

VIII



Chapter 1

Introduction

The human eye is a fascinating visual system – we look around and there we see

a horse with its foal standing on a meadow, over there a white stone house with

a thatched root and here some trees with green crowns irregularly illuminated

by the sunlight (fig. 1.1). For the human visual system, it does not take much

effort to distinguish between different objects. Even though the human ability

of recognizing different objects in a scene seems like an easy task, it is still an

unmatched goal in the area of computer vision.

(a) Horse with its foal (b) Thatched house (c) Trees in the sun

Figure 1.1: Fascinating visual system – the human eye is able to recognize different objects
fast and easily.

Recognizing objects in a scene has been a challenge since the beginning of com-

puter vision. However, especially in the last decades where computer systems

are used more and more to assist us in our daily life or even to execute various

tasks autonomously, the demand for sophisticated detection and recognizing al-

gorithms has been increasing drastically. Nowadays, these algorithms are applied
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Introduction

to many areas of the daily life, e.g. to medical image analysis for detecting tu-

mors or counting cells, face detection on photo cameras, traffic counting, parcel

sorting machines, input devices for video games like the Microsoft Kinect, 3D

reconstruction, motion detection and tracking systems for surveillance or intel-

ligent car guidance systems, just to mention a few [Pham et al., 2000,Coifman,

1998, Viola and Jones, 2004]. However, these systems are far from working as

precise as the human visual system such that delicate tasks still have to be su-

pervised and their results have to be verified by a human being. Nonetheless, a

lot of ambitious attempts have been made to model a comparable system1.

It turned out that a common challenge during the process of object recognition

is to find and separate different (object) regions in the scene, since an image only

consists of pixels with various values after all. The partitioning of the image

into distinct regions made up of connected pixels with similar properties is called

image segmentation [Shapiro and Stockman, 2001]. The regions depend much

on the use of the application – it can be used to reduce complexity, to separate

foreground and background or, like in this case, to find probable object regions.

Regarding this problem, many different approaches2 have been made and many

of them yielded in acceptable solutions, but were often limited to their specific

area of interest. Moreover, these approaches often integrate application-related

prior knowledge, hence they are far away from presenting a general solution. As a

matter of fact, finding a universal approach for image segmentation is not possible

– it is an ill-posed problem, since the definition of objects or regions of interest

depends on the intention or interest of the viewer or observer [Mishra, 2010].

1 [Yilmaz et al., 2006,Lim et al., 2009,Malisiewicz and Efros, 2008] present various approaches
for object detection and recognition.

2See [Cheng et al., 2001] and [Lucchese et al., 2001] for an overview of used techniques and
their applications

2
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Fig. 1.2a shows an image which is segmented by a Normalized Cut algorithm

with different expected numbers of regions. If the viewer is interested in the

trees, fig. 1.2b may be the ‘correct’ segmentation, or if he is interested in the

horse, fig.1.2c may be the appropriate one.

(a) (b) (c)

Figure 1.2: (a) A natural image scene. (b) and (c) The same scene segmented using the
Normalized Cut algorithm with different numbers of regions (10 and 60) respec-
tively.3

But how does the human visual system actually solve this problem? Unlike the

traditional image segmentation approaches where all regions are segmented at

once, the visual system processes all the visual information step by step4.

When watching a scene or an image, the human visual system makes a series

of automatic short and rapid eye movements called saccades to scan the whole

visual scene. Between these saccades, the view focuses on various salient locations

called fixation points. Even though the purpose of eye movements, especially

regarding the saccades, is not fully understood, it seems that one major reason

for this behavior lies in the structure of the human retina. It has the highest

concentration of receptors for color information – the so called cones – which are

located at the central fovea. There, the eye is able to capture visual information

with the highest resolution [Jonas et al., 1992]. Thus, the representation of a

scene is built like a puzzle with high-resolution pieces from the fixation points,

as visualized in fig. 1.3.

3Images taken from [Mishra, 2010]
4There has been done a lot of research in investigating and understanding the human visual

system. See [Rayner, 1998] for a detailed overview.

3
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(a) (b) (c)

Figure 1.3: (a) A woman sitting on the street. (b) The same scene with marked fixation
points and saccades. (c) The ‘puzzle pieces’ extracted from the fixation points.5

How can this principle of operation be transferred to the segmentation process?

The answer to this question is simple: The segmentation should depend on the

viewer’s intention or interest. The point of interest is to be derived from the

functioning of the visual system: As a premise, it is assumed that every fixation

point between the saccades can be defined as a location on an object the viewer

is interested in. It obviously makes sense, since a viewer would not look at a

tree in the scene if he was interested in the horse on the meadow. By only

evaluating one step, i.e. one fixation point, it is possible to rephrase the general

segmentation problem as a well-posed one, since the region of interest is known

to the segmentation algorithm beforehand [Mishra et al., 2009].

So instead of segmenting the whole scene, it is now sufficient to segment the

region of interest, which in most cases is the fixated object, by finding its ‘optimal’

enclosing contour. Yet, knowing the object before segmenting the scene seems

to lead the whole process ad absurdum6, as the segmentation is usually used to

recognize objects in the first place. So, how is it possible to identify an object

beforehand? Even though it looks like a chicken and egg problem, there exist a

lot of approaches to solve this dilemma7. Interactive segmentation methods solve

5Images taken from [Mishra, 2010]
6The are approaches using prior known objects to recognize these objects in the image again,

but in general, there is no information given about the objects beforehand.
7This can be done by automated systems which are trained on certain objects beforehand [Be-

longie and Malik, 2000] or by hierarchical multi-scale approaches [Arbelaez et al., 2011].
Another approach are semi-automatic systems based on global parameter settings [Ka-
nungo et al., 2002] or user interaction (section 1.1)

4
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this problem by letting the user choose what object he is interested in, that is by

taking more or less user interaction into account.

The framework developed in this thesis picks up on the idea of user interaction for

the segmentation process, since finding a solution for the general segmentation

problem is impossible. Therefore, section 1.1 presents some of the most popular

interactive segmentation methods. Their common goal is to accurately extract a

region or object of interest by using the user’s or viewer’s knowledge about the

scene or the objects while minimizing the interaction and response time. Still, the

three subgoal accuracy, minimal interaction and response time altogether remain

unattained.

However, a much more important question rises from the interactive segmentation

approach: Is it possible to apply this concept to a robotic system, since the robot

takes the place of the user now? As there is no clear answer to it, this question

and possible answers to it are discussed from the perspective of a robotic visual

system in section 1.2.

Section 1.3 presents the implemented framework of this thesis which offers a

solution to this question. For this purpose, the objective in regard to the use of

the proposed segmentation algorithm in a robotic system is defined, as well as

the related changes and innovations compared to the original approach of [Mishra

et al., 2009].

5



Introduction 1.1 Interactive Segmentation

1.1 Interactive Segmentation

Interactive image segmentation algorithms became more and more popular in

recent years, because the problem of automatically segmenting an image or a

scene in respect to the viewer’s interest is still unsolved – it appears as if the use

of human ‘hints’ is inevitable. Additionally, they became a powerful tool in image

editing programs such as GIMP8 or Adobe Photoshop9 where the user input is

part of the working process. In the following some state-of-the-art interactive

segmentation tools shall be briefly described and compared.

Magic Wand by [Adobe Systems Incorporated, 2012] is one of the best-known

selection tools and belongs to the region growing algorithms. The operation

method is quite simple: A region of connected pixels is computed by using simple

color statistics of the initial point or region with a user adjustable tolerance

value. The initial point or region can be expanded, e.g. by using a simple flood-

fill algorithm. Due to its simplicity, this approach can be implemented very

efficiently, thus resulting in a minimal response time even on older and slower

computer systems.

The user interaction is also reduced to a minimum, as one only has to select a

pixel or a small region. However, adjusting the tolerance value to a correct level

is often cumbersome, if not impossible. The Magic Wand can achieve very good

results in untextured regions which are bounded by regions of colors outside of the

tolerance limit. But in many images the distribution in color of foreground and

background pixels can not be distinguished easily and do even overlap sometimes.

High textured regions need to have a high tolerance, resulting in unintentionally

selected background pixels, or, if the tolerance is set too low, the user has to make

his selection almost pixel-wise leaving this tool virtually useless. That is why a

8GIMP is the GNU Image Manipulation Program [GIMP Documentation Team, 2010].
For detail visit: http://www.gimp.org/

9The actual version is Adobe Photoshop CS6 [Adobe Systems Incorporated, 2012].
More informations can be found at http://www.adobe.com/de/products/photoshop.html
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clear segmentation of an object with a satisfying contour is often not achieved,

as shown in fig. 1.4b.

(a) (b)

Figure 1.4: (a) The user input for the Magic Wand algorithm. The white regions mark
preselected regions. (b) The result of the segmentation process of the Magic
Wand method.10

Live Wire (a.k.a. Intelligent Scissors), first implemented by Mortensen and

Barrett [Mortensen and Barrett, 1995,Mortensen and Barrett, 1998], is an algo-

rithm which is closely related to a manual segmentation using the computerized

segmentation as a helping hand. By converting the image to a weighted 2D

graph in which the pixels correspond to nodes and the arcs are represented as

8-connectivity neighbors’ links, Live Wire finds the boundary by implementing

the shortest path search in the graph [Shmueli, 2007]. The weights of the graph

are based on edges and other boundary-related features, so finding the optimal

minimum cost path can be computed by the Dijkstra’s algorithm [Dijkstra, 1959]

which is proved to be globally optimal. Since the shortest path can only be cal-

culated between two points, this segmentation method is based on strong user

interaction.

The user has to select a starting (seed) point and trace the object’s boundary

roughly. While moving the mouse, the algorithm calculates the minimum cost

path between the current mouse position and the (last) seed point and snaps

10Images taken from [Rother et al., 2004]
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on the nearest strong edges. During this process new seed points are added

automatically (called boundary cooling), but if the calculated path deviates from

the desired one, the user can set additional seed points to correct and fix the

path.

A common application using Live Wire is Adobe Photoshop where this tool is

called Magnetic Lasso [Adobe Systems Incorporated, 2012] which is used in the

example seen in fig. 1.5a. Even though the result is quite accurate, this approach

has one main drawback: The already strong user interaction will be additionally

increased in highly textured regions with many strong edges or in ‘flat’ regions

where there are no edges, since in this case various ‘minimal’ paths are possible.

(a) (b)

Figure 1.5: (a) The user input for the Live Wire algorithm. The yellow ‘x’es mark the man-
ually added seed points. (b) The result of the segmentation process of the Live
Wire method.11

Graph Cut is a powerful optimization technique which, as the name already

indicates, is based on weighted graphs and can be applied on images as well [Greig

et al., 1989,Boykov and Jolly, 2001]. In the graph cut algorithm the image to be

inspected is represented as a 2D weighted graph like in the Live Wire technique.

Every node in this graph can be in one of two states: Either it is an object

11Images taken from [Rother et al., 2004]
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pixel or a background pixel. Therefore an internal probabilistic color model12 is

needed, which is initialized based on the user input. The weights on the links

are defined by an energy function which consists of both region and boundary

information. The approach uses the min-cut/max-flow algorithm to find a binary

(object/background) segmentation of the image.

The user has to mark some areas as object and others as background, which in

most interfaces can be easily done using wide brush strokes. Often there is no

need to define many regions as long as the marked regions allow to build separable

color models for the object or background respectively. In case of overlapping

color distributions as the image in fig. 1.6 shows, it is sometimes necessary to

mark regions as object regions manually, especially at thin boundary regions.

(a) (b)

Figure 1.6: (a) The user input for the graph cut algorithm. The red and white regions mark
the preselected regions for background and foreground respectively. (b) The result
of the segmentation process of the graph cut method.13

Grab Cut is an enhancement on the original graph gut algorithm proposed

by [Rother et al., 2004]. Instead of using simple color models like histograms, the

grab cut algorithm makes use of Gaussian Mixture Models (GMMs) [Reynolds,

2008] to represent foreground and background colors. But the major enhance-

12Originally, the graph cut algorithm was used only with binary images [Greig et al., 1989],
but was extended to work with gray-scale and color images, too

13Images taken from [Rother et al., 2004]
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ments on the graph cut are firstly the ‘iterative estimation’ of the object region

and secondly the possibility to make an ‘incomplete labeling’. The iterative esti-

mation is done by relearning the GMMs and relabeling the nodes on each iteration

and thus refining the solution. Furthermore, the user has the possibility to refine

the result manually after each iteration.

The second enhancement, the incomplete labeling, allows the user to define pixels

or regions of an image as foreground, background or unlabeled which reduces the

degree of user interaction for a given quality of result (see fig. 1.7). Supplementary,

it allows the user to initialize the grab cut by simply drawing a rectangle around

the desired object, thereby only indicating the background area and reducing the

user interaction.

A major drawback of all graph and grab cut algorithms is the fact that they tend

to produce small contours by trying to find a minimum cut and using shortcuts

especially on thin objects. Nowadays, also interactive methods using progressive

graph and grab cuts as image editing tools exist like Adobe Photoshop Quick

Select or Paint Select [Adobe Systems Incorporated, 2012].

(a) (b)

Figure 1.7: (a) The user input for the grab cut algorithm. The rectangle roughly marks the
object of interest. (b) The result of the segmentation process of the grab cut
method (including border matting of the edges).14

14Images taken from [Rother et al., 2004]
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1.2 Perspective of a Robot

Artificial visual systems are an integral part in state-of-the-art robotics. Robot

vision and computer vision have a lot in common, however, there are some de-

mands in which they differ after all. In robotics, vision is a means to an end; it

is used to allow the robot to interact with its environment and complete various

tasks. Therefore, the success of a vision system in a robot is related to its actions

and the success of fulfilling the task and cannot be considered as an independent

component, but as a part of the whole robotic system [Kyrki and Kragic, 2011].

Unlike in traditional computer vision, it is not sufficient to identify an object

in a scene, as the robot has to identify its form and location, e.g. in order to

grasp an object. In recent years a lot of advances in areas such as stereo and 3D

reconstruction have been made, which form a solid and well-defined theoretical

basis for tasks in a 3D environment. A current example of a practical advance-

ment made trough theoretical work is the Microsoft Kinect camera system, an

inexpensive 3D vision sensor.

As the use of a robot is, in the first instance, practically motivated, there is

another important aspect to be taken into consideration in robot vision: the

response time. The visual system is only a part of the processing chain and

therefore it should work as fast as possible. A robot watching a scene for half

an hour before being able to interact makes no sense for practical reasons. So

reducing the processing time to a minimum is another subgoal for implementing a

robot vision system. Taking the human visual system as a reference, the response

time of a robot’s visual system should be at least quite similar to that. Depending

on the object (especially in case of an unknown object, where there is no prior

knowledge about it), in real-time it can take up to some seconds to segment or

identify it.

Even though the goals of robot vision and computer vision may differ, the first

step of image processing is the same: the image segmentation. So the question

rises, why not to implement the same segmentation algorithms mentioned before

11
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in a robot system? The answer is quite obvious: A robot is not a human. The

interactive segmentation methods are working fine and give high quality results

with human beings, since the user knows the object of interest and has the control

over the refinement of the intermediate solutions. If the user is a robot though,

it leads to the same chicken and egg problem which led to the introduction of

the interactive methods in the first place. That is why the question arises anew:

How is it possible to identify an object before segmenting it without relying on

any user input? The answer remains the same: It is not possible without a hint

of the viewer’s interest.

(a) (b)

Figure 1.8: (a) A complex visual scene of a beach with clouds. (b) The corresponding saliency
map, as computed by the algorithm in [Itti et al., 1998].

But when reducing the information about the object of interest to a minimum,

more precisely to a single point of interest on the object, instead of relying on

more complex information like contours or background and foreground areas, the

interaction is also reduced to the simple selection of a point. In fact, by reducing

the user interaction to a minimum, the problem becomes now solvable. Obtaining

the point of interest is actually possible by using visual attention systems [Itti

et al., 1998]. They can predict locations in the scene that attract the most atten-

tion by employing low-level visual cues or by using statistical information about

the human visual system. These algorithms often result in so called ‘saliency

maps’ as shown in fig. 1.8, where more attracting regions have higher values than

less attracting. Another more manual method is to actively help the robot find

an object in the scene by showing it to the robot. To do so, markers or gesture

recognition methods can be used.
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In the end, for the segmentation process, it does not matter by which fixation

strategy the point of interest is retrieved, the only problem left is to infer from a

given point on an object to its contour or region. So on the one hand, there is an

advanced algorithm like grab cut, which needs not much, but some user knowledge

about the object region. In case of the grab cut algorithm, this information does

not even need to be overly exact. On the other hand, there is a given point on

the object which is insufficient information for a high-level algorithm. So the

question is how to bridge this information gap in a robot system autonomously,

that is without the interaction of a user?
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1.3 A Fixation-Based Grab Cut Approach in

Real-Time

This thesis presents a segmentation algorithm which is based on the novel idea of

a fixation-based segmentation by [Mishra et al., 2009] called Active segmentation

with fixation. It answers the question of how to obtain sufficient information

about a given point on an object for the graph cut algorithm autonomously such

that the algorithm can be applied in a robotic system.

Therefore, the algorithm of [Mishra et al., 2009] is briefly described: The idea

behind this approach is to rephrase the general segmentation problem as a binary

labeling problem in polar space for a single object. Hence, the user interaction

can be reduced to a minimum, more precisely to the selection of a single point,

the fixation point. Now, the input of the framework is this point which is located

on the object of interest.

In the first step, the calculation of an edge map or probabilistic boundary map

is made by using different visual cues. The resulting probabilistic boundary map

contains the probability of an edge pixel being on the desired object’s boundary.

The edge map is then transformed into the polar space where it is used as the

input for the second step: the graph cut algorithm. This algorithm uses the edge

map by mapping the intensity values to the weights of the links between the

nodes of the graph. Then, a path through the edge map is created by computing

the minimum cut of the graph. The path is the ‘optimal’ division of object and

background pixels, i.e. the path itself defines the ‘optimal’ contour of the object

in polar space in regard to the edge map.

The graph cut algorithm is carried out a second time, now the weights being

adjusted by using color histograms of the labeled areas. The result of the graph

cut algorithm is a binary mask with areas labeled as ‘inside’ or ‘outside’ the

object. After the transformation back to Cartesian space, the ‘optimal’ contour

of the object can easily be extracted from this mask.
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The main disadvantage of this approach is that the result relies highly on the

complex computation of a probabilistic boundary map, as this is the crucial point

for a good segmentation. Due to its computational complexity, the algorithm

cannot be used in real-time systems, yet.

The major objective of this thesis is to refine this approach in order to enable

the algorithm to run on a robotic real-time system. Therefore, the framework

developed in this thesis implements several optimizations and extensions on the

original approach. The contributions to the algorithm developed by [Mishra et al.,

2009] can be summarized as follows:

• This framework provides an additional grab cut module for the segmen-

tation result given by the approach of [Mishra et al., 2009] which thereby

becomes an intermediate step of the whole algorithm. This leads to a more

balanced process, as the dependency of the final result does not solely rely

on the edge detection. By distributing the liability more evenly on the

algorithm, a foundation for supplementary optimization processes can be

established, as minor errors occurring in the intermediate steps can be ab-

sorbed by the following grab cut algorithm.

• The operation time of the algorithm is reduced for the use in a real-time

robot system. As the developed algorithm is very robust to erroneous in-

termediate results, especially the edge detection step can be optimized a

lot by simplifying the low-level routines. This allows the reduction of the

computational complexity of the whole algorithm, while the high quality of

the algorithm’s results nearly remains the same.

• The polar space representation for the contour retrieval is exchanged in

favor of the log-polar space. Besides the useful scale invariance property

of the polar space, this transformation has two additional advantages: On

the one hand, the image gets smoothed near the object of interest which

results in less frequent intensity changes of the texture in the object region.

This enhances the results of the edge detection, as it will find less edges
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near the object caused by texturing. On the other hand, the object region

in log-polar space is much larger than in polar space. This enhances the

results of the grab cut algorithm, as more pixels are included to build the

color models which are used to refine the object’s contour.

• The edge detector implements a kernel with a variable size: The kernel size

grows with the distance to the object, thereby imitates the human visual

system – the blurred vision outside the focus. This implies that the edge

detection is more sensible to possible edges near the object than to edges

further away where the kernel covers a larger area for computing the edge.
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1.4 Outline of the Thesis

The present thesis describes a newly developed approach to image segmentation

based on the previous work of [Mishra et al., 2009]. The developed framework

implementing this approach relies on a combination of three different image pro-

cessing techniques: The edge detection, the polar space transformation and the

graph/grab cut algorithm. The theoretical background for these methods is ex-

plained in chapter 2.

In addition to extending the approach of [Mishra et al., 2009] with the grab cut

method, this framework serves as an experimentation and evaluation application

for the proposed algorithm, which is described in section 3.1. A major part of

this thesis deals with the different substeps of the algorithm, their configuration,

implementation and the effects on the final result. Section 3.2 covers the struc-

ture and the design of the framework delimits and illustrates the similarities and

differences between the framework and the approach of [Mishra et al., 2009]. A

detailed view on the different modules involved in the algorithm, including their

requirements, implementation and expected effects of parameter settings on the

result, is presented in sections 3.3 to 3.8.

Chapter 4 explains the experimental setup, including the parameter settings and

the scene setup in section 4.1 and their results on the basis of particular object

properties in section 4.2. In section 4.3, the detailed analysis of the proposed

algorithm and its modules as well as the computational complexity are covered .

Finally, chapter 5 consists of the conclusion and future work of this thesis, evalu-

ating the developed algorithm and stimulating discussion on its further develop-

ment. Moreover, the results of the algorithm and the analysis are used as starting

points for the further development of this approach.
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Chapter 2

Theoretical Foundation

The proposed framework is based on different techniques which are often used and

discussed in computer vision. When combining them into one algorithm for image

segmentation, it is necessary to understand the basics of the related topics. The

segmentation process itself and closely related works were already introduced

in section 1.1 to define the objective of this thesis. This chapter presents and

discusses the theory that forms the foundation for the major components used

for implementing the proposed segmentation algorithm.

One major component in this framework is the edge detection. It plays an impor-

tant role for the subsequent processing of the image by the graph cut algorithm

and holds the greatest potential for optimization in regard to the implementa-

tion of [Mishra et al., 2009] (see also chapter 3). Section 2.1 describes the basics

of edge detection by convolution and, based upon that, the still state-of-the-art

Canny Edge Detection algorithm. Section 2.2 explains the fundamentals of the

fixation-based approach by introducing the (log-)polar transformation, the asso-

ciated (log-)polar space and its properties. The last section 2.3 deals with the

graph-based representation of an image which can be used to solve the problem

of energy minimization (in regard to finding optimal object contours) by using

the graph cut algorithm. Finally, a variation of the graph cut algorithm, namely

the grab cut algorithm, is presented.
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2.1 Edge Detection

Extracting boundaries from (color) images has been a research area for a long

time in computer and machine vision and is a fundamental tool of low-level image

processing. The latter often is a necessary step in high-level image processing like

image segmentation or detecting objects in a scene [Nadernejad and Sharifzadeh,

2008]. The basic idea behind edge detection is to find relevant changes of color

intensity, whereas strong changes indicate regions of different objects. This is

the ideal conception of image edges, but in reality, there are a lot of intensity

variations caused by changes of the environment like illumination and shading

or by characteristics of surfaces like texture and reflectance. Additionally, there

can be object boundaries which lack of strong change in intensity like objects

of the same color or blurred edges. Moreover, when working with images of

lower quality like video camera images, it is inevitable to deal with noise in these

images. In the last decades, many approaches have been proposed in order to

find an appropriate and reliable edge detector. Even though there might not

exist the optimal edge detector for general purpose, many algorithms generate a

reasonable output which can be used for further processing.

2.1.1 Gradient Computation by Convolution

Taking the image as a continuous intensity function, finding a sudden change

of intensity is achieved by computing the gradient of the function. Therefore,

the first derivative in each direction is computed, as strong changes have a high

gradient value. The gradient of the image intensity is given by

∇I =
(
∂I

∂x
,
∂I

∂y

)
(2.1)
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The result is a vector which visually points to the steepest increase of intensity

at any location. The square magnitude of the gradient is given by

‖∇I‖2 =
(
∂I

∂x

)2

+
(
∂I

∂y

)2

(2.2)

When using this approach for images, a discretization step has to be done, since

the pixels are not continuous. By doing so, it is possible to express the derivative

as a convolution kernel, a (m × n)-matrix G, which is then used to calculate a

new value for each pixel by calculating the weighted sum of all neighbors given by

the matrix. So, by using the finite difference approximation, the first derivatives

become

∂I

∂x
≈ I (x+ 1, y)− I (x− 1, y)

∂I

∂y
≈ I (x, y + 1)− I (x, y − 1) (2.3)

They can be used to easily calculate the gradient magnitude. By transferring the

coefficients of the derivatives as elements of the kernel matrix, the convolution

process itself can be expressed as:

Inew (x, y) = w (x, y)⊗ Iold (x, y)

=
m
2∑

s=−m
2

n
2∑

t=−n
2

w (s, t) · Iold (x− s, y − t) (2.4)

where w (s, t) denotes the weights in the matrix.

In most cases, the kernel size is only (3 × 3) or (5 × 5). But when using much

larger kernels (' (12× 12)), the convolution needs a lot of computational time.

However, it is possible to counteract this by transferring the problem into the

frequency domain. For this purpose, the image and the kernel have to be trans-

formed by the Fourier Transformation. In the frequency domain, the convolution

step is then reduced to a simple multiplication [Arfken and Weber, 1985].
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2.1.2 Kernel Operators

Most classical methods use 2-dimensional convolution kernels for detecting edges

in an image. The design of the convolution kernel can vary depending on what

kind of edge characteristics it is supposed to respond to, e.g. the direction of the

edge or the robustness of the kernel against noise. The most common kernels, as

shown in fig. fig:foundation:edge, are presented in this section.

(a) Prewitt (b) Sobel

(c) LoG (d) Canny

Figure 2.1: The Prewitt, the Sobel, the Laplace of Gaussian and the Canny edge detector by
comparison.
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The Prewitt operator is exactly the kernel described above. The coefficients

of the derivatives can be written as:

Gx =


1 0 −1

1 0 −1

1 0 −1

 Gy =


1 1 1

0 0 0

−1 −1 −1

 (2.5)

The filter itself is separable1 and is used to convolve the image in the horizon-

tal and vertical direction. Therefore, the computation is relatively inexpensive

compared to filter kernels without this property. On the other hand, the calcu-

lation of the gradient is relatively coarse, especially in high frequency regions of

the image or when it is exposed to noise. Therefore, sometimes a (4 × 4)-filter

kernel is used with Gx =
[
3 1 −1 −3

]
and Gy = G T

x . The kernel is slightly

more robust to high frequency changes, but has no real center pixel, since it is an

even-sized kernel. Fig. 2.1a shows an image of Lena2 convolved with a Prewitt

filter.

The Sobel filter tries to improve the Prewitt filter by removing some of the

noise in images using a smoothing filter. This is done by using a triangular or

Gaussian kernel before convolving with the edge detection kernel. The Gaussian

(3× 3)-kernel is defined as

G = Gx ·Gy =
[
1 2 1

]
·


1

2

1

 =


1 2 1

2 4 2

1 2 1

 (2.6)

1It can be split into two operations by representing the matrix as a vector multiplication.
2Lena is a wide-spread image in the branch of image processing.
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By combining the vertical Gaussian and the horizontal Prewitt kernel and the

other way around, it is possible to create a new kernel which merges the smoothing

and gradient operation into one

Gx =


1

2

1

 ·
[
1 0 −1

]
=


1 0 −1

2 0 −2

1 0 −1

 (2.7)

and

Gy =
[
1 2 1

]
·


1

0

−1

 =


1 2 1

0 0 0

−1 −2 −1

 (2.8)

The Sobel filter is still an often used approach due to its computational perfor-

mance and reasonable results. Fig. 2.1b shows an image of Lena convolved with

a Sobel filter. But even though the Gaussian Blur is applied, the result still

suffers from high frequency noises. Additionally, the filter is proved to be not

rotationally symmetric, i.e. the filter is more sensitive to horizontal and vertical

edges than to edges differing from these angles. Therefore, Hanno Scharr derived

a more rotation-invariant (3 × 3)-filter called Scharr operator or filter [Scharr,

2000].

Gx =


3 0 −3

10 0 −10

3 0 −3

 Gy =


3 10 3

0 0 0

−3 −10 −3

 (2.9)

The Laplacian of Gaussians (LoG) filter had been quite famous before

Canny developed the ‘optimal’ filter (see section 2.1.3). This approach was first

introduced by [Marr and Hildreth, 1980], who combined the discrete Laplace

operator with the Gaussian function. Therefore, it is also known as the Marr-

Hildreth operator. The filter also became famous under its nickname ‘Mexican

Hat’ or ‘Sombrero’, as its visual shape looks like a Mexican sombrero turned up-

side down. This approach uses the Laplacian operator as the kernel is rotationally
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invariant. The Laplace operator is defined as the divergence of the gradient of a

function.

∆f = div (gradf) = ∇ · (∇f) = ∇2f (2.10)

In discrete image space the approximated kernel

G =


0 1 0

1 −4 1

0 1 0

 or G =


1 1 1

1 −8 1

1 1 1

 (2.11)

is used. The latter includes the diagonal edges as well. By using the second

derivative of the image intensity function, edges can now be identified by finding

the zero-crossings of the applied Laplacian. This involves the additional use of an

algorithm to recognize true zero-crossings, since regions with constant intensity

result in zero-values as well.

The smoothing of the image before convolving it with a kernel is done by cal-

culating the Laplacian of the Gaussian function. The resulting function is still

rotationally invariant, but is much more resistant against high frequency changes.

Fig. 2.1c shows an image of Lena convolved with a LoG filter.

The computation of the second derivative of the Gaussian function can be com-

putational complex. However there is an easy way to approximate the LoG filter

by using the difference of two Gaussian functions with different σ, also known

as the Difference of Gaussians (DoG). The result is almost the same as the

one achieved with the LoG filter. An interesting property of the LoG or DoG

after detecting the zero crossings is that all found edges are closed contours. This

property is often used for blob3 detecting algorithms.

3For the definition of blobs see [Lindeberg, 1993].

24



Theoretical Foundation 2.1 Edge Detection

2.1.3 Canny Algorithm

The Canny Edge Detector is still one of the state-of-the-art edge detectors, even

though John F. Canny has already developed it in 1986 [Canny, 1986]. By using a

computational approach, he describes an ‘optimal’ edge regarding three important

criteria for an edge detector:

• Good detection: Edges in the image should not be missed and spurious

responses should be minimized.

• Good localization: The distance between marked edges and true edges

should be minimized.

• Minimal response: The number of responses to an edge in the image should

be minimized. In the optimal case, an edge is only marked once.

Using these criteria, Canny proposes a multi-stage algorithm of which the first

step is the noise reduction by smoothing the image with a Gaussian kernel. The

second step is the detection of edges using a oriented edge detection operator like

Prewitt or Sobel for each direction. Both filters can be approximated by applying

the derivative kernel on the Gaussian. This combination is the first derivative of

the Gaussian function. In the third step, the edge direction angles are used to

apply a non-maximum suppression which finds the local maximum of the gradient

magnitude along the gradient direction. The output of this process is an edge

image with thinned edges. In the last step, the detection of true edges and the

removal of irrelevant edges is done by hysteresis thresholding: A lower and an

upper threshold determine if an edge is a true edge. The ones above the upper

threshold are taken as genuine edges and the ones below the lower threshold are

dropped. The edges in between will be taken if they are connected to a genuine

edge. This can be realized by using the genuine edges as a starting point and then

tracing the edge throughout the image with the directional information provided

by the gradient computation. Fig. 2.1d shows an image of Lena convolved with

a Canny edge detector.

25



Theoretical Foundation 2.2 (Log-)Polar Space Transformation

2.2 (Log-)Polar Space Transformation

The use of the (log-)polar space in pattern recognition and computer vision has

increased more and more over the recent years. The reason for this is that it has

proved advantages over uniformly sampled spaces like the Cartesian space. The

greatest benefits gained from (log-)polar transformed images are their rotational

and scale invariance properties. Many mathematical formulations needed for

various vision tasks can be simplified because the rotational- and scale-dependent

transformations can be reduced to a simple vector addition [Araujo and Dias,

1997]. Another advantage of the (log-)polar transformation is data reduction by

decreasing the resolution at the image periphery, as shown in fig. 2.2.

Figure 2.2: A point on the polar grid in Cartesian space. It shows the correlation between
the Cartesian and polar space.

These advantages are exploited in many approaches including in active vision

systems, in binocular tracking systems or in motion recovery and estimation

[Schwartz and Greve, 1995, Bernardino and Santos-Victor, 1999, Tistarelli and

Sandini, 1993]. Using the polar space for image segmentation is a very new idea.

From what is known, the fixation-based approach developed by [Mishra et al.,

2009] in 2009 is the first framework to implement a segmentation based on graph

cuts using the polar space. Since this thesis is based on this idea, it is important

to understand the (log-)polar mapping and its properties. Therefore, this section

presents the layout of the (log-)polar space and the mathematical formulation

behind.
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2.2.1 Polar Space and Log-Polar Space

The (log-)polar coordinate system is a two dimensional coordinate system. The

origin of this system is called ‘pole’ and is an equivalent to the origin of the

Cartesian system. Each point (r, θ) in the coordinate plane can be described by

a distance from the pole called ‘radial coordinate’ or radius r. θ denotes the

angle, which is called ‘angular coordinate’ or polar angle, from a fixed direction.

It is possible to convert any given point (r, θ) from polar to Cartesian coordinates

(x, y) by

x = r cos θ and y = r sin θ (2.12)

or vice versa by the inverse transformation

r =
√

(y2 + x2) and θ = atan2 (x, y) (2.13)

where atan2 denotes the variation of the arctan function by taking the respective

coordinate quadrants into account.

Fig. 2.3a shows polar grid with the correlation between the Cartesian and the

polar space. An interesting property of this grid is the size of the grid cells: The

radius is increasing constantly from the pole, whereas the distance of two points

lying on two adjacent rays at a certain radius grows exponentially with the radius.

(a) Polar space (b) Log-polar space

Figure 2.3: A comparison of the polar and log-polar grid in Cartesian space.
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It has the effect, that grid cells further away from the pole seem to be compressed

along the radial axis. This distortion is equivalent to the projection of a visual

scene on the human retina as determined by [Schwartz, 1984]. This effect oc-

curs due to concave-shaped retina plane within the eye. The human brain tries

to compensate this distortion by transforming the retinal image into its cortical

projection. According to Schwartz, this mapping can be approximated by a log-

arithmic function. Therefore, for the transformation into Cartesian space, the

inverse function, more precisely the exponential function, has to be applied on

the radius, which results in

x = exp (r) · cos θ and y = exp (r) · sin θ (2.14)

and the logarithmic function4 for computing the radius in polar space

r = log
(√

(y2 + x2)
)

and θ = atan2 (x, y) (2.15)

This formulation often helps to simplify mathematic problems in analytics e.g. the

Laplace’s equation. In computer vision, the use of the log-polar transformation

is more canonical, even though its properties regarding the rotational and scale

invariance are the same. A comparison between the log-polar and the simple

polar space is shown in fig. 2.3. For better understanding, the name ‘polar space’

in this section refers to both, the log- and the polar space, unless not stated

otherwise.

4The term log denotes the natural logarithmic function throughout this thesis, as it is usually
used that way in programming languages.
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2.2.2 Discretization

In computer vision, the transformation from and to polar space has to be dis-

cretized for practical reasons. In most cases, the source space and the destination

space are given in the form of an image. Therefore, the polar space is defined by

aligning the polar coordinates into an orthogonal space with the axes r and θ as

seen in the right image of fig. 2.4. In the present thesis, the angle θ is represented

by the vertical axis, whereas the horizontal axis denotes the radius r. This implies

that the radius and the angle become discretized to integers within a range of 0

and a predefined maximum value.

Figure 2.4: The transformation of a region in Cartesian space to the polar grid.

When transforming from Cartesian coordinates (x, y) ∈ N0 given in the source

image, the result are polar coordinates (r, θ) ∈ R. Since the destination image

is a discrete grid, the values of the polar coordinates have to be rounded to a

certain cell of the grid. For example, by taking 360 grid rows, more precisely 360

θ values, the resulting angle has to be rounded to an integral angular degree. The

problem arising from this forward transformation is that some of the coordinates

in the destination image might not be defined as cells can be skipped due the

resolution of the destination grid or the rounding process. Therefore, the usual

way of mapping coordinates in discrete space is done by the inverse transformation

starting with the destination image. By applying the Cartesian transformation

for each cell in the polar space, the results are floating Cartesian coordinates.

These coordinates can be interpolated by the neighboring grid cells using the
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nearest neighbor, the linear or cubic interpolation method. This procedure has

to be carried out for the Cartesian-to-polar transformation, too.

The interpolation of pixel values in the transformed image means a loss of in-

formation. The polar space transformed image needs to interpolate many pixel

values near the pole, whereas regions more distant to the pole get compressed.

When applying the Cartesian transformation again, this results in image arti-

facts increasing with the distance to the pole, as the compressed region has to

be stretched again by interpolation. Decreasing the artifacts can be done by

sub-sampling mechanisms or by increasing the resolution of the polar grid which

is often unwanted, since the image in the polar space is used for further image

processing

2.2.3 Rotation and Scale Invariance

The main reason for transforming an image into polar space is are the scale

and rotation invariance properties of the transformed image. This proved to be

especially useful for pattern or object recognition tasks, since it drastically min-

imizes the search domain. The mathematical derivation of these properties can

be found in [Alan and II, 2007]. But by looking at different regions transformed

from Cartesian space to polar space, it quickly becomes clear that these are valid

properties of the polar space, as seen in fig. 2.5.

A circle with a radius r1 around a point in the Cartesian space, it can be trans-

formed into polar space. As for each polar angle θ, the radius is the same, the

function f (θ) = r1 is a constant line. Another circle around the same point with

the radius r2 is a constant line as well. The only difference is a shift along the

radius axis. Hence, scaling in Cartesian space results in a shift along the r-axis

in polar space, i.e. it is scale invariant.
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Figure 2.5: The properties of the polar space transformation. The green and red regions
show the scale invariance, whereas the red and the blue region show the rotation
invariance of the polar space.

The rotation invariance can be seen analogously, only taking place on the θ axis.

A point in Cartesian space lying on a ray with an angle θ1 and a copy of that point

rotated around the pole lying on a ray with an angle θ2, then both points have

the same distance to the pole, more precisely, the same radius r3. The function

for θ1 and θ2 results in f (θ1) = f (θ2) = r3. Therefore, the only variable that

changes is the angle and the rotation becomes a shift along the θ-axis.

31



Theoretical Foundation 2.3 Graph Cut and Grab Cut

2.3 Graph Cut and Grab Cut

The theory of graphs has been a mathematical branch ever since Leonhard Euler

tried to find a tour over the seven bridges of the city of Königsberg without

crossing a bridge twice [Adams, 2011]. Down to the present day, many problems

in daily life or in other mathematical disciplines have been transferred to graph-

related problems. One of these problems is to find the minimum cut in a graph, i.e.

to find a set of edges with the smallest sum of weights which are dividing the graph

into two parts. Calculating the cut had been computationally very expensive

until in 1956, when [Ford and Fulkerson, 1956] showed that this calculation can

be transferred to the problem of finding the maximum flow in a graph network,

today also known as the max-flow/min-cut-theorem.

The maximum flow problem asks for the maximum flow in a graph from a given

source to a sink, whereby the edges have different capacities. Figuratively, this

problem can be seen as pushing more and more water through a network of

pipes until the capacity of the pipes is reached or finding the maximum possible

amount of cars driving from a location A to a location B on the traffic network.

The theorem states that a maximum flow from a source to a sink through a flow

graph saturates a set of edges which are dividing the graph into two partitions.

These set of edges correspond to the edges gained by the minimum cut. In fact,

the cost of the cut is also equal to the maximum flow capacity.

Ford and Fulkerson also proposed an algorithm to compute the solution [Ford

and Fulkerson, 1957] which is called Ford–Fulkerson algorithm. By finding the

maximum flow or minimum cut, the graph is partitioned into two distinct parts

with different labels.

Not long after this accomplishment, researchers applied this approach to com-

binatorial optimization problems, as the minimum cut of a graph can be used

in order to find an optimal solution for submodular function minimization [Ed-

monds, 1970]. This concept of energy minimization was taken on by [Greig et al.,

1989] in 1989, who first implemented a max-flow algorithm for binary image
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restauration. Since the computational complexity was still too high for the com-

puter systems5, it took some time until it was universalized. In 2001, [Boykov

and Jolly, 2001] finally introduced the interactive graph cut approach for image

segmentation, also implementing the max-flow algorithm which nowadays can be

computed in real-time due to the rapid development of computer hardware.

The proof of optimality for applying the function minimization for binary image

labeling was shown by [Greig et al., 1989], as the minimum cut of a graph splits

it only into two parts with different labels. Extensions of the graph cut algorithm

are nevertheless used for multi-labeling problems which give good approximation

of the solution. However, in many cases in computer vision, it is sufficient to use

the graph cut algorithm for binary labeling, as e.g. in the proposed framework

which uses the different labels for denoting background and foreground.

In order to understand how the binary labeling problem can be solved by a graph-

based approach, in the first instance, it is necessary to get the basic idea of the

labeling process from the viewpoint of estimation which is discussed in section

2.3.1. Afterwards, in section 2.3.2, an important graph-based representation of

probability dependencies, the Markov Random Field (MRF), is described. It is

the generalized form of the Ising model which uses the Gibbs probability measure

and the related energy function from the field of ferromagnetism to represent a

model for estimation. The newly formulated probability function is then used in

the graph cut algorithm as explained in section 2.3.3. The section also explains

the construction of a flow graph based on an image and briefly presents the Ford-

Fulkerson algorithm to find the minimum cut. Finally, section 2.3.4 shows how

the graph cut algorithm can be extended to obtain the grab cut algorithm.

5They applied the algorithm on an image of size 88 × 100. The basic algorithm took about
3000 seconds to compute the solution on an Amdahl 470 computer. They proposed a
variant, which could be computed in ‘only’ 250 seconds.

33



Theoretical Foundation 2.3 Graph Cut and Grab Cut

2.3.1 Estimation

Binary labeling is a well-known subproblem of segmentation in general. One

classical example is the restauration of a binary image which has been exposed

to noise. The task is to find the most probable original image. So, the idea

behind binary labeling is to assign a binary label to each element in a given set

based on some given constraints or properties. Thereby, the procedure estimates

a configuration over all elements which results in an approximate or even exact6

solution of the posed problem depending on the algorithm used. This problem is

in general called an estimation problem which can be solved by an estimator.

An estimator is a function θ̂ to describe the process of estimation. The estimation

relies on a given quantity of observed data X = (x1, . . . , xn) and the unobserved

population parameter θ = (θ1, . . . , θn). An estimator detects the maximum a

posteriori7 (MAP) probability P (θ|X) which is a central term of Bayes’ theorem

[Bishop, 2007]. It can be written as

θ̂ (X) = arg max
θ
P (θ|X) (2.16)

where the Bayes’ theorem formulates

P (θ|X) = P (X|θ) · P (θ)
P (X) (2.17)

P (X|θ) is the conditional probability or often called the likelihood of a sample

belonging to a certain class and P (θ) denotes the prior probability based on

the prior knowledge. P (X) is the evidence which is the sum of all posterior

probabilities θ given the sample X. It can be seen as a normalization constant.

6The meaning of ‘exact’ in this context has to be seen in respect to the formulation of the
constraints.

7It is also called a maximum likelihood estimator (MLE) if the prior probability is neglected.
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The records (x1, . . . , xn) of sample X are conditionally independent and each has

its own likelihood function f (xi|θi). Thus, the joint probability function l (X, θ)

can be written as

l (X, θ) =
n∏
i=0

f (xi|θi) (2.18)

Often, the likelihood is also written as the log-likelihood8, as the log function is

a monotone increasing function and thereby does not change the result of the

maximization. A major advantage of the log-likelihood is that the product can

now be written as a simple sum:

log l (X, θ) =
n∑
i=0

log f (xi|θi) (2.19)

The conditional probability for each element of the sample X can vary from

application to application. In computer vision, estimators are used in many dif-

ferent contexts and the computation of the probabilities depends much on the

parameter models used. This can be average intensity values, color histograms

or Gaussian Mixture Models, just to mention a few. Therefore, different simi-

larity measures like the simple difference, Euclidean and Mahalanobis distance,

Chi-square distance or the maximum likelihood are applied as well. Often, es-

timators are used to estimate certain parameters, e.g. the mean and variance

of a Gaussian probability function which are used to build color models. This

ansatz is persued in simple applications such as binary thresholding or in more

sophisticated techniques like the expectation maximization algorithm. In image

segmentation, e.g., whole label configurations are estimated to restore a noisy

image or split an image into distinct regions [Cheng et al., 2001].

8The term log denotes the natural logarithmic function throughout this thesis, as it is usually
used that way in programming languages.
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The posterior probability regarding the joint probabilities can now be written as

P (θ|X) = P (X|θ) · P (θ)
P (X)

∝ P (X|θ) + P (θ)

∝ logP (X|θ) + logP (θ)

∝
n∑
i=0

logP (xi|θi) + logP (θ) (2.20)

This formulation is useful when modeling the prior probability with a Markov

Random Field which is used in the formulation of the graph cut algorithm, as it

is shown in section 2.3.

2.3.2 Markov Random Field

An advantageous approach to model and compute prior probabilities is the Markov

Random Field. It is a convenient way to describe estimation problems based on

different configuration states, where the state of a pixel or a site only depends

on the state of its neighboring sites. The dependencies between neighboring sites

is a prior knowledge and has to be included in the formulation of the problem.

In most image segmentation tasks, the interdependency of pixels can be a valid

assumption, as single pixels would not differ too much from the surrounding ones.

[!REFHRASE argumentation the other way around]

The Markov Random Field describes these dependencies in an undirected graph

G = {V , E} where V = {v1, . . . , vn} is a set of nodes and E = {e1, . . . , em}

a set of edges connecting the vertices. Given a set of random variables X =

{Xv}v∈V , a certain assignment for the random variables is called a configuration

x = (x1, . . . , xn) ∈ X. The Graph G is a Markov Random Field if the probability

of the random variables Xv can be calculated by the neighborhood Nv ⊂ G,
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typically four or eight directly connected neighbors. Any graph is called a Markov

Random Field, if it satisfies the Markov property

Xa ⊥⊥ XV\Na∪{v} | XNa (2.21)

It states that a variable is conditionally independent of all other variables only

given its neighbors.

Due to the Hammerslay-Clifford theorem [Hammersley and Clifford, 1971], the

probability9 of a configuration x can be given by the Gibbs measure:

P (X = x) = 1
Z (β) exp (−βU (x)) (2.22)

where Z (β) is the normalizing partition function and U (x) the energy of the

configuration x. The parameter β is a free parameter10.

The energy function of the Markov Random Field is thereby defined as a pairwise

interaction of the site xi and its neighbors xk, where C = {N1, . . . ,Nc} denotes

the set of all neighbor sets of configuration x:

P (X = x) ∝ exp
−β ∑

Nc∈C
VNc (x)


∝ exp

−β∑
(i,k)

Vik (xi, xk)
 (2.23)

VNc (x) denoting the clique potential. The exact formulation depends on the

application and the underlying models used. Often, the potential function is

used to compute some kind of similarity or distance between xi and xk ∈ Nc.

An extension to the Markov Random Field is the Conditional Random Field. It

alters the clique potential by incorporating the observed configuration y into the

term and thereby conditioning it to the observation. This actually contradicts

9Note, that in the general estimation section the random variables are denoted by θ instead
of X. This is actually a common convention in literature.

10In physics, it is the inverse temperature.
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the idea of using the Markov Random Field as a model for the prior, since the

prior should not depend on the observation. Therefore, this probability has to be

rewritten into the conditional probability, since the computation of P (Y |X) is the

likelihood. A major drawback of the Markov Random Field is that the penalty

for the distribution of a certain site increases with the difference to its neighbors

regardless of the observed data. That means, even if the ‘true’ data contains a

large difference between two neighbors, e.g. the pixels of an edge in an image,

the clique potential will still penalize it. The Conditional Random Field fills the

information gap by comparing the current configuration with the observed data

and by weighting the penalty accordingly. Formally, the Conditional Random

Field can be written as

P (Y |X) ∝ exp
−β∑

(i,k)
Vik (xi, xk, yi, yk)

 (2.24)

2.3.3 Graph Cut

The graph cut algorithm is based on the prior probability formulation of the

Markov Random Field or Conditional Random Field. It is a maximum a poste-

rior estimator which uses an underlying graph for modeling and evaluating the

posterior probability. As the graph cut algorithm is used for binary labeling, the

solution is ‘exact’, i.e. it finds the configuration which globally maximizes the

posterior probability.

The graph cut algorithm is based on a graph G = {V , E} which consists of nodes

V = I ∪ {s, t} directly connected by bidirectional weighted edges E . The nodes

correlate to the pixels of an image I, except two additional terminal nodes {s, t}

which are called source s and sink t. Each graph edge is assigned some non-

negative weight, cost or energy w (p, q), where the inverse direction w (q, p) can

have a different weight. Edges connecting only nodes from I are called n-links,

whereas the edges from nodes to terminal nodes are called t-links. Nodes of I

are only connected to their direct neighbors N and to both terminal nodes, as

seen in fig. 2.6a.
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(a) A graph. (b) A cut through the graph.

Figure 2.6: A graph and the corresponding cut.

As stated in section 2.3, the minimum cut or min-cut of this graph can then be

used to minimize certain energy functions. A cut partitions the graph into two

distinct subsets S and T such that the terminal nodes s and t are elements of

the sets S and T respectively. The cut is therefore also called s-t-cut. Fig. 2.6b

shows such a cut through a graph.

A cutset Ci ∈ C is a set of edges (p, q) such that p ∈ S and q ∈ T . The cost |Ci|

of a cut is the sum of the weights or costs wpq over the edges in the cutset Ci.

The minimum cut problem is to find the cut with the minimum costs among all

cuts.

|Cmin| = arg min
C
|Ci| (2.25)

with

|Ci| =
∑

(p,q)∈Ci

wpq (2.26)

Furthermore, the edges in Ci can be split into t-links and n-links. When making

a cut, for each node p the cut contains a t-link, either the edge (p, s) or (p, t).

Additionally, the cut can also contain n-links connecting p with its neighbor q,

be it that p ∈ S and q ∈ T . The selection of the t-link (p, s) or (p, t) at node p
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can be modeled using a predicate Dp (fp) for selecting (p, s) or (p, t) respectively.

Therefore, the cost of the cut can now be written as

|Ci| =
∑
p∈I

Dp (fp) +
∑

(p,q)∈N
p∈S,q∈T

wpq (2.27)

This formulation is a special case of an energy function. It can be expressed in a

the generalized form

E(X) =
∑
p∈I

Up (xp) + λ
∑

(p,q)∈N
Vp,q · δ (xp, xq) (2.28)

with λ denoting a weighting constant between the regional term or data con-

straint as well as the boundary term or regularizing constraint and the additional

submodularity constraint [Kolmogorov and Zabih, 2004]

Vpq (0, 0) + Vpq (1, 1) ≤ Vpq (0, 1) + Vpq (1, 0) (2.29)

included as

δ (xp, xq) =


1 if xp 6= xq

0 otherwise
(2.30)

The idea of the graph cut algorithm is to represent the maximum a posteriori

probability with such an energy function. It can then be minimized by computing

the minimum cut or more precisely the maximum flow with the Ford-Fulkerson

algorithm. The energy function can be derived by formulating the MAP estimator

with the help of the Markov Random Field or Conditional Random Field. The

posterior probability can be written as

P (θ|X) ∝
∑
p∈I

logP (xp|θp) +
n∑
i=0

logP (θp)

∝
∑
p∈I

logP (xp|θp) +
−β ∑

(p,q)∈N
Vpq (θp, θq)

 (2.31)
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The posterior probability can now be used in the MAP estimator. But instead of

maximizing the probability, the problem is rephrased as a minimization problem

by multiplying the term with −1.

θ̂min (X, θ) = arg min
θ
−P (θ|X)

∝ arg min
θ

∑
p∈I
− logP (xp|θp)−

−β ∑
(p,q)∈N

Vpq (θp, θq)


∝ arg min
θ

∑
p∈I

Up (θp) + λ
∑

(p,q)∈N
Vpq (θp, θq) (2.32)

When the submodularity δ (θp, θq) for the boundary term is integrated, the last

formulation is equivalent to the energy function which can be minimized via the

min-cut-max-flow algorithm.

2.3.4 Grab Cut

The grab cut algorithm is based on the graph cut definition. The major differ-

ence is the formulation of the energy function’s regional term. The graph cut

approach in its original version, as described by [Rother et al., 2004], implements

an estimator for binary labeling, whereas the likelihood probability only depends

on the observed pixel values.

Recalling the binary labeling problem on binary images (e.g. image restauration)

[Greig et al., 1989], it can informally be described as follows: A binary image

exposed to noise is given as a configuration of binary labels. The aim is to find

the ‘true’ image, the estimate. Each pixel label is estimated by the observed

image and its direct neighbors. The regional term returns a constant weight in

case the observed value and the tested configuration differ, elsewise it returns

a even smaller constant weight or 0. The boundary term returns the sum of

the potentials between the current pixel and its neighbors. The potential is

given by a constant weight when the neighbor value differs from the current pixel

value, otherwise 0. The minimum cut can be used to find an exact minimum

configuration by using the max-flow algorithm.
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When it comes to image segmentation, the observed pixel values are often in-

tensity or color values. These values have to be mapped to a binary map, such

that the resulting mask can be used as the input for the graph cut algorithm.

Therefore, prior knowledge of the image has to be incorporated in order to create

an initial labeling. This is often done by user interaction as described in section

1.1, whereat the labeling is not complete. Hence, the initial labeling is used to

estimate two intensity or color representations11 of the image, for each label re-

spectively. By comparing the observed pixel values to the models, the regional

term can now be evaluated. In terms of the minimum cut algorithm, this process

is equivalent to the computation of the weights for the t-links.

Using color models has a major impact on the graph cut algorithm as a MAP

estimator: As the initial labels are based on incomplete user input or other selec-

tion methods, the whole estimation process additionally relies on the parameters

of the color models. E.g., when using a gray-scale image for the binary label-

ing problem for binary images, the gray-scale image has to be converted into

a binary representation. Given a color model for the original image as a mean

value, the binary image can be derived by simple thresholding. When using more

sophisticated color models, the similarity measure between the models and the

observed color value has to be adapted, e.g. by using the Euclidean distance

or the negative log-likelihood. Instead of mapping the color image to a binary

representation, this process can implicitly be achieved by estimating the weights

of the t-links. Therefore, depending on the observed pixel value, the weights of

the t-links (p, s) and (p, t) denote the energy of ‘keeping’ or ‘switching’ its label

respectively to the color models. This means that the formulation of a color

model also introduces another estimator which has to be implemented. Since the

color models are learned from the image used in the labeling process, the result

depends on the parameters of the models which are above all latent variables

11In the following, intensity and color representations will be generally denoted as color
models.
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of the estimation. Estimation errors of the color model estimator can then get

multiplied in the graph cut algorithm.

Regarding these difficulties, the grab cut algorithm enhances the graph cut algo-

rithm. Firstly, it proposes a more sophisticated color model, namely the Gaus-

sian Mixture Model (GMM), which is less error-prone when classifying colors. It

describes multiple sub-populations as Gaussian probability functions within an

overall population [Bishop, 2007]. The initial learning of the different Gaussians

in this model has to be carried out with a set of training samples. In fact, this pro-

cess is another estimation and is often done using an expectation-maximization

(EM) algorithm. In case of the implementation of [Rother et al., 2004], the ini-

tialization of the Gaussians is accomplished by using the k-means algorithm. EM

algorithms are often applied to estimation problems, where the estimate depends

on unobserved latent variables.

Having said that, the second improvement of the grab cut algorithm is quite

obvious: As the grab cut estimation also depends on the latent color model pa-

rameters, the whole estimation process can be seen as an EM algorithm. There-

fore, [Rother et al., 2004] proposes to refine the color models by an iterative use

of the graph cut algorithm. The estimation by the graph cut can be seen as an

expectation step, whereas the labeling of the pixel is the maximization step. The

labeled pixels are then used to improve the GMM color models. After certain

iterations, the color models converge. The grab cut algorithm supplementary

allows users to refine the result by marking additional foreground or background

regions between each iteration step in order to reduce errors and to achieve a

faster convergence.
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Segmentation Framework

The implementation of this framework is an extension of the approach from

Mishra, Aloimonos and Fah [Mishra et al., 2009] as described in section 1.3.

The algorithm input is an image of a scene (additionally a disparity map when

using the Microsoft Kinect camera) and an user selected point on an object of

interest. The image(s) are then transformed to (log-)polar space. The edge de-

tection computes an edge (probability) map from the given image(s). Optionally,

this can also be done before the (log-)polar transformation (see section 3.5.3).

Afterwards, the grab cut algorithm finds an approximate solution for the object’s

contour as a labeled map which is used as the input for the grab cut algorithm.

It iteratively refines the segmentation by using the edge map and a sophisticated

color model. The result is the contour of the fixated object in the scene.

The algorithm proposed by [Mishra et al., 2009] gives good results on simple

objects, but cannot be run in real-time. As it is an important objective of this

framework, it is necessary to reduce the computational complexity by optimizing

the different step of their algorithm. The idea is to find a suitable balance between

quality and performance while reducing the user interaction to a minimum, more

precisely to a simple selection of a fixation point (cf. section 1.2).

Before optimizing the algorithm, it is necessary to identify the computational bot-

tleneck in regard to the optimization process. In [Mishra and Aloimonos, 2011],
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the researchers extended their approach by introducing an automated fixation

strategy where they also mention the computational complexity. Their algorithm

is not able to be used as a real-time system1, as the edge detection itself already

needs 6 seconds to compute. Computing the optical flow map (taking 24 sec-

onds) can be disregarded because in the proposed framework the disparity map

of a Microsoft Kinect camera is used instead (which takes about 1sec). The seg-

mentation of a given fixation point takes about 2 seconds. Further computations

made in [Mishra and Aloimonos, 2011] can also be neglected due to the method

of using multiple fixation points. Clearly, the edge detection algorithm is the

bottleneck of the segmentation framework where most of the optimization can be

realized.

Increasing the performance of the edge detection implies the quality reduction of

the edge map. That in turn raises the error ratio of the graph cut algorithm, espe-

cially for regions with blurry contours. Therefore, the outcome of simplifying the

edge detection module is as expected: It will work much better on simple objects

with clearly defined borders than on objects occurring e.g. in natural scenes. But

the proposed framework is designed to work in robot systems identifying objects

to interact with, therefore the simplification is reasonable.

Even though the quality may suffer from the optimization during the edge detec-

tion process, it can partly be compensated by the new approach of this framework.

The grab cut algorithm, used in the end to segment the image, can handle certain

degree of errors in the edge map by using multiple iterations and sophisticated

color models. This approach is described in section 3.8.

The following sections discuss the general design of the segmentation framework,

the reasons for the specific implementation, the discussion on the parameter se-

lection and its anticipated results. The first section 3.1 describes the framework

itself, the technical implementation as well as the interface design, whereas the

second section 3.2 gives a overview of the different modules involved. Afterwards

1Their time analysis has been done using a quad-core 32-bit processor.
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in sections 3.3 to 3.9, each module is presented on its own with its requirements,

specification, implementation and effects on the final result.

3.1 Implementational Details

The implementation of the proposed segmentation framework considers three

major aspects for the evaluation of the experimental results:

• The framework is based on a state-of-the-art computer vision library for

efficient and fast algorithms, especially regarding the usage in a robotic

real-time system.

• The interface provides an optimal visual control enabling a fast evaluation.

It allows the change of parameters for the different substeps of the algo-

rithm on the fly, so that there is no need for compiling and restarting the

application for each little change of the parameters.

• The implemented components are built modularly for chaining them with

little effort. This provides a maximum of flexibility and reusability for

evaluating different module arrangements or experimenting with different

implementations of visual cues. Image processing components can be easily

added and included in the chain. Additionally, the modules are independent

from the graphical user interface such that they can be used as a library in

other applications, i.e. as a node in a robotic system based on ROS2.

For implementing the framework, the well-known computer vision libraryOpenCV 3

is used. It is a state-of-the-art computer vision library providing a wide range

of efficiently implemented image processing and manipulation algorithms. These

2ROS is the abbreviation for Robot Operating System which is commonly used in robot vision.
3See http://opencv.willowgarage.com for more information. Detailed descriptions and expla-

nations can be found in [Bradski and Kaehler, 2008].
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make use of the internal computer hardware structure, thereby additionally boost-

ing the execution time. This is an important factor for optimizing the algorithms

in regard to the use in a robotic real-time system. Moreover, it allows to focus

on the rapid development of the different modules by using these available tools.

An interesting recent feature of OpenCV is the interface to the Robot Operating

System ROS. It provides a bridge between these two libraries and allows an easy

transformation to the ROS image representation and vice versa.

The implementation of the modules makes excessive use of the OpenCV library

methods, especially in low-level algorithms. The modules consist of one or multi-

ple image filters. A filter is defined as an image-based operation or transformation

function which gets a list of input images and generates one or multiple output im-

ages. The programming interface provides an easy way to concatenate or ‘chain’

these in- and outputs, thereby allowing to build complex and exchangeable filter

chains. Each filter can explicitly register variables which can be changed via the

graphical user interface for a simple change of parameter values on the fly for a

faster evaluation.

Besides the filter system, the framework provides an easy access method to im-

ages, videos and camera devices as a video resource. The output of this wrapping

class can be directly used by the filter chain. Furthermore, it allows to define

different modes of playback for maximum control: Each video resource can be

played frame by frame by proceeding to the next image manually. Another mode

proceeds to the next image automatically when the filtering process is done. The

third method is a real-time playback of the video resource. This mode actually

simulates a camera device for videos, i.e. the video and the image capture pro-

cess runs in an own thread, while the image processing procedure takes place

in another thread. The image processing thread gets only the actual captured

image, thereby skips multiple frames depending on the duration of the image

segmentation. The parallel implementation of image retrieval and processing is

done mainly for performance reasons: The image grabbing routine takes some

time as it has to access the video file or the camera device. Therefore, it would
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be better to already grab the image before the segmentation instead of grabbing

it when it is actually needed.

Figure 3.1: The graphical user interface at work. The left window shows the video player with
its controls at the bottom. The top right window shows the processed image, in
this case a resize filter and an edge detection filter was applied. The bottom right
window shows the registered parameters which can be changed on the fly.

The implemented video player does not only provide a graphical user interface for

the general video player controls and selecting the different video modes, but also

for navigating through the different filters in the chain, detaching filter outputs

to separate windows for better observation and adjusting registered parameters,

as seen in fig. 3.1.
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3.2 Algorithm and Modules

The pursued framework consists of different modules, each of them representing

one step in the segmentation algorithm of the proposed approach:

• Fixation Point Selection implements the filter providing the selected

fixation point.

• Color Space Transformation provides various filters for converting to

different color spaces.

• Edge Detection contains all filters for detecting edges in a colored image.

• (Log-)Polar Space Transformation provides the transformation to (log-

)polar space and back to Cartesian space.

• Graph Cut implements the graph cut used in [Mishra et al., 2009] for

retrieving a rough object mask.

• Grab Cut implements the grab cut algorithm by using the results of the

graph cut module as an input mask.

• Contour Detection provides the filter for finding the contour of the se-

lected object by using the mask of the grab cut module.

By concatenating the various filters of the modules to one single chain, it is

possible to define the arrangement of the components which in the end results in

the segmentation of the desired object. [Mishra et al., 2009] propose an algorithm

with different substeps which are shown in fig. 3.2.

Figure 3.2: The different substeps and their arrangement proposed by [Mishra et al., 2009].

This presented framework adapts the algorithm and extends it with an additional

grab cut filter after the graph cut filter. Furthermore, it permits to include one
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of the different color space transformations before the edge detection, since the

color similarity (or difference) is used to calculate the edge map. The expected

impact of the different color spaces in general is discussed in section 3.4.

Another module, which relies on color information, is the grab cut filter. It

employs color similarities to build up the Gaussian Mixture Models. Moreover, it

uses the color- and depth-based edge map to calculate the weights of the n-links

as covered in section 2.3.4. So, changing the color space might have an important

effect on the quality of the result.

In contrast to the original algorithm, the edge detection is now done after the

(log-)polar space transformation. The idea behind the proposed change lies in

the nature of the human visual system. It is possible to exchange the (log-)polar

transformation and the edge detection to achieve improved results of the edge

map in regard to the graph cut algorithm4. The advantages are discussed in

section 3.5.3.

Additionally, the simple polar space transformation used by [Mishra et al., 2009]

is replaced by the log-polar space transformation5. The basic difference is pre-

sented in 2.2.1, whereas section 3.5.2 discusses the advantages and disadvantages

regarding the edge detection.

The segmentation algorithm can now be defined as shown in fig. 3.3.

Figure 3.3: The different substeps and their arrangement proposed in this thesis.

4Due to the modular design of the filters, swapping the sequence of both filters require no
additional programming. Therefore, both algorithms are supported.

5The configuration can actually be changed at runtime.
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3.3 Fixation Point Selection

The fixation point selection module provides the information about the point

of interest, more precisely the fixation point on the object. Since finding an

adequate fixation strategy lies beyond the scope of this thesis, a simple user-

dependent selection method is implemented. Being part of the filter chain, the

user can select a point of interest by simply clicking on it with the mouse. As it is

possible to change the location of a selected point during runtime, the evaluation

of different object locations can be accomplished much easier.

An important issue regarding this module is the interchangeability with other

implementations of fixation strategies. The interface provides a simple function

to retrieve one or several points of interest. This makes it easy to replace this

strategy with simple preselected static points or to use more sophisticated ap-

proaches like calculating salient maps or to even use hand gestures retrieved from

the image beforehand.

As mentioned before, it is also possible to select multiple points of interest and

thus simulate the human vision system, which alternates between saccades and

fixation points. The segmentation process is then carried out for each point

separately. As it does not affect the result of each independently selected object,

this implementation disregards the use of multiple fixation points for the sake of

computational performance.
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3.4 Color Space Transformation

The aim of transforming the image into another color space is to find an appropri-

ate representation of the perceived colors which allows to compute the similarity

between them. There exist many approaches to express colors and their relations,

like RGB, Lab or HSV, just to mention a few [Fairchild, 2005]. They all have

their advantages and disadvantages depending on their use [Cheng et al., 2001].

This module implements the most common transformations used in computer

vision: RGB, YCbCr, LAB and HSV. Additionally, it allows to define own hybrid

color spaces by combining channels from different transformations, e.g. the light-

ness channel L from Lab, the hue H channel from HSV and the green channel G

from RGB, resulting in an artificial color space LHG.

The color space transformation is applied before the edge detection and the grab

cut module. In both cases, the color information is used in order to calculate

the gradient between neighboring pixels. Additionally, the grab cut algorithm

deploys color models which are based on this information to separate different

color clusters. Therefore, the selection of the ‘right’ color representation has to

take the use of the application into account.

The requirements for the color space in this framework are as follows:

• Perceptual consistency: The color space should represent the color sim-

ilarity based on the human perception. As color is a perceptual impression,

the distance calculations should take this fact into account instead of just

comparing different wavelengths. A segmentation based on non-perceptual

color spaces might give correct results, but cannot be comprehended by a

human being.

• Linear independence: Each channel of the color space should represent a

perceptually independent property of the color like lightness, hue and satu-

ration. This allows to compare colors by analyzing each channel separately

or by calculating the Euclidean distance between the color vectors. If the
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channels are correlated, a modification in one of the properties will cause a

change in all channels. This might lead to wrong results when comparing

the color vectors by a distance measure. Often it is sufficient to separate

the lightness and the chromaticity values, as these are the major indicators

for different objects.

• Robustness to noise: The conversion of noisy images to a certain color

space can introduce image artifacts, because the noise signal gets amplified.

These color spaces should be avoided, as it can introduce sever errors when

computing the color gradients.

The following sections discuss the different color spaces in regard to the require-

ments, followed by a comparison based on a k-means algorithm.

3.4.1 Standard Color Spaces

The color spaces used in this module can be divided into three groups.

The first group is the direct approach to represent color as a triplet of color

components. These are the traditional color spaces like RGB and CMY. The

CMY color space can be neglected, as it is a subtractive color space which is only

used for printing.

In the second group are the color spaces which separate the brightness property

of a color into its own channel. The hue and the saturation are given implicitly

by two color components. Implemented examples are the LAB or the YCbCr

color space.

The last group contains the circular color spaces which describe colors the most

natural way by representing each perceptual property in its own channel. This

module implements the HSV color space. In the following, the three groups are

compared in regard to the given requirements.
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Figure 3.4: A test image in RGB
color space.

The RGB color space is the most used color

space in computer applications. Often, images,

videos and camera streams are given in this

color format. Therefore, applying an explicit

conversion to RGB space is not necessary. This

has the major advantage that the existing noise

in the image does not get amplified, thus the

effect on the color similarity measurement is reasonable. The disadvantage of

this color space is the high correlation between the channels and the insufficient

inclusion of the human perception [Littmann and Ritter, 1997]. Nonetheless, the

RGB color space is a computationally convenient way of color representation.

Fig. 3.4 shows a test image in RGB space.

(a) (b)

Figure 3.5: A test image in the similar (a) Lab and (b) YCbCr color space.

The second group, the LAB and the YCbCr space, are the color spaces which

are widely used in computer vision. On the one hand, they decouple the light-

ness value from the color information, therefore providing a certain degree of

independence, and on the other hand, they take the human perception into ac-

count [Cheng et al., 2001]. The Lab space is derived from the CIE 1931 XYZ 6

color space and is especially designed to match the human perception. The YCbCr

space, in contrast, is an approximation of the Lab space, originally developed as a

RGB encoding method for data compression. Both color spaces are additionally

fairly robust to the exposure of noise, whereas the Lab color space transformation

6It is one of the first mathematically defined perceptual color spaces by the International
Commission on Illumination. The color space was derived from empirical experiments
[Wright, 1929,Guild, 1932].
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tends to generate a little bit more artifacts in dark areas. Fig. 3.5 shows the RGB

test image converted into Lab and YCbCr space.

Figure 3.6: A test image in HSV
color space.

The last group covers the circular color spaces

like the implemented HSV color space as seen

in fig. 3.6. It is the most intuitive color space,

as the different perceptual properties are trans-

ferred one to one to the image channels. The

HSV color space separates colors very well, but

does not allow an easy distance calculation,

since the values are arranged in a circle and

the distance depends on the position of the colors on it. Calculating the distance

by the color vectors would lead to wrong results, as the color models would clus-

ter the wrong colors. E.g. the distance between the hue values 360◦ and 0◦ is

calculated as the maximum distance, even though in reality they have the same

hue. Another major drawback is the sensibility to noise. The transformation of

RGB image exposed to noise causes many and strong artifacts, especially in dark

areas of the image, due to the singularity at the center of the color model [Cheng

et al., 2001].

3.4.2 Hybrid Color Spaces

Besides using the common color spaces for image segmentation, some approaches

take the advantage of different color spaces by combining single channels of them

[Boukala et al., 2003,Colantoni, 2004,Cheng et al., 2001]. The idea behind hybrid

color spaces is to use the most discriminant channels such that the combination

will maximize the separation between different colors. Even though, they might

include color channels of perceptual color spaces, the hybrid space cannot be

described in regard to perception, since it is a completely artificial color space.
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Figure 3.7: A test image in the arti-
ficial LHG color space.

The major challenge in the hybrid approach is

to find the optimal color channels. As the op-

timal choice often depends on the image con-

tent, [Vandenbroucke et al., 2003] proposes an

image segmentation method where the hybrid

color space is automatically adapted to the an-

alyzed image. However, due to the computa-

tional complexity, this algorithm cannot be implemented in this framework, as the

selection of the color space is only an intermediate step in the whole algorithm.

Hence, the selection of the hybrid has to be done manually. This framework pro-

vides the possibility to easily select different channels from various color spaces.

Fig. 3.7 shows the original test image converted into the artificial LHG color

space which is implemented in this module.

3.4.3 Microsoft Kinect Camera

An important aspect when choosing the color space is the use of the framework

for a robotic system. Thus, the input images used for the segmentation process

are retrieved from a camera device, in this case the Microsoft Kinect camera. It

has major disadvantages regarding the color image: As the camera is normally

used as an input device for the XBOX game console, the quality of the color

information is a minor issue. Therefore, the device is not reliant on high-quality

images and is only equipped with a low-resolution camera (VGA) where the image

sensor is a coarse Bayer color filter7.

On the one hand, this leads to a considerable sensibility to noise, especially when

used in a dark environment. On the other hand, additional image artifacts are

introduced when decoding the Bayer color space to the common RGB space. This

is caused by the Bayer filter as each pixel is represented by two green, one red

and one blue filter, arranged in a 2×2 array. The transformation into RGB space

7See http://openkinect.org for more details.
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(a) (b)

Figure 3.8: (a) Contrast-enhanced image retrieved from the Kinect camera in a bright en-
vironment. (b) Contrast-enhanced image retrieved from the Kinect camera in a
dark environment. Many red and blue artifacts appear in the image.

thereby generates in particular red and blue image artifacts as seen in fig. 3.8b.

The additional transformation to another color space will amplify these artifacts.

3.4.4 Comparison of the Color Spaces

In general, there is no optimal color space, as it often depends on the scene,

the input color space and the quality of the image. Nevertheless, it is possible

to compare the different color spaces in regard to the requirements of this ap-

plication. Therefore, a test image is evaluated by clustering the colors in each

color space using a simple k-means algorithm. The same procedure is repeated

using the same test image exposed to 10% Gaussian noise. These results are then

compared by means of the requirements.

Fig. 3.9 shows the clustering of the test image in different color spaces. It shows

which colors in the color spaces have the highest similarity. Even though all the

color spaces result in different clusterings, it is hard to tell which is the optimal

segmentation, as each of them is correct depending on the context. In the context

of object segmentation, the goal is to distinguish objects based on the color. As

mentioned in section 3.4, the most important color characteristics of different

objects are the lightness and the chromaticity. Therefore, the best result would

be a segmentation of the test image where the hue values from top to bottom
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are separated. This results in horizontal clusters except for the white or black

area which should be clusters on their own. The best ratio between separating

chromaticity and lightness are provided by YCbCr, Lab and RGB color spaces.

The HSV color space is too sensible to lightness, therefore prefers the clustering

of dark and light areas. The artificial LHG is very tolerant in brighter areas

and includes many hues, whereas in dark areas the separation of different hues

increases.

(a) Original (b) RGB (c) YCbCr

(d) Lab (e) HSV (f) LHG

Figure 3.9: The comparison of the k-means clustering with four components in different color
spaces.

All color spaces except the RGB space try to separate the lightness from the

chromaticity information. This can be used in order to split the identification of

an object’s boundary into two distinct steps: One for the lightness and one for

the chromaticity. The similarity of lightness values is trivial, as it can be reduced

to simply comparing gray scale values. However, the comparison of the ‘pure’

colors is still a perceptual problem: Therefore, the clustering of the test image is

repeated independent of the lightness property as shown in fig. 3.10
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The results of the clustering show the linear dependency of the chromaticity

and the lightness. In the ideal case, the result would be horizontal rectangular

regions covering the whole width of the image. All color spaces give good results,

especially the YCbCr space, which comes closest to the optimum. The HSV

space makes the best separation of hue values, but is still too sensible for bright

colors. The LAB and LHG space provide results in between, whereas the LAB

space is closely related to the YCbCr space and the LGH performs a little bit

better than the HSV space.

(a) YCbCr (b) Lab

(c) HSV (d) LHG

Figure 3.10: The comparison of the k-means clustering (k=5) of chromaticity in different
color spaces.

The last important criterion, which has to be tested, is the resistance to noise.

Therefore, the experiment is repeated with the same test image exposed to 10%

of Gaussian noise. The results are shown in fig. 3.10. As expected, the RGB

clustering is not much affected by the noise. The circular color spaces (HSV,

LHG), in contrast, generate strong artifacts in dark regions, especially when

converting to HSV color space, the dark region contains pixels from all other

clusters as well. The Lab and the YCbCr color space respond moderately to the

exposure of noise.
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(a) Original (b) BGR (c) YCbCr

(d) Lab (e) HSV (f) LHG

Figure 3.11: The comparison of the k-means clustering (k=5) of the test image exposed to
10% Gaussian noise.

The results of these tests show that the HSV space should be avoided, as well as

any circular color space, even though the LHG space performs better. The most

preferable properties offers the YCbCr color space closely followed by the Lab

space. The RGB color space should not be neglected due to its almost optimal

response to noise. This can come in handy when using the Microsoft Kinect

camera system.
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3.5 (Log-)Polar Space Transformation

The polar space transformation is the crucial point of the approach from [Mishra

et al., 2009] for solving the ‘shortcut’ problem of the graph cut algorithm, as cov-

ered in section 3.8.2. Even though the transformation is theoretically a bijective

function, when applying it to all coordinates of an image, a discretization has

to be made which results in an interpolation between the pixels. In general, a

bilinear interpolation is used when the value of a subpixel has to be calculated.

Instead of using the four neighbors to interpolate such a subpixel, [Mishra et al.,

2009] propose a continuous 2D function by placing 2D Gaussian kernels on each

pixel.

They use this approach to keep the intensity values of the pixels steady and to

vary the influence of the intensities depending on the pixels’ distance to the pole.

The idea behind this is that pixels more distant to the pole appear smaller than

pixels close-by. However, this calculation and optimization in order to get better

results costs additional computational time.

3.5.1 (Log-)Polar Coordinate Mapping

The proposed implementation of this thesis reduces the polar space transfor-

mation to a simple mapping function by computing the coordinates’ mapping

beforehand. This means the effort of calculating will have to be done only once

if the fixation point does not change. So using the same mapping for different

images (e.g. the original scene and an edge map) can speed up the segmentation

process. It can also be easily applied to videos or camera scenes, where the fixa-

tion point does not change. However, since the content of the image is not known

or can change, the interpolation of the pixels has to be done for each image sep-

arately. In this case, the traditional bilinear interpolation is used, which leads to

a good compromise between performance and quality. The mapping to the polar

space results in a transformed image where the vertical axis represents the angle
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θ ∈ [0◦, 359◦] increasing from top to bottom while the horizontal axis represents

the radius 0 ≤ r ≤ rmax with rmax denoting the image diagonal.

For the transformation from polar space back to Cartesian space, the same al-

gorithm is used. The major problem of this transformation is the interpolation

due to the discretization. Artifacts resulting from this retransformation are much

more visible than those from the polar space transformation. The further away

from the fixation point, the more pixels have to be interpolated. Given that the

object of interest is always located close to the fixation point, this fact is, in this

context, negligible. Therefore and because of performance reasons, implementing

a sub-sampling algorithm is abandoned. Fig. 3.12 shows a polar space mapping

and the retransformation of a mesh with a given pole at the top-left corner of the

image. After the retransformation, the image contains mapping artifacts which

grow with the distance to the pole. Note, that the mesh close to the pole suffers

much less from this effect and still has the same quality as the original mesh.

(a) A mesh in original Carte-
sian space.

(b) The mesh in polar space. (c) The mesh after the
remapping to Cartesian
space.

Figure 3.12: The effect of the polar space mapping and the remapping to Cartesian space on
a mesh.

Another drawback of this transformation, resulting from the interpolation and the

transformation map, is the occurrence of an artifact while interpolating θi = 259◦

with pixels from the next row θi+1 = 360◦ where the pixel values are not defined.

Hence a border handling function has to be implemented what will be covered in

subsection 3.5.4.
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3.5.2 Simple Polar Space vs. Log-Polar Space

Another important point to consider is the choice between the simple polar space

and the log-polar space. This framework actually implements both approaches.

Their expected advantages and disadvantages will be discussed in the following.

When using the polar space, the radius increases constantly (from left to right

in the transformed image), whereas the distance between two polar angles in

respect to the radius increases exponentially, thus causing objects to deform, more

precisely, to elongate along the horizontal axis. This might not be a problem for

objects further away from the pole, if the edge detection has taken place before,

since they are not of interest anyways, however if the object of interest has already

have elongated regions, e.g. a starfish, these regions would be stretched even

more. In the later segmentation process, when using the graph cut and grab

cut algorithm, this can lead to cut-off regions due to the ‘shortcut’ problem, as

discussed in section 3.8.2. Fig. 3.13 shows the difference of an star transformed

into polar space and log-polar space.

(a) A star in Cartesian
space.

(b) The star in simple polar
space.

(c) The star in log-polar
space.

Figure 3.13: The difference between the simple polar space and the log-polar space of a trans-
formed star. Already elongated regions get stretched even more in polar space.

Note that in polar space the spikes of the star get much more elongated with

the distance to the pole. The log-polar space, in contrast, tries to avoid the

deformation of objects along the radial axis. By using the logarithmic scale for

the radius, regions close to the pole are expanded while regions further away get

contracted. As the distance between two polar angles in respect to the radius

grows exponentially, the logarithm evens out the exponential growth such that

quadratic regions stay almost quadratic, as fig. 3.14 shows.
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(a) Different sized squares in
Cartesian space.

(b) The squares in simple
polar space.

(c) The squares in log-polar
space.

Figure 3.14: The difference between the simple polar space and the log-polar space of trans-
formed squares. The log-polar keeps the aspect ratio of objects.

Another effect resulting from the log-polar transformation is the expansion of the

(probable) object region. On the one hand, the expanded region can be used to

build better color models for the later grab cut algorithm, since more pixels are

available, on the other hand, it might be a considerable disadvantage for iden-

tifying small objects, because regions close to the pole are heavily interpolated.

Thus, existing edges can get blurred in such a way that the following graph cut

algorithm will not recognize them as actual edges.

(a) A rainbow circle in
Cartesian space.

(b) The rainbow circle in
simple polar space.

(c) The rainbow circle in log-
polar space.

Figure 3.15: The difference between the simple polar space and the log-polar space of trans-
formed squares. The log-polar increases the object region and therefore allows
to build more precise color models for the grab cut algorithm.

Fig. 3.15 shows an image of a circle filled with layers of different colors. The log-

polar transformation shows that the region close to the pole is strongly expanded.

This region can be used to create a more precise color model during the grab cut

algorithm. Especially in textured regions, this approach can improve the results

of the grab cut algorithm enormously.
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3.5.3 Polar Space and Edge Detection

Depending on the sequential arrangement of the filter chain, the edge detection

can also take place after the polar transformation, as mentioned in section 3.2.

When using edge detection filters with a large kernel size, the choice of using the

simple polar space or log-polar space transformation can have a huge impact on

the form of the kernel seen from Cartesian space’s point of view. Especially when

using the multi-oriented edge filter, which uses a disc kernel, the information used

to retrieve the edge can vary immensely. Fig. 3.16a shows a log-polar transformed

star with overlaid oriented edge kernels.

(a) A star in log-polar space with an overlay
of oriented kernels.

(b) The star and the kernels retransformed
into Cartesian space.

Figure 3.16: The applied edge detection kernel in log-polar space equals the edge detection
with an increasing kernel in Cartesian space. The kernel is oriented along rays
emanating from the pole.

Convolving an image with a disc kernel in (log-)polar space can be transferred

back to a convolution process in Cartesian space. Therefore, the kernel has to

be retransformed from polar space (where it is a disc). Since the polar space

deforms objects depending on their distance to the pole, the kernel form varies

accordingly in Cartesian space. Additionally, the kernel is not moved along the x-

and y-axis, but along a ray emanating from the fixation point with an increasing

radius. Using the simple polar space implies that a round kernel will become

more and more bean-shaped with increasing distance to the fixation point due

to the reasons mentioned in subsection 3.5.2. When applying the disc kernel in

log-polar space, the transformation of that kernel into Cartesian space results in
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a circle again which grows with its distance to the fixation point. Close to the

fixation point, the kernel is almost reduced to a single pixel. Fig. 3.16b shows

the accordingly retransformed edge kernels in Cartesian space.

Taking the human visual system into consideration once again, it becomes clear

that using the edge detection module after transformation into (log-)polar space

is an suitable approach. When the human eye focuses on an object, the macula –

the area on the retina with the highest resolution power – is straight in the center,

whereas the areas further away begin to blur. The use of a kernel size increasing

proportional to the distance from the fixation point can be seen analogously. As

the probability of a region belonging to the fixated object decreases with the

distant to the pole, it has the advantages that the edge detection uses a larger

kernel for these less important regions which results in less detailed edges.

3.5.4 Border Handling

The implementation of the transformation into polar space is done by remapping

the image coordinates. This comes with the cost of additional border handling.

Besides generating artifacts during the mapping, the border handling is also im-

portant for the edge detection after the polar transformation. Due to the repre-

sentation in polar space, a large region of the image is now undefined, as there are

no corresponding coordinates in Cartesian space. The fastest way to deal with it

is to leave those parts blank or fill them with a constant color (in case it is not

an edge map). When the unmapped pixels are used for interpolation, this can

result in unwanted artifacts. Another problem occurs when convolving the polar

transformed image with the edge detection filter: If the color of the background

has a constant value, the transformed image frame is detected as a strong edge,

an effect which might be obstructive for the following graph cut algorithm.

In the first case, when transforming the image back to Cartesian space, the best

solution is to replace the second interpolation pixel from row θi = 359◦ to θi+1 =

0◦, that is using the border wrapping method to connect first row of the image
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with the last one. In the second case, a different border handling is required.

Filling the empty parts of the image with the same image again would result in

additionally detected edges. The easiest way to solve this problem is to fill pixels

which belong to coordinates outside of the original image with the same color as

the corresponding ones on the border. This can be done by cropping the x- and

y-coordinate to the width and height of the image boundary respectively.
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3.6 Edge Detection

The edge detection module is one of the most important modules, since it serves

to produce the input mask for the grab cut algorithm used later on. Creating a

probability boundary map based on sloppy edges or extracting too many irrel-

evant or too few edges can lead to a malfunction of the whole working process.

In this case, the graph cut algorithm would select a too small or too large area,

so that after learning the colors for the foreground color model, it would not

represent the true colors of the object. Then again, the edge detection is also the

computationally most complex module (see chapter 3) with the widest scope of

optimization for achieving a real-time system. Therefore, a good balance between

quality and performance is required.

[Mishra et al., 2009] propose a complex edge detection algorithm, which is based

on the probabilistic boundary detector of the Berkeley University [Martin et al.,

2004]. The researchers implemented edge detectors for different visual cues like

brightness, color and texture. The individual results are optimized and combined

to a single probabilistic boundary map (which is actually an edge map). The

detailed description of the implementation can be found in [Martin et al., 2004].

Even though this approach gives very good results of the edge map, it implies

a lot of steps and optimizations with high computational costs which are dis-

proportional to the received quality gain. Most of the conducted optimizations

regarding the location criterion of the edge, for example the non-maximum sup-

pression, can be neglected, since the graph cut algorithm using this edge map is

not necessarily reliant on thin edges. As long as the edge maximum is positioned

at the right location, the graph cut algorithm will find the ‘right’ edge. This

actually applies to spurious edges as well, since they will be ignored, as long as

they are not too numerous.

68



Segmentation Framework 3.6 Edge Detection

In order to optimize the edge detection process, the criteria have to be defined

anew for the purpose of using the detector with the graph cut algorithm. In the

following, the criteria and the respective solution approaches are discussed:

• The most important criterion is the solid detection of all strong edges.

Strong edges are defined as a rapid change of brightness or color. When

using colored images, the edge detection has to be applied on each channel

of the image. It also is important to choose an appropriate color space as

described in 3.4. Most of the simple edge detectors like Prewitt or Sobel

can identify such strong edges.

• The robustness to noise is important, since the implemented algorithm is

supposed to work with a robotic system as well. Typically, the noise reduc-

tion is done by a smoothing filter like the Box filter or the Gaussian filter.

The smoothing highly depends on the kernel size.

• Textures tend to produce strong edges as well. This problem of textures can

be difficult to handle, since it depends on the viewer’s interest. That means,

if there is an area with a large texture, like a closeup on a chess board, it

will be obviously not clear if the viewer is interested in a single square or

the whole board. Small textures can be sufficiently smoothed by a larger

kernel size. Additionally, the grab cut algorithm in the end can counteract

not perfectly separated texture regions by using the color models. Another

strategy to handle textures, especially on a large scale, is to additionally

use stereoscopic cues like a disparity map. The disparity map only creates

edges where the depth values of regions change abruptly, therefore it will

not create edges on a single flat surface, even if they have textures on it.

• Spurious edge fragments are often generated by simple edge detection filters.

The edges do not have a strong intensity and they tend to be a short contour.

Therefore, they are not overly relevant for the graph cut algorithm, since

it will find ‘shortcuts’ around those regions. But if there are too many

spurious edges, it will influence the graph cut algorithm in a negative way.
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• As the goal is to find an object’s contour, the localization of edges is quite

important. But, as mentioned before, it is only important that the highest

intensity of the edge is at the right place. The graph cut algorithm is

insensible for low-intensity edges. Furthermore, the localization of the edges

is refined with the grab cut algorithm, as the color models are used in order

to find the exact edges.

• Multiple responses of an edge can also be neglected when using a larger ker-

nel size, as multiple responses tend to appear close to each other. As long as

a non-maximum suppression is not applied, the smoothed edges will ‘grow’

together. Even if there are multiple responses of the same intensity, the

graph cut algorithm will take the ‘shorter’ one. If this is the ‘wrong’ edge,

it will be handled the same way as a ‘wrong’ located edge, subsequently

refined by the grab cut algorithm.

Taking these criteria into account and summarizing the proposed solutions, three

major characteristics can be derived for the edge detector: Firstly, the edge de-

tection should take at least the two visual cues lightness and color into account

and combine them to generate the edge map. Secondly, the edge detection has

not to be ‘optimal’ like in other approaches, since the graph cut and grab cut

algorithms are capable of dealing with minor errors. Finally, the use of a larger

kernel for smoothing is preferred, as it can counteract some of the effects listed

above. At the same time a larger kernel means that valid high frequency edges

are neglected, therefore it might be difficult to find the ‘right’ size. Ideally, it

will be the best if the kernel size is variable, i.e. edges near the object of interest

are detected with a smaller kernel in order to find more details, whereas more

distant regions can be united by using a larger kernel size. An approach for using

a variable kernel size can be found in section 3.5.3.
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3.6.1 Kernel Design

Taking these aspects into account, this edge detection algorithm implements a

new filter which is a simplified form of the derivative of Gaussian kernel as used in

the Canny edge detector. On the one hand, there are the simple kernel operators

like Prewitt and Sobel. Both of them are based on the gradient of the image

intensities, whereas the Sobel kernel also includes a smoothing term. However,

both of them do not provide different kernel scales, especially for large kernel

sizes. On the other hand, there is the Canny algorithm. It implements the

derivative of Gaussian as the smoothing and edge detection filter by combining

the Gaussian function and a first-order derivative filter, e.g. the Prewitt opera-

tor. Additionally, the Canny algorithm uses the non-maximum suppression and

hysteresis thresholding for refining the edges. These processes are obsolete, as

discussed earlier.

(a) Three differently smooth edges. (b) The accordant step functions.

Figure 3.17: Three examples of smooth image edges approximated by a logistic function.

The derivation of the new kernel design is based on the assumption that an edge in

an image can be expressed with the Heaviside’s unit step function8. It is a discon-

tinuous function where the function value for negative arguments is zero and one

for positive arguments. For binary images this is obviously a valid assumption,

if black pixels are denoted as zero and the white pixels as one. The step function

thereby denotes the ‘optimal’ edge. However, in gray-scale images, the transition

8See [Bracewell, 1999] for more information about the unit step function.
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between a black and a white pixel is often smooth. For a smooth approximation

of the unit step function, the logistic function can be used [Bracewell, 1999]. The

edge thereby becomes a continuous function which is shown in fig. 3.17.

Now, the first derivative of the edge function is a Gaussian function which can be

interpreted as a smoothing kernel. The smoothing of the ‘optimal’ edge with this

kernel results in exactly the given edge function. The second derivative of the

edge function is the derivative of Gaussian which can be used as an edge detection

kernel. Therefore, for each edge function exists exactly one ‘optimal’ derivation of

Gaussian filter. Fig. 3.18a shows the derivatives of one edge function. Assuming

that there are various edges in an image with differently smoothed edge functions,

it is possible to use multiple derivation of Gaussian filters to detect the ‘optimal’

edges of each.

(a) The edge function (blue)
and its derivatives
(green, pink).

(b) Multiple DoG functions. (c) Approximation of the
average DoG function
(pink) by a Gaussian
function (green).

Figure 3.18: The approximation of the averaged derivation of Gaussian functions by a Gaus-
sian function.

By selecting of a range of edge functions (fig. 3.18b) for edges which should be de-

tected, a new average edge function is created which is similar to the original edge

function, but the maximum and minimum are closer to the y-axis. This function

can be approximated by a regular Gaussian function, as shown in fig. 3.18c. The

only difference is that the Gaussian function returns positive values for negative

arguments. However, this can be easily adapted by inverting the function for the

negative arguments.
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(a) The 2D-Gaussian kernel. (b) The inversion mask. (c) The approximate deriva-
tion of Gaussian kernel.

Figure 3.19: The generation of the implemented edge kernel. Red denotes negative and green
positive values.

This derivation of the edge detection function is used to implement a new kernel

design which is very accurate and can be computed very fast. Instead of com-

puting the derivative of a Gaussian or convolving the Gaussian function with a

gradient filter, the OpenCV -preimplemented Gaussian kernel is only multiplied

with a mask which inverts the ‘right’ parts of the Gaussian in regard to the deriva-

tion of Gaussian filter. Fig. 3.19 shows the computation of the edge detection

filter in two dimensions.

3.6.2 Disparity Edge Map

A completely different way to enhance the edge detector is the use of the Mi-

crosoft Kinect sensor. It allows to expand the edge detection not only by em-

ploying monocular cues, but also by using the information of stereoscopic vision.

The Kinect device uses an infrared depth sensor to generate two depth maps of

the visual scene which can be used to create a disparity map. Since this process

is implemented directly on the Kinect’s hardware, the performance is not con-

strained contrarily to the manually created disparity map used in the approach

of [Mishra et al., 2009]. A major disadvantage of the created disparity map is the

very coarse result. The infrared sensor generates shades behind occluded regions

which is often the case near object boundaries. Furthermore, the object’s edges
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will not be traced exactly due to different reflectional behavior and noise. An

example of a retrieved disparity map is shown in fig. 3.20.

Figure 3.20: A disparity map retrieved from the Microsoft Kinect sensor.

Another issue resulting from a separated color image and a disparity map is that

both images have to be aligned in a way that objects in the disparity image are

mapped to objects in the color image. Even though, this can effectively be done

by the Kinect hardware, the image still has to be cropped, since the alignment

creates image borders in the disparity map.

Nevertheless, the depth information can contain important information about

the property of the object’s surfaces. If there is an object with a strong textural

boundary, the monocular edge detector will give a strong response, whereas the

disparity map will be smooth. So, by extracting strong edges from the disparity

map and combining them with the edges detected using the monocular cues, true

boundary edges of the objects can be amplified.

3.6.3 Combining the Edge Maps

The final computation of the edge map is done by using monocular and stereo-

scopic cues. On the one hand, the proposed kernel is used to calculate the light-

ness and color gradient gradient map and on the other hand, the disparity map

is also convolved with the same kernel to generate the depth edge map. Since

this filter is an oriented filter like the Prewitt filter, multiple filter passes with

different directions are applied. The maximum value over the orientations is then

assigned to each edge map.
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The difficulty, when combining the different edge maps, is how to choose the

weighting for each map. The color and the lightness edge map contain similar

edges, whereas the lightness edge map is slightly more robust to internal texture

edges. Therefore, an almost average weighting should be selected with a tendency

towards the lightness edge map.

However, the major problem arises from the merging of the color/lightness edge

map and the depth edge map. On the one hand, the depth edge map produces

strong edges for the ‘true’ object’s boundary, i.e. the texturing of objects does

not generate edges. This is the case, as long as there are not multiple objects

with the same distance close to another. On the other hand, if two objects are

very close such that they share a common boundary, the depth edge map cannot

detect this edge, as the depth information are the same for both objects. Such

a boundary is called a contact boundary. The problem is that such an contact

boundary always exists between the object and the surface it is standing on.

Having said that, finding the optimal mixing parameter is a cumbersome task and

often depends on the image contents. On the one hand, the depth edge map can

be applied to remove most of the internal edges caused by textures. This implies

a high weighting of the disparity edge map. On the other hand, the weighting

should not be too strong, since the detection of the contact boundaries relies

solely on the color and lightness information. Moreover, if the disparity map is

of low-quality like the one of the Microsoft Kinect sensor, the computed depth

edge of the objects are often dislocated due to noise, even though they tend to

be very strong. In this case, the weighting of the color and lightness edge map

has to be increased additionally to even out the errors of the depth edge map.
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3.7 Graph Cut

The graph cut module is responsible for generating a first rough mask of the

object’s area. It is applied on the polar transformed edge map to separate the

object from the background region. The binary output mask and the original color

converted image are then used in the following grab cut algorithm to additionally

incorporate the missing color information.

In order to apply the graph cut algorithm, the edge map has to be transformed

into a graph. Therefore, every pixel is considered as a node of the graph. Like

the pixels in the polar space, the nodes of a row in the graph represent the pixels

located on a ray emanating from the fixation point at an angle equal to the row

index. This means that nodes on the left-hand side of the graph are located

closer to or within the object, whereas the right part contains nodes more distant

from the object, thereby representing probable background pixels. The nodes are

connected to all neighboring nodes by weighted links. The weights depend on the

energy function used and the intensities of the edge map. In comparison to the

approach of [Mishra et al., 2009], an 8-neighborhood is used instead of the simple

4-neighborhood. Even though this adds up to the time and space complexity, it

reduces the metrication artifacts produced by a 4-neighborhood which means the

retrieved contours will not get too ‘blocky’.

Another aspect which has to be considered when working with the grab cut algo-

rithm in polar space is the border handling as described in section 3.5.4. Pixels

at the top and bottom row are actually neighbors. Therefore, when mapping

the image to polar space, the image is wrapped around itself, i.e. the image

repeats itself by virtually ‘copying’ the bottom row above the top row and vice

versa. If the wrapping is not carried out for the graph cut algorithm as well,

the generated minimum cut could end at different radii at the top and bottom

row respectively. This would result in a gap when the processed image is trans-

formed back to Cartesian space, whereat the contour detection procedure would

find a closed contour with a sudden angular notch in it. In order to avoid this
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behavior, [Mishra et al., 2009] propose a simple method: Instead of replicating

the image in the vertical direction, the nodes of the top row are also connected

to the nodes of the bottom row. Hence, the cut is guaranteed to be ‘smooth’.

Now, the goal of the graph cut algorithm is to find a labeling for each pixel of the

edge map which results in a mask with the two labels ‘foreground’ or ‘inside’ the

object and ‘background’ or ‘outside’ the object. This can be achieved by applying

the min-cut/max-flow algorithm on the graph. It splits the edge image into a left

part (inside) and a right part (outside) by minimizing the energy function used

for initializing the weights between the nodes.

3.7.1 Graph Cut in Polar Space

The reason for using the polar space for applying the graph cut algorithm is

the scale invariance of the polar space. This means that identical objects only

differing in their size will have the same contour length. This actually addresses

the common problem of graph cut-based approaches solved by a min-cut/max-

flow algorithm, which tends to be biased towards small contours. Fig. 3.21b shows

a disc object which consists of two circles. The big circle is the actual boundary

whereas the inner circle is just an internal edge on the disc.

(a) (b)

Figure 3.21: (a) A disc consisting of two circles with different intensities. (b) The corre-
sponding disc in polar space with the pole in the center of the disc. The vertical
axis represents the angle, the horizontal axis the radius.
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The radius of the circles are 26 and 70 pixels resulting in a perimeter of 164 and

440 pixels. The intensities of the circles ranging from 1.0 for white and 0.0 for

black, are 0.4 and 0.7 respectively. The costs of tracing the contour for a graph cut

algorithm in Cartesian space will be 98 ∼= 164 ·(1− 0.4) and 132 ∼= 440 ·(1− 0.7).

The contour costs of the inner circle are clearly smaller than the outer one, thus

it will become the optimal contour even though the edge between the outer circle

and the background is much stronger.

After the transformation into polar space, this scale-dependent problem might

resolve as demonstrated in the following. The pole of the polar space is the center

of the disc (as marked on fig. 3.21a). In the polar space, the circles (so the contour)

become rectangular blocks with the height of the whole θ-axis ranging from 0◦ to

360◦9. Now, the costs for the graph cut algorithm are 216 = 360 · (1− 0.4) and

108 = 360 · (1− 0.7) respectively. Obviously, the contour of the outer circle has

lesser costs now, hence being the optimal contour around the fixation point as

expected.

3.7.2 Energy Function

The energy function is the decisive factor for the quality of the graph cut algo-

rithm. It is either based on the Markov Random Field or the Conditional Random

Field10. The energy function consists of two terms: On the one hand, there is the

regional term which describes the likelihood of a node belonging to a certain label

and on the other hand, there is the boundary term which describes the coherence

between neighboring nodes (see Eq. 3.1). In the graph cut approach, the different

terms are incorporated in the weights of the links: The t-links are initialized by

using the regional term, whereas the n-links get their weight from calculating the

boundary term.

9Actually, the range only goes up to 359◦, since the angle 0◦and 360◦are the same.For clarity,
this fact is disregarded here.

10The Conditional Random Field is actually just a variant of the Markov Random Field
where the prior is also based on an observation.
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Let every pixel p ∈ P = (r, θ) of the edge image IpolE be a node of the graph G

connected to neighboring nodes by a link (p, q) ∈ N where N denotes a set of all

the directly neighboring n-links. The goal of the graph cut algorithm is to find

a labeling X (P ) 7→ l = {0, 1}, lp = 0 denoting ‘inside’ and lp = 1 ‘outside’. The

labeling corresponds to the minimum energy where the energy function is defined

as:

E (X) =
∑
p∈P

Up (lp)︸ ︷︷ ︸
regional term

+λ
∑

(p,q)∈N
Vp,q · δ (lp, lq)︸ ︷︷ ︸

boundary term

(3.1)

The problem arising from setting the weights of the links connected to the ter-

minal nodes is that the likelihood of the labeling is not known for most of the

nodes. Therefore, the weights have to be set to 0 (see Eq. 3.2). The only nodes,

which can be definitely labeled, are the ones in the first and the last column. The

first column represents the fixation point in Cartesian space and clearly belongs

to the object (see Eq. 3.3). The last column contains nodes of which most do not

even have valid coordinates in the Cartesian representation, as they are located

outside of the image. Therefore, these nodes can clearly be defined as background

nodes (see Eq. 3.4). For those nodes, the weights are set to a high value κ to make

sure the initial labels do not change as a result of minimization. This approach

proposes a value of κ = λ · 40 which results in a sufficiently high value.

Up (lp) = 0 if 0 < r < rmax (3.2)

Up (lp) =


0, if lp = 0

κ, if lp = 1
if r = 0 (3.3)

Up (lp) =


κ, if lp = 0

0, if lp = 1
if r = rmax (3.4)

The boundary term B(p,q) defines the penalty for neighboring nodes not having

the same label. The function Vp,q can be almost any cost function and the δ-

function removes the whole term if the pixels p and q have different labels a

priori. In [Mishra et al., 2009] the cost of assigning a label lp to a pixel p is based
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on the average intensity of the neighboring pixels in the edge map. This present

framework uses a different cost function based on the Conditional Random Field

as proposed in [Boykov and Jolly, 2001]:

Bp,q = λ
∑

(p,q)∈N
Vp,q · δ (lp, lq) (3.5)

with

Vp,q = exp
(
−β · Ipol 2

E,pq

)
· dist (p, q)−1 (3.6)

and

IpolE,pq =
(
IpolE (rp, θp) + IpolE (rq, θq)

)
/2 (3.7)

The value for IpolE,pq is calculated the same way as in [Mishra et al., 2009]. The

authors also propose different constant values for the other parameters which are

exchanged in favor to the ones used in [Peng and Veksler, 2008]. So, β = z ·1/2σ2

where σ is the global mean intensity of the edge map. The scaling factor z = 10

is introduced in this implementation due to the blurred edges, as IpolE,pq returns

multiple high values on the edge. γ = 1 denotes the default value, if pixels

p and q have no intensity. λ = 80 is the weighting factor for the boundary

term and is set to a relatively high value according to [Boykov and Jolly, 2001]

such that it is more likely to produce an over-segmentation. Since the following

grab cut algorithm uses the resulting binary mask to learn the color models,

wrongly segmented background regions could grow further in each iteration step.

Therefore, it is useful to increase the weight of the boundary term in order to

minimize the risk of an under-segmentation. Since an 8-neighborhood is used,

the dist function includes the weighting for diagonal neighbors in the form of

dividing the boundary term by the Euclidean distance between both neighbors.

Diagonal neighbors thereby have less influence on the boundary term.
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3.8 Grab Cut

The grab cut module provides the filter for refining the rough object mask ob-

tained by the graph cut algorithm. The grab cut algorithm is ‘only’ an extension

of the grab cut approach, thus the graph setup is almost the same. Due to per-

formance reasons, the OpenCV-based method is used. The implementation of

the algorithm differs slightly from the standard method: Instead of solely using a

trimap for the labeling (object, background and unknown), the ‘unknown’ label

is split into a ‘probably foreground’ and ‘probably background’ label. This has

several advantages, especially for this framework, which will be discussed later

on is this section.

The algorithm itself can be subdivided into multiple steps: The first step is

to initialize the color models with the given input mask. All foreground pixel

colors are used to create the Gaussian Mixture Model. The first time, a k-means

algorithm is used in order to find the different clusters. This implementation uses

five components for the model. The background model is created analogously by

using the background pixel colors.

The second step is to precompute the weights of the n-links in order to be used

in each iteration step. During the iteration, the Gaussian Mixture Models are

learned anew by using the given mask. These models are then used in the energy

function to construct the graph. Finally, the estimation of the labels is realized

by using the min-cut/max-flow algorithm. The mask is updated and the process

repeats itself, until convergence or a certain number of iterations has been reached.

The goal of the grab cut algorithm is to optimize the labeling results of the graph

cut. The original grab cut employs user input to determine background regions,

more precisely, the pixels outside of the user-drawn rectangle as shown in Fig. 1.7a

of section 1.1.

Due to their high value in the regional term, the background pixels are not likely

to change their labels during the iterations. The same counts for preset foreground

pixels: The grab cut algorithm marks the inner part of the rectangle as ‘unknown’
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which is used in order to learn the foreground color model. However, this three-

label approach is inadequate for this framework, since it is not possible to make

distinct decisions about which pixel belongs to the background or foreground.

Parts of the rough object region could still be background pixels and pixels labeled

as background could still belong to the object.

The solution to this challenge is to add a fourth label as said before. The mask of

the graph cut is now used to initialize the input mask for the grab cut algorithm,

where background and foreground pixels correspond to ‘probable background’

and ‘probable foreground’ labels respectively. This implies that not any of the

pixels is labeled definitely ‘foreground’ or ‘background’ such that they are allowed

to change their label during the iterations, as the labeling is now constrained by

the color models, too.

The use of splitting the ‘unknown’ label is that ‘probable background’ or ‘prob-

able foreground’ pixels can be used to build the two Gaussian Mixture Models

for background and foreground. In addition, it is possible to make the same as-

sumption as in the graph cut algorithm: The first row must be located inside the

object and gets the label ‘foreground’, whereas the last row is assigned with the

‘background’ label. This ensures that the object itself will not vanish due to the

iterative optimization.

As a result of labeling most of the pixels ‘unknown’, the probability of pixels with

similar color to the object being classified as foreground pixels rises, even though

they are not connected to the object’s region. Selecting the ‘right’ region has to

be done separately as described in 3.9.

The critical point of this approach is the size of the rough object region resulting

from the graph cut algorithm: If the approximation of the object region is too

‘sloppy’, i.e. the region is either too small or too large in regard to the object, the

result of the graph cut algorithm will generate an under- or over-segmentation.

In the first case, too many object pixels are classified as ‘probable background’.

This results in ‘probable foreground’ to be labeled as ‘probable background’ pixels
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in the next iteration step, since the background color model for the object pixels

is stronger than the foreground color model.

In the second case, the opposite can happen. Falsely marked background pixels

are used to build the foreground color model which causes the foreground region

to grow far in excess of the actual object boundary.

However, the advantages of using the grab cut algorithm predominate the draw-

backs. The result is a much cleaner object region, especially in areas affected by

the ‘shortcut’ problem described later in section 3.8.2. Moreover, it compensates

for the quality loss of the edge map due to performance optimization done in

the edge detection: As the color models contain multiple color components, it is

possible to extract regions with a textured content to a certain degree. Therefore,

an extensive texture edge detection is not necessarily needed. In order to incor-

porate these advantages into the graph cut algorithm, the used energy function

has to be redefined to include the color models.

3.8.1 Energy Function

The energy function used for the grab cut is quite similar to the one for the

graph cut algorithm. The main difference lies in the integration of the color

information into the energy function. This is done in the regional term. The

regional term now depends on the color models C0 and C1 for foreground and

background respectively, and represents the negative log-likelihood of one pixel

belonging to one of the models:

Up (lp) = − log fClp
(p) (3.8)

where

fClp
(p) =

K∑
i=1

wi · g (p | µi,Σi) (3.9)
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and g (lp | µi,Σi) denoting the Gaussian probability density function (PDF). Hence,

the function fClp
denotes the weighted sum of the Gaussian PDF for each com-

ponent given a pixel p.

The formulation of the boundary term is equivalent to the Eqn. 3.6 in the graph

cut algorithm. The only difference are the parameter settings. As the grab cut

algorithm should rely less on the detected edges, but more on the color informa-

tion, the new value for λ = 40 and the scale factor z for computing β becomes

z = 0.5 (cf. section 3.7.2).

3.8.2 The ‘Shortcut’ Problem

Even though the polar space approach can handle scale invariant contour detec-

tions, the used graph cut is still suffering from the so called shrinking bias: Due

to the boundary term used in the energy/cost function, the algorithm prefers

short boundaries. This can especially be noticeable when the algorithm takes a

‘shortcut’ through the interior of an object to avoid segmenting an appendage as

visualized in 3.22. In Cartesian space the cheapest boundary is actually a circle

whereas in polar space, the segmentation is biased towards a straight line along

the θ-axis.

(a) (b) (c)

Figure 3.22: (a) A gray star in Cartesian space with the fixation point marked in red. (b)
The result of the graph cut algorithm in polar space. Note the cut-off spikes of
the star. (c) The result of the grab cut algorithm with an iteration step. The
spikes are now included.
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There are two possibilities to counteract this behavior: The first solution would

be to loosen the boundary constraints given in the energy/cost function, thus in-

creasing the edge sensitivity. However, thereby the algorithm gets also attracted

to weaker edges in general which could lead to errors in other parts of the seg-

mentation. The second and better strategy increases the sensitivity of the color

model in the regional term (or decreases the weight of the boundary term respec-

tively) of the cost/energy function. The drawback of this method is that other

(background) regions with similar color properties are more likely to be incor-

rectly segmented as the foreground region. The handling of other unconnected

regions would then have to be done separately.

The grab cut algorithm extends the graph cut algorithm exactly in this way by

using a Gaussian Mixture Model for each background and foreground color. The

algorithm can be used iteratively and for each step, the color models are learned

anew and the image graph is built up again with new weights. Thereby, the

segmented region can grow steadily into regions with similar colors. Fig. 3.22b

shows a star segmented by the graph cut algorithm using this framework. Clearly,

the spikes of the star are cut off due to the ‘shortcut’ problem. When refining

this image with the grab cut algorithm (see fig. 3.22c), the region grows into the

spikes and makes a correct segmentation.
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3.9 Contour Detection

The contour detection module is the final step of the algorithm. It takes the

binary mask resulting from the grab cut algorithm, which has been retransformed

to Cartesian space, as input and detects all closed contours in that binary image.

The algorithm is implemented as described in [Suzuki and Be, 1985]. As the

grab cut algorithm can produce more than one contour due to the color models

described in section 3.8, it is necessary to find the desired contour. Therefore, this

module is also reliant on the fixation point as an input parameter. The point has

to be tested against every contour; if it is located inside a contour, it is verified

to be the desired object boundary.

In order to reduce the number of contours to test against, an assumption can be

made: The object contour has to be a top-level contour, i.e. there is no contour

containing the object’s contour as a nested one. If a top-level contour does not

contain the fixation point, the nested contours will not contain it either. For the

case that the fixation point lies within a top-level contour, this assumption is still

valid for most cases:

If the point of interest lies within the top-level contour, but not in a nested

contour, the top-level contour will be obviously the object’s contour and the

nested contours will be ‘holes’ in the object.

If a nested contour, which is a direct child of the top-level contour, contains the

fixation point, there will be two possibilities: Either it is the object or it belongs

to the background. A contour is defined as the border between background and

object regions. Therefore, a nested contour cannot be an object, since it implies

that the surrounding top-level contour must enclose a background region. This

again is impossible, as the image itself must belong to the object region due to

the definition of a contour. The second case, being a background region, is also

impossible, as by definition the fixation point lies within the object region.

The only case where a nested contour can be an object is when the contour level is

odd numbered where the top-level is defined as the first level, the directly nested
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contours as the second, children of nested contours as the third, etc.. The simple

solution in this case is using connected components instead of contours. That is

if nested contours are detected, the top-level (first-level) contour will be defined

as the outer border and the second-level nested contours as the inner borders,

namely holes in the object. If there is another contour in the ‘hole’, it will be

treated as a top-level contour again. Therefore, in that special case, both objects

will be found.
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Chapter 4

Experimental Evaluation

The implemented algorithm is an extension of the approach described by [Mishra

et al., 2009] with the intention of using it in a real-time robotic system. In order to

optimize the whole segmentation process, the developed framework of this thesis

implements a very modular and flexible design and a graphical user interface for

a fast visual evaluation as described in section 3.1. This allows to test many

different implementations and parameter settings for the segmentation process

which can also be changed during the runtime of the application.

However, to evaluate the whole segmentation algorithm, a particular setup has to

be chosen. This chapter describes this experimental setup in section 4.1 including

the parameter setting as well as the setup of the tested scenes. Afterwards, the

algorithm is evaluated in section 4.2 by presenting and discussing the general

results. The section 4.3 makes a detailed analysis of the results, presents the

advantages and disadvantages of the different involved modules and evaluates the

performance of the algorithm in respect to the utilization in a robotic system.
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4.1 Experimental Setup

The experimental setup consists of two parts: On the one hand, the algorithm-

related parameters have to be defined which includes the computer description,

the module arrangement and the precise parameter settings of the different steps

of the algorithm. This parameter setup is described in section 4.1.1. On the

other hand, the result is also strongly depending on the scene itself. Therefore,

the general test environment and different test scenes have to be defined which

is covered in section 4.1.2.

4.1.1 Parameter Setup

The parameter setup includes the description of the hardware used in the testing

system as well as the general configuration of the algorithm, i.e. the arrangement

of the modules. This is described in the first part of this section. Afterwards, the

parameter settings of the individual modules are presented.

Hardware Setup

The hardware setup used to evaluate the segmentation algorithm is important

when the speed of operation is estimated. Even though the time is not compa-

rable to other implementations of segmentation algorithms, it can be a helpful

indicator for the performance of the substeps of the algorithm in relation to each

other.

All tests have been done using a notebook computer with an Intel Core i7-

2630QM @ 2GHz and 4 GB of ram with a Windows 7 64-bit operating system.

The camera device for video input is a Microsoft XBOX 360 Kinect-Sensor with

a RGB camera and two depth sensors. According to the manual, the optimal

operating distance for human body interaction lies in a range from ca. 1.8 to 2.5
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meters. According to the developers of the OpenKinect library1, it has a practi-

cal ranging limit of ca. 0.8 and 3.5 meters. The output of the camera and the

depth sensor are respectively a RGB and a monochrome image with a resolution

of 640× 480 at 30 Hz.

Module Arrangement

The algorithm is implemented as mentioned in section 3.2. The input for the

algorithm is the RGB image and the disparity map provided by the Microsoft

Kinect camera. First, the images are resized to a resolution of 480 × 360 pixels.

As the disparity image tends to be very noise, it is ‘cleaned up’ by applying

a closing filter. Then the fixation point has to be selected which is used to

transform the images to log-polar space. Afterwards, the RGB image is converted

to the LAB color space. The edge detector uses the disparity map and the

LAB image to generate an edge map by merging four gradient maps for multiple

orientations: the brightness gradient, two color gradients and the gradient from

the disparity image. This edge map is then processed by the graph cut algorithm

to create a first rough binary label mask. Subsequently, the original polar space-

transformed image is converted to YCC color space and serves with the binary

mask as the input for the grab cut algorithm. It iteratively refines the mask which

gets transformed back to Cartesian space afterwards. The contour detection

cleans the mask by applying another closing operation and finally returns the

contour of the fixated object.

Parameter Settings

The parameter settings of the algorithm are chosen by means of the most promis-

ing configuration based on the theoretical preliminary considerations explained

in sections 3.3 to 3.9.

1See http://openkinect.org for more details.
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The image input for the algorithm is provided by the Microsoft Kinect camera,

as mentioned above. The device returns only low-quality images – both images

suffer from strong noise, whereas the disparity map also contains occluded areas

due to the infrared sensors. Therefore and due to performance reasons, the image

is scaled to a size of 480×360 pixels. Additionally, the disparity map is optimized

by a closing filter. The number of iterations and the size of the circular kernel

is proportional to the image size: For the given image size, the best trade-off

between the stability of the depth boundaries and the quality of details is a 5× 5

kernel with five iterations.

For the transformation into circular coordinates, the log-polar transformation

is applied to smoothen the textures near the object and providing more color

information for the grab cut algorithm at the same time. The cubic interpolation

method is used to interpolate the pixels.

The color space for the edge detection is the YCC space, as the circular color

spaces generate too many image artifact due to the low quality of the Microsoft

Kinect camera. The same color space is used for the grab cut algorithm.

For the edge detection multiple parameters have to be adjusted. The kernel size

is dependent on the image size. In this case, a kernel of size 15 × 15 is applied

for computing the gradient image of all image channels including the disparity

map. As the kernel is an oriented filter, the gradient maps of five orientations are

merged, as more orientation do not change the result significantly. The color and

the lightness gradients are blended with a ratio of 3:2 which is afterwards merged

with the depth gradient using a 1:1 ratio.

The settings for the graph cut and grab cut algorithm are all related to the

energy function. These settings can be found in section 3.7.2 and section 3.8.1

respectively. The settings for the graph cut algorithm lead to a strong attraction

to edges, whereas the grab cut settings induce a stronger weighting of the colors.

The contour detection refines the output mask of the grab cut algorithm before

finding the object’s boundary. Therefore, it applies a 3 × 3 closing filter with
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only one iteration, as only small holes and frayed edges should be fixed without

dislocating the boundary.

4.1.2 Scene Setup

The setup of the scene plays an important role for the image segmentation. On the

one hand, there are different constraints due to the hardware, the implemented

algorithms and above all the objective for using this framework in a robotic

system. These are summarized in the following paragraph of this section. On

the other hand, this section describes different scene setups to test the framework

in various situations. This allows to evaluate the capability of this segmentation

algorithm and to find its limits.

General Settings

The general settings define the constraints of the scene setup. As many segmen-

tation algorithms, this framework is also optimized for the usage in a certain

scenario, namely in a robotic system. Therefore, the scene setup has to satisfy a

few preconditions: The application is designed to only segment ‘simple’ objects,

as defined in [Mishra and Aloimonos, 2011], because for a robot only objects are

relevant which can be interacted with. Moreover, the background of the test

scene should kept moderate, as too many different colors will reduce the quality

of the edge detector and the grab cut algorithm.

The usage of the Microsoft Kinect camera adds additional constraints the scene

setup: First of all, the device is designed to work in an indoor environment. The

infrared sensor for generating the disparity map cannot handle sunlight2 very

well, as it is dependent on the reflection of the emitted infrared mesh. Therefore,

an artificial light source is necessary. The infrared sensor additionally restricts

the distance between the camera and the target objects, since the power of the

2The natural light partly includes the infrared spectrum.
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emitted infrared rays is limited. It has an optimal operating distance limit of ca.

0.8 to 3.5 meters, as stated in section 4.1.1. Therefore, the objects to identify

should be arranged within this limit. Besides the restrictions due to the infrared

sensor, the RGB camera also suggests to be used in a bright environment, as it

responds with strong noise generation when applied in poorly illuminated scenes.

Scene Setup

The scene setup has to be described in order to evaluate the functionality of

the algorithm and its components. By testing different objects the limits of the

proposed segmentation algorithm can be found. This includes

• different simple objects to test and demonstrate the basic functionality.

• small and large objects to test the upper and lower bounds of objects which

can be detected. Thereby, the log-polar space module is evaluated, as the

capability of segmenting differently scaled object is depending on the scale

invariance and the smoothing of the region close to the object.

• object with different shapes like sharp-edged, elongated and hairy objects

to test the limits of the fixation-based approach. It shows the effects of the

large kernel size of the edge detection on thin object regions. Additionally,

the ‘shortcut’ problem of the graph/grab cut algorithm is evaluated.

• textured objects to test the ability of handling multi-colored objects. Thus,

the capabilities of the edge detection with its large kernel size and the grab

cut algorithm with its color models are evaluated.
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4.2 General Results

The proposed segmentation algorithm is designed to detect ‘simple’ objects which

can be used for robot interaction. Therefore, a scene is set up with a variety of

more or less common objects with different properties. The test result of each

single object segmentation is summarized in an image composition in fig. 4.1a.

The image demonstrates the capability of the framework to handle various ob-

jects. However, most objects in the scene are arranged in a way to generate

strong depth information such that the contours are easier to extract. Therefore,

another more casual scene is segmented in fig. 4.1b. Instead of using solid objects,

this scene shows more soft and flat objects which generate not only varying depth

information but additionally have only contact boundaries, i.e. there almost no

gap in the depth between different objects.

(a) The image shows various objects arranged
on a table.

(b) An every day scene of a couch with pillows
and a newspaper lying on it. On the wall
there are some pictures and a world map.

Figure 4.1: The result of different object segmentations composed in a single image. (a)
shows the segmentation of mostly solid objects with strong depth information.
(b) shows the segmentation of soft and flat objects with weak depth information.
The ‘x’ marks the chosen fixation point for each object respectively. The objects’
contours are marked in green.

In both scenes, all objects are detected very well, even though the contours are

partly imprecise, mostly due to the bad image and disparity map quality. The

different object properties and segmentations are analyzed in the following.
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4.2.1 Simple Objects

The segmentation of simple objects is the basis for testing the capability of the

algorithm. If it already fails at this stage, it will probably also fail for more

complex objects. Simple object, in this case, are defined as sold objects of constant

color. Their shape is convex without having sharp edges. Objects of this category

are, e.g., a lemon, an apple, a melon or a ball. A segmentation of simple objects

can be seen in fig. 4.2.

Figure 4.2: A segmentation of simple objects.

The three simple objects of different size are all segmented very well. The location

of the contours is optimal, except for the apple, as the upper right part is labeled

as background. This has two reasons: On the one hand, the red tint of this part

is similar to the color of the table cloth. On the other hand, the quality of the

disparity map gets worse for relatively small objects as described in detail in sec-

tion 4.3.1, as there is less depth information available. In combination, this leads

to dislocated contours, as the distinction between foreground and background,

due to the similar colors, relies mainly on the coarse edge map. This effect can

be seen in all segmentation where the colors are similar and the edge map has

generated inaccurate edges.

95



Experimental Evaluation 4.2 General Results

4.2.2 Small and Large Objects

This section describes the impact of the object’s size on the segmentation process.

Therefore two different scenes are evaluated: One the one hand, the scene contains

small simple objects decreasing in size. On the other hand, large simple objects

are evaluated in another setup. Simple objects, which are easy to segment, are

used, in order to evaluate the size independently from the texturing of the object.

Fig. 4.3a and fig. 4.3b show the results of the segmentation respectively.

(a) Small objects: a lemon, a juggling ball, an
egg, a chocolate candy and a 10-cent coin.
Due to the small size of the objects the
fixation point are not shown.

(b) Large objects: a water melon, a basketball
and a couch pillow.

Figure 4.3: A segmentation of simple (a) small and (b) large objects.

The results of the segmentations produce for both, large and small objects, very

good results. Especially the segmentation of very small objects outperforms the

expectations: The smallest segmented object is a 10-cent coin in a distance of

80cm and its diameter on the image is only 15 pixels wide. As the fixation

point is very close to the boundary, the pixels get smoothed by the log-polar

transformation. This leads to an unclean edge such that other edges are preferred

during the graph cut algorithm. This problem is discussed in section 4.3.3 in

detail. In this case, the colors of the objects are too distinct such that the

segmentation results in a correct contour. The coin is the smallest object tested

which, in case of robot interaction, is sufficient, as even smaller objects are not

useful anymore.

96



Experimental Evaluation 4.2 General Results

Large objects can be segmented much easier. As the fig. 4.3b shows, the upper

limit for the object size is sufficiently large. A segmentation of an image-filling

object does not make any sense. The only incorrect segmentation occurs near

the boundary of the basketball where the contour is dislocated at some parts.

This has one major reason: The edge detection of the disparity map results in

an inaccurate border. This is mainly caused by the bad quality of the disparity

map which is discussed in section 4.3.1 in detail.

Another issue regarding the basketball’s contour is the internal texture. The

stripes and the font create strong color edges. These cannot be removed by the

large edge detector kernel, as it is not a small texture pattern. The only way to

remove such textures is a stronger weighting of the disparity edges. Finding the

‘right’ mixing function between color and depth edges is generally not possible.

Both problems, the influence of the kernel size and the weighting of color and

depth information, are discussed in section 3.6.

4.2.3 Objects of Different Shapes

The shape of an object can have a large impact on the segmentation result. In the

following, the segmentation results of objects with different shapes are presented.

This includes objects with sharp-edges, elongated objects, thin and hairy objects.

It addresses in particular the behavior of the graph cut and grab cut algorithm, as

they are most sensible to different shapes. Additionally, it tests the large kernel

size used for the edge detection and the precision of the disparity map.

Fig. 4.4 shows a segmentation of objects with shapes which are more difficult to

segment, especially in regard to the graph cut-based algorithms. When trans-

formed to log-polar space, the shown objects in the scene are deformed to long

horizontal objects, as they are bend around the fixation point. However, the

graph cut algorithm tries to find a ‘short’ vertical cut to minimize the energy.

Therefore, long objects and objects with sharp edges tend to get cut off. The grab

cut algorithm suffers from the same problem, but it can counteract this behavior
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(a) Different elongated objects and a
uncommonly-shaped mug.

(b) Objects with complex shapes: a plant with
a thin caulis, a star-shaped lamp and a
small aloe vera.

Figure 4.4: A segmentation of objects with (a) elongated and (b) more complicated shapes.

by using the color information as described in section 3.8.2. In fact, the grab cut

approach of this framework sets in at exactly this point. It allows to optimize the

result of the graph cut algorithm, especially in these cases, immensely as shown

in section 4.3.4.

Even though the grab cut algorithm is able to refine the contours of the objects,

it still has its limits. If the object is too thin, i.e. the edges of the boundary are

too close, this method will not work, as seen in the segmentation of the plant

with the thin caulis and the endings of the spikes of the star-lamp in fig. 4.4b.

The difficulties arising when segmenting objects with thin or spiked shapes are

caused by multiple reasons. First, the resolution of the disparity map is not

sufficient to detect very thin objects. This is discussed in section 4.3.1. Second,

elongated objects are deformed during the log-polar transformation such that have

an unfavorable shape for the graph-based algorithms as described in section 4.3.2.

Last, the edge detection blurs edges during the detection process such that closely

edges tend to grow together. This effect is explained in section 3.6. A similar

effect occurs when the dislocated edges get too strong like in the segmentation of

the red bottle in fig. 4.4a and of the aloe vera in fig. 4.4b which is discussed in

the same section.
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4.2.4 Textured Objects

Textured objects are the most difficult objects to segment, especially using this

framework, where the computation of the texture gradient is neglected to increase

the performance of the edge detection. As the missing texture gradient is com-

pensated by the large kernel filter in the edge detection and the color models in

the grab cut algorithm, it is important to evaluate, how the proposed framework

can handle textured objects. Therefore, a scene with different types of textures

is set up including periodical textures of different size and irregular textures with

text and pictures. Fig. 4.5 shows the segmentation of differently textured objects.

Figure 4.5: A segmentation of textured objects.

In general, textured objects are hard to segment for a generic reason: It is difficult

to tell whether a texture is a pattern which should be ignored or an own object.

That means, when e.g. a magazine has a smaller picture on it, the question is

whether the picture is an object itself or just part of the magazine. Given a single

fixation point, this question cannot be answered. The proposed solution of this

algorithm is to ignore small patterns and to segment larger ones. The threshold

is depending on the internal color edges of the object and the selection of the

fixation point, as analyzed in section 4.3.4.

Even though the textures are not handled explicitly, the segmentation of the

objects in fig. 4.5 show for all types of textures very good results. The only

99



Experimental Evaluation 4.2 General Results

difficulties occur close to the dish towels. The red and white camouflaged dish

towel includes a small table region due to the similar color of the table cloth,

whereas in the contour of the green-blue dish towel, where the texture pattern

is very large, the bottom part of the towel is missing due to the strong internal

edge. These two phenomena show the limits of the different weighting of the color

and edge information used in the grab cut algorithm which is analyzed in detail

in section 4.3.4.
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4.3 Analysis

The presentation of the results showed that the proposed algorithm is capable of

segmenting a variety of objects very concisely. In the case of the evaluated ob-

jects, segmentation errors are largely restricted to minor boundary defects. They

are mainly caused by the bad quality of the retrieved disparity map from the Mi-

crosoft Kinect device and the consequential parameter settings of the algorithm.

Especially the weighting of color, lightness and depth edges in the edge detector

and the weighting of the regional and boundary term in the grab cut algorithm

are the critical parameters of the algorithm. Despite this, the results show that

the approach of a more balanced algorithm – that is in which the grab cut is

improved – works as expected. The grab cut is capable of handling most of the

errors occurring during the preceding steps.

This section analyses the results in detail: The occurred errors are explained

in regard to the intermediate steps of the algorithm and the advantages of the

different modules are evaluated in sections 4.3.1 to 4.3.4. Besides evaluating the

effectiveness of the algorithm, the efficiency of the algorithm is covered in section

4.3.5. There, the computational complexity is analyzed by measuring the runtime

and comparing it to the original approach of [Mishra et al., 2009].

4.3.1 Disparity Map

One critical point in this approach is the use of the disparity map which is pro-

vided by the Microsoft Kinect camera. As stated in section 3.4.3, the quality of

the disparity map is very low, as it suffers from noise, occlusions and reflections.

This leads to dislocated depth information, especially close to the boundary of

objects.

Therefore, this framework proposed a ‘cleaning’ of the disparity map by using the

morphological closing filter. The result is a stabilized disparity map with almost

no undefined areas, i.e. the regions where no depth information is available is
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reduced. In the original map, these regions are left black. The cost of stabilizing

the disparity map is the loss of detail. This means especially that small and thin

objects loose their depth information. However, in contrast to the gain, this is a

reasonable trade-off. Fig. 4.6 shows different disparity maps and their ‘cleaned’

versions. For most objects, this operation results in clean depth edges such that

the edge detection does not find double edges.

Figure 4.6: The effect of the ‘cleaning’ procedure of the disparity map. The top row shows
the original disparity maps, whereas the bottom row shows the ‘cleaned’ results
respectively.

Note that even though the black areas vanish, the brighter depth information

stays in place. This implies that also the defects of depth boundaries will not

be repaired by this procedure, as seen on the first column in Fig. 4.6, where the

leafs of the aloe vera (bottom left) disappear, as there is no depth information

available. Due to the rough resolution of the Kinect’s depth sensor, the plant’s

caulis (same image, bottom right) is not even recognized. Only a suggestion of

an occlusion, barely visible as the vertical black region, is given which disappears

after the ‘cleaning’ process.

As the errors in the disparity map are passed to the following edge detection,

this results in a wrongly detected edge. But the edge of the disparity map is

mainly used to enhance the other edges, as it is weighted less, the defects are not

propagated to the graph cut algorithm such that it finds the correct contours.
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Fig. 4.7 shows an example of a strong error in the disparity map, where the graph

cut algorithm finds the correct contour nevertheless.

(a) A part of a bas-
ketball.

(b) The accor-
dant ‘cleaned’
disparity map.

(c) The computed
boundary.

Figure 4.7: A segmentation with an incorrect disparity map. The error of the disparity map
has no effect on the graph cut algorithm.

However, even though the edge detection, the graph cut and the grab cut algo-

rithm can handle minor errors of the disparity map, there is a special case when

the refinement by the grab cut reintroduces the error. This effect can be ob-

served especially in low-quality images with strong noise where the color values

near object boundaries vary more.

The preconditions are the following: On the on hand, the disparity map has to

generate a dislocated depth edge. On the other hand, the colors of the object and

the background close to the boundary are similar. This often occurs, especially

at the boundary region, due to low-quality images where object edges get blurred

because of noise or diffuse light.

(a) A part of a bas-
ketball.

(b) The accor-
dant ‘cleaned’
disparity map.

(c) The computed
boundary.

Figure 4.8: A segmentation with an incorrect disparity map. The error of the disparity map
is reintroduced by the grab cut algorithm.

Now, when observing a pixel near a boundary on the dislocated edge, the mem-

bership to the background color model might increase due to the similar colors
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and the additional noise. If the dislocated depth edge is strong enough, the en-

ergy for the pixel becomes less for being a background pixel. Therefore, the new

boundary proceeds along the dislocated depth edge. The fig. 4.8 shows this effect

in case of a basketball. Note that the boundary area of the basketball is much

brighter than the rest due the diffuse light and the imprinted text generates an

additional internal color edge as well. However, as seen in the results in section

4.2, this consequences of this effect are in most cases inexistent or negligible.

4.3.2 Log-Polar Transformation

The log-polar space is the key for a fixation-based segmentation. The advantages

have been discussed in section 3.5 and section 3.7.1. The scale invariance property

allows to segment objects of different sizes equally. This has been tested in section

4.2.2. Fig. 4.9 shows a comparison of two different sized objects and their edge

detection in log-polar space, respectively. Even though the objects have opposite

sizes in Cartesian space, they look very similar in log-polar space. The main

difference is a little shift along the horizontal axis.

(a) A big melon and a small
candy.

(b) The segmentation of the
melon in log-polar space.

(c) The segmentation of the
candy in log-polar space.

Figure 4.9: The transformation of different sized objects into log-polar space. The similar
shapes are both located near the center.

This property is also used to enhance the detection of true object boundaries. If

an object has weak closed internal edges due to textures, the graph cut algorithm

ignores this contour when there is another stronger closed edge with a larger

radius. The effect can be seen in fig. 4.10 where a disc is segmented. The texture

on the disc generates an internal edge, but as the true boundary has higher
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values, the disc is segmented correctly. This property of the log-polar space

thereby supports the segmentation process immensely.

Even though the log-polar transformation contributes a major part to the seg-

mentation process, the use of the log-polar space also has some disadvantages.

As shown in fig. 4.9c, the original shape of an object gets deformed in log-polar

space.

(a) A scene with a segmented disc. (b) The disc in log-polar space show-
ing the internal and the true
boundary of the object.

Figure 4.10: A segmentation of a disc with an internal edge. Due to the scale invariance the
disc is segmented correctly.

This leads to two major effects: On the one hand, sharp-edged and elongated

objects form longer horizontal regions in the log-polar space, where the sharp

edges additionally get thinner as they are compressed along the vertical axis.

The following graph cut algorithm is not capable of handling such objects, as it

is set up to prefer a ‘short’ vertical cut. This leads to cut off regions when the

distance between two edges of an object get too close. As the log-polar transform

depends on the fixation point, as it is the pole of the coordinate system, the

selection of this point can increase this problem additionally. Fig. 4.11 shows this

effect on the basis of an elongated object.
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(a) A segmented
pepper caster
with different
fixation points.

(b) The segmentation of
the left image (a) in
log-polar space.

(c) The segmentation of
the right image (a) in
log-polar space.

(d) A closeup of the
marked region
in (c).

Figure 4.11: The effect of different fixation point selections on an elongated object in log-polar
space. Depending on the fixation point, parts of the object are cut off.

The selection of the fixation point at the bottom of the pepper caster leads to

an incomplete segmentation of the object. The log-polar transformation shows

that the top of the caster is stretched along the horizontal and compressed along

the vertical axis. As the edges get closer, even the grab cut algorithm takes the

‘shortcut’ as seen in fig. 4.11d. This problem leads back to the general problem of

the weighting between the regional and the boundary term of the energy function.

It is not possible to find universal parameter settings, as a change would only

introduce errors in other cases (cf. section 4.3.4).

4.3.3 Edge Detection

The edge detection is the critical step in the approach of [Mishra et al., 2009]

and therefore consumes most of the computational runtime. Even though this

framework presents a more balanced algorithm, the edge detection is still plays

an important role in the segmentation process, as it is the basis for both the

graph cut and grab cut algorithm. Compared to the approach of [Mishra et al.,

2009], this framework simplifies the edge detection to a minimum, as explained

in section 3.6.

An important setting is the mixture of the color/lightness and the depth in-

formation. On the one hand, the gradients computed from color and lightness

information result in an accurate edge map. On the other hand, these maps

also contain a lot of edges due to the texturing of the object and general noise.
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The gradient calculated from the disparity can be used to suppress these internal

edges, as they denote not the true boundary of the object. However, the disparity

map often is very coarse such that the detected edges are dislocated which can

lead to a wrong segmentation, as described in section 4.3.1. Additionally, the con-

tact boundaries, the boundary between the object and the surface it is standing

on, are not detected. Therefore, the detection of these edges relies on the color

information only. This implies that setting up a global optimal parameter is not

possible, as there are always scenarios where a stronger color edge is needed or

a stronger depth edge. Fig. 4.12 shows edge maps with different weightings to

illustrate this problem and explains the errors in the segmentation.

(a) An edge map based on
color only.

(b) An edge map based on
depth only.

(c) A mixed edge map with a
color-depth ratio of 3:2.

Figure 4.12: The effect of different mixing weights for the color and disparity edge map.

Note that the number of iterations of the grab cut algorithm is reduced to one,

as the grab cut would have fixed the wrong segmentations. Fig. 4.12c shows that

the internal edges are still strong due to the lower weight of the disparity edge

map. The two reasons for choosing a low weight for the disparity edge map are

mentioned above: On the one hand, the disparity map is too coarse such that the

wrong depth edge would be traced instead of the true color edge. On the other

hand, the contact boundary is not detected such that the object area floods into

background areas (see fig. 4.12b), especially when the color are similar.
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Another feature of the edge detector used in this framework is the large kernel

size for smoothing noise and textures with small patterns. The smoothing kernel

works in combination with the log-polar transformation and the disparity edge

which all together create a powerful tool to reduce the effect of texture patterns

and noise without the implementation of an explicit texture gradient map.

The log-polar transformation interpolates the pixels close to the fixation point,

thereby smoothing the image inversely proportional to the distance from the pole.

The edge detection, which is carried out afterwards, smooths the log-polar trans-

formed image again such that noise or small texture pattern get almost evened

out close to the pole. The intensity of the textures is additionally decreased in

combination with the disparity edge map. This is the best precondition for the

graph cut algorithm which does not need to label the whole noisy or textured

area, but an area large enough to represent all different colors of the pattern or

noise. As long as the grab cut algorithm can build adequate color models to rep-

resent these patterns and as long as there is a strong true boundary enclosing the

object, the grab cut algorithm will optimally segment the object. Fig. 4.13 shows

the result of the cooperative process. The analysis of the grab cut algorithm is

separately covered in section 4.3.4.

Note that the edge map of the melon and the teapot generate similar internal

edges, as the color images of the Microsoft Kinect contain many color artifacts

caused by noise. Even though all textures generate many internal edges, the

graph cut algorithm performs very well and covers a sufficient large region to

model the colors for the grab cut algorithm.

The large kernel size of the edge detector therefore contributes to the segmenta-

tion of textured objects, also on images exposed to strong noise. However, it also

leads to several minor disadvantages. As stated before, the large kernel and the

log-polar transformation blur the image most close to the pole of the log-polar

space. This implies that the selection of the fixation point has a major impact

on the grab cut algorithm, as the most accurate color models are generated with

samples close this point. Therefore, the location of the point can influence the
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(a) Three objects with differ-
ent textures.

(b) The edge maps. (c) The graph cut results.

Figure 4.13: The effect of the combined blurring of the edge detector kernel and the log-
polar transformation on the graph cut result. The edge maps show from top
to bottom: Internal edges due to noise, a small-scaled texture pattern and a
large-scaled texture pattern.
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outcome of the segmentation drastically which is analyzed in section 4.3.4. Addi-

tionally, due to the strongly blurred edges, the selection of a fixation point near

an object boundary will lead to a wrong segmentation as well, as the boundary

edge is less likely to be detected by the graph cut algorithm.

Another problem occurs in cases where strong edges are lying close together. As

those edges are smoothed, the area between those edges get an high ‘edge value’ as

well. This increases the ‘shortcut’ problem in log-polar space described in section

4.3.2. Fig. 4.14 shows an example of this effect occurred during the evaluation.

(a) A segmented object with
a defect in the contour.

(b) The edge map of the de-
fective region.

(c) The edge map and the
grab cut result.

Figure 4.14: The effect of the strong blurring of edges at close quarters which leads to defects
in the contour.

As seen in Fig. 4.14c, the blurring of the strong edges leads to a cut-off region

of the bottle. However, in most cases, the grab cut algorithm is able to optimize

the result by the incorporation of the color information.

4.3.4 Graph Cut and Grab Cut

The graph cut algorithm is an intermediate step for the grab cut algorithm. It

prepares a rough mask which is used as the input for the following grab cut

algorithm. The parameter of the energy function are designed to produce an

over-segmentation, whereas the grab cut parameters give more weight to the color

information and thereby floods into thin regions ignoring weak edges. As these

algorithm are supposed to work as an unit, they have to be analyzed together.
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The graph cut algorithm uses only the generated edge map for detecting the

object region. This region has to cover an area large enough to build solid color

models in the grab cut algorithm. This process is supported by the edge detection

as described in section 4.3.3. When the region is too small or too large, the grab

cut algorithm can fail in detecting the correct contour. However, the grab cut

algorithm in this framework is very tolerant to minor and partly also to major

errors occurring in the graph cut algorithm.

The parameters of the grab cut algorithm are especially designed for refining the

results of the graph cut algorithm. This approach works on small scale for fine-

tuning the contours as well as on large scale where the foreground is cleaned from

whole background objects. The effectiveness of this new approach is shown in

fig. 4.15.

Figure 4.15: The refinement of the graph cut results after applying the grab cut algorithm
with five iterations. The top row shows the graph cut results. The middle row
shows the grab cut results. The bottom row shows the added regions in green
and the subtracted regions in red.

The major challenge of this grab cut-based approach is similar to the color and

depth edge weighting problem described in section 4.3.3: The selection of the pa-

rameters for weighting the regional and the boundary term of the energy function

is not trivial. When the regional term is weighted more, the algorithm tends to

cluster regions with similar colors (cf. fig. 4.13b). This can lead to an underseg-
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mentation, as weak boundary edges are ignored, especially when the object and

the background have similar colors. In the opposite case, when the boundary

term has a stronger weighting, the edges have a greater influence on the energy,

which leads to the ‘shortcut’ problem (cf. fig. 4.13a) as discussed in section 3.8.2.

Another aspect of applying the grab cut algorithm in log-polar space is the de-

pendency on the selection of the fixation point, as mentioned in section 4.3.2.

The color models of the grab cut algorithm are initialized with the sample pixels

of the graph cut result. As the log-polar space stretches and interpolates many

pixel values close to the pole, the most accurate color models are built on these

pixel information, since they all have similar values. This implies that colors

more distant to the pole, even if they are in the initial foreground region, are

not represented well in the Gaussian Mixture Model. Hence, the grab cut algo-

rithm becomes context-sensitive, i.e. the area around the fixation point defines

the importance of the colors. This can lead to undesired effects when segmenting

objects with large-scaled textures, i.e. textures where colors do not occur in small

periodical intervals, but isolated in different areas of the texture. A correct and

a ‘mislabeled’ segmentation is shown in fig. 4.16.

(a) A correct seg-
mentation.

(b) A ‘mislabeled’
segmentation.

Figure 4.16: The effects of the selection of different fixation points. (b) shows an undesired
excluded region due to the fixation point selection.

Even though the image in fig. 4.16b shows an undesired segmentation, the ques-

tion whether the segmentation is correct or incorrect cannot be answered in gen-

eral. In fact, the human eye is also not able to anticipate the segmentation of an

object with a large-scale texture given only one fixation point. E.g., if someone

points at a magazine with a picture on it, it is not clear whether the magazine
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or the picture itself is the point of interest. The same accounts for two different

objects like a poster on a wall. In order to segment an object or texture correctly,

some context is needed. In this approach, a spacial context is given by the fixa-

tion point as mentioned before. Fig. 4.17 shows this behavior by the means of a

dish towel.

(a) Segmentation of a dish
towel.

(b) Segmentation of a green
stripe on the dish towel.

(c) Segmentation of a green
square on the dish towel.

Figure 4.17: The effects of the selection of different fixation points. The object segmentation
depends on the context of the fixation points.

The size of the context is given implicitly by the log-polar transformation, the

edge detector kernel size and the intensity of the internal edges. This behavior

of the grab cut algorithm in log-polar space offers an interesting basis for future

work.

4.3.5 Computational Complexity

The computational complexity of the presented algorithm is an important factor

for its use in a robot system. One of the main objectives is to implement a system

which can be run in real-time: The definition of real-time in this context must not

be confused with the real-time definition often used in image processing where

an image is processed within milliseconds. In this context, real-time is defined as

the time it takes a person to identify an unknown object. This duration varies

depending on the object and the environment and can take up to some seconds.

Moreover, the measured time for the segmentation process depends much on

the hardware used. Therefore, the evaluation presents the absolute duration of

the algorithm on the system described in section 4.1.1. Besides that, it also

compares the relative durations of the different steps of the algorithm which are
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then compared to the relative durations of the original approach by [Mishra et al.,

2009].

The measurements are taken for the whole algorithm as well as for each step:

The edge detection, the graph cut and the grab cut algorithm. Tbl. 4.1 shows

the average values of ca. 100 segmentations on a medium sized object3.

Module Duration [sec] Duration [%]
Overall time 6.27 100.00

Edge Detection 0.40 6.38
Graph Cut 2.27 36.20
Grab Cut 3.46 55.18
Cleaning 0.14 2.24

Table 4.1: The measured absolute and relative duration for the different steps of the proposed
algorithm.

The whole algorithm takes only about six seconds to compute the segmentation

of an object. This is already a good basis for the use in a robotic system. The

result of the optimization of the edge detector has to be pointed out in particular.

In this approach, it takes less then half a second to compute the lightness, color

and disparity edge map. The most time consuming steps are the graph cut and

the grab cut algorithm. The graph cut has the most work to do, as the minimum

cut calculation is based on mostly unknown labels. In total, the grab cut takes

longer than the graph cut. However, it has to be taken into account that the

grab cut’s total time includes four iterations, including the learning process of

the Gaussian Mixture Models. This means that a single iteration of the grab cut

algorithm takes less than a second. It performs much better than the graph cut

as the input mask is already an approximation of the final result.

The algorithm mainly is a single thread application (except for the image grabbing

routine) and uses only 21% of the CPU capacity. The memory consumption varies

around an average of 100 MB, when, besides the video player and the output

3The runtime of the min-cut/max-flow algorithm used in the graph cut and grab cut algorithm
depends on the weights between the nodes. Large areas with similar intensity values take
longer to compute as smaller regions with strong intensity changes.
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window, no additional observation window is opened. The low CPU consumption

is a good starting point for further optimizations.

As the proposed algorithm is an optimization and extension of the algorithm

described by [Mishra et al., 2009], a comparison between the two of them is

evident. A direct comparison is difficult, as the computational complexity of the

original algorithm is not given in detail in the author’s paper or related papers.

Nevertheless, by taking the graph cut algorithm as a reference point, a comparison

can be made to roughly classify this framework. Therefore, the given duration of

the original4 algorithm are shown in tbl. 4.2.

Module Duration [sec] Duration [%]
Overall time ∼40.00 100.00

Edge Detection ∼6.00 15.00
Graph Cut (x2) ∼2.00 5.00

Optical flow ∼24.00 60.00
Others ∼8.00 20.00

Table 4.2: The indicated duration for the different steps of the algorithm proposed by [Mishra
and Aloimonos, 2011].

The graph cut algorithm is computed twice in the algorithm. The second time,

a 3D-histogram is used to incorporate the color information into the graph cut

algorithm. Therefore, it seems that the graph cut implementation takes about

one second to compute on the used system, as described in section 4.1.1. By

using the graph cut duration as a base unit, it is possible to compare at least the

algorithm of the edge detection5:

The comparison of the durations in tbl. 4.3 arrives at the conclusion that the

implementation of the present framework runs more than seven times faster than

the algorithm proposed by [Mishra and Aloimonos, 2011]. Even though this

calculation depends on many unknown variables, at least the edge detection can

4A direct comparison is not possible, since their publication does not evaluate the runtime.
Therefore, a similar implementation of the same authors is used [Mishra and Aloimonos,
2011] which is also based on the same approach.

5‘Gro12’ refers to the implementation of this framework, whereas ‘MA11’ refers to the im-
plementation of the approach by [Mishra and Aloimonos, 2011]
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Module Gro12 MA11 Ratio
Overall time 2.76 20.00 7.25

Edge Detection 0.18 3.00 16.67
Graph Cut 1.00 1.00 1.00

Other 1.58 16.00 10.13

Table 4.3: The duration of the implementations as multiples of the graph cut duration and
as a factor of the performance gain for the proposed implementation.

be roughly compared, as the implementation is the same as in [Mishra et al.,

2009]. The performance gain for the edge detection is even higher: The edge

detector is more than 16 times faster than the original approach. Using a faster

desktop computer, the proposed algorithm can be run in less than five seconds,

which is nearly the time a human being needs to ‘segment’ an unknown object in

an unknown scene.
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Conclusion and Future Work

In this thesis, a new segmentation framework has been proposed using a fixation-

based approach first introduced by [Mishra et al., 2009]. In contrast to classical

segmentation methods where an image of a scene is divided into multiple indi-

vidual regions, the fixation-based approach redefines the segmentation process by

imitating the human visual system, thus it only separates the fixated region from

the rest of the image. This formulation of the segmentation problem is, unlike the

classical approach, a well-posed problem, as it regards the interest of the observer

in the form of a fixation point.

As this new approach was aiming to be used in a robotic system, the question rose:

How can this approach be applied on a real-time robotic system? The critical

point of this question is the performance of the segmentation algorithm. As the

original approach of [Mishra et al., 2009] does not offer a solution which can

be applied in real-time, a way of optimizing their approach had to be found. By

examining their work, the edge detection, which is used for the contour detection,

was identified as the computational most complex step of the algorithm, as their

segmentation results rely highly on a precise edge map.

For optimizing this step, the presented framework in this thesis expands the

concept of [Mishra et al., 2009] by introducing the grab cut algorithm as an

additional refinement step. In order to incorporate the grab cut algorithm, this
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thesis examined how to bridge the information gap between the given fixation

point and the information needed for the grab cut algorithm to produce correct

segmentation results. The solution was to include the original method as an

intermediate step of the new algorithm.

The reformulation of the original approach had extensive consequences for the

different steps of the algorithm: The grab cut algorithm uses sophisticated color

models for the contour detection process and thereby is very robust to an im-

precise input. This allowed to reduce the strong dependency of the original

algorithm on the quality of the computed edge map, thereby creating a more

balanced algorithm. Consequently, the new formulation opened up the possibili-

ties of optimization.

This potential was tapped for the design of the different steps of the algorithm. In

particular, the edge detection was heavily optimized by simplifying the calculation

of the color, lightness, texture and depth gradient maps. Moreover, the edge

detection was moved into polar space, where the polar space transformation was

exchanged in favor to the log-polar transformation.

This combination of changes supports the overall process and leads to an even

more balanced algorithm: By exchanging the polar transformation with the log-

polar transformation, the pixels close to the fixation point get heavily blurred due

to the interpolation occurring during the transformation. As the edge detection

is now carried out afterwards, it is less likely to find strong edges close to the

pole which are, in fact, mostly internal edges. This in turn boosts the following

graph cut algorithm, as it generates a larger object region due to the log-polar

space on the one hand and due to the weaker internal edges on the other hand.

A larger object region, again, is preferable for the grab cut algorithm, as it can

build a more precise color model for the object in consequence of more available

pixel values.

Another advantage of edge detection carried out in log-polar space is that it

is equal to the use of an edge detection kernel in Cartesian space which size

is increasing proportional to the distance to the fixation point. This implies
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that regions more distant to the pole are blurred stronger and therefore generate

weaker edges. The edge detection thereby imitates an aspect of the human visual

system: The blurred vision outside the focus.

Having taken these benefits into consideration, the edge detection itself could be

optimized heavily. On the one hand, many optimizations, like the non-maximum

suppression or the Savitzky-Golay filter, for generating an more accurate edge

map were neglected due to the error-robustness of the grab cut algorithm. On

the other hand, the texture gradient computation was removed completely by

exploiting the advantages of the log-polar space. Additionally, the treatment of

textured regions is supported by the selection of a larger kernel size for the edge

detection such that internal edges get blurred even more.

The analysis of the results showed that the new algorithm is capable of segmenting

various objects in simple environments almost without a loss of quality compared

to the original approach by [Mishra et al., 2009]. The fixation-based approach is

adequate way to rephrase the general segmentation problem, even though it has

its limit: The graph cut and grab cut algorithm suffer from the so called ‘short

cut’ problem in Cartesian space. Transferred to polar space, a similar effect

occurs on very thin or elongated objects which results in cut off areas. This refers

to a general challenge of this segmentation approach in polar space: Finding the

‘right’ mixing parameters for the regional and boundary term used in the grab

cut algorithm. The analysis of the algorithm showed that universal parameters

do not exist in the context of this algorithm. However, there are possibilities to

avoid this problem. For example, this can achieved by selecting multiple fixation

points on the object of interest, whereas the resulting segmentations get merged.

This would be a interesting starting point for further investigation.

A related challenge is to find the ‘correct’ parameter for combining the computed

color gradient and the depth gradient during the edge detection. On the one

hand, this parameter depends strongly on the quality of the disparity map used

to compute the depth gradient. On the other hand, the analysis showed, aside

from the quality of the disparity map, that it is not possible to find a universal
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parameter setting neither, mainly caused by the missing ‘contact boundaries’ in

the disparity map. The implementation of an algorithm dealing explicitly with

‘contact boundaries’ would be a major improvement which should be explored in

the future.

Finally, an analysis of the performance of the proposed algorithm has been done.

It clearly showed that the efficiency of the new approach with the applied op-

timizations increased tremendously. Especially the improvements on the edge

detection led to a runtime about 16 times faster than the original approach. The

overall performance increased by a factor of seven. In conclusion, the imple-

mented enhancements led to a new algorithm which is capable of segmenting a

region of interest in a similar time as a human observer would need to identify

an unknown object in a scene.

In summary, the algorithm implemented in the present thesis achieved the objec-

tives formulated at the beginning in a very satisfactory way. Moreover, it offers a

wide range of further optimization and extension options: As the algorithm only

consumes one-fifth of the available CPU time, it could be implemented as a multi-

threading application in order to further increase the efficiency of the processor

time. Major parts of the algorithm could even be computed on the GPU. This

would boost the computational performance greatly, hence allowing a segmenta-

tion approach with multiple fixation points in real-time. As the segmentation is

context-sensitive due to the selection of the fixation point, this approach could be

utilized to create a hierarchical segmentation process by enabling the automatic

choice of additional fixation points close to the initial one. This would, on the

one hand, lead to a more precise segmentation of complex objects. On the other

hand, hierarchical structures, like a window in a wall, could be detected. These

are only a few application possibilities imaginable in the future.

120



Bibliography

[Adams, 2011] Adams, C. (2011). Leonhard euler and the seven bridges of königs-
berg. The Mathematical Intelligencer, 33(4):18–20.

[Adobe Systems Incorporated, 2012] Adobe Systems Incorporated (2012). Adobe
Photoshop CS6 User Guide. Adobe Systems Incorporated.

[Alan and II, 2007] Alan, R. and II, P. (2007). On the computation of the discrete
log-polar transform. Transform, pages 1–17.

[Araujo and Dias, 1997] Araujo, H. and Dias, J. M. (1997). An introduction
to the log-polar mapping. Proceedings II Workshop on Cybernetic Vision,
0(1):139–144.

[Arbelaez et al., 2011] Arbelaez, P., Maire, M., Fowlkes, C., and Malik, J. (2011).
Contour detection and hierarchical image segmentation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 33(5):898–916.

[Arfken and Weber, 1985] Arfken, G. and Weber, H. J. (1985). The convolution
theorem. Mathematical Methods for Physicists, pages 810–814.

[Belongie and Malik, 2000] Belongie, S. and Malik, J. (2000). Matching with
shape contexts. In IEEE Workshop on Content-based Access of Image and
Video Libraries, pages 20–26.

[Bernardino and Santos-Victor, 1999] Bernardino, A. and Santos-Victor, J.
(1999). Binocular tracking: integrating perception and control. IEEE Trans-
actions on Robotics and Automation, 15(6):1080–1094.

[Bishop, 2007] Bishop, C. M. (2007). Pattern Recognition and Machine Learning,
volume 16. Springer, 1st ed. 2006. corr. 2nd printing edition.

[Boukala et al., 2003] Boukala, N., Rugna, J. D., and Colantoni, P. (2003).
Hybrid color spaces applied to image database. Proceedings of SPIE,
5304(33):254–263.

[Boykov and Jolly, 2001] Boykov, Y. Y. and Jolly, M. P. (2001). Interactive graph
cuts for optimal boundary & region segmentation of objects in n-d images. In
Eighth IEEE International Conference on Computer Vision, volume 1, pages
105–112.

IX



[Bracewell, 1999] Bracewell, R. (1999). The Fourier Transform & Its Applica-
tions, chapter Heaviside’s Unit Step Function, pages 61–65. McGraw-Hill Sci-
ence/Engineering/Math, 3 edition.

[Bradski and Kaehler, 2008] Bradski, G. and Kaehler, A. (2008). Learning
OpenCV: Computer Vision with the OpenCV Library. O’Reilly Media, 1st
edition.

[Canny, 1986] Canny, J. (1986). A computational approach to edge detection.
IEEE Transaction on Pattern Analysis and Machine Intelligence, 8(6):679–
698.

[Cheng et al., 2001] Cheng, H. D., Jiang, X. H., Sun, Y., and Wang, J. (2001).
Color image segmentation: Advances and prospects. Pattern Recognition,
34(12):2259–2281.

[Coifman, 1998] Coifman, B. (1998). A real-time computer vision system for vehi-
cle tracking and traffic surveillance. Tramsportation Research Part C: Emerging
Technologies, 6(4):271–288.

[Colantoni, 2004] Colantoni, P. (2004). Color space transformations.

[Dijkstra, 1959] Dijkstra, E. W. (1959). A note on two problems in connexion
with graphs. Numerische Mathematik, 1(1):269–271.

[Edmonds, 1970] Edmonds, J. (1970). Submodular functions, matroids, and cer-
tain polyhedra. New York: Gordon and Breach.

[Fairchild, 2005] Fairchild, M. D. (2005). Color Appearance Models. Wiley-IS&T
Series in Imaging Science and Technology, Chichester, UK, second edition edi-
tion.

[Ford and Fulkerson, 1956] Ford, L. R. and Fulkerson, D. R. (1956). Maximal
flow through a network. Canadian Journal of Mathematics, 8(1):399–404.

[Ford and Fulkerson, 1957] Ford, L. R. and Fulkerson, D. R. (1957). A simple al-
gorithm for finding maximal network flows and an application to the hitchcock
problem. Canadian Journal of Mathematics, 09:210–218.

[Ford and Fulkerson, 1962] Ford, L. R. and Fulkerson, D. R. (1962). Flows in
Networks. Princeton University Press.

[GIMP Documentation Team, 2010] GIMP Documentation Team (2010). GIMP
Documentation.

[Greig et al., 1989] Greig, D. M., Porteous, B. T., and Seheult, A. H. (1989).
Exact maximum a posteriori estimation for binary images. Journal of the
Royal Statistical Society: Series B (Statistical Methodology), 51:271—-279.

[Guild, 1932] Guild, J. (1932). The colorimetric properties of the spectrum.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 230(681-693):149–187.

X



[Hammersley and Clifford, 1971] Hammersley, J. M. and Clifford, P. (1971).
Markov fields on finite graphs and lattices. Unpublished manuscript, 3.

[Itti et al., 1998] Itti, L., Koch, C., and Niebur, E. (1998). A model of saliency-
based visual attention for rapid scene analysis. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 20(11):1254–1259.

[Jonas et al., 1992] Jonas, J. B., Schneider, U., and Naumann, G. O. H. (1992).
Count and density of human retinal photoreceptors. Graefe’s Archive for Clin-
ical and Experimental Ophthalmology, 230:505–510.

[Kanungo et al., 2002] Kanungo, T., Mount, D. M., Netanyahu, N. S., Piatko,
C. D., Silverman, R., and Wu, A. Y. (2002). An efficient k-means cluster-
ing algorithm: analysis and implementation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 24(7):881–892.

[Kindermann and Snell, 1980] Kindermann, R. and Snell, J. L. (1980). Markov
random fields and their applications. Science, 1(211739):142.

[Kolmogorov and Zabih, 2004] Kolmogorov, V. and Zabih, R. (2004). What en-
ergy functions can be minimized via graph cuts? IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 26(2):147–159.

[Kyrki and Kragic, 2011] Kyrki, V. and Kragic, D. (2011). Computer and robot
vision. Robotics & Automation Magazine, 18(2):121–122.

[Lim et al., 2009] Lim, J. J., Arbelaez, P., and Malik, J. (2009). Recognition
using regions. IEEE Conference on Computer Vision and Pattern Recognition,
pages 1030–1037.

[Lindeberg, 1993] Lindeberg, T. (1993). Detecting salient blob-like image struc-
tures and their scales with a scale-space primal sketch: A method for focus-of-
attention. International Journal of Computer Vision, 11(3):283–318.

[Littmann and Ritter, 1997] Littmann, E. and Ritter, H. (1997). Adaptive color
segmentation - a comparison of neural and statistical methods. IEEE Trans-
actions on Neural Networks, 8(1):175–185.

[Lucchese et al., 2001] Lucchese, L., Mitra, S. K., and Barbara, S. (2001). Color
image segmentation : A state-of-the-art survey. Citeseer, 67(2):207–221.

[Malisiewicz and Efros, 2008] Malisiewicz, T. and Efros, A. A. (2008). Recog-
nition by association via learning per-exemplar distances. IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, 1:1–8.

[Marr and Hildreth, 1980] Marr, D. and Hildreth, E. (1980). Theory of edge
detection. Proceedings of the Royal Society of London. Series B, Containing
papers of a Biological character. Royal Society (Great Britain), 207(1167):187–
217.

XI



[Martin et al., 2004] Martin, D. R., Fowlkes, C. C., and Malik, J. (2004). Learn-
ing to detect natural image boundaries using local brightness, color, and tex-
ture cues. IEEE Transactions on Pattern Analysis and Machine Intelligence,
26(5):530–549.

[Mishra, 2010] Mishra, A. K. (2010). A Fixation Based Segmentation Framework.
PhD thesis, National University of Singapore.

[Mishra and Aloimonos, 2011] Mishra, A. K. and Aloimonos, Y. (2011). Visual
segmentation of simple objects for robots. In Proceedings of Robotics: Science
and Systems, Los Angeles, CA, USA.

[Mishra et al., 2009] Mishra, A. K., Aloimonos, Y., and Cheong, L. F. (2009).
Active segmentation with fixation. In ICCV’09, pages 468–475.

[Mishra et al., 2012] Mishra, A. K., Aloimonos, Y., Cheong, L. F., and Kassim,
A. (2012). Active segmentation with fixation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 34(4):639–653.

[Mortensen and Barrett, 1995] Mortensen, E. N. and Barrett, W. A. (1995). In-
telligent scissors for image composition. In SIGGRAPH Proceedings In Com-
puter Graphics, pages 191–198.

[Mortensen and Barrett, 1998] Mortensen, E. N. and Barrett, W. A. (1998). In-
teractive segmentation with intelligent scissors. In Graphical Models and Image
Processing, pages 349–384.

[Nadernejad and Sharifzadeh, 2008] Nadernejad, E. and Sharifzadeh, S. (2008).
Edge detection techniques : Evaluations and comparisons. Applied Mathemat-
ical Sciences, 2(31):1507–1520.

[Peng and Veksler, 2008] Peng, B. and Veksler, O. (2008). Parameter selection
for graph cut based image segmentation. British Machine Vision Conference,
pages 160–170.

[Pham et al., 2000] Pham, D. L., Xu, C., and Prince, J. L. (2000). Current meth-
ods in medical image segmentation. Annual review of biomedical engineering,
2(1):315–337.

[Rayner, 1998] Rayner, K. (1998). Eye movements in reading and information
processing: 20 years of research. Psychological Bulletin, 124(3):372–422.

[Reynolds, 2008] Reynolds, D. (2008). Gaussian mixture models. Digital Signal
Processing, 45(2):1–5.

[Rother et al., 2004] Rother, C., Kolmogorov, V., and Blake, A. (2004). Grabcut:
Interactive foreground extraction using iterated graph cuts. ACM Transactions
on Graphics, 23:309–314.

[Scharr, 2000] Scharr, H. (2000). Optimale Operatoren in der Digitalen Bildver-
arbeitung. PhD thesis, Universitätsbibliothek.

XII



[Schwartz and Greve, 1995] Schwartz, E. and Greve, D. (1995). Space-variant
active vision: definition, overview and examples. Neural Networks, 8(7):1297–
1308.

[Schwartz, 1984] Schwartz, E. L. (1984). Anatomical and physiological correlates
of visual computation from striate to infero-temporal cortex. IEEE Transaction
on Systems, Man and Cybernetics, SMC-14(2):257–271.

[Shapiro and Stockman, 2001] Shapiro, L. G. and Stockman, G. C. (2001). Com-
puter Vision. Prentice Hall, New Jersey.

[Shmueli, 2007] Shmueli, A. (2007). Image segmentation using 1d matching: a
combined segmentation and editing tool. Master’s thesis, Tel-Aviv University.

[Suzuki and Be, 1985] Suzuki, S. and Be, K. (1985). Topological structural anal-
ysis of digitized binary images by border following. Computer Vision, Graphics,
and Image Processing, 30(1):32–46.

[Tistarelli and Sandini, 1993] Tistarelli, M. and Sandini, G. (1993). On the ad-
vantages of polar and log-polar mapping for direct estimation of time-to-impact
from optical flow. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 15(4):401–410.

[Vandenbroucke et al., 2003] Vandenbroucke, N., Macaire, L., and Postaire, J.-G.
(2003). Color image segmentation by pixel classification in an adapted hybrid
color space. application to soccer image analysis. Computer Vision and Image
Understanding, 90(2):190–216.

[Viola and Jones, 2004] Viola, P. and Jones, M. J. (2004). Robust real-time face
detection. International Journal of Computer Vision, 57(2):137–154.

[Wright, 1929] Wright, W. D. (1929). A re-determination of the trichromatic co-
efficients of the spectral colours. Transactions of the Optical Society, 30(4):141–
164.

[Yilmaz et al., 2006] Yilmaz, A., Javed, O., and Shah, M. (2006). Object track-
ing: A survey. ACM Computing Surveys, 38(4).



DECLARATION OF ACADEMIC HONESTY

I hereby declare to have written this Master Thesis on my own. All parts of this
assignment which are cited literally or in a rough summary from publications or
other secondary material are recognizable, and I have clearly defined them with
their respective references.


