Route Guide Providing Route
Guidance for Nomadic Users

Peter Mglgard Vinther — Henrik Olesen
petermv@cs. auc. dk nunu@cs. auc.dk

Institute of Computer Science
Aalborg University

Aalborg University

Institute of Electronics

Frederik Bajersvej 7, 9220 Aalborg East

Computer Science Department

Route Guide Providing Route
Guidance for Nomadic Users

PROJECT PERIOD:

1. February - 25. May 2001

PROJEKT GROUP:
E3-213a

PROJECT MEMBERS:

Peter Vinther

Henrik Olesen

SUPERVISOR:
Nectaria Tryfona

COPIES: 6
PAGES: 65

APPENDIX: 16

ABSTRACT:

The purpose of this project is to de-
velop a Route Guide application proto-
type, providing route guidance for no-
madic users. The idea is that nomadic
users interact with the Route Guide from
mobile - or desktop computers in or-
der to create, modify or delete informa-
tion stored in a User Profile. Informa-
tion stored in the User Profile is used by
the Route Guide to answer requests for
route guidance. The actual route plan-
ning leading to route guidance is imple-
mented by the use of ArcView, providing
the road network. route guidance is pro-
vided as HTML, WML or Voice depend-
ing of the platform used by the nomadic
user.

Copyright © 2000, Department of Computer Science, AAU.

Aalborg Universitet

Institutet for Elektroniske Systemer
Frederik Bajersvej 7, 9220 Aalborg Ost
Computer Science Afdelingen

Rute Guide der tilbyder
Rute Vejledning for Mobile Bruger

PROJEKT PERIODE:
1. februar - 25. maj 2001

ABSTRAKT:
PROJEKT GRUPPE: Forméalet med projektet er at udvikle
E3-213a en Rute Guide applikations prototype,

som tilbyder rute vejledning til mobile
MEDLEMMER: bruger. Ideen er at mobile bruger skal
kunne interagere med Rute Guiden fra
mobile - eller desktop computere for at
Peter Vinther oprette, slette eller modificere informa-
tion gemt i en Bruger Profil. Rute
Guiden anvender den gemte information

Henrik Olesen i Bruger Profilen til at besvare fore-
spgrgelser pa rute vejledning. Den fak-
VEJLEDER: tiske rute planlegning der resultere i

rute vejledningen er implementeret vha.
ArcView som stiller det ngdvendinge
vej-netvaerk tilradighed. rute vejled-
ning returneres som HTML, WML eller
Tale afhaengig af hvilken platform den
SIDER: 65 pageldende bruger anvender.

Nectaria Tryfona

KOPIER: 6

APPENDIX: 16

Copyright © 2000, Department of Computer Science, AAU.

1

2

3

CONTENTS

Introduction
1.1 Goal
1.2 Outline

Route Guide Application

2.1 System Architecture Analysis,
2.1.1 Client Device
212 Gateway
2.1.3 Server Platform

2.2 Route Guide Analysis
2.2.1 Route Guide Input and Output

2.3 Route Guide Design
2.3.1 Component and Interaction Diagram

2.4 Chapter Summary

User Profile Mlanagement

3.1 Idea

3.2 Functionality and Data Analysis,
3.2.1 Creation
3.2.2 Modification oo
3.23 Deletiono
3.24 Retrieval o
3.25 Storage

3.3 User Profile Design
3.3.1 Mapping Conceptual Schema to Relational Database

Schema
3.3.2 Relational Database Schema to XML Database Schema
3.4 Chapter Summary

24
26
32

CONTENTS

4 Route Planning

4.1

4.2

4.3

Road Network
4.1.1 Facilities and Geocoding
Route Planning Analysis
4.2.1 Data Requirement
4.2.2 Functional Requirement
4.2.3 Route Planning with Facilities
Chapter Summary

5 Route Guide Implementation

5.1

0.2

9.3

5.4

User Profile Management
5.1.1 The Retrieve Function
Server and Client Interface Implementation
5.2.1 Execute Create Route Guidance
Implementation of User Request and Response Management .
5.3.1 Translating XML Route Guidance to HTML/WML . .
Chapter Summary

6 Conclusion and Future Work

6.1
6.2

Conclusiono
Future Worko o
6.2.1 Extending the Service Level of the Route Guide
6.2.2 Voice Discourse
6.2.3 Moving from ArcView to Oracle

A Abbreviations

Code Example: Browser Sniffer

C Service Concept: A Philosophical View
C.1 Service Concept o

C.1.1 Musical Service: Problems

C.2 Service Concept: Conclusion

D Final XML Database Schema

E User Profile Interface: Retrieve Function

F XML Parser Servlet

33
33
33
34
35
35
37
39

40
40
40
41
41

42
43

44
44
45
45
46
46

49

50

52
92
53
54

55

57

59

CHAPTER 1

Introduction

During the 90’s the Internet have had a tremendous impact on the way we
acquire information. In the beginning the Internet was mainly used by uni-
versities and large companies to exchange or share knowledge. Nowadays the
Internet is used by many to access information about different topics. Hyper
Text Markup Language (HTML) is the cornerstone of the Internet when it
comes to providing human readable information. Technologies as Servlets,
Java, Active Server Page (ASP), Hypertext PreProcessor (PHP) etc. have
become important tools used to enrich interaction and the dynamic nature
of the Internet.

Due to the prevalence of these technologies and recent advances and de-
ployment within the area of mobile communication it is possible to develop
application for the Internet providing services for users of mobile devices.

At the moment different applications have been developed for the Inter-
net. Applications as Krak and MapQuest! provides applications that helps
planning a route. The purpose of this project is to develop a Route Guide
application prototype, providing route guidance for nomadic users.

To limit the scope of this project the next section points out the primary
interest of the project.

'Krak: http://www.krak.dk, MapQuest: http://www.mapquest.com

1.1 Goal

1.1 Goal

Goal: The goal of the project is to develop a Route Guide providing route
guidance for nomadic users.

This goal consist of the following sub goals:

e It is the task of the Route Guide to perform route planning based
upon input as start- and end location, additional addresses and services
required by the nomadic user as being a part of the route.

e The Route Guide should support the nomadic user when trying to fol-
low route. This should be done by providing continues route guidance,
informing the nomadic user to follow a route.

e The Route Guide should provide the nomadic user with persistent stor-
age of personal information enabling the Route Guide to provide cus-
tomized route guidance. Access to the persistent storage of personal
information should be provided for different platforms, allowing the
nomadic user to access it in different situations.

We believe it will enhance the usefulness of the Route Guide if the route
guidance is presented as text, voice and maps, or different combinations of
the three. Therefore, we will explore how text, voice and maps can be used
to provide services within the concept of a Route Guide.

1.2 Outline

In chapter 2 a system architecture showing the parts of the hole system is
presented. Then an analysis of the Route Guide Application is carried out,
defining three components; User Profile? Management (UPM), User Request
and Response Management (URRM) and Route Planning (RP). The analy-
sis of the Route Guide leads to the design of the Route Guide. This is done
by the help of a class diagram, showing relations between classes that are
important to the Route Guide.

In chapter 3 the UPM component introduced in chapter 2 is analyzed
in more detail. First the idea of UPM and User Profile (UP) is introduced,
leading to an analysis of the requirements such an idea impose on the UPM
and UP components. The result is a conceptual model (Entity Relational
model) of the UP being transformed into an Extensible Markup Language

?For now, thing of a user profile (UP) as being a place where personal information such
as address, user name, user id etc. are persistently stored

1.2 Outline

(XML) database schema.

The RP component is analyzed in chapter 4, where the geocoding process
is presented together with solutions of how to calculate the optimal route
(Route Planning) in ArcView when facilities/services specified by the no-
madic user is an important part of the requirements.

Finally in chapter 5 implementation topics related to the three compo-
nents described during chapter 2, 3 and 4 are presented. Chapter 5 deals
with retrieval or information from the UP, communication between URRM
and RP and transformation of internal representation of route guidance to
HTML or WML.

The report ends with a conclusion (chapter 6) on the presented work in
this report and give direction towards future work.

CHAPTER 2

Route Guide Application

During the introduction the idea of a Route Guide was introduced. This
chapter gives a more detailed perspective on the Route Guide application by
defining three components; User Profile Management (UPM), User Request
and Response Management (URRM) and Route Planning (RP). Then input
and output to the Route Guide application is introduced leading to the design
of the Route Guide. But first a system architecture showing the parts of the
whole system is presented.

2.1 System Architecture Analysis

In order to develop a Route Guide an understanding of the surrounding sys-
tem is needed, the topic of this section is to develop a system architecture
showing Route Guide interaction with central components of the overall sys-
tem.

Moving from left to right on figure 2.1 we start by explaining the Client
Device.

2.1.1 Client Device

The Client Device at figure 2.1 is used by the nomadic user! to interact with
the Route Guide running at the Server Platform.

"Nomadic user vs User: Nomadic user is a user that is expected to move from time to
time, whereas user is a more general term.

2.1 System Architecture Analysis

For client side navigation two standards and one upon coming, are available:

Hyper Text Markup Language (HTML). Some of the benefits of HTML
over Wireless Markup Language (WML) is the layout features and the
amount of support. Further more, HTML 4 supports multimedia op-
tions, scripting languages, style sheets, printing facilities, and docu-
ments that are more accessible to users with disabilities. HTML 4 also
takes great strides towards the internationalization of documents, with
the goal of making the Web truly World Wide. HTML 4 is an Stan-
dard Generalized Markup Language (SGML) application conforming
to International Standard from International Stardards Organization
(ISO) 8879[4]

The benefit of using WML is that more devices like Wireless Applica-
tion Protocol (WAP) phones support this language. WML is a markup
language based on the Extensible Markup Language (XML) and was
developed for specifying content and user interface for narrow band
devices such as cellular phones. Some of the benefit of WML is that it
is designed for small display screens with low resolution. For example,
most mobile phones can only display a few lines of text, and each line
can contain only 8-12 characters. By the use of menus the WML is spe-
cially designed for small devices like mobile phones that typically only
have numeric keypad and a few additional function specific keys[5].

Voice Extensible Markup Language (VoiceXML). VoiceXML is a Web-
based markup language for representing human-computer dialogs, just

Server Platform
Server Service Route Planner
| Server Interface | | Client Interface |
User Request Create Route
and Response Guidance
Device Gateway Management
f ‘ Database Interface
| Device Interface |

User Profile Management

| Database Interface |

I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
; |
I Road Network |
| Database |
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
i

Figure 2.1: System Architecture

2.1 System Architecture Analysis

like HTML. But while HTML assumes a graphical web browser, with
display, keyboard, and mouse, VoiceXML assumes a voice browser with
audio output (computer-synthesized and/or recorded), and audio input
(voice and/or keypad tones). VoiceXML leverages the Internet for voice
application development and delivery, greatly simplifying these difficult
tasks[9)].

As a result of the three markup languages the Route Guide should be
able to provide route guidance as HITML, WML or VoiceXML based upon
the Client Device platform. This feature can be provided by the use of XML
documents being translated into appropiate format by the use of XSL. In
this way the Route Guide is compatible with more client devices without
using a format restricted to the intersection of the formats used of the users.

Another important issue, according to our perception of a Route Guide,
is the ability to provide response as Voice, due to the fact that it is more
traffic safe to get instructions as voice, instead of reading them on a small
screen while driving.

The Client Device part of the architecture is one of the issues that we
deal with during the project and for the prototype implementation we have
chosen to use a WML emulator as Client Device.

2.1.2 Gateway

The architecture at figure 2.1 shows the Gateway between the Client Device
and the Server Platform.

The Gateway connects the wireless network with the wired network.
When the Gateway receives a Wireless Application Protocol (WAP) re-
quest it sends the request over the Internet as a HyperText transfer Protocol
(HTTP) or Secure HyperText transfer Protocol (HTTPS) request.

With the architecture shown at figure 2.1, being a base for a world wide
application it would be naturally to distribute the Gateway to the network
operator. But this also means that only the customers of that operator can
access the service. As an effect of this, co-operation agreements with more
operators might be necessary to reach all the wanted customers. When dis-
tributing the Gateway it is also the task of the operator to collect billing
information for WAP services and manage the billing of other services|6].

Regarding to the prototype implementation we have chosen not to work
with the Gateway issue due to the fact that it is a service that is provided
by others and not an area that contribute much to the goal of this project

2.1 System Architecture Analysis

(See section 1.1). Therefore the prototype implementation will not include
the Gateway.

2.1.3 Server Platform

The Server Platform provides the execution environment for User Request
and Response Management (URRM), the Route Planner (RP) and the User
Profile Management (UPM) components. New Technology (NT) Worksta-
tion 4.0 with service pack have been chosen as Server Platform, due to it

easy of use and administration and because the Nokia Activ Server runs on
NT.

Server Service The Server service which is a part of N'T allows people to
add additional server functionality to NT. We have chosen to add the Nokia
Activ Server as a service running on NT. The Nokia Activ Server is able to
host servlets that can provide dynamic content and handle interaction with
clients.

Device Interface When developing online services like a Route Guide to
be used through a web browser or a WAP terminal, it usually requires server
side programming. Different technologies are nowadays used to handle client
requests from mobile devices and provide dynamic content. The server side
has to provide a mobile device interface to receive a HT'TP request from the
Gateway. The HTTP request has to be unmarshalled and handed over for
further computation.

Technologies such as Common Gateway Interface (CGI) scripts, Active
Server Page (ASP) and Java Applets are widely used in the development
of dynamic services. Nowadays, however Java Servlets are becoming widely
used as an efficient platform and server independent technology used to pro-
vide dynamic content. The main benefits of using Java Servlets for server-
side programming are: persistence, performance and portability [3].

The Route Guide is implemented as servlets, using the servlet technol-
ogy (Servlet Application Programmer Interface (Servlet API)) as interface
between the servlets and the Gateway. Actually due to the fact the Gateway
is not included in the prototype implementation, the interface is between the
Route Guide and the WML emulator and is implementet as a servlet.

Server - and Client Interface The Server - and Client interfaces be-
tween the URRM and the RP provides functionality that allows them to
communicate with each other. In the setup of figure 2.1 the RP should be
thought of as a “server” providing functionalities as Create Route Guidance

2.1 System Architecture Analysis

(CRG) to the URRM which should be thought of as being the “client”.

The idea is to implement the URRM and UPM components from 2.2 as
servlets running on top of the Nokia Activ Server (Server Service). The RP
will be implemented by the use of ArcView, do to the ease of using data and
functionality already established in ArcView. In order to allow the URRM
to communicate with ArcView the JavaDDE interface[8| will be used to im-
plement the Server Interface. JavaDDE provides functionalities that allow
the URRM to connect and disconnect to ArcViews DDE-Server. Besides
connecting and disconnecting to the DDE-server, JavaDDE contains func-
tionalities that allows the URRM to execute commands and pass parameters
to the RP component.

Just as the Server Interface allows the URRM to communicate with Ar-
cView, the Client Interface allows ArcView to respond to requests received
from the URRM.

Route Planner Besides the Client interface described above, the RP
consist of three components; CRG, Database Interface and Road Network
Database.

Avenue? provides|7] functions that allows the programmer to access
database data in order to retrieve valuable data, needed for the creation of
route guidance. In order to create route guidance the CRG needs access to
data about roads (street, houseNr, postal code etc.). This information is
found in the Road Network Database being a part of the RP.

Input Route Guide Output

. User Profile Management .
User Profile Request User Profile

User Request and Response M anagement
Route Guidance Request e P e Route Guidance

Route Planning

Figure 2.2: Route Guide

2Script language provided by ArcView

2.2 Route Guide Analysis

10

2.2 Route Guide Analysis

In the previous section the system architecture showing the Route Guide
interaction with other parts of the whole system where presented. The fol-
lowing section is an analysis of the the Route Guide consisting of three
components (see figure 2.2) identified during the analysis of the system ar-
chitecture.

User Profile Management concerns management of personal informa-
tion in the user profile enabling the Route Guide to provide customized route
guidance. In order to do this the UPM component provides external func-
tionalities allowing users to create, modify and delete personal information.
Additional internal functionality enables retrieval and storage of the same
personal information (see figure 2.3).

User Profile Request/ User Profile/
Route Guidance Request Route Guidance

User Request and Response M anagement

Create, Modify, Delete, Retrieve and Store| 1 2 | Create Route Guidance

User Profile Management Route Planning

Figure 2.3: Service Hierarchy

User Request and Response Management provides functionality that
allows the Route Guide to handle incoming requests (Input) from users and
to answer requests by sending response back (Output). There exist a coop-
eration between the UPM and URRM components. The URRM component
handles the Input/Output of the Route Guide and use functionality provided
by UPM to access personal information (see figure 2.3, arrow labeled 1). Fur-
thermore the URRM component contains functionality allowing cooperation
with the Route Planner (see figure 2.3, arrow labeled 2).

Route Planning is based upon information the URRM have received di-
rectly from the user or personal information retrieved by the help of the
UPM. According to this information it is the task of the RP to create route
guidance (see figure 2.3, arrow labeled 2) and return this route guidance to
the URRM. When the URRM receives the route guidance it translates the
internal representation of route guidance to an external representation that
applies to the platform of the user.

2.3 Route Guide Design

11

2.2.1 Route Guide Input and Output

The tasks of the three components (UPM, URRM and RP) have been es-
tablished and it is time to turn to towards Input and Output to the Route
Guide.

User Profile Request The first input type of figure 2.2 is a User Profile
Request (UPR), this type of input refers to all requests from users regarding
creation, modification and deletion (see figure 2.4, arrow D.1, D.3, D.7 and
D.11) of personal information in the user profile.

By looking at figure 2.4 the following approaches regarding creation, mod-
ification and deletion can be found:

e Create User Profile, Start at the user side, follow arrow D.1 to
the process Initial Request (1.1). This process returns the user profile
interface (D.2), needed by the user before he can perform a creation,
modification or deletion. Then upon choosing creation of a user profile
(D.3), process 1.2 retrieves a user profile template from the user profile
storage and returns the template (D.4) to the user. Upon receiving the
template, the user enters all necessary information, which is returned
(D.5) to process 1.3. Process 1.3 creates the user profile in the user
profile storage and returns either a success or failure message (D.6) to
the user.

e Modify/Delete User Profile, when the UPR is for a modification
the approach is: D.1,1.1,D.2,D.7,1.4,D.8,D.9,1.5 and D.10. The
approach for a deletion is as follows: D.1,1.1,D.2, D.11,1.4,D.8, D.12,
1.6 and D.13.

User Profile The User Profile (UP) arrow of figure 2.2 contains the fol-
lowing data flows of figure 2.4: D.2, D.4, D.6, D.8, D.10 and D.13, indicating
different kinds of response to the user.

Route Guidance Request and Route Guidance The Route Guidance
Request arrow of figure 2.2 refer to all request from users regarding route
guidance. A similar data flow diagram exist as that of figure 2.4, by starting
at the Route Guidance Request arrow, similar processes exist to handle such
a request, leading to Route Guidance as output from the URRM component.

2.3 Route Guide Design

The design of the Route Guide is the topic of the folowing section. It is
carried out by the help of a class diagram showing relations between classes
important to the Route Guide.

2.3 Route Guide Design

12

HTTPServlet During the analysis it was found that the Route Guide
should be implemented as a servlet. Therefore the class diagram of fig-
ure 2.5 consist of the Hyper Text Transfer Protocol (HTTP) Servlet package

User Profile Request ® User Profile U
> ser

User
1

(a) Process Level 1

Dll .
User Profile Initial Request Initia
ser Profile Initi u
User € » Request : User
User Profile
1.1
\/ User Profile
b2 D.4Template
User Profile Interface
D5 .
Create Information
Create)
D3 Retrieve Create)
User Profile User Profile | Success/Failur
Template 13 D.6
12
User Profile
Modify
D.7 :
Changed User Profile
i D.9
. Ra;re‘ﬁ Modify
ser Profile .
User Profile
Delete 14 15 User
b . ' Success/Failure

D.10

User Profile

User Profile

(b) Process Level 2

Delete
User Profile

1.6

Success/Failure
D.13

Figure 2.4: User Profile Request Data Flow Diagram

2.3 Route Guide Design

(javax.servlet) from SUN Microsystems Inc. This package provides function-
ality that allows the Route Guide to accept client calls. In this case from
the nomadic user. When a servlet receives a call, two objects are created:
ServletRequest and ServletResponse, these object are used to communicate

with the client. HT'TP servlet provides classes to be sub-classed to create a

HTTP servlet suitable for a Web site. The two subclasses Input and Output
of figure 2.5 extends classes from the HT'TP servlet package and overriding
the doGet, doPost and Init functions of the HT'TPServlet class in order to

HttpServlet |

XQL engine |

13
Legend
Class
Classname
attribute Generalisation
function
1 One occurens Association
1..* Oneor more occurens
Cluster of classes (Package)
Cluster name
Aggregation
I
I
I

XML Par ser |

User Profile
| |
! Create !
Modify
s
Retrieve
Store
1.*
1
Input Coordinator ArcViewlnterface
1. 1
getParametesNames RouteFromUP DDEserver_connect
getParameter DDEserver_disconnect
Execute CRG
Output Browser Sniffer Browser Hawk |
OutPutData 1.* Userinfo
1.* Cookielnfo
1. Browserlnfo .
I
Speedinfo

XMLtoHTML

Figure 2.5: Route Guide Class Diagram

2.3 Route Guide Design

14

communicate with the client.

Input This class handles all Input from the nomadic user. The main task
of this class is to receive parameters from the client in the form of a HT'TP
request. When a HTTP request is received the Input class uses the get-
ParameterNames() and getParameter() functions to fetch parameters from
the HTTP request message. These parameters are then passed on to the
Coordinator class.

Coordinator The task of the Coordinator class is to, based upon param-
eters received from the Input class to decide weather the request is for one
of the five functions the user profile interface (UPI) class provides. In the
case of a request regarding UPM the Route Guide decides which of the five
functions provided by the UPI class to use. If the request concerns execution
of an already defined route, it is the task of the Coordinator class to fetch
route information from the user profile by using the retrieve function pro-
vided by the UPI class. This information is then handed over to the RP or
more precise to the CRG by using the ArcViewlInterface class. When the Co-
ordinator receives a planned route from the RP it provides this information
to the Output class.

User Profile Interface The UPI class provides five functions: modifica-
tion, deletion, retrieval and storing of information in the user profile and
creation of a new user profile. The UPI class uses functionality provided by
the XQL Engine package to access the UP. Each of the UPI functions are
described in greater detail later.

Dynamic Data Exchange The Dynamic Data Exchange (DDE) pack-
age® consist of classes that provides functionality enabling the Coordinator
to communicate with the RP. The most important functions provided by
this package is connect, disconnect and execute which allows a DDE client
to establish a connection to a DDE server, in our case the RP (see figure
2.1), in order to perform some actions by the use of the DDEPoke command
and finally to close the connection again by using the disconnect function.

ArcViewlnterface The ArcViewlInterface class extends the DDE package
by implementing exception handling and providing avenue scripts to activate
the CRG being a part of the RP (see figure 2.1).

Output The Output class determines the target client platform (Browser
specific testing), hence deciding weather the response to the nomadic user

3JavaDDE from Neva Object Technology Inc [8].

2.3 Route Guide Design

15

should be in the form of HTML, WML or Voice. The Output class uses
functionality provided by the BrowserSniffer class to determine the target
platform. Having decided the platform it is the task of the Output class to
select the appropriate style-sheet and transform the internal representation
of route guidance into HTML, WML or even Voice. The transformation
is done by the help of functionality provided by the XML parser package.
Furthermore, it is the task of the Output class to provide continuous route
guidance. This means that the response should be divided into smaller parts,
where each part represent e.g. one street. To accomplish this task, the
Output class should be aware of the location of the user. The idea is that
the mobile devices used by nomadic users are able to provide upon request
there GPS location to the Route Guide. It is the task of the Output class to
request the GPS location from the mobile device when providing continuous
route guidance. Research about tracking locations of mobile devices ([18]
and [19]) have already been carried out, and therefore not considered a part
of the report.

2.3.1 Component and Interaction Diagram

In section 2.3 classes of the Route Guide and the relations between them
were presented by the class diagram. In this section an Component and
Interaction diagram (see figure 2.6) is used to show the required interaction
between classes within a component and between class from different com-
ponents?, in order to provide route guideance.

At the Client Device a request is made by the user to the Uniform Re-
source Locater (URL) address of the Route Guide. The request from the
user is received by the Input class (#1) and handed over to the Coordinator
(#2), coordinating the hole process of providing route guidance.

To access the UP the Coordinator makes use of the UPI class (#3). The
UPI class provides functionality necessary to retrieve information from the
user profile (#4).

The user also has the option to request route guidance. To accomplish
this the Coordinator use the ArcViewlInterface (#5). The ArcViewlnterface
is used to establish a connection to the RP (#6). The RP contains function-
ality for route planning (CRG) (#6a) and the road network representation
(#6b) used by CRG.

When the Coordinator receives a result from the UPI or ArcViewlInter-
face the Coordinator passes the result to the Output class (#7).

*Recall that these components are UPM, URRM and RP

2.3 Route Guide Design

The Output class is responsible of the presentation of the response to the
user. The presentation depends on the type of task performed by the Route
Guide. If the needs of the user is to get information from the UP it should
be returned as readable information either as WML or HTML.

Route Guide

User Profile Management ‘

4
User Profile ~—>} User Profilelnterface

3 ‘ L egend
i
User Request and Response M anagement ‘
TR | pddmerame | Daabae
Client Device 2

- N Component nam
\ ‘ Browser sniffer Servlet ‘ ‘ Coordinator Component

Function call/
Moving data

'f_; Files

Route Planner

6 ArcView

5

Ga‘ Create Route Guidance “'—>’ ArcViewlnterface

Figure 2.6: Component and Interaction Diagram

In order to communicate with users using different browsers and text format,
the format of the current user should be detected. This is accomplish by the
BrowserSniffer (#8). The BrowserSniffer detects the platform used on the
client device. This knowledge is used by the Output class to decide the re-
sponse format (HTML, WML or Voice). In order to respond in the format
used by the user the XML document containing the information (e.g route
guidance) meant for the user should be converted. This conversion is done
by the XML parser. The input to the XML parser is the XML document
containing the response to the user and a reference to a stylesheet. The Ex-
tensible Stylesheet Language (XSL) is used to express the intention about
how the structured content should be presented, that is, how the layout of
the source content should be styled. There are two aspects of this presen-
tation process. First, constructing a result tree from the XML source tree

2.4 Chapter Summary

17

this is done by the use of Extensible Stylesheet Language Transformation
(XSLT). Second, interpreting the result tree to produce formatted results
suitable for presentation. The first aspect is called tree transformation be-
cause it transform the struktur of the document and the second is called
formatting.

If voice is used as response format it is the task of the Output class to
manage the discourse between the Route Guide and the user. By providing
suitable voice subparts of the hole route guidance and interpretation of next
commands issued by the user as indication of the need for the next voice
subpart the Output class is able to provide route guidance as voice.

2.4 Chapter Summary

First a system architecture (section 2.1) showing interaction with other parts
of the whole system was presented, leading to an analysis (section 2.2) of
the Route Guide application by defining three components. Then Input and
Output to the Route Guide application was analyzed leading to the design
(section 2.3) of the Route Guide. During the design a class diagram were
constructed and at the end of the design a Component and Interaction dia-
gram combining the components of figure 2.2 with the class diagram of 2.5
was constructed and interaction between classes was described all the way
from a request to a response.

The following chapters will concentrate on the UPM and RP components
introduced in this chapter. Chapter 3 provides a detail analysis of the UPM
component and chapter 4 provides an analysis of the RP component.

CHAPTER 3

User Profile Management

The Route Guide and the system architecture was presented in chapter (2).
Three components where found: RP, URRM and UPM. The last one being
the topic of this chapter together with an extension of the user profile (UP)
concept from the previous chapter. First the idea behind UPM and UP is
presented, leading to analysis of required functionality and data foundation.
The result is a conceptual model of the UP being transformed into an XML
database schema in the last section of the chapter.

3.1 Idea

Most Route Guides of today (e.g. www.krak.dk and www.mapquest.com
etc.) provides standard route guides telling the nomadic user how to get
from location A to location B, allowing the nomadic user to provide infor-
mation like preferred highways, intersections etc. when the route is created.
Afterwards the nomadic user can choose between fastest -, shortest - and
avoid highway routes.

Our idea is that the above mentioned information that enables the Route
Guide to provide the nomadic user with route guidance should have some
supplementary information that allows the guidance to be customized ac-
cording to the requirements of the nomadic user. On flaw with most route
guides is their inability to remember information provided by the nomadic
user, resulting in a tedious repetitions of information over and over. The
combination of providing persistent storage and access from different plat-
forms could be used to plan a route from the desktop at home and benefit
from the larger screen and keyboard of the desktop computer. Later the user
can access the route from a mobile computer.

18

3.2 Functionality and Data Analysis

19

We propose supplementary functionality (This is UPM) to the ordinary
Route Guide that enables storing of personal information (here after referred
to as a wuser profile) The following is an analysis of needed functionality,
organization and content of such a UP.

3.2 Functionality and Data Analysis

In order to handle customized route guidance the Route Guide needs to be
extended with functionality for modification, deletion, retrieval and storing
of information and creation of UPs that is going to be used by the Route
Guide when it creates new routes for nomadic users.

Creation, modification and deletion directly involves nomadic user inter-
action, these will be categorized as external, the last two will be categorized
as internal due to the fact that they do not involve nomadic user interaction.

¢ External

1. Creation: The Route Guide should provide an interface that al-
lows first time nomadic users to create a new UP.

2. Modification: Functionality that allows the nomadic user to add
or change the content of the UP.

3. Deletion: Provides an interface allowing the nomadic user to ei-
ther delete the hole UP or parts of it.

e Internal

1. Retrieval: Functionality is needed that allows the Route Guide
to retrieve information stored in the UP

2. Storage: Functionality that provides stable storage of UPs.

Before a more detailed analysis of the required functionality, lets look at
the content and organization of the UP. By using the Entity-Relationship
(ER) model from [11] a conceptual schema for the user profile is developed.
From figure 3.1 it can be seen that a UP consist of five entities; Route,
RouteType, NomadicUser, RoutePoint and Service. Lets look at each of the
entities in more detail.

Route The UP allows the nomadic user to store routes for later use. A
route is uniquely identified by the RoutelD and has an associated name called
RouteName allowing the nomadic user to give names like "Easter Holiday”
to the route.

3.2 Functionality and Data Analysis

RouteType The RouteType entity is used to hold information about the
route type, that a nomadic user have specified for a specific Route. A Route-
Type is uniquely identified by the RouteTypeld and the RTname attribute
having one of the following values;

Route Type = {Shortest, Fastest, Scenic Drive}

The cardinality between RouteType and Route is one-to-many, because one
RouteType may belong to many Routes and one Route can only have one
RouteType.

(RouteTypeld) (RTI\‘lame] Jﬂm—

1 N :
RouteType Route Nomadic
N M User

Service

RoutePoint

(jmm:ﬂL] (ServiceName]

RoutePointlD_ (Address)

[HouseNr] (Street] (City] (PostOde]

Figure 3.1: User Profile E-R diagram

NomadicUser FEach nomadic user is uniquely identified by the use of the
NomadicUser entity, consisting of a Userld and a UserName. By having this
entity the concept of a "User Profile” actually becomes a set of « nomadic
users having a set of [routes stored. Because one Route can belong to
many NomadicUsers and because a NomadicUser can have many Routes
defined, the cardinality between Route and NomadicUser is many-to-many.
Notice that the NomadicUser entity easily could have several other attributes
describing the nomadic user. Attributes that could be used by the Route
Guide to provide customized route guidance. For the sake of simplicity we
will settle with UserID and UserName.

RoutePoint By supplying the composite attribute Address consisting of
HouseNr, Street, City and PostalCode the nomadic user is allowed to specify
RoutePoints that the Route should consist of. This means that when the
Route Guide (or more precise the RP) is calculating the route, the route

3.2 Functionality and Data Analysis

21

should consist of RoutePoints the nomadic user have specified as being a
part of the route. Each RoutePoint is uniquely identified by a RoutePointID.
The cardinality between Route and RoutePoint is many-to-many with the
additional constraint that the relationship between the two entities must
contain at least two RoutePoints. This means that one Route have two of
more RoutePoints' and one RoutePoint can belong to many Routes.

Service Finally the nomadic user can specify Services, e.g. Gas Station,
that should be available on the Route. Each Service is uniquely identified
by the ServiceID and has an associated attribute ServiceName with values
like;

Service Name = {Gas Station, Gas Station (Repair Shop)
Gas Station (Repair Shop, Food)}

Because one Route can have relations to many Services that should be a
part of the Route and because Service (e.g. Gas station) can belong to
many Routes, the cardinality between Service and Route is many-to-many.

Figure 3.1 shows each of the entities of the UP and relations between
these entities. Lets return to the needed functionality and describe each of
them in more detail.

3.2.1 Creation

This functionality should provide the nomadic user with an easy to use option
menu that enables the nomadic user to create new routes, by specifying
RouteName and RouteType. The nomadic user is also allowed to enter «
sets of { HouseNr, Street, City, PostalCode} indicating RoutePoints that
must be a part of the new Route. The option menu also allows the nomadic
user to select which Services should be part of the new Route. Please notice
that the amount of Services is determined by the provider of the Route
Guide. This is due to the fact, that allowing the nomadic user to enter e.g.
his own Service could result in Services that does not exist or can not be
associated with a geographical location on a map. Furthermore, being able
to provide additional information about services chosen by the nomadic user
depends on this information being available to the service provider. One can
not provide information on repair discounts given by a Gas Station if this
information is not available online (see appendix C for a scenario describing
this problem).

'"Having only one RoutePoint would not make sense, because one can not create a route
from point A to point B, when only point A exist.

3.2 Functionality and Data Analysis

22

3.2.2 Modification

By using the modification functionality the nomadic user is allowed to change
settings for each of his predefined routes. E.g change RouteName "Easter
Holiday” to ”Spring Holiday” or change Service from Gas Station to Gas
Station with Repair Shop.

3.2.3 Deletion

This functionality allows the nomadic user to either delete a route or delete
one or more services associated with a route. Notice that when a route is
deleted all associated RoutePoints and Services are also deleted. On the
other hand deletion of e.g. one Service does not infect the Route in other
ways than the Service is no longer a part of the route.

3.2.4 Retrieval

When the Route Guide is asked to provide route guidance to a nomadic
user, one of two things can happen; 1) The nomadic user have requested
an already defined route stored in the UP, or 2) The nomadic user have
requested a new route by providing start - and end location.

Case 1 The Route Guide (UPM and URRM in cooperation) retrieves all
the route information (RouteName, RoutePoints, ServiceName etc.), from
the UP and by the help of the RP, the Route Guide creates the route and
returns route guidance to the nomadic user.

Case 2 The URRM passes the start - and end location to the RP, which
returns route guidance that is returned to the nomadic user.

3.2.5 Storage

The last functionality needed in order to provide customized route guidance
is storage of the UP. This functionality should provide stable storage and
easy retrieval of UPs created by a nomadic user.

We propose to use an Extensible Markup Language (XML) database for
storage of UPs. Storing UPs in an XML database makes it easy to translate
the data content by the use of Extensible Style Language (XSL)/Extensible

Style Language Transformation (XSLT) to either WML, HTML or VoiceXML.

Furthermore XML databases supports structured querying by the help of Ex-
tensible Query Language (XQL), allowing retrieval of information stored in
the database. If it is required that the UP should be able to follow a nomadic
user, e.g. move to another location, then the use of XQL against the XML

3.3 User Profile Design

23

database can based upon e.g. user id create a new XML document contain-
ing all information associated to the user id. The resulting XML document
can then be moved to a new location?.

Surely the same features as mentioned above could be accomplished by
the use of an ordinary relational database like Oracle, Dbase, Sybase etc.
One drawback is that the internal representation of data in these database
either have to be 1) converted/translated to XML or 2) extracted in other
ways to the target platform. Case 1: data stored in the database have to
be translated to XML in order to gain the same benefits as with the XML
database. Case 2, e.g. Hypertext Preprocessor (PHP)3 or Active Server
Page (ASP) could be used as part of HTML pages in order to display the
content of a UP stored in one of these databases. But then, what about
client devices only supporting WML?. Of course these tasks can be accom-
plished as mentioned or by other means, but the important message is, that
these functionalities are already provided by the XML database.

Another drawback is the size of these databases compared to an XML
database which in reality is an ordinary text file containing data and meta-
data (Document Type Definition, (DTD)).

Furthermore, when using an XML document as the database the DTD can be
used to exchange data with other applications. Because the DTD works as a
grammar for the XML document describing document content and structure.

To conclude, it is found that an XML database fulfills the requirements;
it is small, provides easy retrieval of data and most important, by storing
data as XML they can easily by transformed to WML, HTML or VoiceXML.

3.3 User Profile Design

In section 3.2 the ER model was used to develop a conceptual model of the
user profile. In this section the ER model is transformed to an XML database
schema by going through three steps: 1) Mapping the Conceptual Schema to
a Relational Database Schema, 2) Normalization of the Relational Database
Schema and 3) Transformation of the Relational Database Schema to a XML
Database Schema.

2This feature could for instance be used to replicate the UP to a client device for off-line
browsing or modification.

3PHP is an HTML-embedded scripting language. Much of its syntax is borrowed from
C, Java and Perl with a couple of unique PHP-specific features thrown in. The goal of
the language is to allow web developers to write dynamically generated pages quickly.

3.3 User Profile Design

24

3.3.1 Mapping Conceptual Schema to Relational Database
Schema

By following seven steps from [11] a relational database schema is derived
from the ER model by using ER-to-Relational Mapping.

Step 3.3.1 For each regular entity type E in the conceptual schema (ER-
model), create a relation R that includes all the simple attributes of E. Include
only the simple component attributes of a composite attribute. Choose one
of the key attributes of E as primary key.

From the ER-model five relations; RouteType, Route, NomadicUser, Ser-
vice and RoutePoint, is created (See figure 3.2) to correspond to the regu-
lar entity types RouteType, Route, NomadicUser, Service and RoutePoint.
RouteType ID, RoutelD, UserID, ServicelD and RoutePointID are choose as
primary keys. Notice that the composite attribute Address becomes Street,
HouseNr, City and PostalCode in the RoutePoint relation.

RouteType Route
RouteTypel D RTName RoutelD RouteName
NomadicUser Service
UserlD UserName ServicelD ServiceName
RoutePoint
RoutePointID Street HouseNr City PostalCode

Figure 3.2: R relations with primary key and simple attributes

Step 3.3.2 For each weak entity type W in the conceptual schema with
owner entity type E, create a relation R, and include all simple attributes
of W as attributes of R. In addition, include as foreign key attributes of R
the primary key attribute(s) of the relation(s) that correspond to the owner

entity type(s)

No additional relations R are created from this step, due to the fact that
the conceptual schema (ER model) does not contain weak entity types W.

Step 3.3.3 For each binary one-to-one relationship type R in the ER schema,
wdentify . ..

As with step 3.3.2 there does not exist any binary one-to-one relationship
type R, hence step 3.3.3 does not result in any additions to the five relations
of figure 3.2

3.3 User Profile Design

25

Step 3.3.4 For each reqular binary one-to-many relationship type R, iden-
tify the relationship S that represents the participating entity type at the
N — side of the relationship type. Include as foreign key in S the primary
key of the relation T that represent the other entity type participating in
R. Include any simple attributes of the one-to-many relationship type as
attributes of S.

Between RouteType and Route a binary one-to-many relationship exist,
therefore, according to step 3.3.4, the primary key RouteTypelD of entity
RouteType is included as foreign key at the N — side of the relationship
(Route) together with any simple attributes of the one-to-many relationship.
The new relational database schema resulting from step 3.3.4 can be seen at
figure 3.3.

RouteType Route
RouteTypel D RTName RoutelD RouteName RouteTypel D
NomadicUser Service
UserlD UserName ServicelD ServiceName
RoutePoint
RoutePointID Street HouseNr City PostalCode

Figure 3.3: R relations after step 3.3.1 ...3.3.4

Step 3.3.5 For each binary many-to-many relationship type R, create a new
relation S to represent R. Include as foreign key attributes in S the primary
keys of the relations that represent the participating entity types; their com-
bination will form the primary key of S. Also include any simple attributes
if the many-to-many relationship type as attributes of S.

Three binary many-to-many relationships exist on the ER model. These
three relationships are mapped to three new relations; RouteHasService, No-
madicUserOwnRoute and RouteConsistOfRoutePoint, shown at figure 3.4.

Step 3.3.6 For each multi-valued attribute S, create a new relation R that

As figure 3.1 does not include any multi-valued attributes this step does
not add any thing to the relational database schema and it remains as shown
at figure 3.4.

3.3 User Profile Design

26

Step 3.3.7 For each n-ary relationship type R, n > 2, create a new relation
S to represent . ..

Neither does figure 3.1 include any n-ary relationships, so figure 3.4 be-
comes the final relational database schema, after the seven steps from [11]
have been used to map the conceptual schema.

By the use of normalization [11]| the quality of the relational database
schema is measured and improved by removing composite attributes, check-
ing functional dependency etc. And finally the relations are on Boyce-Codd
normal form.

3.3.2 Relational Database Schema to XML Database Schema

We have arrived at the final step, the transformation of the relational database
schema to a XML database schema. The transformation will be based upon
eleven rules from [12][13].

Rule 3.3.1 Choose the Data to Include. Based on the business requirement
the XML database document will be fulfilling, decide which tables and columns
from our relational database will need to be included in our documents.

Well, all information from the relations will be needed in order to create
a Route Guide providing customized route guidance, therefore the whole
relational database schema is included.

Rule 3.3.2 Create a Root Element. Create a root element for the document.
Add the root element to our DTD*, and declare any attributes of that element

“Think of the DTD as the XML database schema, data describing data (meta-data)

RouteType Route
RouteTypel D RTName RoutelD RouteName RouteTypel D
NomadicUser Service
UserlD UserName ServicelD ServiceName
RoutePoint
RoutePointID Street HouseNr ‘ City ‘ PostalCode ‘
NomadicUser OwnRoute RouteConsistOfRoutePoint RouteHasService
UserlD RoutelD RoutelD RoutePoint! D RoutelD ServicelD

Figure 3.4: Many-to-many relationships as new Relations

3.3 User Profile Design

27

that are required to hold additional semantic information. Root element’s
names should describe their content.

To represent the relational database schema (see figure 3.4), a root ele-
ment called <UserProfile> is created, holding the other elements that will
be created:

<!ELEMENT UserProfile EMPTY >
The root element does not have an associated attribute list.

Rule 3.3.3 Model the Content Tables. Create an element in the DTD for
each content table® we have chosen to model. Declare these elements EMPTY
for now.

All relations from figure 3.4 are content tables according to rule 3.3.3,
and are add as new elements to the DTD.

<!ELEMENT UserProfile EMPTY >

<!ELEMENT RouteType EMPTY >

<!ELEMENT Route EMPTY >

<!ELEMENT NomadicUser EMPTY >
<!ELEMENT Service EMPTY >

<!ELEMENT RoutePoint EMPTY >

<!ELEMENT RouteHasService EMPTY >
<!ELEMENT NomadicUserOwnRoute EMPTY >
<!ELEMENT RouteConsistOfRoutePoint EMPTY >

Rule 3.3.4 Modeling Non-foreign Key Columns. Create an attribute for
each column we have chosen to include in our XML document (except foreign
key columns). These attributes should appear in the IATTLIST declaration of
the element corresponding to the table in which they appear. Declare each of
these attributes as CDATA, and declare it as #IMPLIED or #REQUIRED
depending on whether the original column allowed nulls or not.

Adding all attributes that are not foreign keys, leads to the following
DTD. Notice that there are not any attributes associated with the root
element <UserProfile>.

<!ELEMENT UserProfile EMPTY >
<!ATTLIST UserProfile>
<!ELEMENT RouteType EMPTY >
<IATTLIST RouteType
RouteTypelD CDATA #REQUIRED
RTName CDATA #REQUIRED >
<!ELEMENT Route EMPTY >
<!ATTLIST Route

RouteID CDATA #REQUIRED
RouteName CDATA #REQUIRED>
<!ELEMENT NomadicUser EMPTY >
<!ATTLIST NomadicUser

UserID CDATA #REQUIRED
UserName CDATA #REQUIRED>
<!ELEMENT Service EMPTY >
<!ATTLIST Service

ServiceID CDATA #REQUIRED
ServiceName CDATA #REQUIRED >
<!ELEMENT RoutePoint EMPTY >
<!ATTLIST RoutePoint
RoutePointID CDATA #REQUIRED

®According to [12] content tables are tables that simply contain a set of records (e.g
all customer addresses for a certain company), notice that relating tables like Nomadi-
cUserOwnRoute on figure 3.4 is treaded as content tables.

3.3 User Profile Design

28

Street CDATA #REQUIRED

HouseNr CDATA #REQUIRED

City CDATA #REQUIRED

PostalCode CDATA #REQUIRED >
<!ELEMENT RouteHasService EMPTY >
<!ATTLIST RouteHasService

RouteID CDATA #REQUIRED

ServiceID CDATA #REQUIRED >
<!ELEMENT NomadicUserOwnRoute EMPTY >
<!ATTLIST NomadicUserOwnRoute

UserID CDATA #REQUIRED

RoutelD CDATA #REQUIRED>

<!ELEMENT RouteConsistOfRoutePoint EMPTY >
<!ATTLIST RouteConsistOfRoutePoint
RouteID CDATA #REQUIRED

RoutePointID CDATA #REQUIRED>

Rule 3.3.5 Add ID Attributes to the Elements. Add an ID attribute to each
of the elements we have created in our XML structure (with the exception of
the root element). Use the element name followed by ID for the name of the

new attribute, watching as always for name collisions. Declare the attribute
as type 1D, and as #REQUIRED

Using rule 3.3.5 and remembering not to create an ID for the root element
<UserProfile>, we change RouteTypelD, RoutelD, UserID, ServicelD and
RoutePointID defined as type CDATA (according to rule 3.3.4) to type ID,
instead of adding yet another ID attribute for each element. We leave the
primary keys of RouteHasService, NomadicUserOwnRoute and RouteCon-
sistOfRoutePoint as they are for now, because these are handled as foreign
keys later. We add new ID attributes to each of these three elements.

<!ELEMENT UserProfile EMPTY >
<!ATTLIST UserProfile>

<!ELEMENT RouteType EMPTY >
<!ATTLIST RouteType

RouteTypelD ID #REQUIRED

RTname CDATA #REQUIRED >
<!ELEMENT Route EMPTY >
<!ATTLIST Route

RouteID ID #REQUIRED

RouteName CDATA #REQUIRED >
<!ELEMENT NomadicUser EMPTY >
<!ATTLIST NomadicUser

UserID ID #REQUIRED

UserName CDATA #REQUIRED>
<!ELEMENT Service EMPTY >
<!ATTLIST Service

ServiceID ID #REQUIRED

ServiceName CDATA #REQUIRED >
<!ELEMENT RoutePoint EMPTY >
<!ATTLIST RoutePoint

RoutePointID ID #REQUIRED

Street CDATA #REQUIRED

HouseNr CDATA #REQUIRED

City CDATA #REQUIRED

PostalCode CDATA #REQUIRED>
<!ELEMENT RouteHasService EMPTY >
<!ATTLIST RouteHasService
RouteHasServicelD ID #REQUIRED
RouteID CDATA #REQUIRED
ServiceID CDATA #REQUIRED >
<!ELEMENT NomadicUserOwnRoute EMPTY >
<!ATTLIST NomadicUserOwnRoute
NomadicUserOwnRouteID ID #REQUIRED
UserID CDATA #REQUIRED

RouteIlD CDATA #REQUIRED>
<!ELEMENT RouteConsistOfRoutePoint EMPTY >
<!ATTLIST RouteConsistOfRoutePoint

3.3 User Profile Design

29

RouteConsistOfRoutePointID ID #REQUIRED
RouteIlD CDATA #REQUIRED
RoutePointID CDATA #REQUIRED>

Rule 3.3.6 Representing Lookup Tables. For each foreign key that we have
chosen to include in our XML structures that references a lookup table:

e Create an attribute on the element representing the table in which the
foreign key is found.

e (Glive the attribute the same name as the table referenced by the for-
eign key, and make it #REQUIRED if the foreign key does not allow
NULLS or #IMPLIED otherwise.

e Make the attribute of the enumerated list type. The allowable values
should be some human-readable form of the description column for all
rows in the lookup table.

When using 3.3.3 it was found that all tables in the User Profile are

content tables, and therefore rule 3.3.6 does not contribute any thing to the
DTD.

Rule 3.3.7 Adding Element Content to Root elements. Add o child element
to the allowable content of the root element for each table that models the
type of information we want to represent in our document.

As a result of rule 3.3.1 it was concluded that the whole relational
database schema should be included, therefore the content model for the
root element <UserProfile> consist of all the elements created by the use of
rule 3.3.3. The DTD is extended as follows:

<!ELEMENT UserProfile (RouteType*, Route*, NomadicUser*, Service*,
RoutePoint*, RouteHasService*, NomadicUserOwnRoute*,

RouteConsistOfRoutePoint*) >
<!ATTLIST UserProfile>

With figure 3.4 eight relations where identified. Because of the addition
of the relations: NomadicUserOwnRoute, RouteConsistOfRoutePoint and
RouteHasService as modeling many-to-many relationships from the initial
conceptual model of figure 3.1. The result is eight relations having only
one-to-many or many-to-one relationships, see figure 3.5.

As an example, look at the NomadicUser relation of figure 3.5, this rela-
tion has a one-to-many relationship to NomadicUserOwnRoute, which has a
many-to-one relationship to Route. This is how the many-to-many relation-
ships of figure 3.1 is modeled [17]|. By looking at figure 3.5 arrows can be
seen showing the navigation direction of relationships. These navigation di-
rections have to be established because they determine where the ID-IDREF
or parent-child relationships in rule 3.3.8 and 3.3.9 should be. For example,
in this case it is much more likely to navigate from NomadicUser to Route
when searching/querying for information, than the other way around.

3.3 User Profile Design

30

Rule 3.3.8 Adding Relationships through Containment. For each relation-
ship we have defined, if the relationship is one-to-one or one-to-many in the
direction 1t is being navigated, and no other relationship leads to the child
within the selected subset, then add the child element as element content of
the parent element with the appropriate cardinality.

No one-to-one relationships exist at figure 3.5, but the following one-to-
many relationships exist; NomadicUser-to-NomadicUserOwnRoute, Route-
to-RouteHasService and Route-to-RouteConsistOfRoutePoint. This means
that the many-side of these relationships are added as child elements of the
parent elements (one-side of the relationships):

<!ELEMENT Route (RouteHasService*, RouteConsistOfRoutePoint*)>
<!ATTLIST Route

RouteID ID #REQUIRED

RouteName CDATA #REQUIRED>

<!ELEMENT NomadicUser (NomadicUserOwnRoute*)>

<!ATTLIST NomadicUser

UserID ID #REQUIRED

UserName CDATA #REQUIRED>

Rule 3.3.9 Adding Relationships using IDREF/IDREFS. Identify each re-
lationship that is many-to-one in the direction we have defined it, or whose
child is the child in more than one relationship we have defined. For each of
these relationships, add an IDREF or IDREFS attribute to the element on
the parent side of the relationship, which points to the ID of the element on
the child side of the relationship.

At figure 3.5 there exist the following many-to-one relationships:
NomadicUserOwnRoute-to-Route, RouteHasService-to-Service, Route-to-
RouteType and RouteConsistOfRoutePoint-to-RoutePoint. Therefore we

Route Type RouteHasService Service
Route Type ID RT Name Route ID Service ID Service ID Service Name
Route NomadicUser OwnRoute Nomadic User
Route ID Route Name Route Type ID User ID Route ID User ID User Name
. roelr -— -— o=
RouteConsistOfRoutePoint ‘
Route ID Route Point ID Navigation Direction
% One-to-Many/Many-to-one
Route Point ‘
Route Point ID Street HouseNr City Postal Code

Figure 3.5: Relationships between Relations

3.3 User Profile Design

31

add an IDREF attribute to the parent element (the many-side of the re-
lationship) which points to the ID of the child element (the one-side of the
relationship):

<!ELEMENT Route (RouteHasService*, RouteConsistOfRoutePoint*)>
<!ATTLIST Route

RoutelD ID #REQUIRED

RouteName CDATA #REQUIRED

RouteTypelDREF IDREF #REQUIRED>

<!ELEMENT RouteHasService EMPTY >
<!ATTLIST RouteHasService
RouteHasServicelD ID #REQUIRED

RoutelD CDATA #REQUIRED

ServicelD CDATA #REQUIRED

ServicelDREF IDREF #REQUIRED >
<!ELEMENT NomadicUserOwnRoute EMPTY >
<!ATTLIST NomadicUserOwnRoute
NomadicUserOwnRoutelID ID #REQUIRED
UserID CDATA #REQUIRED

RouteID CDATA #REQUIRED

RouteIDREF IDREF #REQUIRED>
<!ELEMENT RouteConsistOfRoutePoint EMPTY >
<!ATTLIST RouteConsistOfRoutePoint
RouteConsistOfRoutePointID ID #REQUIRED
RoutelD CDATA #REQUIRED

RoutePointID CDATA #REQUIRED
RoutePointIDREF IDREF #REQUIRED >

Rule 3.3.10 Add Missing Elements. For any element that is only pointed to
in the structure created so far, add that element as allowable element content
of the root element. Set the cardinality suffix of the element being added to
¥

In rule 3.3.7 (Adding Element Content to Root elements) all relations
where add to the root element as allowable element content of the root
element <User Profile>>, therefore if there existed elements that where only
pointed to in the structure (see rule 3.3.10), they would already have been
add as allowable element content of the root element. Rule 3.3.10 therefore
does not add anything to the DTD.

Rule 3.3.11 Remove Unwanted ID Attributes. Remowve ID attributes that
are not referenced by IDREF or IDREFS attributes in the XML structures.

On review, the UserID, RouteHasServicelD, NomadicUserOwnRoutelD
and RouteConsistOfRoutePoint attributes are not referenced by IDREF or
IDREFS attributes, all are removed except UserlD, which is going to be used
to uniquely identify each nomadic user.

The final XML database schema (DTD) can be seen in appendix D.

3.4 Chapter Summary

32

3.4 Chapter Summary

First the idea behind UPM and UP were presented, leading to analysis of
required functionality and data foundation. The result was a conceptual
model (ER model) of the UP being transformed into an XML database
schema (DTD) in the last section of this chapter. The five functions create,
modify, delete, retrieve and store needed to provide UPM were also identified.

In chapter 4 the RP component is analyzed, providing insight into im-
portant topics of RP requirements.

CHAPTER 4

Route Planning

In chapter 2 and 3 the UPM and URRM components were analyzed. In this
chapter the last component (Route Planning (RP)) provided by the Route
Guide is analyzed.

First the Road Network used by the RP is presented together with the
idea behind the geocoding process. This is continued with the analysis of
the RP.

4.1 Road Network

In order for the RP to plan a route it should have access to information rep-
resenting the road network. In this project the road network is represented
by an ArcView theme, in this way ArcView is used as a database containing
the road network.

4.1.1 Facilities and Geocoding

Features' can be related to geographical locations by their address. This is

done by the help of geocoding [14], which means joining a table with features
with a table representing street data (Road Network). The joining attribute
of both tables are address (see figure 4.1). By performing the geocoding pro-
cess features becomes facilities? that can be displayed on a view. Becoming
a facility means that normal avenue functions as FindPath() and FindClos-
estFacility() can be used to perform route planning.

!Examples of features could be: Hospital, Gas Station, Harbour and Train Station etc.
2The service entity from figure 3.1 is an example of a facility (e.g. Gas Station) that
needs to be represented as a facility

33

4.2 Route Planning Analysis

34

During the geocoding process, ArcView creates a geocoded theme in the
form of an ArcView shapefile (see figure 4.1). This shapefile is used to store
the cells of each record in the feature table. Some of the cells holds the XY
coordinates of the successfully matched records. These XY coordinates are
the geographical location of the facility.

Based on the shapefile, from the geocoding process, it is possible to see
roads and facilities on the same view. Views that can be exported and sent
to the nomadic user as maps showing a route.

During the geocoding process ArcView also creates files like e.g. <name>.

idx (see figure 4.1), these are not meant to be human readable. The
purpose of these files are for internal use by ArcView to maintain geographic
relations between items like roads and facilities.

ServicelD | ServiceNam Street HosueNR City PostalCode. ID Street HosueNR City PostalCode.

\/\/

Join Attributes used
N\e Geocoding PrOV

Shapefile Indexfile

(eg. <featurename>.shp) (eg. <featurename>.icx)

Figure 4.1: Illustration of the Geocoding Process

4.2 Route Planning Analysis

When developing the RP different requirement should be realized to accom-
plish the needs of the user. The simplest need to accomplish is to plan a
route from point A to B. In the case where ArcView is used to host the road
network the route planning of a route from point A to B is done by the use
of a function called FindPath.

A requirement from the user regarding route planning is the need of a
route from point A to B that pass a particular facility. In this case valid

4.2 Route Planning Analysis

35

facilities are all addresses in an ArcView theme. This task can also be ac-
complished by the FindPath function in ArcView by specifying a point-list3
of addresses the route should pass.

This solution has the drawback that the nomadic user has to know the
addresses of facilities. Therefore the RP should provide functionality allow-
ing the nomadic user to specify facility names (E.g Gas Station) as well as
the street address of the facility. To accomplish the use of facility names as
an option instead of addresses additional data requirement and functional
requirement should be considered. When using the facility name instead of
the street address of the facility it is the task of the Route Guide to find the
location of the facility. The idea is to find the facility with the location that
gives the optimal route.

4.2.1 Data Requirement

When using facility names instead of addresses the RP need data about the
location of facilities. These data are included in the ArcView database by
the following steps:

e Make e.g. a file containing facility name, Street, HouseNr, City and
Postal Code etc., in dbase format (.dbf).

e The addresses of the facility is then geocoded by the help of the table
containing street addresses (Road Network). The geocoding process
joins facilities to street addresses, by using the addresses of both tables
as join attribute (see figure 4.1).

This process of making a .dbf file and geocode it with the street addresses
makes it possible to find the address of a facility by the use of facility name.
Furthermore the geocoding process makes it possible for the FindPath func-
tion to locate a facility on the view. When the street address is known the
route can be planned as before from point A to B or A to B through C,
where C is a facility. But now the nomadic user can specify the facility
name instead of the street address of the facility. By specifying a service* in
the User Profile (see chapter 3) the nomadic user can specify a service that
should be a part of a route.

4.2.2 Functional Requirement

In this section, solutions to the task of route planning is presented. The
solutions shows issues relevant to route planning meant for use within the

3 A point-list is an ordinary list, with the exception that each element is a geographical
point on a map
“Service name in UP equals facility name in ArcView

4.2 Route Planning Analysis

36

Route Guide prototype. In the case of commercial products this algorithm
should be review for further enhancement, e.g. efficiency.

Consider a Route Guidance Request (see figure 2.2) that specifies the
needs of a route from point A to B through C'. Where C' is a facility name.

The following solution to the task above is presented where only one
facility name (e.g Gas Station) is given. At the end of the section an exten-
sion will be made to the solution that allows an unlimited number of facility
names (e.g Gas Station, Hospital, Habour and Train Station) to be specified.

If the facility name equals Gas Station, the task of the RP is to make one
Gas Station a part of the Route from A to B that gives the optimal route.
To solve this task some options are available:

e Option One: Plan «a routes from location A to B using one facility
each time. For each route calculate travel distance, pick the route with
the lowest cost (see figure 4.2). This option will find the optimal route
but the drawback is extensive computation if many facilities exist.
Another drawback is computation power used on routes as Route one
of figure 4.2, a route where facility D leads to an route where the first
part from A to D goes in the wrong direction®, resulting in a route
that should not be a part of the set of a routes calculated because
it from the start does not have any change of becoming the optimal
route. Somehow it should be possible to limit the area of facilities to
an area with facilities only leading to routes that moves in the right
direction, e.g. towards B.

e Option Two: Limit the area of facilities to those that result in routes
that moves towards the end location B. The problem of option two is
to determine the shape and size of such an area, without leading to an
area with no facilities.

SWrong direction means a direction resulting in a route moving away from B, instead
of towards B on figure 4.2

4.2 Route Planning Analysis 37

4.2.3 Route Planning with Facilities

A solution that combines the effectiveness and efficiency of option one and
two to find the optimal route that goes trough one of more facilities is shown
at figure 4.3

D

30

11 13
Route1 (A,D,B) =35
Route 2 (A,C,B) = 15
Route 3 (A\E,B) =24

Figure 4.2: Option 1; « routes are calculated

Fx

Figure 4.3: Optimal route with facilities

4.2 Route Planning Analysis

38

The idea shown at figure 4.3 is as follows:

Algorithm 4.2.1

1. Find the optimal route from A to B.

2. Place z facility points (P = {p1,p2...,pz}) on the optimal
route from A to B with equal distance.

3. Locate the f closest facilities from each facility point p,
where f C F (all facilities) and F = {f1,fa..., fz}.

4. Determine the cost from A to B through each facility f,.

5. Choose the facility f, that gives the optimal route.

The first step of algorithm 4.2.1 is to find the optimal route from point
A to B. This is done by the use of the FindPath function provided by the
avenue script language in ArcView. At figure 4.3 the optimal route from A
to B is represented by the dashed line.

In the second step of algorithm 4.2.1, P facility points®. are placed on
the optimal route from A to B with equal distance. The facility points are
temporary marks used to spread the search of facilities along the optimal
route. In this way the search for the closest facilities are limited to the area
(Option two) between A and B and close to the optimal route.

The third step is to find the f closest facilities to each facility point p for
that purpose the FindClosestFacility function in avenue is used.

If the route should be planned to pass more than one type of facility, f
facilities should be found for each kind of facility.

In the fourth step, routes from A to B are planned through all f facilities
from each facility point p and the costs are determined. This means that
f * p routes have to be planned.

If the route should pass more than one type of facility, routes with com-
binations of the different types of facilities should be planned. Each route
with one of each facility. In this case the number of routes to plan are:
(F + P)T where T is the number of different facility types. As a consequence
of this, the number of facilities for each facility point and the number of
facility point itself should be kept at a minimum.

6They are called facility points because they are going to be points from where facilities
are located

4.3 Chapter Summary

39

In the fifth step the planned routes are compared and the optimal one is
selected as the optimal route from A to B passing the facility.

The optimal number of facility points P and facilities F' depends on the
road environment. Because the road environment change depending on the
place it is hard to choose optimal number of facility points P and facilities F'.

A modification to the described solution would be to determine the
amount of facility points P based upon the length of the optimal route
planned in the first step. For instance one facility point for each 10 km.

As long as the purpose of this project is to develop a prototype of a Route
Guide it will be out of scoop to determine the optimal numbers of facility
points P and facilities F'.

One might argue that if this development was not based on ArcView
the RP should be designed different. But we think that this solution still
is worth considering. Because it would be natural to build a function like
the findShortestRoute in ArcView to reach a higher abstraction and base
further development on such a function (eg. specification of facility name
instead of address).

4.3 Chapter Summary

By the use of the algorithm presented above and the geocoding functionality
from ArcView the Route Guide can accomplish the task of planing a route
from point A to B through C, where C is a facility given by the facility name.

The algorithm presented here is only meant for use within the prototype.
Even through the algorithm is simple it shows ideas of how to minimize the
cost when planing a route from A to B through C, where more options are
available for the location of C. The primary benefit of the solution presented
is the ability to limit the area in which the facility should be found.

The next chapter presents implementation topics related to the three
components described during chapter 2, 3 and 4.

CHAPTER 5

Route Guide Implementation

Until know the focus have been on the components of the Route Guide,
each of the three components identified in chapter 2 have been analyzed and
design have been carried out. The final step is the implementation of a pro-
totype of the Route Guide. The topic of this chapter is to present central
issues related to the implementation.

First the implementation of the Retrieve function of the UPI class is
presented. This part of the implementation allows the Coordinator of figure
2.6 to retrieve information from the UP. The retrieved information can then
be passed on to the RP (the CPR function) for further processing. The
exchange of information between the Coordinator and the CPR function of
figure 2.6 is illustrated in the second part of this chapter. Finally in the
last part the transformation of XML Route Guidance to HTML or WML is
presented.

5.1 User Profile Management

The UPM component provides functionality for modification, deletion, re-
trieval and storing of information and creation of UPs. The following is a
illustration of how the Retrieve function is implemented.

5.1.1 The Retrieve Function

In order to provide retrieval of information from a UP the UPI class im-
plements the XQL engine package of figure 2.5. Three things are needed in
order to perform a retrieval of information! from a UP. 1) XML database,

!Recall that information is stored as a XML database

40

5.2 Server and Client Interface Implementation

41

2) Document Object Model (DOM) and 3) a XQL query.

The XML database was create in chapter 3 and the resulting XML
database schema can be seen in appendix D.

The DOM is create by the use of the DOMUtil class from the XQL en-
gine package of figure 2.5. This class provides the XMLParser function that
creates a DOM from a XML source.

The DOM created is used to create a XQL query that can be executed by
the help of the execute function from the XQL class (also a part of the XQL
engine package). The result of the execution of the query is a XQLResult
object contain the result of the executed query.

A prototype implementation of the Retrieve function from the UPI class
can be found in appendix E.

5.2 Server and Client Interface Implementation

During the analysis of the system architecture in chapter 2 the need for
a interface between the URRM and RP (or more precise the Coordinator
and CRG parts of figure 2.6) were identified (see figure 2.1). The RP com-
ponent is implemented by ArcView providing a DDE server. In order for
the URRM to communicate with the RP a DDE client is needed. By ex-
tending the JavaDDE from [8] the ArcViewlnterface class from figure 2.5
implements the DDE client providing the URRM with three functions; DDE-
server _connect(), DDEserver disconnect and Execute_ CRG(). The follow-
ing shows the implementation of the Execute CRG function.

5.2.1 Execute Create Route Guidance

The Execute CRG() function takes a byte array and a integer as input pa-
rameters. The integer specifies the size of the byte array containing param-
eters to be used by the CRG function implemented in ArcView by the help
of avenue. The parameters passed in the byte array to the CRG function is
either retrieved from the UP by the help of the UPM component or received
directly from the user. Examples of parameter values are; Servicename, RT-

name and a set « addresses, where « = { HouseNr, Street, City, PostalCode}.

The cl.ddePoke statement is were it all happens (see the following code).
The first parameter is a string holding a av.run(crg) statement. This string
tells the DDE server (ArcView) to run the CRG avenue script that creates

5.3 Implementation of User Request and Response Management

42

public String Execute_CPR(byte [] data, int datalength) throws DdeException

{

try

{
int timeout=5000;
com.neva.DdeClient cl=new com.neva.DdeClient();
// Answers the standard clipboard format in which the data item
// is being requested. Jddeml supports CF_TEXT data format
int format=com.neva.DdeUtil.CF_TEXT;

this.DDEServer_connect ("ArcView", "System");
//Execute the avenue script
cl.ddePoke("av.run(\"crg\", byte [] data, datalength, timeout)

this.DDEServer_disconnect();
}
catch(DdeException e){return e.getMessage();}
catch(InterruptedException e){return e.getMessage();}

return "believe it works!";

route guidance. The second parameter is the byte array holding values as Ser-
vicename. The dataLength parameter specifies the size of the byte array and
the timeout parameter determines how long the DDE client (Execute CRG)
will wait for an answer.

5.3 Implementation of User Request and Response
Management

In the previous two sections (section 5.1 and 5.2) the prototype implemen-
tation of the Retrieve function from the UPI class and the interface between
the URRM and RP were described. In this section the part of the output
class that translates the internal representation (XML) of Route Guidance
to HTML or WML is shown.

5.3.1 Translating XML Route Guidance to HTML/WML

The initial idea was to make the transformation of XML to HTML or WML
a functionality provided by the Output class. It turns out to be easier and
more flexible to implement the transformation as a separate servlet that
can be activated by the Output class whenever a transformation is needed.
The transformation is implemented as a servlet called XMLParser (see the
class diagram of figure 2.5). The Output class activates the XMLParser by

5.4 Chapter Summary

43

issuing the URL: http://lodal5:8080/servlet/XMLParser?OutPutData.xml,
where the query part of the URL? is passed in as parameters to the stylesheet.
The stylesheet used by the XMLParser at the moment is specified as an init
parameter to the servlet.

At the moment the XMLParser returns a HTML page or a deck of WML
cards (Depends on the stylesheet used as init parameter to the servlet). A
future extension would be to extend the query part of the URL to hold the
stylesheet as well as the XML document. This requires a modification of
the XMLParser servlet in order for it to be able to receive both an XML
document and a stylesheet as parameters and produce a response. A second
extension would be to modify the XMLParser in a way that allows the XML-
Parser to send the response directly to the nomadic user instead of through
the Output class. In order for this to work, the Output class should provide
the URL address of the nomadic user as yet another parameter to the XML-
Parser.

A prototype implementation of the XMLParser can be seen in appendix
F.

5.4 Chapter Summary

In section 5.1 a prototype implementation of the Retrieve funtion from the
UPI class were presented. The Retrieve function takes a XML document as
input, creates a DOM of the input and executes a XQL query against the
DOM. Then in section 5.2 the interface between the URRM and RP were
presented. The interface was exam-plied by the Execute CRG function.
Finally the translation of route guidance to HTML or WML was described
in section 5.3. The translation of route guidance is done by the XMLParser
servlet activated by the Output class. Two extension were proposed: 1)
stylesheet as a part of the URL query part and 2) Nomadic user address as
a part of the URL, allowing the XMLParser to return response directly to
the nomaidc user.

With this implementation chapter the report have come to an end, only
the conclusion presenting the main points of the report remain together with
suggestion for future work.

2The query part, is the subset of the URL after the ?

CHAPTER 6

Conclusion and Future Work

6.1 Conclusion

During the project, we have gained experience in several areas related to
the development of a Route Guide. To understand issues of a Route Guide
an architecture, a class diagram and a component- and interaction diagram
have been developed, showing components used to provide route guidance
for nomadic user.

We have found that XML is a technology providing a flexible way of
handling data to be exchanged between various part of a Route Guide. Fur-
thermore XML and related technologies as XSL and XQL have been used
as the foundation to communicate with users at different platforms in an
effective way. This has been accomplish by the use of different stylesheets,
one for each platform.

To determine the stylesheet to be used for a particular user, browser-
sniffing was included. Browsersniffing means to detect e.g. the platform and
browser version used by the user. Based on this knowledge the appropriate
stylesheet is chosen.

The User Profile introduced in the report is based on XML technology
allowing easy transformation of information in the User Profile to WML,
HTML and Voice depending on the needs of the user. Furthermore the User
Profile based on XML has the benefit of being a tree structure allowing effi-
cient retrieval of data by the use of XQL.

To execute the route planning the ArcView application has been used.

44

6.2 Future Work

45

The implementation of the route planner with ArcView has been accomplish
by the use of the avenue script language providing access to the functionali-
ties within the ArcView application. Besides giving access to the functional-
ities provided by ArcView, additional functionalities were designed (chapter
4) and implemented in avenue to accomplish the goal of deciding which fa-
cility location among many to use in order to plan an optimal route.

The issue of tracking the location of the mobile user is not included in
this project. It is and important issue but the technology is already well
establish and available. Furthermore, the use of this technology has been
reported from work elsewhere [18] and [19]. In this project the client side is
simulated on a desktop computer using fictive locations of the user. There-
fore the task of locating the user has not been a part of this project.

6.2 Future Work

In this section we give direction towards future work. One direction is the
extension of the service level of the Route Guide, another is the use of Voice
Discourse and the last is movement of the road network from ArcView to
e.g. an Oracle database.

6.2.1 Extending the Service Level of the Route Guide

Besides more long-term changes (road repairs, road rebuilding etc.) of the
road network, other situations as heavy traffic load, queues and accidents
could be included in the determination of the optimal route. Actually, the
development of a database containing the information mentioned above is
an ongoing work where EUMAN is participating [21].

In order to include the above-mentioned situations in the route planning,
they have to be registered. This registration could be accomplish in different
ways. One approach could be that people driving on a road have the ability
to register the state of the road [21]. Another approach would be to allow
Ambulances and Falck units to send there location when they are on the
road and the traffic should be directed in another direction.

Adding information to the road network database as road repairs, traffic
load, queues and accidents could provide for an extension of the service
level provided by the Route Guide, in the sense that these informations are
available to the users.

6.2 Future Work

46

6.2.2 Voice Discourse

Another interesting issue of this project is to improve communication be-
tween the user and the Route Guide by using voice. In this area a lot of
improvement can be made to the Route Guide, in order to handle a dis-
course with the user. The difficult part is the speech recognition. With that
in mind the user interaction could be limited to normal use of the presented
keyboard and using text-to-speech synthesis at the server-side to give route
guidance in the form of voice. The ideal extension would be to allow the
user to talk with the Route Guide and receive response as Voice.

6.2.3 Moving from ArcView to Oracle

In this project route planning have been implemented by the use of ArcView,
a future extension would be to implement route planning on top of e.g. a
Oracle database with spatial data representing the road network of interest.
This would lead to a more stable and realistic system and provide for the
use of XML as interface to the database instead of the DDE interface which
have it’s limitations. With the User Profile already implemented as a XML
database and the ability to exchange data between the Oracle database and
the Route Guide in the form of XML, this could result in a system were all
internal representation of information to be moved between various compo-
nents is done by the use of XML. Having all internal information represented
as XML creates a good foundation for building a flexible Route Guide, pro-
viding transformation of the internal representation of information to various
formats as HTML, WML and Voice.

BIBLIOGRAPHY

[1] W3C Scalable Vector Graphics (SVG)
http://www.w3c.org/Graphics/SVG/Overview.htm8

[2]| What is Oracle Spatial?
http://www.oracle.com/products/spatial /

[3] Nokia Programmers Guide
Nokia Activ Server API API version 1.2 October 25 2000
Included in the nokia toolkit at:
http://forum.nokia.com/wapforum/main/1,1 1 30 2 3,00.html

[4] HTML 4.01 Specification
http://www.w3.org/TR/REC-html40/

[5] WML Reference version 1.1,
http://forum.nokia.com/wapforum /main/1,6668,1 1 30 3 1,00.html

[6] Deployment Guide for Corporate WAP Services,
http://www.nokia.com/corporate/wap /pdf/
activserver deployment guide.pdf

[7] Avenue scripts for accessing metadata while using ArcView
http://www.mp.usbr.gov/geospat /mdext /avmdprog.html

[8] JavaDDE, Neva Object Technology Inc., 11 Charity Street, Suite A,
Irvine, Ca 92612 USA, homepage: http://www.nevaobject.com

[9] VoiceXML Forum, http://www.voiceXML.org/tutorials/intro2.html

[10] WAP White Paper, When time is of the essence..., February 1999,
AU-System

47

BIBLIOGRAPHY 48

[11] Fundamentals of Database Systems, Ramez Elmasri and Shamkant
B. Navathe, Second Edition, 1994, ISBN 0-8053-1753-8

[12] XML structures for Existing Databases, Eleven rules for moving a
relational database to XML, Kevin Williams and others, January 2001,
http://www-106.ibm.com/developerworks/library /x-struct/

[13] Professional XML Databases, Wrox Author Team, December 2000,
ISBN 1861003587

[14] ArcView help files, ArcView GIS Version 3.1.1

[15] Personal Agent Providing Customized Information for No-
madic Users, Peter Vinther & Henrik Olesen, Aalbog University, Den-
mark, December 2000

[16] GMD IPSI XQL Engine,
version 1.0.2, http://xml.darmstadt.gmd.de/xql/indel.html

[17] Access FAQ, Relationship Answers,
http://www.lmu.ac.uk/Iskills/TLLS /FAQs/
AccessRelationshipAns.html# Many

[18] Location Based Services - The Underlying Technology,
http://www.sli.unimelb.edu.au/research /publications/IPW /4 01Smith.pdf

[19] Privacy vs Location Awareness,
http://www.hut.fi/ slevijok/privacy vs_locationawareness.htm

[20] XT, Version 19991105, Copyright (c) 1998, 1999 James Clark,
http://www.jclark.com/xml/xt.html

[21] EUMAN, A company that we have exchange ideas with and discussed
certain issues http://www.EUMAN.com

APPENDIX A

ASP

CGI

CRG
DDE
DOM
DTD

ER model
HTML
HTTP
HTTPS
ISO

NT

PDA
PHP

RP
Servlet API
SGML
UP

UPI

UPM
UPR
URL
URRM
VoiceXML
WAP
WML
XML
XQL

XSL
XSLT

Abbreviations

Active Server Page

Common Gateway Interface

Create Route Guidance

Dynamic Data Exchange

Document Object Model

Document Type definition

Enitity Relation model

Hypertext Markup Language

Hyper Text Transfer Protocol

Secure HyperText Transfer Protocol
International Standards Organization
New Technology

Personal Digital Assistant

Hypertext PreProcessor

Route Planner

Servlet Application Programmer Interface
Standard Generalized Markup Language
User Profile

User Profile Interface

User Profile Management

User Profile Request

Uniform Resource Locator

User Request and Response Management
Voice Extensible Markup Language
Wireless Application Protocol

Wireless Markup Language

Extensible Markup Language

Extensible Query Language

Extensible Stylesheet Language
Extensible Markup Language Transformation

49

APPENDIX B

Code Example: Browser Sniffer

This appendix is a code example presenting the ideas of browsersniffing. The
code is based upon the BrowserHawk4J (JavaBean) package from cyScape
Inc. (http://www.cyspace.com/company/) for use on any platform from a
server-side Java environment such as Java Server Pages, Servlets, server-side
JavaScripts and Java applications. The only system requriement is a Java
Virtual Machine, version 1.1 or higher.

The BrowserHawk4J package provides classes with functionality enabling
e.g. aservlet to detect information as: Browser, Cookie, JavaScript, JavaAp-
plet, WAP, Personal Digital Assistant (PDA), Connection speed, screen size
resolution on client, Reverse DNS Lookup and Client Operating System etc.

BrowserHawk parses the user agent on the client platform, in order to
dynamically determine platform, operating system details and version infor-

mation.

The following code is an example of a browsersniffer servlet that detects
information by using the BrowserHawk.getBrowserInfo(req) function.

50

51

import java.lang.x*;

import java.io.x;

import javax.servlet.*;

import javax.servlet.http.x*;
import com.cyscape.browserhawk. *;

public class browsersniffer extends HttpServlet {
public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
res.setContentType ("text/html") ;
EncryptResponse encryptResponse = new EncryptResponse(req, res);
PrintWriter out = encryptResponse.getWriter();
BrowserInfo b = null;

try {
b = BrowserHawk.getBrowserInfo(req);
}
catch (BrowserHawkException e) {} // Runtime error, here.......
String currFileName = "browserResult.txt";
try
{

// Open a file of the current name.
File file = new File (currFileName);
// Create an output writer that will write to that file.
FileWriter fileout = new FileWriter(file);
// Returns the common name associated with the
// browser such as "Netscape" and "IE"
fileout.write(b.getBrowser());
// Returns the entire version of the browser,
// including all major and minor numbers and letters, if any.
fileout.write(b.getFullversion());
// Returns details on operating system the visitor is using.
fileout.write(b.get0SDetails());
// Returns more general information (as compared to get0SDetails())
// about the user’s platform.
fileout.write(b.getPlatform());
// Contains the model of the WAP device if known.
fileout.write(b.getWAPDeviceModel());
fileout.close();
}
catch (IOException e) {}
}
}

APPENDIX C

Service Concept: A Philosophical
View

In chapter 3 the concept of service was introduced as a entity type called
Service. Gas Stations of various kinds was used to illustrate the idea of a
service the nomadic user would like include as part of his Route. In this
chapter we will take a philosophical view on the service concept and focus
on problems the service concept might introduce.

C.1 Service Concept

Imagine a service called Musical, the nomadic user is allowed to specify in
his user profile that he has an interest in musicals. This service can be
interpreted in may ways, lets look at Musical service in the following way:

Algorithm C.1.1

1. If an entry exist in the user profile called Musical then
2. When nomadic user pass by a musical unit on his route from A to B then
3. Notify user, by displaying a message on the screen of the mobile device

4. And retrieve, upon request, additional in formation about the musical unit.

It is not a very complex algorithm at the first glance, it is easy to read
and cope, but when we look closer, many problems will occur if one tries to
implement this algorithm.

02

C.1 Service Concept

C.1.1 Musical Service: Problems

The first line of the algorithm is fairly easy to implement, one just have to
locate the user profile, make e.g. an SQL query like this:

select service name
from service

where service name = musical

Problem 1 The "pass by” phrase in line two of the algorithm introduce
some problems. First of all what is meant by the phrase "pass by”, is it when
I pass by a musical house within 10, 100 or 1000 meters (distance limit). The
"pass by” phrase should somehow be converted into a measure, the difficult
part is to find the right measure, a measure that is common enough to fit
most situations and accurate enough to be useful. Imagine a distance limit
at 1000 meters, how does the algorithm cope with the distance limit when
I am in Copenhagen or in London, clearly a distance limit at 1000 meters
is to much when I am downtown London, but okay when I am downtown
Copenhagen.

Problem 2 Second how should a museum with an musical exhibition be
treaded when I pass by the museum. The problem here is how to define Mu-
sical as a service or more precisely how to limit the amount of information
that can be associated with a service like Musical. Should the nomadic user
only receive information when he pass by a Musical House or does the word
musical also include exhibitions, events and written material about Musicals.

Okay, one approach could be not to allow a nomadic user to define a
service name as broad as Musical, only allowing the user to specify musical
names like Cats, Panthon of the Opera etc. But on the other side, how
should I as first time tourist in London know anything about musical names
in London.

Problem 3 Furthermore, how does the Route Guide discover that the no-
madic user is about to pass by a Musical House on his route through London.
The information must be available online on the Internet, and the never end-
ing circle of problems expands with a new problem; Where does the Route
Guide locate the information. One approach could be to have information
agents moving around looking for information, introduction the problem of
inter-agent communication and cooperation [15]. A more feasible solution
could be a centralized information source for London providing all necessary

C.2 Service Concept: Conclusion

54

information about musicals. Clearly this information source have to contain
geographical coordinates of each musical unit, so that these coordinations
can be compared to the location of the nomadic user in order to activate line
two and three of the algorithm.

C.2 Service Concept: Conclusion

The above scenario illustrates some of the problems associated with the idea
of providing additional services as a part of e.g. a Route Guide. The first
problem concern how to make a correct measure for the “pass by” phrase of
the algorithm, in order to make it possible for the Route Guide to perform
checks that allows it to register when a user is passing by a relevant service.
One approach could be to compare GPS locations, simply compare the cur-
rent nomadic user GPS location with the stored location of the service, if
they match the Route Guide can conclude that the nomadic user is passing
by the service of interest. But then assume a Mall with eleven stores and a
food court. One of the stores sell books about musicals online on the Inter-
net and the food court have special food deals online as well. If a user have
defined musical and food deals as services in his user profile, a new problem
occur. Both services have the same GPS location, and the Route Guide will
have two services that match the location of the nomadic user. Then, should
the nomadic user have information about both services, if so, what happens
when the Route Guide find five services that match the same nomadic user
location.

The second problem concerns how to chose the right service name, so
that it a the same time describes the service and makes it possible to limit
the amount of information that the nomadic user should receive.

The last of the three problems that we have chosen to focus on, concerns
how to discover information. Should this be done by mobile agents moving
around the Internet looking for information, or by dedicated web sites that
accumulate specific information about a few services.

The three problems above helps to illustrate the difficult task that one
face when trying to provide services. On the other hand if these problems
can be solved one stands at the edge of creating something new. Something
that will change the use of mobile devices and enhance the all ready widely
use of the Internet with something new.

APPENDIX D
Final XML Database Schema

The final XML database schema derived from the relational database schema
from section 3.3.1 by using eleven rules from [12][13].

<!ELEMENT UserProfile (RouteType*, Route*, NomadicUser*, Service*,
RoutePoint*, RouteHasService*, NomadicUserOwnRoute™,
RouteConsistOfRoutePoint™*) >

<IATTLIST UserProfile>

<!ELEMENT RouteType EMPTY >

<IATTLIST RouteType

RouteTypelD ID #REQUIRED

RTname CDATA #REQUIRED -

<!ELEMENT Route (RouteHasService*, RouteConsistOfRoutePoint*) >
<IATTLIST Route

RouteID ID #REQUIRED

RouteName CDATA #REQUIRED

RouteTypeIDREF IDREF #REQUIRED -~

<!ELEMENT NomadicUser (NomadicUserOwnRoute*)>
<!ATTLIST NomaidcUser

UserID ID #REQUIRED

UserName CDATA #REQUIRED >

<!ELEMENT Service EMPTY >

<IATTLIST Service

ServiceID ID #REQUIRED

ServiceName CDATA #REQUIRED >

<!ELEMENT RoutePoint EMPTY >

95

56

<!ATTLIST RoutePoint

RoutePointID ID #REQUIRED

Street CDATA #REQUIRED

HouseNr CDATA #REQUIRED

City CDATA #REQUIRED

PostalCode CDATA #REQUIRED>
<!ELEMENT RouteHasService EMPTY >
<!ATTLIST RouteHasService

RouteID CDATA #REQUIRED

ServiceID CDATA #REQUIRED

Servicel DREF IDREF #REQUIRED >
<!ELEMENT NomadicUserOwnRoute EMPTY >
<!ATTLIST NomadicUserOwnRoute
UserID CDATA #REQUIRED

RouteID CDATA #REQUIRED
RouteIDREF IDREF #REQUIRED >
<!ELEMENT RouteConsistOfRoutePoint EMPTY >
<!ATTLIST RouteConsistOfRoutePoint
RouteID CDATA #REQUIRED
RoutePointID CDATA #REQUIRED
RoutePointIDREF IDREF #REQUIRED >

APPENDIX E

User Profile Interface: Retrieve
Function

The following code is a prototype implementation of the UPI function Re-
trieve. The Retrieve function takes a xml file name and a XML Element
tagname as input parameters. Based upon the xml file the retrieve function
starts by creating a Document Object Model (DOM) of the XML document.
Then a simple query is executed, retrieving the id of all elements specified by
the tagname. The result of the Retrieve is a array of id’s (result) returned
to the calling function.

import org.w3c.dom.*;

import de.gmd.ipsi.xql.*;

import de.gmd.ipsi.domutil.x*;

import java.io.x;

class UserProfileInterface {

static Document testDoc;

// xmlFile = name of xmlFile to perform XQL query on.
// tagname = name of Element to perform XQL query on.
public Object Retrieve(String xmlFile, String tagname)

{

XQLResult queryresult = new XQLResult();
Object result[] = {};
// Generates a DOM from XML source given as InputStream

o7

58

try

testDoc = DOMUtil.createDocument() ;
// testDoc = The DOM document which serves as node factory and
// to which child nodes are added.
DOMUtil.parseXML(new BufferedInputStream(
new FileInputStream(xmlFile)) ,testDoc,true,
DOMUtil.SKIP_IGNORABLE_WHITESPACE) ;

}

catch (DOMParseException ex) { ex.printStackTrace(); }

catch (FileNotFoundException ex) { ex.printStackTrace(); }

// *x* Iterate over the query set *xx*

// Returns a NodeList of all the Elements with a given tag name in the
// order in which they would be encountered in a preorder traversal

// of the Document tree.

NodeList queries = testDoc.getDocumentElement ().

getElementsByTagName("xqltest:"+tagname);

}

}

for (int i=0; i < queries.getLength() ; i++)

{
// Get single query and its ID
// The node at the indexth position in the NodeList
String query = queries.item(i).getFirstChild() .getNodeValue();
// and store id attribute value of the node in the parameter id.
String id = ((Element) queries.item(i)).getAttribute("id");

// Execute Query on sourceDoc and store the result
// of the Query in the queryresult object.
queryresult = XQL.execute(query, (Node) testDoc);
result[i]=queryresult;

}

return result;

APPENDIX F
XML Parser Servlet

Prototype implementation of XML Parser. The implementation is based
upon the XT package from [20].

package com.jclark.xsl.sax;
import com.jclark.xsl.x*;

import java.io.IOException;
import java.io.File;

import java.io.Writer;

import java.net.URL;

import java.util.Enumeration;
import javax.servlet.*;
import javax.servlet.http.x*;
import org.xml.sax.*;

public class XSLServlet extends HttpServlet {
private XSLProcessor cached;

public void init() throws ServletException {
String stylesheet = getInitParameter("stylesheet");
if (stylesheet == null)
throw new ServletException("missing stylesheet parameter");
cached = new XSLProcessorImpl();
cached.setParser (createParser());

99

60

try {
cached.loadStylesheet (new InputSource(getServletContext().
getResource(stylesheet) .toString()));
}
catch (SAXException e) {
throw new ServletException(e);
}
catch (IOException e) {
throw new ServletException(e);
}
}

public void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, I0Exception {
File inputFile = new File(request.getPathTranslated());
if (!inputFile.isFile()) {
inputFile = new File(request.getPathTranslated() + ".xml");
if (!inputFile.isFile()) {
response.sendError (HttpServletResponse.SC_NOT_FOUND,
"File not found: " + request.getPathTranslated());
return;
}
}
XSLProcessor xsl = (XSLProcessor)cached.clone();
xsl.setParser (createParser());
for (Enumeration e = request.getParameterNames(); e.hasMoreElements();) {
String name = (String)e.nextElement();
// What to do about multiple values?
xsl.setParameter (name, request.getParameter (name));
}
OutputMethodHandlerImpl outputMethodHandler = new OutputMethodHandlerImpl(xsl);
xsl.setOutputMethodHandler (outputMethodHandler) ;
outputMethodHandler.setDestination(new ServletDestination(response));
try {
xsl.parse(fileInputSource (inputFile));
}
catch (SAXException e) {
throw new ServletException(e);
}
while(System.in.read() != ’q’) {}

61

static Parser createParser() throws ServletException {
String parserClass = System.getProperty("com.jclark.xsl.sax.parser");

if (parserClass == null)

parserClass = System.getProperty("org.xml.sax.parser");
if (parserClass == null)

parserClass = "com.jclark.xml.sax.CommentDriver";
try {

return (Parser)Class.forName(parserClass) .newlnstance();
}
catch (ClassNotFoundException e) {
throw new ServletException(e);
}
catch (InstantiationException e) {
throw new ServletException(e);
}
catch (IllegalAccessException e) {
throw new ServletException(e);
}
catch (ClassCastException e) {
throw new ServletException(parserClass + " is not a SAX driver");

¥
X

/%%
* Generates an <code>InputSource</code> from a file name.

*/

static public InputSource fileInputSource(File file) {
String path = file.getAbsolutePath();
String fSep = System.getProperty("file.separator");
if (fSep !'= null && fSep.length() == 1)
path = path.replace(fSep.charAt(0), */?);

if (path.length() > 0 &% path.charAt(0) != */?)

path = ?/’ + path;
try {

return new InputSource(new URL("file", "", path).toString());
}

catch (java.net.MalformedURLException e) {
/* According to the spec this could only happen if the file
protocol were not recognized. */
throw new Error("unexpected MalformedURLException");

¥
X

