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Synopsis:The Spi-
al
ulus is a pro
ess 
al
ulus intendedfor the des
ription and veri�
ation of se
urityproto
ols. Abadi and Gordon have des
ribedhow 
ommon notions of 
orre
tness 
an be de-s
ribed by means of behavioural equivalen
efor the Spi-
al
ulus. They suggest using test-ing equivalen
e as the notion of behaviouralequivalen
e. However, proving testing equiva-len
e is hard, wherefore some alternative no-tions of equivalen
e have been proposed.Abadi and Gordon introdu
ed the notion offramed bisimilarity and Boreale et al. in-trodu
ed the notion of environment sensitivebisimilarity. Both equivalen
es are alreadyknown to be sound approximations of may-testing equivalen
e.In this report we show that framed bisimilarityand a strong late version of environment sen-sitive bisimilarity are in fa
t one and the samerelation. We have also formulated an earlyversion of framed bisimilarity, 
alled framelessframed bisimilarity, and shown that this is thesame as a strong early environment sensitivebisimilarity.Finally, we propose some modal logi
s for theSpi-
al
ulus and show that strong early andstrong late environment sensitive bisimilarity
an be 
hara
terized by these logi
s.
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Danish Summary

Denne rapport er dokumentation for projektgruppe E1-119b's spe
iale på Dat6-semesteretforåret 2001 på instituttet for datalogi, Aalborg universitet.Projektets tema er semantik. Projektet omhandler forskellige bisimilariteter for Spi-kalkylen. Vi har bevist, at der er interessante sammenhænge mellem disse bisimilariteter,og endvidere har vi foreslået nogle modallogikker for Spi-kalkylen.Spi-kalkylen er en pro
eskalkyle udviklet af Abadi og Gordon[3℄ med henblik på be-skrivelse og veri�kation af sikkerhedsprotokoller. Abadi og Gordon har beskrevet hvor-dan sikkerhedsegenskaber for sikkerhedsprotokoller kan udtrykkes ved hjælp af testingækvi-valens. Desværre er testingækvivalens svært at bevise, hvorfor der er foreslået to bisimule-ringsækvivalenser for Spi-kalkylen, som er lettere at bevise.Den første af de foreslåede bisimuleringsækvivalenser kaldes framed bisimilaritet og blevintrodu
eret af Abadi og Gordon i [2℄. En framed bisimulering relaterer pro
esser i forholdtil et frame-theory par. Et frame-theory par indeholder information om hvilke navne pro-
essernes omgivelser kender og hvilke beskeder sendt af pro
esserne pro
essernes omgivelserikke kan skelne mellem. Den sidste af de foreslåede bisimuleringsækvivalenser kaldes envi-ronment sensitive bisimilaritet og blev introdu
eret af Boreale et al. i [6℄. En environmentsensitive bisimulering relaterer kon�gurationer bestående af en pro
es og dens omgivelser.Det er tidligere bevist, at både framed bisimilaritet og environment sensitive bisimilariteter sunde tilnærmelser af testingækvivalens.Vi har de�neret en stærk sen udgave af environment sensitive bisimulering og vist, atstærk sen environment sensitive bisimilaritet kan bruges til at karakterisere framed bisi-milaritet. Der gælder, at to pro
esser er framed bisimilære i forhold til et frame-theorypar hvis og kun hvis disse pro
esser indgår i to stærk sen environment sensitive bisimilærekon�gurationer hvis omgivelser kan konverteres til det pågældende frame-theory par. Bevisetfor dette anvender blandt andet en alternativ karakterisering af framed bisimilaritet kaldetfen
ed bisimilaritet. Desuden har vi de�neret frameless framed bisimulering, som er entidlig udgave af framed bisimulering. Vi har bevist, at en stærk tidlig environment sensitivebisimilaritet kan karakteriseres ved hjælp af frameless framed bisimilaritet. Endelig harvi de�neret nogle modallogikker for kon�gurationer og vist, at stærk tidlig og stærk senenvironment sensitive bisimilaritet kan karakteriseres ved hjælp af disse.
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PrefaceThis report is the Master Thesis of proje
t group E1-119b on the Dat6 semester at theInstitute for Computer S
ien
e, Aalborg University.The theme of the proje
t is semanti
s. The proje
t deals with di�erent notions of bisim-ilarity for the Spi-
al
ulus. Interesting 
onne
tions between these bisimilarities have beenproven, and some modal logi
s for the Spi-
al
ulus have been proposed.Sour
e material will be referen
ed by a sour
e number in square bra
kets, [sour
e num-ber ℄, and the title and author of the sour
e will be listed in the bibliography. De�nitions, the-orems, lemmas, 
orollaries, and examples, respe
tively, are numbered 
onse
utively through-out the report. Figures and tables, respe
tively, are numbered 
onse
utively throughout ea
h
hapter. For example, the �rst �gure of 
hapter 3 will be referen
ed as �gure 3.1. A list ofsymbols used throughout the report 
an be seen on page vii.Aalborg June 7, 2001.
Ulrik Frendrup Jesper Nyholm Jensen
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Glossary

Below are listed the notations used for sets, fun
tions, predi
ates, and relations throughoutthis report. They will be presented in order of appearan
e.SetsSet Ranged over by Des
ription Se
tionN a, b, 
, d, k, m, n Names. 2.1V u, v Variables. 2.1L K, L Expressions. 2.1G G Guards. 2.1Ag A Agents. 2.1M M , N Messages. 2.1Pr P , Q, R Pro
esses. 2.1A
t � Pro
ess a
tions. 2.2Fr fr Frames. 3.1T h th Theories. 3.1� � Environments. 4.1Z x, y, z Environment variables. 4.1� � Environment messages. 4.1� C Con�gurations. 4.2A
te Æ Environment a
tions. 4.2
 � Formula messages. 7.1� � Logi
 
onsisting of formulae without free vari-ables. 7.1�0 � Base logi
. 7.2F ; EM � Extensions of the base logi
. Used to 
har-a
terize a strong early environment sensitivebisimilarity. 7.2LM � Logi
 used to 
hara
terize strong late environ-ment sensitive bisimilarity. 7.3.2
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ulusFun
tionsFun
tion Type Des
ription Se
tione L !M[ f�g Fun
tion for evaluating expressions tomessages. � is a spe
ial symbol usedto express that an expression 
annot beevaluated to a message. 2.2e0 G ! ftt;�g Fun
tion for evaluating guards. 2.2�1, �2 T h! P(M) Proje
tion fun
tions for theories. 3.2� Fr�T h�M�M!Fr � T h [ f?g Fun
tion for 
omputing the smallest ex-tension, with respe
t to a pair of mes-sages, of a frame-theory pair. ? isan invalid frame-theory pair returnedwhen there does not exist su
h an ex-tension. 3.3
A P(M)! P(M) The analysis of a set of messages. 4.1S P(M)! P(M) The synthesis of a set of messages. 4.1I P(M)! P(M) The irredu
ibles of a set of messages. 4.1K P(M)! P(M) The knowledge of a set of messages. 4.1
ore P(M)�M!M The 
ore of a message with respe
t to aset of messages. 4.1Fe �� �! Fr � T h Fun
tion for 
onstru
ting a frame-theory pair from two equivalent envi-ronments. 5.2FESB P(���)! P(Fr�T h�Pr �Pr) Fun
tion for 
onstru
ting a framedbisimulation from a strong late environ-ment sensitive bisimulation. 5.2Ofr T h! P(N �N ) Fun
tion for extra
ting the set of pairsof names from a theory. 6.1Oth T h! T h Fun
tion for extra
ting the subset of atheory that does not 
ontain pairs ofnames. 6.1C P(N )! P(N �N ) Copy-pairing fun
tion for a set ofnames. 6.1� T h � M � M !T h [ f>g Fun
tion for 
omputing the smallest ex-tension, with respe
t to a pair of mes-sages, of a theory. > is an invalid theoryreturned when there does not exist su
han extension. 6.2


ontinued on next page.



ix
ontinued from previous page.Fun
tion Type Des
ription Se
tionF 0e �� �! T h Fun
tion for 
onstru
ting a theory fromtwo equivalent environments. 6.3FEESB P(���)! P(T h�Pr �Pr) Fun
tion for 
onstru
ting a framelessframed bisimulation from a strong earlyenvironment sensitive bisimulation. 6.3T ���! � Fun
tion for substituting names of anenvironment message to environmentvariables. 7.1� �! P(�) Fun
tion for �nding the set of formu-lae from � that a 
ertain 
on�gurationsatis�es. 7.2�S �! P(LM) Fun
tion for �nding the set of formulaefrom � that a 
ertain 
on�guration S-satis�es. 7.3.2
Predi
atesPredi
ate Des
ription Se
tion$ The frame-theory pair indistinguishability predi
ate. 3.1ok The ok frame-theory predi
ate. 3.1! The theory indistinguishability predi
ate. 6.1p The ok theory predi
ate. 6.1RelationsRelation Des
ription Se
tion�� �-Convertibility relation. 2.1��! Transition relation. 2.2' Testing equivalen
e. 2.3� The frame-theory pair extension preorder relation. 3.1�f Framed bisimilarity. 3.2�# Fen
ed bisimilarity. 3.3�e Environment equivalen
e. 4.1��!Æ Strong environment sensitive transition relation. 4.2�=)Æ Weak environment sensitive transition relation. 4.2�EESB Weak early environment sensitive bisimilarity. 4.3�EESB Strong early environment sensitive bisimilarity. 4.3�0e Environment equivalen
e. 4.4�00e Environment equivalen
e. 5.1�ESB Strong late environment sensitive bisimilarity. 5.1
ontinued on next page.



x Bisimilarity in the Spi-Cal
ulus
ontinued from previous page.Relation Des
ription Se
tionv The theory extension preorder relation. 6.1�� Frameless framed bisimilarity. 6.1�f# Frameless fen
ed bisimilarity. 6.2�00EESB Strong early environment sensitive bisimilarity based on theenvironment equivalen
e �00e . 7.0� Synta
ti
 identity of formulae. 7.1� Satisfa
tion relation between 
on�gurations and formulae. 7.1=F Logi
al pro
ess equivalen
e indu
ed by the logi
 F . 7.2=EM Logi
al pro
ess equivalen
e indu
ed by the logi
 EM. 7.2�SESB S-Environment sensitive bisimilarity. 7.3.1�S S-Satisfa
tion relation between 
on�gurations and formu-lae. 7.3.2=LMS Logi
al pro
ess equivalen
e indu
ed by the logi
 LM andthe set S. 7.3.2=LM Logi
al pro
ess equivalen
e indu
ed by the logi
 LM. 7.3.2
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1IntroductionIn re
ent years 
ryptography has widely been used in distributed systems to obtain se
re
y,authenti
ation, integrity, and to prevent frauds from being 
arried out by dishonest people.However, the use of 
ryptography in a distributed system does not ne
essarily give the sys-tem these properties. There exist many 
ases of people having found �aws in 
ryptographi
proto
ols years after these were proposed and integrated in systems[15℄. Due to this, someresear
hers have been fo
using on using formal methods for analyzing 
ryptographi
 proto-
ols. A popular approa
h is to model proto
ols as 
on
urrent pro
esses in a pro
ess 
al
uluslike the �-
al
ulus.1.1 The �-Cal
ulusAlthough the �-
al
ulus appears suited for des
ribing se
urity proto
ols at an abstra
t levelit su�ers from the fa
t that it does not in
lude any 
onstru
ts for en
ryption and de
ryptingneeded when des
ribing a
tual implementations of se
urity proto
ols. Consider an examplewhere a pro
ess P1 wants to send some se
ret datum d to another pro
ess P2. In the �-
al
ulus this 
an be a
hieved by 
reating a new 
hannel 
 whi
h is used for the transmissionof d as illustrated in the following �-pro
ess.PROTOCOL def= (� 
)(�
d:P1 j 
(z):P2)The transmission of d on 
 is se
ure sin
e 
 is not known by anyone but P1 and P2. Inan implementation of PROTOCOL the pro
esses P1 and P2 
ould be pla
ed on di�erentma
hines. In this 
ase the 
ommuni
ation between the pro
esses is not ne
essarily se
ure ifit uses a publi
 
hannel and the transmission of d on 
 should be implemented in a way thatguarantees the se
re
y of d. The de�nition of PROTOCOL in the �-
al
ulus does not sayanything about how this is done.1.2 The Spi-Cal
ulusThe Spi-
al
ulus was �rst presented by Abadi and Gordon in [3℄ and was designed for de-s
ribing and analyzing se
urity proto
ols. The Spi-
al
ulus is an extension of the �-
al
ulus



2 Bisimilarity in the Spi-Cal
uluswith 
ryptographi
 primitives. With these it is possible to represent the use of 
ryptographyin se
urity proto
ols in a way that is more suited for des
ribing a
tual implementations. In[3℄, Abadi and Gordon des
ribe how 
ommon notions of 
orre
tness of se
urity proto
ols
an be des
ribed by means of behavioural equivalen
e for the Spi-
al
ulus. For instan
e,
onsider a proto
ol S(M) transmitting the message M . S has the property of se
re
y ifits observable behaviour does not depend on M , i.e. if S(M1) � S(M2) for any messagesM1 and M2. Abadi and Gordon suggest using the notion of may-testing equivalen
e due toDe Ni
ola and Hennessy as the notion of behavioural equivalen
e for the Spi-
al
ulus. Twopro
esses are testing equivalent if they allow the same end observations in all observation
ontexts. As observers in the Spi-
al
ulus setting are potentially mali
ious, two pro
essesare thus equivalent if they respond identi
ally to identi
al atta
ks. However, while the no-tion of testing equivalen
e is perfe
t from a philosophi
al point of view it is less ideal fora
tual reasoning about proto
ols as its de�nition involves universal quanti�
ation over allatta
kers. This has been dealt with in two di�erent ways.1.3 Bisimilarities in the Spi-Cal
ulusIn [2℄, Abadi and Gordon introdu
e the notion of framed bisimilarity based on the 
on
ept ofa frame-theory pair. A frame-theory pair is a pair (fr; th), where fr is the set of names knownby the observer and th is a �nite set of identities on messages that the observer assumes.If (M;N) 2 th the observer 
annot distinguish between messages M and N . Equivalen
ejudgements of framed bisimilarity are relative to a frame-theory pair, i.e. (fr; th) ` P �f Qif P and Q are equivalent under the assumptions in (fr; th). Abadi and Gordon have shownthat �f is a sound approximation of may-testing equivalen
e in the sense that it impliesmay-testing equivalen
e under natural 
onditions on the frame-theory pair involved. In [6℄,Boreale et al. let the knowledge of the observer be
ome part of the semanti
s of pro
esses.Their notion of environment sensitive bisimilarity 
ompares 
on�gurations of the form �BP ,where � re
ords the messages and names that are known to the environment. Equivalen
ejudgments are thus of the form �1 B P �EESB �2 B Q. Boreale et al. have shown that�EESB , too, is a sound approximation of may-testing equivalen
e.It has been proven thatthere exist environment sensitive bisimilar 
on�gurations �P B P and �Q B Q for whi
hthere does not exist a frame-theory pair su
h that P and Q are framed bisimilar with respe
tto this pair.1.4 New ResultsIn this report, we present a new strong late version of the environment sensitive bisimilaritygiven by Boreale at al. and prove that this 
an be used as an alternative 
hara
terization offramed bisimilarity. The 
hara
terization states that two 
on�gurations �P B P and �Q B Qare strong late environment sensitive bisimilar if and only if P and Q are framed bisimilarwith respe
t to Fe(�P ; �Q), where Fe is a fun
tion that given two equivalent environmentsreturns a frame-theory pair.



1.5. Outline of the Report 3Furthermore, we present a new early version of framed bisimilarity 
alled framelessframed bisimilarity. This bisimilarity 
an be used to 
hara
terize a strong version of theearly environment sensitive bisimilarity given by Boreale at al. This is easily proven us-ing an adaptation of the proof te
hnique used to prove that the strong late version of theenvironment sensitive bisimilarity is the same as framed bisimilarity.Finally, we propose some modal logi
s for the Spi-
al
ulus. We prove that these 
an beused to 
hara
terize the strong early version and our new strong late version of the envi-ronment sensitive bisimilarity given by Boreale at al. The de�nition of our new strong lateversion of environment sensitive bisimulation makes it di�
ult to give a logi
al 
hara
ter-ization of strong late environment sensitive bisimilarity dire
tly. Therefore, we introdu
ea new notion of environment sensitive bisimulation 
alled S-environment sensitive bisimu-lation, show that there is a useful 
onne
tion between S-environment sensitive bisimilarityand strong late environment sensitive bisimilarity, and give a logi
al 
hara
terization ofS-environment sensitive bisimilarity.1.5 Outline of the ReportThis report 
ontains eight 
hapters and is organized as follows. Chapter 2 
ontains the syntaxand semanti
s of the variant of the Spi-
al
ulus we will be working with. Furthermore, wepresent the notion of testing equivalen
e de�ned by Abadi and Gordon in [3℄. In 
hapter 3we present the notion of framed bisimulation introdu
ed by Abadi and Gordon in [2℄. Wealso present an alternative 
hara
terization of framed bisimilarity, 
alled fen
ed bisimilarity,given by Elkjær et al. in [7℄. In 
hapter 4 the notion of environment sensitive bisimulation,de�ned by Boreale et al. in [6℄, is given. In 
hapter 5 we present a new strong late versionof the environment sensitive bisimulation given by Boreale at al. and prove that stronglate environment sensitive bisimilarity is in fa
t an alternative 
hara
terization of framedbisimilarity. In 
hapter 6 we present an early version of framed bisimulation 
alled framelessframed bisimulation. Moreover, we present results stating that frameless framed bisimilarityis an alternative 
hara
terization of a strong version of the environment sensitive bisimilarityde�ned by Boreale et al. In 
hapter 7 we propose some modal logi
s for the Spi-
al
ulusand prove that we 
an use these to give logi
al 
hara
terizations of environment sensitivebisimilarities. Finally, 
hapter 8 
on
ludes on our work.



4 Bisimilarity in the Spi-Cal
ulus



2The Spi­Calculus

This 
hapter 
ontains preliminaries on the variant of the Spi-
al
ulus we will be workingwith. The variant is inspired by [6℄ and [10℄. We will �rst des
ribe the syntax and semanti
sand then give a de�nition of testing equivalen
e for Spi-pro
esses.2.1 SyntaxWe begin by giving the syntax for the variant of the Spi-
al
ulus we will be working with.The synta
ti
 
ategories are: an in�nite set of names , N , an in�nite set of variables ,V , a set of expressions L, a set of guards , G, and a set of agents , Ag. We let a,b, 
, d, k, m, and n range over N , u and v over V , K and L over L, G over G, and Aover Ag. The set of expressions 
onsists of the names, the variables, and elements that
an be 
onstru
ted from these using the en
ryption , de
ryption , pair , left proje
tion ,and right proje
tion 
onstru
tors. The set of guards 
an be 
onstru
ted using the true ,
onjun
tion , 
omparison , and is a name 
onstru
tors. The set of agents in the Spi-
al
ulus 
an be 
onstru
ted with the 
onstru
tors for ina
tion , input pre�x , outputpre�x , guarding , nondeterministi
 
hoi
e , parallel 
omposition , restri
tion , andrepli
ation . The grammars for L, G, and Ag are presented below.K;L ::= a j u j fLgEL j fLgDL j (L;L) j �l(L) j �r(L)G ::= tt j G ^G j L = L j L : NA ::= 0 j L(u):A j LL:A j GA j A+A j AjA j (� a)A j !AThis variant of the Spi-
al
ulus di�ers from the Spi-
al
ulus originally presented by Abadiand Gordon in [3℄ by the fa
t that numbers are not expli
itly expressible and by the fa
tthat de
ryption and proje
tion appear in expressions instead of in agents.For a tuple ~k def= (k1; : : : ; kn) � N we use the shorthand notations fLgE~k and fLgD~k forthe expressions f� � � fLgEk1 � � � gEkn and f� � � fLgDkn � � � gDk1 , respe
tively. Furthermore, we mayuse the longhand notations fLgE; and fLgD; for the expression L.We 
all the subset of expressions of L that only 
onsist of names, en
ryption, and pairs



6 Bisimilarity in the Spi-Cal
ulusthe set of messages , M, and let M and N range over it. So,M is the set of messages that
an be generated from the following grammar.M;N ::= a j fNgEa j (N;N)There are two binding stru
tures in our variant of the Spi-
al
ulus. In the agent (� a)A, thename a is bound in A and in the agent L(u):A, the variable u is bound in A. The sets of freenames , fn(A), bound names , bn(A), names , n(A), free variables , fv(A), and boundvariables , bv(A), of an agent A are de�ned as expe
ted. We will write AfM=ug for theagent obtained by repla
ing every free o

urren
e of u in A byM , renaming bound names asne
essary. We identify agents up to renaming of bound names and variables. If the agentsA1 and A2 
an be identi�ed up to renaming of bound names and variables then A1 and A2are �-
onvertible , written A1 �� A2. We will 
all an agent that does not 
ontain any freevariables a pro
ess and let Pr denote the set of all pro
esses, i.e. Pr = fA 2 Ag j fv(A) = ;g.The set of pro
esses is ranged over by P , Q, and R.The following example shows how the Spi-
al
ulus 
an be used to model a 
ryptographi
proto
ol.Example 1. In this example we will model a simpli�ed version of the `Wide MouthedFrog Proto
ol'[15℄. In this proto
ol the prin
ipals A and B share the keys kAS and kBS ,respe
tively, with a server S. Before A sends some se
ret message M to B, it �rst 
reatesa new key kAB and sends it to the server en
rypted with the key kAS . The server thende
rypts the re
eived message and sends kAB to B en
rypted with the key kBS . Now, A 
ansend its se
ret messageM to B en
rypted with the key kAB . The proto
ol 
an be expressedin the Spi-
al
ulus as follows.A(M) def= (� kAB)
ASfkABgEkAS :
ABfMgEkAB :0B def= 
SB(u):
AB(v):F (fvgDfugDkBS )S def= 
AS(u):
SBffugDkASgEkBS :0Sys(N) def= (� kAS)(� kBS)(A(N) j B j S)where F (M) is an agent representing the behavior of B when it re
eives the message M .�2.2 Semanti
sBefore we present the semanti
s of the Spi-
al
ulus we need to de�ne some evaluation fun
-tions. We will need a fun
tion e : L ! M[ f�g to evaluate expressions to messages, � isa spe
ial symbol used to express that an expression 
annot be evaluated to a message. Wealso need a fun
tion e0 : G ! ftt;�g to evaluate guards.



2.2. Semanti
s 7De�nition 1 (The Evaluation Fun
tion e)The fun
tion e : L !M[ f�g is de�ned ase(a) def= ae(u) def= �e(fLgEK) def= � fNgEb if e(K) = b 2 N ^ e(L) = N 6= �� otherwisee(fLgDK) def= � N if e(K) = b 2 N ^ e(L) = fNgEb� otherwisee((L1; L2)) def= � (M;N) if e(L1) =M 6= � ^ e(L2) = N 6= �� otherwisee(�l(L)) def= � M if L = (L1; L2) ^ e(L1) =M ^ e(L2) 6= �� otherwisee(�r(L)) def= � M if L = (L1; L2) ^ e(L2) =M ^ e(L1) 6= �� otherwise �De�nition 2 (The Evaluation Fun
tion e0)The fun
tion e0 : G ! ftt;�g is de�ned ase0(tt) def= tte0(G1 ^G2) def= e0(G1) ^ e0(G2)e0(L1 = L2) def= � tt if e(L1) = e(L2) 6= �� otherwisee0(L : N ) def= � tt if e(L) 2 N� otherwise �The (late) operational semanti
s for the variant of the Spi-
al
ulus is given by the labelledtransition system (Ag, A
t, �!), where �! is the smallest relation 
losed under the rulesin table 2.1. The symmetri
 rules for Sum, Par, and Com have been omitted. A
t, rangedover by �, is the set of a
tions given by the following grammar.� ::= � j a(u) j (� ~
)�aNTransitions have the form A ��! A0.



8 Bisimilarity in the Spi-Cal
ulus[Alpha℄ A0 ��! A00A ��! A00 A �� A0[Inp℄ L(u):A a(u)�! A e(L) = a[Outp℄ L1L2:A �aN�! A e(L1) = a and e(L2) = N 6= �[Grd℄ A ��! A0GA ��! A0 e0(G) = tt[Sum℄ A1 ��! A01A1 +A2 ��! A01[Par℄ A1 ��! A01A1jA2 ��! A01jA2 bn(�) \ fn(A2) = ;[Com℄ A1 (� ~
)�aN�! A01 A2 a(u)�! A02A1jA2 ��! (� ~
)(A01jA02fN=ug) ~
 \ fn(A2) = ;[Res℄ A ��! A0(� b)A ��! (� b)A0 b =2 n(�)[Open℄ A (� ~
)�aN�! A0(� b)A (� fbg[~
)�aN�! A0 b 2 (n(N) n ~
) and b 6= a[Rep℄ A j!A ��! A0!A ��! A0Table 2.1: Late operational semanti
s for the Spi-
al
ulus.2.3 Testing Equivalen
eIn the paper [3℄, Abadi and Gordon suggest using the notion of may-testing equivalen
e[9℄due to De Ni
ola and Hennessy as the notion of behavioural equivalen
e for the Spi-
al
ulus.



2.3. Testing Equivalen
e 9In this se
tion we present this equivalen
e.First we need to de�ne some notations. A barb is a name, a, or a 
o-name �a. For a namea and a pro
ess P we write P # a if P a(u)�! P 0 for some u and P 0 and P # �a if P (� ~
)�aN�! P 0for some ~
, N , and P 0.De�nition 3 (Testing Equivalen
e)Two pro
esses P and Q are testing equivalent, written P ' Q, if for every pro
ess R andbarb � it holds that(i) if P jR ��!* P 0 and P 0 # � for some P 0 then there exists Q0 su
h that QjR ��!* Q0and Q0 # �, and(ii) the 
onverse, with the role of P and Q ex
hanged. �If two pro
esses are testing equivalent we 
an interpret this as though they are revealing thesame information to the �environment�, i.e. observers, atta
kers et
. As an example of apair of testing equivalent pro
esses 
onsider the following two pro
esses P def= (� k)�afmgEk :0and Q def= (� k)�afm0gEk :0. The pro
esses reveal the messages fmgEk and fm0gEk , respe
tively,but none of these 
an ever be de
rypted sin
e the pro
esses never reveal the key k.In [3℄ Abadi and Gordon des
ribe how 
ommon notions of 
orre
tness 
an be des
ribedby means of testing equivalen
e. For instan
e, 
onsider a proto
ol S(M) transmitting themessage M . S has the property of se
re
y if its observable behaviour does not depend onM , i.e. if S(M1) ' S(M2) for any messages M1 and M2. The following example illustrateshow testing equivalen
e 
an be used to 
he
k for authenti
ity and/or integrity.Example 2. In this example we will show how to 
he
k for authenti
ity and/or integrityin the proto
ol presented in example 1. This 
an be done by using testing equivalen
e to
ompare the a
tual proto
ol with a spe
i�
ation. The spe
i�
ation is obtained by repla
ingB with BSpe
(M) whi
h behaves as B when it re
eives the message M . The spe
i�
ation isde�ned as follows. A(M) def= (� kAB)
ASfkABgEkAS :
ABfMgEkAB :0BSpe
(M) def= 
SB(u):
AB(v):F (M)S def= 
AS(u):
SBffugDkASgEkBS :0SysSpe
(N) def= (� kAS)(� kBS)(A(N) j BSpe
(N) j S)Sys has the property of authenti
ity (integrity) if Sys(M) ' SysSpe
(M) for all messagesM . �



10 Bisimilarity in the Spi-Cal
ulusWhile the notion of testing equivalen
e is perfe
t from a philosophi
al point of view it is lessideal for a
tual reasoning about proto
ols as its de�nition involves universal quanti�
ationover all pro
esses/atta
kers. To get rid of this universal quanti�
ation Abadi and Gordonintrodu
ed the notion of framed bisimilarity in [2℄ and showed that this is sound withrespe
t to testing equivalen
e. Boreale et. al proposed another notion of bisimilarity 
alledenvironment sensitive bisimilarity in [6℄ and showed that it, too, is sound with respe
t totesting equivalen
e. These two notions of bisimilarity are presented in the following two
hapters.



3Framed
BisimulationIn this 
hapter we present framed bisimulation as de�ned in [2℄ by Abadi and Gordon andfen
ed bisimulation as de�ned in [7℄ by Elkjær et al. First we present some preliminariesneeded for the de�nition of framed and fen
ed bisimulation.

3.1 Frames and TheoriesThe de�nition of framed bisimulation is based on the notions of frame and theory . Aframed bisimulation relates two pro
esses P and Q in the 
ontext of a frame and a theory.A frame is a �nite set of names and a theory is a �nite set of pairs of messages. Intuitively,a frame 
ontains the names from P and Q that are available to the environment, and atheory 
ontains pairs of messages 
oming from P and Q that 
annot be distinguished by anobserver. We will use fr to range over the set of frames, Fr, and th to range over the set oftheories, T h. Two messagesM and N are indistinguishable with respe
t to the frame-theorypair (fr; th) if (fr; th) `M $ N 
an be derived using the rules in table 3.1. Some of the rulesin the semanti
s of the (fr; th) ` M $ N predi
ate presented in [2℄ have been omitted inour presentation sin
e our grammar for messages does not allow a message to be a number.The results from [2℄ and [7℄ presented in this 
hapter were proven for a message grammar
ontaining numbers. However, it 
an easily be shown that they also hold for our messagegrammar.
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ulus[Eq frame℄ n 2 fr(fr; th) ` n$ n[Eq theory℄ (M;N) 2 th(fr; th) `M $ N[Eq pair℄ (fr; th) `M $ N (fr; th) `M 0 $ N 0(fr; th) ` (M;M 0)$ (N;N 0)[Eq en
rypt℄ (fr; th) `M $ N (fr; th) `M 0 $ N 0(fr; th) ` fMgEM 0 $ fNgEN 0Table 3.1: The indistinguishability predi
ate.In a framed bisimulation we only 
onsider frame-theory pairs that exhibit 
ertain properties.De�nition 4 (Ok Frame-Theory Pair)The pair (fr; th) is ok, written (fr; th) ` ok, if(i) for all (M;N) 2 th:� M 2 M and there are messages M1 and M2 su
h that M = fM1gEM2 and thereis no N 0 su
h that (fr; th) `M2 $ N 0.� N 2 M and there are messages N1 and N2 su
h that N = fN1gEN2 and there isno M 0 su
h that (fr; th) `M 0 $ N2.(ii) for all (M;N) 2 th and (M 0; N 0) 2 th, M =M 0 if and only if N = N 0. �The de�nition of framed bisimulation requires that a frame-theory pair 
an be extended.De�nition 5 (Extension of a Frame-Theory Pair)(fr0; th0) is an extension of (fr; th), written (fr; th) � (fr0; th0), if for all M and N , (fr; th) `M $ N implies (fr0; th0) `M $ N . �The following theorem, proven in [2℄, makes it easier to show whether or not one ok frame-theory pair is an extension of another.Theorem 1Let (fr0; th0) ` ok, then (fr; th) � (fr0; th0) if and only if fr � fr0 and (fr0; th0) ` M $ N forea
h pair (M;N) 2 th. �



3.2. Framed Bisimulation 133.2 Framed BisimulationA framed pro
ess pair is a quadruple (fr; th; P;Q). If R is a set of framed pro
ess pairsand (fr; th; P;Q) 2 R this is written (fr; th) ` P R Q. A framed relation is a set offramed pro
ess pairs su
h that (fr; th) ` P R Q implies (fr; th) ` ok. A framed relation R issymmetri
 if (fr; th) ` P R Q implies (fr; f(N;M) j (M;N) 2 thg) ` Q R P . For a theoryth we let �1(th) def= fM j 9N:(M;N) 2 thg and �2(th) def= fN j 9M:(M;N) 2 thg. Now, weare ready to present the notion of framed bisimulation .De�nition 6 (Framed Bisimulation)A symmetri
 framed relation R is a framed bisimulation if whenever (fr; th) ` P R Q itholds that(i) if P ��! P 0 then there exists Q0 su
h that Q ��! Q0 and (fr; th) ` P 0 R Q0,(ii) if P a(u)�! P 0 and a 2 fr then there exists Q0 su
h that Q a(u)�! Q0 and for all sets ~n,where ~n\ (fn(P;Q) [ fr[ n(th)) = ;, and all M;N 2M, where (fr [ ~n; th) `M $ N ,it holds that (fr [ ~n; th) ` P 0fM=ug R Q0fN=ug, and(iii) if P (� ~m)�aM�! P 0, a 2 fr and ~m\ (fn(P )[ fr[ n(�1(th))) = ; then there exist ~n, N , andQ0 su
h that Q (� ~n)�aN�! Q0, ~n \ (fn(Q) [ fr [ n(�2(th))) = ;, and there exists (fr0; th0)su
h that (fr; th) � (fr0; th0), (fr0; th0) `M $ N , and (fr0; th0) ` P 0 R Q0. �From the de�nition of framed bisimulation we de�ne the notion of framed bisimilarity .De�nition 7 (Framed Bisimilarity)P and Q are framed bisimilar with respe
t to the frame-theory pair (fr; th), written (fr; th) `P �f Q, if there exists a framed bisimulation R su
h that (fr; th) ` P R Q. �In [2℄, Abadi and Gordon have shown that�f is a sound approximation of testing equivalen
ein the sense that it implies testing equivalen
e under natural 
onditions on the frame-theorypair involved.Theorem 2 (Soundness of Framed Bisimilarity with respe
t to Testing Equivalen
e)Let P;Q 2 Pr and n 2 N su
h that n =2 fn(P;Q). If (fn(P;Q) [ fng; ;) ` P �f Q thenP ' Q. �3.3 Fen
ed BisimulationTo avoid the existential quanti�
ation over frame-theory pairs in 
ase (iii) of de�nition 6Elkjær et al. presented an alternative 
hara
terization of framed bisimilarity 
alled fen
edbisimilarity. Fen
ed bisimulation makes use of the fun
tion � shown in �gure 3.1.
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ulus1 �((fr; th);M;N)2 IF ((fr; th) `M $ N) THEN RETURN (fr; th)3 CASE (M;N) OF4 [M = N = n℄ :5 (fr�; th�) := (fr [ fng; th)6 � := ;7 FOR EACH (fM1gEM2 ; fN1gEN2) 2 th� DO8 IF 9L:((fr� ; th�) `M2 $ L _ (fr�; th�) ` L$ N2) THEN9 th� := th� n f(fM1gEM2 ; fN1gEN2)g10 � := � [ f(fM1gEM2 ; fN1gEN2)g11 FOR EACH (fM1gEM2 ; fN1gEN2) 2 � DO12 (fr�; th�) := �(�((fr�; th�);M2; N2);M1; N1)13 [M = fM1gEM2 ; N = fN1gEN2 ℄ :14 IF ((fr; th) `M2 $ N2) THEN (fr�; th�) := �((fr; th);M1; N1)15 ELSE16 IF 9(O;O0) 2 th:(O =M ()= O0 = N) THEN RETURN(?)17 (fr�; th�) := (fr; th [ f(M;N)g)18 � := ;19 FOR EACH (fO1gEO2 ; fO01gEO02) 2 th� DO20 IF 9L:((fr� ; th�) ` O2 $ L _ (fr�; th�) ` L$ O02) THEN21 th� := th� n f(fO1gEO2 ; fO01gEO02)g22 � := � [ f(fO1gEO2 ; fO01gEO02)g23 FOR EACH (fO1gEO2 ; fO01gEO02) 2 � DO24 (fr�; th�) := �(�((fr�; th�); O2; O02); O1; O01)25 [M = (M1;M2); N = (N1; N2)℄ :26 (fr�; th�) := �(�((fr; th);M2; N2);M1; N1)27 [otherwise℄ :28 RETURN (?)29 RETURN (fr� ; th�)Figure 3.1: Algorithm for 
omputing �((fr; th);M;N).The 
ase for numbers in the �-fun
tion presented in [7℄ has been omitted in our presentationsin
e our grammar for messages does not allow a message to be a number. �((fr; th);M;N)



3.3. Fen
ed Bisimulation 15evaluates to the smallest extension (fr0; th0) of (fr; th) su
h that (fr0; th0) ` ok and (fr0; th0) `M $ N [7℄. If this is not possible �((fr; th);M;N) evaluates to the invalid frame-theory pair?. The notion of fen
ed bisimulation is de�ned as follows.De�nition 8 (Fen
ed Bisimulation)A symmetri
 framed relation, R, is a fen
ed bisimulation if whenever (fr; th) ` P R Q itholds that(i) if P ��! P 0 then there exists Q0 su
h that Q ��! Q0 and (fr; th) ` P 0 R Q0,(ii) if P a(u)�! P 0 and a 2 fr then there exists Q0 su
h that Q a(u)�! Q0 and for all sets ~n,where ~n\ (fn(P;Q) [ fr[ n(th)) = ;, and all M;N 2M, where (fr [ ~n; th) `M $ N ,it holds that (fr [ ~n; th) ` P 0fM=ug R Q0fN=ug, and(iii) if P (� ~m)�aM�! P 0, a 2 fr and ~m\(fn(P )[fr[n(�1(th))) = ; then there exist ~n, N , and Q0su
h that Q (� ~n)�aN�! Q0, ~n\(fn(Q)[fr[n(�2(th))) = ;, and �((fr; th);M;N) ` P 0 R Q0.�From the de�nition of fen
ed bisimulation we de�ne the notion of fen
ed bisimilarity .De�nition 9 (Fen
ed Bisimilarity)P and Q are fen
ed bisimilar with respe
t to the frame-theory pair (fr; th), written (fr; th) `P �# Q, if there exists a fen
ed bisimulation R su
h that (fr; th) ` P R Q. �The following theorem, proven by Elkjær et al. in [7℄, states that two pro
esses are framedbisimilar with respe
t to a frame-theory pair if and only if they are fen
ed bisimilar withrespe
t to the same frame-theory pair.Theorem 3 (Coin
iden
e of �f and �#)(fr; th) ` P �f Q if and only if (fr; th) ` P �# Q. �In the following 
hapter we pro
eed by presenting the notion of environment sensitive bisim-ilarity, where Boreale et al. let the knowledge of the observer be
ome part of the semanti
sof pro
esses.
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4Environment
Sensitive

BisimulationIn this 
hapter we present the notion of environment sensitive bisimulation �rst introdu
edby Boreale et al. in [6℄. As framed bisimulation environment sensitive bisimulation does notrelate pro
esses dire
tly, instead it relates 
on�gurations of the form � B P , where � is anenvironment used to re
ord the messages sent to and re
eived from the pro
ess P . In this
hapter we will 
onsider an expression and message grammar without pairs and proje
tion.We will 
ontinue to refer to the set of expressions and the set of messages as L and M,respe
tively.4.1 EnvironmentsThe set of environments � 
onsists of fun
tions/substitutions of the type Z ! M, whereZ is a set of environment variables for whi
h it holds that Z \ V = ;. We let � range over� and x, y, and z over Z . We write fM1=x1;M2=x2; : : : ;Mn=xng for the environment thatsimultaneously maps every o

urren
e of xi to Mi for all i 2 f1; 2; : : : ; ng. Furthermore,we write �[x 7! M ℄ for the environment that maps x to M and all other environmentvariables to the same as the environment �. The messages that an environment � 
an sendto a pro
ess are of the form e(��), where � is an environment message . The set ofenvironment messages, �, is given by the following grammar.� ::= a j x j f�gE� j f�gD�The set of environment variables in an environment message � is denoted fz(�). To des
ribethe information that 
an be dedu
ed from an environment we de�ne some fun
tions �rstpresented in [5℄, [6℄, and [14℄.
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ulusThe analysis of a set of messages W is the set of messages that 
an be dedu
ed from Wby de
ryption.De�nition 10 (Analysis of a Set of Messages)The analysis of a set W �M, written A(W ), is the smallest set satisfying(i) W � A(W )(ii) if k 2 A(W ) and fMgEk 2 A(W ) then M 2 A(W ) �The synthesis of a set of messages W is the set of messages that 
an be generated from theanalysis of W .De�nition 11 (Synthesis of a Set of Messages)The synthesis of a set W �M, written S(W ), is the smallest set satisfying(i) A(W ) � S(W )(ii) if k 2 S(W ) \ N and M 2 S(W ) then fMgEk 2 S(W ) �The irredu
ibles of a set of messages W is the subset of the analysis of W that 
annot bede
rypted further.De�nition 12 (Irredu
ibles of a Set of Messages)The irredu
ibles of a set W �M, written I(W ), is de�ned byI(W ) def= fM 2 A(W ) jM 2 N _ (M = fNgEk ^ k =2 A(W ))g �The knowledge of a set of messages W is the set of names of the analysis of W .De�nition 13 (Knowledge of a Set of Messages)The knowledge of a set W �M, written K(W ), is de�ned by K(W ) def= A(W ) \N . �For an environment � we will use the shorthand notations A(�), S(�), I(�), and K(�) forA(range(�)), S(range(�)), I(range(�)), and K(range(�)), respe
tively.Given a set of messages W , we denote by 
ore(W;M) what is left of the message Mwhen it is de
rypted as mu
h as possible with respe
t to the knowledge of W .



4.2. Environment Sensitive Semanti
s 19De�nition 14 (Core)Let W � M. The 
ore of the message M 2 M with respe
t to W , written 
ore(W;M), isde�ned by 
ore(W;M) def= � 
ore(W;M 0) if M = fM 0gEk and k 2 K(W )M otherwise �It 
an be seen that SM2W 
ore(W;M) = I(W ). For an environment � and a message Mwe will use the shorthand notation 
ore(�;M) for 
ore(range(�);M).We say that two environments are equivalent if they satisfy the same formulae.De�nition 15 (Equivalen
e of Environments, �e)Let � denote the set of formulae that 
an be generated from the following grammar.� ::= tt j � ^ � j � = � j � : NTwo environments �1 and �2 are equivalent, written �1 �e �2, if dom(�1) = dom(�2) andfor ea
h formula � 2 � with fn(�) = ; and fz(�) � dom(�1) it holds that e0(��1) = tt if andonly if e0(��2) = tt. �4.2 Environment Sensitive Semanti
sIn the environment sensitive semanti
s environments and pro
esses are paired in 
on�gura-tions.De�nition 16 (Con�gurations)The set of 
on�gurations, �, is de�ned as� def= f� B P j � 2 � ^ P 2 Prg �Con�gurations are ranged over by C.The environment sensitive semanti
s for 
on�gurations is given by the labelled transitionsystem (�;A
te;�!), where �! is the smallest relation 
losed under the rules in table 4.1.Transitions have the form � B P ��!Æ �0 B P 0 and represent intera
tions between the pro
essP and the environment �. � is the pro
ess a
tion and Æ is the 
omplementary environmenta
tion. The set of environment a
tions, A
te, 
onsists of the a
tions that 
an be generatedusing the following grammar. Æ ::= � j a(z) j (� ~
)�a�
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[E-Tau℄ P ��! P 0� B P ��!� � B P 0[E-Inp℄ P a(u)�! P 0� B P a(u)�!(� ~
)�a� �[~z 7! ~
℄ B P 0fN=ug e(��) = N 6= �, ~z \ dom(�) = ;, a 2A(�), ~
 = n(�), and ~
 \ fn(P; �) = ;[E-Out℄ P (� ~
)�aN�! P 0� B P (� ~
)�aN�!a(z) �[z 7! N ℄ B P 0 a 2 A(�); z =2 dom(�); and ~
 \ fn(�) = ;Table 4.1: Environment sensitive semanti
s.For a 
on�guration C we use C b�=)bÆ C 0 as a shorthand notation for C ��!� * ��!Æ ��!� *C 0 if� 6= � and C ��!� *C 0 otherwise.4.3 Environment Sensitive BisimulationWe are now ready to de�ne the notion of weak early environment sensitive bisimula-tion introdu
ed by Boreale et al. in [6℄.De�nition 17 (Weak Early Environment Sensitive Bisimulation)A symmetri
 relation R � � � � is a weak early environment sensitive bisimulation if(�P B P; �Q B Q) 2 R implies �P �e �Q and whenever �P B P ��!Æ �0P B P 0 there exist �0,�0Q, and Q0 su
h that �Q B Q b�0=)bÆ �0Q B Q0 and (�0P B P 0; �0Q B Q0) 2 R. �From the notion of weak early environment sensitive bisimulation we de�ne the notion ofweak early environment sensitive bisimilarity .De�nition 18 (Weak Early Environment Sensitive Bisimilarity)The 
on�gurations �P B P and �Q B Q are weak early environment sensitive bisimilar, writ-ten �P B P �EESB �Q B Q, if there exists a weak early environment sensitive bisimulationR su
h that (�P B P; �Q B Q) 2 R. �In [6℄, Boreale et al. have shown that weak early environment sensitive bisimilarity is asound approximation of testing equivalen
e in the sense that it implies testing equivalen
eunder natural 
onditions on the environments involved.



4.4. Equality of Equivalen
es of Environments 21Theorem 4 (Soundness of �EESB with respe
t to ')Let P;Q 2 Pr. If fn(P;Q) = range(�) and � B P �EESB � B Q then P ' Q. �The following example illustrates that there exist 
on�gurations �P B P and �Q B Q su
hthat �P B P �EESB �Q B Q for whi
h there does not exist a frame-theory pair (fr; th) su
hthat (fr; th) ` P �f Q.Example 3. Consider the pro
esses P and Q de�ned byP def= (� n)(� k)�afngEk :a(u):((u = b)�an:0 j (u = 
)�an:0)Q def= (� m)(� n)(� k)�affngEmgEk :a(u):((u = b)�an:0 j (u = 
)�am:0)It 
an be proven that fa=x1; b=x2; 
=x3g B P �EESB fa=x1; b=x2; 
=x3g B Q. However,there does not exist a frame-theory pair (fr; th) su
h that (fr; th) ` P �f Q sin
e there
annot exist a frame-theory pair (fr0; th0) su
h that (fr0; th0) ` n$ m. �The problem des
ribed in the example above also arises for strong early environmentsensitive bisimilarity de�ned as follows.De�nition 19 (Strong Early Environment Sensitive Bisimulation)A symmetri
 relation R � � � � is a strong early environment sensitive bisimulation if(�P B P; �Q B Q) 2 R implies �P �e �Q and whenever �P B P ��!Æ �0P B P 0 there exist �0,�0Q, and Q0 su
h that �Q B Q �0�!Æ �0Q B Q0 and (�0P B P 0; �0Q B Q0) 2 R. �From the notion of strong early environment sensitive bisimulation we de�ne the notion ofstrong early environment sensitive bisimilarity .De�nition 20 (Strong Early Environment Sensitive Bisimilarity)The 
on�gurations �P B P and �Q B Q are strong early environment sensitive bisimilar,written �P B P �EESB �Q B Q, if there exists a strong early environment sensitivebisimulation R su
h that (�P B P; �Q B Q) 2 R. �4.4 Equality of Equivalen
es of EnvironmentsThe logi
al 
hara
terization used in the de�nition of equivalen
e of environments makes itdi�
ult to 
he
k whether or not two environments are equivalent sin
e it 
ontains a quan-ti�
ation over all formulae. Therefore, Boreale et al. gave an alternative 
hara
terization ofequivalen
e of environments. In this se
tion we present this alternative 
hara
terization.For a tuple ~M def= Mi2I and a tuple ~J def= (j1; : : : ; jn) � I we let ~M [ ~J ℄ denote the tuple(Mj1 ; : : : ;Mjn).
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ulusDe�nition 21 (Equivalen
e of Environments, �0e)Let � and �0 be environments and assume dom(�) = dom(�0) = fxi j i 2 Ig for some set ofindi
es I . For ea
h i 2 I let Ni def= 
ore(�; �(xi)) and N 0i def= 
ore(�0; �0(xi)). � and �0 areequivalent, written � �0e �0, if for ea
h i 2 I the following holds,(i) for some tuple ~Ji � I it holds that �(xi) = fNigE~N [ ~Ji℄ and �0(xi) = fN 0igE~N 0[ ~Ji℄,(ii) for ea
h j 2 I , Ni = Nj if and only if N 0i = N 0j , and(iii) Ni 2 N if and only if N 0i 2 N . �The following theorem, proven by Boreale et al. in [6℄, states that the two notions ofequivalen
e of environments 
oin
ide.Theorem 5 (Coin
iden
e of �e and �0e)�1 �e �2 if and only if �1 �0e �2. �4.5 Properties of EnvironmentsIn this se
tion we present two lemmas proven by Boreale et al. in [6℄. We will need theselemmas in the following 
hapters.Lemma 1Let � def= fMi=xigi2I .(i) If M 2 A(�) then there exists � 2 � su
h that n(�) = ;, fz(�) � dom(�), ande(��) =M .(ii) If a 2 A(�) then a = 
ore(�; �(xi)), for some i 2 I . �Lemma 2Let �1 def= fMi=xigi2I and �2 def= fM 0i=xigi2I be two environments su
h that �1 �e �2. Let~N def= 
ore(�1; �1(xi))i2I and ~N 0 def= 
ore(�2; �2(xi))i2I . For ea
h � 2 � su
h that n(�) = ;and fz(�) � dom(�1), either(i) e(��1) = e(��2) = �, or(ii) there exist i 2 I and a tuple ~J � I su
h that e(��1) = fNigE~N[ ~J℄ and e(��2) =fN 0igE~N 0[ ~J℄. �In the following 
hapter we will pro
eed by showing that a late version of strong earlyenvironment sensitive bisimilarity based on a new notion of equivalen
e of environments isthe same as framed bisimilarity.



5Two Notions
of Framed
Bisimilarity

As mentioned in the previous 
hapter there exist 
on�gurations �P B P and �Q B Q su
hthat �P B P �EESB �Q B Q for whi
h there does not exist a frame-theory pair (fr; th) su
hthat (fr; th) ` P �f Q. This is due to the fa
t that for two equivalent environments �1 and�2 we 
an have 
ore(�1; �1(x)) = a and 
ore(�2; �2(x)) = b for two di�erent names a and b.In this 
hapter we present a new strong late version of the environment sensitive bisimulationgiven by Boreale at al. For this de�nition we will use a notion of equivalen
e of environmentsthat does not allow a and b to be di�erent. Furthermore, we will prove that the strong lateversion of environment sensitive bisimilarity 
an be used as an alternative 
hara
terizationof framed bisimilarity. In the �rst four se
tions we will 
onsider an expression and messagegrammar without pairs and proje
tion. We will 
ontinue to refer to the set of expressionsand the set of messages as L and M, respe
tively. In se
tion 5.5 we will extend the resultsof the �rst four se
tions to an expression and message grammar with pairs and proje
tion.5.1 Strong Late Environment Sensitive BisimulationThe strong late version of environment sensitive bisimulation we present is based on a newnotion of equivalen
e of environments.De�nition 22 (Equivalen
e of Environments, �00e )Let � and �0 be environments and assume dom(�) = dom(�0) = fxi j i 2 Ig for some set ofindi
es I . For ea
h i 2 I let Ni def= 
ore(�; �(xi)) and N 0i def= 
ore(�0; �0(xi)). � and �0 areequivalent, written � �00e �0, if for ea
h i 2 I the following holds,
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ulus(i) for some ~ki it holds that �(xi) = fNigE~ki and �0(xi) = fN 0igE~ki ,(ii) for ea
h j 2 I , Ni = Nj if and only if N 0i = N 0j , and(iii) for ea
h N 2 N , Ni = N if and only if N 0i = N . �The following theorem states soundness of �00e with respe
t to �e and �0e. This implies thatlemmas 1 and 2 also hold for �00e .Theorem 6 (Soundness of �00e with respe
t to �e and �0e)�1 �00e �2 implies �1 �e �2 and �1 �0e �2.Proof: It is easily seen from de�nitions 21 and 22 that �1 �00e �2 implies �1 �0e �2. Bytheorem 5 we also have that �1 �00e �2 implies �1 �e �2. �To see that �00e is not 
omplete with respe
t to �e and �0e 
onsider the two environments�1 def= ffagEk1=x1; k1=x2g and �2 def= ffbgEk2=x1; k2=x2g. We have �1 �0e �2 but not �1 �00e �2.Now, we de�ne the notion of strong late environment sensitive bisimulation .De�nition 23 (Strong Late Environment Sensitive Bisimulation)A symmetri
 relation R � � � � is a strong late environment sensitive bisimulation if(�1 B P; �2 B Q) 2 R implies �1 �00e �2 and if P ��! P 0 then(i) if � = � then there exists Q0 su
h that Q ��! Q0 and (�1 B P 0; �2 B Q0) 2 R.(ii) if � = a(u) and a 2 A(�1) then there exists Q0 su
h that Q a(u)�! Q0 and for all � 2 �,where e(��1) 6= � and n(�) \ fn(P;Q; �1; �2) = ;, (�1[~z 7! ~
℄ B P 0fe(��1)=ug; �2[~z 7!~
℄ B Q0fe(��2)=ug) 2 R, where ~z \ dom(�1) = ; and ~
 = n(�).(iii) if � = (� ~
)�aM , a 2 A(�1), and ~
\fn(P; �1) = ; then there exist ~d, N , and Q0 su
h thatQ (� ~d)�aN�! Q0, where ~d \ fn(Q; �2) = ;, and (�1[z 7! M ℄ B P 0; �2[z 7! N ℄ B Q0) 2 R,where z =2 dom(�1). �From the de�nition of strong late environment sensitive bisimulation we de�ne the notionof strong late environment sensitive bisimilarity .De�nition 24 (Strong Late Environment Sensitive Bisimilarity)The 
on�gurations �P B P and �Q B Q are strong late environment sensitive bisimilar, writ-ten �P B P �ESB �Q B Q, if there exists a strong late environment sensitive bisimulationR su
h that (�P B P; �Q B Q) 2 R. �



5.2. The Fun
tions Fe and FESB 255.2 The Fun
tions Fe and FESBSin
e strong late environment sensitive bisimilarity relates pairs of 
on�gurations and framedbisimilarity relates pairs of pro
esses with respe
t to frame-theory pairs we need a wayto 
onvert a pair of environments to a frame-theory pair to be able to use strong lateenvironment sensitive bisimilarity to 
hara
terize framed bisimilarity. Therefore, we de�nea fun
tion Fe that takes two equivalent environments as input and returns a frame-theorypair.De�nition 25 (The Fun
tion Fe)Let �1 and �2 be two environments su
h that �1 �00e �2 and dom(�1) = dom(�2) = fxi ji 2 Ig, and let Ni def= 
ore(�1; �1(xi)) and N 0i def= 
ore(�2; �2(xi)). Also, let fr def= fNi ji 2 I ^ Ni 2 Ng and th def= f(Ni; N 0i) j i 2 I ^ Ni =2 Ng. The fun
tion Fe is de�ned asFe(�1; �2) def= (fr; th). �From the de�nition of Fe we de�ne the fun
tion FESB that takes a strong late environmentsensitive bisimulation as input and returns a set of framed pro
ess pairs whi
h will laterturn out to be a framed bisimulation.De�nition 26 (The Fun
tion FESB)Let R be a strong late environment sensitive bisimulation. Then FESB(R) def= f(fr; th; P;Q) j9�1; �2:((�1 B P; �2 B Q) 2 R ^ Fe(�1; �2) = (fr; th))g. �The following theorem states that a frame-theory pair returned from Fe is ok. This impliesthat a relation returned by FESB is a framed relation.Theorem 7Let �1 �00e �2 and (fr; th) def= Fe(�1; �2), then (fr; th) ` ok.Proof:(i) Assume (M;N) 2 th. By de�nition of Fe we have M = fM1gEM2 . Sin
e M2 2 N andM2 6= 
ore(�1; �1(x)) for all x 2 dom(�1) we have M2 =2 fr and there does not existN 0 su
h that (fr; th) `M2 $ N 0. Similarly for N .(ii) Assume (M;N) 2 th, (M 0; N 0) 2 th, and M = M 0. Sin
e M = 
ore(�1; �1(x)) andM 0 = 
ore(�1; �1(y)) for some x; y 2 dom(�1) we have by (ii) of de�nition 22 thatN = 
ore(�2; �2(x)) = 
ore(�2; �2(y)) = N 0. Similarly it 
an be shown that M = M 0if (M;N) 2 th, (M 0; N 0) 2 th, and N = N 0. �In the following two se
tions we show that if �P B P �ESB �Q B Q then Fe(�P ; �Q) ` P �fQ and if (fr; th) ` P �f Q, �P �00e �Q, andFe(�P ; �Q) = (fr; th) then �P B P �ESB �Q B Q.
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ulus5.3 SoundnessTo prove soundness of strong late environment sensitive bisimilarity with respe
t to framedbisimilarity we make use of the following four lemmas.Lemma 3Let �1 �00e �2 and (fr; th) def= Fe(�1; �2). For all sets of names ~
 and all M;N 2 M, where~
 \ n(�1; �2) = ; and (fr [ ~
; th) ` M $ N , there exists � 2 � su
h that M = e(��1),N = e(��2), and n(�) = ~
.Proof: We will prove that there exists � 2 � su
h that M = e(��1), N = e(��2), andn(�) � ~
. This will prove the lemma sin
e e(��) = e(ff�gE~
 gD~
 �). The proof is by indu
tionon the depth of the inferen
e of (fr [ ~
; th) `M $ N .Basis: depth = 0.Case M = N = n 2 ~
.In this 
ase we let � def= n.Case M = N = n 2 fr or (M;N) 2 th.By lemmas 1 and 2 there exists � 2 � su
h that M = e(��1), N = e(��2), andn(�) = ;.Step: depth > 0.Case M = fM1gEM2 , N = fN1gEN2 , and (M;N) =2 th.Sin
e (M;N) =2 th, (fr [ ~
; th) ` M $ N must have been dedu
ed by the Eqen
rypt rule. That is (fr [ ~
; th) ` M1 $ N1 and (fr [ ~
; th) ` M2 $ N2. Byindu
tion there exist �1; �2 2 � su
h that M1 = e(�1�1), N1 = e(�1�2), n(�1) � ~
,M2 = e(�2�1), N2 = e(�2�2), and n(�2) � ~
. So, by letting � def= f�1gE�2 we getM = e(��1), N = e(��2), and n(�) � ~
. �Lemma 4Let �1 �00e �2. For all sets of names ~
 and for all sets of variables ~z, where ~
\ fn(�1; �2) = ;and ~z \ dom(�1) = ;, it holds that �1[~z 7! ~
℄ �00e �2[~z 7! ~
℄.Proof: This is trivial sin
e ~
 
annot be used to de
rypt any messages in range(�1) andrange(�2). �Lemma 5Let �1 �00e �2 and (fr; th) def= Fe(�1; �2). Then (fr [ ~
; th) = Fe(�1[~z 7! ~
℄; �2[~z 7! ~
℄), where~z \ dom(�1) = ; and ~
 \ fn(�1; �2) = ;.



5.3. Soundness 27Proof: This is trivial sin
e 
ore(�1[~z 7! ~
℄; �1[~z 7! ~
℄(x)) = 
ore(�1; �1(x)) and 
ore(�2[~z 7!~
℄; �2[~z 7! ~
℄(x)) = 
ore(�2; �2(x)) for all x =2 ~z. �Lemma 6Let �1 �00e �2 and (fr; th) def= Fe(�1; �2). If �1[z 7! M ℄ �00e �2[z 7! N ℄, where z =2 dom(�1),then(i) (fr; th) � (fr0; th0), and(ii) (fr0; th0) `M $ N ,where (fr0; th0) def= Fe(�1[z 7!M ℄; �2[z 7! N ℄).Proof: Let �01 def= �1[z 7!M ℄ and �02 def= �2[z 7! N ℄.(i) By theorem 7 we get (fr0; th0) ` ok. It is easily seen that fr � fr0, so by theorem 1it is enough to show that (fr0; th0) ` M 0 $ N 0 for ea
h (M 0; N 0) 2 th to prove that(fr; th) � (fr0; th0). Assume (M 0; N 0) 2 th. Sin
e M 0 = 
ore(�1; �1(x)) and N 0 =
ore(�2; �2(x)) for some x 2 dom(�1), there exists ~k � fr su
h that �1(x) = fM 0gE~kand �2(x) = fN 0gE~k . Let M 00 = 
ore(�01; �01(x)) and N 00 = 
ore(�02; �02(x)), then thereexists ~k0 � fr0 su
h that �1(x) = �01(x) = fM 00gE~k0 and �2(x) = �02(x) = fN 00gE~k0 . ~k0 
anbe split into two sets ~k01 and ~k02 su
h that M 0 = fM 00gE~k01 , N 0 = fN 00gE~k01 , and ~k = ~k02.We must have either (M 00; N 00) 2 th0 or M 00 = N 00 2 fr0. From table 3.1 we easilydedu
e (fr0; th0) `M 0 $ N 0.(ii) Let ~M = 
ore(�01; �01(x))x2dom(�01) and ~N = 
ore(�02; �02(x))x2dom(�02). Sin
eM 2 A(�01)we have, by lemma 1, that there exists � 2 � su
h that M = e(��01), and by lemma 2we get M = fMxgE~k and N = fNxgE~k . Sin
e ~k � fr0 and either (Mx; Nx) 2 th0 orMx = Nx 2 fr0 we dedu
e (fr0; th0) `M $ N from table 3.1. �Now, we are ready to prove that a framed relation returned from FESB is a framed bisimu-lation.Theorem 8 (Soundness)Let R be a strong late environment sensitive bisimulation. Then FESB(R) is a framedbisimulation.Proof: Assume (fr; th) ` P FESB(R) Q. Then there must exist �P and �Q su
h that(�P B P; �Q B Q) 2 R and Fe(�P ; �Q) = (fr; th).P ��! P 0.Sin
e R is a strong late environment sensitive bisimulation there exists Q0 su
h thatQ ��! Q0 and (�P B P 0; �Q B Q0) 2 R. This implies (fr; th) ` P 0 FESB(R) Q0.
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ulusP a(u)�! P 0 and a 2 fr.We have that a 2 A(�P ), and sin
e R is a strong late environment sensitive bisimu-lation there exists Q0 su
h that Q a(u)�! Q0 and for all � 2 �, where e(��P ) 6= � andn(�) \ fn(P;Q; �P ; �Q) = ;, it holds that (�P [~z 7! ~
℄ B P 0fe(��P )=ug; �Q[~z 7! ~
℄ BQ0fe(��Q)=ug) 2 R, where ~z \ dom(�P ) = ; and ~
 = n(�).Let ~n be a set of names su
h that ~n\(fn(P;Q)[ fr[n(th)) = ; and letM;N 2M su
hthat (fr [ ~n; th) ` M $ N . By lemma 3 there exists � 0 2 � su
h that M = e(� 0�P ),N = e(� 0�Q), and ~n = n(� 0). Sin
e ~n\ fn(P;Q; �P ; �Q) = ; it follows by lemma 5 that(fr [ ~n; th) ` P 0fM=ug FESB(R) Q0fN=ug.P (� ~m)�aM�! P 0, a 2 fr, and ~m \ (fn(P ) [ fr [ n(�1(th))) = ;.In this 
ase we have a 2 A(�P ) and ~m\fn(P; �P ) = ;. So by the fa
t that R is a stronglate environment sensitive bisimulation there exist ~n, N , andQ0 su
h thatQ (� ~n)�aN�! Q0,~n \ fn(Q; �Q) = ;, and (�P [z 7!M ℄ B P 0; �Q[z 7! N ℄ B Q0) 2 R, where z =2 dom(�P ).By lemma 6 (fr; th) � Fe(�P [z 7!M ℄; �Q[z 7! N ℄) and Fe(�P [z 7!M ℄; �Q[z 7! N ℄) `M $ N . This proves the theorem sin
e Fe(�P [z 7!M ℄; �Q[z 7! N ℄) ` P 0 FESB(R) Q0and ~n \ (fn(Q) [ fr [ n(�2(th))) = ;. �5.4 CompletenessTo prove 
ompleteness of strong late environment sensitive bisimilarity with respe
t toframed bisimilarity we need the following three lemmas.Lemma 7Let �1 �00e �2 and (fr; th) def= Fe(�1; �2). Also, let � 2 � with n(�) \ n(�1; �2) = ; ande(��1) 6= �, M def= e(��1), and N def= e(��2). Then (fr [ n(�); th) `M $ N .Proof: The proof is by indu
tion on the stru
ture of �.Basis:Case � = a.This 
ase is trivial sin
e (fr [ fag; th) ` a$ a.Case � = x.Sin
e �1 �00e �2 there exists ~k su
h that �1(x) = f
ore(�1; �1(x))gE~k and�2(x) = f
ore(�2; �2(x))gE~k . We have (
ore(�1; �1(x)); 
ore(�2; �2(x))) 2 th or
ore(�1; �1(x)) = 
ore(�2; �2(x)) 2 fr and ~k � fr. From table 3.1 we dedu
e(fr; th) `M $ N .



5.4. Completeness 29Step:Case � = f�1gE�2 .By indu
tion we get (fr [ n(�1); th) ` e(�1�1) $ e(�1�2) and (fr [ n(�2); th) `e(�2�1)$ e(�2�2). This implies (fr [ n(�); th) `M $ N .Case � = f�1gD�2 .By indu
tion we get (fr [ n(�1); th) ` e(�1�1) $ e(�1�2) and (fr [ n(�2); th) `e(�2�1) $ e(�2�2). This implies (fr [ n(�); th) ` e(�1�1) $ e(�1�2) and (fr [n(�); th) ` e(�2�1) $ e(�2�2). Sin
e e(f�1gD�2�1) = M and e(f�1gD�2�2) = N ,(fr [ n(�); th) ` e(�1�1)$ e(�1�2) 
an only have been dedu
ed if (fr [ n(�); th) `e(�2�1)$ e(�2�2) and (fr [ n(�); th) `M $ N . �Lemma 8Let (fr; th) ` ok, �((fr; th);M;N) 6=?, and (fr0; th0) def= �((fr; th);M;N), thenfr0 = K(fr [ �1(th) [ fMg) = K(fr [ �2(th) [ fNg)�1(th0) = I(fr [ �1(th) [ fMg) n N�2(th0) = I(fr [ �2(th) [ fNg) n NProof: In the proof we make use of the fa
t that (fr; th) ` ok impliesfr = K(fr [ �1(th)) = K(fr [ �2(th))�1(th) = I(fr [ �1(th)) n N�2(th) = I(fr [ �2(th)) n NThe proof will be by indu
tion on the number n� of 
alls of the �-fun
tion.Basis: n� = 1.Case (fr; th) `M $ N .We have fr0 = fr = K(fr [ �1(th)). Sin
e M 2 S(fr [ �1(th)) it follows that fr0 =K(fr[�1(th)[fMg). For similar reasons we also have fr0 = K(fr[�2(th)[fNg),�1(th0) = I(fr [ �1(th) [ fMg) n N , and �2(th0) = I(fr [ �2(th) [ fNg) n N .Case M = N = n and there does not exist (fM1gEM2 ; fN1gEN2) 2 th su
h thatM2 = N2 = n.fr0 = fr [ fng = K(fr [ �1(th)) [ fng. Sin
e there does not exist(fM1gEM2 ; fN1gEN2) 2 th su
h thatM2 = N2 = n we have fr0 = K(fr[�1(th)[fng).Similarly we have fr0 = K(fr [ �2(th) [ fng). Sin
e �1(th0) = �1(th) =I(fr [ �1(th)) n N and there does not exist (fM1gEM2 ; fN1gEN2) 2 th su
h thatM2 = N2 = n we have �1(th0) = I(fr [ �1(th) [ fng) n N . Similarly for �2(th0).
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ulusCase M = fM1gEM2 , N = fN1gEN2 , and M2; N2 =2 fr.We have fr0 = fr = K(fr [ �1(th)) = K(fr [ �2(th)). Sin
e M2; N2 =2 fr it followsthat fr0 = K(fr [ �1(th) [ fMg) = K(fr [ �2(th) [ fNg). Also, �1(th0) = �1(th) [fMg = I(fr [ �1(th)) n N [ fMg. Sin
e M2 =2 fr it follows that �1(th0) =I(fr [ �1(th) [ fMg) n N . Similarly for �2(th0).
Step: n� > 1.

Case M = fM1gEM2 , N = fN1gEN2 , and (fr; th) `M2 $ N2 (M2 = N2 2 fr).We have (fr0; th0) = �((fr; th);M1; N1) (line 14 of the �-fun
tion in �gure 3.1). Byindu
tion we get fr0 = K(fr [ �1(th) [ fM1g) = K(fr [ �2(th) [ fN1g), �1(th0) =I(fr[�1(th)[fM1g)nN , and �2(th0) = I(fr[�2(th)[fN1g)nN . Sin
eM2; N2 2 frit follows that fr0 = K(fr [ �1(th) [ fMg) = K(fr [ �2(th) [ fNg), �1(th0) =I(fr [ �1(th) [ fMg) n N , and �2(th0) = I(fr [ �2(th) [ fNg) n N .
Case M = N = n =2 fr and there exists (fM1gEM2 , fN1gEN2) 2 th su
h that M2 =N2 = n.Let � def= f(fM1gEM2 ; fN1gEN2) 2 th j M2; N2 2 fngg (lines 6-10 of the �-fun
tionin �gure 3.1). Furthermore, let fr� def= fr [ fng, th� def= th n �. Let (fri� ; thi�) be theframe-theory pair obtained from the ith appli
ation of the �-fun
tion in the for-loop in lines 11-12 of the �-fun
tion in �gure 3.1. Sin
e (fr0� ; th0�) ` ok (fr0� = fr�and th0� = th�) it follows, by the fa
t that the frame-theory pair returned by the�-fun
tion is ok, that (fri�; thi�) ` ok for all i. Now, letM i� and N i� be the messagesM1 and N1, respe
tively, of the ith run of line 12 of the �-fun
tion in �gure 3.1.Let (frF� ; thF� ) be the frame-theory pair obtained from the �nal appli
ation of the



5.4. Completeness 31�-fun
tion in the for-loop. Then, by indu
tion, we haveI(fr0 [ �1(th0)) = I(frF� [ �1(thF� ))= I(K(frF�1� [ �1(thF�1� ) [ fMF� g)[I(frF�1� [ �1(thF�1� ) [ fMF� g) n N )= I(I(frF�1� [ �1(thF�1� ) [ fMF� g))= I(frF�1� [ �1(thF�1� ) [ fMF� g)= I(K(frF�2� [ �1(thF�2� ) [ fMF�1� g)[I(frF�2� [ �1(thF�2� ) [ fMF�1� g) n N [ fMF� g)= I(I(frF�2� [ �1(thF�2� ) [ fMF�1� g) [ fMF� g)= I(frF�2� [ �1(thF�2� ) [ fMF�1� g [ fMF� g)... ...= I(fr0� [ �1(th0�) [ fM1�g [ � � � [ fMF� g)= I(fr [ fng [ �1(th0�) [ fM1�g [ � � � [ fMF� g)= I(fr [ fng [ �1(th0�) [ ffM1�gEn g [ � � � [ ffMF� gEn g)= I(fr [ fng [ �1(th0�) [ �1(�))= I(fr [ fMg [ �1(th))Similarly for I(fr0 [ �2(th0)). It now follows that fr0 = K(fr [ fMg [ �1(th)) =K(fr [ fNg [ �2(th)), �1(th0) = I(fr [ fMg [ �1(th)) n N , and �2(th0) = I(fr [fNg [ �2(th)) n N .This 
on
ludes the proof. �Lemma 9Let �1 �00e �2, (fr; th) def= Fe(�1; �2), �(fr; th;M;N) 6=?, and (fr0; th0) def= �(fr; th;M;N) forsome M;N 2 M. Then �1[z 7! M ℄ �00e �2[z 7! N ℄ and Fe(�1[z 7! M ℄; �2[z 7! N ℄) =(fr0; th0), where z =2 dom(�1).Proof: Let �01(x) def= � 
ore(�1; �1(x)) x 6= zM x = zand �02(x) def= � 
ore(�2; �2(x)) x 6= zN x = zThen range(�01) = fr [ �1(th) [ fMg and range(�02) = fr [ �2(th) [ fNg. Further-more, 
ore(�1[z 7! M ℄; �1[z 7! M ℄(x)) = 
ore(�01; �01(x)) and 
ore(�2[z 7! N ℄; �2[z 7!N ℄(x)) = 
ore(�02; �02(x)). By lemma 8 and the way the algorithm for 
omputing � works(the frame is never redu
ed, and ea
h pair from the theory and (M;N) keeps being a
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uluspair and both messages in a pair are de
rypted with the same key from the frame) weget (
ore(�01; �01(x)); 
ore(�02; �02(x))) 2 th0 or 
ore(�01; �01(x)) = 
ore(�02; �02(x)) 2 fr0 and�01(x) = f
ore(�01; �01(x))gE~k and �02(x) = f
ore(�02; �02(x))gE~k for some ~k � fr0. Sin
e�1(x) = f�01(x)gE~k0 and �2(x) = f�02(x)gE~k0 for some ~k0 � fr � fr0 it follows from the fa
tthat (fr0; th0) ` ok that �1[z 7! M ℄ �00e �2[z 7! N ℄ and 
learly Fe(�1[z 7! M ℄; �2[z 7! N ℄) =(fr0; th0). �Finally, we are ready to prove 
ompleteness. By theorem 3 it is enough to show that stronglate environment sensitive bisimilarity is 
omplete with respe
t to fen
ed bisimilarity.Theorem 9 (Completeness)Let S be a fen
ed bisimulation. Then R def= f(�P B P; �Q B Q) j �P �00e �Q ^9(fr; th):((fr; th) ` P S Q ^ Fe(�P ; �Q) = (fr; th))g is a strong late environment sensitivebisimulation.Proof: Assume (�P B P; �Q B Q) 2 R. Then there exists (fr; th) su
h that (fr; th) ` P S Qand Fe(�P ; �Q) = (fr; th).P ��! P 0.Sin
e S is a fen
ed bisimulation there exists Q0 su
h that Q ��! Q0 and (fr; th) `P 0 S Q0. This implies that (�P B P 0; �Q B Q0) 2 R.P a(u)�! P 0 and a 2 A(�P ).We have that a 2 fr, and sin
e S is a fen
ed bisimulation there exists Q0 su
h thatQ a(u)�! Q0 and, for all sets ~n, where ~n\(fn(P;Q)[fr[n(th)) = ;, and for allM;N 2M,if (fr [ ~n; th) `M $ N then (fr [ ~n; th) ` P 0fM=ug S Q0fN=ug.Assume � 2 �, where e(��P ) 6= � and n(�) \ fn(P;Q; �P ; �Q) = ;. By lemma 4 wehave �P [~z 7! n(�)℄ �00e �Q[~z 7! n(�)℄, where ~z \ dom(�P ) = ;. By lemma 5 we getFe(�P [~z 7! n(�)℄; �Q[~z 7! n(�)℄) = (fr [ n(�); th). Sin
e (fr [ n(�); th) ` e(��P ) $e(��Q) follows from lemma 7 we dedu
e (�P [~z 7! n(�)℄ B P 0fe(��P )=ug; �Q[~z 7!n(�)℄ B Q0fe(��Q)=ug) 2 R.P (� ~m)�aM�! P 0, a 2 A(�P ), and ~m \ fn(P; �P ) = ;.In this 
ase we have a 2 fr and ~m \ (fn(P ) [ n(�1(th)) [ fr) = ;. Sin
e S is a fen
edbisimulation there exist ~n, N , and Q0 su
h that Q (� ~n)�aN�! Q0, where ~n \ (fn(Q) [n(�2(th)) [ fr) = ;, and �((fr; th);M;N) ` P 0 S Q0.It is easily seen that ~n\ fn(Q; �2) = ;. By lemma 9 we have �P [z 7!M ℄ �00e �[z 7! N ℄and Fe(�P [z 7! M ℄; �Q[z 7! N ℄) = �((fr; th);M;N). Then it follows that (�P [z 7!M ℄ B P 0; �Q[z 7! N ℄ B Q0) 2 R. �We have shown soundness and 
ompleteness of strong late environment sensitive bisimilaritywith respe
t to framed bisimilarity.



5.5. Introdu
ing Pairs 33Corollary 1 (Soundness and Completeness)�P B P �ESB �Q B Q if and only if Fe(�P ; �Q) ` P �f Q. �Note that if (fr; th) ` P �f Q then there always exist �P and �Q su
h that �P �00e �Q andFe(�P ; �Q) = (fr; th).5.5 Introdu
ing PairsIn this se
tion we des
ribe how the results from the previous se
tions of this 
hapter 
an beproven when we allow expressions to 
ontain pairs and proje
tion and messages to 
ontainpairs. First we need to extend the environment messages, �, to in
lude pairs and proje
tion.� ::= a j x j f�gE� j f�gD� j (�; �) j �l(�) j �r(�)The analysis and synthesis of a set of messages are naturally extended to deal with pairs asfollows (the irredu
ibles and the knowledge of a set of messages need not be 
hanged).De�nition 27 (Analysis of a Set of Messages)The analysis of a set W �M, written A(W ), is the smallest set satisfying(i) W � A(W )(ii) if k 2 A(W ) and fMgEk 2 A(W ) then M 2 A(W )(iii) if (M1;M2) 2 A(W ) then M1 2 A(W ) and M2 2 A(W ) �De�nition 28 (Synthesis of a Set of Messages)The synthesis of a set W �M, written S(W ), is the smallest set satisfying(i) A(W ) � S(W )(ii) if k 2 S(W ) \ N and M 2 S(W ) then fMgEk 2 S(W )(iii) if M1 2 A(W ) and M2 2 A(W ) then (M1;M2) 2 A(W ) �A message M 2M 
an have several 
ores, whi
h are found at di�erent positions inside M .A position p is a string in fl; rg�.De�nition 29 (Core)The 
ore of M 2 M with respe
t to the set of messages W � M and the position p is
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ulusde�ned as follows, � is a spe
ial symbol used to express that a valid 
ore does not exist atthe position p.
ore(W; p;M) def= 8>>>>>><>>>>>>: a if M = a and p = �fNgEk if M = fNgEk , p = �, and k =2 K(W )
ore(W; p;N) if M = fNgEk and k 2 K(W )
ore(W; p0;M1) if M = (M1;M2) and p = lp0
ore(W; p0;M2) if M = (M1;M2) and p = rp0� otherwise �We will now give a de�nition of equivalen
e of environments where messages 
an 
ontainpairs.De�nition 30 (Equivalen
e of Environments, �00e )Let � and �0 be environments and assume dom(�) = dom(�0) = fxi j i 2 Ig for some setof indi
es I . For ea
h i 2 I and p 2 fl; rg� let N(i;p) def= 
ore(�; p; �(xi)) and N 0(i;p) def=
ore(�0; p; �0(xi)). Let the predi
ate (�; �0) `M �M 0 be de�ned as follows. (�; �0) `M �M 0 if there exists ~k su
h thatM = fM0gE~k andM 0 = fM 00gE~k for someM0 andM 00 su
h thateither M0 = N(i;p) and M 00 = N 0(i;p) for some i and p or M0 = (M1;M2), M 00 = (M 01;M 02),(�; �0) ` M1 � M 01 and (�; �0) ` M2 �M 02. � and �0 are equivalent, written � �00e �0, if forea
h i 2 I the following holds(i) (�; �0) ` �(xi) � �0(xi),(ii) for ea
h p; q 2 fl; rg� and j 2 I , N(i;p) = N(j;q) if and only if N 0(i;p) = N 0(j;q), and(iii) for ea
h p 2 fl; rg� and N 2 N , N(i;p) = N if and only if N 0(i;p) = N . �With the new de�nition of 
ore we need a new de�nition of the fun
tion Fe.De�nition 31 (The Fun
tion Fe)Let �1 and �2 be environments su
h that �1 �00e �2 and dom(�1) = dom(�2) = fxi ji 2 Ig. Let fr def= f
ore(�1; p; �1(xi)) j i 2 I ^ p 2 fl; rg� ^ 
ore(�1; p; �1(xi)) 2 Ng andth def= f(
ore(�1; p; �1(xi)); 
ore(�2; p; �2(xi))) j i 2 I ^ p 2 fl; rg� ^ 
ore(�1; p; �1(xi)) =2N ^ 
ore(�1; p; �1(xi)) 6= �g. Then Fe(�1; �2) def= (fr; th). �To prove theorems 8 and 9, when we allow messages to 
ontain pairs, we only need to provethat lemmas 1 to 9 and theorem 7 hold when pairs are allowed. Boreale et al. have shownthat this is the 
ase for lemmas 1 and 2 for an equivalen
e on environments that 
ontains�00e . Theorem 7 and lemmas 4 and 5 are easily proven when pairs are allowed. Lemmas 3and 8 are easily proven by adding a 
ase for pairs in the indu
tion step of the proofs and



5.5. Introdu
ing Pairs 35lemma 7 is easily proven by adding 
ases for pairs and proje
tion in the indu
tion step ofthe proof. The proofs of lemmas 6 and 9 need to be 
hanged when pairs are allowed. Wewill only 
hange the proof of lemma 6 here as the proof of lemma 9 is 
hanged in a similarway.Lemma 10 (Lemma 6 with Pairs)Let �1 �00e �2 and (fr; th) def= Fe(�1; �2). If �1[z 7! M ℄ �00e �2[z 7! N ℄, where z =2 dom(�1),then(i) (fr; th) � (fr0; th0), and(ii) (fr0; th0) `M $ N ,where (fr0; th0) def= Fe(�1[z 7!M ℄; �2[z 7! N ℄).Proof:(i) By theorem 7 we get (fr0; th0) ` ok. It is easily seen that fr � fr0, so by theorem 1 it isenough to show that (fr0; th0) `M 0 $ N 0 for ea
h (M 0; N 0) 2 th to prove that (fr; th) �(fr0; th0). Assume (M 0; N 0) 2 th. There exists p 2 fl; rg� and x 2 dom(�1) su
h thatM 0 = 
ore(�1; p; �1(x)) and N 0 = 
ore(�2; p; �2(x)). Sin
e �1[z 7! M ℄ �00e �2[z 7! N ℄we have (�1[z 7! M ℄; �2[z 7! N ℄) ` �1[z 7! M ℄(x) � �2[z 7! N ℄(x). Let (Mi;M 0i)i2Ibe the messages M0 and M 00 (see de�nition 30) used to prove (�1[z 7! M ℄; �2[z 7!N ℄) ` �1[z 7! M ℄(x) � �2[z 7! N ℄(x). It is easily seen that (fr0; th0) ` Mi $ M 0i forea
h i 2 I . There must exist i 2 I and ~k � fr0 su
h M 0 = fMigE~k and N 0 = fM 0igE~k .This implies (fr0; th0) `M 0 $ N 0(ii) This is easily seen from de�nition 30. �In the following 
hapter we will show that a new version of framed bisimilarity, 
alledframeless framed bisimilarity, is sound and 
omplete with respe
t to strong early environmentsensitive bisimilarity.
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In this 
hapter we will show that a new slightly di�erent version of framed bisimilarity, 
alledframeless framed bisimilarity, is sound and 
omplete with respe
t to strong early environmentsensitive bisimilarity. The proof is very similar to the proof of soundness and 
ompletenessof strong late environment sensitive bisimilarity with respe
t to framed bisimilarity. We willnot go through the details of the proof here but merely state the lemmas needed.6.1 Frameless Framed BisimilarityIn this se
tion we present an early version of framed bisimulation 
alled frameless framedbisimulation. The de�nition of frameless framed bisimulation is based on the notion of atheory. A frameless framed bisimulation relates two pro
esses P and Q in the 
ontext of atheory. As in 
hapter 3 a theory is a �nite set of pairs of messages. Intuitively, a theory
ontains pairs of messages 
oming from P and Q that 
annot be distinguished by an observer.Two messages M and N are indistinguishable with respe
t to the theory th if th `M ! N
an be derived using the rules in table 6.1.
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[Eq theory℄ (M;N) 2 thth `M ! N[Eq pair℄ th `M ! N th `M 0! N 0th ` (M;M 0)! (N;N 0)[Eq en
rypt℄ th `M ! N th `M 0! N 0th ` fMgEM 0 ! fNgEN 0Table 6.1: The indistinguishability predi
ate.In a frameless framed bisimulation we only 
onsider theories that exhibit 
ertain properties.De�nition 32 (Ok Theory)The theory th is ok, written th ` p, if(i) for all (M;N) 2 th, M;N 2 N or M = fM1gEM2 and N = fN1gEN2 for some messagesM1, M2, N1, and N2.(ii) for all (M;N) 2 th� if M = fM1gEM2 then there is no N 0 su
h that th `M2! N 0.� if N = fN1gEN2 then there is no M 0 su
h that th `M 0! N2.(iii) for all (M;N) 2 th and (M 0; N 0) 2 th, M =M 0 if and only if N = N 0. �The de�nition of frameless framed bisimulation requires that a theory 
an be extended.De�nition 33 (Extension of a Theory)th0 is an extension of th, written th v th0, if for all M and N , th ` M ! N impliesth0 `M ! N . �We will need two fun
tions to split a theory into two sets, one 
ontaining the pairs of namesand one 
ontaining the other pairs.De�nition 34 (The Fun
tions Ofr and Oth)Let th be a theory. Then Ofr(th) def= f(M;N) 2 th j M 2 N ^ N 2 Ng and Oth(th) def=f(M;N) 2 th jM =2 N _N =2 Ng. �The following theorem makes it easier to show whether or not one ok theory is an extensionof another.



6.2. Frameless Fen
ed Bisimilarity 39Theorem 10Let th0 ` p, then th v th0 if and only if Ofr(th) � Ofr(th0) and th0 ` M ! N for ea
h pair(M;N) 2 Oth(th). �A frameless framed pro
ess pair is a triple (th; P;Q). If R is a set of frameless framedpro
ess pairs and (th; P;Q) 2 R this is written th ` P R Q. A frameless framed relationis a set of frameless framed pro
ess pairs su
h that th ` P R Q implies th ` p. A framelessframed relation R is symmetri
 if th ` P R Q implies f(N;M) j (M;N) 2 thg ` Q R P .For a set of names V we de�ne C(V ) def= f(a; a) j a 2 V g. Now, we are ready to present thenotion of frameless framed bisimulation .De�nition 35 (Frameless Framed Bisimulation)A symmetri
 frameless framed relation R is a frameless framed bisimulation if wheneverth ` P R Q it holds that(i) if P ��! P 0 then there exists Q0 su
h that Q ��! Q0 and th ` P 0 R Q0,(ii) if P a(u)�! P 0 and a 2 �1(th) then a 2 �2(th) and for all ~n with ~n \ (fn(P ) [n(�1(th))) = ; and all M 2 S(~n [ �1(th)), there exist N and Q0 su
h thatQ a(u)�! Q0, ~n \ (fn(Q) [ n(�2(th))) = ;, and th [ C(~n) ` M ! N , and it holdsthat th [ C(~n) ` P 0fM=ug R Q0fN=ug, and(iii) if P (� ~m)�aM�! P 0, a 2 �1(th), and ~m\ (fn(P )[n(�1(th))) = ; then a 2 �2(th) and thereexist ~n, N , and Q0 su
h that Q (� ~n)�aN�! Q0, ~n\(fn(Q)[n(�2(th))) = ;, and there existsth0 su
h that th v th0, th0 `M ! N , and th0 ` P 0 R Q0. �From the de�nition of frameless framed bisimulation we de�ne the notion of framelessframed bisimilarity .De�nition 36 (Frameless Framed Bisimilarity)P and Q are frameless framed bisimilar with respe
t to the theory th, written th ` P �� Q,if there exists a frameless framed bisimulation R su
h that th ` P R Q. �6.2 Frameless Fen
ed BisimilarityTo be able to use the proof te
hnique used to prove soundness and 
ompleteness of stronglate environment sensitive bisimilarity with respe
t to framed bisimilarity to prove soundnessand 
ompleteness of frameless framed bisimilarity with respe
t to strong early environmentsensitive bisimilarity we introdu
e a frameless version of fen
ed bisimulation. This framelessfen
ed bisimulation makes use of the �-fun
tion presented in �gure 6.1. �(th;M;N) evalu-ates to the smallest extension th0 of th su
h that th0 ` p and th0 ` M ! N (lemma 12 onpage 42). If this is not possible �(th;M;N) evaluates to the invalid theory >.
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ulus1 �(th;M;N)2 IF (th `M ! N) THEN RETURN th3 CASE (M;N) OF4 [M = m;N = n℄ :5 IF 9(O;O0) 2 th:(O =M ()= O0 = N) THEN RETURN(>)6 th� := th [ f(m;n)g7 � := ;8 FOR EACH (fM1gEM2 ; fN1gEN2) 2 th� DO9 IF 9L:(th� `M2! L _ th� ` L! N2) THEN10 th� := th� n f(fM1gEM2 ; fN1gEN2)g11 � := � [ f(fM1gEM2 ; fN1gEN2)g12 FOR EACH (fM1gEM2 ; fN1gEN2) 2 � DO13 th� := �(�(th�;M2; N2);M1; N1)14 [M = fM1gEM2 ; N = fN1gEN2 ℄ :15 IF (th `M2! N2) THEN th� := �(th;M1; N1)16 ELSE17 IF 9(O;O0) 2 th:(O =M ()= O0 = N) THEN RETURN(>)18 th� := th [ f(M;N)g19 � := ;20 FOR EACH (fO1gEO2 ; fO01gEO02) 2 th� DO21 IF 9L:(th� ` O2 ! L _ th� ` L! O02) THEN22 th� := th� n f(fO1gEO2 ; fO01gEO02)g23 � := � [ f(fO1gEO2 ; fO01gEO02)g24 FOR EACH (fO1gEO2 ; fO01gEO02) 2 � DO25 th� := �(�(th�; O2; O02); O1; O01)26 [M = (M1;M2); N = (N1; N2)℄ :27 th� := �(�(th;M2; N2);M1; N1)28 [otherwise℄ :29 RETURN (>)30 RETURN th�Figure 6.1: Algorithm for 
omputing �(th;M;N).The notion of frameless fen
ed bisimulation is de�ned as follows.



6.2. Frameless Fen
ed Bisimilarity 41De�nition 37 (Frameless Fen
ed Bisimulation)A symmetri
 frameless framed relation R is a frameless fen
ed bisimulation if wheneverth ` P R Q it holds that(i) if P ��! P 0 then there exists Q0 su
h that Q ��! Q0 and th ` P 0 R Q0,(ii) if P a(u)�! P 0 and a 2 �1(th) then a 2 �2(th) and for all ~n with ~n \ (fn(P ) [n(�1(th))) = ; and all M 2 S(~n [ �1(th)), there exist N and Q0 su
h thatQ a(u)�! Q0, ~n \ (fn(Q) [ n(�2(th))) = ;, and th [ C(~n) ` M ! N , and it holdsthat th [ C(~n) ` P 0fM=ug R Q0fN=ug, and(iii) if P (� ~m)�aM�! P 0, a 2 �1(th), and ~m \ (fn(P ) [ n(�1(th))) = ; then a 2 �2(th) andthere exist ~n, N , and Q0 su
h that Q (� ~n)�aN�! Q0, ~n \ (fn(Q) [ n(�2(th))) = ;, and�(th;M;N) ` P 0 R Q0. �From the de�nition of frameless fen
ed bisimulation we de�ne the notion of framelessfen
ed bisimilarity .De�nition 38 (Frameless Fen
ed Bisimilarity)P and Q are frameless fen
ed bisimilar with respe
t to the theory th, written th ` P �f# Q,if there exists a frameless fen
ed bisimulation R su
h that th ` P R Q. �It 
an be proven that frameless framed bisimilarity 
oin
ides with frameless fen
ed bisimi-larity. The proof of this is very similar to the proof of soundness and 
ompleteness of fen
edbisimilarity with respe
t to framed bisimilarity given in [7℄. We will not go through thedetails of the proof here but merely state the lemmas needed in the proof and the theoremsthemselves. To show soundness of frameless fen
ed bisimilarity with respe
t to framelessframed bisimilarity we need the following lemma.Lemma 11Let th ` p. If �(th;M;N) 6= > then th v �(th;M;N), �(th;M;N) ` p, and �(th;M;N) `M ! N . �Soundness of frameless fen
ed bisimilarity with respe
t to frameless framed bisimilarity isstated in the following theorem.Theorem 11 (Soundness of Frameless Fen
ed Bisimilarity)If th ` P �f# Q then th ` P �� Q. �Two lemmas are needed to prove 
ompleteness of frameless fen
ed bisimilarity with respe
t toframeless framed bisimilarity. The �rst lemma states that the �-fun
tion yields the smallestvalid extension of a given theory with respe
t to a pair of messages.
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ulusLemma 12If th ` p and there exists th0 su
h that th v th0, th0 ` p, and th0 ` M ! N then�(th;M;N) 6= >, �(th;M;N) ` p, and �(th;M;N) v th0. �The se
ond lemma states that when two pro
esses are frameless framed bisimilar underan extension of a given theory they are also frameless fen
ed bisimilar under the smallestextension of this theory.Lemma 13If th ` p and there exists th0 su
h that th v th0, th0 ` M ! N , and th0 ` P �� Q then�(th;M;N) ` P �f# Q. �The 
ompleteness result is stated in the following theorem.Theorem 12 (Completeness of Frameless Framed Bisimilarity)If th ` P �� Q then th ` P �f# Q. �Soundness and 
ompleteness of frameless fen
ed bisimilarity with respe
t to frameless framedbisimilarity is stated in the following 
orollary.Corollary 2 (Coin
iden
e of �� and �f#)th ` P �� Q if and only if th ` P �f# Q. �6.3 Soundness and CompletenessIn this se
tion we will show that frameless framed bisimilarity is sound and 
omplete withrespe
t to strong early environment sensitive bisimilarity for an expression and messagegrammar without pairs and proje
tion. We �rst de�ne a fun
tion F 0e that takes twoequivalent environments as input and returns a theory. Then it 
an be shown that ifth ` P �f# Q, �P �0e �Q, and F 0e(�P ; �Q) = th then �P B P �EESB �Q B Q, and if�P B P �EESB �Q B Q then F 0e(�P ; �Q) ` P �f# Q.De�nition 39 (The Fun
tion F 0e)Let �1 and �2 be two environments su
h that �1 �0e �2 and dom(�1) = dom(�2) = fxi j i 2Ig. The fun
tion F 0e is de�ned as F 0e(�1; �2) def= f(
ore(�1; �1(xi)); 
ore(�2; �2(xi))) j i 2 Ig.�From the de�nition of F 0e we de�ne a fun
tion FEESB that takes a strong early environmentsensitive bisimulation as input and returns a set of frameless framed pro
ess pairs whi
h willlater turn out to be a frameless framed bisimulation.De�nition 40 (The Fun
tion FEESB)Let R be a strong early environment sensitive bisimulation. Then FEESB(R) def= f(th; P;Q) j9�1; �2:((�1 B P; �2 B Q) 2 R ^ F 0e(�1; �2) = th)g. �



6.3. Soundness and Completeness 43The following theorem states that a theory returned from F 0e is ok. This implies that arelation returned by FEESB is a frameless framed relation.Theorem 13Let �1 �0e �2 and th def= F 0e(�1; �2), then th ` p. �6.3.1 SoundnessTo prove soundness of frameless framed bisimilarity with respe
t to strong early environmentsensitive bisimilarity we make use of the following four lemmas.Lemma 14Let �1 �0e �2 and th def= F 0e(�1; �2). Also, let � 2 � with n(�)\n(�1; �2) = ; and e(��1) 6= �,M def= e(��1), and N def= e(��2). Then th [ C(n(�)) `M ! N . �Lemma 15Let �1 �0e �2 and th def= F 0e(�1; �2). Then th [ C(~
) = F 0e(�1[~z 7! ~
℄; �2[~z 7! ~
℄), where~z \ dom(�1) = ; and ~
 \ fn(�1; �2) = ;. �Lemma 16Let th ` p, �(th;M;N) 6= >, and th0 def= �(th;M;N) then�1(Ofr(th0)) = K(�1(Ofr(th)) [ �1(Oth(th)) [ fMg)�2(Ofr(th0)) = K(�2(Ofr(th)) [ �2(Oth(th)) [ fNg)�1(Oth(th0)) = I(�1(Ofr(th)) [ �1(Oth(th)) [ fMg) n N�2(Oth(th0)) = I(�2(Ofr(th)) [ �2(Oth(th)) [ fNg) n N �Lemma 17Let �1 �0e �2, th def= F 0e(�1; �2), �(th;M;N) 6= >, and th0 def= �(th;M;N). Then �1[z 7!M ℄ �0e �2[z 7! N ℄ and F 0e(�1[z 7!M ℄; �2[z 7! N ℄) = th0, where z =2 dom(�1). �By theorem 11 it is enough to show that frameless fen
ed bisimilarity is sound with respe
tto strong early environment sensitive bisimilarity.Theorem 14 (Soundness)Let S be a frameless fen
ed bisimulation. Then R def= f(�P B P; �Q B Q) j �P �0e �Q ^9th:(th ` P S Q ^ F 0e(�P ; �Q) = th)g is a strong early environment sensitive bisimulation.�



44 Bisimilarity in the Spi-Cal
ulus6.3.2 CompletenessTo prove 
ompleteness of frameless framed bisimilarity with respe
t to strong early environ-ment sensitive bisimilarity we need the following two lemmas.Lemma 18Let ~n\ fn(P; �) = ; and M 2 S(~n[I(�)). Then there exists � 2 � with n(�)\ fn(P; �) = ;su
h that e(��) =M .Proof: The proof is by indu
tion of the stru
ture of M .Basis:Case M = a 2 ~n.Let � def= a then n(�) \ fn(P; �) = ; and e(��) =M .Case M 2 I(�).by lemma 1 there exists � 2 � su
h that n(�) = ; and e(��) =M .Step:Case M = fNgEk 2W , k 2W \ N , and N 2W , where W def= S(~n [ I(�)).By indu
tion there exist �1; �2 2 � su
h that n(�1) \ fn(P; �) = ;, e(�1�) = k,n(�2) \ fn(P; �) = ;, and e(�2�) = N . Let � def= f�2gE�1 . Now n(�) \ fn(P; �) = ;and e(��) =M . �Lemma 19Let �1 �0e �2 and th def= F 0e(�1; �2). If �1[z 7!M ℄ �0e �2[z 7! N ℄, where z =2 dom(�1), then(i) th v th0, and(ii) th0 `M ! N ,where th0 def= F 0e(�1[z 7!M ℄; �2[z 7! N ℄). �The following theorem states that a frameless framed relation returned from FEESB is aframeless framed bisimulation.Theorem 15 (Completeness)Let R be a strong early environment sensitive bisimulation. Then FEESB(R) is a framelessframed bisimulation. �



6.3. Soundness and Completeness 45We have shown soundness and 
ompleteness of frameless framed bisimilarity with respe
tto strong early environment sensitive bisimilarity.Corollary 3 (Soundness and Completeness)F 0e(�P ; �Q) ` P �� Q if and only if �P B P �EESB �Q B Q. �Note that if th ` P �� Q then there always exist �P and �Q su
h that �P �0e �Q andF 0e(�P ; �Q) = th.Soundness and 
ompleteness of frameless framed bisimilarity with respe
t to strong earlyenvironment sensitive bisimilarity 
an also be proven for an expression and message grammarwith pairs and proje
tion.In the next 
hapter we present some modal logi
s and show that these 
an be used to
hara
terize strong early and strong late environment sensitive bisimilarity.
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7Logical
Characterizations
of Environment

Sensitive
BisimilaritiesA 
ommon approa
h to reasoning about properties of se
urity proto
ols has been to uselogi
s. One of these is BAN-logi
, whi
h was introdu
ed by Burrows et al. in [1℄. In this
hapter we present some logi
s for the Spi-
al
ulus that make it possible to reason aboutproperties of se
urity proto
ols. We present three logi
s, F , EM, and LM, for 
on�gura-tions. We show that strong early environment sensitive bisimilarity, �00EESB (�EESB basedon the environment equivalen
e �00e ), 
an be 
hara
terized by F and EM. We also showthat strong late environment sensitive bisimilarity 
an be 
hara
terized by LM. First wepresent the syntax and semanti
s of formulae in a logi
 � from whi
h we shall 
onstru
tthe logi
s F and EM. The syntax of formulae in LM is based on the syntax of formulaein � but LM is based on a di�erent semanti
s. The syntax and semanti
s presented inthis 
hapter is inspired by [12℄. In this 
hapter we will 
onsider an expression and messagegrammar without pairs and proje
tion. We will 
ontinue to refer to the set of expressionsand the set of messages as L and M, respe
tively.
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ulus7.1 Syntax and Semanti
s of FormulaeWe begin by giving the syntax of formulae . Formulae, ranged over by �, 
an 
ontainformula messages . The set of formula messages is denoted 
 and is ranged over by �.Formulae 
an be 
onstru
ted using three kinds of 
onne
tives: normal formula 
onne
tives,negation and 
onjun
tion , 
onne
tives to des
ribe pro
esses, silent a
tion , free input ,early input , late input , output , and mat
hing , and 
onne
tives to des
ribe environ-ments. An environment is des
ribed by the number of environment variables in its domain,# = n, whether or not messages of the environment 
an be 
ompletely de
rypted with thekeys ~k from the knowledge of the environment, x 7! fagE~k and x 7! f?gE~k , respe
tively, andwhether the 
ores of two messages of the environment are equal, 
ore(x) = 
ore(z). For-mula messages 
an 
onsist of variables, environment variables, en
ryption, and de
ryption.Formulae and formula messages are given by the following grammars.� ::= :� j î2I �ij h�i� j ha�i� j ha(u)iE� j ha(u)iL� j h�ai� j [� = �℄�j # = n j x 7! fagE~k j x 7! f?gE~k j 
ore(x) = 
ore(z)� ::= u j x j f�gE� j f�gD�where I is a �nite or in�nite set of indi
es. In ha(u)iE� and ha(u)iL� u is bound in �. Thesets of free variables , fv(�), and bound variables , bv(�), of a formula are de�ned asexpe
ted. We will write �f�=ug for the formula obtained be repla
ing every free o

urren
eof u in � by �, renaming bound variables as ne
essary. We identify formulae up to renamingof bound variables. If the formulae �1 and �2 
an be identi�ed up to renaming of boundvariables we write �1 � �2. We use the shorthand notations �1 _�2 and tt for :(:�1 ^:�2)and Vi2; �i, respe
tively. The logi
 � 
onsists of formulae without free variables, i.e. � =f� j fv(�) = ;g.We will use a fun
tion T (�; �) that substitutes ea
h name a in � to the environmentvariable x in � that maps to a (T will only be used in a 
ontext where � is bije
tive withrespe
t to the names in �, i.e. jfx 2 dom(�) j �(x) = agj = 1).The following example illustrates how to express a se
urity property in the proposedmodal logi
.Example 4. We de�ne a formula �a that 
an only be satis�ed by a 
on�guration � B Pif P never reveals the se
ret name a to the environment �, i.e. a is not in the knowledge of� and a is not in the knowledge of the environment of any derivatives of � B P . We de�ne�a as follows. �a def= 1̂i=0[�℄i:0� _x2Z;~k�N x 7! fagE~k1Awhere [�℄� def= [� ℄� ^ Va2N ;�2�[a�℄� ^ Va2N [�a℄�. The 
on�guration � B P given by



7.2. Chara
terization of �00EESB 49� def= f
=xg and P def= (� k)
(u):�ufagEk :0 is an example of a 
on�guration that satis�es �a.Likewise, the 
on�guration f
AS=x1; 
AB=x2; 
SB=x3g B Sys(a) satis�es �a, where Sys(a) isthe proto
ol/pro
ess de�ned in example 1(given that F (a) does not reveal a). �In addition to se
urity properties 
lassi
al pro
ess properties su
h as deadlo
k-freeness andliveness 
an also be expressed in the logi
 �.In the example above we saw that the 
on�guration � B P satis�es the formula �a. Wewill now de�ne this notion of satisfa
tion more pre
isely.De�nition 41 (The Satisfa
tion Relation)The satisfa
tion relation between 
on�gurations and formulae of � is given by� B P � :� if � B P 2 �� B P � Vi2I �i if � B P � �i for all i 2 I� B P � h�i� if there exists P 0 su
h that � B P ��!� � B P 0 and� B P 0 � �� B P � ha�i� if there exist ~b; u; �0; and P 0 su
h that � B P a(u)�!(� ~b)�a� �0 B P 0and �0 B P 0 � �� B P � ha(u)iE� if for all � 2 � with n(�) \ fn(P; �) = ; and e(��) 6= � thereexist ~b; �0; and P 0 su
h that � B P a(u)�!(� ~b)�a� �0 B P 0 and�0 B P 0 � �fT (�0; �)=ug� B P � h�ai� if there exist ~b;M; x; �0; and P 0 su
h that� B P (� ~b)�aM�!a(x) �0 B P 0 and �0 B P 0 � �� B P � [�1 = �2℄� if e0([�1 = �2℄�) = tt implies � B P � �� B P � # = n if jdom(�)j = n� B P � x 7! fagE~k if �(x) = fagE~k and ~k � K(�)� B P � x 7! f?gE~k if �(x) = f
ore(�; �(x))gE~k ; 
ore(�; �(x)) =2 N , and~k � K(�)� B P � 
ore(x) = 
ore(z) if 
ore(�; �(x)) = 
ore(�; �(z)) �Note that the satisfa
tion relation is not de�ned for ha(u)iL�. We will later de�ne anothersatisfa
tion relation that is de�ned for ha(u)iL�. We use the shorthand notation � � � if� B P � � for all P 2 Pr.7.2 Chara
terization of �00EESBIn this se
tion we present the two logi
s F and EM and show that strong early environ-ment sensitive bisimilarity 
an be 
hara
terized by them both. To prove this we will use a
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uluste
hnique similar to that used by Milner et al. in [12℄. We will let �0 denote the subsetof formulae of � that 
an be generated using the rules of the grammar for formulae ex
eptthe rules for [� = �℄�, ha�i�, ha(u)iE�, and ha(u)iL�. F is �0 extended with the rule forha�i� and EM is �0 extended with the rules for [� = �℄� and ha(u)iE�. To prove thatstrong early environment sensitive bisimilarity 
an be 
hara
terized by the two logi
s F andEM we de�ne a logi
al pro
ess equivalen
e for ea
h of the two logi
s. For this we need thefollowing de�nition.De�nition 42 (Chara
terization Relations)Let � be a subset of �. Then �(� B P ) def= f� 2 � j � B P � �g and the relation =� isde�ned by =�def= f(�P B P; �Q B Q) j �(�P B P ) = �(�Q B Q)g. �The following lemma will be used to prove that strong early environment sensitive bisimi-larity 
an be 
hara
terized by F and EM, respe
tively.Lemma 20Let � be an environment. Then there exists a formula �� 2 �0 su
h that � � �� and if�0 B Q � �� then � �00e �0.Proof: Assume jdom(�)j = n. Let �� def= Vi2I �i be the least formula satisfying the follow-ing.� # = n � �i for some i 2 I ,� x 7! fagE~k � �i for some i 2 I if 
ore(�; �(x)) = a and �(x) = f
ore(�; �(x))gE~k ,� x 7! f?gE~k � �i for some i 2 I if 
ore(�; �(x)) =2 N and �(x) = f
ore(�; �(x))gE~k� 
ore(x) = 
ore(z) � �i for some i 2 I if 
ore(�; �(x)) = 
ore(�; �(z)), and� :(
ore(x) = 
ore(z)) � �i for some i 2 I if 
ore(�; �(x)) 6= 
ore(�; �(z)).By de�nition 22 it is easily seen that � B P � �� for all P 2 Pr and if �0 B Q � �� then� �00e �0. �Now, we are ready to prove that =F and �00EESB 
oin
ide.Theorem 16 (Coin
iden
e of =F and �00EESB)�P B P =F �Q B Q if and only if �P B P �00EESB �Q B Q.Proof: We will �rst prove that �P B P �00EESB �Q B Q implies �P B P =F �Q B Q.Assume �P B P �00EESB �Q B Q and �P B P � �. We must show that �Q B Q � �. Theproof will be by stru
tural indu
tion on �.



7.2. Chara
terization of �00EESB 51Basis:Case � � tt.Trivial sin
e every 
on�guration satis�es tt.Case � � # = n, � � x 7! fagE~k , � � x 7! f?gE~k , and � � 
ore(x) = 
ore(z).Trivial sin
e �P �00e �Q.Step:Case � � :�0.We have that �P B P 2 �0 and by indu
tion we get �Q B Q 2 �0. Hen
e wededu
e �Q B Q � �.Case � � Vi2I �i and I 6= ;.We have that �P B P � �i for all i 2 I and by indu
tion we have that �Q B Q � �ifor all i 2 I . Hen
e �Q B Q � �.Case � � h�i�0.There exists P 0 su
h that �P B P ��!� �P B P 0 and �P B P 0 � �0. Sin
e�P B P �00EESB �Q B Q there exists Q0 su
h that �Q B Q ��!� �Q B Q0 and�P B P 0 �00EESB �Q B Q0. By indu
tion we have that �Q B Q0 � �0 and thus weget �Q B Q � �.Case � � ha�i�0.We have that there exist ~
, u, �0P , and P 0 su
h that �P B P a(u)�!(� ~
)�a� �0P B P 0 and�0P B P 0 � �0. Sin
e �P B P �00EESB �Q B Q there exist ~d, �0Q, and Q0 su
h that�Q B Q a(u)�!(� ~d)�a� �0Q B Q0 and �0P B P 0 �00EESB �0Q B Q0. By indu
tion we havethat �0Q B Q0 � �0 and thus we get �Q B Q � �.Case � � h�ai�0.There exist ~
, M , z, �0P , and P 0 su
h that �P B P (� ~
)�aM�!a(z) �0P B P 0 and �0P BP 0 � �0. Sin
e �P B P �00EESB �Q B Q there exist ~d, N , �0Q, and Q0 su
h that�Q B Q (� ~d)�aN�!a(z) �0Q B Q0 and �0P B P 0 �00EESB �0Q B Q0. By indu
tion we havethat �0Q B Q0 � �0 and thus we get �Q B Q � �.Finally, we prove that �P B P =F �Q B Q implies �P B P �00EESB �Q B Q. We will dothis by showing that S de�ned byS def= f(�P B P; �Q B Q) j �P B P =F �Q B Qgis a strong early environment sensitive bisimulation. Assume (�P B P; �Q B Q) 2 S. Bylemma 20 it follows that �P �00e �Q. Suppose �P B P ��!� �0P B P 0. Let fCigi2I be
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ulusan enumeration of f�0Q B Q0 j �Q B Q ��!� �0Q B Q0g and assume (�0P B P 0; Ci) =2 Sfor all i 2 I . For ea
h i 2 I 
hoose �i 2 F(�0P B P 0) n F(Ci) (�i always exists sin
e�P B P 2 � implies �P B P � :�). Let � def= h�iVi2I �i (note that here we use the fa
tthat I 
an be in�nite), then � 2 F(�P B P ) n F(�Q B Q). This is a 
ontradi
tion sin
e(�P B P; �Q B Q) 2 S. Therefore, there must exist �0Q B Q0 su
h that �Q B Q ��!� �0Q B Q0and (�0P B P 0; �0Q B Q0) 2 S. The 
ases with �P B P a(u)�!(� b)�a� �0P B P 0 and �P B P (�b)�aM�!a(x)�0P B P 0 are shown similarly. �And now, we prove that =EM and �00EESB 
oin
ide.Theorem 17 (Coin
iden
e of =EM and �00EESB)�P B P =EM �Q B Q if and only if �P B P �00EESB �Q B Q.Proof: We will �rst prove that �P B P �00EESB �Q B Q implies �P B P =EM �Q B Q.Assume �P B P �00EESB �Q B Q and �P B P � �. We must show that �Q B Q � �. Theproof will be by stru
tural indu
tion on �.Basis: The same as in the basis 
ase of the proof of theorem 16.Step:Case � � ha(u)iE�0.We have that for all � 2 �, where n(�)\fn(P; �P ) = ; and e(��P ) 6= �, there exist~
, �0, and P 0 su
h that �P B P a(u)�!(� ~
)�a� �0P B P 0 and �0P B P 0 � �0fT (�0P ; �)=ug.Sin
e �P B P �00EESB �Q B Q there exist ~d, �0Q, and Q0 su
h that �Q BQ a(u)�!(� ~d)�a� �0Q B Q0 and �0P B P 0 �00EESB �0Q B Q0. By indu
tion and the fa
tthat T (�0Q; �) = T (�0P ; �) we have that �0Q B Q0 � �0fT (�0Q; �)=ug and hen
e�Q B Q � �.Case � � [�1 = �2℄�0.If e0([�1 = �2℄�P ) = � then e0([�1 = �2℄�Q) = � by theorem 6 and the fa
t that�P �00e �Q. If e0([�1 = �2℄�P ) = tt we have �P B P � �0. By indu
tion we get�Q B Q � �0. Sin
e �P �00e �Q it follows by theorem 6 that e0([�1 = �2℄�Q) = tt.Thus we have �Q B Q � �.The remaining 
ases are proven in the same way as in the proof of theorem 16.Finally, we prove that �P B P =EM �Q B Q implies �P B P �00EESB �Q B Q. This followsfrom theorem 16 and the fa
t that �P B P � ha�i� if and only if �P B P � ha(u)iE [u =T (�P [~z 7! n(�)℄; �)℄�. �



7.3. Chara
terization of �ESB 537.3 Chara
terization of �ESBIn this se
tion we present the logi
 LM and show that this 
an be used to 
hara
terizestrong late environment sensitive bisimilarity. It turns out that with the de�nition of stronglate environment sensitive bisimulation it is di�
ult to prove that a modal logi
 
an beused to 
hara
terize strong late environment sensitive bisimilarity using the same te
hniqueas in the proofs of theorems 16 and 17. For this reason we de�ne a new notion of stronglate environment sensitive bisimulation 
alled S-environment sensitive bisimulation, showthat S-environment sensitive bisimilarity 
an be used to 
hara
terize strong late environ-ment sensitive bisimilarity, and prove that LM 
an be used to 
hara
terize S-environmentsensitive bisimilarity using the same te
hnique as in the proofs of theorems 16 and 17.7.3.1 S-Environment Sensitive BisimulationThe notion of S-environment sensitive bisimulation is de�ned as follows.De�nition 43 (S-Environment Sensitive Bisimulation)Let S � N . A symmetri
 relation R � �� � is an S-environment sensitive bisimulation if(�P B P; �Q B Q) 2 R implies �P �00e �Q and if P ��! P 0 then(i) if � = � then there exists Q0 su
h that Q ��! Q0 and (�P B P 0; �Q B Q0) 2 R.(ii) if � = a(u) and a 2 A(�P ) then there exists Q0 su
h that Q a(u)�! Q0 and for all � 2 �,where e(��P ) 6= � and n(�)\(S[K(�P )) = ;, (�P [~z 7! n(�)℄ B P 0fe(��P )=ug; �Q[~z 7!n(�)℄ B Q0fe(��Q)=ug) 2 R, where ~z \ dom(�P ) = ;.(iii) if � = (� ~
)�aM , a 2 A(�P ), ~
 � S, and ~
 \ fn(P; �P ) = ; then there exist ~d, N ,and Q0 su
h that Q (� ~d)�aN�! Q0, where ~d � S, ~d \ fn(Q; �Q) = ;, and (�P [z 7! M ℄ BP 0; �Q[z 7! N ℄ B Q0) 2 R, where z =2 dom(�P ). �From the de�nition of S-environment sensitive bisimulation we de�ne the notion of S-environment sensitive bisimilarity .De�nition 44 (S-Environment Sensitive Bisimilarity)The 
on�gurations �P B P and �Q B Q are S-environment sensitive bisimilar, written�P B P �SESB �Q B Q, if there exists an S-environment sensitive bisimulation R su
h that(�P B P; �Q B Q) 2 R. �The following example illustrates that in general�SESB and�ESB are not sound with respe
tto ea
h other.
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ulusExample 5. To see that �SESB is not sound with respe
t to �ESB for every S 
onsiderthe pro
esses P def= (� n)�an:0 and Q def= 0 and the environment � def= fa=xg. If S def= ; wehave � B P �SESB � B Q but not � B P �ESB � B Q.To see that �ESB is not sound with respe
t to �SESB for every S 
onsider the pro
essesP def= (� k)(� m)�afmgEk :0 and Q def= (� k)�afkgEk :0 and the environment � def= fa=xg. Wehave � B P �ESB � B Q but if S def= fkg we do not have � B P �SESB � B Q. �In the following we will show that if two 
on�gurations are strong late environment sensitivebisimilar then they are also S-environment sensitive bisimilar for some in�nite set S 
on-taining the free names of the two 
on�gurations. To show this we need the following threelemmas.Lemma 21If P ��! P 0 then� if � = � then fn(P 0) � fn(P ).� if � = a(u) then fn(P 0) [ fag � fn(P ).� if � = (� ~
)�aM then fn(P 0) [ fag [ n(M) � fn(P ) [ ~
.Proof: This is easily shown using transition indu
tion. �Lemma 22Let �N be an inje
tive name substitution de�ned as �N def= f ~m=~n; ~n= ~mg. If P ��! P 0 thenP�N ��N�! P 0�N .Proof: This is easily shown using transition indu
tion. �Lemma 23Let �P B P �ESB �Q B Q and let �N be the inje
tive name substitution de�ned by�N def= f ~m=~n; ~n= ~mg. Then (�P B P )�N �ESB (�Q B Q)�N .Proof: This is proven using lemma 22. �Theorem 18Let S � N be an in�nite set. If �P B P �ESB �Q B Q and fn(P;Q; �P ; �Q) � S, then�P B P �SESB �Q B Q.Proof: We will show that the relation R de�ned byR def= f(�P B P; �Q B Q) j �P B P �ESB �Q B Q ^ fn(P;Q; �P ; �Q) � S [ K(�P )gis an S-environment sensitive bisimulation. Assume (�P B P; �Q B Q) 2 R. Sin
e �P BP �ESB �Q B Q we have that �P �00e �Q.
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terization of �ESB 55P ��! P 0.Sin
e �P B P �ESB �Q B Q there exists Q0 su
h that Q ��! Q0 and �P B P 0 �ESB�Q B Q0. By lemma 21 we have that fn(P 0; Q0; �P ; �Q) � S and it follows that(�P B P 0; �Q B Q0) 2 R.P a(u)�! P 0 and a 2 A(�P ).Sin
e �P B P �ESB �Q B Q there exists Q0 su
h that Q a(u)�! Q0 and for all� 2 �, where e(��P ) 6= � and n(�) \ fn(P;Q; �P ; �Q) = ;, �P [~z 7! n(�)℄ BP 0fe(��P )=ug �ESB �Q[~z 7! n(�)℄ B Q0fe(��Q)=ug. Assume � 0 2 �, n(� 0) \(S [ K(�P )) = ;, and e(� 0�P ) 6= �. Then we have that �P [~z 7! n(� 0)℄ BP 0fe(� 0�P )=ug �ESB �Q[~z 7! n(� 0)℄ B Q0fe(� 0�Q)=ug and by lemma 21 we getfn(P 0fe(� 0�P )=ug; Q0fe(� 0�Q)=ug; �P [~z 7! n(� 0)℄; �Q[~z 7! n(� 0)℄) � S [ K(�P [~z 7!n(� 0)℄). This implies that (�P [~z 7! n(� 0)℄ B P 0fe(� 0�P )=ug; �Q[~z 7! n(� 0)℄ BQ0fe(� 0�Q)=ug) 2 R.P (� ~
)�aM�! P 0, a 2 A(�P ), ~
 � S, and ~
 \ fn(P; �P ) = ;.Sin
e �P B P �ESB �Q B Q there exist ~d, N , and Q0 su
h that Q (� ~d)�aN�! Q0, where~d \ fn(Q; �Q) = ;, and �P [z 7! M ℄ B P 0 �ESB �Q[z 7! N ℄ B Q0. If ~d � S then bylemma 21 we have fn(P 0; Q0; �P [z 7!M ℄; �Q[z 7! N ℄) � S and it follows that (�P [~z 7!M ℄ B P 0; �Q[~z 7! N ℄ B Q0) 2 R. If ~dnS 6= ; then let ~n def= ~dnS. There exists a tuple ~mof distin
t names su
h that ~m\(fn(P;Q; �P ; �Q)[~
) = ;, ~m � S, and j ~mj = j~nj. Let �Nbe the name substitution de�ned by �N def= f ~m=~n; ~n= ~mg. Sin
e �P [z 7!M ℄ B P 0 �ESB�Q[z 7! N ℄ B Q0 we get (�P [z 7!M ℄ B P 0)�N �ESB (�Q[z 7! N ℄ B Q0)�N by lemma23. It now follows that �P [z 7!M ℄ B P 0 �ESB �Q[z 7! N�N ℄ B Q0�N . By lemma 22we have Q ((� ~d)�aN)�N�! Q0�N and it 
an be seen that ~d�N � S and ~d�N \fn(Q; �Q) = ;.By lemma 21 we get fn(P 0; Q0�N ; �P [z 7!M ℄; �Q[z 7! N�N ℄) � S and it follows that(�P [z 7!M ℄ B P 0; �Q[z 7! N�N ℄ B Q0�N ) 2 R. �Now, we will show that if two 
on�gurations are S-environment sensitive bisimilar for somein�nite set S � N (N n S also in�nite) 
ontaining the free names of the two 
on�gurationsthen they are also strong late environment sensitive bisimilar. To prove this we need thefollowing two lemmas.Lemma 24If �P B P �SESB �Q B Q and V � K(�P ) then �P B P �S[VESB �Q B Q.Proof: This 
an be seen from the de�nition of S-environment sensitive bisimulation. �Lemma 25Let S � N , ~m \ S = ;, ~n � S, and �P B P �SESB �Q B Q. Let �N be a name substitutionde�ned as �N def= f ~m=~n; ~n= ~mg. Then (�P B P )�N �(Sn~n)[ ~mESB (�Q B Q)�N .Proof: This is proven using lemma 22. �
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ulusTheorem 19Let S � N and �P B P; �Q B Q 2 � su
h that fn(P;Q; �P ; �Q) � S, �P B P �SESB �Q B Q,and S and N n S are in�nite. Then �P B P �ESB �Q B Q.Proof: We will show that the relation R de�ned byR def= f(�P B P; �Q B Q) j 9S � N :(�P B P �SESB �Q B Q^fn(P;Q; �P ; �Q) � S ^ jSj =1^ jN n Sj =1)gis a strong late environment sensitive bisimulation. Assume (�P B P; �Q B Q) 2 R. Thenthere exists S � N su
h that fn(P;Q; �P ; �Q) � S, �P B P �SESB �Q B Q, and S and N nSare in�nite. Sin
e �P B P �SESB �Q B Q we get �P �00e �Q.P ��! P 0.There exists Q0 su
h that Q ��! Q0 and �P B P 0 �SESB �Q B Q0. By lemma 21 wehave fn(P 0; Q0; �P ; �Q) � S and therefore (�P B P 0; �Q B Q0) 2 R.P a(u)�! P 0 and a 2 A(�P ).There exists Q0 su
h that Q a(u)�! Q0 and for all � 0 2 � with e(� 0�P ) 6= � andn(� 0) \ (S [ K(�P )) = ; it holds that �P [~z 7! n(� 0)℄ B P 0fe(� 0�P )=ug �SESB �Q[~z 7!n(� 0)℄ B Q0fe(� 0�Q)=ug.Now, let � 2 � su
h that e(��P ) 6= � and n(�) \ fn(P;Q; �P ; �Q) = ;. Ifn(�) \ (S [ K(�P )) = ; then we know that �P [~z 7! n(�)℄ B P 0fe(��P )=ug �SESB�Q[~z 7! n(�)℄ B Q0fe(��Q)=ug. By lemma 24 we get �P [~z 7! n(�)℄ BP 0fe(��P )=ug �S[n(�)ESB �Q[~z 7! n(�)℄ B Q0fe(��Q)=ug. This implies (�P [~z 7!n(�)℄ B P 0fe(��P )=ug; �Q[~z 7! n(�)℄ B Q0fe(��Q)=ug) 2 R sin
e we havefn(P 0fe(��P )=ug; Q0fe(��Q)=ug; �P [~z 7! n(�)℄; �Q[~z 7! n(�)℄) � S[n(�) by lemma 21.If n(�) \ (S [ K(�P )) 6= ; then let ~n def= n(�) \ (S [ K(�P )). There exist� 0 2 � and ~m � N su
h that n(� 0) \ (S [ K(�P )) = ;, n(�) n ~n � n(� 0), and� = � 0�N , where �N is a name substitution de�ned as �N def= f ~m=~n; ~n= ~mg. Wehave �P [~z 7! n(� 0)℄ B P 0fe(� 0�P )=ug �SESB �Q[~z 7! n(� 0)℄ B Q0fe(� 0�Q)=ug,and by lemma 25 we get (�P [~z 7! n(� 0)℄ B P 0fe(� 0�P )=ug)�N �(Sn~n)[ ~mESB (�Q[~z 7!n(� 0)℄ B Q0fe(� 0�Q)=ug)�N . Sin
e (~n [ ~m) \ fn(P;Q; �P ; �Q) = ; we dedu
e�P [~z 7! n(�)℄ B P 0fe(��P )=ug �(Sn~n)[ ~mESB �Q[~z 7! n(�)℄ B Q0fe(��Q)=ug. By lemma 24we get �P [~z 7! n(�)℄ B P 0fe(��P )=ug �(Sn~n)[ ~m[n(�)ESB �Q[~z 7! n(�)℄ B Q0fe(��Q)=ug.Sin
e fn(P 0fe(��P )=ug; Q0fe(��Q)=ug; �P [~z 7! n(�)℄; �Q[~z 7! n(�)℄) � (Sn~n)[ ~m[n(�)follows by lemma 21 we 
on
lude that (�P [~z 7! n(�)℄ B P 0fe(��P )=ug; �Q[~z 7! n(�)℄ BQ0fe(��Q)=ug 2 R.P (� ~
)�aM�! P 0, a 2 A(�P ), and ~
 \ fn(P; �P ) = ;.If ~
 � S then there exist ~d, N , and Q0 su
h that Q (� ~d)�aN�! Q0, ~d � S, ~d\ fn(Q; �Q) = ;,and �P [z 7! M ℄ B P 0 �SESB �Q[z 7! N ℄ B Q0. We dedu
e (�P [z 7! M ℄ B P 0; �Q[z 7!N ℄ B Q0) 2 R sin
e fn(P 0; Q0; �P [z 7!M ℄; �Q[z 7! N ℄) � S by lemma 21 and the fa
t
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terization of �ESB 57that ~
 [ ~d � S.If ~
 n S 6= ; then let ~m def= ~
 n S. Let ~n be a set of names su
h that ~n � S, ~n \(fn(P;Q; �P ; �Q) [ ~
) = ;, and j~nj = j ~mj. Let �N be the name substitution givenby �N def= f ~m=~n; ~n= ~mg. By lemma 25 we have (�P B P )�N �(Sn~n)[ ~mESB (�Q B Q)�N .Sin
e (~n [ ~m) \ fn(P;Q; �P ; �Q) = ; we get �P B P �(Sn~n)[ ~mESB �Q B Q. By the fa
tthat ~
 � (S n ~n)[ ~m there exist ~d, N , and Q0 su
h that Q (� ~d)�aN�! Q0, ~d � (S n ~n)[ ~m,~d \ fn(Q; �Q) = ;, and �P [z 7! M ℄ B P 0 �(Sn~n)[ ~mESB �Q[z 7! N ℄ B Q0. By lemma 21we get fn(P 0; Q0; �P [z 7! M ℄; �Q[z 7! N ℄) � (S n ~n) [ ~m. Therefore, we 
on
lude(�P [z 7!M ℄ B P 0; �Q[z 7! N ℄ B Q0) 2 R. �From theorems 18 and 19 we 
an establish that strong late environment sensitive bisimilarityis an equivalen
e relation.Corollary 4Strong late environment sensitive bisimilarity is an equivalen
e relation.Proof: We will only prove that strong late environment sensitive bisimilarity is transitivesin
e it is 
learly re�exive and symmetri
. Assume �P B P �ESB �R B R and �R BR �ESB �Q B Q. Let S � N be an in�nite set su
h that fn(P;Q;R; �P ; �Q; �R) � S andN nS is in�nite. By theorem 18 we have �P B P �SESB �R B R and �R B R �SESB �Q B Q.Sin
e S-environment sensitive bisimilarity is transitive we have that �P B P �SESB �Q B Q,and by theorem 19 we get �P B P �ESB �Q B Q. �7.3.2 Chara
terization of �SESB and �ESBWe will 
hara
terize �SESB and �ESB by the logi
 LM whi
h is de�ned as �0 extendedwith the rules for [� = �℄� and ha(u)iL�. We de�ne a new satisfa
tion relation between
on�gurations and formulae of LM.
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ulusDe�nition 45 (The S-Satisfa
tion Relation)The S-satisfa
tion relation between 
on�gurations and formulae of LM is given by� B P �S :� if � B P 2S �� B P �S Vi2I �i if � B P �S �i for all i 2 I� B P �S h�i� if there exists P 0 su
h that P ��! P 0 and � B P 0 �S �� B P �S ha(u)iL� if a 2 A(�) and there exists P 0 su
h that P a(u)�! P 0 andfor all � 2 � with n(�) \ (S [ K(�)) = ; and e(��) 6= �,�[~z 7! n(�)℄ B P 0fe(��)=ug �S �fT (�[~z 7! n(�)℄; �)=ug� B P �S h�ai� if a 2 A(�) and there exist ~b;M; x; and P 0 su
h thatx =2 dom(�);~b \ fn(P; �) = ;;~b � S; P (� ~b)�aM�! P 0; and�[x 7!M ℄ B P 0 �S �� B P �S [�1 = �2℄� if e0([�1 = �2℄�) = tt implies � B P �S �� B P �S # = n if jdom(�)j = n� B P �S x 7! fagE~k if �(x) = fagE~k and ~k � K(�)� B P �S x 7! f?gE~k if �(x) = f
ore(�; �(x))gE~k ; 
ore(�; �(x)) =2 N , and~k � K(�)� B P �S 
ore(x) = 
ore(z) if 
ore(�; �(x)) = 
ore(�; �(z)) �To prove that S-environment sensitive bisimilarity 
an be 
hara
terized by the logi
 LM wede�ne a logi
al pro
ess equivalen
e for this logi
. For this we need the following de�nition.De�nition 46 (S-Chara
terization Relations)Let � be a subset of LM and let S � N . Then �S(� B P ) def= f� 2 � j � B P �S �g andthe relation =�S is de�ned by =�Sdef= f(�P B P; �Q B Q) j �S(�P B P ) = �S(�Q B Q)g.�Now, we are ready to prove that =LMS and �SESB 
oin
ide.Theorem 20 (Coin
iden
e of =LMS and �SESB)�P B P =LMS �Q B Q if and only if �P B P �SESB �Q B Q.Proof: We will �rst prove that �P B P �SESB �Q B Q implies �P B P =LMS �Q B Q.Assume �P B P �SESB �Q B Q and �P B P �S �. We must show that �Q B Q �S �. Theproof will be by stru
tural indu
tion on �.Basis: The same as in the proof of theorems 16 and 17.Step:Case � � ha(u)iL�0.We have that a 2 A(�P ) and that there exists P 0 su
h that P a(u)�! P 0 and for all
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terization of �ESB 59� 2 � with n(�) \ (S [K(�P )) = ; and e(��P ) 6= � it holds that �P [~z 7! n(�)℄ BP 0fe(��P )=ug �S �0fT (�P [~z 7! n(�)℄; �)=ug. Sin
e �P B P �SESB �Q B Qwe have that there exists Q0 su
h that Q a(u)�! Q0 and for all � 2 �, wheree(��Q) 6= � and n(�) \ (S [ K(�Q)) = ;, �P [~z 7! n(�)℄ B P 0fe(��P )=ug �SESB�Q[~z 7! n(�)℄ B Q0fe(��Q)=ug, where ~z \ dom(�P ) = ;. By indu
tion and thefa
t that T (�Q[~z 7! n(�)℄; �) = T (�P [~z 7! n(�)℄; �) we have that for all � 2 �with n(�) \ (S [ K(�Q)) = ; and e(��Q) 6= � it holds that �Q[~z 7! n(�)℄ BQ0fe(��Q)=ug �S �0fT (�Q[~z 7! n(�)℄; �)=ug and hen
e �Q B Q �S �.Case � � h�ai�0.We have that a 2 A(�P ) and there exist ~b, M , and P 0 su
h that ~b\ fn(P; �P ) = ;,~b � S, P (� ~b)�aM�! P 0, and �P [x 7! M ℄ B P 0 �S �0. Sin
e �P B P �SESB �Q B Qwe have that there exist ~d, N , and Q0 su
h that Q (� ~d)�aN�! Q0, where ~d � S,~d \ fn(Q; �Q) = ;, and �P [z 7! M ℄ B P 0 �SESB �Q[z 7! N ℄ B Q0, wherez =2 dom(�P ). By indu
tion we have that �Q[z 7! N ℄ B Q0 �S �0 and hen
e�Q B Q �S �.The remaining 
ases are proven in a way similar to that of the proof of theorem 17.Finally, we prove that �P B P =LMS �Q B Q implies �P B P �SESB �Q B Q. We will dothis by showing that the relation R de�ned byR def= f(�P B P; �Q B Q) j �P B P =LMS �Q B Qgis an S-environment sensitive bisimulation. Assume (�P B P; �Q B Q) 2 R. By lemma 20(naturally modi�ed to �S) it follows that �P �00e �Q. Suppose P a(u)�! P 0 and a 2 A(�P ).Let fQigi2I be an enumeration of fQ0 j Q a(u)�! Q0g and assume that for ea
h i 2 I thereexists �i 2 � with n(�i) \ (S [ K(�P )) = ; and e(�i�P ) 6= � su
h that (�P [~z 7! n(�i)℄ BP 0fe(�i�P )=ug; �Q[~z 7! n(�i)℄ B Qife(�i�Q)=ug) =2 R. For ea
h i 2 I there exists �i su
hthat �P [~z 7! n(�i)℄ B P 0fe(�i�P )=ug �S �i and �Q[~z 7! n(�i)℄ B Qife(�i�Q)=ug 2S �i.Let � def= ha(u)iLVi2I [u = T (�P [~z 7! n(�i)℄; �i)℄�i. Now, we have �P B P �S � and�Q B Q 2S �. This is a 
ontradi
tion sin
e (�P B P; �Q B Q) 2 R. Therefore, there mustexist Q0 su
h that Q a(u)�! Q0 and for all � 2 � with n(�) \ (S [ K(�P )) = ; and e(��P ) 6= �it holds that (�P [~z 7! n(�)℄ B P 0fe(��P )=ug; �Q[~z 7! n(�)℄ B Q0fe(��Q)=ug) 2 R. Theremaining 
ases are shown in a way similar to that of the proof of theorem 17. �Finally, we 
on
lude that strong late environment sensitive bisimilarity 
an be 
hara
terizedby the logi
 LM.Corollary 5Let =LMdef= f(�P B P; �Q B Q) j 9S � N :(�P B P =LMS �Q B Q ^ fn(P;Q; �P ; �Q) � S ^jSj =1^jN nSj =1)g. Then �P B P =LM �Q B Q if and only if �P B P �ESB �Q B Q.�
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8ConclusionIn this report we have presented a strong late version of the environment sensitive bisimi-larity given by Boreale at al. and proved that this 
an be used as an alternative 
hara
ter-ization of framed bisimilarity. We have proven that �P B P �ESB �Q B Q if and only ifFe(�P ; �Q) ` P �f Q. Our proof of this involved the notion of fen
ed bisimilarity de�nedby Elkjær et al. Furthermore, we presented the notions of frameless framed bisimulationand frameless fen
ed bisimulation. We have shown that frameless framed bisimilarity andframeless fen
ed bisimilarity 
oin
ide. This was proven using an adaptation of the proofte
hnique used by Elkjær et al. in proving that framed bisimilarity and fen
ed bisimilarity
oin
ide. We have shown that frameless framed bisimilarity 
an be used to 
hara
terizestrong early environment sensitive bisimilarity. Finally, we proposed some modal logi
s forthe Spi-
al
ulus. We proved that these 
an be used to 
hara
terize a strong early version andour new strong late version of the environment sensitive bisimilarity given by Boreale at al.The de�nition of our new strong late version of the environment sensitive bisimulation makesit di�
ult to give a logi
al 
hara
terization of strong late environment sensitive bisimilaritydire
tly. Therefore, we introdu
ed a new notion of environment sensitive bisimulation 
alledS-environment sensitive bisimulation and gave a logi
al 
hara
terization of S-environmentsensitive bisimilarity. It turned out that when S has some spe
ial properties it holds that�P B P �ESB �Q B Q if and only if �P B P �SESB �Q B Q. With this useful 
onne
tionbetween S-environment sensitive bisimilarity and strong late environment sensitive bisim-ilarity we were able to give a logi
al 
hara
terization of strong late environment sensitivebisimilarity.8.1 Future WorkAt this point it would be interesting to study whether the results presented in 
hapters 5and 6 about 
orresponden
e between strong bisimilarities also hold for weak versions of thebisimilarities. Sin
e the lemmas needed in proving the results for the strong bisimilaritiesdo not depend on transitions we do not need to show them again.In 
hapter 7 we illustrated how a se
urity property for se
urity proto
ols 
ould be ex-pressed in the proposed modal logi
. It would be interesting to see whether our logi
 
an
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ulusbe used to des
ribe some of the 
lassi
al proto
ols like the `Wide Mouthed Frog Proto
ol'.Although our modal logi
 
an be used to 
hara
terize environment sensitive bisimilarity itsu�ers from the fa
t that to des
ribe properties of a 
on�guration with an in�nite sequen
eof transitions we need in�nite formulae. It would be �tting to extend the logi
 with re
ur-sion in a way that makes it possible to des
ribe 
on�guration with an in�nite sequen
e oftransitions with �nite formulae.



Bibliography

[1℄ & Abadi, M. & Burrows, M. & Needham, R. M. A Logi
 of Authenti
ation. Pro
eedingsof the Royal So
iety of London, 426:233-271, 1989.[2℄ Abadi, Martín & Gordon, Andrew D. A Bisimulation Method for Cryptographi
 Pro-to
ols. Le
ture Notes in Computer S
ien
e, 1381:12-26, 1998.[3℄ Abadi, Martín & Gordon, Andrew D. A Cal
ulus for Cryptographi
 Proto
ols. TheSpi-Cal
ulus. In Pro
eedings of the Fourth ACM Conferen
e on Computer and Com-muni
ations Se
urity, pp. 36-47, 1997.[4℄ Abadi, Martín & Gordon, Andrew D. A Cal
ulus for Cryptographi
 Proto
ols. TheSpi-Cal
ulus. Journal of Information and Computation, 148(1):1-70, 1999.[5℄ Boreale, Mi
hele. Symboli
 Analysis of Cryptographi
 Proto
ols in the Spi-Cal
ulus.http://www.dsi.uni�.it/�boreale/Rea
h-spi.ps.[6℄ Boreale, Mi
hele & De Ni
ola, Ro

o & Pugliese, Rosario. Proof Te
hniques for Cryp-tographi
 Pro
esses (Extended version). Pro
eedings of LICS 99:157-166, 1999.[7℄ Elkjær, Anders Strandløv & Höhle, Mi
hael & Hüttel, Hans & Nielsen, KasperOvergård. Towards Automati
 Bisimilarity Che
king in the Spi-Cal
ulus. Pro
eedingsof CATS/DMTCS'99.[8℄ Frendrup, Ulrik & Jensen, Jesper Nyholm. Che
king for Open Bisimilarity in the �-Cal
ulus. BRICS RS-01-8, 2001.[9℄ Hennessy, Matthew C. B. & De Ni
ola, Ro

o. Testing Equivalen
e for Pro
esses.Le
ture Notes in Computer S
ien
e, 154:548-560, 1983.[10℄ Hüttel, Hans & Kleist, Josva & Nestmann, Uwe. Towards a Symboli
 Semanti
s forthe s�-Cal
ulus. Draft of September 11, 2000, 11:03.[11℄ Milner, Robin. Communi
ation and Con
urren
y. Prenti
e Hall International, Engle-wood Cli�s, 1989. ISBN: 0-13-115007-3.[12℄ Milner, Robin & Parrow, Joa
him &Walker, David.Modal Logi
s for Mobile Pro
esses.Journal of Theoreti
al Computer S
ien
e, 114(1):149-171, 1993.[13℄ Park, David. Con
urren
y and Automata on In�nite Sequen
es. Le
ture Notes in Com-puter S
ien
e, 104:167-183, 1981.



64 Bisimilarity in the Spi-Cal
ulus[14℄ Paulson, Lawren
e C. Proving Se
urity Proto
ols Corre
t. LICS: IEEE Symposium onLogi
 in Computer S
ien
e, 1999.[15℄ S
hneier, Bru
e. Applied Cryptography: Proto
ols, Algorithms, and Sour
e Code in C.John Wiley & Sons, se
ond edition, 1996. ISBN: 0471117099.


