Contents

I The gbeta Virtual Machine

Introduction

1.1 Contents of Chapters

gbeta and BETA

2.1 gbetaversus BETA
2.1.1 Performance Impact of Differences

2.2 Alternative Extensions togVM
2.2.1 An Alternative Attribute Initialization Scheme
2.2.2 Alternative Run-time Path Traversals

2.3 The Prototype Paradigm for Object Creation

Extensions to gVM

3.1 From gbeta Bytecode to Java Source Code
3.1.1 In-lining Method Calls
3.1.2 Replacing Time-inefficient Data Structures
3.1.3 Compiling to Java Source Code

3.2 Exploiting Information about Statically Determined Patterns . .

Implementing the Extensions to gVM

4.1 From gbeta Bytecodes to Java Source Code
4.1.1 Compiling to Java Source Code

4.2 StaticPatterns
4.2.1 Static Patterns versus Dynamic Patterns
4.2.2 Creating Static Patterns,

4.2.3 Anonymous Patterns 0oL

10
11
13
17

ii CONTENTS

4.2.4 Caching Static Patterns, 37

5 Performance Results 39
5.1 Methodology 39
5.2 gVM and BETA Performance Results 41

5.3 Performance Impact of Use of Information about Static Patterns 43

6 Conclusion 45
II Appendices 47
A Benchmarks Programs 49
B Histograms 57

C Performance Results 59

Part 1

The gbeta Virtual Machine

Chapter 1

Introduction

This thesis documents our work performed at the DAT6 semester, Department
of Computer Science, Aalborg University. The result of this work is a virtual ma-
chine which executes gbeta bytecodes. We have implemented a virtual machine
based on a format for gbeta bytecodes provided to us by the developer of the ex-
perimental, strongly-typed, object-oriented language called gbeta, namely Erik
Ernst. gbeta is a generalization of the language BETA (see, [KLM93|, amongst
others) with features such as a general mechanism for merging patterns allowing
for expressiveness in the form of, e.g., propagating pattern combinations and the
facility to create class-like patterns at run-time.

A gbeta virtual machine already exists, but we created one with better per-
formance. This work was initiated at the DAT5 semester, and resulted in the
release of the first ever stand-alone gheta virtual machine. We have continued
our work on the previous release of our virtual machine focusing on how to
improve its performance. The new release is called gVM.

The work on our previous virtual machine release was focused on correct seman-
tics; i.e., that bytecodes were executed correctly on our virtual machine. Much
of this work has been reused in gVM. Consequently, we refer to [JWJ00] for a
complete understanding of gVM. In this thesis only new features are described.
The new features of gVM are compiling gbeta bytecodes to Java source code,
making use of information about statically determined patterns, and using a
cache for fast access to statically determined patterns already created. The
intent of these new features is to increase performance.

Implementation of the new features in gVM and subsequent benchmarking re-
sults combined with the theoretical discussions about the differences between
gbeta and BETA in terms of performance enable us to conclude on the limita-
tions of gbeta. In particular, the propagation feature and the facility to create
patterns dynamically in gbeta are obstacles to getting better performance, as
discussed in this thesis. We have implemented the capability to use knowledge
about statically determined patterns. The intent was to avoid merging pat-

4 CHAPTER 1. INTRODUCTION

terns at run-time in all cases (merging is not needed if patterns are statically
determined).

The intent of this thesis is to discuss the fundamental differences between gbeta
and BETA, and determine what can and cannot be done to improve on the
performance of gbeta. The implementation of bytecodes which use statically
determined patterns is important in this regard.

In fact, the goals of this semester are:

e to create a virtual machine that is faster than the previous virtual machine
release

e to use the implementations of the new features in an attempt to document
what is expensive in gbeta compared to BETA

Firstly, we aim to create a virtual machine that is faster than the previous one.
In order to achieve this we opted for using a caching strategy and compilation;
i.e., compiling gbeta bytecodes into Java source code. Secondly, in a combined
effort to both improve the performance of gVM and understand the fundamental
differences between gbeta and BETA in terms of performance, we opted for using
knowledge about statically determined patterns.

1.1 Contents of Chapters

In the next section we discuss the expressiveness of gbeta and its impact on
performance. We use the implementation of BETA as a reference on how we
can possibly improve performance. Other ideas about how we can improve
performance are also discussed. Chapter 3 introduces the new features of gVM
and discusses how they improve gVM’s performance. In Chapter 4 we discuss
how the new features are implemented. A number of benchmark programs
and a methodology for benchmarking BETA binaries, gVM in interpretation
mode, gVM in compilation mode, and gbeta, respectively, and the benchmarking
results are presented in Chapter 5. Finally, we conclude in Chapter 6.

Chapter 2

gbeta and BETA
or Why gbeta is Slower than BETA

In this chapter we elaborate on the differences between gheta and BETA — for
tutorials on programming in gheta and BETA we refer to [Ern01b] and [MPN93],
respectively. In the following section we discuss the expressiveness of gbeta and
that of BETA and compare those aspects which are relevant to an understanding
of performance issues in gbeta; we do this by discussing propagation [Ern99b],
but the ability to create class-like patterns [Ern99a] at run-time is also relevant.

In Section 2.1.1 we continue the elaboration on performance issues in gbeta and
BETA. The discussion in this section will be focused on the differences between
the gbeta and BETA implementations. Further elaborations on the implementa-
tion of gbeta can be found in [JWJ00] and [Ern99a] whereas [KLM93| documents
the implementation of the Mjglner BETA System in version 4.1 which is used
by us for comparison with gbeta.

Finally, we discuss various ideas to improve performance in gVM inspired by
the aforementioned implementation of BETA.

2.1 gbeta versus BETA

The inheritance mechanism in gbeta differs from the one in BETA in that a
mixin-based inheritance mechanism is used — see page 13 in [JWJ00] for a def-
inition of mizin as used in gbeta and see pages 39-45 in [Ern99a] for more
on mixins. This allows for more expressiveness compared to the non-mixin-
based, single-parent inheritance mechanism used in BETA. In fact, inheritance
in BETA is possible only by prefixing the definition of a pattern (class) with
the name of a super-pattern (super-class). In gbeta, however, inheritance is
achieved by linearization of lists of mixins (patterns) as described in [Ern99b]
and elaborated on in the next section.

6 CHAPTER 2. GBETA AND BETA

The major difference in expressiveness between gheta and BETA and the most
significant in terms of impact on performance is the support for propagating
pattern combinations in gbeta. In gbeta, however, it is also possible to specialize
existing objects and defer the creation of class-like patterns until run-time.

The combination of the use of linearization, the use of virtual attributes, and
the use of INNER statements makes it possible to propagate combinations of
patterns (see page 11 in [Ern99b]). We will describe propagation of patterns by
the use of an example.

Basically, what makes it possible to propagate patterns is the MERGE_ptn byte-
code (see [JWJO01] for a link to a postscript file describing the gbeta bytecodes)
combined with the use of origins, multiple part objects, and the semantics of
virtuals (see pages 267279 in [Ern99a]). The MERGE_ptn bytecode does the
actual linearization of lists of mixins using the linearization algorithm described
in [Ern99b| and elaborated on in the next section.

In Figure 2.1 we show a very simple example of how class-like patterns can be
propagated in gbeta. The pattern mammal is the super-pattern of the patterns
meatEater and catSpecies, respectively. Each of these two patterns further-
binds the virtual-method-like pattern printString defined in the mammal pat-
tern.

It is possible to combine the behaviours of the two printString method-like
patterns further-bound in meatEater and catSpecies. This is done in line
26 indirectly by the propagation of the patterns meatEater and catSpecies.
A new pattern is created which is a list of the mixins of the two class-like
patterns. If we instantiate this pattern and invoke its printString attribute
(implementing the contributions from the printSting attributes of the two
sub-patterns), we see that the behaviours of the super-pattern and both of the
sub-patterns are combined. This program displays the string I am a mammal
called Simba which likes meat, and I also like to purr.

The order in which the strings are displayed depends both on the use of INNER
statements, the use of virtual attributes, the actual linearization of the patterns
which creates the merged pattern, and which pattern is on the left side of the
pattern combination operator &.

The INNER statements are necessary to call upon the behaviours of sub-patterns.
Like in BETA, the printString method of the super-pattern is invoked first,
and then the printString attribute of the sub-pattern is invoked (the INNER
statement of the printString attribute in the mammal pattern invokes the
printString attribute in the meatEater pattern) [MPN93].

Virtual patterns are necessary for propagation because method-like patterns
must be further-bound. For example, if we had chosen not to let meatEater
and catSpecies inherit from mammal and let the printString methods be non-
virtuals, trying to propagate these two classes would have resulted in a warning
and no propagation. The reason for this warning is that the resulting pattern
would have two unrelated method-like patterns called printString. In fact, an

2.1. GBETA VERSUS BETA 7

instance of the resulting pattern would be an instance of both arguments to &
merged together, but its most-specific printString method-like pattern would
be the one obtained from the right hand argument to & (the other printString
may be used by executing the code lion(:meatEater:) .printString instead
of lion.printString?).

It is also not unimportant which of the meatEater and catSpecies patterns is
on the left hand side of the & pattern combination operator in line 26 — if the
two were reversed, the program would display I am a mammal called Simba,
and I also like to purr which likes meat.

In CLOS, the use of methods qualified with either :before, :after, or :around
combined with the use of the call-next-method method which calls the method
with the same message selector in the super-class allows expressiveness similar
to propagation [Dal01]. Unlike gbeta, however, propagation can be done at one
level only.

A class which uses something that necessitates a post-hoc addition of a “super-
class” is called a mixin in CLOS - so using mixins is a “coding convention”
[BC90] in CLOS. Mixins in CLOS are hence used as abstract sub-classes to
specialize super-classes and their methods.

Method combination can also be simulated in a multiple-inheritance, non-mixin-
based language such as C++. Multiple inheritance makes it possible to create
a new, more complex class which inherits sets of non-abstract routines from
different classes. However, it is necessary to use the scope resolution operator

to handle ambiguities in the new class [Joy01l] and manually perform the
composition which is inconvenient.

2.1.1 Performance Impact of Differences

The major difference between the gheta language and the BETA language is how
mixins are used in inheritance and merging of virtual attributes. Both BETA
and gbeta have mixins and virtual attributes and use INNER to call methods in
sub-classes. In this respect, the languages are identical.

To explain why gbeta is a generalization of BETA, it makes sense to discuss
mixins in BETA. In BETA, inheritance is only possible by prefixing definitions
of patterns [BC90]. Mixins are, therefore, “not liberated” [Ern99b] from their
super-class and are just class increments. This means that when the most spe-
cific mixin (see [JWJO0O] for a definition) is known, a pattern is fully determined.
This is not the case in gbeta because it is possible to merge patterns.

An implication of the existence of a general facility for merging patterns is that
the most specific mixin does not determine a pattern fully. The mixins preceding
the most specific mixin in a merged pattern are not generally known.

IThe gbeta (::) type cast operator resembles the () operator in Java and C++. In the
example above, it effectively tells the gbeta type system that the first operand of & (the pattern
combination operator) is p but p about which is known only that it is the object pattern.

CHAPTER 2. GBETA AND BETA

10
11

12
13
14

15
16
17
18
19
20
21

22

23

25
26

27

29
30
31

32

-- betaenv:descriptor --

(#
mammal :
(#
name : @String;
printString :< (#
do ’I am a mammal called ’+ name -> stdio; INNER
#);
#);

meatEater : mammal
(#
printString ::< (#
do ? which eats meat’ -> stdio; INNER
#);
#);

catSpecies : mammal

(#

printString ::< (#

do ’, and I also like to purr.’ -> stdio; INNER
#);
#);

lion : GmeatEater & catSpecies;
do

’Simba’ -> lion.name;
lion.printString;

#)

Figure 2.1: A propagation example

Because the most specific mixin of a pattern does not generally determine it
fully and patterns may be created at run-time, the same efficiency as in a BETA
implementation is not easily achieved in an implementation of gbeta. Because
we do not generally know the number or order of the mixins of a pattern at
run-time in gbeta, part objects must be linked together as opposed to in BETA
where they are in-lined in the enclosing object (see pages 402—403 in [KLM93]).
In effect, we cannot access every attribute of an object with an offset calculation
(like in BETA), but have to access the attributes of linked part objects instead.

2.1. GBETA VERSUS BETA 9

This is more expensive; e.g., if we do not know the number or order of the
mixins of a pattern statically, we cannot combine a number of up-steps or down-
steps to traverse part objects in just one step looking for attributes (see pages
34-37 in [JWJO0O] for a definition of and an elaboration on up-steps and down-
steps, respectively). During traversals of up-steps or down-steps, we have to
compare the main part ids of increasingly more specific or general part objects
[JWJO00]. In fact, the increased number of objects in gbeta also means that
garbage collection is more expensive.

There are also cases in BETA where it is impossible to determine the exact
pattern denoted by an attribute at compile-time. The difference is that the
prefix of a list of mixins is always determined. If this list has the elements [M1,
M2, M3] at run-time, we know that it has the elements [1, [M1], [M1, M2], or
[M1, M2, M3] at compile-time. If we know, e.g., that this list has the elements
[M1, M2] at compile-time, then M1 will be the most-general mixin (see [JWJ00]
for a definition) and M2 will be the second-most-general mixin (in gbeta, if we
know that a list of mixins has the elements [M1, M2] at compile-time, the list
may, e.g., have the elements [M5, M1, M3, M4, M2] at run-time). This means
that we do not have to compare the main part ids of increasingly more specific
or general part objects during traversals of up-steps or down-steps, like in gbeta.

Linearization of lists of mixins (merging of patterns) also imposes a performance
penalty compared to BETA where it is not used. This is because it takes place
at run-time. The linearization algorithm implemented in gVM takes two lists of
mixing and creates a new list. What basically happens in a step of the algorithm
is that an element from one of the two argument lists is chosen and added to
the result list. If an element is in both of the argument lists, it is only added
once (see pages 12-13 of [Ern99b] and pages 6569 of [Ern99a] for details about
linearization as implemented in gbeta). The complexity of the implemented
linearization algorithm is O(N x M) where N and M are the number of mixins
in the first and second argument list, respectively.

In fact, since virtuals are also linearized in gbeta as opposed to in BETA, this
is a significant performance inhibitor. In gbeta, virtuals may be further-bound
with any pattern that the linearization algorithm can handle. This is not the
case in BETA which allows a virtual to be further-bound to a sub-pattern of
itself only. This is shown in the BETA code in Figure 2.2, which results in an
error if the v pattern in line 2 is not further-bound to a sub-pattern of x.

ra: (# vi< x #);
2 b a(# vi:i< y #);

Figure 2.2: An example showing the dependency of the y pattern on the x
pattern

The reason for this BETA restriction on the patterns with which a virtual can
be further-bound has to do with its single-inheritance property. If we allowed a

10 CHAPTER 2. GBETA AND BETA

virtual to be further-bound with any pattern, we would have to use a lineariza-
tion algorithm when merging the virtual contributions or opt for inhertance
from virtuals to get the same effect.

Linearization of virtuals is not expensive in the rather common case where
virtual contributions are singleton patterns. In this case, we may simply collect
them in order from the enclosing object [Ern99b].

Linearization is also necessary in CLOS to make sure that a mixin extends the
behaviour of the correct super-class. This is accomplished by making sure that
the mixin is placed before the super-class at the source-code level. Extending the
behaviour of the correct super-class can be done by using the call-next-method
method which simply calls the method with the same message selector in the
super-class or by overriding a method in the super-class.

There is also another reason as to why BETA performance may be difficult to
reach. In gbeta, it is possible to get a reference to an instance of a primitive
pattern, to get a reference to a primitive pattern, or inherit from a primitive
pattern.

As a result, the value of, e.g., an integer object cannot be saved in the bit-
pattern of its reference without implementing a boxing/unboxing scheme. A
boxing/unboxing scheme would use the bit-pattern representation of a reference
to an instance of a primitive pattern to store its value and only create the in-
stance on-demand (i.e., when someone asks for a reference to it). Unfortunately,
our choice of Java as our implementation language prohibits implementing such
a scheme, as noted in 4.1.1.

There are many obstacles in reaching performance which comes close to BETA,
as described above. Some of these obstacles are so restrictive that it seems
impossible to reach BETA performance, e.g., the need to linearize virtuals in
gbeta as opposed to in BETA. We did, however, examine some ideas in more
detail with the intent of improving the performance of gVM. Some of these were
implemented and some were not. The ones which were not implemented are
described in the next section. The ones which were implemented are described
in the next chapter.

2.2 Alternative Extensions to gVM

A number of ideas for improving the performance of the existing gbeta virtual
machine were considered. These ideas were focused on the following.

e the attribute initialization scheme
e run-time path traversals

e object creation

2.2. ALTERNATIVE EXTENSIONS TO GVM 11

We started by focusing on these aspects of gVM, because they influence the
execution speeds of nearly all gbeta programs — only the most simplistic gbeta
programs have no attributes that need initialization, no run-time paths to tra-
verse, and create no objects (see [JWJ01] for at link to a directory containing
most of the gbeta programs ever written if you need convincing).

2.2.1 An Alternative Attribute Initialization Scheme

In gbeta, the initialization of one attribute can depend on the prior initialization
of another [JWJO00] and, in turn, another and so on. Consequently, our existing
implementation of gVM performs on-demand initialization of attributes. This
means that a check is made to determine whether or not an attribute has been
initialized before it is accessed and if not, it is initialized. The existing scheme
is similar to that handling “G-code” which is used to initialize attributes in
BETA [Sch01], since this code can also do “everything”. There are differences,
however. For example, G-code that initializes aliases (different names for the
same instance of a pattern) will never be generated in BETA.

If we could come up with a scheme that determined an order for attribute
initialization in which only attributes guaranteed to depend only on attributes
already initialized are ever accessed, then we could avoid the run-time checks of
the existing scheme.

A scheme to determine a “safe” way to initialize attributes is difficult to im-
plement, at best. This is because determination of all dependencies between
attributes is an undecidable problem, so no scheme works in all cases. The
reason that it is an undecidable problem is the presence of arbitrary code.

We explain this by the use of a simple example. Determination of a safe way
to initialize attributes is similar to the way the verification algorithm in Java
determines whether class-files are safe. The verification algorithm accepts all
class files that fulfil certain criteria and rejects all that do not.

In Figures 2.3 and 2.4 we show a situation in which it is possible to find a safe
sequence of initializations and a situation in which it is impossible, respectively.

In Figure 2.3 it is possible to find a safe order in which to initialize the attributes
x and y. If we initialize the attribute of the enclosing part object denoted by
the ADD-mainpart ... origin ... bytecode of y first, initialize y second,
and finally initialize the x attribute, we have a safe order.

The situation in Figure 2.4, however, is “unsafe”. The reason is the call to
evaluate the doit attribute of the enclosing part object in line 10. As a result,
arbitrary code may be executed and there is no way to guarantee that it is safe
to delay the initialization of x until the initialization of y has finished.

Another attribute initialization scheme would be to reduce our demands, and
accept fewer gbeta bytecode files as input. We could then have gVM output
a warning in unsafe situations automatically (or resort to run-time checks, or

12 CHAPTER 2. GBETA AND BETA

: MainPart("¢101-225"
"X/O": (

‘ PUSH-ptn {"y/1"}

5 NEW, _ptn->obj

6 INSTALL-obj O

7)

R "y/i": (

10 PUSH_ptn {<-2,"integer/4"}

1 ADD_mainpart ¢109-148 origin {}
12 INSTALL—PtIl 1

13)

y

15 |

16

17

18

19)

Figure 2.3: A safe situation

both). It is then the responsibility of the programmer to avoid situations which
will result in gVM outputting warnings or to create ad hoc proofs af the safety.

The use of virtual attributes also complicates things because a virtual attribute
is initialized by collecting contributions from every part object of the current
object (this is implemented in gVM by the use of the GATHER_virt bytecode).
This means that if there is a virtually declared attribute in a main part, all the
attributes containing bytecodes that add to the initialization of this attribute
in other main parts must be initialized in advance.

Given all these difficulties with an alternative attribute initialization scheme,
we have decided not to expend effort on this possibility for optimization.

Problems with initializations, however, are by no means unique to gbeta. In
Java, the initialization scheme employed imposes a constraint on the order of
variable initialization. Consider Figure 2.5 which shows an impossible way to
initialize the variables one and two in Java. It is impossible because the initial-
izations of the numbers are performed in textual order, starting with the first
variable of the class and ending with the last. The problem occurs in line 3
where one is undefined.

A scheme similar to the one employed in Java could also be employed in gVM,
but this would mean a restriction on the way programmers are allowed to ini-
tialize attributes.

2.2. ALTERNATIVE EXTENSIONS TO GVM 13

: MainPart("¢51-112"
"X/O": (

‘ PUSH-ptn {"y/1"}

5 NEW, _ptn->obj

6 INSTALL-obj 1

7)

g "y/l": (

10 CALL {<-1,"doit/1"}
11 INSTALL—ptn 1

12)

u |

15

16

17

18)

Figure 2.4: An unsafe situation

+ public class Numbers {

3 int two = one + 1;

5 int one 1;

Figure 2.5: An impossible way to initialize variables in Java

2.2.2 Alternative Run-time Path Traversals

Traversals of run-time paths in gbeta are more expensive than the similar traver-
sals of the object graph in BETA (see Section 5 for results which document this).

In BETA, when the most specific mixin of a pattern is known, it is statically
determined as opposed to in gbeta. This means that attributes can be looked
up more easily in BETA than in gbeta. In BETA, there is no need to compare
the main part ids of the mixins of increasingly more general part objects during
traversals of up-steps or the main part ids of the mixins of increasingly more
specific part objects during traversals of down-steps. Traversals of out-steps are
performed in the same way in BETA and in gbeta which means that their costs

14 CHAPTER 2. GBETA AND BETA

are similar (see Section 5 for details).

We examined various ideas for increasing the performance of run-time path
traversals. These ideas focused on how to decrease the number of steps to
traverse in a path at run-time. We were forced not to change the way traversals
of up-steps and down-steps are implemented because the expressiveness of gbeta
would be affected (Section 2.1 explains why). The ideas we examined were
mostly influenced by the implementation of BETA [KLM93], and we wanted to
determine if they could be applied to gbeta. The ideas were:

e to add the attributes of the part objects of a statically determined object
(which is an instance of a statically determined pattern) to the origin part
object, and then discard the old part objects

e to add the attributes of the part objects of a statically determined object
to the most specific part object of this object and then in-line the INNER
calls between the part objects. All the part objects of this object except
the most specific would then be discarded.

The benefit of the first idea is avoiding an out-step by discarding the current
part object. Pages 38-44 of [JWJ00] contains an elaboration on the different
steps (out-steps, amongst others).

Unfortunately, this idea has a serious flaw. If the attributes of the part objects
of a statically determined object were in-lined in the origin part object and
the part objects of the statically determined object discarded, then it would no
longer be possible to access this object; i.e., it would no longer be possible to
obtain a reference to it. The reason is that the attributes of the part objects of
this object are in-lined in a part object which has another thisObject reference
(which is a reference to its containing object that every part object has, see pages
23-27 of [JWJ00] for details).

Even if we solved the issue of determining the containing object, we would still
have to analyze the input program for occurrences of references to it. Every
run-time path traversing the discarded object would have to be located and
changed because the in-lined attributes may have different indices in the origin
part object.

In fact, a possible solution may be difficult to implement in Java because Java
does not permit manipulations of memory at the bit-level. This is needed
if we are to access one instance of UserDefinedPartObject as another in-
stance to resolve the issue of the incorrect use of the thisObject reference
when the attributes of part objects are in-lined in their origin part object).
A UserDefinedPartObject is a part object created by the user as the re-
sult of writing arbitrary code. In contrast, a predefined part object (e.g., a
PredefinedIntegerPartObject) is predefined by us like the name suggests
and accessible to user code (see pages 21-27 of [JWJ00] for details on prede-
fined types).

2.2. ALTERNATIVE EXTENSIONS TO GVM 15

Also, there would be a problem if the part objects to be in-lined did not have
the same origin part object. If they were in-lined in their origin part objects,
they would no longer have the same thisObject reference.

The second idea (in-lining INNER calls between the part objects of instances
of statically determined patterns) also posed a problem. We wanted to avoid
traversals of up-steps in run-time paths because these occur frequently (unlike
down-steps) due to the rules for global lookup of attributes in gbeta [Ern99a].

We examined the possibility of adding the attributes of a part object associated
with a more-general mixin of a statically determined pattern to a part object
associated with a more-specific mixin of the same pattern, and then discard the
more-general part object.

For this idea to work we would have to in-line the INNER calls in each of the
do-parts of the main parts associated with the mixins. To explain how in-lining
of INNER calls would work, we refer to Figure 2.6. In this figure, a represents the
main part of the mixin associated with the most-general part object, b represents
the main part of the mixin associated with a more-specific part object, and c
represents the main part of the mixin associated with the most-specific part
object. Of course, all of these mixins are mixins of a statically determined
pattern. The Bs represent various bytecodes (except for INNER bytecodes). The
result of in-lining the INNER calls would be that the do-part of ¢ would contain
the bytecodes B1 B2 B3 B6 B7 B8 B9 B4 B5 .

+ a.dopart = (B1 B2 B3 INNER B4 B5)
2 b.dopart = (B6 B7 INNER)
s c.dopart = (INNER B8 B9)

Figure 2.6: In-lining INNER calls

The benefits of in-lining INNER calls are:

e one or more up-steps of a run-time path are eliminated

e the overhead of executing INNER calls themselves is eliminated

However, in-lining INNER calls also has drawbacks. We would have to locate
and change all run-time paths which involve part objects separated by INNER
calls. Also, since a more-general part object need not have the same origin
part object as a more-specific, some extra administration would be required to
discern them.

In addition, we have to distinguish between in-lined objects and other objects
of the same type during traversals of run-time paths which means that we have
to determine of which pattern the object is an instance.

The need for this determination has to do with the indices of attributes collected

16 CHAPTER 2. GBETA AND BETA

in the most-specific part object of an object and is explained by the use of an
example.

The intent of this example is to describe a piece code of code that will force
us to determine the pattern of an object during traversal of a run-time path if
this idea is implemented. In Figure 2.7, x is statically determined and consists
of three part objects. The attributes of these three part objects are collected
in the most-specific part object and the other two part objects discarded, as
described.

In Figure 2.7 x is statically determined and the attributes of instances of q and
T, respectively, can be added to x as intended. If this idea were implemented,
then the first attribute of the one part object of x would be the attribute of the
part object of q and the second attribute of the part object of x would be the
attribute of the part object of r.2.

In essence, the problem is that there can be different instances of r. There can
be an x instance or an instance of some sub-pattern of r which is not x and
not in-lined here, and when we collect the attributes from the part objects of
the instances of q and r, respectively, in x, an attribute like attributel may
get another index in x than, e.g., in an instance of some other sub-pattern of r.
Consequently, when we search for attributel, we do not know which index it
has unless we know which instance it is.

An assignment like that in line 12 means that an object reference like aQ denotes
x. The implication of this assignment is that when we search for attributel,
we must search at the index it has in x. If aQ denoted, e.g., an instance of a
sub-pattern of q, we would have to search for attributel at the index it has
in q.

The implication of this is that code like that in line 14 must be executed dif-
ferently depending on whether aQ denotes the x instance or another instance.
When executing the code in line 14, we have to traverse a direct-lookup-step
(see page 37 of [JWJO00] for an elaboration), and determine the pattern of the
instance to access the correct attribute.

In fact, implementing this idea means that we have to check every instance in
the code for the direct-lookup-step and only the x instance will traverse the
up-steps faster. We would also have to change the code in places throughout
the entire input program which means that separate compilation of the modules
of the program cannot be achieved.

Because of the complexity associated with improving performance of run-time
path traversals and employing a new attribute initialization scheme, we decided
not to pursue it any further. Our primary focus then became the elimination of
the extra layer of interpretation needed in our previous virtual machine imple-
mentation and exploiting information about statically determined patterns (see
Section 3.1.3 for details).

2This is only one way to add the attributes to x. We could also choose to add the attributes
in another order.

2.3. THE PROTOTYPE PARADIGM FOR OBJECT CREATION 17

»

3

+ p: (# do INNER #);

s q: p(# attributel: @integer do INNER #);
¢ r: q(# attribute2: “string do INNER #);
7 X: Qr;

¢ af: ~q;

9

10 do

11

= x[1->aQ[];

13 e

4 3->af.attributel;
15

16 #)

17

~

Figure 2.7: An example demonstrating ways to access a pattern

2.3 The Prototype Paradigm for Object Creation

Although the efficiency of construction of statically determined patterns® has
been improved in the current implementation of gVM (as noted in Section 3.2
and detailed in Section 4.2.2), the efficiency of their instantiation has not.

We considered using a caching technique to effectively implement the prototype
paradigm for object creation [US91] for instances of static patterns. A caching
technique would potentially allow us to create instances of static pattern without
executing any attribute initialization code and hence avoid its expensive run-
time path traversals (see Section 5).

The prototype paradigm for object creation would be used whenever a new
instance of a static pattern was required. New instances of dynamic patterns
would (still) be created through instantiation, as described on page 15-16 in
[JWJ00].

In essence, using the prototype paradigm for object creation, an instance of a
static pattern is created by simply copying an existing (prototype) instance in
the cache. In copying an object, its state (including its object graph) is copied
as well.

We found out that the principal problem with such an object-copying scheme
is dealing with the attributes of the copies. For correct initialization, an ob-

3Henceforth, we shall use just the terms “static pattern” (or “compile-time pattern”) and
“dynamic pattern” (or “run-time pattern”) to refer to statically determined patterns and dy-
namically determined patterns, respectively.

18 CHAPTER 2. GBETA AND BETA

ject attribute may depend on the run-time environment. These dependencies
manifest themselves in run-time paths present in the initialization code for the
object attribute. As noted in [JWJ00], the result of a run-time path traversal
is highly context-dependent. For example, two traversals of the same run-time
path initiated in different part objects can lead to different entities. Likewise,
traversals of two different run-time paths starting in the same part object can
lead to the same entity.

Consequently, any scheme to create an object by simply copying an existing one
will fail (in the general case) in that each attribute of the new object will have
been initialized in a context (i.e., a part object) of the old one. As an example,
consider Figure 2.8.

: MainPart("¢26-63"

R np/on: (

E PUSH-ptn_"object"

4 ADD-mainpart ¢35-60 origin {}
5 INSTALL-ptn O

s)

7|

s)

10 MainPart (" ¢35-60"
11|

12)

Figure 2.8: Context-dependent attribute initialization code

This figure shows the initialization code for an attribute named p which occupies
attribute index 0 in the betaEnv part object (as shown in Figure 5.1 on page 24
in [JWJO00])*.

The initialization code pushes the “empty” pattern (i.e., the pattern whose list of
mixins is empty) onto the expression stack (PUSH-ptn_"object"). It then adds
the mixin which is associated with the main part with id ¢35-60 and has origin
in the part object obtained by traversing the run-time path {}, i.e., the betaEnv
part object (which is the “current” part object), to it (ADD-mainpart ¢35-60
origin {}). Finally, INSTALL-ptn O assigns the resulting pattern to attribute
index 0 in the part object whose attribute is currently being initialized, i.e., the
betaEnv part object.

If two instances of the betaEnv pattern (i.e., two betaEnv objects®) were required
and instance number two was created by copying the betaEnv object whose p

4The code in Figure 2.8 is the result of compiling the “002.gb” program included in version
0.81.13 of the gbeta distribution (with no optimizations turned on).

5For an illustration of a betaEnv object including its immediate run-time environment we
refer to Figure 5.6 on page 35 in [JWJO00].

2.3. THE PROTOTYPE PARADIGM FOR OBJECT CREATION 19

attribute is initialized using code shown in Figure 2.8 (including its single part
object and its p attribute), then the p attribute in the copy would have been
initialized in the context of the original betaEnv object and not the copy.

In other words, the mixin of the p pattern attribute in the new betaEnv object,
though correctly associated with the main part with id 58, will have origin in
the wrong betaEnv part object (i.e., the betaEnv part object of the old betaEnv
object) because traversal of the run-time path {} relative to the betaEnv part
object of the new betaEnv object in the initialization code for p is omitted.

The fact that an origin is wrong is obviously bad because it violates the seman-
tics of the source language. Even worse is the fact that no inexpensive scheme
to correct it appears to exist. Firstly, without knowledge of a run-time path
leading to the origin part object, it is impossible. Secondly, with knowledge of
such a run-time path, it is impossible in general without actually traversing the
run-time path, in which case nothing is gained in terms of performance. Figure
2.3 shows our best, general algorithm to correct the origins of the mixins of the
part objects of an object created by copying an existing object.

1 bprocedure correct_origin(object)

2 for each part object

3 for each attribute

4 if is_object(attribute) then

5 correct_origin(attribute)

6 else if is_objectref(attribute) then

7 correct _qualification(attribute)

8 el se

9 for each mixin

10 if length(run-tinme path to origin part object) > 0 then
11 traverse run-time path in context of current part object
12 set origin to resulting part object

13 el se

14 set origin to current part object

15 end if

16 end for

17 end if

18 end for

19 end procedure

Figure 2.9: Algorithm to correct the origins of the mixins of the part objects of
an object created by copying an existing object

Notice that this algorithm avoids traversals of run-time paths only when the
run-time path is the empty one. Since traversals of the empty run-time path
are already practically free, and any potential saving due to their avoidance

20 CHAPTER 2. GBETA AND BETA

would be greatly outweighed by the extra costs associated with creating and
using a cache of prototype objects for object creation, we have not implemented
this algorithm in gVM. For this reason, the correct_qualification procedure
referenced in Figure 2.3 is not shown.

In conclusion, using the prototype paradigm for object creation is generally not
feasible because object creation depends on executing attribute initialization
code for correctness — it is an integral part of the gbeta language semantics.

Chapter 3

Extensions to gVM

or Faster is Better

In this chapter we discuss extensions to improve the performance of gVM, our
implementation of a virtual machine for gbeta. Whereas Section 2.2 discussed
alternative ideas and on what grounds we ruled them out, the following sec-
tions present the ideas which we opted to implement. Section 4 details the
implementation of these extensions to gVM.

3.1 From gbeta Bytecode to Java Source Code

In order to improve the performance of gVM, we extended it in four major ways:

e by in-lining method calls,
e by replacing time-inefficient data structures,
e by compiling to Java source code,

e by exploiting information about statically determined patterns.

In what follows, each of these four extensions to gVM is presented in its own
subsection.

3.1.1 In-lining Method Calls

In-lining (non-recursive) procedure calls is one of the traditional approaches to
improving performance in procedural languages, and combined with techniques
such as customized compilation and message splitting [USCH92], performance
improvements can be achieved in object-oriented languages as well.

22 CHAPTER 3. EXTENSIONS TO GVM

In the source code generated by gVM, only method calls that occur at the Java
level are in-lined. In particular, all method calls that pertain to traversing run-
time paths are in-lined. This is possible because run-time paths themselves are
statically determined [JWJ00] (pages 38—41) — unlike the entities they eventually
lead to which, in general, cannot be determined statically (e.g., a run-time path
such as 'foo/1’ leads to an entity which must be looked up dynamically). We
make no attempt to in-line gbc-level INNER statements or CALL statements.
Section 2.2 discusses our reasons for making this decision.

3.1.2 Replacing Time-inefficient Data Structures

In our previous development effort we made the decision to opt for flexible data
structures that were easy to identify and understand and hence to modify or
replace [JWJ00] (page 4). Because use of these data structures is no longer
subject to frequent changes, it is sensible to replace them with less flexible, but
more efficient versions in the source code generated by gVM (e.g., we replace
general lists traversed using iterators with arrays traversed using loops and array
accesses!).

Another argument for trading off readability for performance in the generated
source code is the fact that it is not intended for perusal by humans. It is only
intended to be machine-readable.

3.1.3 Compiling to Java Source Code

Unlike some previous efforts such as e.g. the SOAR project [SUH86] or the SELF
system [USCH92], in gVM the object language for compiled bytecodes is not low-
level, native machine code, but rather high-level, platform-independent source
code; namely Java. In this respect, our approach bears more of a resemblance
to that taken in ISE Eiffel [Eif01] which uses C as the object language for its
intermediate bytecodes. Similarities to any one of several translators from other
languages to Java (e.g., Smalltalk [Boy01]) or even Java bytecodes (see [Tol01])
are also apparent.

However, compilation in gVM is not restricted to bytecodes. In fact, compilation
in gVM produces Java source code that is self-contained and customized to
running just one gbc-format program. In effect, compilation removes the layer
of interpretation embodied in our previous virtual machine implementation,
thereby reducing overhead.

Our approach has the following distinct advantages over the approaches taken
in [SUH86] and [USCH92]:

IThough the effect of any one such replacement is confined to relatively few lines of gen-
erated Java source code (i.e., a peep-hole), the Pareto principle [Cal0l] (also known as the
80/20 rule) and the fact that replacements occur for all bytecodes with a run-time path as
argument ensures that the performance gain achieved is potentially substantial (see Chapter
5 for performance results).

3.1. FROM GBETA BYTECODE TO JAVA SOURCE CODE 23

e optimizations can occur at a higher level,

optimizations are platform-independent,

the translated program is platform-independent

the generated code is guaranteed to be type-safe, and

e memory reclamation in the translated program is automatic.

The fact that we do optimizations at a level higher than the bits-and-bytes level
offered by conventional CPU instruction sets means that we are fundamentally
better off to do top-level, global optimizations.

Our optimizations and the translated program are platform-independent in that
we compile to Javae source code, adhering to Sun’s “Pure Java’ rules available
at [PJCO1]2. If we had chosen e.g. (ANSI) C as our object language instead, “a
little care” [KR88] would be required to generate portable code. In actuality, a
considerable effort may be have to expended to generate portable C (see [Col01]
for a partial list of rules to follow). Also, since our virtual machine for gbeta is
written in Java already, much of the source code that it must now emit exists
already and can be reused.

The type-safety guarantees offered by the Java compiler reduce development
time and effort. Had we chosen native code or a weakly-typed language such
as C as our object language, more time and effort would have to be devoted to
debugging.

Because code generated by gVM is eventually to be executed on an under-
lying Java virtual machine, memory reclamation (i.e., garbage collection) is
automatic. As a consequence, no explicit code to reclaim objects eligible for
collection needs to be emitted by our virtual machine.

Of course, our approach also has disadvantages over the approaches taken in
[SUH86] and [USCH92]:

e the generated code must be compiled before it can be executed,
e certain optimizations are impossible, and

e Java programs are potentially slower than native programs.

The extra compilation cycle potentially increases pause times between invoca-
tion of gVM and start of execution of the gbc-format program. However, the
generated code needs only be compiled once. Subsequent invocations of gVM
with the same gbc-format program (as determined by modification times) will
execute without a compilation cycle. In addition, since compilation is not dy-
namic, a user will not experience any distracting pauses due to compilation

2These rules forbid use of things such as hard coded file names, line separators, and user-
defined native methods. The rules are summarized in [Fla99].

24 CHAPTER 3. EXTENSIONS TO GVM

during execution of a program. As a result, we do not need to consider issues
such as adaptive recompilation, like in [USCH92]. Also, since we intend the
compiled version of the code generated for a gbc-format program to be used
primarily in a final distribution, the time penalty incurred by the extra compi-
lation cycle becomes moot.

Since the generated code is compiled from within gVM and the translated pro-
gram executed either from within gVM or manually by the user invoking the
Java virtual machine on it directly, using the compilation feature does not re-
quire any extra action by the user. This is contrary to most efforts aiming to
extend the Java language through preprocessing, e.g., with features such as op-
erator overloading and conditional compilation®. These preprocessors typically
require the user to invoke the preprocessor, then the Java compiler, and finally
the Java VM to execute a program.

Because Java, as a strongly-typed language, does not support the notion of vari-
ables whose allocated storage areas contain values of different types or sizes at
different times (i.e., there is no “unionlike structure [KR88] in Java), we can-
not optimize accesses to instances of “basic” patterns [Ern01b] by representing
their values as immediate descriptors [Shi01] and “box” only on the rare occa-
sion that a reference is actually required. Indeed, some (again, [Shi01]) suggest
that the presence of a boxing/unboxing capability in an implementation of a
dynamically-typed language (e.g., Smalltalk, SELF, Dylan, or Scheme) is im-
perative in order to achieve acceptable performance. However, the fact that
gheta is not dynamically typed and development is said to be a factor of two to
four times faster [Rij01] in Java compared to C/C++ (our main alternative(s)
to Java) makes a strong case for Java.

Though Java programs are generally considered slower than native programs?,

some studies, e.g., [Rij01], suggest that the performance gap between Java pro-
grams and optimized C programs is non-existent, at least for some types of
applications.

The generated Java source code is our foundation for building higher-performance
gbhc-format programs. The extensions described in the following three subsec-
tions all require and build on this foundation. Some of these extensions (in par-
ticular, replacing time-inefficient data structures) could (also) have been used
to improve the performance of our existing interpreter-based implementation of
gVM. However, except for adding support for exploiting information about stat-
ically determined patterns (see the following section), we decided against this
option because of the inherent performance limitations of purely interpreter-
based implementations of virtual machines (e.g., see [Har01]).

3A partial list of these Java preprocessors is available at [Tol01]. This page also contains
links to several other languages running on the Java VM.

4This common conception may be rooted in the fact that the Java VM implementation
shipped with Java version 1.0 was purely interpreter-based.

3.2. EXPLOITING INFORMATION ABOUT STATICALLY
DETERMINED PATTERNS 25

3.2 Exploiting Information about Statically De-
termined Patterns

In the current implementation of gVM, no longer are all patterns created equal®,
i.e., in increments, by means of the ADD-mainpart ... origin ... and
MERGE-ptn instructions.

In the previous implementation of gVM, all patterns had to be created incre-
mentally, by adding single mixins with ADD-mainpart ... origin ... and
merging existing patterns with MERGE-ptn because no information to identify
statically determined patterns was available in the gbc-format. The only excep-
tions to this rule were certain “predefined” or “basic” patterns [Ern01b]. How-
ever, this information is now available, through the work of Erik Ernst who
designed the gbeta language and implemented a compiler for it, and this means
that most of the expensive (see Chapter 5) merge operations can now be avoided.

Also, information about statically determined patterns allows us to cache them.
Our particular pattern caching scheme ensures that a static pattern is (almost
always) created only once, as explained in Section 4.2.4.

5Pun intended, see [OWB96].

26

CHAPTER 3. EXTENSIONS TO GVM

Chapter 4

Implementing the Extensions
to gVM
or How Things Really Work

This chapter discusses the implementation of the extensions we made to gVM.
It contains two major parts. Whereas the first of these elaborates on more
traditional optimizations implemented in gVM, the second part goes into details
about its use of information about statically determined patterns.

4.1 From gbeta Bytecodes to Java Source Code

In this section we discuss how gbeta bytecodes are compiled to Java source code.
Focus is on an understanding of the compilation process. In Section 4.1.1 we
go into detail about the compilation process, but we start with a discription of
how the compiler transalates the gbeta bytecodes into Java source code:

Compiler Overview

Our compiler translates a gbc-format file into several Java-format files (one
for each main part, see below) and then runs an appropriate Java compiler to
compile these files into class files. The following steps are performed:

1. the input gbc-format program is parsed, creating a list of main parts.

2. each main part in this list is compiled. This generates a Java source code
file for each main part.

3. a Java program file containing Java source code to initialize the run-time
system and execute the first main part is generated.

4. each generated Java source code file is compiled into one or more! class

LA Java source code file is compiled into one class file for each class defined in the source
code file.

28 CHAPTER 4. IMPLEMENTING THE EXTENSIONS TO GVM

files by calling a Java compiler. The code emitted by the compiler can
now be executed by executing the compiled version of the source code file
generated in step 3.

In the compilation process of the main parts making up the ghc-format program
and when generating the Java program to initialize the run-time system we make
use of in-lining;:

In-lining

In-lining is a technique used to speed up the execution of programs by expanding
non-recursive method calls. In-lining is used in, e.g., the SELF system described
in [US91] and in the Java HotSpot VM [hot01].

We in-line compiled gbeta code as follows:

e instructions and attributes are in-lined in main parts

e run-time paths are in-lined in bytecodes, i.e., the code of run-time steps to
be traversed is in-lined in a main part for each bytecode with a run-time
path as argument

In-lining in gVM removes additional overhead by eliminating list accesses to
instances of classes representing instructions and run-time steps, respectively.
In particular list accesses to traverse the steps of run-time paths were frequent
in our previous gbeta virtual machine.

Other compilers are integrated in run-time systems that detect methods which
are candidates for in-lining (e.g., the Java HotSpot VM [hot01]). A method
must be called frequently and fulfil certain other requirements? to be in-lined.

In contrast, the gVM run-time system does not provide any feed-back to the
compiler. A program is compiled once and no run-time optimizations are at-
tempted.Because we do not know, and do not try to predict, which methods
will be called frequently, we in-line everything that passes through the compiler
that can be in-lined.

4.1.1 Compiling to Java Source Code

Main parts are compiled into separate classes. A compiled main part class may
contain a number of attributes. Each attribute is implemented as an inner class
in the main part class and has a method to initialize itself, i.e., to execute the
bytecodes associated with the attribute. These bytecodes are used to install
a statically or non-statically determined object, object reference, pattern, or
pattern reference.

A compiled main part also contains the bytecodes making up its do-part. These
can be bytecodes to, e.g., push a statically determined pattern or a dynamic

2In Java, methods that are declared final, private, or static are candidates for in-lining.
In some cases, however, they must also not have any local variables [Eck98].

4.1. FROM GBETA BYTECODES TO JAVA SOURCE CODE 29

pattern onto the expression stack or to deal with entities regardless of whether
or not they are statically determined.

The code to initialize the run-time environment must also be generated. This
run-time environment does not differ from that of the previous virtual machine.
In essence, code to create the predefined part object is generated, and so is
code to execute the first user-defined part object (see pages 23-27 in [JWJ0O]
for an elaboration on how the run-time environment is created). This code is
written in a separate file. To run the compiled program we execute the class
file generated from this file.

Main Parts

A main part is executed by executing the compiled bytecodes making up its do-
part. Calls to these bytecodes can be in-lined because the bytecodes are known
statically and the current part object stays the same during their execution.

Attributes

In our previous virtual machine, initialization of an attribute occurs by alter-
natingly fetching and executing the bytecodes from a list in its containing main
part.

This approach can be improved when compiling to Java source code. We have
chosen to represent each attribute of a main part as an inner class in the main
part. Each inner class is a subclass of the class Attribute [JWJ00]. This
is possible because the number of attributes and the bytecodes of which they
consist are known statically.

Figure 4.1 shows the attribute ir®. Compiling the ir attribute outputs the Java
source code shown in Figure 4.2. Notice how the PUSH-ptn_"object" bytecode
has been translated into Java code with the same semantics.

Because attributes can be initialized out-of-order in context of arbitrary part
objects, they each have an execute method, accepting the current part object
as a parameter, among others.

« "ir/o": (
2 PUSH-ptn_"object"

Figure 4.1: gbeta bytecodes to initialize the attribute ir

3We only show one of its constituent bytecodes.

30 CHAPTER 4. IMPLEMENTING THE EXTENSIONS TO GVM

. private class Attribute_0 extends Attribute {

2 public void execute(VM vm, PartObject context,

3 int frameLevel) {

4 vm.allPurposeStack.pushPattern(new Pattern());

Figure 4.2: Attribute ir compiled

Virtual Attributes

As with ordinary attributes, virtual attributes are compiled to Java source code,
and are represented as inner classes inside the main part they belong to.

Virtual attributes have been described in detail in [JWJO0O].

Instructions

Compiling a bytecode involves executing a method which outputs Java source
code for this bytecode. This method is called compileExecute. As an example,
the compileExecute method for the PUSH-ptn bytecode is shown in Figure 4.4.
The steps required to generate customized code for the instance of this bytecode
shown in Figure 4.3 are:

1. generate customized code to traverse the run-time path {<-1,"integer/3"}

2. generate the rest of the code for this bytecode

The first step is carried out in line 6 in the call to the compileTraverse method.
Line 8 carries out step two and may reuse the name aPattern of the pattern
variable as elaborated on in Section 4.1.1.

Run-time Paths

In the previous virtual machine (see [JWJ00]), a run-time path was implemented
using a class whose instances represented particular run time paths. Also, a
separate class for each type of run-time step was used. During compilation
of a run-time path into Java source code, we simply in-line each of the calls
to traverse a step of this particular run-time path, thereby generating code
customized to traverse this run-time path.

As an example, the run-time path of a PUSH-ptn bytecode is shown in Figure 4.3.
The run-time path consists of an out-step and a direct-lookup-step (see page
37 in [JWJO0O] for an elaboration). The result of compiling a call to a traverse

4.1. FROM GBETA BYTECODES TO JAVA SOURCE CODE 31

method of the run-time path instance corresponding to {<-1,"integer/3"} is
shown in Figure 4.5. It contains the code to traverse the non-final step <-1 and
the final step "integer/3", respectively (we refer to Table 5.1 on page 37 in
[JTWJ00] for an explanation of the difference between non-final and final steps).

The generated code is customized and reuses variables. This is elaborated on
in the next section.

‘ + PUSH-ptn {<-1,"integer/3"} ‘

Figure 4.3: A bytecode with a run-time path as argument

: public String compileExecute(String baseIndent, String
> indent, int level) throws Exception {

¢ runtimePath.compileTraverse(baseIndent, indent, level)

¢ "vm.allPurposeStack.pushPattern(" + aPattern + ");"

10}

Figure 4.4: Java method to compile the PUSH-ptn bytecode

+ PartObject partObject_0_2 = context;

2 // compileTraverse in class OutRuntimeStep

s for (int int_0_3 = 0; int_0_3 < 1; int_0_3++) {
4 partObject_0_2 = partObject_0_2.mixin.origin;
s }

¢ // compileTraverselast in class LookupDirectRuntimeStep

s Here code to traverse a final lookup direct step
s 1s generated

Figure 4.5: A compiled run-time path

Variable System

Compiling main parts, attributes, instructions, and run-time paths leads to
usage of a lot of temporary variables. A method to reuse the variables is needed.

32 CHAPTER 4. IMPLEMENTING THE EXTENSIONS TO GVM

The issue of reusing as many variables as possible when compiling bytecodes can
be compared to the issue of assigning variables to machine registers [App98] in
that we want to reuse variables which are no longer needed, just as machine
registers are assigned to new variables when their current ones are no longer
“alive”.

A naive solution to the problem is to not reuse any temporary variables at all.
This solution is very simple, but it wastes memory by allocating space for new
variables when existing ones could be reused.

The scheme we employ considers the (lexical) scoping rules of Java. In the
generated Java code, an arbitrary number of nested scopes may exist.

Variables declared in an outer scope are visible in subsequent inner scopes,
but not the other way around. The Java scoping rules dictate this. To use
these scoping rules correctly, we have developed a system in which variables are
“checked out” and “checked in”.

A variable is “checked out” the first time it is needed in the compileExecute
method of a bytecode and “checked in” when it is no longer needed in that
method. A check out specifies both the type of a variable (e.g., int), and the
Java scoping level at which it will be used.

If a check out of a particular variable type at a particular Java scope level is
attempted and no variable of that type is declared at a scope level less-then or
equal to the one specified, then a new variable is generated, added to the pool
of declared, checked out variables, and used. Otherwise a variable is moved
from a pool of declared, checked in variables to the pool of declared, checked
out variables and used.

A check in of a variable simply returns it to the pool of declared checked in
variables. It is the responsibility of each bytecode to ensure that variables
potentially declared in a scope introduced in that bytecode (e.g., a SimpleIf)
are purged from the pool of declared, checked in variables when that scope level
ends.

4.2 Static Patterns

Though gbeta allows for the type-safe creation of patterns that are not stati-
cally determined (as opposed to BETA, [Ern99al), their use in real programs
is relatively infrequent compared to the use of patterns that are statically de-
termined (see the programs included in the gbeta distribution for examples).
Consequently, it makes sense to optimize for the case in which one or more of
the patterns created in a gheta program are statically determined. Section 3.2
elaborates on our effort to speed up creation of such statically determined pat-
terns. The intricacies associated with creating instances of statically determined
patterns efficiently was discussed in Section 2.3.

4.2. STATIC PATTERNS 33

4.2.1 Static Patterns versus Dynamic Patterns

In a more conventional, strongly-typed object-oriented languages such as Java,
classes are monolithic entities that are always determined in their entireties at
compile-time and loaded at run-time?.

In contrast, patterns in gbeta are lists of mixins determined either at compile-
time or at run-time. However, patterns are associated with one or more en-
closing objects [Ern01b], meaning that they exist only at run-time, just like the
Class objects of Java.

As noted above, gbeta allows for the type-safe creation of two kinds of patterns:
compile-time patterns and run-time patterns. Consider the minimalistic gbeta
program shown in Figure 4.6.

:+ —— betaenv:descriptor --
2 (# p: (# #);

s q: integer&p(:object:)
. #)

Figure 4.6: A statically determined pattern and a non-statically determined
pattern in gbeta

This program declares two pattern attributes, p and q. The p attribute is known
statically to be the (# #) pattern whereas q is known statically only to be the
pattern combination [ErnOla] of the integer basic pattern and the p pattern
type cast to the object pattern, i.e., the pattern whose list of mixins is the
empty list.

Figure 4.7 shows the result of compiling the code shown in Figure 4.6 to the gbc-
format using the gbeta compiler in version 0.81.13 and with all optimizations
turned on.

The creation of dynamic patterns such as q in Figure 4.7 in gVM was elaborated
on in [JWJ00]. The following section discusses creating static patterns in gVM,
such as p in Figure 4.7.

4.2.2 Creating Static Patterns

Because attribute p in Figure 4.6 is known statically, its initialization code con-

tains a single bytecode which is a member of the INSTALL-static family. These

bytecodes include INSTALL-static-ptn, INSTALL-static-obj, INSTALL-qua-static-ptn,
and INSTALL-qua-static-obj.

4In Java, access to representations of loaded classes (or Class objects) are what give pro-
grams the capability of run-time introspection [Fla99] (or self-reflection); a Java program can
look at any class and determine its superclass, what methods it defines, and so on.

34 CHAPTER 4. IMPLEMENTING THE EXTENSIONS TO GVM

: MainPart ("¢28-70"

2 IIP/OII: (

E INSTALL-static-ptn 0 1
o)

5 "q/l": (

6 PUSH-ptn_"integer"
7 PUSH-ptn "p/0"

s MERGE-ptn

9 INSTALL-ptn 1

10)

|

12)

14 MainPart("¢34-38"

15|

16)

1« Pattern(1
1» composite static slice = ‘34-38 with origin at

20)

Figure 4.7: Statically determined and non-statically determined patterns in the
gbc-format

The INSTALL-static bytecodes, like the INSTALL bytecodes described in [JW.J0O]
page 30-31, assign entities (i.e., patterns, objects, and references to patterns and
objects, respectively) to attribute arrays in part objects.

However, whereas the operand pattern of an INSTALL bytecode results from
the execution of any number of bytecodes occurring before the INSTALL byte-
code in the initialization code for an attribute (in particular, ADD-mainpart ...
origin ... and MERGE-ptn bytecodes), the operand pattern of an INSTALL-static
bytecode is created entirely from information available in a Pattern entry in the
same gbc-format file as the INSTALL-static bytecode itself. The same holds
true for the operand patterns of the rest of the static bytecodes generated by
version 0.81.13 of the gbeta compiler with all optimizations turned on, namely
NEW, _static-ptn->obj,NEW, _static-ptn->tmp, and PUSH-static-ptn. Once
created, the operand patterns of the static bytecodes are cached, as elaborated
on in Section 4.2.4.

The NEW, _static-ptn->obj bytecode instantiates its operand pattern and pushes
the resulting instance onto the expression stack. The NEW, _static-ptn->tmp
bytecode instantiates its operand pattern and pushes the resulting instance onto
the stack of temporaries. The PUSH-static-ptnpushes its operand pattern onto
the expression stack. In comparison to their dynamic counterparts, each of the

4.2. STATIC PATTERNS 35

static bytecodes has an additional argument that maps it to a Pattern entry.
For example, in Figure 4.7, the INSTALL-static-ptn 0 1 bytecode maps to the
Pattern entry with index 1. There is a many-to-one relation between static
bytecodes and Pattern entries, meaning that no Pattern entry is redundant.

Figure 4.8 shows another example of a Pattern entry.

+ Pattern(3

2 composite static slice = ¢32-36 with origin at {}
E integer static slice with origin at {<-2}

i)

Figure 4.8: A pattern entry in a gbc-format file

Like the index of the Pattern entry (1) in line 18 of Figure 4.7, the index of
the Pattern entry (3) in line 1 of Figure 4.8 associates the Pattern entry with
one or more of the static bytecodes. The remainder of the Pattern entry
in Figure 4.8 describes the mixins of a statically known pattern in order from
most-general mixin to most-specific mixin. This pattern has two mixins.

Line 2 indicates a mixin whose main part has id ¢32-36 and whose origin is
in the part object obtained by traversing the run-time path {}. A mixin des-
ignated composite is user-defined. Line 3 indicates a mixin whose origin is in
the part object obtained by traversing the run-time path {<-2}. A mixin des-
ignated integer is predefined and of the integer variety. Several varieties of
predefined mixins are possible in a Pattern entry: integer, real, char, and
others. A predefined mixin is not associated with a main part in the input gbc-
format program and has always origin in the predefined part object [JWJ00].
Consequently, the run-time path information of a predefined mixin can be (and
is) ignored.

As noted above, a Pattern entry describes the structure of a statically known
pattern. In effect, its main purpose is the same as the prototype data structure
[BSO01] in the Mjglner implementation of the BETA system?®.

In the Mjglner implementation, exactly one prototype data structure is created
for each object descriptor in the source code and each object is directly asso-
ciated with its prototype data structure. A prototype data structure describes
the structure of a pattern (and hence the layout of its instances) for the purpose
of garbage collection and contains a v-table used in the allocation of virtuals.

In contrast to its Mjglner implementation counterpart, a Pattern entry (or
rather, a run-time representation of it) is not directly associated with any ob-
jects, it describes the structure of a pattern for the purpose of creating a run-time
representation of it, and contains no v-table. Because not all patterns in gbeta
are known statically, allocating virtuals via static v-tables will not work, in gen-

5The prototype term as used in this section is unrelated to the same term as used in Section
2.3 where we discussed the prototype paradigm for object creation.

36 CHAPTER 4. IMPLEMENTING THE EXTENSIONS TO GVM

eral. Also, since garbage collection in gVM is handled by an underlying Java
virtual machine, it is not an incentive for run-time representations of Pattern
entries to describe the structures of patterns. As a consequence of these two
factors (no use for v-tables and no need for garbage collection in gVM), run-time
representations of Pattern entries are not associated with objects.

4.2.3 Anonymous Patterns

An anonymous pattern is a pattern with no name. It is used to specialize the
behaviour of an instance of a pattern. Figure 4.9 shows how object behaviour is
specialized with an anonymous pattern. In line 5, the execution of the p pattern
coerced into an object outputs:

This is normal behaviour.

In line 6, however, the execution of the p pattern coerced into an object and
specialized with the anonymous pattern

(# do ’This is specialized behaviour.\n’ -> stdio #)
outputs:

This is normal behaviour. This is specialized behaviour.

+ -- betaenv:descriptor --

2 (#

s p: (# do 'This is normal behaviour.\n’ -> stdio; INNER #)
4 do

£ Ps

¢« p(# do ’This is specialized behaviour.\n’ -> stdio #)

7 #)

Figure 4.9: Using anonymous patterns to specialize object behaviour

The anonymous patterns of gbeta (and hence BETA) are similar to the anony-
mous inner classes of Java. An anonymous inner class in Java combines the
syntax for class definition with the syntax for class instantiation as does an
anonymous pattern in gbeta when used in an object context; e.g., as an impera-
tive®. In effect, if an object is used only once, using anonymous syntax will help
improve readability since definition of the class (in Java) or pattern (in gbeta
and BETA) and use of the object occur in exactly the same place.

Anonymous patterns are determined statically. Whereas the gbeta compiler
used in [JWJO00] and in version 0.81.13 without any optimizations turned on
generates a pair of PUSH-ptn and ADD-mainpart ... origin ... bytecodes
for each use of an anonymous pattern, in version 0.81.13 with all optimizations

6 An imperative in BETA or gbeta is an object context, meaning that whatever category of
entity occurs in an imperative (or “statement”) is implicitly coerced into an object [Ern99a].

4.2. STATIC PATTERNS 37

turned on it generates a single PUSH-static-ptn bytecode instead. Conse-
quently, anonymous patterns can be created faster than dynamically determined
patterns (see Section 5 for details) and then cached, as elaborated on in the fol-
lowing section.

4.2.4 Caching Static Patterns

In gVM, every static pattern created is cached. Our pattern caching scheme
ensures that only in the unlikely event that the same pattern is declared multiple
times will it be created more than once.

A static pattern is cached in one of two ways.

If it is created as the result of the execution of one of the INSTALL-static
bytecodes (as explained in Section 3.2), it is cached in the attributes array
[JWJO00] in the part object whose attribute it is initializing. Static patterns
cached in this way are indistinguishable from dynamic patterns in terms of how
they are cached and how they are accessed. Both kinds of patterns are looked
up by traversing a run-time path. The INSTALL-static bytecodes occur only
in attribute initialization code.

On the other hand, if a static pattern is created as the result of the execution
of a NEW,_static-ptn->obj bytecode, a NEW, _static-ptn->tmp bytecode, or
a PUSH-static-ptn bytecode, it is cached in an array in the current part object
dedicated to caching static patterns. Every part object whose mixin is associated
with a main part whose do-part contains one or more occurrences of these three
bytecodes has such an array and each such occurrence is statically assigned a
unique position in the array for caching of its operand static pattern. Static
patterns cached in this way are accessed without traversing a run-time path
because the appropriate pattern cache is always located in the current part
object. Hence, looking up a static pattern in a dedicated static pattern cache
requires accessing an array at a statically known index only.

For best performance, lookup by accessing an array at a statically known index
is preferable to lookup by traversing a run-time path. However, a static pattern
created as the result of the execution of one of the INSTALL-static bytecodes
cannot be guaranteed to be looked up only from within its own part object
without inspecting every step of every run-time path in the entire input program.
Although such an inspection is feasible and would also identify those attributes
that require initialization (i.e., those attributes referenced in lookup steps), we
consider this an area of future work. Consequently, a static pattern created as
the result of the execution of one of the INSTALL-static bytecodes must be
looked up by traversing a run-time path.

The first execution of a NEW, _static-ptn->obj bytecode, a NEW, _static-ptn->tmp
bytecode, or a PUSH-static-ptn bytecode always creates the operand pattern
and caches it whereas subsequent executions always fetch it from the cache.

In effect, the pattern caching scheme in gVM does not dynamically adapt to

38 CHAPTER 4. IMPLEMENTING THE EXTENSIONS TO GVM

the actual usage patterns (no pun intended) of patterns — like the optimizing
compiler in the SELF system [USCH92| recompiles (and optimizes) code or
the Java HotSpot VM [hot01] in-lines method calls based on the actual flow of
execution. In one sense, our caching scheme is wasteful of memory. In another,
however, its simplicity keeps the run-time system size to a minimum, one of the
traditional virtues of compiled languages like C.

Chapter 5

Performance Results

or Why gVM is the Execution En-
gine of Choice

In this chapter we document that gVM in compilation mode is indeed faster
than gVM in interpretation mode and that the generality of gbeta comes at a
cost. We present results that show that the goal of creating a virtual machine
which is faster than the one employed by Erik Ernst [Ern99a] has been achieved.
These results provide empirical evidence for the conclusions made in Section 2.
Results are presented in Sections 5.2 and 5.3.

We start with elaborating on our benchmark programs and the methodology
used to provide the results presented in Sections 5.2 and 5.3, respectively.

5.1 Methodology

The essential ingredient in our methodology is executing a suite of very simplistic
benchmark programs using gbeta, gVM, and BETA binaries, respectively.

The BETA binaries are included in order to establish a context for our bench-
mark results. They are the results of compiling the benchmark programs with
the Mjglner BETA system compiler in version 5.2.1.

Each benchmark program evaluates the same expressions and executes the same
statements across all execution engines to ensure that it provides comparable
performance results. The benchmark programs are presented in Appendix A.
The gbeta and BETA programs are identical except for the fact that the latter
have the header

instead of only -betaenv:descriptor-.

Each benchmark program in the suite is designed to exercise either a high-level
BETA (and hence gbeta) language construct or a low level-level implementa-
tion of a run-time path traversal (or equivalent for BETA). This enables us to

40 CHAPTER 5. PERFORMANCE RESULTS

ORIGIN ’~beta/basiclib/betaenv’
-- program:descriptor --

Figure 5.1: header

compare the performance of the different execution engines.

The language constructs exercised in the benchmark programs are:

e assignment of an object coerced into an object reference to an object
reference (objectReference)

e assignment to an object (assignment)
e addition of two integers (arithmetic)

e assignment of a pattern coerced into a pattern reference to a pattern ref-
erence (patternReference)

The low-level implementation of run-time path traversals exercised in the bench-
mark programs are:

e traversal of a run-time path with one direct-lookup-step (runtimePath1)
e traversal of a run-time path with one indirect-lookup-step (runtimePath?2)

e traversal of a run-time path with one up-step and one direct-lookup-step
(runtimePath3)

e traversal of a run-time path with one out-step and one direct-lookup-step
(runtimePath4)

We have chosen these particular benchmark programs because they emphasize
both high-level and low-level aspects. Also, we believe that they will reveal the
main differences between gbeta and BETA and thus support the conclusions in
Section 2.

gVM in interpretation mode and gVM in compilation mode both depend on the
output from the gbeta compiler. Consequently, if gbeta scores particularly low
in a benchmark, we expect gVM in interpretation mode and gVM in compilation
mode to do so also. This means that we need only compare gheta and BETA.
The results of these comparisons can be extrapolated to gVM in interpretation
mode versus BETA and gVM in compilation mode versus BETA, respectively.

It may seem odd to include both a benchmark that assigns one (pattern coerced
into a) pattern reference to another pattern reference and a benchmark that
assigns one (object coerced into an) object reference to another object reference
in our benchmark suite. One could argue that there is no need for both of them

5.2. GVM AND BETA PERFORMANCE RESULTS 41

because pattern reference assignment and object reference assignment is very
similar in gbeta. In gbeta, assignment to a pattern reference involves looking
up an attribute (i.e., checking its qualification) and storing a value. In BETA,
however, assignment to a pattern reference involves looking up an attribute,
creating a “struct” object [KLM93], and then storing a value.

To get accurate average execution times, each benchmark program is executed
a number of times and the total time spent on execution is divided by the
number of executions. The number of executions of a particular benchmark
program is determined by the differences in execution times. If the execution
times of a benchmark program do not differ by more than 15 per cent when
the benchmark program is executed 1, 2, 3, 4, 5, and 6 times, respectively, we
consider the results accurate enough to be valid.

The limit at 15 per cent distinctly orders the execution engines in terms of
performance when executing each of the benchmark programs. It is determined
by calculating the differences between the values in each pair of cells in a row for
all rows of Table 5.1 and remembering the minimum difference for each row. In
order to get a distinct ordering of the execution engines in terms of performance,
it is only necessary to remember the minimum difference for each row. However,
we use the limit at 15 per cent as a global value. This value is less than the
difference between the values in the cells (arithmetic, gVMi) and (arithmetic,
gVMc) in Table 5.1 and this difference is the global, minimum difference.

We document that average execution times do not differ by more than 15 per
cent by presenting histograms of the differences in Appendix B.

Each benchmark program is executed using each of the four different execution
engines: BETA, gVM in interpretation mode, gVM in compilation mode, and
gbheta. To compare only times spent on executing the benchmark programs,
times spent on parsing (for both gVM in compilation mode and gVM in inter-
pretation mode) and parsing and static analysis (for gbeta) are not included in
execution times.

5.2 gVM and BETA Performance Results

In Table 5.1 we show relative execution times for each of the benchmark pro-
grams executed 6 times on a lightly-loaded Solaris 8 machine with two 450 MHz
processors and 2 GB of memory.

For each benchmark the average execution time for BETA is set to 1 and the
average execution times for the rest of the execution engines are relative to this
value.

Table 5.1 shows the distinct ordering of the execution engines in terms of perfor-
mance. BETA is cheapest, gVM in compilation mode is second cheapest, gVM
in interpretation mode is third cheapest, and gbeta is most expensive. To get
the results in seconds, we refer to Table C.1 in Appendix C.

42 CHAPTER 5. PERFORMANCE RESULTS

program BETA | gVMc | gVMi | gbeta
objectReference | 1 17,8 54,2 724,2
assignment 1 22,25 61 683,5
arithmetic 1 90,25 113 1358,5
patternReference | 1 17,22 38,56 401
runtimePath1 1 21,33 71,67 1003,67
runtimePath2 1 23 71 985,33
runtimePath3 1 31,33 79,33 1296,67
runtimePath4 1 35,67 79,33 1559,33

Table 5.1: Relative average execution times for each of the benchmark programs

In Table 5.1, notice the gbeta (relative) execution times for the runtimePathl
and runtimePath3 benchmark programs. These values clearly show that traver-
sals of longer run-time paths (with an up-step) are more expensive than traver-
sals of shorter ones (without an up-step) in gbeta, and thus that traversal of a
single run-time up-step is more expensive in gheta than in BETA.

The reason is that traversals of an up-step (or a down-step) and a direct-lookup-
step (or an indirect-lookup-step) are combined in BETA and involve only an
inexpensive access at a statically known offset within an object (because part
objects are in-lined in their containing object). In gbeta, however, traversals of
an up-step and a direct-lookup-step require following a reference from a more
specific part object to a more general one and an access at a statically known
offset within the more general part object.

Adding integers in gbeta is more expensive than in BETA. Table 5.1 shows this.
Every integer value in BETA is represented as an immediate descriptor [Shi01]
and boxed only when a reference is required. In contrast, integers in gbheta are
genuine objects. As a result, accessing the value of an integer in gheta requires
an indirection (or dereference).

Table 5.1 shows that it is more expensive to traverse an out-step than it is to
traverse an up-step in gbeta. It also shows that traversing an indirect-lookup-
step is less expensive than traversing a direct-lookup-step in gheta. These results
are unexpected and we attribute them to inaccuracies of measurements. BETA
and gbeta use a similar global lookup strategy to perform out-steps. Also,
BETA performs a lookup-direct-step by accessing the self (or this) object at a
statically known offset whereas gbeta does it by accessing the current part object
at a statically known offset. For both execution engines, an indirect-lookup-step
requires an additional indirection over a direct-lookup-step.

Another conclusion which can be drawn from Table 5.1 is that pattern refer-
ence assignments are cheaper than object reference assignments in gbheta. As
explained above, a pattern reference assignment in BETA requires the creation
of a struct object because there are no pattern attributes in part objects.

5.3. PERFORMANCE IMPACT OF USE OF INFORMATION ABOUT
STATIC PATTERNS

43

program | gbeta [s] | gbeta [d] | gVMc [s] | gVMec [d]
merge2 1 1.33 1 2,45
mergeb 1 2.78 1 3.74

Table 5.2: Relative average execution times for merge2 and merge5 on gbeta
and gVM in compilation mode, respectively

5.3 Performance Impact of Use of Information
about Static Patterns

In Table 5.2 we show (relative) average execution times for gbeta and gVM in
compilation mode, respectively.

Two benchmark programs have been executed on each execution engine. These
benchmark programs are shown in Appendix A and do the following.

e merge 2 patterns (merge2)

e merge 5 patterns (merge5)

Each benchmark program is executed with and without using information about
statically determined patterns and iterates pattern creation a large number of
times. Each iteration creates a pattern using static information about it (in the
[s] column of Table 5.2) or by merging existing patterns (in the [d] column of
Table 5.2).

The purpose of these benchmarks is to determine the number of pattern merges
that makes it cheaper to create a pattern using static information about it (if
available).

We used Erik Ernst’s integrated gheta compiler and interpreter in version 0.81.13
with the arguments -fp -fb -fi -fq -fl and -g to generate the gbc-format
file used for gVMc [s] and -g only to generate the gbc-format file used for gVMc
[d].

The -fp -fb -fi -fq -fl arguments instruct the compiler to make use of
knowledge about statically determined patterns, and the -g argument tells it to
generate gbc-format files.

For gbeta [s] we used the aforementioned integrated gbheta compiler and in-
terpreter with the -f* and -r arguments. For gbeta [d] we used it with the
-r argument only.

The -f* argument instructs the compiler and interpreter to use all possible
optimizations, and the -r argument tells it to output execution time in clock
ticks®.

1'We convert clock ticks to seconds by dividing by the number of clock ticks per second.

44 CHAPTER 5. PERFORMANCE RESULTS

The gbeta [s] results presented in Table C.2 in Appendix C are set to 1 in
Table 5.2 and are used to calculate the execution times for gbeta [d] relative
to gbeta [s].

Likewise, the results for gVMc [s] in Table C.2 are set to 1 in Table 5.2 and
used to calculate the execution times for gVMc [d] relative to gVMc [s].

We used the same method to get accurate (relative) average execution times in
Table 5.2 as for Table 5.1. The limit is different because the global, minimum
difference depends on the values in Table 5.2 and not Table 5.1.

Table 5.2 indicates that it is always more expensive to create patterns by merging
existing ones than it is to create them from static information about them.
However, the patterns merged in the benchmark programs are special because
each has only a single mixin and it is always associated with the (# #) main part.
Whether these results are valid in the case of merging more general patterns
remains to be determined.

Chapter 6

Conclusion

The gbeta virtual machine (gVM) and its theoretical foundation were presented.
gbeta is an extension of the BETA language with support for new features
such as dynamic specialization and propagating pattern combination. gVM is a
stand-alone Java implementation of a virtual machine for executing gbc-format
programs generated by the gbeta compiler and interpreter [Ern99a].

gVM was created as a platform for

e experimenting with different schemes to improve performance over that
of the existing gbeta interpreter [Ern99a] as well as over that of our own
gbe-format program interpreter [JWJO00]

e running benchmarks to obtain performance results for comparisons with
a (Mjglner) BETA implementation and the two existing interpreters in
order to determine the performance penalty incurred by a gbeta execution
engine for supporting the generality of gbeta

Early on, we realized that inherent differences between gheta and BETA would
prevent us from reaching BETA implementation performance in gVM. The most
significant of these differences in terms of impact on performance is the general
support for pattern combination in gbeta.

In order to narrow the gap to the performance of the BETA implementation,
several ideas from the known literature and the BETA implementation were
considered and adaptations to a gheta context were attempted.

A scheme to initialize the attributes of objects in a safe order was considered,
but ultimately rejected. Such a scheme would allow us to omit certain run-time
checks. However, it would also restrict the gbeta programmer in the kinds of
programs he or she could write because of the undecidable nature of the prob-
lem. A number of ideas dealt with statically determined patterns or instances
of statically determined patterns. Representing attributes of part objects of

46 CHAPTER 6. CONCLUSION

instances of statically determined patterns in origin part objects to avoid out-
steps or in the most-specific part object to avoid up-steps and INNER calls were
two. Another idea was creating instances of statically determined patterns by
copying prototype objects in order to avoid executing attribute initialization
code more than once. All three of these ideas were rejected on grounds of no
apparent, generally applicable implementations, Java related implementation
difficulties, and/or no performance benefits.

The extensive (and exclusive) use of statically determined patterns in the BETA
implementation was an incentive to optimize for the case in which one or more
patterns created in a gbeta program are statically determined. Information
available in every gbc-format file allows us to create these patterns efficiently
and a simple caching scheme provides fast access to them once created.

A couple of more traditional optimizations were also implemented in gVM.
Compiling to Java source code and the class file format instead of executing
an input gbc-format program directly eliminates a layer of interpretation while
producing platform-independent code suitable for distribution. In-lining method
calls trades of size for speed by physically replacing method calls with method
bodies.

The generality of gbeta does not come free. The benchmarks show that certain
language constructs in gbeta are relatively more expensive than others than in
BETA. However, the language features exercised in most of our benchmarks are
not inherently gbeta-only. In fact, we believe that continued development of the
gbeta compiler will ensure that the cost of the generality of gbeta will be paid
only by those who use it. One particular crude way to achieve this is to integrate
a BETA compiler with the gbeta compiler and use the BETA part whenever an
input program contains BETA syntax. A more sophisticated approach would
use finer granularity than an entire program to determine which compiler to
use, but would possibly require auxiliary syntax provided by the programmer
as well.

Part 11

Appendices

Appendix A

Benchmarks Programs

(* assignment of an object coerced into an object
reference to an object referencex)
-- betaenv:descriptor --

(#
simplePattern: (# #);
simpleObject: @simplePattern;
reftoSimpleObject: “simplePattern;

do
(for 750000 repeat
simpleObject[] -> reftoSimpleObject[];

for)

#)

Figure A.1: objectReference.gb

50

APPENDIX A. BENCHMARKS PROGRAMS

(* assignment to an object *)
--betaenv:descriptor--

(#
i: Qinteger;
do

(for 750000

repeat
3 -> 1i;
for)

Figure A.2: assignment.gb

(* addition of two integers *)
--betaenv:descriptor--

(#

i: Qinteger;
do

1->i;

(for 750000

repeat
(i+i) -> 1i;

for)

#)

Figure A.3: arithmetic.gb

51

(* assignment of a pattern coerced into a pattern
reference to a pattern referencex)

-- betaenv:descriptor --

(#
simplePattern: (# #);
refToSimplePattern: ##simplePattern;

do

(for 750000 repeat
simplePattern## -> refToSimplePattern##;
for)
#)

Figure A.4: patternReference.gb

(* traversal of a run-time path with one
lookupDirectStep *)
--betaenv:descriptor--

(#
anObject: Q(# #)

do

(for 750000
repeat
(* PUSH-obj,DISCARD *)
anObject[];
for)
#)

Figure A.5: runtimePathl.gb

52

APPENDIX A. BENCHMARKS PROGRAMS

(* traveral of a run-time path with one lookup

indirect step *)
--betaenv:descriptor--

(#

anObject: Q(# #);
reftoanObject: “object;
do

anObject[] -> reftoanObject[];
(for 750000
repeat
(* PUSH-obj,DISCARD *)
reftoanObject[];
for)

#)

Figure A.6: runtimePath2.gb

53

(* traversal of run-time path with one up step

and one lookupDirect step *)
--betaenv:descriptor--

(#
a:(#
anObject: Q(# #);
do
INNER;
#);

b:0a(#
do
(for 750000
repeat
anObject[];
for)

#);
do

b;
#)

Figure A.7: runtimePath3.gb

54

APPENDIX A. BENCHMARKS PROGRAMS

(*x traversal of a run-time path with one out step
and one lookup direct stepx)
--betaenv:descriptor--

(#
anObject: @(# #);
a:e(#
do
(for 750000
repeat
anObject[];
for)

#);
do

a;

#)

Figure A.8: runtimePath4.gb

(* Merging 2 patterns *)

--betaenv:descriptor--
(#

a: (# #);

b: a(# #)
do

(for 750000
repeat
a & b;
for)
#)

Figure A.9: merge2.gb

55

(* Merging 5 patterns *)

--betaenv:descriptor--
(#

(# #);

a(# #);

b(# #);

c(# #);

d# #)

O A0 T W

do

(for 750000
repeat
a&b&c&dé&e;
for)
#)

Figure A.10:

mergeb.gh

56

APPENDIX A. BENCHMARKS PROGRAMS

Appendix B

Histograms

In this appendix we document the accuracy of the average execution times of
our benchmark programs. We do this by depicting histograms.

We executed our benchmark programs 1, 2, 3, 4, 5, and 6 times, respectively.
The histograms have a block representing the average execution time for each
of these times.

As an example, the histograms depicted in Figure B.1 show the differences in
average execution times relative to 1 for the assignment benchmark program
when executed from 1 to 6 times, and for each of the four execution engines.
We chose to increase the number of iterations of the loop in the assignment
benchmark program for the BETA binary to get comparable results for the
differences in execution times. This alteration does not affect the correctness of
the numbers in 5.1. All differences in execution times relative to BETA are still
correct.

58 APPENDIX B. HISTOGRAMS

15k gbeta:assignement ——— |

05 | 4

R.A.E times
R
1

0 =t =2 n=5 =6

n=3 n=24_
Number of Executions

gvmi:assignment ———

05 4

R.A.E times
=
1

0 ==t n=Z =5 =6

n= n=24_
ﬁ\lumber of Executions

15 b gvmc:assignment ——— |

R.A.E times
=
1

0 =t =2 =5 =6

n= n=2_
dNumber of Executions

15 | beta:assignment —— |

R.AE times
=
1

0 —n=t n=2 =5 =6

n=dNumber of Exgzﬁtions
Figure B.1: Differences in average execution times for the assignment bench-
mark program

Figure B.1 shows that there is no variation in average execution time greater
than 15 per cent for any of the execution engines. The same goes for any
combination of benchmark program and execution engine so our conclusions
about an ordering of the execution engines in terms of performance (in Section
5.1) is correct. For more histograms we refer to [JWJ01].

Appendix C

Performance Results

Benchmark Program | BETA | gVMc | gVMi | gbeta
objectReference 0,05 0,89 2,71 36,21
assignment 0,04 0,89 2,44 27,34
arithmetic 0,04 3,61 4,52 54,34
patternReference 0,09 1,55 3,47 36,09
runtimePath1 0,03 0,64 2,15 30,11
runtimePath2 0,03 0,69 2,13 29,56
runtimePath3 0,03 0,94 2,38 38,9
runtimePath4 0,03 0,66 2,27 46,77

Table C.1: Average executions times for each of the benchmark programs (in

seconds)

Benchmark Program | gbeta [s] | gbeta [d] | gVMc [s] | gVMc [d]
merge2 63,53 84,53 4,57 11,20
merged 98,57 273,55 8,63 32,24

Table C.2: Average execution times for each of the merge2 and merge5 bench-

mark programs (in seconds)

60

APPENDIX C. PERFORMANCE RESULTS

Bibliography

[App9g]

[BC90]

[Boy01]

[BSO1]

[Cal01]

[Col01]

[Dal01]

[Eck98]

[Eif01]

[Ern99a]

[Ern99b]

Andrew Appel. Modern Compiler Implementation in Java. Cam-
bridge University Press, 1998.

Gilad Braha and William Cook. Mixin-based Inheritance. In Pro-
ceedings ECOOP’90, pages 303 - 311. ACM Press, 1990.

Nik Boyd. Toward Smalltalk and Java Language Integration. In-
ternet URL http://www. jps.net/nikboyd/papers/sttojava, june
2001.

Michael Larsen BETA Support. Email from BETA support. Internet
URL www.gbeta.dk/emailfromsupport.phtml, june 2001.

John D. Callos. The Pareto Principle (a.k.a. The 80:20 Rule). Inter-
net URL http://www.4hb.com/08jcparetoprinciple.html, june
2001.

John Robert Collins. Portable C Programming. http://users.
erols.com/johnrobertcollins/portabc.html, March 2001.

Jeff Dalton. A Brief Guide to CLOS. Internet URL http://wuw.
aiai.ed.ac.uk/~jeff/clos-guide.html, March 2001.

Bruce Eckel. Thinking in Java. Prentice Hall PTR, first edition,
1998.

ISE Eiffel. Internet URL http://www.eiffel.com, june 2001.

Erik Ernst. gbeta — a Language with Virtual Attributes, Block Struc-
ture, and Propagating, Dynamic Inheritance. PhD thesis, Depart-
ment of Computer Science, University of Aarhus, Arhus, Denmark,
1999.

Erik Ernst. Propagating Class and Method Combination. In Pro-
ceedings ECOOP’99, LNCS 1628, pages 67 - 91, Lisboa, Portugal,
June 1999. Springer-Verlag.

62

BIBLIOGRAPHY

[Ern01a]

[Ern01b]

[Fla99]

[Har01]

[hot01]

[Joy01]

[TWJ00]

[TWJ01]

[KLMO93]

[KR8S]

[MPN93]

[OWB96]

[PJCO01]

[Rijo1]

Erik Ernst. Combination of Patterns Everywhere. In-
ternet URL http://www.daimi.au.dk/~eernst/gbeta/advanced_
index7.html, june 2001.

Erik Ernst. Tutorial on gbeta. Internet URL http://www.daimi.
au.dk/"eernst/gbeta, March 2001.

D. Flanagan. Java in o Nutshell. O’Reilly & Associates, Inc., third
edition, 1999.

Jonathan Hardwick. Java Microbenchmarks. Internet URL http:
//www.cs.cmu.edu/~jch/java/benchmarks.html, june 2001.

The java hotspot virtual machine. Internet URL http:
//java.sun.com/products/hotspot/docs/whitepaper/Java_
HotSpot _WP_FiY%nal_4_30_01.html, March 2001.

Tan Joyner. The C++ Critique. Internet URL http://www.elj.
com/eiffel/ij/inheritance/mi, March 2001.

Ricki Jensen, Michael Wojciechowski, and Christian Jgrgensen. A
Virtual Machine Used to Execute Byte Codes. internal report, De-
partment of Computer Science, Institute for Electronic Systems, Aal-
borg University, Fredrik Bajers vej 7al 9220 Aalborg @st, Denmark,
2000.

Ricki Jensen, Michael Wojciechowski, and Christian Jgrgensen. The
gbeta Homepage. Internet URL http://www.gbeta.dk, March 2001.

Jorgen Lindskov Knudsen, Mats Lgfgren, and Ole Lehrmann Mad-
sen. Object-Oriented Environments: The Mjslner Approach, chap-
ter 26, pages 389-408. Prentice-Hall, 1993.

B. W. Kernighan and D. M. Ritchie. The C Programming Language.
Prentice Hall, second edition, 1988.

Ole L. Madsen, Birger M. Pedersen, and Kirsten Nygaard. Object-
oriented Programming in the BETA Programming Language. Addi-
son — Wesley Publishing Company, 1 edition, 1993.

G. Orwell, C. M. Woodhouse, and R. Baker. Animal Farm. Mass
Market Paperback, 1996.

100% Pure Java. Internet URL http://java.sun.com/
100percent/100PercentPureJavaCookbook-4_1_1.pdf, March
2001.

Chris Rijk. Binaries Vs Byte-Codes. Internet URL http:
//www.aceshardware. com/Spades/read.php?article_id=153,
March 2001.

BIBLIOGRAPHY 63

[Scho1]

[Shi01]

[SUHS6]

[Tol01]

[US91]

[USCH92]

Rene W. Schmidt. MetaBETA. Internet URL http://www.daimi.
au.dk/PB/506/PB-506.pdf, may 2001.

Olin Shivers. Supporting dynamic languages on the Java virtual
machine. Internet URL http://www.ai.mit.edu/people/shivers/
javaScheme.html, june 2001.

A. D. Samples, D. Ungar, and P. Hilfinger. SOAR: Smalltalk with-
out Bytecodes. In Norman Meyrowitz, editor, Proceedings of the
Conference on Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA), pages 107-118, New York, NY, 1986.
ACM Press.

Robert Tolksdorf. Programming Languages for the Java Virtual
Machine. Internet URL http://grunge.cs.tu-berlin.de/ tolk/
vmlanguages.html, March 2001.

D. Ungar and R. B. Smith. SELF: The Power of Simplicity. Lisp
and Symbolic Computation, 4(3), June 1991.

D. Ungar, R. B. Smith, C. Chambers, and U. Holzle. Object, Mes-
sage, and Performance: How They Coexist in Self. IEEE Computer,
25(10):53-64, Oct 1992.

