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Synopsis:

The Spi-calculus is a process calculus intended
for the description and verification of security
protocols. Abadi and Gordon have described
how common notions of correctness can be de-
scribed by means of behavioural equivalence
for the Spi-calculus. They suggest using test-
ing equivalence as the notion of behavioural
equivalence. However, proving testing equiva-
lence is hard, wherefore some alternative no-
tions of equivalence have been proposed.
Abadi and Gordon introduced the notion of
framed bisimilarity and Boreale et al. in-
troduced the notion of environment sensitive
bisimilarity. Both equivalences are already
known to be sound approximations of may-
testing equivalence.

In this report we show that framed bisimilarity
and a strong late version of environment sen-
sitive bisimilarity are in fact one and the same
relation. We have also formulated an early
version of framed bisimilarity, called frameless
framed bisimilarity, and shown that this is the
same as a strong early environment sensitive
bisimilarity.

Finally, we propose some modal logics for the
Spi-calculus and show that strong early and
strong late environment sensitive bisimilarity
can be characterized by these logics.
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Danish Summary

Denne rapport er dokumentation for projektgruppe E1-119b’s speciale pa Dat6-semesteret
foraret 2001 péa instituttet for datalogi, Aalborg universitet.

Projektets tema er semantik. Projektet omhandler forskellige bisimilariteter for Spi-
kalkylen. Vi har bevist, at der er interessante sammenhaenge mellem disse bisimilariteter,
og endvidere har vi foreslaet nogle modallogikker for Spi-kalkylen.

Spi-kalkylen er en proceskalkyle udviklet af Abadi og Gordon[3] med henblik pa be-
skrivelse og verifikation af sikkerhedsprotokoller. Abadi og Gordon har beskrevet hvor-
dan sikkerhedsegenskaber for sikkerhedsprotokoller kan udtrykkes ved hjelp af testingaekvi-
valens. Desveaerre er testingaekvivalens svaert at bevise, hvorfor der er foreslaet to bisimule-
ringsaekvivalenser for Spi-kalkylen, som er lettere at bevise.

Den forste af de foreslaede bisimuleringsakvivalenser kaldes framed bisimilaritet og blev
introduceret af Abadi og Gordon i [2]. En framed bisimulering relaterer processer i forhold
til et frame-theory par. Et frame-theory par indeholder information om hvilke navne pro-
cessernes omgivelser kender og hvilke beskeder sendt af processerne processernes omgivelser
ikke kan skelne mellem. Den sidste af de foreslaede bisimuleringsakvivalenser kaldes envi-
ronment sensitive bisimilaritet og blev introduceret af Boreale et al. i [6]. En environment
sensitive bisimulering relaterer konfigurationer bestaende af en proces og dens omgivelser.
Det er tidligere bevist, at bade framed bisimilaritet og environment sensitive bisimilaritet
er sunde tilnaermelser af testingaekvivalens.

Vi har defineret en steerk sen udgave af environment sensitive bisimulering og vist, at
steerk sen environment sensitive bisimilaritet kan bruges til at karakterisere framed bisi-
milaritet. Der gelder, at to processer er framed bisimileere i forhold til et frame-theory
par hvis og kun hvis disse processer indgar i to staerk sen environment sensitive bisimilaere
konfigurationer hvis omgivelser kan konverteres til det pagaldende frame-theory par. Beviset
for dette anvender blandt andet en alternativ karakterisering af framed bisimilaritet kaldet
fenced bisimilaritet. Desuden har vi defineret frameless framed bisimulering, som er en
tidlig udgave af framed bisimulering. Vi har bevist, at en steerk tidlig environment sensitive
bisimilaritet kan karakteriseres ved hjelp af frameless framed bisimilaritet. Endelig har
vi defineret nogle modallogikker for konfigurationer og vist, at steerk tidlig og staerk sen
environment sensitive bisimilaritet kan karakteriseres ved hjzlp af disse.
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Preface

This report is the Master Thesis of project group E1-119b on the Dat6 semester at the
Institute for Computer Science, Aalborg University.

The theme of the project is semantics. The project deals with different notions of bisim-
ilarity for the Spi-calculus. Interesting connections between these bisimilarities have been
proven, and some modal logics for the Spi-calculus have been proposed.

Source material will be referenced by a source number in square brackets, [source num-
ber], and the title and author of the source will be listed in the bibliography. Definitions, the-
orems, lemmas, corollaries, and examples, respectively, are numbered consecutively through-
out the report. Figures and tables, respectively, are numbered consecutively throughout each
chapter. For example, the first figure of chapter 3 will be referenced as figure 3.1. A list of
symbols used throughout the report can be seen on page vii.

Aalborg June 7, 2001.

Ulrik Frendrup Jesper Nyholm Jensen
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Glossary

Below are listed the notations used for sets, functions, predicates, and relations throughout
this report. They will be presented in order of appearance.

Sets
Set Ranged over by | Description Section
N a, b, c,d, k, m,n | Names. 2.1
V u, v Variables. 2.1
L K, L Expressions. 2.1
g G Guards. 2.1
Ag A Agents. 2.1
M M, N Messages. 2.1
Pr P,Q,R Processes. 2.1
Act e Process actions. 2.2
Fr fr Frames. 3.1
Th th Theories. 3.1
D) o Environments. 4.1
Z T, Y, 2 Environment variables. 4.1
T ¢ Environment messages. 4.1
r C Configurations. 4.2
Act, 1) Environment actions. 4.2
Q n Formula messages. 7.1
) 10) Logic consisting of formulae without free vari- 7.1
ables.
by 0] Base logic. 7.2
F,EM | ¢ Extensions of the base logic. Used to char- 7.2
acterize a strong early environment sensitive
bisimilarity.
LM 1) Logic used to characterize strong late environ- 7.3.2
ment sensitive bisimilarity.
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ThUu{T}

tension, with respect to a pair of mes-
sages, of a theory. T is an invalid theory
returned when there does not exist such
an extension.

Functions
Function | Type Description Section
e L - MuU{o} Function for evaluating expressions to 2.2
messages. 0 is a special symbol used
to express that an expression cannot be
evaluated to a message.
e G — {tt, ff} Function for evaluating guards. 2.2
T, T2 Th — P(M) Projection functions for theories. 3.2
£ FrxThx MxM — | Function for computing the smallest ex- 3.3
FrxThu{l} tension, with respect to a pair of mes-
sages, of a frame-theory pair. L is
an invalid frame-theory pair returned
when there does not exist such an ex-
tension.
A P(M) = P(M) The analysis of a set of messages. 4.1
S P(M) = P(M) The synthesis of a set of messages. 4.1
T P(M) = P(M) The irreducibles of a set of messages. 4.1
K P(M) = P(M) The knowledge of a set of messages. 4.1
core PM)x M- M The core of a message with respect to a 4.1
set of messages.
Fe EXxY—=>FrxTh Function for constructing a frame- 5.2
theory pair from two equivalent envi-
ronments.
FEsB P xT)— P(Frx | Function for constructing a framed 5.2
Th x Pr x Pr) bisimulation from a strong late environ-
ment sensitive bisimulation.
Oy Th— PN xN) Function for extracting the set of pairs 6.1
of names from a theory.
Owm Th—Th Function for extracting the subset of a 6.1
theory that does not contain pairs of
names.
¢ P(N) = PN x N) | Copy-pairing function for a set of 6.1
names.
= Th x M x M — | Function for computing the smallest ex- 6.2

continued on next page.
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continued from previous page.

Function | Type Description Section
F! YXxY¥—>Th Function for constructing a theory from 6.3
two equivalent environments.
FEESB P(L'xT) = P(Thx | Function for constructing a frameless 6.3
Pr x Pr) framed bisimulation from a strong early
environment sensitive bisimulation.
T YxYT -7 Function for substituting names of an 7.1
environment message to environment
variables.
A ' — P(®) Function for finding the set of formu- 7.2
lae from A that a certain configuration
satisfies.
AS ' = P(LM) Function for finding the set of formulae 7.3.2
from A that a certain configuration S-
satisfies.
Predicates
Predicate | Description Section
— The frame-theory pair indistinguishability predicate. 3.1
ok The ok frame-theory predicate. 3.1
s The theory indistinguishability predicate. 6.1
Vv The ok theory predicate. 6.1
Relations
Relation | Description Section
=, a-Convertibility relation. 2.1
= Transition relation. 2.2
~ Testing equivalence. 2.3
< The frame-theory pair extension preorder relation. 3.1
~y Framed bisimilarity. 3.2
~u Fenced bisimilarity. 3.3
~e Environment equivalence. 4.1
%) Strong environment sensitive transition relation. 4.2
:§> Weak environment sensitive transition relation. 4.2
REESB Weak early environment sensitive bisimilarity. 4.3
~EESB Strong early environment sensitive bisimilarity. 4.3
~! Environment equivalence. 4.4
~1 Environment equivalence. 5.1
~ESB Strong late environment sensitive bisimilarity. 5.1
continued on next page.
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continued from previous page.

Relation | Description Section

C The theory extension preorder relation. 6.1

~r Frameless framed bisimilarity. 6.1

~s Frameless fenced bisimilarity. 6.2

~EsE Strong early environment sensitive bisimilarity based on the 7.0
environment equivalence ~.

= Syntactic identity of formulae. 7.1

E Satisfaction relation between configurations and formulae. 7.1

=r Logical process equivalence induced by the logic F. 7.2

=cM Logical process equivalence induced by the logic EM. 7.2

~sn S-Environment sensitive bisimilarity. 7.3.1

Es S-Satisfaction relation between configurations and formu- 7.3.2
lae.

=L MS Logical process equivalence induced by the logic LM and 7.3.2
the set S.

=rM Logical process equivalence induced by the logic LM. 7.3.2
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Introduction

In recent years cryptography has widely been used in distributed systems to obtain secrecy,
authentication, integrity, and to prevent frauds from being carried out by dishonest people.
However, the use of cryptography in a distributed system does not necessarily give the sys-
tem these properties. There exist many cases of people having found flaws in cryptographic
protocols years after these were proposed and integrated in systems[15]. Due to this, some
researchers have been focusing on using formal methods for analyzing cryptographic proto-
cols. A popular approach is to model protocols as concurrent processes in a process calculus
like the w-calculus.

1.1 The n-Calculus

Although the m-calculus appears suited for describing security protocols at an abstract level
it suffers from the fact that it does not include any constructs for encryption and decrypting
needed when describing actual implementations of security protocols. Consider an example
where a process P, wants to send some secret datum d to another process P». In the 7-
calculus this can be achieved by creating a new channel ¢ which is used for the transmission
of d as illustrated in the following m-process.

PROTOCOL Y (v ¢)(2d.P, | c(2).P)

The transmission of d on c is secure since ¢ is not known by anyone but P, and P». In
an implementation of PROTOCOL the processes P; and P> could be placed on different
machines. In this case the communication between the processes is not necessarily secure if
it uses a public channel and the transmission of d on ¢ should be implemented in a way that
guarantees the secrecy of d. The definition of PROTOCOL in the m-calculus does not say
anything about how this is done.

1.2 The Spi-Calculus

The Spi-calculus was first presented by Abadi and Gordon in [3] and was designed for de-
scribing and analyzing security protocols. The Spi-calculus is an extension of the 7-calculus
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with cryptographic primitives. With these it is possible to represent the use of cryptography
in security protocols in a way that is more suited for describing actual implementations. In
[3], Abadi and Gordon describe how common notions of correctness of security protocols
can be described by means of behavioural equivalence for the Spi-calculus. For instance,
consider a protocol S(M) transmitting the message M. S has the property of secrecy if
its observable behaviour does not depend on M, i.e. if S(M;) ~ S(Msz) for any messages
M, and M,. Abadi and Gordon suggest using the notion of may-testing equivalence due to
De Nicola and Hennessy as the notion of behavioural equivalence for the Spi-calculus. Two
processes are testing equivalent if they allow the same end observations in all observation
contexts. As observers in the Spi-calculus setting are potentially malicious, two processes
are thus equivalent if they respond identically to identical attacks. However, while the no-
tion of testing equivalence is perfect from a philosophical point of view it is less ideal for
actual reasoning about protocols as its definition involves universal quantification over all
attackers. This has been dealt with in two different ways.

1.3 Bisimilarities in the Spi-Calculus

In [2], Abadi and Gordon introduce the notion of framed bisimilarity based on the concept of
a frame-theory pair. A frame-theory pair is a pair (fr, th), where fr is the set of names known
by the observer and th is a finite set of identities on messages that the observer assumes.
If (M,N) € th the observer cannot distinguish between messages M and N. Equivalence
judgements of framed bisimilarity are relative to a frame-theory pair, i.e. (fr,th) - P ~; Q
if P and @) are equivalent under the assumptions in (fr, th). Abadi and Gordon have shown
that ~y is a sound approximation of may-testing equivalence in the sense that it implies
may-testing equivalence under natural conditions on the frame-theory pair involved. In [6],
Boreale et al. let the knowledge of the observer become part of the semantics of processes.
Their notion of environment sensitive bisimilarity compares configurations of the form o> P,
where o records the messages and names that are known to the environment. Equivalence
judgments are thus of the form o; > P gpsp o2 > (). Boreale et al. have shown that
REESB, t00, is a sound approximation of may-testing equivalence.It has been proven that
there exist environment sensitive bisimilar configurations op > P and og > @ for which
there does not exist a frame-theory pair such that P and () are framed bisimilar with respect
to this pair.

1.4 New Results

In this report, we present a new strong late version of the environment sensitive bisimilarity
given by Boreale at al. and prove that this can be used as an alternative characterization of
framed bisimilarity. The characterization states that two configurations op > P and og > @)
are strong late environment sensitive bisimilar if and only if P and @ are framed bisimilar
with respect to F.(op,0q), where F, is a function that given two equivalent environments
returns a frame-theory pair.
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Furthermore, we present a new early version of framed bisimilarity called frameless
framed bisimilarity. This bisimilarity can be used to characterize a strong version of the
early environment sensitive bisimilarity given by Boreale at al. This is easily proven us-
ing an adaptation of the proof technique used to prove that the strong late version of the
environment sensitive bisimilarity is the same as framed bisimilarity.

Finally, we propose some modal logics for the Spi-calculus. We prove that these can be
used to characterize the strong early version and our new strong late version of the envi-
ronment sensitive bisimilarity given by Boreale at al. The definition of our new strong late
version of environment sensitive bisimulation makes it difficult to give a logical character-
ization of strong late environment sensitive bisimilarity directly. Therefore, we introduce
a new notion of environment sensitive bisimulation called S-environment sensitive bisimu-
lation, show that there is a useful connection between S-environment sensitive bisimilarity
and strong late environment sensitive bisimilarity, and give a logical characterization of
S-environment sensitive bisimilarity.

1.5 Outline of the Report

This report contains eight chapters and is organized as follows. Chapter 2 contains the syntax
and semantics of the variant of the Spi-calculus we will be working with. Furthermore, we
present the notion of testing equivalence defined by Abadi and Gordon in [3]. In chapter 3
we present the notion of framed bisimulation introduced by Abadi and Gordon in [2]. We
also present an alternative characterization of framed bisimilarity, called fenced bisimilarity,
given by Elkjeer et al. in [7]. In chapter 4 the notion of environment sensitive bisimulation,
defined by Boreale et al. in [6], is given. In chapter 5 we present a new strong late version
of the environment sensitive bisimulation given by Boreale at al. and prove that strong
late environment sensitive bisimilarity is in fact an alternative characterization of framed
bisimilarity. In chapter 6 we present an early version of framed bisimulation called frameless
framed bisimulation. Moreover, we present results stating that frameless framed bisimilarity
is an alternative characterization of a strong version of the environment sensitive bisimilarity
defined by Boreale et al. In chapter 7 we propose some modal logics for the Spi-calculus
and prove that we can use these to give logical characterizations of environment sensitive
bisimilarities. Finally, chapter 8 concludes on our work.
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The Spi-Calculus

This chapter contains preliminaries on the variant of the Spi-calculus we will be working
with. The variant is inspired by [6] and [10]. We will first describe the syntax and semantics
and then give a definition of testing equivalence for Spi-processes.

2.1 Syntax

We begin by giving the syntax for the variant of the Spi-calculus we will be working with.
The syntactic categories are: an infinite set of names, A/, an infinite set of variables,
V, a set of expressions L, a set of guards, G, and a set of agents, Ag. We let a,
b, ¢, d, k, m, and n range over N, v and v over V, K and L over £, G over G, and A
over Ag. The set of expressions consists of the names, the variables, and elements that
can be constructed from these using the encryption, decryption, pair, left projection,
and right projection constructors. The set of guards can be constructed using the true,
conjunction, comparison, and ¢s a name constructors. The set of agents in the Spi-
calculus can be constructed with the constructors for inaction, input prefix, output
prefiz, guarding, nondeterministic choice, parallel composition, restriction, and
replication. The grammars for £, G, and Ag are presented below.

K.L:= alul{L}] [{L}] | (L,L) [ m(L) | 7 (L)
Gu:= tt|GANG|L=L|L: N
Au= 0| L(u).A|LLA|GA|A+A|AlA| (v a)A | 1A

This variant of the Spi-calculus differs from the Spi-calculus originally presented by Abadi
and Gordon in [3] by the fact that numbers are not explicitly expressible and by the fact
that decryption and projection appear in expressions instead of in agents.

For a tuple k = (k1,...,kn) C N we use the shorthand notations {L}kE and {L}g for
the expressions {---{L}f ---}f and {---{L}{ ---}{, respectively. Furthermore, we may

use the longhand notations {L}§ and {L}§ for the expression L.

We call the subset of expressions of £ that only consist of names, encryption, and pairs
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the set of messages, M, and let M and N range over it. So, M is the set of messages that
can be generated from the following grammar.

M,N == a|{N}F|(N,N)

There are two binding structures in our variant of the Spi-calculus. In the agent (v a)A, the
name a is bound in A and in the agent L(u).A, the variable u is bound in A. The sets of free
names, fu(A4), bound names, bn(A), names, n(A), free variables, fv(A), and bound
variables, bv(A), of an agent A are defined as expected. We will write A{M /u} for the
agent obtained by replacing every free occurrence of u in A by M, renaming bound names as
necessary. We identify agents up to renaming of bound names and variables. If the agents
A; and A; can be identified up to renaming of bound names and variables then A; and A,
are a-convertible, written A; =, A;. We will call an agent that does not contain any free
variables a process and let Pr denote the set of all processes, i.e. Pr = {A € Ag | fv(4) = 0}.
The set of processes is ranged over by P, (), and R.

The following example shows how the Spi-calculus can be used to model a cryptographic
protocol.

Example 1. In this example we will model a simplified version of the ‘Wide Mouthed
Frog Protocol’[15]. In this protocol the principals A and B share the keys ks and kps,
respectively, with a server S. Before A sends some secret message M to B, it first creates
a new key kap and sends it to the server encrypted with the key k4. The server then
decrypts the received message and sends ksp to B encrypted with the key kpgs. Now, A can
send its secret message M to B encrypted with the key k4p5. The protocol can be expressed
in the Spi-calculus as follows.

AM) < (v kap)easibas}f,, aB{M}E, , 0
B d:ef CSB(U’)'CAB(U)'F({U}?”}EBS)
S d:ef CAS(U)'CS—B{{U}I?AS }EBS'O
Sys(N) d:ef (V kJAS)(V kBS)(A(N) | B | S)

where F'(M) is an agent representing the behavior of B when it receives the message M.
[ ]

2.2 Semantics

Before we present the semantics of the Spi-calculus we need to define some evaluation func-
tions. We will need a function e : £ — M U {0} to evaluate expressions to messages, 0 is
a special symbol used to express that an expression cannot be evaluated to a message. We
also need a function €' : G — {tt, ff} to evaluate guards.
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Definition 1 (The Evaluation Function e)
The function e : £ — M U {0} is defined as

M 1fL:(L1,L2)/\e(L2):M/\e(Ll) 756
0  otherwise

e(a) € a
e(u) o
o { fOF S Zre =0
T
iy 2] G0 Sl pont 20
O P L
{

]
Definition 2 (The Evaluation Function e’)
The function e’ : G — {it, ff} is defined as
e (tt) X 1t
(Gl/\Gz :e 6 G1 /\e(Gz)
, _e ife L1 —e(Lz)#a
e'( o ﬁ otherwise
_e ife(L) eN
o ﬁ 0therw1se
]

The (late) operational semantics for the variant of the Spi-calculus is given by the labelled
transition system (Ag, Act, —), where —» is the smallest relation closed under the rules
in table 2.1. The symmetric rules for Sum, Par, and Com have been omitted. Act, ranged
over by «, is the set of actions given by the following grammar.

az=71]a(u) | (v é)aN

Transitions have the form 4 - A’.
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A=A
Alph L0 Az A
[Alphal A5 A
I T aw,  P=a
o] L(u).A %™ 4
[Outp] —— v e(Ly) =a and e(Ly) = N # 0
L1L2.A — A
ad '
[Grd] A=A e =u
GA — A
M
@ /
[Par] 4 — 4 bn(a) N fn(4y) = 0
A1|A2 — A’1|A2
(v &)aN ’ a(u ,
[Com] Ay T) A~1 As —; Al £ n(Ay) = 0
A|Ay — (v ) (A7 |A5{N/u})
@ i
[Res] A 7 A b ¢ n(a)
(v b)A — (v b)A’
(v &)aN ,
[Open] < (V;}}U;N be(n(N)\é) and b #a
(vbh)A " =T A
Alld = &
frep) 45 A

Table 2.1: Late operational semantics for the Spi-calculus.

2.3 Testing Equivalence

In the paper [3], Abadi and Gordon suggest using the notion of may-testing equivalence|9]
due to De Nicola and Hennessy as the notion of behavioural equivalence for the Spi-calculus.
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In this section we present this equivalence.

First we need to define some notations. A barb is a name, a, or a co-name a. For a name

a and a process P we write P | a if P —; P’ for some v and P' and P | a if P ® c)aN P
for some ¢, N, and P'.

Definition 3 (Testing Equivalence)
Two processes P and @ are testing equivalent, written P ~ @, if for every process R and
barb 3 it holds that

(i) if PJR ——* P" and P’ | B for some P’ then there exists Q' such that Q|R —* Q'
and @' | 3, and

(73) the converse, with the role of P and @) exchanged.
]

If two processes are testing equivalent we can interpret this as though they are revealing the
same information to the “environment”, i.e. observers, attackers etc. As an example of a

. . . . . d _
pair of testing equivalent processes consider the following two processes P Lef (v k)a{m}F.0

and @ = (v k)a{m'}£.0. The processes reveal the messages {m}£ and {m'}¥ respectively,
but none of these can ever be decrypted since the processes never reveal the key k.

In [3] Abadi and Gordon describe how common notions of correctness can be described
by means of testing equivalence. For instance, consider a protocol S(M) transmitting the
message M. S has the property of secrecy if its observable behaviour does not depend on
M, ie. it S(My) ~ S(M>) for any messages M; and M. The following example illustrates
how testing equivalence can be used to check for authenticity and/or integrity.

Example 2. In this example we will show how to check for authenticity and/or integrity
in the protocol presented in example 1. This can be done by using testing equivalence to
compare the actual protocol with a specification. The specification is obtained by replacing
B with Bgpec(M) which behaves as B when it receives the message M. The specification is
defined as follows.

A Y (V kap)Cas{kas}t,, cap{M}{,, -0

BSpec(M) ( )'CAB(U)'F(M)
S & easu)zsp{{u}l, }E, .0
SysSp@C( ) (V kas)(v kps)(A(N) | BSPEC(N) | S)

Sys has the property of authenticity (integrity) if Sys(M) ~ Sysspec(M) for all messages
M. |
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While the notion of testing equivalence is perfect from a philosophical point of view it is less
ideal for actual reasoning about protocols as its definition involves universal quantification
over all processes/attackers. To get rid of this universal quantification Abadi and Gordon
introduced the notion of framed bisimilarity in [2] and showed that this is sound with
respect to testing equivalence. Boreale et. al proposed another notion of bisimilarity called
environment sensitive bisimilarity in [6] and showed that it, too, is sound with respect to
testing equivalence. These two notions of bisimilarity are presented in the following two
chapters.



Framed
Bisimulation

In this chapter we present framed bisimulation as defined in [2] by Abadi and Gordon and
fenced bisimulation as defined in [7] by Elkjeer et al. First we present some preliminaries
needed for the definition of framed and fenced bisimulation.

3.1 Frames and Theories

The definition of framed bisimulation is based on the notions of frame and theory. A
framed bisimulation relates two processes P and () in the context of a frame and a theory.
A frame is a finite set of names and a theory is a finite set of pairs of messages. Intuitively,
a frame contains the names from P and () that are available to the environment, and a
theory contains pairs of messages coming from P and @) that cannot be distinguished by an
observer. We will use fr to range over the set of frames, Fr, and th to range over the set of
theories, Th. Two messages M and N are indistinguishable with respect to the frame-theory
pair (fr, th) if (fr, th) F M < N can be derived using the rules in table 3.1. Some of the rules
in the semantics of the (fr,th) F M < N predicate presented in [2] have been omitted in
our presentation since our grammar for messages does not allow a message to be a number.
The results from [2] and [7] presented in this chapter were proven for a message grammar
containing numbers. However, it can easily be shown that they also hold for our message
grammar.
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n € fr
[Fq frame] G non
(M,N) € th
[Eq theory] (fr, th) F M < N

(fr,thyF M < N (fr,th) - M' & N'
(frath) + (M7M’) A (N7N’)

[Eq pair]

(frythyF M < N (fr,th) - M' & N'
G th) - (3}, & (N}E,

[Eq encrypt]

Table 3.1: The indistinguishability predicate.

In a framed bisimulation we only consider frame-theory pairs that exhibit certain properties.

Definition 4 (Ok Frame-Theory Pair)
The pair (fr, th) is ok, written (fr, th) - ok, if
(i) for all (M,N) € th:

— M € M and there are messages M; and M, such that M = {M; 5\5/[2 and there
is no N' such that (fr, th) - My <> N'.

— N € M and there are messages N; and Ny such that N = {Nl}ﬁ2 and there is
no M’ such that (fr,th) F M’ < Ns.

(it) for all (M,N) € thand (M',N') € thy M = M'" if and only if N = N'.
]
The definition of framed bisimulation requires that a frame-theory pair can be extended.
Definition 5 (Extension of a Frame-Theory Pair)
(fr', th') is an extension of (fr, th), written (fr,th) < (fr', th'), if for all M and N, (fr,th) +

M < N implies (fr', th') = M < N. [ |

The following theorem, proven in [2], makes it easier to show whether or not one ok frame-
theory pair is an extension of another.

Theorem 1
Let (fr',th') F ok, then (fr,th) < (fr',th') if and only if fr C fi' and (f',th') v M < N for
each pair (M, N) € th. ]
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3.2 Framed Bisimulation

A framed process pair is a quadruple (fr, th, P,@). If R is a set of framed process pairs
and (fr,th,P,QQ) € R this is written (fr,th) - P R Q. A framed relation is a set of
framed process pairs such that (fr, th) - P R @) implies (fr, th) | ok. A framed relation R is
symmetric if (fr,th) - P R @ implies (fr, {(N,M) | (M,N) € th}) - @ R P. For a theory

th we let 71 (th) & {M | IN.(M, N) € th} and m(th) % {N | IM.(M,N) € th}. Now, we

are ready to present the notion of framed bisimulation.

Definition 6 (Framed Bisimulation)
A symmetric framed relation R is a framed bisimulation if whenever (fr,th) F P R @ it
holds that

(i) if P -5 P' then there exists Q' such that Q — Q' and (fr,th) - P' R Q',

(ii) if P M P' and a € fr then there exists @' such that Q M Q@' and for all sets 71,
where 1N (fn(P, Q) U frun(th)) =0, and all M, N € M, where (frUn,th) - M < N,
it holds that (frUn, th) - P'{M/u} R Q'{N/u}, and

(iii) if P (v mgM P',a € frand mN (fn(P) U frUn(m (th))) = O then there exist fn, N, and
Q' such that @ v N Q', n N (fn(Q) U frun(ma(th))) = 0, and there exists (fr’, th')
such that (fr,th) < (fr', th'), (ff',th') - M < N, and (f',th") - P' R Q'.

]

From the definition of framed bisimulation we define the notion of framed bisimilarity.

Definition 7 (Framed Bisimilarity)
P and @ are framed bisimilar with respect to the frame-theory pair (fr, th), written (fr, th) +
P ~¢ Q, if there exists a framed bisimulation R such that (fr,th) F P R Q. |

In [2], Abadi and Gordon have shown that ~ is a sound approximation of testing equivalence
in the sense that it implies testing equivalence under natural conditions on the frame-theory
pair involved.

Theorem 2 (Soundness of Framed Bisimilarity with respect to Testing Equivalence)
Let P,@Q € Pr and n € N such that n ¢ (P, Q). If (fn(P,Q) U {n},0) F P ~; @ then
P~qQ. |

3.3 Fenced Bisimulation

To avoid the existential quantification over frame-theory pairs in case (iii) of definition 6
Elkjeer et al. presented an alternative characterization of framed bisimilarity called fenced
bisimilarity. Fenced bisimulation makes use of the function ¢ shown in figure 3.1.
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1 &((fr,th), M, N)
2 IF ((fr,th) - M < N) THEN RETURN (fr, th)
3 CASE (M,N) OF
4 [M=N=n]:
5 (frg, the) == (fru {n}, th)
6 A=0
7 FOR EACH ({M:}},,{M1}RX,) € the DO
8 IF 3L.((fr, the) b My > LV (fre, the) b L +» Ny) THEN
9 th = the \ {({M1}¥p, {N1}¥,)}
10 A= AU{{M}g, N1},
11 FOR EACH ({M:1}5,, {N:1}X,) € A DO
12 (fre, the) := &(E((fre, the), M2, Na), My, N1)
13 [M = {M}F,, N = {N1},] :
14 IF ((fr,th) = Ms «» N3) THEN (fre, the) := &((fr, th), My, Ny)
15 ELSE
16 IF 3(0,0") € th.(O = M <~ O' = N) THEN RETURN(L)
17 (fre, the) == (fr, thU {(M,N)})
18 Ai=10
19 FOR EACH ({01}5,,{01}8,) € the DO
20 IF 3L.((fre, the) b Oz <> LV (fre, the) = L 4+ O4) THEN
21 the := the \ {({01}5,,{01}6,)}
22 A= AU{({01}5,.{01}5,)}
23 FOR EACH ({01}5,,{01}5,) € A DO
24 (fre, the) := E(&((fre, the), 02, 03), 01, 01)
25 [M = (M, M,),N = (Ny,N)] :
26 (fre, the) == E(E((fr, th), M2, N2), My, Ny)
27 [otherwise] :
28 RETURN (L)

20 RETURN (fr, the)

Figure 3.1: Algorithm for computing &((fr, th), M, N).

The case for numbers in the {-function presented in [7] has been omitted in our presentation
since our grammar for messages does not allow a message to be a number. &((fr, th), M, N)
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evaluates to the smallest extension (fi', th') of (fr, th) such that (f', th') - ok and (fr', th') F
M < NIJT7]. If this is not possible £((fr, th), M, N) evaluates to the invalid frame-theory pair
L. The notion of fenced bisimulation is defined as follows.

Definition 8 (Fenced Bisimulation)
A symmetric framed relation, R, is a fenced bisimulation if whenever (fr,th) - P R @ it
holds that

(i) if P - P' then there exists Q' such that Q — Q' and (fr,th) - P' R Q',

(i) if P M P' and a € fr then there exists @' such that Q M Q' and for all sets 71,
where 7N (fn(P, Q) U frUn(th)) = 0, and all M, N € M, where (frUf,th) - M < N,
it holds that (frUn, th) - P'{M/u} R Q'{N/u}, and

(iii) if P (v mgM P, a € frand mN(fu(P)UfrUn(m (th))) = 0 then there exist 71, N, and Q'

such that Q " 5N Q') AN (a(Q) UfrUn(ma(th))) = 0, and &((fr, th), M, N) - P' R Q'
|
From the definition of fenced bisimulation we define the notion of fenced bisimilarity.

Definition 9 (Fenced Bisimilarity)
P and @ are fenced bisimilar with respect to the frame-theory pair (fr, th), written (fr, th) F
P ~4 Q, if there exists a fenced bisimulation R such that (fr,th) F P R Q. [ |

The following theorem, proven by Elkjer et al. in [7], states that two processes are framed
bisimilar with respect to a frame-theory pair if and only if they are fenced bisimilar with
respect to the same frame-theory pair.

Theorem 3 (Coincidence of ~; and ~)
(fr,th) - P ~; @ if and only if (fr,th) F P ~4 Q. [ |

In the following chapter we proceed by presenting the notion of environment sensitive bisim-
ilarity, where Boreale et al. let the knowledge of the observer become part of the semantics
of processes.
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Environment
Sensitive
Bisimulation

In this chapter we present the notion of environment sensitive bisimulation first introduced
by Boreale et al. in [6]. As framed bisimulation environment sensitive bisimulation does not
relate processes directly, instead it relates configurations of the form o > P, where o is an
environment used to record the messages sent to and received from the process P. In this
chapter we will consider an expression and message grammar without pairs and projection.
We will continue to refer to the set of expressions and the set of messages as £ and M,
respectively.

4.1 Environments

The set of environments ¥ consists of functions/substitutions of the type Z — M, where
Z is a set of environment variables for which it holds that Z NV = (. We let ¢ range over
Y and z, y, and z over Z. We write {My/x1, Ms/xs, ..., M,/x,} for the environment that
simultaneously maps every occurrence of x; to M; for all ¢ € {1,2,...,n}. Furthermore,
we write o[z — M] for the environment that maps  to M and all other environment
variables to the same as the environment ¢. The messages that an environment ¢ can send
to a process are of the form e((c), where ( is an environment message. The set of
environment messages, Y, is given by the following grammar.

¢u= ala | {GE {0}

The set of environment variables in an environment message ( is denoted fz(¢). To describe
the information that can be deduced from an environment we define some functions first
presented in [5], [6], and [14].
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The analysis of a set of messages W is the set of messages that can be deduced from W
by decryption.

Definition 10 (Analysis of a Set of Messages)
The analysis of a set W C M, written A(W), is the smallest set satisfying

(i) W C A(W)
(ii) if k € AW) and {M}F € A(W) then M € A(W)
[

The synthesis of a set of messages W is the set of messages that can be generated from the
analysis of W.

Definition 11 (Synthesis of a Set of Messages)
The synthesis of a set W C M, written S(WW), is the smallest set satisfying

(i) A(W)CS(W)
(ii) if k € SIW)NN and M € S(W) then {M}F € S(W)
|

The irreducibles of a set of messages W is the subset of the analysis of W that cannot be
decrypted further.

Definition 12 (Irreducibles of a Set of Messages)
The irreducibles of a set W C M, written Z(W), is defined by

IW) & (M e AW) | MeNV(M={NENk¢AW))}

]
The knowledge of a set of messages W is the set of names of the analysis of W.
Definition 13 (Knowledge of a Set of Messages)
The knowledge of a set W C M, written K(W), is defined by K(W) d:efA(W) nN. ]

For an environment o we will use the shorthand notations A(o), S(o), Z(o), and K(o) for
A(range(o)), S(range(o)), Z(range(o)), and K(range(o)), respectively.

Given a set of messages W, we denote by core(WW, M) what is left of the message M
when it is decrypted as much as possible with respect to the knowledge of W.
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Definition 14 (Core)
Let W C M. The core of the message M € M with respect to W, written core(W, M), is
defined by

core(W, M") if M = {M'}F and k € K(W)
M otherwise

core(W, M) 1 {

It can be seen that |J,,.y core(W, M) = Z(W). For an environment o and a message M
we will use the shorthand notation core(o, M) for core(range(c), M).

We say that two environments are equivalent if they satisfy the same formulae.

Definition 15 (Equivalence of Environments, ~.)
Let ® denote the set of formulae that can be generated from the following grammar.

pu= tt|pAG| (=N

Two environments o1 and o9 are equivalent, written oy ~, 02, if dom(o;) = dom(oz) and
for each formula ¢ € ® with fn(¢) = 0 and fz(¢) C dom(oy) it holds that e'(¢oy) = #tif and
only if €'(¢po2) = tt. [ |

4.2 Environment Sensitive Semantics

In the environment sensitive semantics environments and processes are paired in configura-
tions.

Definition 16 (Configurations)
The set of configurations, I, is defined as

rYisePloesAPepr

Configurations are ranged over by C'.

The environment sensitive semantics for configurations is given by the labelled transition
system (I', Act., —), where — is the smallest relation closed under the rules in table 4.1.
Transitions have the form o > P %) o' > P' and represent interactions between the process
P and the environment . « is the process action and § is the complementary environment
action. The set of environment actions, Act., consists of the actions that can be generated
using the following grammar.

0= —|a(z)]| (v éaC
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P p
[E-Tau] o>P-sop> P

p ™ pr

[E-Tnp] e e((o) = N # 9, 2ndom(o) = 0, a €
o> P " ofzode PN/u}  Al0), é=n(C), and ENfa(Po) =0
(v &aN ,,
[E-Out] (V]f)_ — P a € Ao),z ¢ dom(o), and éNfo(o) =0

o> P 2>Na[z&—>N]>P’

a(z)

Table 4.1: Environment sensitive semantics.

For a configuration C' we use C :‘E> C' as a shorthand notation for C %*%)L)*C’ if
5 , ,

a # 1 and C —5*C" otherwise.

4.3 Environment Sensitive Bisimulation

We are now ready to define the notion of weak early environment sensitive bisimula-
tion introduced by Boreale et al. in [6].

Definition 17 (Weak Early Environment Sensitive Bisimulation)
A symmetric relation R C I' x I' is a weak early environment sensitive bisimulation if
(op > P,og > @) € R implies op ~, 0 and whenever op > P —Z) o > P’ there exist o,

04, and @' such that og > Q % op > Q" and (0p > P'ion > Q') € R. [ |

From the notion of weak early environment sensitive bisimulation we define the notion of
weak early environment sensitive bisimilarity.

Definition 18 (Weak Early Environment Sensitive Bisimilarity)

The configurations op > P and og > @ are weak early environment sensitive bisimilar, writ-
ten op > P Rprsp 09 > @, if there exists a weak early environment sensitive bisimulation
R such that (op > P,og > Q) € R. ]

In [6], Boreale et al. have shown that weak early environment sensitive bisimilarity is a
sound approximation of testing equivalence in the sense that it implies testing equivalence
under natural conditions on the environments involved.
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Theorem 4 (Soundness of &gpsp with respect to ~)
Let P,Q € Pr. If fn(P, Q) = range(o) and o > P mgpsp o > @ then P ~ Q). [ ]

The following example illustrates that there exist configurations op > P and og > @ such
that op > P =ggrsp 0@ > @ for which there does not exist a frame-theory pair (fr, th) such
that (fr,th) - P ~¢ Q.

Example 3. Consider the processes P and () defined by

pY (v n)(v k)a{n}F.a(u).((u = b)an.0 | (u = c)an.0)
Q i (v m)(v n)(v k)a{{n}E}E a(u).((u = b)an.0 | (u = c)am.0)

It can be proven that {a/z1,b/z2,¢c/x3} > P ~pgpsp {a/x1,b/x2,c/xz3} > Q. However,
there does not exist a frame-theory pair (fr,th) such that (fr,th) F P ~; @ since there
cannot exist a frame-theory pair (fr', th') such that (fr', th') - n < m. [ |

The problem described in the example above also arises for strong early environment
sensitive bisimilarity defined as follows.

Definition 19 (Strong Early Environment Sensitive Bisimulation)
A symmetric relation R C T’ x I' is a strong early environment sensitive bisimulation if
(op > P,og > Q) € R implies op ~ 0¢ and whenever op > P %) o > P' there exist o,

04, and Q' such that o > Q i&) on > Q" and (0p > P05 > Q') € R. [ |

From the notion of strong early environment sensitive bisimulation we define the notion of
strong early environment sensitive bisimilarity.

Definition 20 (Strong Early Environment Sensitive Bisimilarity)

The configurations op > P and og > ) are strong early environment sensitive bisimilar,
written op > P ~ggpsp og > @, if there exists a strong early environment sensitive
bisimulation R such that (op > P,og > Q) € R. [ ]

4.4 Equality of Equivalences of Environments

The logical characterization used in the definition of equivalence of environments makes it
difficult to check whether or not two environments are equivalent since it contains a quan-
tification over all formulae. Therefore, Boreale et al. gave an alternative characterization of
equivalence of environments. In this section we present this alternative characterization.

For a tuple M def Mier and a tuple J def (J1,--->Jn) C I we let M[j] denote the tuple
(Mj17"'7Mjn)'
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Definition 21 (Equivalence of Environments, ~!)
Let o and o' be environments and assume dom (o) = dom(c') = {z; | i € I'} for some set of

indices I. For each i € I let N; o core(o,0(x;)) and N/ i core(o’,0'(z;)). o and o' are
equivalent, written o ~. o', if for each ¢ € I the following holds,

(i) for some tuple J; C I it holds that o(z;) = {Ni}EN[ji] and o'(z;) = {Nil}E’[Ji]’
(ii) for each j € I, N; = Nj if and only if N] = N7, and
(iii) N; € N if and only if N/ € N.

[ |

The following theorem, proven by Boreale et al. in [6], states that the two notions of
equivalence of environments coincide.

Theorem 5 (Coincidence of ~, and ~1)
01 ~¢ 02 if and only if o1 ~/, 03. [ ]

4.5 Properties of Environments

In this section we present two lemmas proven by Boreale et al. in [6]. We will need these
lemmas in the following chapters.

Lemn;e; 1
Let 0 = {M;/x;}icr-

(i) If M € A(o) then there exists ¢ € Y such that n({) = 0, fz(¢{) € dom(s), and
e(Co) =M.
(i7) If a € A(o) then a = core(o,o(z;)), for some i € I.

Lemma 2 p
Let oy = {M;/x;}icr and o9 ef {M]/z;}icr be two environments such that o1 ~, 0. Let

vY core(oy,01(x))ies and N’ def core(oy,02(x;))icr. For each ¢ € T such that n({) =0
and fz(¢) C dom(oy), either

(1) e(¢o1) = e(Coz) = 9, or
(i7) there exist ¢ € I and a tuple J C I such that e(Coy) = {Ni}%[j] and e((os) =
AV
{I; N[ u
In the following chapter we will proceed by showing that a late version of strong early
environment sensitive bisimilarity based on a new notion of equivalence of environments is
the same as framed bisimilarity.



Two Notions
of Framed
Bisimilarity

As mentioned in the previous chapter there exist configurations op > P and o¢ > @ such
that op > P ~ggrsp 0@ > @ for which there does not exist a frame-theory pair (fr, th) such
that (fr, th) - P ~¢ (). This is due to the fact that for two equivalent environments ¢; and
o2 we can have core(o,01(z)) = a and core(os,09(z)) = b for two different names a and b.
In this chapter we present a new strong late version of the environment sensitive bisimulation
given by Boreale at al. For this definition we will use a notion of equivalence of environments
that does not allow a and b to be different. Furthermore, we will prove that the strong late
version of environment sensitive bisimilarity can be used as an alternative characterization
of framed bisimilarity. In the first four sections we will consider an expression and message
grammar without pairs and projection. We will continue to refer to the set of expressions
and the set of messages as £ and M, respectively. In section 5.5 we will extend the results
of the first four sections to an expression and message grammar with pairs and projection.

5.1 Strong Late Environment Sensitive Bisimulation

The strong late version of environment sensitive bisimulation we present is based on a new
notion of equivalence of environments.

Definition 22 (Equivalence of Environments, ~")

Let o and o' be environments and assume dom(o) = dom(o’) = {; | i € I} for some set of
indices I. For each i € I let N; % core(o, o(x;)) and N/ 2 core(o’,0'(;)). o and o' are
equivalent, written o ~!' ¢', if for each 7 € I the following holds,
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(i) for some k; it holds that o (z;) = {Nl}ﬁ and o'(z;) = {N] Ii’
(i) for each j € I, N; = Nj; if and only if N = N}, and
(iii) for each N € N'; N; = N if and only if N/ = N.

The following theorem states soundness of ~!' with respect to ~, and ~/. This implies that
lemmas 1 and 2 also hold for ~”.

Theorem 6 (Soundness of ~!' with respect to ~, and ~)

o1~ oy implies 01 ~, 03 and o1 ~/, 03.

Proof: It is easily seen from definitions 21 and 22 that o7 ~! o implies o7 ~, 03. By
theorem 5 we also have that oy ~! o2 implies o1 ~, 05. [ ]

!

To see that ~! is not complete with respect to ~, and ~! consider the two environments

o1 d:ef{{a}kEl/xl,kl/xg} and o3 d:ef{{b}ﬁ/xl,kg/xg}. We have o1 ~! 02 but not o; ~ 5.

Now, we define the notion of strong late environment sensitive bisimulation.

Definition 23 (Strong Late Environment Sensitive Bisimulation)
A symmetric relation R C I' x I' is a strong late environment sensitive bisimulation if
(01 > P,oy > Q) € R implies oy ~" 05 and if P %5 P’ then

(i) if @ = 7 then there exists Q' such that Q@ - Q' and (o1 > P',05 > Q') € R.

(17) if @« = a(u) and a € A(oq) then there exists Q' such that @ alu) Q' and for all ( € T,
where e(Co1) # 0 and n(¢) Nfn(P,Q,01,02) =0, (01[Z2 — & > P'{e(Co1)/u},02[2 —
él > Q'{e(Coz)/u}) € R, where ZNdom(o;) = § and é = n(¢).

(i51) if a = (v &)aM, a € A(oy), and éNfn(P,o1) = P then there exist d, N, and Q' such that
Q (v DN Q', where dNfn(Q,05) = 0, and (o1[z = M] > P' 03]z = N] > Q') € R,
where z ¢ dom(oy).

From the definition of strong late environment sensitive bisimulation we define the notion
of strong late environment sensitive bisimilarity.

Definition 24 (Strong Late Environment Sensitive Bisimilarity)

The configurations op > P and og > @) are strong late environment sensitive bisimilar, writ-
ten op > P ~gsp 0g D> @, if there exists a strong late environment sensitive bisimulation
R such that (op > P,og > Q) € R. [ |
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5.2 The Functions F, and Fgsp

Since strong late environment sensitive bisimilarity relates pairs of configurations and framed
bisimilarity relates pairs of processes with respect to frame-theory pairs we need a way
to convert a pair of environments to a frame-theory pair to be able to use strong late
environment sensitive bisimilarity to characterize framed bisimilarity. Therefore, we define
a function F, that takes two equivalent environments as input and returns a frame-theory
pair.

Definition 25 (The Function F;)

Let 0; and o3 be two environments such that o; ~"

" o5 and dom(oy) = dom(oz) = {z; |

i € I}, and let N; 1 core(oq,01(x;)) and N/ 1 core(oa,02(x;)). Also, let fr 1 {N; |
i€ IAN; € N} and th & {(N;,N!) | i € IAN; ¢ N}. The function F, is defined as
Folor,02) & (fry th). m

From the definition of F, we define the function Fgsp that takes a strong late environment
sensitive bisimulation as input and returns a set of framed process pairs which will later
turn out to be a framed bisimulation.

Definition 26 (The Function Frsg)

Let R be a strong late environment sensitive bisimulation. Then Frsp(R) = {(fr, th, P,Q) |
Jo1,02.((01 > P,o2 > Q) € RA Fe(o1,02) = (fr, th) }. u

The following theorem states that a frame-theory pair returned from F, is ok. This implies
that a relation returned by Fggsp is a framed relation.

Theorem 7 J
Let o1 ~! o9 and (fr, th) :effe(al,az), then (fr, th) - ok.

Proof:

(i) Assume (M,N) € th. By definition of F. we have M = {M;}}, . Since M, € N and
M # core(o1,01(z)) for all x € dom(o1) we have M> ¢ fr and there does not exist
N' such that (fr, th) F My <> N'. Similarly for N.

(7i) Assume (M,N) € th, (M',N') € th, and M = M'. Since M = core(o1,01(x)) and
M' = core(oy,01(y)) for some z,y € dom(oy) we have by (i) of definition 22 that
N = core(os,02(x)) = core(os, 02(y)) = N'. Similarly it can be shown that M = M’
if (M, N) € th, (M',N') € th, and N = N'.

In the following two sections we show that if op > P ~ggp 0g > @ then Fe(op,0qQ) - P ~¢
Qandif (fr,th) - P ~; Q,0p ~! 0g, and F(op,0q) = (fr,th) thenop > P ~gsp 0g > Q.
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5.3 Soundness

To prove soundness of strong late environment sensitive bisimilarity with respect to framed
bisimilarity we make use of the following four lemmas.

Lemma 3 J
Let o1 ~! o9 and (fr, th) ief Fe(o1,02). For all sets of names ¢ and all M, N € M, where

¢Nn(o1,02) = 0 and (frU¢,th) F M < N, there exists ¢ € YT such that M = e({o1),
N =e(Co2), and n(¢) = é.

Proof: We will prove that there exists ( € Y such that M = e(Co1), N = e((o2), and
n(¢) C & This will prove the lemma since e((o) = e({{¢(}¥}P ). The proof is by induction
on the depth of the inference of (frUé,th) - M < N.

Basis: depth = 0.

Case M =N =mnc¢cec.
In this case we let ¢ .

Case M =N =n€ fror (M,N) € th.
By lemmas 1 and 2 there exists ¢ € T such that M = e(Co1), N = e((02), and
n(¢) = 0.

Step: depth > 0.

Case M = {M}},, N ={Ni}%,, and (M,N) ¢ th.
Since (M,N) ¢ th, (frUé,th) F M < N must have been deduced by the Eq
encrypt rule. That is (frUé, th) My < Ny and (fr U ¢, th) F My <> No. By
induction there exist (1, (> € T such that My = e((101), N1 = e(¢102), n((1) C é,

My = e((201), No = e((203), and n({2) C & So, by letting ¢ def {Cl}g we get
M = 6(401)7 N = 6((0’2), and H(C) ce

Lemma 4
Let o1 ~! o2. For all sets of names ¢ and for all sets of variables Z, where ¢Nfn(oy,02) =0
and Z Ndom(oy) = 0, it holds that o1[Z — é&] ~! 032 — ¢].

Proof: This is trivial since ¢ cannot be used to decrypt any messages in range(o;) and
range(os). [ ]

Lemma 5 J
Let o1 ~Y o9 and (fr, th) =4 Fe(o1,02). Then (frUé, th) = Fe(o1[Z — &, 022 — ¢]), where
ZNdom(oy) =0 and éNin(oy,02) = 0.
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Proof: This is trivial since core(o1[Z — ¢, 01[2 — ¢&|(z)) = core(oy,01(z)) and core(oz[Z —
él,02[2 — é(x)) = core(oa,09(z)) for all = ¢ 2. [ ]

Lemma 6 g
Let o1 ~! 05 and (fr, th) ief Fe(o1,02). If 1]z = M] ~ 02[z = NJ, where z ¢ dom(oy),

then
(4)
(i7)

(fr,th) < (fr', th'), and
(ff th') - M < N,

where (fr', th') d:effe(al [z = M], 03[z — NJ).

Proof: Let o] N [z = M] and o}, i oa[z — NJ.

(@)

(i)

Now,

By theorem 7 we get (fr,th') F ok. It is easily seen that fr C f', so by theorem 1
it is enough to show that (fr',th’) = M' +» N’ for each (M',N') € th to prove that
(fr,th) < (fr',th'). Assume (M',N') € th. Since M' = core(o1,01(x)) and N' =
core(og, o2(x)) for some z € dom(oy), there exists & C fr such that o1(z) = {M’}g
and o3 (z) = {N’}g. Let M" = core(o}, o] (x)) and N" = core(d), o) (x)), then there
exists &' C fi' such that o1 (z) = o/ (z) = {M"}2 and o2(z) = oy(x) = {N"}E. k' can
be split into two sets k| and &} such that M’ = {M”}g,, N' = {N”}g,, and k = k.
1 1
We must have either (M",N") € th' or M" = N" € fi'. From table 3.1 we easily
deduce (fr', th') - M' <+ N'.

Let M = core(a!}, ! (2))zedom(oy) and N = core(d}, 7} (2))zedom(oy)- Since M € A(oy)
we have, by lemma 1, that there exists ( € T such that M = e(¢o]), and by lemma 2
we get M = {M,}F and N = {N,}£. Since k C fr' and either (M,,N,) € th' or
M, = N, € fr' we deduce (fr',th') M « N from table 3.1.

we are ready to prove that a framed relation returned from Fggsp is a framed bisimu-

lation.

Theorem 8 (Soundness)
Let R be a strong late environment sensitive bisimulation. Then Frsp(R) is a framed
bisimulation.

Proof: Assume (fr,th) - P Fgsp(R) Q. Then there must exist op and og such that
(op > P,og > Q) € R and F(op,0q) = (fr, th).

PP

Since R is a strong late environment sensitive bisimulation there exists Q" such that
Q - Q" and (op > P',0¢ > Q') € R. This implies (fr, th) - P' Frsp(R) Q'
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P pr and a € fr.
We have that a € A(op), and since R is a strong late environment sensitive bisimu-

lation there exists @' such that @ M Q' and for all ¢ € Y, where e(op) # 0 and
n(¢) Nfn(P,Q,op,00) = 0, it holds that (op[Z — é] > P'{e(Cop)/u},oq[Z — ¢] >
Q'{e(Coq)/u}) € R, where ZNdom(op) = 0 and é = n(().
Let 71 be a set of names such that N (fn(P,Q)Ufrun(th)) = 0 and let M, N € M such
that (frUn,th) - M < N. By lemma 3 there exists (' € T such that M = e({'op),
N =e({'0g), and 7 = n(¢’"). Since nNfn(P,Q,op,0q) = 0 it follows by lemma 5 that
(frun,th) - P{M/u} Fgsp(R) Q{N/u}.

p M P’ a € fr,and m N (fu(P) U frUn(m (th))) = 0.
In this case we have a € A(op) and mNin(P,op) = . So by the fact that R is a strong
late environment sensitive bisimulation there exist 7, N, and @’ such that @ (VL)C)LN Q',
nNin(Q,00) =0, and (op[z — M| > P',og[z — N]| > Q') € R, where z ¢ dom(op).
By lemma 6 (fr, th) < Fe(op[z = M],0q[z — N]) and Fc(op[z — M],0q[z — N]) F
M < N. This proves the theorem since F, (op[z = M],0q[z — N]) F P' Fgsp(R) Q'
and 72N (fn(Q) U frU n(m (th))) = 0.

5.4 Completeness

To prove completeness of strong late environment sensitive bisimilarity with respect to
framed bisimilarity we need the following three lemmas.

Lemma 7

Let o1 ~! o3 and (fr, th) i Fe(o1,02). Also, let ¢ € T with n(¢) Nn(o1,02) = 0 and

e(Co) £ 0, M ¥ e(¢oy), and N % ¢(Cos). Then (frUn(C), th) - M < N.

Proof: The proof is by induction on the structure of (.

Basis:
Case ( =a.
This case is trivial since (frU {a},th) F a + a.
Case ( =x. R
Since o1 ~! o0y there exists k such that oy(z) = {core(oy,01 (a:))}‘i:J and

oz(x) = {core(ag,ag(x))}f. We have (core(oy,o0q(x)),core(os,02(2))) € th or

core(o1,01(x)) = core(oa,02(x)) € frand k C fr. From table 3.1 we deduce
(fr,th) - M < N.
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Step:

Case ¢ = {G}E.
By induction we get (frUn((i),th) F e(Cio1) <> e(Gioz2) and (frUn((z),th) F
e(C201) ¢ €((202). This implies (frun((),th) - M < N.

Case ¢ ={G}5.
By induction we get (frUn((1),th) b e(Cio1) < e(Cioe) and (frUn((z),th) F
e(C201) ¢ e(C202). This implies (frUn((),th) F e(Cio1) ¢ e(Cioz) and (fruU
n(¢), th) b e(la01) < e(C202). Since e({Cl}gal) = M and e({{l}gag) = N,
(frun((), th) - e(Cio1) <> e(¢102) can only have been deduced if (frUn((), th) -
e(Co1) ¢ e((e02) and (frun((),th) - M < N.

Lemma 8

Let (fr, th) & ok, £((fr, th), M, N) #L, and (f', th') &

ff =K(frum(th)y U{M}) = K(frUma(th) U {N})
m(th') = Z(frum (thy U {M})\ N
Wg(thl) = I(fT’U Wg(th) U {N}) \N

Proof: In the proof we make use of the fact that (fr, th) - ok implies

fr=K(frum (th)) = K(frU m(th))
m (th) = Z(fru m (th)) \ N
Wz(th) = Z(fTU Wz(th)) \N

The proof will be by induction on the number n¢ of calls of the {-function.

Basis: n¢ = 1.

Case (fr,th)- M < N.
We have fr' = fr = K(fr Um(th)). Since M € S(frUm(th)) it follows that fr' =
K(frumi(thyU{M}). For similar reasons we also have fr' = K(frUma(th) U{N}),
m(th') = Z(frUmi (th) U {M})\ N, and ma(th') = Z(frUma(th) U {N}) \ NV.
Case M = N = n and there does not exist ({M1}f,,{N1}X,) € th such that
M2 = N2 =n.
fif = fru{n} = K(frUm(th) U {n}. Since there does not exist
({M1}5,, {N1}%,) € thsuch that My = Ny = n we have fi' = K(frum (th)u{n}).
Similarly we have fi¥ = K(fr U ma(th) U {n}). Since mi(th') = mi(th) =
Z(fr U m (th)) \ N and there does not exist ({M;}¥,,{Ni}},) € th such that
M = Ny =n we have m (th') = Z(frUmi(th) U {n}) \ V. Similarly for m2(th').
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Case M = {M}};,, N ={Ni}%,, and Mz, N, ¢ fr.
We have fr' = fr = K(frUmi(th)) = K(fr U ma(th)). Since My, N2 ¢ fr it follows
that fr' = K(frUm (th) U {M}) = K(frUm2(th) U {N}). Also, m (th') = w1 (th) U
{M} = Z(frum(th)) \ N U {M}. Since My ¢ fr it follows that m (th') =
Z(frum(th) U {M})\ N. Similarly for m2(th').

Step: ng > 1.

Case M = {M, ﬁZ, N = {Nl}ﬁ27 and (fr,th) F M2 <> Ny (My = Ny € fr).
We have (fr', th') = &((fr, th), My, N1) (line 14 of the ¢{-function in figure 3.1). By
induction we get fr' = K(frUmi(th) U {M:1}) = K(frUma(th) U {N1}), mi(th') =
Z(frumy (th)U{ M1 })\N, and =2 (th') = Z(frumz(th)U{N1})\N. Since M2, N> € fr
it follows that fr' = K(fr U mi(th) U {M}) = K(fr U ma(th) U {N}), m(th') =
Z(frum(th) U{M})\ N, and m2(th') = Z(frU ma(th) U {N}) \ N.

Case M = N =n ¢ fr and there exists ({M1}},, {N1}%,) € th such that M, =
N2 =n.
Let A %/ ({ M}, {N1}R,) € th| My, Ny € {n}} (lines 6-10 of the &-function

in figure 3.1). Furthermore, let fre & fru {n}, the = th\ \. Let (i, thi) be the

frame-theory pair obtained from the ith application of the {-function in the for-
loop in lines 11-12 of the &-function in figure 3.1. Since (frg, thg) F ok (frg = fre
and thg = the) it follows, by the fact that the frame-theory pair returned by the

&-function is ok, that (fré, thé) + ok for all i. Now, let M} and Ni be the messages
M, and Ny, respectively, of the ith run of line 12 of the {-function in figure 3.1.
Let ( fréJ , théJ ) be the frame-theory pair obtained from the final application of the
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&-function in the for-loop. Then, by induction, we have

I(f' Umi () = Z(FE um (thE))
= I(K(fr{ P um(thf M) u{M{ U
I(fry tum(thy ) U{M})\N)

(z (frg “tum(th T U{M{}))
= Z(frg tUmi(thy U {M{})

Z(K(fr 2 Um(th{ ) U {My U
I(fri 2 Um(thi 2) U{M{ )\ N U{MS})

TE(FE 2 Um (thE 2 U {MF 1)) u (M)
= Z(ff 2 Um (hf =) U {ME Y U (M)

Z(fre Um (th)) U{M}U--- U {MS})
Z(fru{n}Um (the) U{M}U---U {Mf})
Z(fru{n}Um (the) U {{M};/} U~ U{{M}})
A

A

)
fru{n}um (thg) Umi(N))
fru{M} U m(th))

Similarly for Z(fi' U ma(th')). It now follows that fr' = K(frU {M} U m(th)) =
K(frU{N} Uma(th), m(th') = Z(frU {M} Umi(th)) \ N, and m=2(th') = Z(fru
{N}Ums(th)) \ V.

This concludes the proof. |

Lemma 9

Let o1 ~" oo, (fr,th) & Fo(on,00), €(fr, th, M,N) #L, and (f', th') % €(fr, th, M, N) for
some M,N € M. Then o1[z = M] ~! o3[z = N] and Fe(o1[z = M],02[z — N]) =
(fr', th'), where z ¢ dom(oy).

Proof: Let
o () d:f{ core(oy,01(x)) x # 2

M T==z
" (2,02(2)) = #
1,y def [ core(oa,02(x)) T #2z
o3(w) = { N T =2z
Then range(o}) = frU m(th) U {M} and range(ch) = fr U m(th) U {N}. Further-
more, core(oi[z — M],o1[z — M](z)) = core(o},o](x)) and core(oz[z — N],02[z —

N](z)) = core(o},oh(x)). By lemma 8 and the way the algorithm for computing £ works
(the frame is never reduced, and each pair from the theory and (M, N) keeps being a
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pair and both messages in a pair are decrypted with the same key from the frame) we

get (core(of, ol (x)), core(oh,ah(x))) € th' or core(o],of(x)) = core(ah,oh(x)) € fr' and
o1 (x) = {core(o],01(x))}F and oy(z) = {core(oh,0h(x))}F for some k C fi'. Since

o1(x) = {0} (2)}f and o2(x) = {o5(x)}% for some k' C fr C fr' it follows from the fact
that (fr', th') F ok that o1[z — M] ~" o3[z = N] and clearly F,(o1[z — M],02[z — NJ]) =

(fr', th'). m

Finally, we are ready to prove completeness. By theorem 3 it is enough to show that strong
late environment sensitive bisimilarity is complete with respect to fenced bisimilarity.

Theorem 9 (Completeness)

Let S be a fenced bisimulation. Then R % {(op > Pog > Q) | op ~ og A
A(fr,th).((fr,thy F P .S Q A Fe(op,0q) = (fr,th))} is a strong late environment sensitive
bisimulation.

Proof: Assume (op > P,og > ) € R. Then there exists (fr, th) such that (fr,th) - P S Q
and F(op,0q) = (fr, th).

PP
Since S is a fenced bisimulation there exists Q' such that Q — Q' and (fr,th) -
P’ S Q'. This implies that (op > P',00 > Q') € R.

P prandae A(op).
We have that a € fr, and since S is a fenced bisimulation there exists Q' such that

Q a(—u; Q' and, for all sets 7, where nN(fn(P, Q)UfrUn(th)) = B, and for all M, N € M,
if (frun,th) F M < N then (frUn,th) F P'{M/u} S Q'{N/u}.

Assume ¢ € Y, where e(Cop) # 0 and n(¢) NfIn(P,Q,op,00) = 0. By lemma 4 we
have op[Z — n(¢)] ~! oglZ — n((¢)], where 2N dom(sp) = 0. By lemma 5 we get
Felop[Z = n(()],00[Z2 — n(Q)]) = (frun(¢),th). Since (frUn(¢),th) - e(Cop) <
e(Cogq) follows from lemma 7 we deduce (op[Z — n(¢)] > P'{e(Cop)/u}, 00z —
n(O)] & Q'{elCoq)/u}) € .

(v ﬁz—)gM

P P' ac€ Alop), and mNn(P,op) = 0.

In this case we have a € fr and m N (fn(P) Un(mr (th)) U fr) = 0. Since S is a fenced
bisimulation there exist 7, N, and @' such that @ (Vn—)(;N Q', where . N (fn(Q) U
n(ms(th)) U fr) = 0, and &((fr, th), M, N) - P' S "

It is easily seen that 17 N fn(Q,02) = 0. By lemma 9 we have op[z — M] ~! o[z — N]|
and Fe(op[z — M],00[z — N]) = &((fr,th), M, N). Then it follows that (op[z —
M) > P',oglz = N] > Q') € R.

We have shown soundness and completeness of strong late environment sensitive bisimilarity
with respect to framed bisimilarity.
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Corollary 1 (Soundness and Completeness)
op > P ~gsp og > Q if and only if F.(op,00) F P~ Q. |

Note that if (fr,th) - P ~; @ then there always exist op and og such that op ~! g and
fe(UPagQ) = (fra th’)

5.5 Introducing Pairs

In this section we describe how the results from the previous sections of this chapter can be
proven when we allow expressions to contain pairs and projection and messages to contain
pairs. First we need to extend the environment messages, T, to include pairs and projection.

Cu=alz | {7 {210 TmQ) | 7 (Q)

The analysis and synthesis of a set of messages are naturally extended to deal with pairs as
follows (the irreducibles and the knowledge of a set of messages need not be changed).

Definition 27 (Analysis of a Set of Messages)
The analysis of a set W C M, written A(WV), is the smallest set satisfying

(i) W CAW)
(i) if k € AW) and {M}E£ € A(W) then M € A(W)

(idi) if (My, Ms) € A(W) then M, € A(W) and My € A(W)

]
Definition 28 (Synthesis of a Set of Messages)
The synthesis of a set W C M, written S(W), is the smallest set satisfying
(i) AW)c S(W)
(ii) if ke SW)NN and M € S(W) then {M}£ € S(W)
(Hl) if M, € A(W) and M, € A(W) then (Ml,MQ) € A(W)
]

A message M € M can have several cores, which are found at different positions inside M.
A position p is a string in {I,r}*.

Definition 29 (Core)
The core of M € M with respect to the set of messages W C M and the position p is
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defined as follows, © is a special symbol used to express that a valid core does not exist at
the position p.

a ifM =aandp=c¢e
{N}E if M ={N}E p=c¢, and k ¢ K(W)
def ) core(W,p,N) if M ={N}F and k € K(W)
COI'e(W;p7 M) - core(W,p’,Ml) if M = (Ml,MQ) and p= lpl
core(W,p’, Mg) if M = (Ml, MQ) and p= 'r'p’
) otherwise

We will now give a definition of equivalence of environments where messages can contain
pairs.

Definition 30 (Equivalence of Environments, ~/)

Let o and o' be environments and assume dom(o) = dom(c’) = {z; | i € I} for some set
of indices /. For each i € I and p € {[,r}* let N, - core(o, p,o(x;)) and N(; - -
core(a’,p,0'(x;)). Let the predicate (o,0') = M ~ M’ be defined as follows. (o,0') F M ~
M if there exists k such that M = {Mo}F and M’ = { Mg} ¥ for some My and M; such that
either Mo = N(; ;) and My = N(’i7p) for some ¢ and p or My = (My, Ms), My = (M, M}),
(6,0")F My ~ M| and (0,0") F My ~ M}. o and ¢’ are equivalent, written o ~!' o', if for
each ¢ € I the following holds

(i) (0,0") b o(zi) ~ o'(xi),
(ii) for each p,q € {I,r}* and j € I, N(; ) = Nyj 4 if and only if N(’i’p) = N(’j’q), and

(iii) for each p € {l,r}* and N € N, N(; ;) = N if and only if N/

(ip) — N.

With the new definition of core we need a new definition of the function F..

Definition 31 (The Function F.)

Let 0; and o2 be environments such that o; ~! 05 and dom(o;) = dom(oz) = {z; |
i € I}. Let fr 1 {core(o1,p,01(x;)) | i € I Ap € {l,r}* A core(o1,p,01(z;)) € N} and
th % {(core(o1, p,01(x;)),core(o2,p,02(x;))) | i € I Ap € {l,r}* A core(o1,p,o1(z;)) ¢
N A core(oy,p, o1 (x:)) # O}. Then Fo(o1,00) & (fr, th). n

To prove theorems 8 and 9, when we allow messages to contain pairs, we only need to prove
that lemmas 1 to 9 and theorem 7 hold when pairs are allowed. Boreale et al. have shown
that this is the case for lemmas 1 and 2 for an equivalence on environments that contains
~!". Theorem 7 and lemmas 4 and 5 are easily proven when pairs are allowed. Lemmas 3
and 8 are easily proven by adding a case for pairs in the induction step of the proofs and
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lemma 7 is easily proven by adding cases for pairs and projection in the induction step of
the proof. The proofs of lemmas 6 and 9 need to be changed when pairs are allowed. We
will only change the proof of lemma 6 here as the proof of lemma 9 is changed in a similar
way.

Lemma 10 (Lemma 6 with Pairs)

Let o1 ~! 02 and (fr, th) def Fe(o1,02). If 1]z = M| ~ 02z = NJ, where z ¢ dom(oy),
then

(i) (fr,th) < (fr',th'), and
(ii) (f',th')F M < N,

where (f, th) & Fo(o1[z = M), 00z = N]).

Proof:

(i) By theorem 7 we get (fr',th')  ok. It is easily seen that fr C fr', so by theorem 1 it is
enough to show that (fr', th") = M’ <+ N’ for each (M', N') € th to prove that (fr, th) <
(fr', th'). Assume (M’',N') € th. There exists p € {l,r}* and x € dom(o) such that
M' = core(oy1,p,01(x)) and N' = core(os, p,02(x)). Since o1[z — M| ~! o3[z = N]
we have (o1[z = M],02[z = N]) F o1[z = M](x) ~ o2[z = N|(z). Let (M;, M})ier
be the messages Mo and M|, (see definition 30) used to prove (o1[z — M], 03[z —
N)) Fo1[z = M](z) ~ o2]z — N](z). It is easily seen that (fr',th') = M; « M| for
each i € I. There must exist i € I and k C fi’ such M' = {M;}F and N' = {M[}F.
This implies (fr', th') = M' < N’

(#4) This is easily seen from definition 30.

In the following chapter we will show that a new version of framed bisimilarity, called
frameless framed bisimilarity, is sound and complete with respect to strong early environment
sensitive bisimilarity.
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Strong Early
Environment

Sensitive
Bisimilarity

In this chapter we will show that a new slightly different version of framed bisimilarity, called
frameless framed bisimilarity, is sound and complete with respect to strong early environment
sensitive bisimilarity. The proof is very similar to the proof of soundness and completeness
of strong late environment sensitive bisimilarity with respect to framed bisimilarity. We will
not go through the details of the proof here but merely state the lemmas needed.

6.1 Frameless Framed Bisimilarity

In this section we present an early version of framed bisimulation called frameless framed
bisimulation. The definition of frameless framed bisimulation is based on the notion of a
theory. A frameless framed bisimulation relates two processes P and @ in the context of a
theory. As in chapter 3 a theory is a finite set of pairs of messages. Intuitively, a theory
contains pairs of messages coming from P and @) that cannot be distinguished by an observer.
Two messages M and N are indistinguishable with respect to the theory thif tht+ M e~ N
can be derived using the rules in table 6.1.
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. (M, N) € th
[Eq theory] tht M o N

. th=M e~ N tht M’ e« N’
[Eq pair]

thi (M, M) e (N,N)

th=M «~ N tht M' s N’

[Eq encrypt]
tht {M}E, «» {N}E,

Table 6.1: The indistinguishability predicate.

In a frameless framed bisimulation we only consider theories that exhibit certain properties.

Definition 32 (Ok Theory)
The theory th is ok, written th F 1/, if

(i) for all (M,N) € th, M,N € N or M = {M;}§}, and N = {N1}§, for some messages
My, My, N1, and N,.
(ii) for all (M,N) € th
— it M ={M; 5\542 then there is no N’ such that th+ My «~ N'.
— if N = {N1}}, then there is no M’ such that tht M’ «v Ny,

(i) for all (M,N) € th and (M',N') € thy M = M' if and only if N = N'.

The definition of frameless framed bisimulation requires that a theory can be extended.

Definition 33 (Extension of a Theory)

th' is an extension of th, written th T th', if for all M and N, th - M «~ N implies
th' M «~ N. |

We will need two functions to split a theory into two sets, one containing the pairs of names
and one containing the other pairs.

Definition 34 (The Functions Oy and Oy,)

Let th be a theory. Then Op(th) % {(M,N) € th| M € N AN € N'} and Oy (th) &/

{((M,N)eth| M¢éNVN ¢N}. .

The following theorem makes it easier to show whether or not one ok theory is an extension
of another.
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Theorem 10
Let th' - 4/, then th C th' if and only if Op.(th) C O (th') and th' - M e~ N for each pair
(M,N) € Ow(th). ]

A frameless framed process pair is a triple (th, P,Q). If R is a set of frameless framed
process pairs and (th, P, Q) € R this is written th+ P R Q. A frameless framed relation
is a set of frameless framed process pairs such that th - P R @ implies thF /. A frameless

framed relation R is symmetric if th+ P R @ implies {(N,M) | (M,N) € th} - Q R P.

For a set of names V' we define C(V) i (a,a) | a € V}. Now, we are ready to present the

notion of frameless framed bisimulation.

Definition 35 (Frameless Framed Bisimulation)
A symmetric frameless framed relation R is a frameless framed bisimulation if whenever
tht P R @ it holds that

(i) if P - P' then there exists Q' such that Q@ — Q' and th+ P' R Q',

(i) it P U proand a € 71 (th) then a € mo(th) and for all n with 7 N (fn(P) U
n(m(th))) = 0 and all M € S(f U m(th)), there exist N and Q' such that

Q ““ 0, 7N (f(Q) Un(r(th) = 0, and thUC(R) - M e~ N, and it holds
that thUC(R) - P'{M/u} R Q'{N/u}, and

(iii) it P 2B P g € my(th), and N (fn(P) Un(m (8))) = 0 then a € m(th) and there

exist 72, N, and Q' such that @ (v gN Q', nN(fn(Q)Un(m2(th))) = 0, and there exists
th' such that thC th', th' - M e~ N, and th' - P' R Q'

From the definition of frameless framed bisimulation we define the notion of frameless
framed bistmilarity.

Definition 36 (Frameless Framed Bisimilarity)
P and @ are frameless framed bisimilar with respect to the theory th, written th P ~g Q,
if there exists a frameless framed bisimulation R such that th+ P R Q. |

6.2 Frameless Fenced Bisimilarity

To be able to use the proof technique used to prove soundness and completeness of strong
late environment sensitive bisimilarity with respect to framed bisimilarity to prove soundness
and completeness of frameless framed bisimilarity with respect to strong early environment
sensitive bisimilarity we introduce a frameless version of fenced bisimulation. This frameless
fenced bisimulation makes use of the Z-function presented in figure 6.1. Z(th, M, N) evalu-
ates to the smallest extension th' of th such that th' F / and th' - M e~ N (lemma 12 on
page 42). If this is not possible Z(th, M, N) evaluates to the invalid theory T.
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1 E(th,M,N)

2 IF (thk M «~» N) THEN RETURN th

3 CASE (M,N) OF

4 [M=m,N=n]:

5 IF 3(0,0") € th.(O = M </ O' = N) THEN RETURN(T)
6 ths = thU {(m,n)}

7 Ai=10

8 FOR EACH ({M:}{,,{N1}%,) € thz DO

9 IF 3L.(thg - My e~ L V thz F L «~ Ny) THEN
10 the == ths \ {({M1} 3, {N1} %)}
11 A= AU{({M1} g, {N1}R,) )
12 FOR EACH ({M:1}},,{N1}X,) € A DO
13 the := Z(E(thz, My, N»), M1, Ny)
14 [M={M}y, N ={N]}z,]:
15 IF (tht My «~ Ny) THEN thg := E(th, My, N;)

16 ELSE

17 IF 3(0,0") € th.(O = M <~ O' = N) THEN RETURN(T)
18 the == thU {(M,N)}

19 Ai=10
20 FOR EACH ({01}5,,{01}5,) € ths DO
21 IF 3L.(thz - Oy & L V ths F L «~ O%) THEN
22 thz = th= \ {({01}8,, {0'1}512)}
23 A= AU{({01}5,.{01}6,)}
24 FOR EACH ({01}3,,{01}5,) € A DO
25 thz :— Z(E(ths, 02, 04),01,0))
26 [M = (M, Ms),N = (Ny,Ny)] :
27 the := Z(E(th, My, N»), M1, Ny)
28 [otherwise] :
29 RETURN (T)

30 RETURN thg

Figure 6.1: Algorithm for computing =(th, M, N).

The notion of frameless fenced bisimulation is defined as follows.
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Definition 37 (Frameless Fenced Bisimulation)
A symmetric frameless framed relation R is a frameless fenced bisimulation if whenever
th+ P R @ it holds that

(i) if P -5 P’ then there exists Q' such that Q@ — Q' and th+- P' R @',

(ii) if P “Mprand a € m(th) then a € my(th) and for all 7 with # N (fn(P) U
n(m(th))) = 0 and all M € S(i U m(th)), there exist N and Q' such that

Q ““ @, fin (f(Q) Un(ra(th) = 0, and thUC(R) - M e~ N, and it holds
that thUC(n) - P'{M/u} R Q'{N/u}, and

(i) it P EM prog e o (th), and N (a(P) Un(m () = 0 then a € m(th) and
there exist 7, N, and @' such that @ v N Q', 7N (fn(Q) Un(ma(th))) = 0, and
=(th, M,N)F P' R ()'.

From the definition of frameless fenced bisimulation we define the notion of frameless
fenced bisimilarity.

Definition 38 (Frameless Fenced Bisimilarity)
P and @ are frameless fenced bisimilar with respect to the theory th, written tht P~z Q,
if there exists a frameless fenced bisimulation R such that th+ P R Q). |

It can be proven that frameless framed bisimilarity coincides with frameless fenced bisimi-
larity. The proof of this is very similar to the proof of soundness and completeness of fenced
bisimilarity with respect to framed bisimilarity given in [7]. We will not go through the
details of the proof here but merely state the lemmas needed in the proof and the theorems
themselves. To show soundness of frameless fenced bisimilarity with respect to frameless
framed bisimilarity we need the following lemma.

Lemma 11
Let th+ +/. If 2(th, M,N) # T then th C Z(th, M, N), E(th, M, N) \ /, and =(th, M, N) F
M e~ N. [ |

Soundness of frameless fenced bisimilarity with respect to frameless framed bisimilarity is
stated in the following theorem.

Theorem 11 (Soundness of Frameless Fenced Bisimilarity)
If tht- P ~px @ then th P ~g Q. ]

Two lemmas are needed to prove completeness of frameless fenced bisimilarity with respect to
frameless framed bisimilarity. The first lemma states that the Z-function yields the smallest
valid extension of a given theory with respect to a pair of messages.
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Lemma 12
If th + / and there exists th' such that th T th', th' + /, and th' = M e~ N then
E(th, M,N) # T, Z(th, M,N) + y/, and Z(th, M, N) C th'. [ ]

The second lemma states that when two processes are frameless framed bisimilar under
an extension of a given theory they are also frameless fenced bisimilar under the smallest
extension of this theory.

Lemma 13
If th F / and there exists th' such that th C th', th' = M «~ N, and th' - P ~g @ then
=(th, M, N) F P ~ps Q. n

The completeness result is stated in the following theorem.

Theorem 12 (Completeness of Frameless Framed Bisimilarity)
Iftht-P ~gQ then th P~z Q. [ ]

Soundness and completeness of frameless fenced bisimilarity with respect to frameless framed
bisimilarity is stated in the following corollary.

Corollary 2 (Coincidence of ~g and ~ )
tht P~y Q if and only if tht P ~p Q. m

6.3 Soundness and Completeness

In this section we will show that frameless framed bisimilarity is sound and complete with
respect to strong early environment sensitive bisimilarity for an expression and message
grammar without pairs and projection. We first define a function F. that takes two
equivalent environments as input and returns a theory. Then it can be shown that if
tht P~ Q, op ~, 0g, and Fl(op,0qQ) = th then op > P ~ggsp 0g > @, and if
op> P ~gpspog > @ then fé(O'p,O'Q) P ~ fa Q.

Definition 39 (The Function F))

Let oy and o3 be two environments such that o; ~, o3 and dom(o;) = dom(oz) = {z; | i €

I}. The function F} is defined as F. (o1, 02) d:ef{(core(al,al (x;)), core(oa,09(x;))) | i € I}.
[ |

From the definition of F. we define a function Fggsp that takes a strong early environment
sensitive bisimulation as input and returns a set of frameless framed process pairs which will
later turn out to be a frameless framed bisimulation.

Definition 40 (The Function Frrsp)

Let R be a strong early environment sensitive bisimulation. Then Frrsp(R) =4 {(th, P,Q) |
Jdo1,02.((01 > P,o2 > Q) € RA Fl(01,02) = th)}. [ ]
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The following theorem states that a theory returned from F| is ok. This implies that a
relation returned by Frpsp is a frameless framed relation.

Theorem 13 4
Let 01 ~! 03 and th :ef}"é(al,ag), then thF /. [ ]

6.3.1 Soundness

To prove soundness of frameless framed bisimilarity with respect to strong early environment
sensitive bisimilarity we make use of the following four lemmas.

Lemma 14 y
Let 01 ~. 09 and th :ef}'é(al,@). Also, let ¢ € T with n({) Nn(o1,02) = @ and e({o1) # 0,

M ¥ e(Cor), and N % e(Con). Then thUC(n(C)) - M e N. m

Lemma 15 p
Let o1 ~, o2 and th ief Fl(o1,02). Then thUC(¢) = Fl(o1[Z — ¢€],02[2 > ¢]), where
ZNdom(oy) =0 and éNin(oy,02) = 0. ]

Lemma 16

Let th - \/, 2(th, M, N) # T, and th' & =(th, M, N') then

™ (Oe(th')) = K (1 (Ope(th)) U 1 (O (th)) U {M})
2 (Op(th')) = K(ma (Osr(th)) U 2 (O (th)) U {N})
1 (Own(th')) = L(m1 (Opr(th)) U w1 (O (th) U{M}) \ N
2 (O (th')) = L(m2(Op(th) U w2 (Osn(th) U{N}) \ N

Lemma 17 J J
Let o1 ~' 03, th & Fl(01,02), Z(th, M,N) # T, and th' & Z(th, M, N). Then o1[z

&

M] ~! o3[z = N] and F!(o1[z — M], 03[z = N]) = th', where z ¢ dom(oy). |

By theorem 11 it is enough to show that frameless fenced bisimilarity is sound with respect
to strong early environment sensitive bisimilarity.

Theorem 14 (Soundness)

Let S be a frameless fenced bisimulation. Then R def {(ocp > Pyog > Q) | op ~% 0g A
th.(th+= P S Q A F.(op,0q) = th)} is a strong early environment sensitive bisimulation.
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6.3.2 Completeness

To prove completeness of frameless framed bisimilarity with respect to strong early environ-
ment sensitive bisimilarity we need the following two lemmas.

Lemma 18
Let aNfn(P,0) = P and M € S(RUZ(c)). Then there exists ( € T with n({) Nfn(P,o) =0
such that e(Co) = M.

Proof: The proof is by induction of the structure of M.

Basis:

Case M =a € n.
Let ¢ 2/ 4 then n(¢) Nin(P,o) = 0 and e({o) = M.
Case M € I(o).
by lemma 1 there exists ¢ € T such that n(¢{) =0 and e((o) = M.

Step:

Case M ={N}P e W, ke WNN, and N € W, where W d:efS(ﬁ UZ(0)).
By induction there exist (1,(, € T such that n(¢;) Nfn(P,o) = 0, e(¢10) = k,

n(G2) Nfu(P,0) = 0, and e(C0) = N. Let ¢ Z {G}E. Now n(¢) N fu(P,0) =

and e((o) = M.

Lemma 19 J
Let 01 ~, o3 and th :ef}—é(al,ag). If 01[z = M| ~, 03]z — NJ, where z ¢ dom(oy), then

(i) thC th', and
(i7) th' F M «w N,
where th' d:effé(al[zr—)M],ag[z»—)N]). ]

The following theorem states that a frameless framed relation returned from Frgsp is a
frameless framed bisimulation.

Theorem 15 (Completeness)
Let R be a strong early environment sensitive bisimulation. Then Frpsp(R) is a frameless
framed bisimulation. [ ]
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We have shown soundness and completeness of frameless framed bisimilarity with respect
to strong early environment sensitive bisimilarity.

Corollary 3 (Soundness and Completeness)
Fllop,og)F P~ Q ifand only if op > P ~gpsp 0g > Q. [ |

Note that if th - P ~g @ then there always exist op and og such that op ~!

. 0g and
Fl(op,00) = th.

Soundness and completeness of frameless framed bisimilarity with respect to strong early
environment sensitive bisimilarity can also be proven for an expression and message grammar
with pairs and projection.

In the next chapter we present some modal logics and show that these can be used to
characterize strong early and strong late environment sensitive bisimilarity.
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Logical
Characterizations
of Environment
Sensitive
Bisimilarities

A common approach to reasoning about properties of security protocols has been to use
logics. One of these is BAN-logic, which was introduced by Burrows et al. in [1]. In this
chapter we present some logics for the Spi-calculus that make it possible to reason about
properties of security protocols. We present three logics, F, EM, and LM, for configura-
tions. We show that strong early environment sensitive bisimilarity, ~%psp (~Ersp based
on the environment equivalence ~!), can be characterized by F and EM. We also show
that strong late environment sensitive bisimilarity can be characterized by LM. First we
present the syntax and semantics of formulae in a logic ® from which we shall construct
the logics F and EM. The syntax of formulae in LM is based on the syntax of formulae
in ® but LM is based on a different semantics. The syntax and semantics presented in
this chapter is inspired by [12]. In this chapter we will consider an expression and message
grammar without pairs and projection. We will continue to refer to the set of expressions
and the set of messages as £ and M, respectively.
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7.1 Syntax and Semantics of Formulae

We begin by giving the syntax of formulae. Formulae, ranged over by ¢, can contain
formula messages. The set of formula messages is denoted (2 and is ranged over by .
Formulae can be constructed using three kinds of connectives: normal formula connectives,
negation and conjunction, connectives to describe processes, silent action, free input,
early input, late input, output, and matching, and connectives to describe environ-
ments. An environment is described by the number of environment variables in its domain,
# = n, whether or not messages of the environment can be completely decrypted with the
keys k from the knowledge of the environment, z — {a} and @+ {?}7, respectively, and
whether the cores of two messages of the environment are equal, core(z) = core(z). For-
mula messages can consist of variables, environment variables, encryption, and decryption.
Formulae and formula messages are given by the following grammars.

¢5¢:_'¢|/\¢i

iel
()¢ | (ag)e | (a() ¢ | (a(u)*é | @)e | [n =nl¢

#=nl|zw— {a}]l;3 | z — {‘7]»;;3 | core(z) = core(z)
=l [}y | {n}y

where [ is a finite or infinite set of indices. In {(a(u))®¢ and {a(u))}*¢ u is bound in ¢. The
sets of free variables, fv(¢), and bound variables, bv(¢), of a formula are defined as
expected. We will write ¢{n/u} for the formula obtained be replacing every free occurrence
of u in ¢ by n, renaming bound variables as necessary. We identify formulae up to renaming
of bound variables. If the formulae ¢; and ¢, can be identified up to renaming of bound
variables we write ¢; = ¢5. We use the shorthand notations ¢; V ¢2 and &t for (-1 A —¢h2)
and A\;.q ¢, respectively. The logic ® consists of formulae without free variables, i.e. ® =

{¢|tv(¢) = 0}.

We will use a function T'(o,({) that substitutes each name a in ¢ to the environment
variable z in o that maps to a (7' will only be used in a context where o is bijective with
respect to the names in ¢, i.e. |{z € dom(o) | o(z) = a}| =1).

The following example illustrates how to express a security property in the proposed
modal logic.

Example 4. We define a formula ¢, that can only be satisfied by a configuration o > P
if P never reveals the secret name a to the environment o, i.e. a is not in the knowledge of
o and «a is not in the knowledge of the environment of any derivatives of ¢ > P. We define
¢, as follows.

¢ = Nlel'=| '\ «~ {a}f

=0 z€Z,kCN

where [¢] i [T A Asencexlaclé A Ayearlalg.  The configuration o > P given by
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o {c¢/z} and P =4 (v k)c(u).i{a}E.0 is an example of a configuration that satisfies @g.
Likewise, the configuration {cas/z1,cap/x2,csp/x3} > Sys(a) satisfies ¢,, where Sys(a) is
the protocol/process defined in example 1(given that F'(a) does not reveal a). [ ]

In addition to security properties classical process properties such as deadlock-freeness and
liveness can also be expressed in the logic .

In the example above we saw that the configuration ¢ > P satisfies the formula ¢,. We
will now define this notion of satisfaction more precisely.

Definition 41 (The Satisfaction Relation)
The satisfaction relation between configurations and formulae of ® is given by

o> PFE-¢ ifo>PEP
o> PFE N b ifor>PE@ foralliel
o> PE (1) if there exists P’ such that o > P — ¢ 1> P and
o> P EG
o> PF (al)o if there exist b,u, o', and P’ such that o > P @ o' > P’
(v b)a¢
and o' > P'E ¢
o> PFE {a(u)fe if for all ¢ € Y with n(¢) Nfn(P,c) = ) and e(Co) # O there

exist b,0', and P’ such that o > P @ o' > P’ and
(v b)ag
o' > P'E{T (o', ¢)/u}
o> PFE (@) if there exist b, M, x,c’, and P’ such that

UDP(VIZ—)EL;MUIDP’aHdUIDP":¢
alxr

o> PF[m =nl¢ if €'([m = ne]o) = tt implies o > P F ¢

o>PE#=n if |dom(o)| =n

o>PEz— {a}g if o(z) = {a}¥ and k C K(0)

o> PFz— {7} if o(z) = {core(o, U(ZL“))}TCE, core(o,o(z)) ¢ N, and
k C K(o)

o > P E core(x) = core(z) if core(o,o(x)) = core(o, o(z))

Note that the satisfaction relation is not defined for {(a(u))*¢. We will later define another
satisfaction relation that is defined for (a(u))”¢. We use the shorthand notation o E ¢ if
o> PFE¢forall PePr.

7.2 Characterization of ~%,¢p

In this section we present the two logics F and EM and show that strong early environ-
ment sensitive bisimilarity can be characterized by them both. To prove this we will use a
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technique similar to that used by Milner et al. in [12]. We will let ®¢ denote the subset
of formulae of ® that can be generated using the rules of the grammar for formulae except
the rules for [ = 0@, (al)¢, (a(u))F¢, and (a(u))t¢. F is @y extended with the rule for
(a)¢ and EM is ®¢ extended with the rules for [ = n]¢ and {(a(u))f¢. To prove that
strong early environment sensitive bisimilarity can be characterized by the two logics F and
EM we define a logical process equivalence for each of the two logics. For this we need the
following definition.

Definition 42 (Characterization Relations)

Let A be a subset of ®. Then A(o > P) i {p € A| o> PE ¢} and the relation =, is

defined by =A™ {(0p > P,og > Q) | Alop > P) = Ao > Q)}. n

The following lemma will be used to prove that strong early environment sensitive bisimi-
larity can be characterized by F and EM, respectively.

Lemma 20
Let o be an environment. Then there exists a formula ¢, € ®( such that o F ¢, and if
o' > QF ¢, then o ~! o'.

Proof: Assume |dom(c)| =n. Let ¢, e/ Nicr @i be the least formula satisfying the follow-

ing.

o # =1n= ¢; for some i € I,

E
I~c )

T {a}f = ¢, for some i € I if core(o,0(z)) = a and o(z) = {core(o, o (z))

x> {7}5 = ¢; for some i € I if core(o,0(x)) ¢ N and o(z) = {core(o, U(ZL“))}EE
e core(x) = core(z) = ¢; for some i € I if core(o,o(x)) = core(s,o(z)), and

e —(core(z) = core(z)) = ¢; for some i € I if core(o, o(z)) # core(o, o (2)).

By definition 22 it is easily seen that o > P E ¢, for all P € Pr and if o' > @Q F ¢, then
o~lal ]

Now, we are ready to prove that =x and ~% ¢p coincide.

Theorem 16 (Coincidence of =5 and ~%psp)
op>P=rog>Qifandonlyifop > P ~Ypep 0o > Q.

Proof: We will first prove that op > P ~% g5 0¢ > Q implies op > P =5 0g > Q.
Assume op > P ~Yfpop 0g > Q and op > P F ¢. We must show that g > @ F ¢. The
proof will be by structural induction on ¢.



7.2. Characterization of ~% qp 51

Basis:

Case ¢ = tt.

Trivial since every configuration satisfies tt.

Case p=# =mn, p =z = {a}7, ¢ =a > {7}, and ¢ = core(z) = core(2).

Step:

1 "
Trivial since op ~{ 0q.

Case ¢ = —¢'.

We have that op > P ¥ ¢’ and by induction we get og > @ ¥ ¢'. Hence we
deduce og > Q F ¢.

Case ¢ = \;; ¢ and I # 0.

We have that op > P F ¢; for all ¢ € I and by induction we have that og > Q F ¢;
for all ¢ € I. Hence og > Q F ¢.

Case ¢ = (1)¢'.

There exists P’ such that op > P —— op > P' and op > P' £ ¢'. Since
op > P ~Moep 0o B> Q there exists Q' such that og > Q — 0g > Q' and

op > P' ~bpep 0g > Q. By induction we have that og > Q' F ¢’ and thus we
get og > Q F ¢.

Case ¢ = (a()¢'.

We have that there exist ¢, u, o, and P’ such that op > P M op > P" and

(v ¢)ac¢
o> P E¢'. Since op > P ~'} oo > @ there exist d, o/, and Q' such that
P EESB Y9Q Q
oo > @Q @ o > Q" and o) > P’ ~psp 0n > Q'L By induction we have
(v d)ag
that of, > Q' F ¢' and thus we get og > Q F ¢.

Case ¢ = (a)¢'.

&)aM
There exist ¢, M, z, o, and P’ such that op > P (V% op > P and o >
al(z
P'E ¢'. Since op > P ~fpgp 0g > @ there exist d, N, 0g, and Q' such that
d)yaN
og D> Q (Vi
a(z)

that of, > Q' F ¢' and thus we get og > Q F ¢.

op > Q" and op > P' ~ppgp 0 > Q. By induction we have

Finally, we prove that op > P =7 og > @Q implies op > P ~ o5 0o > Q. We will do
this by showing that S defined by

SY{(op > Pog>Q)|op> P=rog > Q)

is a strong early environment sensitive bisimulation. Assume (op > P,og > Q) € S. By
lemma 20 it follows that op ~" og. Suppose op > P — o > P'. Let {C;}ier be

€
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an enumeration of {og > Q' | 0 > Q %) on > @'} and assume (op > P',C;) ¢ S
for all i € I. For each i € I choose ¢; € F(op > P')\ F(C;) (¢; always exists since

op > P ¥ ¢ implies op > P F —¢). Let ¢ i (1) N\jer @i (note that here we use the fact
that I can be infinite), then ¢ € F(op > P)\ F(og > Q). This is a contradiction since

(op > P,og > @) € S. Therefore, there must exist o7, > @' such that g > @ LY op > Q'

and (op > P'yoq > Q') € S. The cases with op > P (%C op > P and op > P (V%M
v [ alx

o > P' are shown similarly. [ ]

And now, we prove that =g and ~%,¢p coincide.

Theorem 17 (Coincidence of =g and ~gpop)
op>P=gpmoqg > Qifand only if op > P ~ppep 0o > Q.

Proof: We will first prove that op > P ~Ypop 0 > Q implies op > P =gpq 0g D> Q.
Assume op > P ~ppop 09 > @ and op > P F ¢. We must show that og > Q F ¢. The
proof will be by structural induction on ¢.

Basis: The same as in the basis case of the proof of theorem 16.

Step:

Case ¢ = (a(u))?¢'.
We have that for all € T, where n({)Nfn(P,op) = @ and e({op) # 9, there exist
&, o', and P' such that op > P (“%@C o > P and oy > P’ E ¢/ {T(c%, C)/u}.
v Cc)a

Since op > P ~fhpsg 0g > Q there exist d, 0y, and Q' such that og >

(v d)a¢
that T'(og,() = T'(0p,() we have that oy, > Q' F ¢'{T'(0g),()/u} and hence

LTQI>Q|:¢).

Case ¢ = [j1 = n2]¢".
If '([m = me2]op) = ff then €'([m = m2]og) = [f by theorem 6 and the fact that
op ~ og. It e'([m = me]op) = tt we have op > P F ¢'. By induction we get
oo > QF ¢'. Since op ~! 0¢ it follows by theorem 6 that e'([m = n2]og) = tt.

Thus we have og > @ F ¢.

alu) o > Q" and op > P’ ~Epgp o > Q. By induction and the fact

The remaining cases are proven in the same way as in the proof of theorem 16.

Finally, we prove that op > P =g 0 > Q implies op > P ~pop 0o > Q. This follows
from theorem 16 and the fact that op > P F (a()¢ if and only if op > P F {a(u))?[u =
T(op[z = n(Q)], )]0 n
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7.3 Characterization of ~gsp

In this section we present the logic LM and show that this can be used to characterize
strong late environment sensitive bisimilarity. It turns out that with the definition of strong
late environment sensitive bisimulation it is difficult to prove that a modal logic can be
used to characterize strong late environment sensitive bisimilarity using the same technique
as in the proofs of theorems 16 and 17. For this reason we define a new notion of strong
late environment sensitive bisimulation called S-environment sensitive bisimulation, show
that S-environment sensitive bisimilarity can be used to characterize strong late environ-
ment sensitive bisimilarity, and prove that LM can be used to characterize S-environment
sensitive bisimilarity using the same technique as in the proofs of theorems 16 and 17.

7.3.1 S-Environment Sensitive Bisimulation

The notion of S-environment sensitive bisimulation is defined as follows.

Definition 43 (S-Environment Sensitive Bisimulation)
Let S C M. A symmetric relation R C I" x I is an S-environment sensitive bisimulation if
(op > P,og > Q) € R implies op ~" og and if P - P’ then

(i) if = 7 then there exists ' such that @ —— Q" and (op > P',00 > Q') € R.

(i1) if @ = a(u) and a € A(op) then there exists @' such that @ alv) Q" and for all ( € T,
where e((op) # 0 and n({)N(SUK(op)) =0, (op[2 = n(¢)] > P'{e((op)/u},o0[Z —
n(Q)] > Q'{e(Cog)/u}) € R, where ZNdom(op) =0

(iii) if @ = (v &)aM, a € A(op), ¢ C S, and éNfn(P,op) = 0 then there exist d, N,
and @' such that @ (v DN Q', where d C S, dNfn(Q,0q) = 0, and (op[z — M] >

P’ oglz— N> Q') € R, where z ¢ dom(op).
]

From the definition of S-environment sensitive bisimulation we define the notion of S-
environment sensitive bisimilarity.

Definition 44 (S-Environment Sensitive Bisimilarity)

The configurations op > P and og > () are S-environment sensitive bisimilar, written
op > P ~%gp 0o > @, if there exists an S-environment sensitive bisimulation R such that
(op > P,og > Q) € R. [ ]

The following example illustrates that in general ~3,¢ 5 and ~ggp are not sound with respect
to each other.
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Example 5. To see that N}SE‘SB is not sound with respect to ~gsp for every S consider

the processes P o (v n)an.0 and Q 20 and the environment o % {a/x}. It S 0 we
haveUDPN%SBUDQbutnotUDPwESBUDQ.

To see that ~ggp is not sound with respect to N}SE‘SB for every S consider the processes
d d . d
pY (v k)(v m)a{m}E.0 and Q Lef (v k)a{k}F.0 and the environment o Lef {a/z}. We
have 0 > P ~gsp o > @ but if S d:ef{k} we do not have o > P N%SB o> Q. [ ]
In the following we will show that if two configurations are strong late environment sensitive
bisimilar then they are also S-environment sensitive bisimilar for some infinite set S con-

taining the free names of the two configurations. To show this we need the following three
lemmas.

Lemma 21
If P =5 P’ then

e if @ =7 then fn(P’) C fn(P).
e if @ = a(u) then fn(P') U {a} C fn(P).
e if « = (v é)aM then fn(P') U {a}Un(M) C fn(P)Ué.

Proof: This is easily shown using transition induction. u

Lemma 22 y
Let o be an injective name substitution defined as oar of {m/i,7/m}. If P -5 P' then
Poy X Ploy.

Proof: This is easily shown using transition induction. u

Lemma 23
Let op > P ~gsp og > @ and let ox be the injective name substitution defined by

de o~ o~
ox & {m/a,fim}. Then (op > Plox ~psp (06 > Q)ox
Proof: This is proven using lemma 22. u

Theorem 18
Let S C N be an infinite set. If op > P ~gsp 0g > Q and in(P,Q,0p,00) C S, then
op > P ~3ep oo > Q.

Proof: We will show that the relation R defined by

RY {(op > Pog> Q)| op > P ~psp og > QAM(P,Q,0p,00) C SUK(op))

is an S-environment sensitive bisimulation. Assume (op > P,og > @) € R. Since op >
P ~gsp og > @ we have that op ~ 0¢.
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PP,
Since op > P ~gsp 0g > @ there exists @' such that @ 5 Q" and op > P' ~psa
oo > Q. By lemma 21 we have that fn(P',Q’,0p,00) C S and it follows that
(op > PLog > Q') €R.

P prandae A(op).

Since op > P ~gsp 0g > @ there exists @' such that Q M Q@' and for all
¢ € Y, where e(Cop) # 0 and n(¢) N In(P,Q,op,00) = 0, op[Z — n(()] >
P'{e(Cop)/u} ~rpsp 0g[z = n(()] > Q'{e(Cog)/u}. Assume (' € T, n(') N
(SUK(op)) = 0, and e(('op) # 0. Then we have that op[Z — n(¢")] >
P'{e(('op)/u} ~gsp oglZ — n(¢")] > Q'{e(('og)/u} and by lemma 21 we get
fn(P'{e(('op)/u}, @' {e(('oq)/ut,op[Z = n(()],00[z2 = n((")]) C SUK(op[z —
n(¢’)]). This implies that (op[Z — n({")] > P'{e({'op)/u},00lZ2 — n((")] >
Q'{e(('oq)/u}) € R.

(v Dam

P P ac Alop), ¢ C S, and ¢Nin(P,op) = 0.

. .5 d)aN
Since op > P ~ggp 0¢g > @ there exist d, N, and @' such that Q (V—M; Q', where

dn m(Q,o¢0) =0, and op[z — M] > P' ~gsp og[z — N| > Q'. If d C S then by
lemma 21 we have fn(P',Q',op[z — M],oq[z — NJ]) C S and it follows that (op[Z —
M] > P',og[zZ— N> Q') € R. Ifd\S # () then let 71 d:efci\S. There exists a tuple m
of distinct names such that mN(n(P, Q,op,09)U¢) = 0, m C S, and |m| = |n|. Let opr
be the name substitution defined by o o {m/n,n/m}. Since op[z = M| > P' ~gsp
oglz = N> Q" we get (op[z — M| > P)on ~gsp (0g[z = N] > Q')on by lemma
23. It now follows that op[z — M| > P' ~gsp 0g[z — Nonx] > Q'oa. By lemma 22

we have Q (« Q'oxr and it can be seen that doy C S and doy Nfn(Q,0q) = 0.
By lemma 21 we get in(P', Q'on, op[z — M],00[z — Noy]) C S and it follows that
(oplz = M) 1> P og[z— Noyx] > Q'on) € R. ]

v d)aN)onx
—

Now, we will show that if two configurations are S-environment sensitive bisimilar for some
infinite set S C N (N'\ S also infinite) containing the free names of the two configurations
then they are also strong late environment sensitive bisimilar. To prove this we need the
following two lemmas.

Lemma 24
Ifop> P~%sgog>QandV CK(op) then op > P ~33% 0o > Q.

Proof: This can be seen from the definition of S-environment sensitive bisimulation. [ |

Lemma 25
Let SCN,mNS=0,72CS,and op > P ~5sp 0o > Q. Let o be a name substitution

defined as op o {m/n,n/m}. Then (op > P)on ~§§S\§>Uﬁ’ (o > Q)on.

Proof: This is proven using lemma 22. u
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Theorem 19
Let S C N and op > P,og > Q € I'such that fn(P, Q,0p,00) CS,0p > P ~%s5 00 > Q,
and S and NV'\ S are infinite. Then op > P ~gsp 0g > Q.

Proof: We will show that the relation R defined by
R d:ef{(UP > P,og >Q)|3S CN.(op > P ~gp og > QA
m(P,Q,op,00) CSA|S| =00 AN\ S| =00)}

is a strong late environment sensitive bisimulation. Assume (op > P,og > @) € R. Then
there exists S C N such that fn(P,Q,0p,00) C S, op > P ~5sp 00 > Q, and S and N'\ S
are infinite. Since op > P ~% g5 0o > Q we get op ~! 0.

PP
There exists Q' such that Q@ — Q' and op > P’ ~3.55 0o > Q'. By lemma 21 we
have fu(P',Q',0p,0¢) C S and therefore (op > P’ 00 > Q') € R.

P pandac A(op).

There exists Q' such that Q 4 ' and for all ¢! € T with e(C'op) # & and
n(¢") N (SUK(op)) = 0 it holds that op[Z — n(¢")] > P'{e(('op)/u} ~5sp 00l —
a(¢] > Q{e(C'g) /u}.

Now, let ¢ € T such that e(Cop) # O and n(¢) N In(P,Q,op,00) = 0. If
n(¢) N (SUK(op)) = 0 then we know that op[Z — n(()] > P'{e(Cop)/u} ~3%sp
oglZ2 — n(Q)] > Q{e(Cog)/u}. By lemma 24 we get op[Z — n(()] >
P'{e(Cop)/u} ~man? oglz = n(Q)] > Q'{e(Cog)/u}. This implies (0p[Z +
n(Q)] > P'{e((op)/u},o0[Z2 — n(()] > Q'{e(Cog)/u}) € R since we have
(P {e(Cor) u}, Q{e(Coq) u}, aplE = n(Q)],ogl% = n(Q)]) € SUn(C) by lemma 21
It n(¢) N (S U K(op)) # 0 then let @ = n(¢) N (S U K(op)). There exist
¢ € T and m C N such that n(¢") N (S U K(op)) = 0, n(¢) \ 7 C n(¢'), and

¢ = ('on, where op is a name substitution defined as o def {m/n,n/m}. We
have op[z = n(()] > P'{e(('op)/u} ~Fsp oglf = n(()] > Q'{e(('oq)/u},
and by lemma 25 we get (op[Z — n({")] > P'{e(C'op)/u})on N%‘S'S\’E)Um (oglz —

n(¢)] > Q{e(('oq)/u}t)on. Since (i Um) N (P,Q,op,0q) = ) we deduce
oplZ = n(Q)] & P'{e(Cop)/u} ~gi "™ 002 = n(Q)] > Q'{e(Cog)/u}. By lemma 24
we get op[2 = n(Q)] > P{e((op)/u} ~isp "M aglz = n(0)] > Q'{e((oq)/u).
Since fn(P'{e(Cop)/u}, @'{e(Coq)/u}, op[Z = n(Q)], o[z = n(()]) € (S\72)UnUn(()
follows by lemma 21 we conclude that (op[Z — n(¢)] > P'{e(Cop)/u},o0[Z — n(¢)] >

Q'{e(Coq)/u} € R.

p oM P' a € A(op), and éNfo(P,op) = 0.

If & C S then there exist d, N, and Q' such that Q (v DN Q',dC S, dnfn(Q,oq) =0,
and op[z = M] > P' ~3.¢5 0glz = N] > Q'. We deduce (op[z = M] > P',og[z —
N] > Q') € R since fn(P',Q’,op[z — M],0¢0[z — N]) C S by lemma 21 and the fact
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that éUd C S.
def .

Ifé\S # () then let m = ¢\ S. Let i be a set of names such that n C S, 7 N
(fn(P,Q,0p,00) U¢) = 0, and || = |m|. Let oa be the name substitution given

by on =4 {m/n,n/m}. By lemma 25 we have (op > P)oy Ngfss}g)um (g > Q)onr.
Since (7 Um) N (P, Q,op,0q0) = ) we get op > P N%‘S'S\’E)Um og > Q. By the fact

that & C (S \ @) U there exist d, N, and Q' such that Q 5" @, d C (S \ #) U,
dN(Q,0q) = 0, and oplz = M] > P’ Ngs\g)uﬁz oglz = N] > @'. By lemma 21
we get fn(P',Q",oplz = M],o0[z — N]) C (S \ n)Um. Therefore, we conclude
(oplz— M) 1> P',og[z— N|> Q') € R.

From theorems 18 and 19 we can establish that strong late environment sensitive bisimilarity
is an equivalence relation.

Corollary 4
Strong late environment sensitive bisimilarity is an equivalence relation.

Proof: We will only prove that strong late environment sensitive bisimilarity is transitive
since it is clearly reflexive and symmetric. Assume op > P ~pgsg og > R and o >
R ~gsp og > Q. Let S C N be an infinite set such that fn(P,Q,R,0p,00,0r) C S and
N\ S is infinite. By theorem 18 we have op > P ~%g 0r > Rand og > R ~%g5 00 > Q.
Since S-environment sensitive bisimilarity is transitive we have that op > P ~5q5 00 > @,
and by theorem 19 we get op > P ~gsp 0g > Q. [ |

7.3.2 Characterization of ~%.; and ~gsp

We will characterize ~%¢5 and ~gsp by the logic LM which is defined as ®; extended
with the rules for [ = n]¢ and (a(u))l'¢. We define a new satisfaction relation between
configurations and formulae of LM.
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Definition 45 (The S-Satisfaction Relation)
The S-satisfaction relation between configurations and formulae of LM is given by

0'[>P':S—|¢) ifUDP#SQf)

o> PEs N\ics ¢ ifo> PEg ¢; foralliel

o> PEg (r)¢ if there exists P’ such that P —— P’ and 0 > P' Fg ¢
o> PEs (a(u))ro if a € A(o) and there exists P’ such that P 2™ prand

for all { € Y with n(¢{) N (SUK(c)) =0 and e({o) # 0,

o[z = n(Q)] > P'{e(Co)/u} Fs ¢{T(o[z = n(()], () /u}
o> PEg (a)¢ if a € A(0) and there exist b, M, z, and ~P’ such that

z ¢ dom(s),bNfn(P,0) =0,bC S, P (v D)aM P’ and

o[z = M] > P' Eg ¢

o> PFEgm=mnl¢ if €/([n = m2]o) = ttimplies o > P Fg ¢

o>PEs#=n if |dom(o)| =n

o> PEsx— {a}¥ if o(x) = {a}gJ and k C K(0)

o> PFgz— {7},%1Ej if o(x) = {core(o, U(w))}g,core(a, o(xz)) ¢ N, and
k C K(o)

o > P Eg core(x) = core(z) if core(o, o(x)) = core(o,o(z))
]

To prove that S-environment sensitive bisimilarity can be characterized by the logic LM we
define a logical process equivalence for this logic. For this we need the following definition.

Definition 46 (S-Characterization Relations)

Let A be a subset of £M and let S C . Then AS(c > P) ¥ {s € A |o > PEg ¢} and

the relation =, s is defined by =as d:ef{(ap > Pog > Q)| AS(op > P) =AS(0g > Q)}-
]

Now, we are ready to prove that =, s and N%SB coincide.

Theorem 20 (Coincidence of =/ s and ~%¢p)
op > P =ps 09> Qifand only if op > P ~3ep 00 > Q.

Proof: We will first prove that op > P ~%¢p 0g > Q implies op > P =5 0g > Q.
Assume op > P ~5¢5 00 > Q and op > P Fg ¢. We must show that og > Q Fs ¢. The
proof will be by structural induction on ¢.

Basis: The same as in the proof of theorems 16 and 17.

Step:

Case ¢ = (a(u))r¢'.
We have that a € A(op) and that there exists P’ such that P “ pr and for all
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Ce Y withn(()N(SUK(op)) =0 and e(Cop) # 9 it holds that op[Z — n(()] >
P'{e(Cop)/u} Es ¢'{T(op[Z — n(()],{)/u}. Since op > P ~psp 0o > Q
we have that there exists @' such that @ M Q' and for all ( € T, where
(o) # 0 and n(¢) N (S UK(0q)) = B, op[z = n(Q)] & Pe(op)/u} ~Ssp
oglz = n(¢)] > Q'{e(Cog)/u}, where ZNdom(sp) = (. By induction and the
fact that T'(og[Z — n(¢)],{) = T(op[Z — n(¢)],{) we have that for all ( € T
with n(¢) N (S U K(og)) = 0 and e(Cog) # 0 it holds that og[Z — n({)] >
Q'{e(Coa)/u} Fs §{T(7g[% = n(Q)], O)/u} and hence og 1> Q Fs 6.
Case ¢ = (a)¢'. B B

We have that a € A(op) and there exist b, M, and P’ such that bNfn(P,op) = 0,
bcs, P2 P and oplz s M] > P Eg ¢'. Since op > P ~Sap 00 > Q
we have that there exist d, N, and Q' such that Q (VﬂN Q', where d C S,
dNf(Q,0q) = 0, and oplz = M] > P' ~3sp oglz = N] > Q', where
z ¢ dom(op). By induction we have that og[z — N] > Q' Es ¢' and hence
oQ B> Q Es ¢.

The remaining cases are proven in a way similar to that of the proof of theorem 17.

Finally, we prove that op > P =y ps 0@ D> @ implies op > P N%SB og > Q. We will do
this by showing that the relation R defined by

RY {(op>Poo>Q)|op> P =pps 00> Q)

is an S-environment sensitive bisimulation. Assume (op > P,0g > )) € R. By lemma 20

(naturally modified to Fg) it follows that op ~! og. Suppose P “M prand a € A(op).

Let {Q;}ics be an enumeration of {Q' | @ ol @'} and assume that for each ¢ € I there
exists ¢; € T with n(¢;) N (SUK(op)) = 0 and e(¢;op) # O such that (op[Z — n(§)] >
P'{e(Ciop)/u},oq[Z — n()] > Qi{e(Ciog)/u}) ¢ R. For each i € I there exists ¢; such
that op[Z — n(()] > P'{e(Ciop)/u} Es ¢; and og[z — n(G)] > Qi{e(liog)/u} Es ¢;.
Let ¢ & (a(u)X Nieslu = T(op[Z = n(G:)], ()¢ Now, we have op > P Eg ¢ and
og > Q ¥s ¢. This is a contradiction since (op > P,og > Q) € R. Therefore, there must
exist )’ such that @ ol Q' and for all ¢ € T with n(¢{) N (SUK(op)) =0 and e((op) # 0
it holds that (op[Z — n(¢)] > P'{e(Cop)/u}, o0z — n(()] > Q'{e((og)/u}) € R. The
remaining cases are shown in a way similar to that of the proof of theorem 17. |

Finally, we conclude that strong late environment sensitive bisimilarity can be characterized
by the logic LM.

Corollary 5

Let =c ™ {(0p > P,og > Q) | IS C N.(0p > P =5 00 > Q Afn(P,Q,0p,00) C S A

|S] = 0o AIN\S|=00)}. Thenop > P =g 09 > Q ifand only if op > P ~gsp 0g > Q.
]
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Conclusion

In this report we have presented a strong late version of the environment sensitive bisimi-
larity given by Boreale at al. and proved that this can be used as an alternative character-
ization of framed bisimilarity. We have proven that op > P ~gsp 0@ > @ if and only if
Fe(op,0g) F P ~¢ Q. Our proof of this involved the notion of fenced bisimilarity defined
by Elkjer et al. Furthermore, we presented the notions of frameless framed bisimulation
and frameless fenced bisimulation. We have shown that frameless framed bisimilarity and
frameless fenced bisimilarity coincide. This was proven using an adaptation of the proof
technique used by Elkjeer et al. in proving that framed bisimilarity and fenced bisimilarity
coincide. We have shown that frameless framed bisimilarity can be used to characterize
strong early environment sensitive bisimilarity. Finally, we proposed some modal logics for
the Spi-calculus. We proved that these can be used to characterize a strong early version and
our new strong late version of the environment sensitive bisimilarity given by Boreale at al.
The definition of our new strong late version of the environment sensitive bisimulation makes
it difficult to give a logical characterization of strong late environment sensitive bisimilarity
directly. Therefore, we introduced a new notion of environment sensitive bisimulation called
S-environment sensitive bisimulation and gave a logical characterization of S-environment
sensitive bisimilarity. It turned out that when S has some special properties it holds that
op > P ~gsp og > Q if and only if op > P ~3g5 0o > Q. With this useful connection
between S-environment sensitive bisimilarity and strong late environment sensitive bisim-
ilarity we were able to give a logical characterization of strong late environment sensitive
bisimilarity.

8.1 Future Work

At this point it would be interesting to study whether the results presented in chapters 5
and 6 about correspondence between strong bisimilarities also hold for weak versions of the
bisimilarities. Since the lemmas needed in proving the results for the strong bisimilarities
do not depend on transitions we do not need to show them again.

In chapter 7 we illustrated how a security property for security protocols could be ex-
pressed in the proposed modal logic. It would be interesting to see whether our logic can
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be used to describe some of the classical protocols like the ‘Wide Mouthed Frog Protocol’.
Although our modal logic can be used to characterize environment sensitive bisimilarity it
suffers from the fact that to describe properties of a configuration with an infinite sequence
of transitions we need infinite formulae. It would be fitting to extend the logic with recur-
sion in a way that makes it possible to describe configuration with an infinite sequence of
transitions with finite formulae.
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