
Aalborg University eDepartment of Computer Science

Database and Programming Technologies

Title:
Internal documentation
in an Elucidative environment

Topic:
Software Documentation
for Developers

Project period:
7/2-2000 – 9/6-2000

Project group: DAT6, E1-207A
Max Rydahl Andersen
Claus Nyhus Christensen
Kristian Lykkegaard Sørensen

Supervisor:
Kurt Nørmark

Number of appendixes: 4

Total number of pages: 134

Number of pages in report: 90

Number of reports printed: 10

Abstract:

This master thesis deals with the structure
and history of internal documentation in
an elucidative environment.
Internal documentation is documentation
which is produced by developers, used by
developers and which documents the inter-
nal structures, such as algorithms or data
structures of software.
Three main contributions are presented in
the thesis: (1) The formulation of a docu-
mentation model, called the MRS-model,
which divides the internal documentation
into three interrelated categories: Moti-
vations, Rationales and Solution descrip-
tions. (2) A practical implementation of
the MRS-model in an elucidative envi-
ronment. (3) By using the MRS-model,
a method is sketched for documenting
the history of internal documentation and
source code as a natural part of the internal
documentation.
Based on these three contributions the re-
port concludes that the structure of the
MRS-model is both beneficial to the in-
ternal documentation and improves the
presentation of the documentation to the
reader. Furthermore it is concluded that
the history of software can be documented,
and be a natural part of the internal docu-
mentation.

Copyright c
 2000, DAT6, E1-207A.

Aalborg Universitet eInstitut for Datalogi

Database og Programmerings Teknologier

Titel:
Intern dokumentation
i en Elucidativ omgivelse

Emne:
Program dokumentation
for udviklere

Projekt periode:
7/2-2000 – 9/6-2000

Projekt gruppe: DAT6, E1-207A
Max Rydahl Andersen
Claus Nyhus Christensen
Kristian Lykkegaard Sørensen

Vejleder:
Kurt Nørmark

Antal appendiks: 4

Totalt antal sider: 134

Antal sider i rapporten: 90

Antal trykte rapporter: 10

Synopsis:

Denne specialeafhandling behandler
struktur af og historie i intern dokumenta-
tion i en elucidativ omgivelse.
Intern dokumentation er dokumentation
som er produceret af udviklere, bruges af
udviklere og som dokumentere de interne
strukturer i programmer, så som algorit-
mer eller data strukturer.
Afhandlingen præsenterer tre hovedresul-
tater: (1) En formulering af en model
for dokumentation, kaldet MRS-modellen,
som deler intern dokumentation ind i tre
interrelaterede kategorier: Motivationer,
Rationaler og Løsningsbeskrivelser. (2)
En praktisk implementation af MRS-
modellen i en elucidativ omgivelse. (3)
Ved hjælp af MRS-modellen er det skit-
seret, hvordan dokumentation af program-
mers historie kan blive en naturlig del af
dokumentation.
Baseret på disse tre resultater konkluderer
afhandlingen at MRS-modellens struktur,
dels er til gavn for den interne dokumen-
tation, dels forbedrer præsentationen af
dokumentationen for læseren. Derudover
konkluderes det, at programmers historie
kan dokumenteres, samt være en naturlig
del af den interne dokumentation.

Copyright c
 2000, DAT6, E1-207A.

Prefa
e
This thesis documents the work made during our masters year at the Department of Computer
Science, Aalborg University, Denmark. The report focuses on the work made during the
second part of the thesis, from February 1, 2000 to June 9, 2000. It is founded in the report
“The Elucidator — for Java” [Christensen et al., 2000], which documents the work done
from September 2, 1999 to January 17, 2000 as the first part of the master thesis.

Small parts of the “The Elucidator — for Java” report is reproduced in this report, especially
in Chapter 2. When this is the case it is clearly stated with a citation to the report.

Chapter 1: Introduction This chapter motivates our thesis. We place our work in the con-
text of preserving quality of software, and two hypotheses are established which serves
as the foundation for the remains of the thesis.

Chapter 2: Earlier work In this chapter the main results and conclusions from our earlier
work on the elucidative environment are presented. Furthermore the chapter contains
a description and evaluation of an documentation experiment, conducted with the Elu-
cidative environment.

Chapter 3: Analysis Through a study of internal documentation in an ideal software pro-
cess we identify two main roles in software development. Through this study we
furthermore motivate, develop and describe a model, calledthe MRS-model, for writ-
ing and reading internal documentation in an elucidative environment. The chapter
also presents a description of how the model is intended to berealized. Finally, the
MRS-model is compared to other related documentation approaches.

Chapter 4: Design This chapter presents the detailed design for how the MRS-model is
implemented in the elucidative environment. Three main issues are described: docu-
mentation nodes, links and navigation facilities.

Chapter 5: Reflection Through a small experiment, this chapter reflects upon the MRS-
model and the elucidative environment. The reflection is qualitative and based on
observations made during the experiment.

Chapter 6: Conclusion In this chapter we conclude on the two hypotheses stated in Chap-
ter 1.

Chapter 7: Future work This chapter describes some ideas we believe would be interest-
ing and rewarding to work on in the continuation of this thesis.

iii

iv

Appendixes In the appendices (Appendix A through D) a description of thenode types
and link roles is presented. Following is this is a grammar for the EDoc language.
Finally all templates used in the experiment and staticallydata from the experiment is
presented.

Throughout the report figures and tables are enumerated successively in each chapter. When
a figure is taken directly from a literature source this is marked with a citation in the figure
caption.

The literature referred to in the report is listed in the bibliography. References are given on
the form [Nørmark, 2000b], which means the piece of literature, marked by this label in the
literature list, was used.

Further information about Elucidative programming and theexamples in this thesis can be
found athttp://dopu.cs.auc.dk .

We would like to thank the following people:

Amanuensis Thomas Vestdam— for using one week to be a part of our experiment with the
Elucidative environment and the MRS-model.

Eastfork Object Space (EOS), especially Jørn Larsen and KimHarding Christensen— for
providing us with tickets for the JAOO Conference 1999, heldin Aarhus, September 20-22,
1999. The conference was a great inspiration to our project.

Dr. Johannes Sametinger— for taking the time to talk with us in connection to his lecture at
Aarhus University on November 5, 1999.

Vincent Gay-Para and Thomas Graf— for providing extensive support for the Kopi Java
Compiler. Especially for devoting a whole week-end to incorporate our special wishes into
the compiler.

Aalborg University, June 9, 2000.

Max Rydahl Andersen Claus Nyhus Christensen

Kristian Lykkegaard Sørensen

Contents
1 Introduction 1

1.1 Maintaining quality of software 1

1.1.1 Views on software . 2

1.1.2 The insufficiency of models . 2

1.2 From Literate to Elucidative Programming 3

1.3 Motivation for the thesis .. 5

1.3.1 Structuring documentation . 6

1.3.2 Documentation history . 6

1.3.3 Hypotheses . 7

2 Earlier work 9

2.1 The first part of the master thesis 9

2.1.1 Main conclusions . 11

2.2 Initial experiment .13

2.2.1 Experiment circumstances . 13

2.2.2 Gained experiences . 13

3 Analysis 17

3.1 Internal documentation in software development 17

3.2 Limiting the number of participants 20

3.2.1 Characterizing the reader and the writer 21

3.3 Utilizing documentation .. 22

3.4 The MRS-model . 23

3.5 Realization of the MRS-model .. 24

3.5.1 Documentation structure . 25

3.5.2 Documentation nodes . 26

v

vi Contents

3.5.3 Relationships in documentation 29

3.5.4 The usage of relationships to maintain the history 31

3.5.5 Navigation in documentation .32

3.6 Related documentation approaches 33

3.6.1 Object-oriented Analysis and Design Documents 34

3.6.2 Literate Programming . 35

3.6.3 Object-oriented Documentation 35

3.6.4 The gIBIS hypertext tool . 36

4 Design 39

4.1 The Elucidative environment .. . 39

4.1.1 The languages in the Elucidative environment 40

4.1.2 Entities in the Elucidative environment 40

4.1.3 The three tools in the Elucidative environment 41

4.1.4 Changes to the Elucidator . 43

4.1.5 The work flow in an Elucidative environment 44

4.1.6 Entities in the hypertext model 45

4.2 Designing the documentation nodes 46

4.2.1 Documentation nodes in the MRS-model46

4.2.2 Thematic catalogs . 51

4.2.3 The internal structure of the documentation nodes 52

4.3 Designing the links . 55

4.3.1 Link types . 56

4.3.2 Roles on links . 57

4.3.3 Structure imposed on the documentation by links 59

4.3.4 Creation method . 59

4.3.5 Discussion . 60

4.4 Navigation . 62

4.4.1 Coloring . 63

4.4.2 Local navigation . 64

4.4.3 Neighborhood navigation . 66

4.4.4 Global navigation . 68

Contents vii

5 Reflection 73

5.1 Experiment circumstances .. 73

5.2 Reflections upon the experience of the writers 75

5.3 Reflections upon the reader experiment 78

5.4 Discussion . 81

5.4.1 The MRS-model . 81

5.4.2 The Elucidator tool . 82

5.4.3 History in documentation . 82

6 Conclusion 85

7 Future work 89

A Examples of different node types and link roles 91

A.1 Examples of concrete node types .. . 91

A.2 Examples of link roles . 99

B Grammar for the EDoc language 101

C Templates for documentation nodes 109

C.1 Templates for Motivations .. 109

C.2 Templates for Rationales .. 111

C.3 Templates for Solution descriptions 112

D Statistics for the StregSystem project 117

Bibliography 119

Index 123

viii Contents

1
Introdu
tion

This thesis deals with the notion ofinternal documentationin an Elucidative environment.
By internal documentation we meandocumentation which are produced by developers, used
by developers, and which documents the internal structures, such as algorithms or data
structures, of software.

The work done in the project is threefold: First we develop and present a theoretical model
for structure of internal documentation. Next we implementthis model, using a previously
implemented Elucidator tool [Christensen et al., 2000]. Finally we make an experiment
using the implemented model, in order to weaken or affirm the hypotheses stated later in this
chapter.

This chapter introduces the project. First we discuss how tomaintain quality of software,
and places internal documentation in this context. Next we discuss our inheritance, which
are Literate and Elucidative programming. Finally we present our motivations for the thesis
and poses two hypotheses, which this thesis will try to weaken or affirm.

1.1 Maintaining quality of software

We see software as a highly complex artifact. The software emerges as a solution to a specific
problem. That is, the software is a product of the different demands posed, in order to solve a
problem and/or model some part of a real or imaginative world. Many details of the software
depends on factors of the problem, world or other parts of thesoftware. Regarding software
as a artifact, we focus on the following qualities of software: understandability, modifiability
and reusability. These qualities are all qualities in the domain of the software developer, i.e.,
they are not direct qualities for the user of the software.

Although good modularization paradigms exist, e.g., object-oriented programming, it is still
an issue how to maintain the quality of a piece of software when it is changed or reused.
We see this problem as a result of an emerging lack of consistency, both internally in the
software and between the original design ideas and the changes made.

1

2 Introduction

1.1.1 Views on software

Many different approaches have been attempted to describe and solve the problems of main-
taining quality of software as it changes and is being reused. We will here give a short
introduction to some of these approaches.

Peter Naur does not see the software as an artifact in it self [Naur, 1985], but rather as an
implementation or manifestation of the developers knowledge about the solution or model.
Naurs view on programming and software has some noteworthy consequences. The prob-
lem of degenerating software is seen as a consequence of developers not having the desired
knowledge or theory of the software. The software is only oneimplementation of the theory
and can, according to Naur, never convey the complete theoryheld by the original developers.
Hence the problem of maintaining quality in software is a matter of educating the developers
through direct communication between experienced and inexperienced developers.

Kent Beck agrees with Naur in the importance of direct communication. In his description
of Extreme Programming [Beck, 1999] the quality of the software is maintained in a group
of developers. These developers all share the same understanding of the problem at hand and
the current solution. We will not discuss these approaches in detail, but just conclude that
they address the problem of maintaining quality of softwareas a matter of sharing unformal-
ized knowledge amongst a group of developers.

Other approaches focuses on the description and architecture of the software. Frameworks
and component based programming focus on making generic software, that can easily be
reused. Through clear definitions of responsibility, encapsulation and good modularization,
these methods try to ensure quality of software. Common for these approaches are that they
through better modeling, strive to make comprehension and reuse easier for the developers
who uses the framework or component. Both approaches typically documents the interface
to, and usage of, the framework or component.

1.1.2 The insufficiency of models

The approaches described above addresses the problem of maintaining quality of software
from different angles. We see a number of problems in the different approaches. Naur and
Beck both deemphasize documentation. Naur claims that it isimpossible to document the
theory held by the developers. Beck claims that documentation is seldom worth the effort,
since the knowledge is held in the development team and can easily be transfered to new
members of the team.

We agree that it might be difficult to document the knowledge held by a group of developers,
but we disagree that it is impossible. Furthermore we find internal documentation relevant,
since unwillingness from customers to throw away old software as well as changes in the
development staffswill result in developers reusing old software written by other developers;
Developers that are possibly unavailable.

The documentation produced for frameworks and components are targeted towards develop-
ers that use the software to produce their own software. We see frameworks and components

1.2 From Literate to Elucidative Programming 3

as a way to ensure quality of the software that is developed byusing the framework or com-
ponents. There is, however, still a lack of attention on the internal documentation in the
developed software. We recognize that the object-orientedmodeling paradigm can be used
to document the internal architecture of the software, but we have objections to this being the
only documentation. First of all, the object-oriented modeling paradigm can only describe
certain aspects of the software. The success of design patterns underline this; An informal
textual description is used to document aspects not directly visible in the object-oriented ar-
chitecture. Secondly, and most important, the software andthe object-oriented description
of the software architecture, only communicate the final version of the software. They do not
convey the designs that where tried but rejected nor the arguments from the developers that
made crucial decisions during design and implementation. Hence we see a need for internal
documentation that describe and argument the software.

1.2 From Literate to Elucidative Programming

In 1984 Donald E. Knuth, suggested that the time was ripe for significantly better docu-
mentation [Knuth, 1984]. To achieve this, he argued, that computer programs should be
considered works of literature.

“Let us change our traditional attitude to the constructionof programs. Instead
of imagining that our main task is to instruct a computer whatto do, let us
concentrate rather on explaining to human beings what we want a computer to
do.”
[Knuth, 1984]

Based on these thoughts, he developedLiterate Programming, and a set of tools known as
theWEB tools. This new paradigm relied on the code residing in the documentation rather
than the, at that time, more commonly used solution, where the program was documented
via comments written in the source code.

As we see it, Literate programming is well suited for detailed internal documentation, with a
focus on the arguments and rationales behind the program. Itfurthermore has the side effect
that, when used as a work method, it provides a powerful modularization mechanism for the
program code. However, the advantage of this is not as big as it used to be, since modern
programming language provides far more modularization mechanisms than programming
languages did in the eighties.

Literate programming seems ideal for documenting algorithms or code fragments. However,
Kurt Nørmark, points out several problems in this approach [Nørmark, 2000b]. Knuth’s
WEB tools uses three languages: a documentation language, aprogramming language, and
a language to bind the two in a literate document. Nørmark argues, that the “mental load
of using a WEB system is high”. Firstly, one has to master and use three languages while
keeping the focus on problem solving. Secondly, source code, as seen by the developer and
the compiler, are different, causing problems when, e.g., syntax errors are to be located.
Furthermore, the documentation for the code

4 Introduction

“...is almost exclusively oriented towards a paper [article] representation. Us-
ing todays media, a more online-oriented representation using hypertext con-
cepts would be a big gain.”
[Nørmark, 2000b]

Nørmark argues, that Literate Programming is well suited for producing publications of pro-
grams as technical literature, while the needs of the practical software developer are not met.

We agree with Nørmark on most of these problems. It should however be stated that the
problems with locating syntax errors can be solved by using specific distributions of the WEB
tools, together with specific languages (e.g. using cweb andthe preprocessor mechanisms in
C [Fischer and Jensen, 1990]).

In our opinion Literate programming has two main advantages:

Proximity: Literate programming provides proximity between the documentation and source
code, both while the documentation and source code is written and when it is viewed
after LATEX compilation. Since the source code and the documentation are to be placed
in the same file, it becomes natural to write the documentation and the source code
at the same time. In our experience this means the process of writing the documen-
tation becomes easier and the quality of the documentation is heightened, since the
arguments and rationales are fresh in mind.

Having the source code and the documentation in the same file is furthermore a special
advantage while maintaining the source code, since it is easy to find the place in the
documentation which needs to be updated as a consequence of achange in the source
code. Since the source code and documentation is also presented in the same document
after LATEX compilation, the proximity is also kept here.

Modularization mechanisms: The second main advantage of Literate programming lies
in the modularization mechanisms. In Literate programmingyou are not limited to
the modularization mechanisms provided by the programminglanguage, but you are
instead able to modularize your program as it is representedin your mind.

We do though think that this may cause some problems if you areusing an object
oriented programming language, since a big part of the understanding of programs
written in languages from this paradigm relies on the structure of the program. We
therefore believe that imposing further modularization onthe source code, will lead to
a somewhat obfuscated structure of the program.

As a consequence of the problems stated by Nørmark he introduces a branch of Literate
Programming, calledElucidative Programmingfor documenting the understanding of pro-
grams.

To achieve this, Nørmark suggests that we keep the source code and documentation in sep-
arate files in order to remove the mental load experienced with the WEB tools. His primary
concern is to maintain the program understanding for current and future developers. This

1.3 Motivation for the thesis 5

process should utilize the programming editor to bridge thegap between documentation and
source code, by integrating Elucidative programming support in the editor. Furthermore, the
output is not directed towards paper, but an online representation suitable for web-browsers.

The concept of Elucidative Programming is coined and described by Nørmark in the article
Requirements for an Elucidative Programming Environment[Nørmark, 2000b] and an ex-
ample of a specific implementation of an Elucidator is presented in An Elucidative Program-
ming Environment for Scheme [Nørmark, 2000a]. Finally, thedesign and implementation
of an Elucidative Programming environment for Java is presented inThe Elucidator — for
Java[Christensen et al., 2000].

1.3 Motivation for the thesis

Before stating the problem which we will attempt to solve in this thesis, we must consider
in which surrounding we expect the solution to be situated. Nørmark states that elucidative
programming is“for documenting the understanding of practical programs in a software
development project”[Nørmark, 2000b]. We take this a little further and states that our
target is software developers, situated in a software development company, which, for some
reason, want to have internal documentation for their programs. Since our target user is the
software developer, we suppose that he typically do not haveespecially good writing skills.
We must therefore ensure that successful usage of the Elucidator tools is not completely
dependent on the writing skills of the user of the tool.

The overall purpose of writing internal documentation is tomaintain the program under-
standing. This purpose is twofold. First, since the writer is writing down his understanding
of the program, this gives him the opportunity to reflect on the decisions taken while de-
veloping the program. We believe this process will be a help to the developer, since it will
provide him with a better understanding of the program he is developing. Second, the written
documentation, is intended to help the reader when he tries to understand a piece of software.

In this project we have chosen to focus on the person reading the documentation. The main
reason for this choice is that we want to make sure that documentation is actually read. It is
important that the documentation is read for a number of reasons:� If the documentation is not read, we do not exploit the full potential of the documen-

tation, since only one of the purposes of elucidative programming is fulfilled.� An amount of resources has been spend on making the documentation. If it is not read,
the effort is not fully utilized, since the only value is gained in the writing process.� Not many software developers will be willing to use time on writing documentation if
they know in advance that nobody will read it.

6 Introduction

1.3.1 Structuring documentation

Since we state that it is important that documentation is read, it seems natural to consider
how to make sure the documentation is actually read. The direct answer it to make sure the
documentation is readable. But how do we then make sure the documentation is readable ?
This question will be one of the main issues in this thesis. Weintent to answer the question
by using the model, illustrated in Figure 1.1.

Reading

Documentation structure

Navigation facilities

Figure 1.1: A model which illustrates the connection between structuring the documentation, and the
readers possibility to have the documentation presented ina, for him, readable form.

The basis of this model is that documentation is structured in a predefined way. This structure
allows us to provide navigation facilities with the purposeof facilitating the reader.

The structure of the documentation can only come from one source: the writer. It is there-
fore important to make sure the structuring mechanisms is made in a way, which makes it
attractive for the writer to structure his documentation. People might argue that developers
are anarchists, and will not accept just filling out predefined structures. As we shall see later
in the thesis, our experience tells us that this is not true.

1.3.2 Documentation history

The most important part of internal documentation are the rationales, since these tell why the
program is developed like it is. It is therefore important these rationales are written down in
the documentation.

Each time some change is made to a piece of software, this is done because of some rationale.
In other words developers do not make a change without reason. It therefore seems like a
natural step to document rationales each time a change is made to the software. This is one
of the reasons that the history of a program is important. Another equally important reason,
is if developers document the history of their program, theyand others will be able to learn
for errors made in the past.

1.3 Motivation for the thesis 7

1.3.3 Hypotheses

Based on the observations and opinions presented above we formulate two hypotheses, which
serves as our problemization and focus of the project:

To present internal documentation in order to facilitate the reader, it is nec-
essary to structure it in a predefined way. This structure, combined with
navigation facilities, will be beneficial to the internal documentation.

The history of the software is important since most changes in the software,
are made as a consequence of a rationale. The history of the software can
be documented and be a natural part of the internal documentation.

In the remaining part of this thesis we will provide arguments, to weaken or affirm these
hypotheses.

8 Introduction

2
Earlier work

The work presented in this master thesis is partly based on work and results from the first part
of our work. This work is documented in the report: The Elucidator — for Java [Christensen
et al., 2000]. In this chapter we will present the main results and conclusions from this
work. Furthermore we describe and evaluate an documentation experiment, conducted with
the Elucidator tool produced during the first part of our work.

The implementation created in the first part of our work, and described in this chapter, is
named the Elucidator 1 and the implementation created in this, the second, part is named the
Elucidator 2.

2.1 The first part of the master thesis

The primary focus of the first part of our master thesis, were to design and implement
an Elucidator for Java using the same principles as used in Nørmark’s Scheme Elucida-
tor [Nørmark, 2000a]. The work resulted in a prototype implementation of an Elucidator for
Java (Elucidator 1). The prototype differentiates from Kurt Nørmark’s earlier implementa-
tion on several points. It supports Java instead of Scheme, the HTML pages is dynamically
generated and the overall design is more flexible.

Figure 2.1 on the next page illustrates the main components of the Elucidator 1. The roles
of these components is briefly explained in the following paragraphs. For a more in-depth
technical description see [Christensen et al., 2000].

The Editor The editor is used to edit source code and documentation files. Documenta-
tion is written in our own language calledEDocwhich has tags for defining chapters,
sections and various link elements. The editor has been extended to give support for
inserting links from the documentation to the source code and other documentation.
The editor support was disregarded to a bare minimum, as opposed to the Scheme
Elucidator by Nørmark, which contains more advanced editorfacilities.

9

10 Earlier work

Browser

.edoc
.java

Data

Abstractor

Bundle

Query

User interface/interaction

Editor

Interface

Data model

Functionality

Generator

engine

Figure 2.1: Design overview of the Elucidator 1.

At regular intervals the developer invokes theAbstractorwhich parses the source code
and documentation. Derived information from this process is stored in theData model.

A screen capture showing the editor can be seen in Figure 2.2 on the facing page.

The Browser By using a HTML-browser the developer can view documentation and source
code side-by-side. The documentation contains the text andlinks written by the devel-
oper. The source code contains links to allow jumping from the use of a symbol to its
definition.

The browser also provides aNavigation windowwhich lists all the locations to which a
source symbol or documentation is related. This resembles features available in most
reverse-engineering tools today. For example the navigation window can list all the
locations where a method is documented, where it is used (invoked) and what entities
the method itself uses.

A screen capture showing the browser can be seen in Figure 2.3on page 12.

The Generator The editor and browser communicates with theGeneratorwhich is a servlet
running on a web-server. The editor retrieves information to support link insertion and
the browser retrieves source code and documentation in HTMLformat for browsing.
It is, furthermore the Generator which automatically marksup the source code with
links.

The Abstractor The abstractor extracts information from the Java source code and EDoc
documentation. This derived information is stored in the Data model. This component
is basically the only language dependent part of the Elucidator 1. Hence by providing
a abstractor for another language, e.g., C++, the Elucidator 1 can be used for another
language.

2.1 The first part of the master thesis 11

The Data model The Data model is similar to an entity/relationship model which contains a
set of entities and their relationships. The use of a entity/relationship model is inspired
by the work presented in [Chen et al., 1995] and [Korn et al., 1999].

Packages, classes, fields, methods and even parameters and variables is extracted from
the source code as entities. Examples of relationships between entities is thecon-
tainment-relationship between a method and its class, ainvoke-relationship between
the callee’s definition and the calling method. The documentation is also represented
in the Data model with chapter, section and link entities etc. where, e.g., “refers-to”
relationships represents links in the documentation and source code.

Figure 2.2: Screen capture of the Editor.

2.1.1 Main conclusions

As stated in [Christensen et al., 2000] we believe that the first part of our master thesis made
a number of contributions. These are listed below, and are ordered with the contributions we
found the most important at the top, and the minor contributions at the bottom.

A prototype Elucidator for Java: We have managed to show that an Elucidator for Java
can be realized. We have furthermore implemented a prototype, which we find promis-
ing.

An architecture of an Elucidator: We have designed a modular architecture with well-
defined standard interfaces. Among the strengths of this architecture is that it is very
easy to change the Elucidator 1 to use another language, alsonon-object-oriented lan-
guages, or even make the Elucidator 1 use multiple languages.

Easy navigation in Java source code:We have implemented and shown that when the Java
source code is abstracted and stored in a data model it is possible to provide the user

12 Earlier work

Figure 2.3: Screen capture of the Browser.

with a plethora of navigation possibilities. We have furthermore shown how these can
be integrated with documentation.

Flexible/configurable user interface: The implementation of the Elucidator 1 makes it easy
to change the look and feel of the user interface. This ensures a flexible solution which
can easily be adjusted to new environments.

Usage of standardized technologies:This project shows that standardized technologies can
be used when designing and implementing an Elucidator. It has furthermore been
shown that the usage of these technologies has made it easy touse external tools in the
realization of the implementation.

Dynamic presentation of documentation and Java source code: Our implementation of
the Elucidator shows that a dynamic approach to presenting the documentation and
Java source code in the browser is possible. We have furthermore shown that this
solution is not slow but, on the contrary, rather fast.

The use of dynamically generated pages speeds up the processing time during abstrac-
tion of the Elucidator 1, in comparison to the Scheme Elucidator tool by Nørmark.
E.g., the abstraction of the Elucidator tool itself takes about 20 seconds, as compared
to the processing time of the Scheme Elucidator by the SchemeElucidator which takes
several minutes.

2.2 Initial experiment 13

Standard for Java entity names: As a side effect of implementing the Elucidator 1 we
have devised a standard for the naming of entities in Java source code. This standard
solves the problem, with the normal name standard in Java being context dependent,
by being non-context dependent.

Markup of Java source code in a browser: We have shown that it is not that difficult to
markup and present Java source code in a browser.

2.2 Initial experiment

After finishing the work on designing and developing the Elucidator 1 tool we conducted
an experiment to explore the strengths and weaknesses of Elucidative Programming and the
Elucidator 1 tool.

In this section we will describe the circumstances which theexperiment was conducted un-
der, and discuss the experiences gained from the experiment.

2.2.1 Experiment circumstances

The strategy for the experiment was to use the Elucidator 1 todocument the source code of
the Elucidator 1 it self, and thereby gain experience with the tool, while documenting a real
software project. The experiment was conducted by the threeauthors of this thesis during
one week, approximately two months after the development ofthe Elucidator 1 was finished.

Each of the three authors was responsible for documenting different components of the sys-
tem, corresponding to their main responsibilities during the development phase. This ensured
that they knew the components they where documenting.

We acknowledge that the authors may have preconceived opinion towards the creation of
documentation, and that this may somewhat color some of the gained experiences. It should
furthermore be noted that the documentation process took place after the creation of the
program was finished.

During the documentation phase the authors took notes, and thereby documented experiences
gained both with the tool (the usability of features or the lack of certain features) and the
documentation process. These noted constitutes the basis of the next section.

2.2.2 Gained experiences

The experiment added much to our understanding of Elucidative programming and our Elu-
cidator 1 tool, as it was our first real intimate use of the paradigm together with the tool. It
gave us several insights and revealed both good and bad sideswith the tool and the paradigm
as well — the most important is described in the following, with the ones we consider the
most important at the top.

14 Earlier work

The one long essay documentation styleWhen writing documentation using the Elucida-
tor 1, the main structuring mechanisms was that the text could be split into chapters
and section. This resulted in documentation which was structured as one long essay.

Explaining the programs in this form proved to be hard for both the writer and the
reader. Writing easily turned monotone and it was hard to keep a consistent leitmotif
in the story. It furthermore made it hard to update the documentation if sections were
dependent on each other. The reader was often burden by too much information for
some issues and too little for others.

The free structure of the text Neither the tool nor the paradigm presented limitations on
how the writer chose to structure his documentation. As mentioned above it actually
only required the writer to use chapters and sections as the basic building blocks and
nothing said about how the contents inside these blocks should be structured.

Our initial belief was that this anarchistic kind of freedomwas an advantage to the
writer, but it turned out to be a burden in many situations. The writer always had
to come up with his own structure for a given documentation task, and the resulting
structure differed a lot depending on which writer producedthe documentation. The
combination of documentation from different writers lead to readers being left with
the impression of a confusing and unstructured document.

Parallel hypertext The split window setup1 which allowed the reader to perform parallel
hypertext with documentation on the left and source code on the right proved to be an
advantage while reading the documentation. It allows the reader to keep a persistent
focus while reading the documentation and at the same time see different aspects of
the source code. It would though be an advantage, if the reader was allowed to decide
in which window he want the documentation and source code displayed. This would
furthermore make it possible to view two documentation filesat the same time, which
we experienced would be useful.

Tool support During the writing phase we found tool support, especially editor support, is
essential for a practical use of the Elucidator. The minimalsupport provided by the
editor was appreciated. Especially the mechanisms for support while inserting links
lessened the burden of creating links and furthermore minimized errors in the links.

We do, however, not believe this is enough and therefore other mechanisms for sup-
porting the developer while producing Elucidative documentation, such a direct navi-
gation via links in the editor or a more intuitive/context dependent method for insertion
of links, is wanted.

Furthermore the process of abstracting the documentation and source code in order
to populate the Data model, was found cumbersome. This was due to the fact that,
whenever the documentation or source code was changed, all the documentation and
source code files had to be abstracted in order to have them displayed correctly in the
browser. A future implementation of the Elucidator 1 would therefore benefit from a

1This can be viewed as an example on parallel hypertext which Ted Nelson explains in his works on Xanadu
[Nelson, 1999].

2.2 Initial experiment 15

feature such as incremental update of the Data model. Incremental update of the Data
model means only files that are actually change are abstracted during the abstraction
process.

The navigation window Documentation produced during the experiment was primarily read
from the browser as this had the best visual appeal and it was possible to jump between
documentation and source at will.

During this, the navigation window was often used for findingrelevant documentation
about parts of the source code. It furthermore had the effectthat source code was often
looked at in the browser rather than in the editor, since the navigation window proved
very useful while rediscovering the source code.

Loose endsAs we have described previously the writers often found it difficult to keep a
consistent leitmotif. This was especially the case when writing a part or aspects of a
explanation, since the writer often came to think of some detail or related subject he
needed to mention.

Being unable to make reference to a related subject, which was not described yet, made
it necessary to create an empty section or chapter, with onlya descriptive title. The
writer then made a reference to this “loose end” and returnedto it later.

The main problem with these loose ends where, that it was cumbersome to create and
find a suitable place for the loose end. At the other end it was difficult to keep track of
the loose ends in order to return to them.

Post documentation As mentioned above the documentation experiment took placeabout
two months after the implementation of the tool had finished.Not surprisingly, this
proved not to be the ideal time for the creation of documentation for source code.
Even though the authors themselves had implemented the components they where doc-
umenting, and a detailed design report was present, they hadbig trouble remembering
details of the implementation.

This experience showed us not surprisingly that documentation of source code should
take place while the actual implementation is being carriedout.

16 Earlier work

3
Analysis

This chapter motivates, develops and describes a model, called the MRS-model, for writing
and reading internal documentation in an Elucidative environment. This is done though a
series of steps.

First the model is motivated. We start the motivation, by presenting a study on how internal
documentation fits into the process of software development. Next we describe the partici-
pants in a software development project, and especially thetwo roles these participants find
themselves in when it comes to internal documentation. Finally, we describe how we believe
internal documentation should be utilized.

Based on this motivation we present and discuss the MRS-model for internal system doc-
umentation. Having presented and discussed the model, we next describe how we intend
to realize the model in an Elucidative environment. Finallywe compare the MRS-model to
other related documentation approaches.

3.1 Internal documentation in software development

We see documentation as a vital part of any software development process. This section
presents how we view software development and how it has leadus to our model of docu-
mentation.

Object oriented Software development is typically viewed as a iterative process which is
divided into phases. These phases represents analysis, design and implementation, and are
typically documented by a series of analysis and design documents [Mathiassen et al., 1997]
which via text and/or special notation, e.g., UML describesthe system and its intended
architectural model. These descriptions leads to an implementation of the system.

We are primarily focused on developers and their need for documentation to uphold their
program understanding. We therefore explore which situations a software developer can

17

18 Analysis

be situated in when developing software, which again means that we focus on design and
implementation.

We agree with Nowack [Nowack, 2000] in his identification of four abstract and generalized
development cases. He divide all development into eithercreation, examination, reuseand
change. In real world development the four cases is probably intermixed but here we view
them as being ideal and pure. The advantage of this view is that we can discuss each case
separately and focus on their individual characteristics.

The following will describe the four cases, what they represent and which kind of documen-
tation is produced/needed for them.

Software creation

Software creation is the traditional view on software development. When the software cre-
ation process is started, only an idea for the system exists.This idea, together with a set of
requirements for the system is used to design a model for the solution. This model is then
used to implement a solution.

Documentation during software creation Documentation in the software creation pro-
cess normally involves the before mentioned analysis and design documents. It should how-
ever, be emphasized that the documentation should not only contain a factual description of
the system. It should also document the ideas and requirements that has worked as motiva-
tions for, hopefully, rational decisions when choosing or rejecting solutions and alternatives.

A distinguishing fact from creation and the others cases is,that it is during this phase the
initial documentation, as well as the first parts of the system is created.

Software examination

Examination of software can be seen as exploration of an already existing system, with the
purpose of understanding the system in question. The developer can reach this understanding
by building up his own model, and thereby attempt to understand the software. This is typi-
cally done by reading the existing documentation, if any exist, or by exploring the software
directly, possibly with the help of reverse-engineering tools. The model which represents the
developers view of the software is then used to take some action, e.g., to perform a change,
evaluate its quality/usability in a giving situation or perhaps to reuse it in another system.

Documentation during software examination In the examination of software, the exist-
ing documentation plays an important role as it can be used tosave time for the developer
while trying to understanding the software. This, of course, requires the documentation to
be accessible and understandable for the developer.

3.1 Internal documentation in software development 19

Software examination is the only case where the developer isactually reading documenta-
tion, since the others cases focuses on the developer as a producer of documentation. The
actual examination might not directly result in documentation, but it provides input to deci-
sions made in the other cases and is therefore considered important.

Software reuse

Software reuse can be characterized as the reuse of a (sub)system in the composition of a
system. It implies that examination has been performed as the developer need to have an
understanding of the system to reuse.

Documentation during software reuse Information on how to do the actual reuse is found
through examination of the system to reuse. In a ideal world the documentation of the system
to reuse is already present and may even contains information on how to reuse the system.
Hence, the documentation created when doing the actual reuse is not about documenting the
system that is being reused, but about documenting why and how the reuse is actually done.
The documentation should therefore focus on the resulting system and its interface to the
reused component.

Software change

Change in software covers activities typically associatedwith software evolution, that is
when developers change one version of their system to another version. Similar to reuse it
implies examination, as developers need to have an understanding of the system they want
to change together with a reason for why they want to change it. Change differ from reuse
as it is more than just composition of two systems. Instead itconsists of decomposing the
existing system into parts. Some of these parts are then removed and new parts are created.
The resulting parts is then composed into a new system.

Documentation during software change It is not enough in all situations to see only the
result of changes, i.e., the description of the current system, tomakechanges. Documentation
which describe past solutions, their alternatives and rationale is equally important.

Documentation of the rationales for a change is important because it stateswhy something
was changed. This information can be used to build and preserve developers understanding
on why the system is currently implemented as it is. Description of solutions and alternatives
only stateshowparts of the system is or could be realized. Thus when documenting changes
it is important to not only document the chosen new solution,but also its alternatives, to-
gether with the motivations and rationales for the change.

20 Analysis

Discussion

This section has presented our views on software development, and how documentation
should be created when viewing development in their four pure cases: creation, examination,
reuse and change.

We found that all cases has a common denominator. They are allbased on a rational design
process similar to the one described by Parnas and Clements [Parnas and Clements, 1986]
in which every decision is based on good reasons. Every solution a developer has selected
or declined, is therefore to be based on a rational discussion which presents the arguments
for and against the decision. Similarly, the examination ofsoftware becomes more fruitful
when documentation is written with a clear distinction between rationales and solutions. This
founding will later be used in the presentation of our documentation model.

Another aspect in finding how a developer needs documentation is in examining how he
writes and read documentation. This will be discussed in thenext section.

3.2 Limiting the number of participants

In a traditional software development project a number of different participants are involved,
e.g., senior managers, project managers, software developers, customers and end users [Press-
man, 1997]. The problems that arise when many people work together on the same software
project are relevant for the field of software development ingeneral. But since we focus on
internal documentation we only considertechnical software developers. However some of
the general problems are still relevant in the context of internal documentation, e.g., does the
project managers see the same need for documentation as the software developer? Given the
focus for our work we choose to ignore these problems.

Instead we choose to focus on a small and generic set of roles which applies to the field
of internal documentation. This focus allows us to discuss the involved participants, with-
out muddling up the study with considerations on how relationships between the manager,
customer and the software developer will effect the internal documentation. We remind the
reader that internal documentation is documentation providedby software developersfor
software developers in a development team, and therefore donot have the same economical
parameters as, e.g., user documentation, which will typically be a part of the product to be
sold. We find it legitimate to leave out considerations on therelationship to, e.g., managers,
since their main concern will be the documentation which is to be part of the final product. It
furthermore has the noteworthy consequence that it will probably be the sole responsibility
of the software developers to motivate the writing of the documentation.

We divide the software developers working in a development team into two roles;writers
andreaders. We define:

The writer to be the software developer that, during creation or reuse of some new software
or during changes of existing software,writes internal documentation.

3.2 Limiting the number of participants 21

The reader to be a software developer which, during software examination, examines and
herebyreadsinternal documentation in order to comprehend an existing system that is
to be changed or reused.

It is important to recognize that software developers play both roles in the development team
and often at the same time.

3.2.1 Characterizing the reader and the writer

In characterizing the reader and the writer we first look at their technical skills. Gener-
ally, participants in a development team will have different technical skills. Some might
be highly educated with master or ph.d. degrees in computer science, some might have
shorter programming educations and some again might be domain specialists, e.g., accoun-
tants or physicists, with additional programming education. This has the implication that
terms which are familiar for one type of participant in the development team might be unfa-
miliar for another type of participant. An example could be that the term “observer pattern”
is likely to be well known by many computer scientists but maybe unknown to a domain
specialist like an accountant.

Besides differences in technical skills, the software developers is likely to have different lev-
els of experience with the system being developed or with thetype of system in general.
Other developers are the ones that originally created the software system at hand and will
therefore understand the system much better than a softwaredeveloper just assigned to the
project. Some might be very experienced with a specific part of a large system but unexperi-
enced with other parts of the system.

Despite the differences in level of experience and technical skills we believe that some com-
mon denominator of experience and skill exist. It is therefore not futile to write documen-
tation which match all software developers with different experiences and skill level. The
developer should however, still try to take the differencesinto account when the documenta-
tion is written.

Another matter is the writing skills of the software developer. Given that our focus is on
the reader of the documentation, we make few assumptions about the writer. We recognize
that ideally the writer should produce documentation of high quality. This would require the
writer to have good writing skills and know and use pedagogical principles.

We see two reasons for this not being a feasible option: First, we do not believe that the typ-
ical software developer has particularly good writing skills, or know pedagogical principles
that well. It is not an impossibility that he has these abilities, but we can certainly not require
it from him. Second, we do not believe the writer will be especially motivated to spend a lot
of time writing good, pedagogical correct, documentation in a typical development situation
where he is under pressure. Today it is a problem to get the software developers to writeany
documentation at all.

As to the role of the writer, we therefore choose the lowest common denominator; The writer
is unmotivated for writing documentation, he has no specialwriting skills and no knowledge

22 Analysis

about pedagogical principles. When writing documentationthe writer would furthermore
typically be prejudiced to believe that the reader has the same technical skills and the same
level of experience with the system as he has.

The other role a software developer can take in a developmentteam is the role of the reader.
We believe that it in general is difficult or even impossible to characterize readers uniformly,
but we do find some common characteristics for the readers. Weagree with Horn [Horn,
1992] in that there are two tendencies in readers: Holists and serialists.

Holists are readers that like to have a good knowledge of the big picture before proceeding
to details. They read the documentation in pieces here and there. They experiment,
make many hypothesizes and examine them.

Serialists like to read the documentation step by step from start to end.They like to under-
stand one detail before proceeding to the next.

By realizing that readers can have tendencies toward being holists as well as serialists, the
internal documentation should support a “from A to Z” story about a subject as well as a
large number of references to related subjects.

The readers are also differentiated on the type of work they do. As described in section 3.1
on page 17 we see four different cases of software development: creation of new software
and reuse, change and examination of existing software. We acknowledge that the reader
has different need for documentation depending on the type of software he is examining.
For example when examining how to reuse some part of an existing piece of software the
reader does not want detailed documentation of all previousversion of the software. Instead
he would be more interested in documentation of other attempts to reuse this specific part of
the software.

This all together leaves us with a somewhat unclear and vaguecharacteristic of the readers.
They have different need for the documentation given their technical skills, their experience
with the system, their tendency towards being either holists or serialists and the type of
examination they are performing. Never the less, these factors will have to be dealt with in
order to make the system usable for the reader.

3.3 Utilizing documentation

In this section we go into detail with our focus of this project. Others have already praised
the effect of documentation of software, [Knuth, 1984], [Sametinger, 1992] and [Nørmark,
2000b]. We agree with these works in thatif proper system documentationis written it
will heighten the quality of the software. That is, the documentation will encourage the
software developer to reflect on his own work and hence lessenthe number of bugs and
probably also make the software more comprehensible. At theother end we agree thatif the
documentation is actuallyread it can be used by software developers to reuse and change the
software properly.

3.4 The MRS-model 23

The problem of utilizing the documentation is twofold: First, documentation is rarely written
in the first place. Second, if the documentation is actually written it is our impression that it
is seldom read by others that the ones who original wrote it [Fischer and Jensen, 1990]. We
see two main of reasons for these two problems: First, the software developer will not be mo-
tivated to write documentation if it is unlikely that the documentation will be read. Second,
in our experience, it is frustrating to read documentation that does not suite the reading style
(holistic/serialistic) of the reader, i.e., it is frustrating to read a lot of documentation in order
to get a little amount of relevant information. Hence, the main motivation for this project is
to utilize documentation for the reader in order to preservethe quality of the software.

By utilizing documentation we mean the software developer in the role of thereadershould
benefit from the documentation. Therefore the documentation should match the need of the
reader, so the reader will be able to have his questions answered fast and easy. Preferably the
software developer should have easy access to the documentation, since this will encourage
him even more to write documentation.

How do we then create and provide documentation that is usable for the reader and writer ?

We start by improving the structure of the documentation. Animproved structure affects
both the writer and the reader. The writer can use the structure to focus his writing as the
structure “guides” him. As for the reader, by having a commonstructure on documentation
we can present to him a unified presentation of the contents. This enable the reader to faster
comprehend and see what a piece of documentation is about.

By having a structure on documentation we furthermore have the possibility that the Elu-
cidator tool can provide better navigation facilities and querying on the documentation. This
makes the documentation more accessible for the reader as hecan search for related docu-
mentation and explore other documentation easier.

3.4 The MRS-model

As discussed in Section 3.1 on page 17 we see software development to be based on a ratio-
nal design process, in which every decision is documented bythe developer by stating the
motivations, rationale and selected/declined solutions.

We therefore introduces ourMRS-modelwhich categorize all internal system documentation
into three deliberative1 categories:motivation, rationaleandsolution description. Figure 3.1
on the following page illustrates the categories and their basic relationships.

Motivation is a description of a incentive, that gives occasion to a creation, reuse or change
in a system. A typical motivation for a creation is the idea and requirements speci-
fications. For change it can be a report about an error, or simply a fresh idea for an
improvement for the system. All of these either influences orconstrains the develop-
ment of a system. Because of this, motivations acts as a premise to rationales.

1Deliberation: A discussion and consideration by a group of persons of the reasons for and against a measure
[Merriam-Webster, 1997].

24 Analysis

documentation
Internal

selects

RationaleMotivation Solution Description

declines

premise

Figure 3.1: The MRS-model.

Rationale contains the arguments and other rationales for a selectionor declination of spe-
cific solutions. Rationales should mention a number of motivations together with ar-
guments for a chosen solution as well as alternative solutions that has been declined
for some reason.

Solution description are factual description of the solutions that constitute the software sys-
tem. These descriptions can have many different forms, e.g., UML diagrams, literate
text etc.

The division into these deliberative categories is furthermore inspired by [Rüping, 1998]
and [Sanvad et al., 2000]. Rüpring and Sandvad et al. also state that the description of
actual solutions and their rationales is equally important, but possible subjective arguments
in rationales can muddle up a description of a solution.

Rationales is, as mentioned before, important when trying to build a complete understanding
of the system. However as noted by [Parnas and Clements, 1986], if a developer just needs
to use a specific part of the system, he is only interested in finding a description of the system
explaining how it actually works and not in reliving the complete history of the system.

The opposite situation occurs when a developer wishes to change a system. In order to have
the full understanding of the system it can be necessary to understand the evolution of the
system in detail. In this situation, having documentation of the changes made to the system,
will become important.

The categorization of documentation is not just a logical categorization, but also physical.
A physical separation of documentation into motivations, rationale and solutions will help
support the writer in focusing his writing, but even more important, help readers in finding
correct information and support both holists and serialists.

3.5 Realization of the MRS-model

This section describes how the MRS-model presented above isintended to be realized. We
do this by first describing two structuring methods which hasserved as inspiration to our
choice of how to realize the MRS-model. We then relate these to the experiences gained
during the initial experiment (see Section 2.2 on page 13 fordetailed information on this
experiment and its results). Having done that, we describe the three main components in the

3.5 Realization of the MRS-model 25

realization of the model, namely documentation nodes, relationships in documentation and
navigation in the documentation.

3.5.1 Documentation structure

In 1965 Tracey, Rugh and Starkey presented a method for doingSequential Thematic Orga-
nization of Publications, also known as the STOP method [Tracey et al., 1999]. One of the
characteristics of the STOP method, is that the documentation is divided into small stories,
calledTopical Modules. Tracey, Rugh and Starkey, gives the following descriptionof these:

Because it has obvious boundaries (both physical and editorial) and an ap-
propriate capacity, the self-contained theme of two-page proportion becomes
a prescription for thematic coherence that is more objective to the author and
reviewer, while being compatible with the natural behaviorof the author and
reader.
[Tracey et al., 1999]

A Topical Module is normally structured in a predefined way. It consists of:� a topic title, that characterize and introduces the contents of the Topical Module, and
not merely categorize it.� an abstract, which will serve as a thematic window for the reader.� a left side page with text� a right side page with illustrations and/or text. Each text page contains no more than
500 words, yielding a maximum Topical Module length of 1000 words, if no illustra-
tions are used.

Another approach for structuring documentation, is Structured Writing and the Information
Mapping method [Horn, 1999]. Structured Writing relies on asystematic and complex view
on how to create and structure documents. It relies on two main components:information
blocksandinformation types.

Information blocks are considered the basic units in the approach. More than 200 common
information block has been defined, for usage in different document types. Examples of
information blocks are: table, fact, rule, decision table etc. Information types are then con-
sidered to be clusters of information blocks. Structured Writing defines seven information
types: structure, concept, procedure, process, classification, principle and fact.

Another characteristic of Structured Writing is that it findit important to have properly de-
fined topics for each block or cluster of information. This isimportant in order to help the
reader quickly scan the contents and to understand the structure of the document.

According to Horn [Horn, 1999], the Structured Writing method has a number of similarities
with the STOP methods, but at the same time it is very different. The two main similarities

26 Analysis

between STOP and Structured Writing, is that they“were both interested in better compre-
hension on the part of the reader, and both identified the method of writing as part of the
problem” [Horn, 1999].

We find both of the approaches has similarities to our work as well. The biggest difference
between STOP and Structured Writing is the level of structuring detail the methods provide
for the writer to use when writing documentation. The STOP method only provides topic,
abstract and the usage of two-page chunks, while, as mentioned above, Structured Writ-
ing provides both a number of information blocks and types. As this thesis will show, our
approach lay somewhere in between these two approaches.

The documentation for the STOP method [Tracey et al., 1999] is actually written by using
the STOP method. This has given us firsthand experience with the method as a reader, and
this experience is positive. The short stories made the documentation easy and comfortable
to read, while the topic titles and abstract helped to provide a good overview of the docu-
mentation.

The structure of a STOP document is very different from the structure of the documentation
produced in our initial documentation experiment (see Section 2.2 on page 13 for details on
this experiment). However, one of the results of the experiment complies with the STOP
method: Neither the writer nor the reader liked one long essay.

Another result of the experiment showed that with the structuring mechanisms used, the
writer himself always had to come up with a structure for a given piece of documentation,
and, while reading, this left the reader with the impressionof “no structure”. This result fits
well with both the STOP method and Structured Writing.

The two above mentioned methods and the lessons learned during the mentioned experiment,
has inspired us to base the realization of the MRS-model on small self-contained nodes, tied
together by links. In other words, we see it as natural to use hypertext to realize our model.
Our definition and understanding of hypertext is the one presented by Jeffrey Conklin in
[Conklin, 1987].

3.5.2 Documentation nodes

As mentioned, our documentation will be divided into hypertext documentation nodes. All
though the source code is not considered to be documentationit also have to be a part of
the hypertext network since we need to create links to it. We therefore think of source code
entities (typically classes) as source code nodes. These nodes can be thought of as implicitly
defined nodes. The documentation and source code nodes, as well as their relationship are
illustrated in Figure 3.2 on the next page. The dashed line indicates that the documentation
and the source code is physically separated. This comply with the third requirement for
Elucidative Programming [Nørmark, 2000b], stating that the source code must be kept intact
without surrounding documentation.

Although the source code are considered important, the mainfocus of this project is the
documentation to be produced. Therefore, when referring toa node or hypertext node in the

3.5 Realization of the MRS-model 27

rest of the thesis, it should be considered a documentation node, except when it is explicitly
stated otherwise.

C

CD

D

D

D

C

Figure 3.2: Documentation and source code nodes. The dashed line indicates that the documentation
and source code is physically separated as required by the Elucidative Programming
paradigm.

Placement of the documentation nodes in the MRS-model

The MRS-model states that the documentation should be separated both physically and logi-
cally in deliberative categories. We have furthermore decided to separate our documentation
nodes in hypertext nodes with a focused content. This leads us to a natural categorization of
the documentation nodes.

We categorize the documentation nodes, such that they have afocused contents that apply
in one of the deliberative categories; Motivations, Rationales and Solution descriptions, i.e.,
the contents of a documentation node will be either a motivation, a rationale or a solution
description.

This leads us to introduce a node type for the documentation nodes. This type indicates the
contents of the documentation node, e.g., a documentation node of type “Requirement” will
have a motivating content. It will be possible to have several node types in one delibera-
tive category. This will be discussed in further detail in the Design chapter, specifically in
Section 4.2.1 on page 46.

Internal structure of the documentation nodes

Inspired by the STOP method [Tracey et al., 1999], we urge, but does not demand, for the
writer of documentation nodes to keep them short (no more than 1000 words and hopefully
less), in order for the nodes to be manageable for the reader.If a subject to be documented
is to big to fit in a documentation node, it can probably be divided into smaller nodes, which
can then be connected by links.

28 Analysis

Furthermore, also inspired by the STOP method, the writer should strive to make the nodes
as self-contained as possible, meaning that whenever possible a node can be read without
having to read other nodes first. The reason for this, is that it is far easier for the reader
just to read one node, instead of having to switch back and forth between two or more nodes.
This should however not restrain the writer from creating links to documentation nodes when
needed, since it is also important that the information in a node is focused on the subject and
without too many side-anecdotes.

Besides the textual guidelines to the contents, the documentation nodes can be characterized
by their internal structure. This structure is prescribed by the type of the node, i.e., by
the deliberative category. This internal structure of the documentation node is illustrated in
Figure 3.3. The structure of a documentation node has two parts: The fixed part and the free
part.

Topic:

Keywords:

Author:
...

Abstract:

The fixed part

The free part

MRS-model node type

Figure 3.3: An illustration of the main internal structure of a documentation node. The fixed part
contains common general information which is applicable for all documentation nodes,
while the structure of the free part depends on which MRS-model node type is applied to
the documentation node.

The fixed part can be viewed as a header for the node. The purpose of this partof the node
is to provide the reader with a set of common general information for all nodes. It
could, e.g., contain information such as the topic of the node, an abstract for the node,
the author of the node etc.

The free part The textual contents of the free part is at largely decided bythe writer. It must
however follow the structure of one of the categories of the MRS-model mentioned
above. This structure is specified by the node type, and therefore all node of a specific
type have a common structure for the free part. As an example,a documentation node
in the Motivation category, could have the type “Requirement” which means that this
particular node is documenting some requirement posed to the software project.

In the Design chapter (specifically Section 4.2.3 on page 52)the exact contents of the fixed
part, as well as the node types of the MRS-model will be presented, described and discussed
in detail.

This characteristic of the documentation nodes complies with Conklins description of hy-
pertext nodes [Conklin, 1987]. Conklin state that hypertext nodes in most cases expresses

3.5 Realization of the MRS-model 29

a single concept or idea, and they are typically smaller thana traditional text file (although
nothing prevents the writer from making the nodes big). He furthermore describes that node
may have types, and these are particularly useful to differentiate the nodes when they have
an internal structure, as it is the case with our documentation nodes.

3.5.3 Relationships in documentation

In the MRS-model described in Section 3.4 on page 23 the Rationale category has apremise
and itselectsand/ordeclinessolutions. In other words these three words describes the rela-
tionships between the three categories. In order to realizethe model, we therefore need some
mechanism to express this.

As we are using hypertext to realize the MRS-model, relationships between nodes will be
expressed as links. In the following we will describe the most important aspects of how
links are to be used in realizing the MRS-model. This is done by characterizing a number of
properties of the hyperlinking concept we use.

Roles on links

From the description of the relationships in the MRS-model above, it is clear that it is not
sufficient to just make links between the documentation node. We also need to give these
links a meaning (such as premise, selects and declines).

Links in hypertext can have attribute/values pairs placed on them [Conklin, 1987]. We use
this feature to introducerolesto our links. The roles on our links is used to express the kindof
relationship two documentation nodes is involved in. An example could be that a Rationale
node makes a link with the role “premise” to a Motivation node, and thereby expressing that
the Motivation node is a premise for the Rationale node.

The number of link roles is not limited to the three before mentioned link roles, as it can
be useful to have more specialized link types when expressing the relationship between two
nodes. For example a link type which states where a solution description is implemented in
the source code could have the role: “implements”. In this report we will present a number
of link roles which will be implemented in the Elucidator tool, but the writer of the documen-
tation is free to define new link roles if the need arises. The link roles presented in this report
is described and discussed in the Design chapter (specifically in Section 4.3.2 on page 57).

Anchoring

All links in our model is considered to be directional. The Elucidator tool should however,
provide navigation functionality to support going backwards along links.

Both the source and the destination anchor of a link is considered to be a region. In the case
of the source of the link, the region will be a contiguous set of characters placed between the

30 Analysis

begin and end link tags, and in the case of the destination of the link, the region will be either
a whole documentation node, or some part of it such as a section.

Documentation nodes always has a unique id which is to be usedwhen stating the destination
of a link. Specific parts of a node, such as sections, can also be given a id to be used in
anchoring. This id is used as a postfix to the nodes id to uniquely identify the specific part.

Implicit and explicit links

Links can be created in two ways: Explicitly or implicitly. Explicit links are links manually
created by the writer, while implicit links are created automatically by the system. In the
following we will discuss explicitly and implicitly created links in detail.

Explicit links: The first method for creating links is to let the writer make themexplicitly.
We believe the writer will insert these links as the result ofa reflection made while
writing the documentation, and they will therefore expresssome comprehension held
by the writer at the time the link is created. If this comprehension is transferred to the
reader, the links will be of value to him. Therefore, the explicit links is potentially
valuable links for the reader.

Since we believe that the explicit links are valuable for thereader, we need to encour-
age the creation of these links. A potential problem with thecreation of explicit links
are that they need to be created by the writer, while it is mainly the reader who bene-
fits from links. A straightforward solution to this problem could be to make the links
useful for the writer as well. This could, e.g., be done by using the links to provide
navigation facilities, which can then be used by the writer,while he is developing the
software. An example of this could be the Navigation Window found in the original
Elucidator tool [Christensen et al., 2000]. The problem of navigating the MRS-model
will be discussed in Section 3.5.5 on page 32. Another potential problem with the
creation of explicit links is the burden of the work involvedin the creation of the links.
This problem can however be relatively easy lessened by providing good and easy
editor support for the task.

Implicit links: As stated above a number of potential problems exists with the explicitly
creation of links. A solution to these problem could be to create as many of the links
as possibleimplicitly. This means that we let the system, instead of the writer, create
the links.

As nice as this sounds, creating links implicitly is not without problems. First of all,
since the links are created by the system and not by the writer, it is not likely that the
comprehension held by the writer will be expressed and transferred to the reader in
the same degree as we believe it will by creating explicit links. This results in implicit
links being probably less valuable to the reader. Secondly,it is not an easy task to have
the system determine when a links is appropriate, and to whatother node it would be
appropriate to link to.

3.5 Realization of the MRS-model 31

Realizing this, we believe that implicitly created links are not meant to replace explic-
itly created links, but rather to compliment them. An example of how this could be
realized would be to link keywords in a node to other nodes which have this specific
keyword in either its topic, abstract or keyword list.

In conclusion, this means that implicitly links can be characterized as links who are
meant to coexist with explicit links. They are created by thesystem and they tie nodes
together whichprobablyhas some coherence.

Organizational and referential links

The final characteristic of the links used in the MRS-model, is that they can be divided into
two categories: organizational and referential.

The idea for these two categories is inspired by Conklin [Conklin, 1987]. The main idea
is that organizational links are used to connect parent nodes with its children nodes. This
results in a hierarchical devision of the nodes in a subgraphwithin the hypertext network,
and can be used to express, e.g., that certain nodes documents details of other nodes.

The referential links is by far the most used links in the MRS-model. These links are used to
tie the nodes together in a non-hierarchical manner. Examples of this category of links could
be the premise, selects and declines links discussed above.

3.5.4 The usage of relationships to maintain the history

As mentioned in Section 3.1 on page 17 documenting the rationales for a change is important.
This means that the history of a program is to be retained in the MRS-model. In order for this
historical information to be of value to the reader, it must somehow be possible to express it
while writing the documentation and/or source code.

A writer would like to precisely state in his rationale description what is introduced and what
is deprecated by a change. To do this we see it as natural to usethe roles on links to express
either the introduction or deprecation of a node, similar toselects and declines as described
above.

Furthermore it would be naturally to be able to state which specific version of a node a
link points to. The link could contain an attribute that contained version identification for a
node which could be used to access the specific instance of a node through a version control
system.

Figure 3.4 on the next page shows an example of a documentation node (D) which deprecates
some documentation (A) and source code (C). It also introduces a new documentation node
(B) and a newer version of the source code (C’). We have thoughlimited our selves in
this thesis to only use the roles to express history on links,and do therefore not take into
consideration the problem of versioning.

32 Analysis

D

C

B
A

C’

introduces v. 1.0 deprecates v. 1.6

deprecates v. 1.3
introduces v. 2.0

PastPresent

Figure 3.4: Maintaining history with links. A documentation node can use version numbers on links
to model which specific version of node is deprecated (part ofthe past) and which ver-
sions is introduced (part of the present)

3.5.5 Navigation in documentation

One of the problems arising by using hypertext to realize theMRS-model are what Conklin
describes as thedisorientation problem[Conklin, 1987]. Since hypertext allows you to orga-
nize your documentation in a somewhat complex manner, it canbe difficult to know where
you currently are in the network, and how to get to some other place in the network. Hence,
you got a disorientation problem. Our main medicine to solvethis problem is to provide
navigation facilities to the reader. This section describes how navigation is to be realized in
the MRS-model.

One of the problems of the disorientation problem, is to maintain the context of what you
are reading when you follow a link. The setup in the current Elucidator tool help lessen this
problem, since the two side-by-side windows allow you to look at both documentation and
source code at the same time. See Figure 2.3 on page 12 for an example. A problem with this
setup however exists. If you follow a documentation link from one piece of documentation
to another, the original implementation of the side-by-side windows will not help you, since
you can only view one piece of documentation at the time.

To improve on this we remove the strict separation with documentation on the left and source
code on the right. Instead, the reader are to chose in which window he want to have the doc-
umentation or source code viewed. This will allow him to, e.g., look at two documentation
nodes at the same time, and thereby keep the context he were inwhen he activates the link.
This can introduce a higher mental load when following a link, as the reader now has to
decide if he want to show the contents of the link in either thecurrent or opposite window.
We feel though, that with small means we can reduce this load to minimum. How this is
specifically realized can be seen in Section 4.4.2 on page 64.

Another problem with navigation in hypertext, also raised by Conklin [Conklin, 1987], is
when the reader are to decide if he wants to follow a link or not, he typically do not have

3.6 Related documentation approaches 33

much information about the contents of the destination of the link (he can typically only see
the name of the link). This makes the job of choosing to followa link or not uncertain, and
the reader will almost certainly end up following links to documentation with no interest for
him.

To solve this problem, the realization of the MRS-model should provide to the reader, in-
formation about the destination of a link, before he actually navigates to the destination of
the link. Examples of the provided information, could be thetopic or the abstract of the
destination node. He can then, with regard to this information, choose if he wants to follow
the link or not.

Views on documentation

Another way to provide the reader with navigation facilities is by providing what we call
views. A view can be seen as a subset of the documentation nodes in the hypertext network,
presented in a manner so only certain elements from the node,such as the topic or the ab-
stract, is showed. The view furthermore contains a number ofimplicit links which takes
the reader to the actual nodes. This notion of views is very similar to what Nørmark and
Østerbye describes as anoutline presentation[Nørmark and Østerbye, 1995].

We see two basic types of views: the Context views and the Index views.

Context views: As the name implies, Context views are views which show information on
the context of a node. An example could be a view which show thetopic and abstract
of all the documentation nodes linked to by a specific documentation node. One could
also imagine that the role of the links is used to refine the Context view. A Context
view is always invoked on one specific documentation node, oron a specific element
in a documentation node.

Index views: Index views are views which show some subset of nodes from across the
whole hypertext network, according to some specified parameter. Typical examples
of a index view could be a table of contents, or a list of all documentation nodes in the
Motivation category.

No finite number of views exists. In this thesis we will present a number of views which will
be implemented in the Elucidator tool. The views presented in this report is described and
discussed in the Design chapter, specifically in Section 4.4.3 and Section 4.4.4 on page 68.

3.6 Related documentation approaches

In the previous sections we have presented the principles ofour MRS-model and how these
are to be realized through the use of documentation nodes with short focused contents and
links with roles. In this section we present a number of related approaches within software
documentation. These all try, at various degrees, to maintain quality of software through the

34 Analysis

use of documentation. The purpose of this presentation is tounderline the differences and
similarities between our model and these related approaches.

3.6.1 Object-oriented Analysis and Design Documents

In a software development process that follows the guidelines of Object-oriented Analysis
and Design [Mathiassen et al., 1997], the software developers produce a number of different
documents, e.g., requirements specifications, analysis documents, design documents and test
specifications. These documents, together with the processthat created and use them, all
seek to maintain the quality of the software, with the exception that these documents ensure
quality in a wider sense, i.e., they target the product that is to be delivered to the costumer as
well as quality of the process — not just the software source code. An example could be, that
they address qualities as conformance with specifications,good performance and adherence
to schedules.

The documents produced during object-oriented analysis and design also differ from internal
documentation (as produced in an Elucidative environment)in that they address the software
at a different level of abstraction, as illustrated on Figure 3.5. An example could be that
they describe conditions in the problem world and not details, e.g., on how some logging
mechanism is implemented. Still, there is some overlap between internal documentation and
a design document, since these both describe the architecture of the source code.

Anlysis doc.

Design doc.

Internal doc.

Source code

Level of abstraction

Figure 3.5: Internal documentation compared to analysis and design documents at their different
levels of abstraction.

In our opinion the traditional analysis and design documents have two important problems:
First, they are often documents with no proximity or relations with the actual source code.
This makes it difficult to maintain cohesion between the documents and the source code
as the source code evolves. Second, they do not contain the knowledge gained at the im-
plementation, which effects the implementation. Both these problems are targeted by the
MRS-model and internal documentation in an Elucidative environment.

3.6 Related documentation approaches 35

3.6.2 Literate Programming

As opposed to the documents from object-oriented analysis and design, Literate Program-
ming makes documents that in more than one sense are more close to the source code. First of
all, since the source code resides inside the documentationthere is a high coupling between
the two. As we described in Section 1.2 on page 3 this proximity in literate documents makes
it easy to keep the documentation and source code coherent. Secondly, the documentation
produced by Literate programming describes the actual source code.

A number of different variations of Literate Programming exists — Elucidative program-
ming being one of them. If we examine the original Literate Programming as suggested by
Knuth [Knuth, 1984], one of the major problems is that is based on a paper representation,
which makes it cumbersome to navigate from one part of the documentation to a related part.
This has been improved upon in one of the of the Literate variants. Markus Brown et. al. has
suggested [Brown and Childs, 1990] and created [Brown and Czejdo, 1990] an interactive
environment for Literate programming, which apply generalhypertext concepts in order to
make indexes with hyperlinks between related parts of the documentation.

The hypertext idea is extended by Kasper Østerbye [Østerbye, 1995], where the documenta-
tion and the source code are placed in hypertext nodes. In this tool the proximity is ensured
with hyperlinks like the Elucidative environment. Experiences from small examples con-
ducted in [Østerbye, 1995] show that both motivations and rationales appear next to the
description of the solutions, which support the basis of ourMRS-model. Although the tool
offered hyperlinking these all had to be inserted manually which made the tool cumbersome
to use.

For all of the presented Literate variants we see a number of problems. The main problem
is that they all, although in different ways, change the inherent structure of the source code.
Either by letting the source code be a part of the documentation or splitting the source code
up in small hypertext nodes. The advantage of this approach is that in this way it is possible
to emphasize some subpart of a entity in the source code, e.g., a subpart of a method. On
the other hand, the problem with this approach is first of all that the language or tool mech-
anisms to control this modularization complicate the documentation process. Furthermore,
the source code is so tightly entwined in the documentation tool that it becomes difficult to
use other development tools on the source code. By moving both the reader and the writer
away from the tools and mechanism they are accustomed to, such as, e.g., their favorite
editor, we move them away from writing documentation.

Although experiments show that Literate documentation is used [Fischer and Jensen, 1990],
these experiences appear to be from a small and homogeneous set of developers. Hence we
still have doubts on the general usability of traditional Literate Programming.

3.6.3 Object-oriented Documentation

In 1994 Johannes Sametinger suggested a documentation scheme called Object-oriented doc-
umentation [Sametinger, 1994]. This work contributed in two main areas: The first area re-

36 Analysis

sulted in a suggestion for a classification of system documentation. The second area focused
on reuse of documentation, by using inheritance. In the following we only consider the first
area.

As mentioned the first area of contribution resulted in the suggestion for a classification of
system documentation, where system documentation is the documentation used by software
developers. This classification divides the documentationinto static and dynamic documen-
tation on one axis, while overview, external and internal documentation is placed on the
other, yielding six different categories of documentation. This is shown in Figure 3.6.

Overview External view Internal view
Static view Static overview Class interface

description
Class implemen-
tation description

Dynamic
view

Dynamic
overview

Task interface de-
scription

Task implementa-
tion description

Figure 3.6: Documentation scheme for object-oriented software systems [Sametinger, 1994].

We believe that documentation made in an Elucidative environment (internal documentation)
can be successfully used in all six categories. However someof the categories may be better
suited that other. As an example, documentation to be placedat the internal level, both
dynamic and static, seems to fit well with our notion of internal documentation written in an
Elucidative environment. We do however, recognize that some other types of documentation
may be better suited for some of the categories. Most obviousis the external documentation
where interface documentation system such as JavaDoc couldbe used with success.

3.6.4 The gIBIS hypertext tool

A tool that uses a model similar to the MRS-model is the gIBIS tool, created by Jeff Conklin
and Michael L. Begeman [Conklin and Begeman, 1987]. gIBIS isa hypertext tool to support
team design deliberation, using the IBIS method.

The IBIS method sees a design deliberation as a conversationamong the participants. The
model of these conversations focus onIssues. The issues can havePositionsthat solves the
issue, with possibly many mutually exclusive positions. The positions can in turn have one
or moreArgumentsto support or object to that position. This is illustrated inFigure 3.7 on
the facing page.

gIBIS works by supporting the creation of a network of hypertext nodes, being either a issue,
a position or a argument. Typed hyperlinks are inserted between the nodes to state the role
between the two nodes. The gIBIS tool works by one user startsa deliberation of a issue
by adding a issue node to the network. The users of the gIBIS system then adds a number
of positions as a response to the issue raised and arguments to support or objections to the
position. The network then be navigated using a graphical representation as well as indexes.

3.6 Related documentation approaches 37

ArgumentSupports
Objects-to

Responds-to

Specializes

Questions

Is-suggested-by

Position

Generalizes

Issue

Figure 3.7: The set of legal rethorical moves in IBIS [Conklin and Begeman, 1987]. This is equiv-
alent to the nodes and links in gIBIS, where the boxes are nodes and the arrows are
hyperlinks.

The IBIS model resembles our MRS-model, where the Positionsin the IBIS model are equal
to Solution Description in the MRS-model. The arguments equals the Rationales. The Issues
resemble the Motivations of the MRS-mode, since they both initiate the construction of a
position/solution description.

The main difference between the Elucidator tool and the gIBIS tool is focus of the tool.
The gIBIS tool tries to support and control a design process,while the Elucidator focus on
internal documentation.

38 Analysis

4
Design

This chapter present the detailed design for how the MRS-model is implemented in the Elu-
cidator environment. The Elucidative environment presented to establish a foundation for
the design and implementation. Having established a foundation, we move on to describe
the three main issues of the implementation. First we describe how the documentation nodes
is designed and implemented. Next, we focus on the links. Finally, we describe how the
navigation facilities and the views are designed and implemented.

4.1 The Elucidative environment

The design and implementation presented in this chapter is build upon a environment which
was designed and implemented in the first part of this master thesis. The main components
of this environment is already presented in Section 2.1 on page 9. Further design details is
given in Chapter 4 of [Christensen et al., 2000].

In this section we will focus on describing the Elucidative environment of both the Elucidator
1 and 2, as well as the terminology used in these environments. This is done in order to
provide the reader of this thesis with background information on the environment.

The rest of the section is structured in the following manner: First the two languages used by
the Elucidators is presented. Secondly, the entities contained in these languages is defined.
Following this, the tools present in the Elucidator 1 and 2 environment is described. Next,
the changes which will have to be made to the different component of the Elucidator 1, in
order to implement the MRS-model and thereby evolve it to theElucidator 2 is presented.
Finally, we discuss the work flow when working using an Elucidative environment.

Other minor components/concepts than the ones described inthis section exist in the Elu-
cidative environment. If important, these will be dealt with in their appropriate section of
this design chapter.

39

40 Design

4.1.1 The languages in the Elucidative environment

In the Elucidative environment two languages is handled: Java and the Edoc language.

The Java language:The Java language is the only programming language supported in
both the Elucidator 1 and 2 tools. The role of the Java language in the Elucidative
environment, is to serve as the development language used bythe software develop-
ers to implement the specific software project they are documenting in the Elucidative
environment.

An important point concerning the Java language, is that every entity, such as a classes,
methods or fields, in the source code must have unique names. These unique names
are to be used when creating links from the documentation to aspecific entity in the
source code. We call this unique name theidname. As described and discussed in
[Christensen et al., 2000, pp. 27–31] a number of problems arises when creating the
idname, problems which we solve by introducing a naming standard for Java entities.
We will not go into detail concerning this naming standard, but just state that it is also
used in the Elucidator 2 tool.

The EDoc language:The EDoc language is a XML based mark-up language which is used
to write the documentation. The purpose of the EDoc languageis twofold: First, it
provides a language which the writer uses to express structure and links in the docu-
mentation. Second, it provides information to the Elucidator tool, which can be used
to present the documentation typographically.

4.1.2 Entities in the Elucidative environment

Entities is the fundamental elements recognized by the Elucidators. The Java and EDoc lan-
guages described above is used to define all source code and documentation entities known
by the Elucidators.

Source code entities is source symbols that can be uniquely identified, thus packages, classes,
methods, fields etc. is entities. For documentation basically all elements defined in the
EDoc language is entities. Thus documentation nodes, sections, link anchors and all other
structural parts of documentation nodes is entities. As with source entities, all documentation
entities can be uniquely identified. The technical details about uniquely identification of both
kind of entities can be found in [Christensen et al., 2000, Chapter 4].

Note that entities can contain other entities. This depict the fact the e.g. methods are inside
classes and sections are inside documentation nodes. This result in a containment relation-
ship between the two entities. Other relationships exists and this information about the en-
tities in the Elucidators is stored in the Data model as mentioned in Section 2.1 on page 9.
Again, more technical details can be found in [Christensen et al., 2000, Chapter 4].

4.1 The Elucidative environment 41

4.1.3 The three tools in the Elucidative environment

The Elucidative environment consists of three tools: The Editor, the Browser and the actual
Elucidator. In this section we will describe the role of these three tools in the Elucidative
environment, and how they interact.

The Editor: The first tool in the Elucidative environment is the editor. The editor is one of
the two components in the user interface to the Elucidator, the other being the browser.
The editor is used by the writer to produce both the source code and the documentation.
Conceptually, any editor which can be controlled by a programming language can be
used. In the Elucidator 1 and 2, only the Emacs editor is supported though.

The editor is extended with a set of functionalities to support the writer working in
the Elucidative environment. First of all, it features as split-view setup with sepa-
rate frames for the documentation and source code, thereby making it possible for the
writer to easily work on the documentation and source code atthe same time. Since
the insertion of links can be rather cumbersome, the editor furthermore provides func-
tionality to help the writer do this. Finally, the editor provides the ability to start an
abstraction process directly form the editor.

Besides functionality to support working in the Elucidative environment, the editor
supports some common software development functionality.This is realized by using a
number of third party packages. An example of this kind of support, is the usage of the
Java Development Environment package [Kinnucan, 1999], toprovide functionality
such as lexical highlighting and the ability to compile the Java source code from within
the editor. We also use a package which turns the editor into astructured xml editor,
which support the writer in writing his documentation usingthe EDoc language.

The Browser: The browser is the second component in the user interface to the Elucidative
environment. While the editor is used by the writer, the browser is used by the reader.

The purpose of the browser is to let the user of the Elucidatorhave an attractive view
and functional way of reading the produced documentation and source code. It also
provides him with navigation functionality. This functionality can be used in various
ways, both internally in the documentation or source code, and between the documen-
tation and the source code.

The setup of the browser found in the Elucidator 1 environment is similar to that of the
editor, since it has a split-view, which presents the documentation on the left and the
source code on the right. The navigation functionalities mentioned above, is basically
implemented as links in the documentation and source code. More advanced naviga-
tion features is however implemented by the usage of a small extra window, called the
Navigation Window. This window provides information on, e.g., which links are cre-
ated in a particular section of the documentation, or which other sections makes links
to this particular section. The information used to providethe navigation facilities is
gathered by the Elucidator tool, as it will be described below.

In principle any Internet browser can be used. The Elucidator 1 environment has,
e.g., been tested with Netscape Communicator on the Solaris, Linux and Windows

42 Design

operating system and Internet Explorer on Windows. However, some of the navigation
functionality to be implemented in the Elucidator 2 environment requires the usage of
the Netscape Communicator browser.

The Elucidator: The Elucidator is considered the main tool in the Elucidative environment,
since it provides the core functionality for the environment.

The Elucidator can be seen as three components which cooperate to provide the full
functionality of the Elucidator. The first of these components is the Abstractor. The
job of the Abstractor is to abstract information about entities, and relationships among
these entities, from the documentation and source code. This information is then
passed on to the next component; The Data model. The job of theData model is to
store the information provided by the Abstractor, and to enable the third component,
the Generator, to query and access this data. The data is retrieved by the Generator in
order to facilitate the two user interface tools mentioned above. Before delivering the
data to these two tool, the generator formats it according tothe needs of the two tools.

The Elucidator is implemented in Java, as a server, using theServlet technology
[Davidson and Coward, 1999]. It communicates with the two interface tools through
the HTTP protocol [Fielding et al., 1999].

Having described the three tools in the Elucidative environment, we now take a more detailed
look at how they interact. Basically three interaction scenarios exist. These are illustrated in
Figure 4.1. In all three scenarios the Java source code and EDoc files are used. This is shown
in the figure by the arrow from the source files to the Elucidator.

Editor Browser

Abstractor Generator

Data model

Source
files

Elucidator

A B C

Figure 4.1: Interaction in the Elucidative environment. In case (A) thewriter asks for an abstrac-
tion of the documentation and source code. In case (B) the writer uses the information
gathered by the abstraction to help him insert a link in the documentation, and finally
in case (C) the reader has activated a link in the browser which means that a new page,
produced by the Generator, will be shown in the browser.

4.1 The Elucidative environment 43

(A) The first basic interaction in the Elucidative environment occurs when the writer, through
the editor, asks to have the documentation and source code abstracted. The first step
in this interaction, is that the Abstractor components of the Elucidator tool make an
abstraction of the documentation and source code. The next,and final, step is that the
Data model components stores the resulting data from the Abstraction.

(B) The second basic interaction appears when the writer wants to insert a link with the
help of the editor. This functionality is implemented in thefollowing manner: First the
editor asks the writer to supply some substring of the name ofthe destination entity the
writer wants to link to. Next, this substring is passed from the editor to the Generator.
The Generator asks the Data model to retrieve possible matches to the substring, which
is in turn returned by the Data model to the Generator. This result is then passed from
the Generator to the editor, which presents the result to thewriter. The writer can then
select the correct name for the entity he wants to link to.

(C) The final basic interaction in the Elucidative environment takes place between the browser
and the Elucidator, and is triggered by the activation of some link in the browser. When
selecting a link, a new page containing the destination of the link should be shown. In
the first step of this interaction, the browser passes an idname representing the des-
tination of the link to the Generator. The Generator next contacts the Data model to
retrieve the data necessary for it to present the destination of the link. After retrieving
this data the Generator generates the page by using the information retrieved from the
Data model, as well as the source files. Finally it passes the resulting document to the
browser, which then presents it to the user.

4.1.4 Changes to the Elucidator

In order to implement the Elucidator 2 tool a number of changes has to be made to the tools
in the Elucidator 1 environment. This section present the most important ones.

The EDoc language: In order to express the MRS-model the EDoc language has to be
changed. This means that some of the old tags such as<chapter > will be removed
from the language, and a set of new tags will be introduced. The grammar for the
changed version of the EDoc language can be seen in Appendix B.

The Abstractor: The only part of the Abstractor which needs to be changed is the part that
abstracts the EDoc files. This is done in order to be able to abstract the new entities
and relationships introduced in the extended EDoc language.

The Data model: Since the entities introduced in the extended EDoc languagein some
cases has different structure/data contents, compared to the one found in the first ver-
sion of the language, the Data model has to be changed, in order to be able to store
these changes. Furthermore, the Query engine, which is the part of the Data model
which handles the retrieval of data, has to be change as well in order to be able to
provide this new information to the Generator.

44 Design

The Generator: The Generator is the component which has to be changed the most. As a
consequence of the new structure of the documentation, the documentation has to be
presented in a completely new way. New functionality, such as extended navigation
features and views, has to be implemented as well.

The Editor: The changes to the editor will only be minor. The most important is support
for templates for the creation of the documentation nodes.

4.1.5 The work flow in an Elucidative environment

Having described the languages, tools, interactions and improvements to the Elucidator 2,
we now turn to a description of how the Elucidative environment is typically used.

As mentioned in the analysis, the software developer is either in the role of the reader or the
writer. The two main activities while using the Elucidativeenvironment will thus be reading
and writing. It was also mentioned that the software developer can be in both the reader
and writer role at the same time. While using the Elucidativeenvironment this means that
he shifts between the two activities at will. While performing one of these activities, the
software developer can furthermore be in one of a number of different states. This division
into states can be seen in Figure 4.2.

BrowsingCreating
links

Creating new
documentation nodes

Writing
documentation

Writing
source code

Abstracting

Creation
Reuse
Change

Writing: Reading:
Examination

Figure 4.2: An illustration of the work flow in the Elucidative environment. The work flow is depicted
as a collection of states which the user can be in while using the Elucidator. The states
can be divided into the two main task performed while using the Elucidative environment;
reading and writing. While writing, you can be in a number of different states, but you
can only be in one state while reading.

While engaged in the reading activity the software developer can only be in one state:brows-
ing. By browsing is meant that the software developer is readingthe documentation using the
browser tool described earlier in this section. This activity complies with theExamination
software development case described in Section 3.1 on page 17 in the Analysis chapter.

In contradiction to the reading activity, the writing activity contains a number of states, the
two main states areWriting documentationandWriting source code. As the setup of the
editor features a split-view with documentation and sourcecode in separate windows, it is

4.1 The Elucidative environment 45

easy for the writer to shift between these two states. Commonfor both states is that you
can move to theAbstractingstate from them, which is done when you invoke the abstraction
command in the editor. While in the Abstracting state you canreturn to either of the two
main states.

While Writing documentationthe writer can move to two other states besides the Abstraction
state: theCreating linksandCreating new documentation nodesstates. Both states can be
viewed as sub-states to theWriting documentationstate, but is described separately in order
to provide a detailed picture of the work flow while creating documentation. WhileCreating
links the writer creates links to either documentation or source code. Depending on how
much new documentation and source code has been produced since the writer was in the
Creating linksstate the last time, he will typically chose to make anAbstractionjust before
he startsCreating links. The reason for doing an abstraction before creating links is to make
sure that the entities and relationships from the newly created documentation and source
code is represented in the Data model, and thus include thesein the possible matches made
by the linking feature in the editor.

TheCreating new documentation nodesstate is also entered from theWriting documentation
state. This is typically done for two different reason. The first is simply to create a new
documentation node, and start writing documentation in it.The second, is to create a loose
end. As described in Section 2.1.1 on page 11 of the Earlier work chapter, loose ends are
made to be able to make references to a related subject which is not described yet. When
Creating new documentation nodesthe writer will therefore typically only fill in the topic,
and then return to theWriting documentationstate for the original node and return to fill out
the loose end node at a later point.

Finally it should be noted that when the software developer is in one of the states of the
writing activity, he is performing one of the three softwaredevelopment case,Creation,
ReuseandChange, described in Section 3.1 on page 17 in the analysis chapter.

4.1.6 Entities in the hypertext model

Since we need to reference specific details, that is entities, of the documentation nodes and
the source code, in order to design the realization methods described above, we here give a
short introduction to entities in the documentation and source code.

Common for all entities, both documentation and source codeentities, are that they have an
unique identity. This is expressed by there idname. This property of the entity is used, when
a link to an entity has to be created.

In a documentation node all tags of the EDoc language is considered to be entities. The
means that, e.g., a documentation nodes, such as a Requirement, a Rationale or a Task is
considered a entity. Also, the different parts of the documentation nodes, as well as the links
are considered to be entities. An important property of the entities in the documentation is
that one entity can be contained in another entity. This means that en entity representing a
specific part of a documentation node, is considered to be contained in the entity representing
the documentation node.

46 Design

When it comes to the source code, entities are considered to be source symbols like a class
name, a method name or a variable name.

4.2 Designing the documentation nodes

Having described the environment in which the documentation is being produced, we now
narrow our focus to the documentation alone, and especiallyto how the documentation nodes
is designed.

We do this in three steps: First we describe and discuss how the documentation nodes fit into
the MRS-model presented in the analysis. Next we introducesthe notion of thematic catalogs
and describe how these relate to the MRS-model and the documentation nodes. Finally, we
present how the internal structure of the documentation nodes are designed.

4.2.1 Documentation nodes in the MRS-model

When describing how the documentation nodes fit into the MRS-model we first recall the
illustration of the extended structure of the MRS-model, aspresented in Figure 4.3 on the
facing page. From this we identify three levels of abstraction.

At the highest level, above the dotted line, we have the pure presentation of the MRS-model
with its three deliberative categories: Motivation, Rationale and Solution description.

At the second level, just below the dotted line, we have a number of sub-categories. These
sub-categories can be seen as optional details of the three categories in the MRS-model.

At the third and final level, concrete node types are placed. Examples of such are: Require-
ment, Change description and Task. These types can either becategorized directly within
one of the three deliberative categories or in one of the sub-categories (and thereby indirectly
within one the three deliberative categories of the MRS-model). That is, the Requirement
node type mentioned above belongs to the Motivation category, the Change description to
the Rationale category and the Task to the Solution description category.

The documentation nodes can be seen as instances of these concrete node types. This means
that all documentation nodes has a type and can be categorized with respect to the three
deliberative categories of the MRS-model, based on this type.

In Figure 4.3 on the next page a dotted line has been placed to separate the pure MRS-model
from the sub-categories and node types. The dotted line has another purpose as well. It
indicates two levels of importance. We considered the part above the dotted line to have
conceptual importance for our work, while the part below thedotted line only has exempli-
fying importance. In other words, this means that we consider the pure MRS-model to be
fixed, while the sub-categories and node types presented in this report is only considered as
examples, and they could therefore be exchanged with other sub-categories and types as the
user sees fit.

4.2 Designing the documentation nodes 47

Node types

selects

Internal
documentation

Motivation

Sub-category
Solution Description

Sub-category
Rationale

Sub-category
Motivation

Solution Description

declines

premise

Rationale

Figure 4.3: The extended structure of the MRS-model. Above the dotted line the MRS-model with
its three deliberative categories is presented. Below the dotted line, sub-categories to
these deliberative categories as well as concrete node types in the categories is placed.
Boxes represents categories (deliberative as well as sub-categories) and the black dots
represents node types.

In the rest of this section we will take a closer look at the three deliberative categories, in
order to characterize the node types which could be placed inthese categories. Furthermore
a number of concrete suggestion for node types has been made.These are presented and
described in detail in Appendix A on page 91. As mentioned these are only examples of
node type, and they are selected/presented to demonstrate the principles and usability of the
MRS-model.

The Elucidator 2 implementation does not allow the user to alter the node types. In a fully
implemented version of the Elucidator it should be possiblefor the development team using
the Elucidative environment to change and extend the concrete node types to fit their specific
documentation needs.

Sub-categories and node types of the Motivation category

All documentation nodes with a node type from the motivationcategory contains motivations
or incentives, that give occasion to a creation, reuse or change of a system. These motivations
can describe facts from outside the system, that affect the development of the system, but also
facts based internally in the system, that affect the development of other parts of the system.

In Figure 4.4 on the next page an example of a number of node types and sub-categories
from the motivation category is presented. As it can be seen aChange requestsub-category
has been made to express that the two node typesImprovementandBug reportboth can be
categorized as request for a change.

Another example of a node type in the motivation category isRequirement. Documentation
nodes of this type will contain a description of a requirement that specifies or restrains the
behavior of the design or implementation of the system. Thiscan be can be seen as the infor-
mation that will typically go into a system definition when using a Object-oriented Analysis
and Design method [Mathiassen et al., 1997].

48 Design

documentation
Internal

Bug report

Requirement Change request

selects

Improvement

Solution DescriptionRationale

declines

Motivation

premise

Figure 4.4: An example of a number of node types and sub-categories from the motivation category
of the MRS-model. Boxes represents categories (deliberative as well as sub-categories)
and the black dots represents node types.

Section A.1 on page 91 contains a detailed description of thethree motivation node types
mentioned above, and Figure A.1 on page 92 shows an concrete example of aRequirement
type documentation node.

Sub-categories and node types of the Rationale category

The purpose of a documentation nodes with a node type from therationale category, is to
document the arguments that selects and/or declines a givenset of solutions. Documentation
nodes of one of the rationale node types furthermore tie the motivations together with se-
lected and/or declined solutions. This, as well as two examples of concrete node types from
the rationale category, is shown in Figure 4.5. It should be noted that both a category in the
MRS-model and a concrete node type is namedRationale, but that they are not considered
to be identical.

documentation

Change descriptionRationale

Internal

selects

Motivation Solution DescriptionRationale

declines

premise

Figure 4.5: An example of two node types from the rationale category. Boxes represents deliberative
categories and the black dots represents node types.

A documentation node which has the node typeRationale, should contain a description of
the forces that affect the arguments, i.e., “what drives us to a specific solution”. This will
typically be realized through a short description of the motivations, that are relevant to the
decisions made. The documentation node should furthermorealso contain a description and

4.2 Designing the documentation nodes 49

discussion of the selected and declined solutions. However, since the actual solutions would
be described in a separate documentation node with a type from the solution description
category, it should only contain a description of the properties that are important to the
decision made.

Finally, a rationale will often contain a somewhat subjective discussion of the chosen and
declined solutions with both subjective and objective assessments of the consequences of the
choices made. Since this discussion is often subjective it would be an advantage to have a
special place in the rationale for this discussion, in orderto distinguish it from the rational
decisions. An example of a concrete instance of theRationalenode type is presented in
Figure A.2 on page 94 in the Appendix.

One of our hypothesizes states that the history of a piece of software is important, and that
it is possible to document the history as a natural part of thedocumentation. To fulfill this
hypothesis we introduces theChange descriptionnode type.

The description of changes contain the same elements as a documentation node of the Ratio-
nale type, i.e., a description of the forces, the solution and a discussion of the choices made.
The difference between a rationale node type and a change description node type is that the
change description not only declines a set of alternative solutions but also deprecates a set of
old solutions.

We believe that by giving the change description special attention in this way, we allow, the
reader to identify the history of a piece of software, while at the same time make it more
naturally for the writer to document the rationales for the specific solution.

An example of a concrete instance of theChange descriptionnode type is presented in Fig-
ure A.3 on page 95 in the Appendix, and Section A.1 on page 92 contains a detailed descrip-
tion of the two node types presented in this section.

Sub-categories and node types of the Solution descriptionscategory

Documentation nodes with a node type from the Solution description category are all doc-
umentation nodes that contribute to a factual descriptionsof the solutions that realizes the
developed system. The node types from the solution description category can be further cat-
egorized in various ways dependent of the system that is to bedescribed and the development
team using the documentation. In Figure 4.6 on the followingpage a number of examples
of node types from the solution description category is shown. As it can be seen from the
figure, no suggestions for sub-categories to the solution description category has be made,
since such a categorization dependents upon the development team using the Elucidative
environment as well as the system being documented.

The examples has been chosen to demonstrate the contents of the documentation nodes in
the solution description category. To further exemplify the contents of the node types from
the solution description category, we here describe two of the six examples.

The first example is theDesign pattern instancenode type. The Design pattern instance
node type is used to document the usage of design patterns. Itis important to note that the

50 Design

AspectTask

Entity implementationDesign pattern instance

Internal
documentation

Concept

selects

Process

Rationale

declines

Solution DescriptionMotivation

premise

Figure 4.6: An example of six different node types, that all are a part of the solution description
category. Boxes represents deliberative categories and the black dots represents node
types.

documentation node documents an instance of a design pattern (which classes are involved
in the instance of this pattern and so on), and not the design pattern itself, since this is already
documented in the description of the design patterns, e.g.,the “GOF-patterns” [Gamma et al.,
1995]

We consider the design patterns instance node type to be important since it demonstrate the
ability of the Elucidative environment to document a pattern in the system, that is not obvious
visible in the source code.

An example of the usage of this node type could be to document that a Visitor Pattern is
used in the implementation of the Abstractor components found in our Elucidator tool. In
Figure A.5 on page 98 in the appendix, this is illustrated by aconcrete instance of theDesign
pattern instancenode type.

The second example of a node type from the solution description category is theConcept
node type. This node type is used to separate and describe a subject or concept which has
special meaning or importance for the rest of the documentation. A concept will typically be
a technical term from the problem domain of the program beingdeveloped, but it could also
be a concept which needs clarification because one or more developers in the development
team is not familiar with it.

An example of the first type of concept could be a development team doing a accounting
system. It would then be useful to have the conceptsdebitandcredit described, since soft-
ware engineers are not likely to know these in detail unless they have developed accounting
software before.

Some might argue that a concept can not be categorized as a solution description. However,
we believe that it is a part of the solution description category, since a concept can be seen
as a factual description of something that constitute to thedescription of the system.

An example of a concrete instance of theConceptnode type is presented in Figure A.4 on
page 97 in the Appendix, and Section A.1 on page 92 contains a detailed description of all
the six node types from the solution description category.

4.2 Designing the documentation nodes 51

4.2.2 Thematic catalogs

As previously described, the MRS-model enforce a deliberative categorization of the doc-
umentation, into three categories: Motivations, Rationales and Solution descriptions. For
each of these categories a number of node types is specified, and documentation nodes are
considered to be instances of these node types. The divisionof the documentation into these
node types and categories says something about how the documentation as a whole should
be structured in terms of deliberative categories and node types, but it does not say anything
about how it should be physically and thematically represented. In this section we take a
look at this problem.

The first thing to consider is how each documentation node should be stored. Inspired by
Java, and in order to secure flexibility when it comes to saving the documentation entity to
persistent media, has lead us to state that one documentation nodes equals one physical file
in the file system. The name of the files are decided by the author, but they should be prefixed
with .edoc for easy recognition of the data type.

Next we turn to the problem of which structure to use when saving these file in the file
system. A solution would be to make three directories named Motivations, Rationales and
Solutions and then save the files in these according to there node type. This is however not
an optimal solution for a number of reasons. First of all, if the number of documentation
nodes are high, the directories will be “crowded” and it willbe difficult for the writer to find
the documentation node he needs. Second, a division of the nodes into the three categories of
the MRS-model, is a bit crude. Often systems consists of a number of parts or components,
and it will typically be an advantage to separate the documentation according to these parts
or components, in order to preserve the general view. Finally, different development teams
may have different preferences for how they like their directory structure.

In order to solve these problems we introduces the notion ofthematic catalogs. A thematic
catalog is considered a collection of documentation nodes with some common theme or sub-
ject. The thematic categories are created by the writer and can be nested. They can be made
accordingly to some standard decided by the development team using the Elucidative envi-
ronment or be just as the writer sees it fit. For example the thematic categorization could
follow the logical structure of the system such as Abstractor, Generator and Data model. Fi-
nally, it could be a possibility to, e.g., use one or more of the categorizations presented in the
literature, such as the one presented by COT [Sanvad et al., 2000] or Sametinger [Sametinger,
1994].

As we have chosen to implement the documentation nodes as physical files, the thematic
categorization is implemented through the use of directories in the file system. By using this
implementation the name of a directory becomes the name of the thematic category, and it is
possible to create nested thematic catalogs.

Having introduced the notion of thematic catalogs, we now have two ways of structuring our
documentation. Using these two methods together results inthe structuring of the documen-
tation nodes according to two axes. This is illustrated in Figure 4.7 on the following page.
On one of the axe we have a physical and thematic structure of the documentation, while the
other axe presents a deliberative categorization of the documentation nodes.

52 Design

Thematic
categorization

Deliberative
categorization

Theme A.1

Theme A.2

Motivations Rationales Solution descriptions

Theme A

Theme B

Theme C

Theme B.1

Theme C.2

Theme C.1

Theme B.2

Figure 4.7: The overall structure of the documentation. The documentation is placed in documen-
tation nodes, which is categorized according to the three deliberative categories of the
MRS-model. Each documentation node (the squares) is represented as a separate file,
which is saved into a number of, possible nested, thematic categories, represented by
directories in the file system.

4.2.3 The internal structure of the documentation nodes

In the previous section we have discussed a categorization of documentation nodes in two
dimensions: the deliberative categories and the thematic catalogs. These categorize the doc-
umentation at node level by the nature of the contents of the documentation nodes. In the
following section we focus on how the structure internally in the documentation nodes is
designed.

This internal structure has a twofold purpose. First, it helps the writer to structure his docu-
mentation. Second, it makes the documentation easier to read since it is structured uniformly,
and with a focus on categorizing the internal structure.

As discussed in the analysis, a documentation node is divided into two main parts: a fixed
part and a free part. These are illustrated in Figure 4.8 on the next page. The fixed part, can
be seen as a header for the documentation node, and thereforecontains information that is
applicable to all documentation nodes, regardless of theirnode type. Since the information of
the fixed part is applicable to all node types, a common structure of this part can be created.
The free part, can be seen as the body of the documentation node, and it therefore contains
the actual documentation in the node. The structure of this documentation is dependent upon
the node type, and a common structure for all node types can therefore not be created. Thus,
a separate structure for each of the node types will be created.

The internal structure of the documentation nodes is implemented by the EDoc language.
This is done by introducing a number of new tags to the EDoc language, which makes the
language able to express both the fixed and the free part of a documentation node. The
grammar for EDoc language can be seen in Appendix B on page 101.

In order to make it easier for the writer to create a documentation node, an number of an-
notated templates, each expressing one of the node types, has furthermore been created. A
template can be seen as an empty documentation node, which contains only the EDoc tags

4.2 Designing the documentation nodes 53

Topic:

Keywords:

Author:
...

Abstract:

The fixed part

The free part

MRS-model node type

Figure 4.8: An illustration of the two main parts of a documentation node. The figure is the same as
Figure 3.3 on page 28.

needed to realize the node. Whenever the writer wants to makea new documentation node,
he selects one of these templates from within the editor. This results in a new editor buffer,
containing a copy of the template. It is then the job of the writer to fill out the template with
the documentation to be placed in the node. The templates areannotated with guidelines that
describes the purpose of the specific tags. These guidelinesare implemented as comments
above each tag in the templates. This is done in order to help the writer fill out the templates.
The templates for the different node types can be seen in Appendix C on page 109.

In the rest of this section we will take a closer look at the contents and templates for the fixed
and the free part respectively.

Structuring the fixed part of the nodes

As mentioned above the fixed part of the documentation node can be seen as a header for
the node. It contains a number of elements which is applicable to all documentation nodes,
regardless of their node type. Below, a list of elements in the fixed part in the Elucida-
tor 2 is presented. These elements should be seen as our suggestions for reasonable meta-
information about the entire node, but other elements may beapplicable as well.

Topic The topic should introduce the thematic contents of the node. The topic is inspired
by the STOP method [Tracey et al., 1999], which argues that“it is important to rec-
ognize that the topic title must characterize and introducethe thematic contents [of
the documentation node], not merely categorize (label) thetheme body“. The STOP
method furthermore states that“topic titles are more likely to be representative and
topically faithful if they are (1) constructed as sentence fragments and (2) rewritten
after composition of the theme [the documentation node]”.

Abstract The abstract is like the topic inspired by the STOP method. Itshould strive to
give a short summary of the contents of the node. It should contain the most important
words or phrases of the node, these either being the main arguments, important proper-
ties of a solution or special conditions for a motivation. Ingeneral the abstract should
be about 3–5 lines of text. As with the topic the abstract is likely to be representative
and topically faithful if it is written after the actual documentation node is written.

54 Design

Keywords This is a list of important keywords that relates to the contents of the node.
The writer should strive to use keywords that are spelled uniformly throughout the
documentation, as the keywords are used for the creation of implicit links, as we will
describe in Section 4.3.4 on page 59.

Status The status element of the fixed part, is a marking of the statusfor the node. Possible
values are:new, in progressor finished. The status is used to make it easier for the
writer to manage loose ends in the documentation, since theymake it easier to find
these, e.g., by looking for documentation node with the status set to new. Besides this,
it also give the reader information about the reliability ofthe contents of the node.

Author The name of the author. This can both be the name of the original author or the
name of the person who last edited it. In the Elucidator 2 toolthe author is set to the
last person who edited it.

Created The time of creation of the node.

Updated The time of the last update of the node.

As an example of the fixed part of a documentation node, consider Figure 4.9. On the left
side of the figure (Figure 4.9(a)) the template for the creation of the fixed part is show (the
annotations has been removed for the sake of simplicity). Onthe right side of the figure
(Figure 4.9(b)) the result of a filled out fixed part for a documentation node with the node
typeChange description, is shown as it is presented in the browser.<head><t op i c></ t op i c>

5<a b s t r a c t></ a b s t r a c t><s t a t u s><new/></ s t a t u s>
10 <keywords><kw></kw></keywords><au tho r></au tho r><c re a t e d></c r e a t e d>
15 <l a s t�updated></ l a s t�updated></ head>

(a) The template for the
fixed part.

(b) An example of how the fixed part is presented in the browser.

Figure 4.9: An example of both the template and the final result of the fixedpart of a documentation
node.

4.3 Designing the links 55

Structuring the free part of the nodes

The second main part of a documentation node is the free part.This part contains the actual
textual contents of the node. In contrast to the fixed part, nocommon structure exist for the
free part. Instead the structure of this part depend on the node type of the documentation
node. This means that a unique structure and template has been created for each of the node
types. The structure of the node types can be seen in the grammar for the EDoc language as
presented in Appendix B, while Appendix C contains the templates of all the node types.

An example of the structure and the corresponding annotatedtemplate used to realize the
Rationale node type is furthermore presented in Figure 4.10.<r a t i o n a l e><!�� The f o r c e s s e c t i o n shou ld con ta in a sho r t d e s c r i p t i o n of the��><!�� d r i v i n g f o r c e s and m ot i va t ion for t h i s r a t i o n a l e . The d e s c ri p t i o n ��><!�� shou ld con ta in a number of d l i n k s , ro le : premise to m ot i va t ion ��>

5 <!�� nodes , d e s c r i b i n g the m o t i v a t i o n s in d e t a i l , and / or a number ��><!�� s l i n k s , to s p e c i a l p a r t s of the system t h a t m o t i va tes t h i s��><!�� r a t i o n a l e . F i n a l l y the s e c t i o n shou ld con ta in a rgum en ta t ion for ��><!�� the s e l e c t e d and dec l i ned s o l u t i o n s .��><f o r c e s>
10 </ f o r c e s><!�� The s o l u t i o n par t p re s e n t s the s e l e c t e d s o l u t i o n . I f a l t e r na t i v e ��><!�� and / or dec l i ned s o l u t i o n s e x i s t s they are ment ioned to . This par t��>
15 <!�� wi l l t y p i c a l l y con ta in d l i n k s , ro le : s e l e c t s and ro le : d e c li n e to��><!�� d e t a i l e d documentat ion of the s e l e c t e d and / or dec l i ned��><!�� s o l u t i o n s .��><s o l u t i o n>
20 </ s o l u t i o n><!��A d i s c u s s i o n of consequences of the s e l e c t / dec l i ned s o l u t io n s ��><!�� i n c l u d i n g persona l s u b j e c t i v e assessm en ts .��><d i s c u s s i o n>
25 </ d i s c u s s i o n></ r a t i o n a l e>

Figure 4.10: The annotated template for the Rationale node type.

It should be noted that our work should not be considered a study on how to make an ideal
internal structure of the documentation nodes. The structure of the templates for the node
types should therefore only be considered examples of structure. In fact we believe that
no perfect structure for these node types can be made. The structure should instead be
refined and changed in continued iterations, by the development team using the Elucidative
environment, in order to suite their needs.

4.3 Designing the links

Having described how the documentation nodes are designed,we now focus our attention on
the relationships between these nodes. In Section 3.5.3 on page 29 of the Analysis chapter,

56 Design

it was described that we need links in order to express the relationships between documen-
tation nodes in the MRS-model. In this section we describe how links are designed and
implemented in the Elucidator 2 tool.

The links used in the Elucidator 2 can be described accordingto four characteristics: their
type, their role, the type of structure they impose on the documentationand thecreation
methodto create the link. In the following sections we will discusseach of these characteris-
tics in detail. We realize that, as a first impression, the characteristics of the links may seem
overwhelming and complicate. We do however, not believe this to be the case, and it will be
explained why in the final section which contains a discussion of how these characteristics
apply to the links.

4.3.1 Link types

As the first characteristic of the links used in the Elucidator 2 tool, every link has a type.
Four types of links exist, corresponding to the four types ofdata which the link can have as
its destination.

In the following a brief description of the four link types will be presented.

Links to documentation: Links to documentation has both the source and destination an-
chor in a documentation node or some part of a documentation node, and thereby links
two documentation nodes, or parts of, together.

Links to source code: A link to source code has its source anchor some place in a docu-
mentation node or the source code, while the destination anchor is always a source
code entity, such as a class, a method or a field. This means links to source code,
relates a documentation node or source code entity to a source code node.

Links to external entities: A link to an external entity has, as the links to documentation,
its source anchor in a documentation node. The destination of the link is some entity
which is considered external to the internal documentation. An example could be an
object-oriented analysis and design document. The destination of a link to an external
entity is always expressed as an URL.

Links to views: Links to views has their source anchor in either a documentation or a source
code node. The destination of the link is a view. Views will bedealt with in detail in
Section 4.4 on page 62.

As it can be seen from the descriptions above the type of the link can be derived, based on the
type of data the link points at. We have however chosen to express each link type explicitly
by four different names. This results in the following threelink tags being used in the EDoc
language:<dlink >, <slink > and<xlink >. Besides these three types we also have the<vlink > type. This link type is not present in the EDoc language, and can therefore not be
inserted by the writer. Instead it is only used by the system to create implicit links to views.
The notion of implicit links will be dealt with later in this section. We have chosen to write

4.3 Designing the links 57

the name of this link as a tags even though it is not present in the EDoc language in order to
have an uniform appearance for the four link types. We realize that naming the links types
explicitly means that we have redundancy in the system. However, the choice was made
to provide the writer with a practical way of distinguishingthe different types of links. If
we had chosen to not give each link type an explicit name, the writer would instead have to
distinguish the type of the links by looking at the destination of the link, and then derive the
type from this information. Thus, we believe that by giving each link type a explicit name it
is easier for writer to use them when producing documentation.

4.3.2 Roles on links

Having discussed the four types of links we now move on to describe the roles on these links.
A role on a link is an attribute on the link, which is used to express the nature of a relationship
between two nodes (this can be both documentation and sourcecode nodes). Furthermore, a
link can only have one role.

The links in the Elucidator 2 tools are considered to be directed. However, when two doc-
umentation nodes are to be linked together, it is up to the writer to decide which of the two
nodes should contain the source anchor of the link, and whichshould contain the destination
anchor. This scenario demands for the names of the roles to besymmetrical [Conklin, 1987].
This is best illustrated by an example: A writer wants to express that some part of a docu-
mentation node (A) is described by another node (B). He can then place the anchors of the
link in two ways: He can create a linkfrom B to Awith the roledescribesor he can make a
link from A to Bwith the roledescribed-by. Both solutions are allowed, and the result is that
the name of the role is symmetric, namely describes/described-by. For the sake of simplicity
the roles are normally mentioned with only one of the two symmetric names.

Link roles for maintaining the MRS-model

A subset of the link roles used in the Elucidator 2 tool has a special meaning since these roles
are used tomaintain the MRS-model. These roles, which are considered to bekey roles, are:
Premise, Selects, Declines, IntroducesandDeprecates. By maintaining the MRS-model, is
meant that links with these roles ties the three categories of the MRS-model together.

To understand how these five key roles are used to maintain theMRS-model, we first describe
them.

Premise/Premise-for: The Premiserole is placed on links between two documentation
nodes of the Motivation and Rationale categories, and is used to specify that some
documentation node serves as a premise to another documentation node.

Selects/Selected-by:TheSelectsrole is placed on links between two documentation nodes
of the Rationale and Solution description categories, and is used to express that, based
on some argument, the rationale selects a certain solution.

58 Design

Declines/Declined-by:As the name implies, theDeclinesrole, does the opposite of the
Selects role, namely, expressed that a rationale declines asolution.

Introduces/Introduced-by: This role is used when the writer wants to express the history
of the documentation/source code. TheIntroducesrole is used to express that some
documentation node is introduced somewhere in the history of the program, that is, it
was not present in the initial version of the program. The introduces role will be placed
on links going from a change description node to a solution description node.

Deprecated/Deprecated-by:This is the final of the five key roles used to maintain the
MRS-model. As with the Select/Decline roles the Introduces/Deprecates roles are
also opposites. TheDeprecatesrole is used to express that, due to some change, the
destination node of the link is now deprecated, and therefore not used anymore. The
destination is not simply deleted, since this would make it impossible to track the
history of the system.

The description of the five roles revealed that they can be further categorized, since the
Premiserole is used to express relationships between Motivations and Rationales, while
the remaining four key roles are all used to express relationships between Rationales and
Solution descriptions. This is illustrated in Figure 4.11.

Premise

Selects

Introduces
Declines

Deprecates
RationaleMotivation Solution Description

Documentation

Figure 4.11: The usage of the five key roles in the Elucidator 2. The Premiserole is used to express
relationships between Motivations and Rationales, while the four other roles are used
to express different relationships between the Rationales and the Solution descriptions.

Other link roles

Besides the roles used to maintain the MRS-model, a number ofother roles can be used.
Common for these roles are that they are not essential to the realization of the MRS-model,
but they can be useful to express certain relationships between the nodes. The number of
these roles are not finite. The roles presented in this reportcan therefore be considered
examples of roles which the authors of this report found useful.

In this section we would like to present two of these roles which we find to be of a so general
nature that they will be useful in any Elucidative environment. The other examples of roles
of this category is presented in Appendix A.2 on page 99.

Describes/Described-by:TheDescribesrole can be used in almost any case. The intended
usage of the role is to be able to specify that something is either a description of

4.3 Designing the links 59

something else, or that something is described elsewhere. Furthermore it can be noted
that this role corresponds to the strong link found in the Elucidator 1 tool [Christensen
et al., 2000], and it is often used on links to the source code.

Mentions/Mentioned-by: The Mentionsrole is a somewhat weaker version of the De-
scribes role. The Mentions role should be used to point the reader in a direction which
may shed some additional light to a subject, but which is not especially necessary in
order to understand the documentation being read. The Describes role on the other
hand, should be used to link to documentation which is important for the understand-
ing of the documentation being read. The mentions role is similar to the wear link
found in the Elucidator 1 tool [Christensen et al., 2000].

Containment/Contained-in: Finally theContainmentrole is used to express that some en-
tity, that be both documentation and source code entities, is contained within another
entity. This roles is normally not used by the writer, but instead by the system to, e.g.,
express that some documentation node is contained in a specific thematic catalog.

4.3.3 Structure imposed on the documentation by links

When creating links in the documentation, these links imposes a structure on the documen-
tation. This structure can be either hierarchical or non-hierarchical, corresponding to the
organizationalandreferentialcategories presented in Section 3.5.3 on page 29 of the analy-
sis.

In the Elucidator 2, organizational links is specifically used in the hierarchical index view, to
express the containment relationship between two thematiccatalogs or between a thematic
catalog and a documentation node. The hierarchical index view will be described in detail
in Section 4.4.4 on page 68. The referential links on the other hand, will typically be used
throughout the whole documentation.

4.3.4 Creation method

The final characterization of links is the method used to create the links. Two methods exists:
The links can be eitherexplicitlyor implicitly created. While Section 3.5.3 on page 29 of the
analysis, contains a detailed description and discussion on explicitly and implicitly created
links, this section take a look at how these are realized in the Elucidator 2.

Explicitly creation of links

To create a link explicitly means that the writer creates it manually. Specifically, explicitly
created links are links that are inserted directly into the documentation nodes, with the help
of the editor. To do this the writer uses the three links tags provided by the EDoc language:<dlink >,<slink > and<xlink > to link to documentation, source code and external entities
respectively. The start and end tags are placed around a region of text in the documentation

60 Design

node, and the destination of the explicitly created link is specified as an attribute on the link.
In Figure 4.12 an example of the usage of the explicitly created links is presented.

In this example we first make a link to a class named
<slink href="elucidator.datamodel.DBBundleController ">DBBundleController
</slink>. Next we make a link to a documentation node which ar gues
<dlink href="elucidator-2.0/datamodel/need_for_views .edoc">why we need
views</dlink> in the Elucidator 2 tool. Finally we make a lin k to the
<xlink href="http://dopu.cs.auc.dk">home page of the DOP U project</xlink>.

Figure 4.12: Example of the usage of explicitly created links.

Since the names of the destinations of the explicitly created links, tend to be rather long, it
can be a tedious job to create these explicit links. In order to reduce this problem, the editor
provides support to help the writer insert links. This support is implemented in the Elucidator
1 and will is be present in Elucidator 2. The functionality isfurthermore described in greater
detail in Section 4.1.3 on page 41.

Implicitly creation of links

Links in the Elucidator which is not explicitly expressed bythe writer in the EDoc files is
implicitly created by the Elucidator tool. They are createdby the Elucidator tool in order to
realize the different navigation facilities in the browser.

Examples of implicit links could be links to documentation nodes from views or links to a
view from locations in the documentation nodes, e.g., from the topic of a node to a Context
View for the node.

Another, and more interesting, usage of implicit links is touse keywords and terms to present
related information to the reader. The writer can specify a list of keywords in the fixed part
of the documentation node and can furthermore mark-up wordswith the<term > tag in the
free part of the documentation node to indicate that these words has special meaning.

The Elucidator 2 tool places implicit links from these keywords and terms to a Subject In-
dex View (the Subject Index Views will be dealt with in detainin Section 4.4.4 on page 68)
which list documentation nodes that presumably contains related information about the ac-
tual keyword or term. The related documentation nodes is found by matching the textual
contents of a keyword or term to the topic and abstract of documentation nodes. This makes
it, e.g., possible to mark-up the word “Abstraction” as a term and thereby implicitly link to a
Concept node explaining the Abstraction concept.

4.3.5 Discussion

Having described the four characteristics of the links we now turn our attention to how these
apply to the links. The four characteristics along with their possible values is summarized in
Table 4.1 on the facing page.

4.3 Designing the links 61

Characteristic Possible values
Type <dlink >, <slink >, <xlink > and<vlink >
Role Premise, Selects, Declines, Introduces, Deprecates, Describes,

Mentions: : :
Imposed structure Organizational and referential
Creation method Explicitly and implicitly

Table 4.1: Summary of the four characteristics of the links in the Elucidator 2 tool.

The first thing to notice is that all links must have exactly one value from each of the four
characteristics attached to it. This means that every link has a type and a role, it implies a
structure on the documentation, and it is either created explicitly or implicitly.

We illustrate this with a couple of examples:

First consider a situation where the writer wants to expressthat some documentation node
(A) from the Motivation category acts as the premise of some other documentation node (B)
from the Rationale category. The Writer will then make an explicit link from A to B, with the
type set to<dlink >, the role will bePremiseand the link will impose a referential structure
on the documentation.

Next consider another situation where the writer has just created a new documentation node
(A), which has been placed in a catalog (B). An implicit link will then be created between
A and B, the type will be<dlink >, the role will beContainmentand the link will impose a
organizational structure on the documentation.

It should be noted that not all combinations of the values of the four characteristics makes
sense. For example, the writer is not allowed to make an explicit link to a view, that is
making a explicit link with the type set to<vlink > (although this feature might be possible
in a future version of the tool). Another example could be that a implicit link with the type
set to<xlink > cannot be made. Recall that a<xlink > is a link to some entity which is
considered external to the internal documentation, it thenis not possible for the Elucidator
to be able to create links to something outside and unknown tothe it.

One might believe that it is very complicated and confusing for the writer to create a link,
since he will have to choose values from the four different characteristics. We do not believe
this to be the case. First of all, one should notice that the choice of whether to create the link
explicitly or implicitly is not one made by the writer. Secondly, the writer will neither have
to choose between making a organizational or referential link, since this is implicitly given
depending on the link he creates. It should furthermore be noted that explicitly created links
in almost any situation will be referential. Finally, we do not believe that choosing the type
of the link is complicated or confusing for the writer, sincethis is just a matter of considering
the type of the data he is linking to.

This leaves only one real choice: the role of the link. Some help can be found while making
this choice as well. First of all the writer knows that only the Premise roles can be used
between Motivations and Rationales. Similar, he knows thathe only has to choose between

62 Design

four different roles when making links between Rationales and Solution descriptions. Fi-
nally, the rest of the proposed link roles are just examples or suggestions so the writer is free
to neglect these if he find using to many roles confusing.

4.4 Navigation

As mentioned in Section 3.5.5 on page 32 of the analysis, one of the problems by using a
hypertext system is that you tend to get disoriented while using it, and often end up miss-
ing the context of the documentation you are presently reading. As described, our main
medicine against this problem is to provide navigation facilities to the reader. In this section
we describe how the navigation facilities are designed and implemented in the Elucidator 2.

In a hypertext system, such as the Elucidator, the documentation may be read at different
levels. One reader may be reading and jumping between specific documentation nodes at a
detailed level, while another reader may try to survey the whole network at a higher level in
search of relevant information. The problems concerning disorientation and lack of context
are present at all these levels, but a divergence of needs between readers at different levels
exists.

Readers at one of the lower levels will typically need support for recognizing element in
the documentation nodes, such as links or special parts of the node. Such a reader will also
need to be able to find his navigation possibilities. Readersat a higher level also have the
need for understanding the contents of a documentation nodeand to identify his navigation
possibilities. Besides this he also tries to comprehend thewhole network and therefore needs
assistance to navigate and search through all the documentation and source code.

In order to deal with these problems, we have divided the readers navigation needs into three
levels:Local, NeighborhoodandGlobal. For each of these levels we present a suggestion for
a method of realization. The three levels and the suggested realization methods is illustrated
in Figure 4.13.

Neighbourhood

Local

Global

Navigation menu

Context views

Index views

N
av

ig
at

io
n

le
ve

l

Realization methodCategory

Figure 4.13: An illustration of the three navigation levels, and their suggested realization methods.

Local navigation, is navigation internally in a documentation node, or between two doc-
umentation nodes. The level of navigation will be realized through the navigation menu.

4.4 Navigation 63

Neighborhood navigation is navigation between a documentation node and a number of doc-
umentation nodes, which are all related directly to the documentation node in question. This
level of navigation will be realized though the Context view. Finally, Global navigation, is
navigation in the whole network of documentation nodes, andwhich will be realized though
the Index views.

Common for all these realization methods are that they use colors. The next section will
therefore describe how these are used in the design of the Elucidator 2. Following this,
the rest of the section will describe these three levels and their suggestion for a realization
method in detail.

4.4.1 Coloring

Colors are used throughout the presentation of the internaldocumentation in the browser for
two main purposes: To let the reader easily distinguish the different types of links, and to
heighten the awareness of the MRS-model.

First we consider the purposes of using colors. Figure 4.14 show two browser screen shots
containing internal documentation. On the first screen (Figure 4.14(a)), the same color is
used on all the links. On the second screen (Figure 4.14(b)),the links are colored according
to their type. The types used, in the figure and throughout theElucidator 2 are:<slink >:
red,<dlink >: blue,<xlink >: green and<vlink >: black. As it can be seen, the usage of
the different colors on the links, makes it easy to distinguish between, e.g., links to docu-
mentation and links to source code.

(a) Node with the same color
on all links

(b) Node with different color
on links

Figure 4.14: Illustration of the usage of colors as visual cues. (a) A nodewhich is rendered with only
one color for links. (b) The same node, but with links rendered with different colors
dependent on their type.

64 Design

The second purpose for using colors was to heighten the awareness of the MRS-model.
This is realized by using a different color for each of the three categories in the MRS-model:
motivations usesorange, rationale useslight blueand solution descriptions usesgreen. These
category colorsare applied in a number of ways. The most notable being the background of
the header (the fixed part) of the documentation node, but thecolors are also used, e.g., in
the navigation menu, as we shall see in the next section.

4.4.2 Local navigation

The first of the three levels of navigation is Local navigation. Our suggestion for a realiza-
tion of navigation at this level is thenavigation menu. The navigation menu is a context
dependent menu which is designed to help the reader decide ifhe wants to follow a link or
not. The menu is shown when activating a link, for which it is feasible to view the contents
of the destination of the link. This destination can both be documentation and source code,
which means that the navigation menu is applied both on<dlink > and<slink >.

The navigation menu has two parts. The first part contains a number of possible actions to
perform, while the second part contains information of the destination of the activated link.
An example of the navigation menu applied to a<dlink > is shown in Figure 4.15.

Figure 4.15: Activation of the Navigation menu. When the reader activates a link, the navigation
menu pops up directly upon the link. It contains a list of possible actions to perform,
and a short summary of the contents of the destination node ofthe activated link.

The first part of the navigation menu

In earlier versions of the elucidative environment, the frame setup in the browser dictated
the documentation to be shown in the left frame and the sourcecode in the right frame. As
described in the Analysis chapter, we wish to remove this restriction and thereby let it be up
to the reader to decide where he wishes to view the documentation and source code.

4.4 Navigation 65

This is realized through the first part of the navigation menu, since this part lets the reader
chose in which frame he wants to have the destination of the activated link shown. This
means that the first part of the navigation menu contains a list of implicit links for the reader
to chose from. The selection of links depend on the type of theactivated link. For links
to documentation three possibilities exists: view destination in the current window, view
destination in the opposite window or show the context view for the entity. This is shown as
the upper part of the navigation menu presented in Figure 4.15 on the preceding page, which
shows a navigation menu for a link which destination is a Bug report documentation node.

Similar actions is presented for source code entities, but it has the extra feature of allow-
ing direct access to the interface documentation for the specific entity. For Java this means
linking to JavaDoc generated pages. This provides a direct coupling to the interface docu-
mentation and therefore provides a utilization of the internal documentation together with
JavaDoc.

The second part of the navigation menu

When choosing whether to follow a link or not, information about the destination of the link
may prove valuable. In this way, the reader has some information about the contents of the
destination, and may therefore be able to make a more qualified assessment of whether to
follow the link or not. This is the purpose of the second part of the navigation menu.

For links to documentation, the navigation menu shows the node type, the topic and the
abstract of the documentation node in which the entity linked to is contained. It furthermore
shows the role of the link. For links to source code the role ofthe link, as well as the type and
name of the entity linked to, is shown. In order to improve theawareness of the MRS-model,
the background of the navigation menus placed on links to documentation, is furthermore
set with respect to the category color of the destination node. This can be see in Figure 4.15
on the facing page, where the color of the navigation menu is orange since it describes a
motivation.

Implementation

As a technical note, the navigation menu is realized by usingdynamic html (DHTML). The
menu is displayed by a JavaScript function that is invoked when clicking on a link. The
function dynamically retrieves the contents for the menu from the Generator, based on the
destination anchor, and displays the result in a layer on topof the main html-document.

This implementation of the navigation menu has the noteworthy consequence that the choice
of browser is limited to only support Netscape Communicator. The navigation menu could
be implemented to also support Internet Explorer, but sincethe implementation of Elucidator
2 is done as proof of concept, this was not prioritized.

66 Design

4.4.3 Neighborhood navigation

The second of the three levels of navigation is neighborhoodnavigation. In order to realize
this level of navigation we introduces theContext view.

The purpose of the context view is to provide the reader with information on the context
concerning a specific documentation or source code entity, such as a documentation node or
a class in the source code. Therefore a context view applies to a documentation or source
code entity in the hypertext network. A context view displays a selection of information
about the links from and to the entity applied on. These linksare also called the outgoing
and incoming links. It can therefore, e.g., be used to find which motivations nodes acts as
premise for a specific rationale node. A conceptual drawing of the context view is shown in
figure 4.16.

?

?

? ?

?

?
?

?

? ?

?

?

X

Figure 4.16: Conceptual drawing of the context view. The context view is applied on a specific entity
(X), which is used as a base to find and display all the relationships held between this
entity and other entities in the network.

Two different kind of Context Views exists — one for documentation and one for source
code.

Context view for documentation

The context view for documentation is implemented in a separate window. This window
contains two panels, one for outgoing links, and one for incoming links. The reader is then
able to switch back and forth between these two panels. A screen shot showing a context
view for documentation with its two panels is shown in Figure4.17 on the facing page.

Outgoing links contain links to both source code and other documentation entities (Fig-
ure 4.17(b) on the next page), while incoming links shows which documentation entities link
to the entity1 (Figure 4.17(a) on the facing page). Both the outgoing and incoming links is
presented in a table, with one outgoing or incoming links in each row. For each link the
following information is presented: the role of the link, animplicit link to the location where
the link is placed, and an implicit link to the entity in whichthe link is contained (typically a
documentation node or part of a documentation node).

1Source code does not contain links to documentation — hence no source code links is shown in incoming
links for documentation

4.4 Navigation 67

(a) The incoming links panel (b) The outgoing links panel

Figure 4.17: A context view for a documentation node. (a) shows a list of entities which link to this
node. (b) show entities which this node links to.

A context view for documentation can be shown for all types ofdocumentation entities. This
means everything from catalogs, documentation nodes to entities inside these nodes. When
a context view is shown it not only presents the outgoing and incoming links for the entity
it is applied on. It also presents the outgoing and incoming links for all the entities inside
the entity the context view is applied on. Thus when showing outgoing links in the context
view for a catalog the list of links is found by recursively searching for outgoing links in the
documentation nodes inside the catalog. Figure 4.18 illustrates the process.

X

X

X

1

2

Figure 4.18: A context view applied on an entity is considered recursively in nature. The context
view is applied to a specific entity (X) which it then used as a basis to find outgoing and
incoming links to and from X but also to and from X’s children (X1,X2)

68 Design

Context view for source code

The context view for source code is like the context view for documentation implemented
in a separate window, with a number of panels. Instead of two panels, the context view for
source code has three panels, and the contents of these are different than those of the context
view for documentation.

Figure 4.19 shows these three panels. The first panel shows which documentation entities
links to the selected source entity, thus presenting a list of where the selected source entity is
documented (Figure 4.19(a)). The two other panels shows relationships in the source code.
One panel shows which source code entities the selected entity uses, e.g., which fields is
defined in a class (Figure 4.19(c)), while the other shows which other source code entities
uses the selected entity, e.g., which methods instantiatesa class (Figure 4.19(b)).

(a) The documentation panel (b) The using panel (c) The used by panel

Figure 4.19: The context view for the source code entityDBHandler . (a) shows documentation enti-
ties which link to theDBHandler . (b) shows the source entities using theDBHandler .
(c) shows the source entities used by theDBHandler .

4.4.4 Global navigation

The final level of navigation is global navigation. This level of navigation is realized using
Index views. All of these views are conceptually like normal table of contents and indexes in
text files.

The purpose of the index views is to provide the reader with a survey of both the documenta-
tion and the source code. Therefore the index view applies tothe whole hypertext network.
As the name implies, the presentation of the view has the formof an index, which means
that it is presented as a list of implicit links to thematic catalogs and nodes. A number of
different index views could be imagined. We have chosen to design and implement three: the
hierarchic index view, theentity index viewand thesubject index view. The hierarchic index

4.4 Navigation 69

view can be compared to a table of contents and the subject index view is comparable to a
normal subject index. The three views will be described in detail in the rest of this section.

Hierarchic Index Views

Both the documentation and source code is physically organized in a hierarchic manner. The
documentation nodes is stored in, possible nested, thematic catalogs, while the source code
is organized in Java packages. The purpose of thehierarchic index viewis to present this
organization to the reader, while at the same time allowing him to navigate it. Since the
documentation and source code is organized in separate hierarchies, separate index views
are applied to them.

The two hierarchical index views is constructed by following the implicit containment links.
This is illustrated in Figure 4.20. For the documentation this means that the hierarchical
index view starts by displaying a list of implicit links to all the thematic catalogs in the
project. By activating one of these links, the reader can traverse downward into the catalogs
and show their contents, which will be documentation nodes and possible nested thematic
catalogs. When viewing the contents of a thematic catalog the topic, abstract and node type
is shown for the documentation nodes type, as well as a implicit link to the documentation
node in question. Finally, the navigation menu presented inSection 4.4.2 on page 64, is
available on all the implicit links in the view.

The hierarchic view for the source code is similar to the corresponding view for documenta-
tion. Instead of thematic catalogs and documentation nodes, it show all packages and classes
which can also be traversed to browse their contents.

co
nt

ai
nm

en
t

co
nt

ai
nm

en
t

co
nt

ai
nm

en
t

Figure 4.20: A hierarchic index view is used to browse the hierarchic structure applied to both the
documentation and source code, by the thematic catalogs andpackages respectively.

The two hierarchic views is used as the default view when the reader starts to browse a
project. This setup is shown by a screen shot in Figure 4.21 onthe next page.

70 Design

Figure 4.21: The hierarchical index views of documentation (the left frame) and source code (the
right frame). Both views has implicit links which can be usedto traverse further down
into catalogs or packages.

Entity index views

Although the hierarchical index view presents a survey of the documentation and source code
to the reader, it does not use any information from the MRS-model, or the structure of the
source code, to do that. Theentity index viewis, however, based on this information.

As with the hierarchical index views, two separate entity index views are provided for
the documentation and source code respectively. The entityindex view for documentation
presents an, alphabetically ordered, index of documentation nodes while the view for source
code, presents a index of source code entities.

These two indexes can be filtered with respect to either the MRS-model or the structure of
the source code. For the documentation view it is possible tofilter on three categories of
the MRS-model, the node types and the status of the node (new,in progress or finished).
This filtering mechanism can be used to, e.g., show all documentation nodes in the rationale
category which has the status “Finished”. The filter on status is particular useful in regard
to loose ends, since by applying a filter to find documentationnodes with the status set to
“new”, the result will be an index of loose ends.

The source code index view can be filtered to show all source entities of a specific type, e.g.,
all classes or methods. As the number of source code entitiesin a project is typically high2

the index of source code entities tend to get rather large andconfusing. Therefore a search

2In the Elucidator 2 source code there are approximately 4000entities.

4.4 Navigation 71

facility has been implemented in this view. The entered search string is matched against
the idname of the entities, and can therefore, e.g., be used to show entities inside a specific
package, class, etc.

An example of the usage of the two entity index views, is presented in the screen capture
in Figure 4.22. The documentation view (on the left) presents documentation nodes in the
solution description category of the MRS-model, with the status “in progress”, while the
source code view (on the right), presents a index of all the classes in the project.

Figure 4.22: A screen capture illustrating the two entity index views.

Subject index view

The final index view concerns information gathered internally in the documentation nodes.
This is called thesubject index view, and as the name implies this view presents a index of
subjects found in the documentation.

Concretely the subject index is a index of the keywords and terms placed in the documenta-
tion, for which a match could be found. Recall that keywords are special words listed in the
documentation nodes fixed part, and terms are special words marked up inside the nodes free
part. How a match for these two types of special words is foundis described in Section 4.3.4
on page 59 earlier in this chapter.

In order to enable the reader to search for special words not explicitly stated by the writer
as terms or keywords, the subject index view furthermore provides a searching mechanisms
where the reader can search the topic, abstract and keyword list of the documentation nodes

72 Design

for specific subject. This is illustrated in Figure 4.23 where the subject index view is used to
search for the subject “informix”.

Figure 4.23: A screen capture illustrating the subject index.

5
Re
e
tion

In order to evaluate the MRS-model and the Elucidator 2 tool,a small informal experiment
is conducted. In this chapter we describe this experiment and present the experiences gained
by it.

First we present the circumstances under which the experiment was conducted. Next we
present reflections on the experience gained though the experiment. These reflections is di-
vided into two sections with respect to the experience gained by the writer and the reader.
Finally we discuss the experiences gained by the experimenttogether with our own assess-
ment of the MRS-model and the implemented Elucidative environment.

5.1 Experiment circumstances

The strategy for conducting the experiment were to document, by using the Elucidator 2
tool, the development of a project called StregSystem. The rest of this section describes
what StregSystem is and the circumstances under which the experiment was conducted.

Project StregSystem

StregSystem is a system used to record purchases of productsstored in two refrigerators
located in a shared coffee room at our department at the university. The system works by
having a terminal placed in the coffee room which is used to operate an internet browser
which send and retrieve data to and from a server. The server has a list of users and records
their purchases and payments. It also keeps track of which products are offered, their prices
and how much there are in stock of each product. The server uses a relational database for
persistence and runs from a standard web server.

StregSystem currently exists in a old implementation whichdoes not provide all the wished
functionality and there exist no documentation for the implementation. The development of

73

74 Reflection

a new StregSystem with the Elucidator tool thus has a twofoldpurpose — to provide a better
implementation with more features and, by using the Elucidator, create a system that is well
documented. It is important that the StregSystem is documented as the maintainers of the
system will be students which only reside at the University for a limited time.

Writer experiment

Development of the system were performed by Thomas Vestdam,Amanuensis at the Depart-
ment of Computer Science Aalborg University, together withone of the authors of this thesis.
Vestdam had never used the Elucidator tool before, but had some knowledge of its capabili-
ties. Thus the amanuensis was briefly introduced to the MRS-model and the functionality of
the tool by the assisting author shortly before doing the actual development.

Vestdam had been designing the overall system before he started using the Elucidator 2, but
had not done any detail design and implementation of the StregSystem. The experiment was
conducted in a period of one week.

After this week the assisting author conducted a small informal interview with Vestdam
where they discussed and collected their experiences usingElucidator 2 for documentation.
The information collected in this interview is used in our evaluation of the model and tool,
seen from the writers perspective.

Challenges for the writers

The writers successfully produced documentation for the design and implementation of the
StregSystem, but two problems reduced their efficiency.

Vestdam and the assisting author had been informed how the relational database, to be used
for the StregSystem, should be incorporated, but due to technical difficulties and misinfor-
mation the relational database was not usable. Thus significant development time was used
on finding a solution to circumvent this problem. This causeda delay in the development of
the StregSystem, but gave good experiences on how the tool handled the documentation of
changes to the system and its design.

A further infliction was, that Elucidator 2 tool was being actively developed during the span
of the experiment. The complete development of Elucidator 2was only finished a day before
the experiment was finished. This did, however, not affect the developers notably as the
development on the Elucidator tool only affected navigational issues in the browser. It did
though have the effect that the browser was not used as extensively by the writers as expected.

Reader experiment

After the development of the StregSystem was finished the tworemaining authors of this the-
sis was allowed to read the documentation. This was done withthe purpose of evaluating the
model and tool from the readers perspective. The documentation used in the reading experi-

5.2 Reflections upon the experience of the writers 75

ment was the result of one week of development. Therefore, some parts of the StregSystem
was not completely developed and consequently the documentation was in the same state of
flux. We do though, not consider this a big disadvantage as this would properly also be the
case for internal documentation written in any initial software project.

Project size

In order to give an idea of the size of this project this section presents some statistical material
on the size of the project. Vestdam and the assisting author produced 26 EDoc and 15 Java
files during the one week of development. The implementationcontained 2 packages and
15 classes. The documentation spanned 9 thematic catalogs and 26 documentation nodes
was created. The writers explicitly created 32 documentation links, 75 source links and 27
external links — a grand total of 134 links.

A more detailed report on the statistical material from the project can be found in Appendix D
on page 117.

We are aware that, due to the limited size of the experiment, the gathered statistical material
can not be used as a basis to make concrete conclusions. We areinstead primarily using the
experiences gained by the writers and readers of the StregSystem project in order to indicate
certain points.

5.2 Reflections upon the experience of the writers

In this section we will present and reflect upon the most important experiences we have
gained during the development of the Stregsystem. The experiences is presented in no par-
ticular order. We reflect on these experiences and in some cases propose solutions that can
remedy possible found problems.

Solving problems using the MRS-model

Before the experiment started we expected that documentation nodes would be produced
and structured at the same time as problems where being solved during development. The
experiment showed that this was not always the case when using the MRS-model.

In the preliminary phases of solving a problem both writers had problems dividing the doc-
umentation into segments. This was the case for dividing documentation into motivation,
rationales and solution descriptions. It was also an issue when the writers had to choose a
specific node type for the documentation nodes.

They experienced that it were easier to just write down theirthoughts and action unstruc-
tured in the preliminary phases and then later place these thoughts and action in the correct
documentation nodes. This had the effect that the documentation often was first written after
the problem was solved or when writers could grasp the solution for the problem.

76 Reflection

We do not see this as a major problem for the MRS-model and internal documentation. As
long as the developer writes down his thoughts and structurethe documentation while he has
his knowledge about the actual problem solved fresh in mind the internal documentation will
not suffer.

A contrary experience gained by the writers were that they considered it an advantage to be
forced into segmenting the documentation when they actually wrote the nodes. It focused
their writing and enabled also the reuse of, e.g., one motivation node in multiple rationales.

Using the templates

The templates devised for use in internal documentation wasfrom the start not intended to
be neither ideal nor complete. Our experiment confirmed thatthis was the case.

When Vestdam was confronted with the templates and guidelines in the beginning of the
test period he often found the guidelines confusing and became in doubt of whether he had
chosen the right node type. Later on he adapted his writing tothe templates but he did not
feel that they all matched his needs for documentation.

The problems was not experienced by the other developer. Once he was on top of the prob-
lems he was solving, he used most of the documentation nodes and experienced it natural to
chose the right node type. This should be seen in the light of the fact that this developer had
contributed in the creation of the templates and their guidelines.

We see the experiences reported above as a question of the writers not having enough ex-
perience with the MRS-model and the templates used, and as a question of the style of the
templates not matching with the expectations of the writer.This confirm our believes in that
the templates used by a team of developers should be gradually changed in order to facilitate
the need and styles of the developers in the team.

The number of link roles

The intention of link roles where to strengthen the expressiveness of the documentation. We
therefore devised eleven (22 if you count their symmetricalnames) link roles. Unfortunately
the number of roles for the links confused the writers by their shear numbers. The writers
also felt some roles had close semantic meaning. This made ita complex task to choose the
right role for links.

A reason for the confusion could be that the writers where unfamiliar with the link roles and
could not directly see the purpose of them. The size of the StregSystem was relative small
and had a low complexity which indicates there were no directneed for expressing complex
relationships.

A response to the presented problem is to reduce the number oflink roles. One of the ways
to reduce the number of roles will be to reduce roles with close semantically meaning to
just one, e.g.,describesinstead ofdescribesanddetailed-by, selectsinstead ofselectsand
introduces.

5.2 Reflections upon the experience of the writers 77

Another reduction would be to limit the roles to a basic set ofroles, e.g.,premise, selects,
declines, deprecates1, describesandmentions. These basic link roles would in the same way
as the templates be modified and possibly extended through continued iterations over the use
and evaluation of the Elucidative environment.

Validation of links

As we have discussed above both writers found it difficult to find a proper structure for
the documentation early in the problem solving phase. As theproblems where grasped the
proper structure emerged. This had the consequence that documentation was moved from
one node type to another and nodes that in the beginning whereplaced in one catalog where
moved to another catalog.

The movement of nodes and their contents could inflict that links that linked to these nodes
would become invalid and hereby useless. This result in an instance of the classical hypertext
problem of keeping links consistent.

Fortunately this problem can be remedied by the Elucidativeenvironment because it has
information about the structure of both documentation and source code and their linking
mechanisms. This can be used to validate links when performing the abstraction process.
A link validation process can be used by the writer to detect errors in the documentation
similar to errors from a compiler. The information could also be used to support the writer
in moving nodes and provide semiautomatic update of possible invalid links.

It was also experienced that there were cases where the documentation surrounding source
code links that had become invalid were incorrect. We anticipate that with a link validation
process we could increase the proximity between source codeand documentation when er-
rors occur. This could be used by the writer not just to correct the link but also check if the
surrounding documentation still applies.

Writers motivation

One of the means we hoped would motivate the writers to write documentation was imme-
diate pay back, i.e., that they would benefit from their own writing. It turned out that none
of the writers ever used their own documentation in the test period.

The main motivational factor for the writers was instead to use the documentation written
by the other writer and to see their own documentation being useful for others, e.g., the
time spent writing good abstracts for documentation nodes where greatly appreciated when
the documentation was read by the other. Thus the simple factthat the writer could see
the documentation in the browser and felt it could be useful for others, especially the next
generation of the developers on the StregSystem, motivatedboth writers.

1The difference betweendeclinesanddeprecates, is that a solution that has been declined may be relevant
in another part of the system, where as a deprecated solutionis rejected throughout the system.

78 Reflection

5.3 Reflections upon the reader experiment

This section will present the most important experiences gained through the reading experi-
ment. The experiences is presented in no particular order. Similar to the reflection presented
in the previous section we present the experiences and reflect upon them.

Starting point

The first displayed information for a project in the browser of the Elucidator environment
is the hierarchal view of documentation and source code. As both readers were unfamiliar
with the StregSystem project and the views only showed the names of catalogs and packages
the readers found it hard to figure out where to start reading the documentation. A missing
starting point consequently complicated the readers possibility to form a general view of the
system from the start. This is especially a problem for readers with a serialistic reading style.

We do not see it as a major problem that the readers of the StregSystem could not im-
mediately form a general view of the StregSystem. The StregSystem was not completely
developed and large part of the documentation was not completed, but still a method should
be found to enable readers to have a starting point for the system.

This could be done by having a documentation node in each catalog that is to be displayed
each time a user enters the catalog. This node would be written by the writers of the system
and would be a natural place to present an overview of the contents of the thematic catalogs
and provide links to follow. Thus the Elucidative environment can support the writer in
providing a overview which can be used as a starting point forreaders — serialists as well
as holists.

The usage of views

As a consequence of readers not being able to find a starting point at first glance, they both
started to traverse the hierarchal view of thematic catalogs. When entering the catalogs their
contents were listed and each documentation node presentedwith their full topic and abstract
together with possible sub-catalogs.

Both readers used the hierarchal view to read the topic and abstract of nodes that seemed
interesting. This enabled the readers to start comprehending which documentation was avail-
able for the StregSystem without going back and forth between the nodes.

As both readers were aware of the capabilities of the Elucidator 2 they started using the
Documentation Index View. This view proved to be useful as itallowed the readers to filter
documentation nodes based on their type and category. This was used to find motivations,
continue on to the rationales and then finally solution descriptions, i.e., the reading became
based on the MRS-model. In each step they studied the nodes and followed links to the
extent they found it necessary. The readers experienced that the MRS-model and the use of
relatively short documentation nodes was useful for doing this form of (holistic) reading.

5.3 Reflections upon the reader experiment 79

The readers also felt they actually were reverse-engineering the documentation with the help
of the views and navigational facilities of the Elucidator to grasp the system. It was noted
by the readers that if they have had previous knowledge of thesystem, e.g., been active
developers on the StregSystem, they felt that the navigation facilities also were useful. They
experienced that specific parts of the system was easy to find with help of the views.

Information on links

The Elucidator 2 environment and the MRS-model urge the use of links. This can result in a
high number of links inside documentation nodes. As seen in the statistics in Appendix D on
page 117 134 explicit links were created even in this small project. We have made an effort
to reduce the readers need to unnecessarily explore links byproviding information about the
destination of a link though the navigation menu.

The readers all appreciated the distinction between link types through colors as it made the
reader aware whether a link would lead to documentation, source code or external informa-
tion. This was often used as the readers typically either were looking for source code or
documentation.

When following links a navigation menu is displayed and a short summary of the destination
is shown. This was of great help for the readers as it saved time while reading. Especially
when using views that displayed many implicit links it savedtime as, e.g., the topic and
abstract for documentation nodes provided enough information to decide if it was worth the
effort to follow the link.

Parallel hypertext

When exploring the system and following links as described above, the readers made use of
the possibility to view documentation and/or source code nodes in parallel.

The possibility to perform parallel hypertext with documentation and source code was pow-
erful. Both readers used the parallel hypertext feature with a documentation node that ex-
plained the overall system with links to more concrete details. It allowed readers to open
the documentation node in one side and used this as a reading-guide and as a fixed point for
navigation. When following links the reader then consistently viewed the links destination
in the opposite window to keep the context. This was true for both viewing source code and
documentation.

In our initial experiments with the Elucidator 1 tool, documentation and source code were
always shown in parallel and hence source code was always visible. A side effect of parallel
hypertext with no constraints on the location of source codeor documentation were that the
focus was moved from examining source code to examining documentation.

80 Reflection

Visibility of the MRS-model

The readers utilized their knowledge of the MRS-model to start reading the documentation
as described previously. The readers was aided by the Elucidator in utilizing the MRS-model
as the documentation nodes were colored according to their category.

A further aspect of the MRS-model is the roles on links. The readers were not using the
role on links when following the links from inside a documentation node. This is probably
caused by the fact that the role of a link is only visible when it is activated. In the navigation
menu the role was displayed but was not emphasized enough to be useful. Still, roles where
used, not when doing normal browsing, but in the Context Viewof documentation and source
code. Here the link roles were used to find, e.g., the premisesfor rationales. Without the link
roles the readers would not able to distinguish a simple reference to a node from a special
usage of a node. Thus the use of links were advantageous in reflecting the MRS-model for
the readers.

Another aspect was the use of change descriptions to track changes and thereby document
the history of the system. Both readers found the documentation of the before mentioned
technical problems to be of good use in a examination situation. The information was useful
and the use of “declines”, “deprecates” and “selects” to express what was rejected and what
was accepted were used by the readers. A feature missing fromthe system though was the
possibility to show the documentation nodes in chronicle order to give a better historical
view of the changes.

Trustworthy documentation

Both readers was at several times “annoyed” by the documentation. The annoyance was
caused by some documentation nodes which was only half finished and furthermore by links
which pointed nowhere. However by applying link validationto the documentation it seems
that this problem can be reduce. This was also noted in Section 5.2 on page 77.

Documentation nodes containing only a hint on what could be expected and sometimes noth-
ing at all was to great distress, as the readers felt information was being held back or that the
information was incorrect.

We do not believe this problem to be confined to this small experiment. Inconsistency and
lack of documentation is a general problem concerning documentation of software. We
imagine that if the internal documentation for a piece of software generally has these prob-
lems readers using the documentation will spend more time resolving the inconsistencies
than actually benefiting from the documentation. We therefore suggest that to increase the
trustworthiness of internal documentation, continuouslydocumentation reviews is needed.

5.4 Discussion 81

5.4 Discussion

The following section contains a discussion of the experiences gained through the experi-
ment together with our own assessment of the MRS-model and the implemented Elucidative
environment. The section is divided into three parts. Firstwe discuss the MRS-model, next
the implementation of the MRS-model in the Elucidative environment, and finally we discuss
the usage of the Elucidator tool to document the history of software and documentation.

5.4.1 The MRS-model

We see the MRS-model as one of the main contributions of our work. This is based both on
our own assessment of the model and the experiences gained through the experiment.

The MRS-model was used by both the writer and the reader. As stated previously in this
chapter, the writer had difficulties dividing the documentation into the three categories while
at the same time trying to solve a software problem at hand. They experienced that is was
easier to just write down their thoughts and then structure them later. We recognize that this
might be a problem. However, the first time you make a class hierarchy for a software pro-
gram, it is not easy either. Therefore, we see a part of this problem as a matter of getting used
to the MRS-model. A contrary experience was also gained by the writers: They considered it
an advantage to be forced into segmenting the documentation, since it focused their writing
of the documentation.

As for the roles on links, it was expected that the relativelylarge number of roles would
benefit the expressiveness of the documentation. This was however not the experienced
case, since the writers got confused by their shear numbers,and therefore found it confusing
to chose between them.

As for the readers, they experienced only minor problems with the usage of the MRS-model,
and it was therefore quickly an advantage for them. This was for instance shown by the
fact that the MRS-model was actually used to navigate the documentation. By starting with
motivations documentation nodes, the readers navigated torationale nodes and from there
to solution description nodes. On the down side the MRS-model does not provide a natural
place for the reader to start reading the documentation. This was especially needed when the
readers started from scratch on a new and unknown system.

It should furthermore be noticed that conceptually the MRS-model is applicable on other
documentation types than internal documentation. It is furthermore both language and paradigm
independent. This means that all documentation situationswhere it is useful to represent, re-
late and capture motivations and rationales together with their actual description of solutions
can therefore benefit from the MRS-model.

In conclusion we believe the experiment indicates that the MRS-model is particular useful
for the readers but also acceptable for the writer.

82 Reflection

5.4.2 The Elucidator tool

It is our position that in order for the MRS-model to become successful it is dependent on
good tool support. If the internal documentation and the MRS-model is to be useful, it not
only need to be practical manageable for the writer to write the documentation, it also has to
be accessible in a form that provide navigational facilities to grasp the possible large amount
of documentation. The Elucidative environment implemented in this thesis is a suggestion
for such tool support. We believe that the experiment confirmed this need for tool support.
The tool support is therefore seen as the second main contribution of our work.

One of the consequences of our focus on the reader, was that the reader experienced better
support by the tool than the writer. However, the experimentstill showed that the writers used
all the features in the editor and stated that it would be impossible to create the documentation
without these features. Particularly the support for link insertion was praised. The selection
of editor support was found short of the target though, and asa consequence better and more
advanced editor support was queried for.

As for the reader, especially the navigation facilities wasappreciated and extensively used.
Furthermore, the usage of colors to increase the visibilityof the MRS-model was found
useful. As to the problem of no starting point in the documentation, the tool did not provide
a direct solution. It did though, help to lessen the problem,by providing the navigation
facilities.

On the technical front, we see the implemented elucidative environment as independent on
multiple fronts:

Physically the Elucidative environment does not confine theusers to a single development
environment. The documentation is placed in EDoc files whichare physically separated from
the source code. This enables the free use of the source code files in other environments
without modification.

Architectural the environment is also flexible. Each component in the implementation is low
coupled to the other components. This means that e.g. the environment is not dependent on
a specific editor, database or server and they can all relatively easily be replaced.

Finally the environment is also language independent. Currently there only exist a Java
abstractor for the environment, but since the Elucidator have a Data model that is based on
entities and their relationships it is possible to create anabstractor for other languages. The
only requirement is that it is feasible to uniquely identifyentities that should be documented
via links in the Elucidative environment.

5.4.3 History in documentation

The final topic for discussion is the usage of history in the internal documentation. Not
many experiences was gained on this subject, since the period in which the experiment was
conducted was only one week. However, due to unexpected difficulties with the relational
databases, some experiences related to changes was never the less gained.

5.4 Discussion 83

Initially it was planed to use the Informix database system.Therefore source code and doc-
umentation was produced for this solution. It however turned out that this database could
not be used, and a switch was made to the MySQL database system. This switch was
documented through the usage of a Change description node, and thus, the history of the
program was maintained. At a later point, the problems with the Informix database system
was resolved, and it was experienced to be relatively easy tofind the documentation for this
solution.

We are aware that, based on this experience, nothing conclusive, concerning the importance
and usability of the history of the documentation, can be said. However, the method provided
by the MRS-model for documenting the history of the softwarewas experienced to be useful
for both the writers and the readers. In our opinion this indicates that the history of the
software can be documented and be an natural part of the internal documentation.

84 Reflection

6
Con
lusion

This chapter conclude our master thesis. This is the place where we look back at the work
done and results accomplished throughout the project and, based on these, conclude on the
two formulated hypotheses.

In order to weaken or affirm these two hypothesis an investigation with five steps was con-
ducted throughout the project. 1) First the notion of internal documentation in software
development was examined. The main result of this examination was that internal documen-
tation becomesmore fruitful when it is written with a clear distinction between rationales
and solutions. 2) Next we divided participants working with internal documentation into two
roles: thereader and the writer. The reader was chosen to be the focus of our further work,
and a characterization of him, showed him to have tendenciestowards beingholist as well
asserialist. As for the writer it was stated thatno demands for special writing skill, could be
placed on him.

3) Based on these first two steps, theMRS-modelwas formulated. The main concept of the
MRS-model, is a division of the internal documentation intothree interrelated categories. 4)
Furthermore an important part of the MRS-model is itsrealization in the elucidative environ-
ment. This was done by using the elucidative environment developed in the first part of the
master thesis. 5) Finally, an experiment, called the StregSystem experiment, was conducted
in order toshow the effect of the modelwhen applied to internal documentation in a software
development project.

The main results of the investigation presented above is theformulation of the MRS-model
and thepractical realization of this model in the elucidative environment, that is, the Elu-
cidator 2 tool. These two results, together with the resultsfrom the StregSystem experiment,
will be used to affirm the two hypotheses.

- o -

85

86 Conclusion

The first hypothesis states:

To present internal documentation in order to facilitate the reader, it is nec-
essary to structure it in a predefined way. This structure, combined with
navigation facilities, will be beneficial to the internal documentation.

This hypothesis actually contains two sub-hypotheses, both centering around structure in
internal documentation. We therefore conclude on these twosub-hypothesis separately.

The first sub-hypothesis concerns the necessity of a predefined structure of the internal doc-
umentation, with the purpose ofpresentingthe documentation. By applying the MRS-model
to internal documentation, traceability in the presentation of the documentation is provided
to the reader, since this model makes a clear distinction between motivation, rationales and
descriptions of the solutions. By using the concrete realization of the MRS-model in the
elucidative environment, visibility of the three different categories of documentation is pre-
sented to the reader. This is accomplished by the implementation, e.g., by using a coloring
scheme which reflects the three categories. Finally, the internal structure of the documenta-
tion nodes also makes an uniform presentation of the documentation possible.

The StregSystem experiment did not affirm nor weaken thenecessityof structure, but our
experiences with the structure-less documentation produced with the Elucidator 1 tool indi-
cate it. With regard to the roles on links the writers did not appreciate the full expressiveness
of the MRS-model, since they were burdened with the number ofroles. We believe that this
indicates that the proposed expressiveness is not needed and the number of links roles can
be reduced.

The second sub-hypothesis concerns thebenefitaccomplished by applying structure to the
internal documentation. By applying the MRS-model to the internal documentation it will
benefit from the clear distinction between motivation, rationales and descriptions of the solu-
tions, and the documentation will thereby avoid being muddled up. By using the Elucidator
2 tool, it is possible to extract implicit information, suchas the navigation menu and the
views, which also adds to the benefit of the internal documentation.

The uniform presentation of the internal structure of the nodes was not experienced to be as
important as expected. The overall structure of MRS-model on the other hand together with
the navigation facilities proved to be beneficial to the documentation for the readers. In gen-
eral both the overall structure and the internal node structure imposed by the MRS-model,
helped the writers to structure their documentation. During the StregSystem experiment it
was indicated that the usability for the writer was limited by two factors. The first being the
writers unfamiliarity with the MRS-model. The second factor was that the writers the pre-
liminary phases of solving a problem in the software, were unable to structure thier thoughts
and hence use the MRS-model.

- o -

87

The second hypothesis stated:

The history of the software is important since most changes in the software,
are made as a consequence of a rationale. The history of the software can
be documented and be a natural part of the internal documentation.

As with the first hypothesis this one can also be split into twosub-hypotheses. Both these
sub-hypothesis centers around the history, and how this relates to internal documentation.

The first sub-hypothesis concerns theimportanceof the history of software in connection to
rationales. That is, will the internal documentation benefit from the presence of documenta-
tion of the history of the software. Based on the work done in this project we have not been
able to neither weaken nor affirm this hypothesis. In fact we have come to believe that the
question of whether this hypothesis is correct or not, is a matter of opinion and point of view.
However, our work shows that if one believes that the hypothesis is correct, we can affirm
the second sub-hypothesis.

The second sub-hypothesis concerns the question of whetherthe historycan be documented
and furthermore be anatural part of the internal documentation. Our work affirms this
hypothesis. As a part of the realization of the MRS-model, a change description node type
was created. This node type, together with the two link role targeted at the history; introduces
and deprecates, made it possible for the writer to document the history. Besides this, the
experiences gained by the StregSystem experiment showed that the documented history was
actual useful, and was considered to be a natural part of the documentation.

- o -

In conclusion, the work presented in this report has not proven, but indicated that it is a neces-
sity to structure the documentation in a predefined way in order to present it so it facilitates
the reader. Arguments have however been provided which showthat if the documentation is
structured in a predefined way, it can be presented so it facilitates the reader. It has further-
more been shown that the internal documentation do benefit from applying a structure to the
documentation.

Besides this, we have not been able to neither weaken nor affirm our claim that the history
of software is important. We have however, showed that giventhe history is considered
important, it can be documented, and be a natural part of the internal documentation.

88 Conclusion

7
Future work

Having worked with the notion of elucidative programming for a whole master thesis, a lot of
ideas to extension and further development of the work presented in this report has emerged.
In this chapter we present three ideas for subjects which we believe would be interesting and
rewarding to work on in the future.

Experiments using the elucidative environment

In this project we have performed two small experiments to show that the elucidative envi-
ronment and MRS-model is usable in our own surroundings.

Seen in the light of the relatively small size and short duration of these experiments it would
be natural to conduct one or more experiments that explore the use of Elucidative program-
ming and its environment to a larger extent. By larger extentwe mean the duration, com-
plexity and participants of the project has to be considerably higher than it was the case with
the experiment performed in this project.

The purpose of these experiments should be threefold: First, they should seek to answer if
developers productivity increases by writing internal documentation in an elucidative envi-
ronment. Secondly, they should try expose if software, for which internal documentation
exist, has a higher quality, i.e., is more understandable, modifiable and reusable. Finally, it
could be interesting to try to show if the history of softwareis as important as claimed in this
master thesis.

Motivating the writer

Until now the writer present in our work has been solely motivated for writing internal doc-
umentation through his own personal satisfaction or professional obligation. Either he has
been personally interested in producing internal documentation for his software or his devel-
opment team has obliged him to do so.

89

90 Future work

If the only motivation for the writer to produce internal documentation is rules stated by
the development team, and he personally cannot see the advantage of producing internal
documentation, it will be hard for him to write quality documentation and even so quality
software.

Throughout our work we have attempted to reduce the burden placed on the writer by provid-
ing him with an elucidative environment with, e.g., navigation facilities and editor support.
This is however only a consoling measure. It could thereforebe interesting to investigate
which non tool related measures can be devised to motivate writers to voluntarily engage in
the process of creating internal documentation.

Elucidative environment in a process

Our focus in this thesis has been on internal documentation of software. This type of doc-
umentation is mainly created during design and implementation. This is illustrated in Fig-
ure 7.1(a).

We have disregarded the documentation created during otherphases of the classical object
oriented development process. We think that an interestingchallenge would be to explore
if, and how, an Elucidative environment could be used for documenting all these phases,
while at the same time maintaining the close relation to the source code. This is illustrated
in Figure 7.1(b).

Anlysis doc.

Design doc.

Internal doc.

Source code

Level of abstraction

S
up

po
rt

ed
 b

y
th

e
E

lu
ci

da
to

r
2

to
ol

(a) The span of the current Elucidative en-
vironment.

Anlysis doc.

Design doc.

Internal doc.

Source code

Level of abstraction

S
up

po
rt

ed
 b

y
th

e
E

lu
ci

da
to

r
"3

"
to

ol

(b) The span of a possible future Elucida-
tive environment.

Figure 7.1: Illustration of the span of the currently implemented Elucidator tool, and a possible
future implementation of the Elucidator tool.

The documentation presented in the analysis and design documents should typically be
changed over time in the iterative process. This process will typically also include reviews
(both source code and hopefully documentation reviews), milestones and an extended set of
roles (such as managers and customers). Therefore, by extending the span of the Elucidator
tool to also include analysis and design documents, it becomes important to provide support
for this iterative process. At the moment the Elucidator 2 tool does not have any support for
processes, but we find it both natural and interesting to extend the Elucidator tool with this
capability.

A
Examples of di�erent nodetypes and link roles

In this appendix we present a number of different node types and link roles. These are
all concrete examples of possible node types and link roles,that where found useful in the
experiment we have conducted. They should not be regarded asarchetypical examples but
merely as possible implementations of the MRS-model. Examples of the use of the nodes in
the experiment is included as screen captures.

A.1 Examples of concrete node types

Node types in the Motivation category

Requirement is a node type that describes a requirement or a constraint that specifies or
restrains the behavior, design or implementation of the system. This can be seen as
the information that would go into a normal system definitionin traditional Object-
oriented Analysis and Design [Mathiassen et al., 1997]. It can also be an internal
requirement specifies by a developer on the software project.

A requirement contains a description of the requirement anda list of the parties that
has specified the requirement.

Bug report is simply a report of a error in the system. The bug report willcontain a de-
scription of which part of the system that is affected by the bug.

The actual description of the bug contains a description of the circumstances under
which the error occurs, a description of the error and possibly suggestion on how to fix
the bug. The description may contain debugger traces, excerpts from log files etc.

91

92 Examples of different node types and link roles

Improvement is a suggestion for an improvement of the system. The suggestion contains
a description of which part of the system that is considered in the improvement and a
actual description of the improvement. An example of an improvement could be that
we would like to use another and more stable database for the StregSystem.

Figure A.1: A concrete example of a documentation node of the type “Requirement”.

Node types in the Rationale category

Rationale Is a node type that describes the arguments that leads to a chosen solution and a
set of declined solutions. We structure the rationales as first a presentation of the driv-
ing forces and motivations that affect the rationales. These motivations are described
short, since they are possibly described in a motivation type node.

A.1 Examples of concrete node types 93

For each motivation that appear in some other node, a link is given with a short de-
scription of the specific part or aspect of the motivation that makes it relevant here
and affect the rationale. Some of the driving forces may alsovery well be solution
description of other parts of the system, if those parts affect the decisions made in the
rationale.

The rationale contains a short description of the chosen anddeclined solutions. As the
solutions and possibly alternatives are described in a solution description type node,
this description focuses on the properties of the solutionsthat affects the decision.

At the end of a rationale node is a discussion of the choices made. This can be a
discussion of the consequences of the selected or declined solutions. This part may
also include personal subjective assessments.

Change description The change descriptions structure is the same as the generalrationale
node. The difference is that this explicitly defines a changein the system. It is through
this type of nodes, that the history of the changes to system is preserved.

The forces section of the change description describes the reasons for the change. The
solutions section should describe the old system as well as the new system.

Node types in the Solution description category

Concept The concept node type is used to separate and describe a subject or concept which
has special meaning/importance for the rest of the documentation. A concept will
typically be a technical term from the problem domain of the program being developed,
but it could e.g., also be a concept which needs clarificationbecause one or more
developers in the development team is not familiar with it.

An example of the first type of concept could be a development team doing a account-
ing system. It would then be useful to have the conceptsdebit andcredit described,
since software engineers are not likely to know these in detail unless they have devel-
oped accounting systems before.

Aspect An aspect node is used to document a facet of a system which is used in various
parts of the system.

Examples of the usage of the aspect node, could be to documenthow information is
written to a log file throughout the whole system, or how the loading and saving of
files is handled.

Design pattern instanceDesign Patterns [Gamma et al., 1995] has become increasingly
popular when creating programs using object-oriented programming languages. We
therefore introduces the design pattern instance node typefor the documentation of the
usage of design patterns. It is important to note that the node documents an instance of
a design pattern (which classes are involved in the instanceof this pattern and so on),
and not the design pattern itself, since this is already documented in the description of
the design patterns.

94 Examples of different node types and link roles

Figure A.2: A concrete example of a documentation node of the type “Rationale”.

A.1 Examples of concrete node types 95

Figure A.3: A concrete example of a documentation node of the type “Change description”.

96 Examples of different node types and link roles

An example of the usage of this node type could be to document that a Visitor Pattern
is used in the implementation of the Abstractor component (see Section 2.1 on page 9
for further information on the component) found in our Elucidator tool.

ProcessA process node should describe the interaction and flow internally in the software
system. This means that this type of node will e.g., documenthow different compo-
nents in a system interact with each other. The process node will often use links to
task node to describe the interaction and flow.

As an example of a process node in the description of the interaction between the Ab-
stractor, Data model and Generator components in the Elucidator tool. See Section 2.1
on page 9 for information on the functionality of these components).

Task The task node is used for documenting a limited job the systemshould be able to
perform. This mean that this node type will typically be usedto divide the documenta-
tion into manageable chunks. The task node type is often usedin connection with the
process node type described above.

An example of a the usage of the task node could be a system which stores its prefer-
ences in a file. The task of loading these preferences will then be documented in a task
node (and the node may link to an aspect node describing how the loading of files are
generally handled in the system).

Entity implementation This node is used to describe details of the implementation of a
entity (such as a package, a class or a method). It is important to note the difference
between the entity implementation nodes and interface documentation produced with
the help of tools such as JavaDoc. Entity implementation node focuses on the actual
implementation (used data types, algorithms and so on) while interface documentation
focuses (or should focus) on the usage of the entities by specifying the interface to the
entities.

An example of an entity implementation node could be the documentation of the XSL-
ProcesserPool class found in the implementation of the Elucidator tool. This class
manages the accounting of a list of objects. In doing so it used mutex concepts and
these will then be documented in the entity implementation node.

Essay Our final example of solution description nodes is the essay node type. This node
type is special in that is has no inherent structure and it is used if no other node type in
the solution description category seems to fit.

An example of an essay node could be a overview over the StregSystem. This docu-
mentation node explains the main components of the StregSystem and gives a UML
class inheritance diagram to explain the overall placementof responsibilities in the
system.

A.1 Examples of concrete node types 97

Figure A.4: A concrete example of a documentation node of the type “Concept”.

98 Examples of different node types and link roles

Figure A.5: A concrete example of a documentation node of the type “Design pattern instance”.

A.2 Examples of link roles 99

A.2 Examples of link roles

The following description of link roles is supplementary tothe other link roles described in
the Design chapter in Section 4.3.2 on page 57.

Uses/Used-by:TheUsesrole is used to specify that the documentation presented in some
documentation node, in order to explain something, uses another documentation node.
Symmetrically, theUsed-bylink is used to specify that some documentation node is
used by another documentation node.

An example of the usage of this role, could be that a documentation node describing the
main Abstractor components of the Elucidator tool, wants tospecify that the Abstrac-
tor uses two other components (that is, the JavaAbstractor and the EDocAbstractor),
which are documented in separate nodes.

Detail-of/Detailed-by: TheDetail-ofandDetailed-byroles are similar to the Uses/Used-by
role. The main difference is that this role, contrary to the Uses/Used-by role, expresses
a difference in the level of detail in the two documentation nodes.

An example of the this role could be that a documentation nodedescribing the Ab-
stractor might mention that it is implemented by using a Visitor Pattern, and a link
with the role Detailed-by is then made to a documentation node describing the details
of how this instance of the Visitor Pattern is implemented.

Reuses/Reused-by:The Reusesrole is used in development situations where the writer
wants to explicitly state that some part of the developed system was reused from an-
other system. In this case he makes a link with the role Reusesfrom a documentation
node describing how the piece of software is reused, to a documentation node which
is documenting the software which is being reused.

Implements/Implemented-by: The final link role isImplements. As the name implies this
role is used to express that something described in the documentation is implemented
by a source code node. Typical examples, could be key components of a system which
is documented as concepts of the system. In these concept nodes links with the role
Implemented-by, and destination anchor in a source code node, could be placed.

An example of the usage of this role is present in the documentation for the Elucidator
tool. In this documentation, a concept node describing abstraction is placed. In this
node a link with the role Implemented-by is made to the class which implements the
abstraction concept.

100 Examples of different node types and link roles

B
Grammar for the EDo
language

This is the grammar for the EDoc language. The grammar is specified as a DTD [Bray et al.,
1998].

edoc2.dtd<?xml ve rs ion =” 1 . 0 ” encod ing =”UTF�8” ?><!��DTD for the E l u c i d a t o r 2 . 0��>
5 <!�� The E l u c i d a t o r i s a par t of the DOPU re s e a rc h programme , see��><!�� h t tp : / / dopu . cs . auc . dk��><!�� The edoc element i s the roo t e lement . The element co r rosponds to��><!�� a node in the E l u c i d a t o r . I t c o n t a i n s one element t h a t s p e c i fi e s ��>

10 <!�� the type of the node .��><!�� In t h i s ve rs ion we only suppor t the essay node type .��><!ELEMENT edoc (essay j requ i rem en t j bug�r e p o r t j improvement j
r a t i o n a l e j change�d e s c r i p t i o n j concept j aspec t j
t ask j process j e n t i t y�im p lem en ta t ion j

15 des ign�p a t t e r n�i n s t a n c e)><!�� ==============================��><!�� HEAD ELEMENT AND SUBELEMENTS ��>
20 <!�� ==============================��><!�� The head element i s to appear in a l l d i f f e r e n t types of nodes .I t ��><!�� con ta in the f i xed par t of the node : Topic , Abs t rac t , Keywords and��><!�� S t a t u s .��>
25 <!ELEMENT head (top ic , a b s t r a c t , s t a t u s , keywords ? , au tho r?,

c re a t e d , l a s t�updated)><!�� The Topic e lement c o n t a i n s a top ic head ing for the node . From��><!�� the STOP method we have the fo l l ow ing recom anda t ions for the��>
30 <!�� c o n t e n t s of the top ic :��><!�� The top ic head ing must c h a r a c t e r i z e and i n t r o d u c e the them at i c ��>

101

102 Grammar for the EDoc language<!�� con ten t , not merely c a t e g o r i z e (l a b e l) the node body . Topic��><!�� head ings are more l i k e l y to be r e p r e s e n t a t i v e and t o p i c a l l y��><!�� f a i t h f u l i f they are (1) c o n s t ru c t e d as sen tence f ragments and��>
35 <!�� (2) r e w r i t t e n a f t e r compos i t ion of the node .��><!ELEMENT top ic (# PCDATA)�><!�� The au tho r e lement j u s t c o n t a i n s the name of the au tho r for a node .��><!ELEMENT au tho r (# PCDATA)�>
40 <!�� The a b s t r a c t e lement c o n t a i n s a a b s t r a c t fo r the node . From the ��><!�� STOP method (again) we have the fo l l ow ing recom anda t ions for the ��><!�� c o n t e n s t of the a b s t r a c t (Thes is sen tence s in the STOP��><!�� method).:��>
45 <!�� I t i s supposed to be a them at i c window in to the c o n t e n t s of the��><!�� node . Some more b la . on how to wr i te a good a b s t r a c t .��><!ELEMENT a b s t r a c t (# PCDATA)�><!�� The keyword element c o n t a i n s a l i s t of im por tan t keywords , from��>
50 <!�� the node . The kw element c o n t a i n s the s i n g l e keywords .��><!ELEMENT keywords (kw)�><!ELEMENT kw (# PCDATA)�><!�� Elements to keep t rack of im por tan t da tes and t imes for the��>
55 <!�� node .��><!ELEMENT c re a t e d (# PCDATA)�><!ELEMENT l a s t�updated (# PCDATA)�><!�� The s t a t u s e lement c o n t a i n s a t e x t u a l r e p r e s e n t a t i o n of the��>
60 <!�� s t a t u s of the node : NEW, INPROGRESS and FINISHED . A d d i t i o n al t e x t ��><!�� can be w r i t t e n .��><!ELEMENT s t a t u s (new j i n p ro g re s s j f i n i s h e d)><!ELEMENT new EMPTY><!ELEMENT i n p ro g re s s EMPTY>
65 <!ELEMENT f i n i s h e d EMPTY><!�� ===================��><!�� STANDARD ELEMENTS ��>
70 <!�� ===================��><!�� The s e c t i o n e lement c o n t a i n s a t i t l e and more t e x t .��><!ELEMENT s e c t i o n (t i t l e , (p)�)><!ATTLIST s e c t i o n
75 l a b e l ID # IMPLIED

sbase CDATA # IMPLIED><!�� The t i t l e e lement j u s t c o n t a i n s a t i t l e for a s e c t i o n or��>
80 <!�� f i g u re .��><!ELEMENT t i t l e (# PCDATA)�><!�� The ord ina ry parag raphs��><!ELEMENT p (# PCDATA j f i g u re j i t em ize j enumerate j desc j
85 eimage j x l i nk j s l i n k j d l ink j term)�><!�� The f i g u re e lement are for f i g u r e s in the edoc document .��><!ELEMENT f i g u re (body , t i t l e)><!ATTLIST f i g u re
90 l a b e l ID # IMPLIED><!�� The eimage element are for images t h a t are a par t of the��><!�� E l u c i d a t i v e documentat ion . Since we do not v a l i d a t e the��>
95 <!�� documents , the w r i t e r i s f ree to add any a t t r i b u t e s . We do��><!�� r e q u i r e t h a t the h re f a t t r i b u t e p o i n t s to some f i l e in the edoc ��><!�� bundle .��><!ELEMENT eimage EMPTY><!ATTLIST eimage

103

100 src CDATA # REQUIRED><!�� The body of the f i g u r e s��><!ELEMENT body (# PCDATA j i t em ize j enumerate j desc j
105 eimage j x l i nk j s l i n k j d l ink j term)�><!�� The i tem ize , enumerate and desc elements are t y p o g ra p h i c a l��><!�� elements .��>
110 <!ELEMENT i tem ize (i tem)�><!ELEMENT enumerate (i tem)�><!ELEMENT desc (pa i r)�><!ELEMENT pa i r (name , i tem)><!ELEMENT name (# PCDATA)�>
115 <!ELEMENT item (# PCDATA)�><!�� The term element i s used for making idexes��><!ELEMENT term (# PCDATA)�>
120 <!�� The x l i nk i s a URL to an e x t e rn a l document��><!ELEMENT x l ink (# PCDATA)><!ATTLIST x l ink

ro le (d e t a i l�of j d e t a i l e d�by j
d e s c r i b e s j desc r ibed�by j

125 ment ions j mentioned�by j
implements j implemented�by j
uses j used�by j
premise j premise�fo r j
d e c l i n e s j dec l i ned�by j

130 s e l e c t s j s e l e c e t e d�by j
d e p re c a t e s j depreca ted�by j
i n t r o d u c e s j i n t r o d u c e d�by j
reuses j reused�by) # REQUIRED

hre f CDATA # REQUIRED
135 ><!�� The s l i n k i s a l i nk to some symbol in java source , inc luded in��><!�� the e l u c i d a t o r bundle .��><!ELEMENT s l i n k (# PCDATA)>
140 <!ATTLIST s l i n k

ro le (d e t a i l�of j d e t a i l e d�by j
d e s c r i b e s j desc r ibed�by j
ment ions j mentioned�by j
implements j implemented�by j

145 uses j used�by j
premise j premise�fo r j
d e c l i n e s j dec l i ned�by j
s e l e c t s j s e l e c e t e d�by j
d e p re c a t e s j depreca ted�by j

150 i n t r o d u c e s j i n t r o d u c e d�by j
reuses j reused�by) # REQUIRED

hre f CDATA # REQUIRED>
155 <!�� The d l ink i s a l i nk to some node in the edoc bundle .��><!ELEMENT d l ink (# PCDATA)><!ATTLIST d l ink

ro le (d e t a i l�of j d e t a i l e d�by j
d e s c r i b e s j desc r ibed�by j

160 ment ions j mentioned�by j
implements j implemented�by j
uses j used�by j
premise j premise�fo r j
d e c l i n e s j dec l i ned�by j

165 s e l e c t s j s e l e c e t e d�by j
d e p re c a t e s j depreca ted�by j
i n t r o d u c e s j i n t r o d u c e d�by j

104 Grammar for the EDoc language

reuses j reused�by) # REQUIRED
hre f CDATA # REQUIRED

170 ><!�� ============================��><!�� ELEMENTS USED IN THE NODES��>
175 <!�� ============================��><!ELEMENT d e s c r i p t i o n (p j s e c t i o n)�><!ATTLIST d e s c r i p t i o n

sbase CDATA # IMPLIED
180 l a b e l CDATA # IMPLIED><!ELEMENT s p e c i f i e d�by (p j s e c t i o n)�><!ATTLIST s p e c i f i e d�by

sbase CDATA # IMPLIED
185 l a b e l CDATA # IMPLIED><!ELEMENT concern ing (p j s e c t i o n)�><!ATTLIST concern ing

sbase CDATA # IMPLIED
190 l a b e l CDATA # IMPLIED><!ELEMENT f o rc e s (p j s e c t i o n)�><!ATTLIST f o r c e s
195 sbase CDATA # IMPLIED

l a b e l CDATA # IMPLIED><!ELEMENT s o l u t i o n (p j s e c t i o n)�>
200 <!ATTLIST s o l u t i o n

sbase CDATA # IMPLIED
l a b e l CDATA # IMPLIED>

205 <!ELEMENT d i s c u s s i o n (p j s e c t i o n)�><!ATTLIST d i s c u s s i o n
sbase CDATA # IMPLIED
l a b e l CDATA # IMPLIED>

210 <!ELEMENT d i c t i o n a r y (p)�><!ATTLIST d i c t i o n a r y
sbase CDATA # IMPLIED
l a b e l CDATA # IMPLIED

215 ><!ELEMENT concept�name (# PCDATA)�><!ELEMENT pre�c o n d i t i o n (p j s e c t i o n)�>
220 <!ATTLIST pre�c o n d i t i o n

sbase CDATA # IMPLIED
l a b e l CDATA # IMPLIED>

225 <!ELEMENT pos t�c o n d i t i o n (p j s e c t i o n)�><!ATTLIST pos t�c o n d i t i o n
sbase CDATA # IMPLIED
l a b e l CDATA # IMPLIED>

230 <!ELEMENT a p p l i c a b l e�to (p j s e c t i o n)�><!ATTLIST a p p l i c a b l e�to
sbase CDATA # IMPLIED
l a b e l CDATA # IMPLIED

235 >

105<!ELEMENT des ign�p a t t e r n�name (# PCDATA)><!ELEMENT con tex t (p j s e c t i o n)�>
240 <!ATTLIST con tex t

sbase CDATA # IMPLIED
l a b e l CDATA # IMPLIED>

245 <!ELEMENT purpose (p j s e c t i o n)�><!ATTLIST purpose
sbase CDATA # IMPLIED
l a b e l CDATA # IMPLIED>

250 <!ELEMENT ro l e s (p j s e c t i o n)�><!ATTLIST ro l e s
sbase CDATA # IMPLIED
l a b e l CDATA # IMPLIED

255 ><!ELEMENT c o l l a b o r a t i o n s (p j s e c t i o n)�><!ATTLIST c o l l a b o r a t i o n s
sbase CDATA # IMPLIED

260 l a b e l CDATA # IMPLIED><!�� ================��>
265 <!�� THE ESSAY NODE ��><!�� ================��><!�� This node type only c o n t a i n s a head and no a d d i t i o n a l e lementfor ��><!�� the con ten t .��>
270 <!ELEMENT essay (head , (pj s e c t i o n)�)><!ATTLIST essay

sbase CDATA # IMPLIED>
275 <!�� ======================��><!�� THE REQUIREMENT NODE��><!�� ======================��>
280 <!ELEMENT requ i rem en t (head , (d e s c r i p t i o n , s p e c i f i e d�by))><!ATTLIST requ i rem en t

sbase CDATA # IMPLIED>
285 <!�� =====================��><!�� THE BUG REPORT NODE��><!�� =====================��>
290 <!ELEMENT bug�r e p o r t (head , (concern ing , d e s c r i p t i o n))><!ATTLIST bug�r e p o r t

sbase CDATA # IMPLIED>
295 <!�� ======================��><!�� THE IMPROVEMENT NODE ��><!�� ======================��>
300 <!ELEMENT improvement (head , (concern ing , d e s c r i p t i o n))><!ATTLIST improvement

sbase CDATA # IMPLIED>

106 Grammar for the EDoc language

305 <!�� ====================��><!�� THE RATIONALE NODE ��><!�� ====================��>
310 <!ELEMENT r a t i o n a l e (head , (f o r c e s , s o l u t i o n , d i s c u s s i o n))><!ATTLIST r a t i o n a l e

sbase CDATA # IMPLIED>
315 <!�� =============================��><!�� THE CHANGE DESCRIPTION NODE��><!�� =============================��><!ELEMENT change�d e s c r i p t i o n (head , (f o r c e s , s o l u t i o n , d i s c u s s i o n))>
320 <!ATTLIST change�d e s c r i p t i o n

sbase CDATA # IMPLIED>
325 <!�� ==================��><!�� THE CONCEPT NODE��><!�� ==================��><!ELEMENT concept (head , (concept�name , con tex t , d e s c r i p t i o n , d i c t i o n a r y ?))>
330 <!ATTLIST concept

sbase CDATA # IMPLIED>
335 <!�� =================��><!�� THE ASPECT NODE��><!�� =================��><!ELEMENT aspec t (head , (a p p l i c a b l e�to , d e s c r i p t i o n))><!ATTLIST aspec t
340 sbase CDATA # IMPLIED><!�� ===============��>
345 <!�� THE TASK NODE ��><!�� ===============��><!ELEMENT task (head , (con tex t , purpose , pre�c o n d i t i o n , pos t�c o n d i t i o n ,

d e s c r i p t i o n))><!ATTLIST task
350 sbase CDATA # IMPLIED><!�� ==================��>
355 <!�� THE PROCESS NODE��><!�� ==================��><!ELEMENT process (head , (con tex t , purpose , d e s c r i p t i o n))><!ATTLIST process

sbase CDATA # IMPLIED
360 ><!�� ================================��><!�� THE ENTITY IMPLEMENTATION NODE ��>
365 <!�� ================================��><!ELEMENT e n t i t y�im p lem en ta t ion (head , (s l i n k , purpose , d e s c r i p t i o n))><!ATTLIST e n t i t y �im p lem en ta t ion

sbase CDATA # IMPLIED>
370

107<!�� ==================================��><!�� THE DESIGN PATTERN INSTANCE NODE��><!�� ==================================��>
375 <!ELEMENT des ign�p a t t e r n�i n s t a n c e (head , (des ign�p a t t e r n�name , con tex t ,

purpose , ro l e s , c o l l a b o r a t i o n s ,
d e s c r i p t i o n))><!ATTLIST des ign�p a t t e r n�i n s t a n c e

sbase CDATA # IMPLIED
380 >

108 Grammar for the EDoc language

C
Templates fordo
umentation nodes

In the following sections the different templates for the node types, that are implemented
in the Elucidator 2 environment is presented. The comments (marked with<!-- com-
ment -->) are the guidelines that instruct the writer in using the templates.

The template for the fixed part is placed between the<head> tags. Since this part of the
templates is duplicated in all the templates, we only print the full header in the first template
in order to save space. In the remaining templates three dots(: : :) is placed where the fixed
part template should go.

C.1 Templates for Motivations

Requirement<edoc><requ i rem en t><head>
5 <!�� The top ic must c h a r a c t e r i z e and i n t r o d u c e the them at i c c o n te n t s of��><!�� the node , not merely c a t e g o r i z e (l a b e l) i t . The top ic shou ldaim��><!�� to convey p o s i t i o n s and r e s u l t s . Topics are more l i k e l y to be��><!�� r e p r e s e n t a t i v e and t o p i c a l l y f a i t h f u l i f they are (1) c o n s tru c t e d as��>

10 <!�� sen tence f ragments and (2) r e w r i t t e n a f t e r compos i t ion of the node .��><t op i c></ t op i c>
15 <!�� The a b s t r a c t i s supposed to be a them at i c window in to the��><!�� c o n t e n t s of the node . The a b s t r a c t must bo i l down the node body ��><!�� to t y p i c a l l e 3�5 l i n e s of t e x t . I t shou ld expose r a t i o n a l e s , r e s u l t s��><!�� and main c h a r a c t e r i s t i c s of con ten t of the node .��>

109

110 Templates for documentation nodes<a b s t r a c t>
20 </ a b s t r a c t><!�� The s t a t u s of the node , being new , i n p ro g re s s or f i n i s h e d .��><s t a t u s><new/></ s t a t u s>
25 <!��A l i s t of r e p r e s e n t a t i v e keywords for the node .��><keywords><kw></kw></keywords><!�� The name of the au tho r t h a t has l a s t change the node (Wil l be��>
30 <!�� f i l l e d in a u t o m a t i c a l l y).��><au tho r> </ au tho r><c re a t e d> </ c r e a t e d>
35 <l a s t�updated> </ l a s t�updated></ head><!��A d e s c r i p t i o n of the requ i rem en t .��>
40 <d e s c r i p t i o n></ d e s c r i p t i o n>
45 <!��A re p o r t of the p a r t i e s t h a t has s p e c i f i e d the requ i rem en t .��><s p e c i f i e d�by></ s p e c i f i e d�by>
50 </ requ i rem en t></ edoc>

Bug report<edoc><bug�r e p o r t><head>
5 . . .</ head><!�� This s e c t i o n of the bug re p o r t shou ld con ta in i n f o rm a t i o n about ��>

10 <!�� which areas (c l a s s e s) of the system , t h a t are a f f e c t e d by the��><!�� bug . I t would be a good idea to make s l i n k s , ro le : ment ions to��><!�� mark these .��><concern ing>
15 </ concern ing><!�� The d e s c r i p t i o n of the bug re p o r t shou ld con ta in i n f o rm a t i on ��><!�� about the na tu re of the bug . I t shou ld a lso s t a t e the c o n d i t i on s ��><!�� under which the e r ro r occurs , and p o s s i b l e s u g g e s t i o n s for��>
20 <!�� c o r r e c t i o n of the e r ro r . Debugger t r a c e s etc . could a lso be��><!�� i nc luded here .��><d e s c r i p t i o n></ d e s c r i p t i o n>
25 </bug�r e p o r t></ edoc>

Improvement

C.2 Templates for Rationales 111<edoc><improvement><head>
5 . . .</ head><!��A overview of which s p e c i f i c pa r t of the system the improvement ��>

10 <!�� sugges t to improve . This w i l l t y p i c a l l y be e x t re s s e d with the help��><!�� of a number of s l i n k s , ro le : ment ions to the invo lved e n t i t i es .��><concern ing></ concern ing>
15 <!�� The a c t u a l d e s c r i p t i o n of the sugges ted improvement .��><d e s c r i p t i o n></ d e s c r i p t i o n>
20 </ improvement></ edoc>

C.2 Templates for Rationales

Rationale<edoc><r a t i o n a l e><head>
5 . . .</ head><!�� The f o r c e s s e c t i o n shou ld con ta in a sho r t d e s c r i p t i o n of the��>

10 <!�� d r i v i n g f o r c e s and m ot i va t ion for t h i s r a t i o n a l e . The d e s c ri p t i o n ��><!�� shou ld con ta in a number of d l i n k s , ro le : premise to m ot i va t ion ��><!�� nodes , d e s c r i b i n g the m o t i v a t i o n s in d e t a i l , and / or a number ��><!�� s l i n k s , ro le : premise to s p e c i a l p a r t s of the system t h a t��><!�� m ot i va tes t h i s r a t i o n a l e . F i n a l l y the s e c t i o n shou ld con tain ��>
15 <!�� argum en ta t ion for the s e l e c t e d and dec l i ned s o l u t i o n s .��><f o r c e s></ f o r c e s>
20 <!�� The s o l u t i o n par t p re s e n t s the s e l e c t e d s o l u t i o n . I f a l t e r na t i v e ��><!�� and / or dec l i ned s o l u t i o n s e x i s t s they are ment ioned to . This par t��><!�� wi l l t y p i c a l l y con ta in d l i n k s , ro le : s l e c t s and ro le : d e c l in e to��><!�� d e t a i l e d documentat ion of the s e l e c t e d and / or dec l i ned��><!�� s o l u t i o n s .��>
25 <s o l u t i o n></ s o l u t i o n><!��A d i s c u s s i o n of consequences of the s e l e c t / dec l i ned s o l u t io n s ��>
30 <!�� i n c l u d i n g persona l s u b j e c t i v e assessm en ts .��><d i s c u s s i o n></ d i s c u s s i o n>
35 </ r a t i o n a l e></ edoc>

112 Templates for documentation nodes

Change description<edoc><change�d e s c r i p t i o n><head>
5 . . .</ head><!�� The f o r c e s s e c t i o n shou ld con ta in a sho r t d e s c r i p t i o n of the��>

10 <!�� d r i v i n g f o r c e s and m ot i va t ion for t h i s change d e s c r i p t i o n .The��><!�� d e s c r i p t i o n shou ld con ta in a number of d l i n k s , ro le : premise to��><!�� m ot i va t ion nodes , d e s c r i b i n g the m o t i v a t i o n s in d e t a i l , and / or a��><!�� number s l i n k s , ro le : premise to s p e c i a l p a r t s of the system th a t ��><!�� m ot i va tes t h i s change d e s c r i p t i o n . F i n a l l y the s e c t i o n shou ld ��>
15 <!�� con ta in a rgum en ta t ion for the s e l e c t e d , dec l i ned and depreca ted��><!�� s o l u t i o n s .��><f o r c e s></ f o r c e s>
20 <!�� The s o l u t i o n par t p re s e n t s the s e l e c t e d s o l u t i o n , and the��><!�� s o l u t i o n t h a t where dep reca ted by the change . I f a l t e r n a t i ve ��><!�� and / or dec l i ned s o l u t i o n s e x i s t s they are ment ioned to . This par t��><!�� wi l l t y p i c a l l y con ta in d l i n k s , ro le : i n t r o d u c e s , ro le : d e pr i c a t e s ,��>
25 <!�� ro le : d e c l i n e s to d e t a i l e d documentat ion of the s e l e c t e d ,��><!�� d e p r i c a t e d and / or dec l i ned s o l u t i o n s .��><s o l u t i o n></ s o l u t i o n>
30 <!��A d i s c u s s i o n of consequences of the s e l e c t / dec l i ned s o l u t io n s ��><!�� i n c l u d i n g persona l s u b j e c t i v e assessm en ts .��><d i s c u s s i o n>
35 </ d i s c u s s i o n></ change�d e s c r i p t i o n></ edoc>

C.3 Templates for Solution descriptions

Concept<edoc><concept><head>
5 . . .</ head><!�� The name of the concept . May not con ta in any markup .��>

10 <concept�name></ concept�name><!�� I f the concept r e s i d e s in a s p e c i a l con tex t , t h i s con tex t i s��>
15 <!�� desc r ibed here . This w i l l t y p i c a l l y be though a sho r t overview of the��><!�� p lace in the system where the concept i s re l e v a n t . I t may be a good��><!�� idea to use s l i n k s , ro le : ment ions , ro le : d e s c r i b e or��>

C.3 Templates for Solution descriptions 113<!�� ro le : implemented�by to prov ide t h i s overview .��><con tex t>
20 </ con tex t><!�� The a c t u a l d e s c r i p t i o n of the concept .��><d e s c r i p t i o n>
25 </ d e s c r i p t i o n><!�� OPTIONAL. Any c i t a t i o n s from d i c t i o n a r i e s , t h a t w i l l he lp to ��><!�� c l a r i f y the concept .��>
30 <d i c t i o n a r y><p></p></ d i c t i o n a r y>
35 </ concept></ edoc>

Aspect<edoc><aspec t><head>
5 . . .</ head><!�� This s e c t i o n shou ld s t a t e which p a r t s of the system the aspect i s ��>

10 <!�� a p p l i c a b l e to . I t may a lso con ta in arguments and / or re f e re nc e s to��><!�� arguments p laced in r a t i o n a l e nodes , as to why the aspec t i s��><!�� a p p l i c a b l e . Re fe rences to arguments shou ld be done with a��><!�� d l ink , ro le : s e l e c t e d�by��><a p p l i c a b l e�to>
15 </ a p p l i c a b l e�to><!�� The a c t u a l d e s c r i p t i o n of the aspec t . This may a lso con ta in a��><!�� d e s c r i p t i o n of s p e c i a l c o n d i t i o n s in r e l a t i o n to the aspec t, as��>
20 <!�� wel l as s p e c i a l consequences and e x c e p t i o n s .��><d e s c r i p t i o n></ d e s c r i p t i o n>
25 </ aspec t></ edoc>

Design pattern instance<edoc><des ign�p a t t e r n�i n s t a n c e><head>
5 . . .</ head><!�� The name of the des ign p a t t e r n . May not con ta in any markup.��>

10 <des ign�p a t t e r n�name></ des ign�p a t t e r n�name><!�� This par t shou ld g ive the reader a o r i e n t a t i o n of the par t of the ��>

114 Templates for documentation nodes

15 <!�� system , where the des ign p a t t e r n i n s t a n c e r e s i d e s .��><con tex t></ con tex t>
20 <!��A shor t d e s c r i p t i o n of why , and for what purpose , the des ign pa t t e r n��><!�� was s e l e c t e d . I t w i l l t y p i c a l l y con ta in a number of d l i n k s ,��><!�� ro le : s e l e c t e d�by , dec l i ned�by , i n t r o d u c e d�by , dep reca ted�by and��><!�� reused�by to r a t i o n a l e or change�d e s c r i p t i o n nodes in order to prov ide��><!�� f u r t h e r i n f o rm a t i o n on why the des ign p a t t e r n was s e l e c t e d .��>
25 <!�� I f necessary i t may a lso con ta in a number of d l i n k s , ro le : implements��><!�� to aspec t or concept nodes .��><purpose></ purpose>
30 <!�� S t a t e s which c l a s s e s in the system play the d i f f e r e n t ro l e s of ��><!�� the des ign p a t t e r n . The w r i t e r shou ld b r i e f l y o u t l i n e each ro le ��><!�� and how i t c o n t r i b u t e s to the p a t t e r n s essence . This par t may��><!�� con ta in a number of s l i n k s , ro le : implements . We recommend th a t the��>
35 <!�� t e x t in the s l i n k , be the name of the ro le in the des ign p a t t e r n. ��><r o l e s></ r o l e s>
40 <!�� This par t shou ld con ta in a re p o r t of the i n t e r a c t i o n of the��><!�� system and the des ign p a t t e r n i n s t a n c e . This par t may con ta in a��><!�� number of s l i n k s , ro le : d e s c r i b e s and ment ions .��><c o l l a b o r a t i o n s>
45 </ c o l l a b o r a t i o n s><!��A d e s c r i p t i o n of the i n s t a n t i a t i o n (im p lem en ta t ion) of thedes ign��><!�� p a t t e r n . This may be s p e c i a l a d a p t a t i o n s and changes to the��><!�� o r i g i n a l des ign p a t t e r n . This par t may con ta in a number of s li n k s ,��>
50 <!�� ro le : d e s c r i b e s and ment ions .��><d e s c r i p t i o n></ d e s c r i p t i o n>
55 </ des ign�p a t t e r n�i n s t a n c e></ edoc>

Entity implementation<edoc><e n t i t y�im p lem en ta t ion><head>
5 . . .</ head><!��A l ink to the e n t i t y being documented here . The can be a package ,��>

10 <!�� a c l a s s , a method or perhaps even a f i e l d , i f the s t r u c t u r e��><!�� of the f i e l d re q u i r e s s p e c i a l e x p l a n a t i o n .��><s l i n k></s l i n k><!�� The purpose and r e s p o n s i b i l i t i e s of the e n t i t y . This par t may��>
15 <!�� con ta in a number of d l i n k s , ro le : s e l e c t e d�by , dec l i ned�by,��><!�� i n t r o d u c e d�by and depreca ted�by to r a t i o n a l e or change d e s c r i p t i o n s��><purpose></ purpose>
20 <!��A d e s c r i p t i o n of the e n t i t y . This could e . g . , be how i t works ,��><!�� d i f f i c u l t a l g o r i t h m s or any s p e c i a l requ i rem en t s t h a t the en t i t y ��>

C.3 Templates for Solution descriptions 115<!�� impose on the r e s t of the system .��><d e s c r i p t i o n>
25 </ d e s c r i p t i o n></ e n t i t y�im p lem en ta t ion</ edoc>

Process<edoc><process><head>
5 . . .</ head><!�� The con tex t s e c t i o n shou ld g ive an overview over the par t of the��>

10 <!�� system , t h a t the p rocess i f a par t of .��><con tex t></ con tex t>
15 <!��A re p o r t of the r a t i o n a l e and purpose of the p rocess . This part ��><!�� may con ta in a number of d l i n k s , ro le : s e l e c t e d�by,��><!�� ro le : dec l i ned�by , ro le : i n t r o d u c e d�by , ro le : dep reca ted�by and��><!�� ro le : reused�by to r a t i o n a l e or change�d e s c r i p t i o n nodes . I t may��><!�� a lso con ta in a number of d l i n k s , ro le : implements to aspec t or ��>
20 <!�� concept nodes .��><purpose></ purpose>
25 <!��A d e s c r i p t i o n of the p rocess , the invo lved p a r t s of the system ��><!�� and how they c o l l a b o r a t e . The p rocess d e s c r i p t i o n may n a t u ra l l y ��><!�� r e f e r to a number of task with d l i nk , ro le : d e t a i l e d�by or ��><!�� ro le : uses .��><d e s c r i p t i o n>
30 </ d e s c r i p t i o n></ p rocess></ edoc>

Task<edoc><t ask><head>
5 . . .</ head><!�� The con tex t s e c t i o n shou ld g ive an overview over the par t of the��>

10 <!�� system , t h a t the task i f a par t of .��><con tex t></ con tex t>
15 <!��A re p o r t of the r a t i o n a l e and purpose of the p rocess . This part ��><!�� may con ta in a number of d l i n k s , ro le : s e l e c t e d�by,��><!�� ro le : dec l i ned�by , ro le : i n t r o d u c e d�by , ro le : dep reca ted�by and��><!�� ro le : reused�by to r a t i o n a l e or change�d e s c r i p t i o n nodes . I t may��><!�� a lso con ta in a number of d l i n k s , ro le : implements to aspec t or ��>

116 Templates for documentation nodes

20 <!�� concept nodes .��><purpose></ purpose>
25 <!��A d e s c r i p t i o n of the s p e c i a l pre c o n d i t i o n s t h a t the task��><!�� r e q u i r e s .��><pre�c o n d i t i o n></ pre�c o n d i t i o n>
30 <!��A d e s c r i p t i o n of the c o n d i t i o n s the are ensured a f t e r the task is ��><!�� performed .��><pos t�c o n d i t i o n>
35 </ pos t�c o n d i t i o n><!��A d e s c r i p t i o n of the task , the invo lved p a r t s of the system and ��><!�� how the purposes of the task are accompl ished . The task may r ef e r ��><!�� to a p rocess with d l i nk , ro le : d e t a i l�of or ro le : used�by.��>
40 <d e s c r i p t i o n></ d e s c r i p t i o n></ t ask>
45 </ edoc>

Essay<edoc><essay><head>
5 . . .</ head></ essay>

10 </ edoc>

D
Statisti
s for theStregSystem proje
t

The following tables shows statistical for the StregSystemexperiment. The data is gathered
by querying our Data model. Table D.1 and Table D.2 on the following page shows informa-
tion concerning documentation and source code entities. Table D.3 on the next page shows
how often the three link types,<dlink >, <slink > and<xlink > was used and which roles
they were assigned.

Documentation entity Count

Edoc Files 26
Documentation entities 317
Catalogs 9
Documentation nodes 26
Links 134
Other entities 148

Documentation to documentation relationships 927
implicit relationships 897
explicit relationships 30

Documentation to Source relationships 75
explicit relationships 75

Table D.1: Documentation entity Statistics for the StregSystem

117

118 Statistics for the StregSystem project

Source entity Count

Java files 15
Source entities 291
Packages 2
Classes 15
Fields 21
Methods 71
Parameters 120
Variables 51
Source markers 3

Source to source relationships 824
containment 169
access 514
invoke 76
creation 22
throws 22
typeof 13
extends 7
returntype 1

Table D.2: Source entity Statistics for the StregSystem

Type/Role <dlink > <slink > <xlink > Total
Premise 4 4
Selects 4 4
Introduces 2 6 8
Declines 1 4 5
Deprecates 2 2 4
Described-by (1)6 4 (1)10
Describes (7)48 (7)48
Mentions (1)6 (4)19 12 (5)37
Detail-of 3 3
Detailed-by 4 4
Uses 7 7
Total (2)32 (11)75 27 (13)134

Table D.3: Link type and role statistics for the StregSystem. Numbers in parenthesis are number of
links that had an invalid destination

Bibliography
[Beck, 1999] Beck, K. (1999).Extreme Programming Explained: Embrace Change. Addi-

son Wesley Publishing Company.

[Bray et al., 1998] Bray, T., Paoli, J., and Sperberg-McQueen, C. M. (1998). Extensible
markup language (xml) 1.0.http://www.w3c.org/XML .

[Brown and Childs, 1990] Brown, M. and Childs, B. (1990). An interactive environemt for
literate programming. InStructured Programming, volume 11, pages 11–25. Springer-
Verlag, New York Inc., Computer Science Department, University of Alabama, Box
870290, Tuscaloonsa, AL 35487-0290.

[Brown and Czejdo, 1990] Brown, M. and Czejdo, B. (1990). A hypertext for literate pro-
gramming. In Akl, S. G., Fiala, F., and Koczkodaj, W. W., editors,Advances in Computing
and Information, Department of Computer Science, University of Alabama, Box 870290,
Tuscaloosa, AL 35487-0290.

[Chen et al., 1995] Chen, Y.-F. R., Fowler, G. S., Koutsofios,E., and Wallach, R. S. (1995).
Ciao: A graphical navigator for software and document repositories. In International
Conference on Software Maintenance, 1995. Proceedings., pages 66 – 75. AT&T Bell
Laboratories, 600 Mountain Avenue, Murray Hill NJ 07974.

[Christensen et al., 2000] Christensen, C. N., Andersen, M.R., Kumar, V., Staun-Pedersen,
S., and Sørensen, K. L. (2000). The elucidator — for java. Technical report, Aalborg
University, Department of Computer Science. Can be found via: http://dopu.cs.
auc.dk .

[Conklin, 1987] Conklin, J. (1987). A survey of hypertext. In ACM Hypertext on Hypertext.
ACM. Available online through:http://www.ai.univie.ac.at/%7Epaolo/
lva/vu-htmm1999/ .

[Conklin and Begeman, 1987] Conklin, J. and Begeman, M. L. (1987). gibis: a hypertext
tool for team design deliberation. InProceeding of the ACM conference on Hypertext,
pages 247–251.

[Davidson and Coward, 1999] Davidson, J. D. and Coward, D. (1999). Java servlet
api specification, version 2.2.http://java.sun.com/products/servlet/
download.html#specs .

119

120 Bibliography

[Fielding et al., 1999] Fielding, R., Gettys, J., Mogul, J.,Frystyk, H., Masinter, L., Leach,
P., and Berners-Lee, T. (1999). Hypertext transfer protocol — http/1.1. http://www.
w3.org/Protocols/ .

[Fischer and Jensen, 1990] Fischer, L. P. and Jensen, F. (1990). Literate programming in an
industrial environment. Unpublished.

[Gamma et al., 1995] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995).Design
Patterns - Elements of Reusable Object-Oriented Software. Addison-Wesley Professional
Computing Series. Addison-Wesley.

[Horn, 1992] Horn, R. E. (1992). Commentary on the nurnberg funnel. The Journal of
Computer Documentation, 16(1):8.

[Horn, 1999] Horn, R. E. (1999). Two approaches to modularity: Comparing the stop ap-
proach with structured writing.The Journal of Computer Documentation, 23(3):7.

[Kinnucan, 1999] Kinnucan, P. (1999). Java development environment for emacs.http:
//sunsite.auc.dk/jde/ .

[Knuth, 1984] Knuth, D. E. (1984). Literate programming.The Computer Journal,
27(2):97–111.

[Korn et al., 1999] Korn, J., Chen, Y.-F. R., and Koutsofios, E. (1999). Chava: Reverse
engineering and tracking of java applets. pages 314 – 325.

[Mathiassen et al., 1997] Mathiassen, L., Munk-Madsen, A.,Nielsen, P. A., and Stage, J.
(1997).Objekt orienteret analyse og design. Marko Publishing.

[Merriam-Webster, 1997] Merriam-Webster (1997).Merriam-Webster’s Collegiate Dictio-
nary. Merriam-Webster, Incorporated, Springfield, Massachusett, U.S.A., 10th edition.

[Naur, 1985] Naur, P. (1985). Programming as theory building. Microprocessing and Micro-
programming, (15):253–261. Also appears in the book “Computing: A HumanActivity”.
Addison-Wesley Publishing Company.

[Nelson, 1999] Nelson, T. (1999). Xanalogical media: Needed now more than ever.http:
//www.sfc.keio.ac.jp/˜ted/XU/XuSum99.html . This article is still being
revised. It has been tentatively accepted for the ACM Computing Surveys hypertext issue.

[Nørmark, 2000a] Nørmark, K. (2000a). An elucidative programming environment for
scheme. InProceedings of the Ninth Nordic Workshop on Programming Environment
Research, Norway.

[Nørmark, 2000b] Nørmark, K. (2000b). Requirements for an elucidative programming en-
vironment. InProceedings of the 8th International Workshop on Program Comprehen-
sion, Ireland.

Bibliography 121

[Nørmark and Østerbye, 1995] Nørmark, K. and Østerbye, K. (1995). Rich hypertext:
a foundation for improved interaction techniques.International Journal on Human-
Computer Studies, (43):301–321.

[Nowack, 2000] Nowack, P. (2000).Structures and Interactions — Characterizing Object-
Oriented Software Architecture. PhD thesis, The Maersk Mc-Kinney Moller Institute for
Production Technology, University of Southern Denmark, Odense University, Campusvej
55, DK - 5230 Odense M, Denmark.

[Østerbye, 1995] Østerbye, K. (1995). Literate smalltalk programming using hypertext.
IEEE Transactions on Software Engineering, 21:138 – 145.

[Parnas and Clements, 1986] Parnas, D. L. and Clements, P. C.(1986). A rational design
process: How and why to fake it.IEEE Transactions on Software Engineering, 12(2):251–
257.

[Pressman, 1997] Pressman, R. S. (1997).Software Engineering. A Practitioner’s Ap-
proach. McGraw-Hill Series in Computer Science. McGraw-Hill, 4 edition.

[Rüping, 1998] Rüping, A. (1998). The structure and layout of technical docu-
ments. http://www.coldewey.com/europlop98/Program/workshop 3.
html#Rueping1 .

[Sametinger, 1992] Sametinger, J. (1992).DOgMA: A tool for the documentation and main-
tenance of software systems. Verband der wissenschaftlichen GesellschaftenÖsterreichs
(VWGÖ).

[Sametinger, 1994] Sametinger, J. (1994). Object-oriented documentation.Journal of Com-
puter Documentation, 18(1):3–14.

[Sanvad et al., 2000] Sanvad, E., Østerbye, K., Madsen, O. L., Bjerring, C., Kammeyer, O.,
Skov, S. H., Hansen, F., and Hansen, F. O. (2000). Documentation of oo systems and
frameworks. COT/2-42-V1.2, Unpublished.

[Tracey et al., 1999] Tracey, J. R., Rugh, D. E., and Starkey,W. S. (1999). Sequential
thematic organization of publications (stop).The Journal of Computer Documentation,
23(3):7.

122 Bibliography

Index
A

abstract . 53
abstractor .10, 42

B
Beck, Kent . 2
browser .10, 41

C
change description.49

D
data model .11, 42
deliberative categories23, 46, 51
developer . 20
disco. .1972
documentation node26, 46

fixed part .28, 53
free part .28, 55
internal structure.28, 52, 76

E
editor .9, 41
EDoc language . 40
Elucidative Programming 4
Elucidative environment 41
Elucidator tool42, 82
entity . 11, 40,45

entity/relationship model 11
name standard 12

F
free structure .14, 26

G
generator .10, 42
gIBIS . 36
guideline . 53

H
history . 6, 31, 49, 82

holist . 22
hypertext . 26

I
internal documentation 1

J
Java . 40

K
keyword .54, 71
Knuth, Donald E. 3

L
link .29, 56

anchor . 29
explicit .30, 59
implicit .30, 60
organizational31, 59
referential31, 59
role. .29, 57, 76
type . 56
validation . 77

Literate Programming3, 35
long essay . 14
loose ends . 15

M
motivation23, 37, 47
MRS-model23, 27, 75, 80, 81

deliberative categories.23
link . 29
motivation . 23
rationale . 24
relationship . 29
solution description 24
sub-category . 46

N
Naur, Peter. .2
navigation 6, 23, 32, 62

123

124 Index

context view . 66
disorientation32, 62
entity index view70, 78
global . 68
hierarchal index view 78
hierarchic index view69
index view . 68
local . 64
navigation menu 64, 79
neighborhood 66
subject index view 71

navigation window10, 15
node type . 46
Nørmark, Kurt . 3

P
parallel hypertext14, 79
post documentation 15
proximity .4, 35

Q
quality of software . 1

R
rationale 6, 20,24, 37, 48
reader 5, 14,21, 44, 78
relationship. .29, 55

S
serialist .22
software development17

analysis. .17
change . 19
creation. .18
design . 17
examination . 18
implementation17
OOA&D . 34, 90
reuse . 19

solution description 20,24, 37, 49
STOP method . 25
StregSystem . 73
structure . 6, 23, 26
Structured Writing.25

T
templates. .52, 76

thematic catalog . 51
tool support14, 30, 82

abstraction . 14
direct navigation.14
incremental update.15
link insertion . 14

topic . 53

V
view . 33

context . 33
index . 33

W
writer 6, 14,20, 44, 75, 89

