Aalborg University

Department of Computer Science

Database and Programming Technologies

Title:
Internal documentation
in an Elucidative environment

Topic:
Software Documentation
for Developers

Project period:
7/2-2000 — 9/6-2000

Project group: DAT6, E1-207A
Max Rydahl Andersen
Claus Nyhus Christensen
Kristian Lykkegaard Sgrensen

Supervisor:
Kurt Ngrmark

Number of appendixes: 4
Total number of pages: 134
Number of pages in report: 90

Number of reports printed: 10

Abstract:

This master thesis deals with the structy
and history of internal documentation
an elucidative environment.

Internal documentation is documentati
which is produced by developers, used
developers and which documents the int
nal structures, such as algorithms or d
structures of software.

Three main contributions are presented| i

the thesis: (1) The formulation of a doc
mentation model, called the MRS-mods
which divides the internal documentatiqg
into three interrelated categories: Mo
vations, Rationales and Solution descr
tions. (2) A practical implementation g
the MRS-model in an elucidative env|
ronment. (3) By using the MRS-mode
a method is sketched for documentil
the history of internal documentation ar
source code as a natural part of the inter
documentation.

Based on these three contributions the
port concludes that the structure of t
MRS-model is both beneficial to the i
ternal documentation and improves t
presentation of the documentation to t
reader. Furthermore it is concluded th
the history of software can be documentg
and be a natural part of the internal dog
mentation.

ire
n

DN

by
er-
ata

=

ng
nd
nal

re-
ne

he
he
at
ad,
u_

Copyright(© 2000, DAT6, E1-207A.

Aalborg Universitet

Institut for Datalogi

Database og Programmerings Teknologier

Titel:
Intern dokumentation
i en Elucidativ omgivelse

Emne:
Program dokumentation
for udviklere

Projekt periode:
7/2-2000 — 9/6-2000

Projekt gruppe: DAT6, E1-207A
Max Rydahl Andersen
Claus Nyhus Christensen
Kristian Lykkegaard Sgrensen

Vejleder:
Kurt Ngrmark

Antal appendiks: 4
Totalt antal sider: 134
Antal sider i rapporten: 90

Antal trykte rapporter. 10

Synopsis:

Denne specialeafhandling behand

struktur af og historie i intern dokumenta:

tion i en elucidativ omgivelse.
Intern dokumentation er dokumentatig
som er produceret af udviklere, bruges

er

n
af

udviklere og som dokumentere de interne

strukturer i programmer, sa som algor
mer eller data strukturer.

Afhandlingen praesenterer tre hovedres
tater: (1) En formulering af en modg
for dokumentation, kaldet MRS-modelle
som deler intern dokumentation ind i t
interrelaterede kategorier: Motivatione
Rationaler og Lgsningsbeskrivelser.
En praktisk implementation af MRS
modellen i en elucidativ omgivelse. (3

Ved hjeelp af MRS-modellen er det skit-

seret, hvordan dokumentation af progra
mers historie kan blive en naturlig del

dokumentation.

Baseret pa disse tre resultater konklude
afhandlingen at MRS-modellens strukty
dels er til gavn for den interne dokume
tation, dels forbedrer preesentationen
dokumentationen for leeseren. Derudo
konkluderes det, at programmers histo
kan dokumenteres, samt vaere en natu
del af den interne dokumentation.

rer
Ir,
‘]_
af
er
rie
rlig

Copyright(©) 2000, DAT6, E1-207A.

Preface

This thesis documents the work made during our masters y#das Bepartment of Computer
Science, Aalborg University, Denmark. The report focusedhe work made during the
second part of the thesis, from February 1, 2000 to June 9).208s founded in the report
“The Elucidator — for Java” [Christensen et al., 2000], whidocuments the work done
from September 2, 1999 to January 17, 2000 as the first panmeahister thesis.

Small parts of the “The Elucidator — for Java” report is regweoed in this report, especially
in Chapter 2. When this is the case it is clearly stated withadion to the report.

Chapter 1: Introduction This chapter motivates our thesis. We place our work in the co
text of preserving quality of software, and two hypothegeseatablished which serves
as the foundation for the remains of the thesis.

Chapter 2: Earlier work In this chapter the main results and conclusions from ourezar
work on the elucidative environment are presented. Fumbes the chapter contains
a description and evaluation of an documentation experinecenducted with the Elu-
cidative environment.

Chapter 3: Analysis Through a study of internal documentation in an ideal saféwao-
cess we identify two main roles in software development. oligh this study we
furthermore motivate, develop and describe a model, caledMRS-model, for writ-
ing and reading internal documentation in an elucidativarenment. The chapter
also presents a description of how the model is intended tedlezed. Finally, the
MRS-model is compared to other related documentation aobes.

Chapter 4: Design This chapter presents the detailed design for how the MR8einig
implemented in the elucidative environment. Three maingssare described: docu-
mentation nodes, links and navigation facilities.

Chapter 5: Reflection Through a small experiment, this chapter reflects upon thesMR
model and the elucidative environment. The reflection islitateve and based on
observations made during the experiment.

Chapter 6: Conclusion In this chapter we conclude on the two hypotheses statedap-Ch
ter 1.

Chapter 7: Future work This chapter describes some ideas we believe would be sttere
ing and rewarding to work on in the continuation of this tisesi

Appendixes In the appendices (Appendix A through D) a description of nioele types
and link roles is presented. Following is this is a grammartfie EDoc language.
Finally all templates used in the experiment and staticddiia from the experiment is
presented.

Throughout the report figures and tables are enumerate@ssigely in each chapter. When
a figure is taken directly from a literature source this is kedrwith a citation in the figure
caption.

The literature referred to in the report is listed in the lmgraphy. References are given on
the form [Ngrmark, 2000b], which means the piece of litematmarked by this label in the
literature list, was used.

Further information about Elucidative programming and éxamples in this thesis can be
found athttp://dopu.cs.auc.dk

We would like to thank the following people:

Amanuensis Thomas Vestdanfor using one week to be a part of our experiment with the
Elucidative environment and the MRS-model.

Eastfork Object Space (EOS), especially Jgrn Larsen andHk&anding Christenser— for
providing us with tickets for the JAOO Conference 1999, heldarhus, September 20-22,
1999. The conference was a great inspiration to our project.

Dr. Johannes Sametinger for taking the time to talk with us in connection to his leeat
Aarhus University on November 5, 1999.

Vincent Gay-Para and Thomas Graf for providing extensive support for the Kopi Java
Compiler. Especially for devoting a whole week-end to ipayate our special wishes into
the compiler.

Aalborg University, June 9, 2000.

Max Rydahl Andersen Claus Nyhus Christensen

Kristian Lykkegaard Sgrensen

1

Contents

Introduction 1
1.1 Maintaining quality of software 1
1.1.1 Viewsonsoftware
1.1.2 Theinsufficiencyofmodels
1.2 From Literate to Elucidative Programming 3
1.3 Motivationforthethesis 5
1.3.1 Structuring documentation L. 6
1.3.2 Documentationhistory oL
1.3.3 Hypotheses
Earlier work
2.1 Thefirst part of the masterthesis
2.1.1 Mainconclusions
2.2 Initialexperiment L 13
2.2.1 Experimentcircumstances 3
2.2.2 GainedexperienCes e e e e
Analysis 17
3.1 Internal documentation in software development. 17
3.2 Limiting the number of participants 20
3.2.1 Characterizing the reader and thewriter 21
3.3 Utilizingdocumentation 22
3.4 TheMRS-model
3.5 Realization ofthe MRS-model 24
3.5.1 Documentationstructure 5

3.5.2 Documentation nodes

Contents

Vi
3.5.3 Relationships in documentation 29
3.5.4 The usage of relationships to maintain the history 31
3.5.5 Navigationindocumentation 32
3.6 Related documentationapproaches 33
3.6.1 Object-oriented Analysis and Design Documents 34
3.6.2 Literate Programming 35
3.6.3 Object-oriented Documentation 35
3.6.4 ThegIBIS hypertexttool 36
4 Design 39
4.1 The Elucidative environment 39
4.1.1 The languages in the Elucidative environment 40
4.1.2 Entities in the Elucidative environment 40
4.1.3 The three tools in the Elucidative environment 41
4.1.4 Changestothe Elucidator 43
4.1.5 The work flow in an Elucidative environment 44
4.1.6 Entitiesinthe hypertextmodel 45
4.2 Designing the documentation nodes 46
4.2.1 Documentation nodes inthe MRS-model 46
4.2.2 Thematiccatalogs 51
4.2.3 The internal structure of the documentationnodes 52
4.3 Designingthelinks 55
4.3.1 Linktypes 56
4.3.2 Rolesonlinks. 57
4.3.3 Structure imposed on the documentation by links 59
4.3.4 Creationmethod 59
4.35 DISCUSSION 60
4.4 Navigation. e 62
441 Coloring 63
4.4.2 Localnavigation 64
4.4.3 Neighborhood navigation. 6 6
4.4.4 Globalnavigation., 68

Contents

Vil

D

Reflection

5.1 Experimentcircumstances

5.2 Reflections upon the experience of thewriters

5.3 Reflections upon the reader experiment

5.4 DIiSCUSSION
541 TheMRS-model
5.4.2 The Elucidatortool

5.4.3 Historyindocumentation.

Conclusion
Future work

Examples of different node types and link roles

A.1 Examples of concrete nodetypes

A.2 Examplesoflinkroles

Grammar for the EDoc language

Templates for documentation nodes

C.1 Templates for Motivations

C.2 TemplatesforRationales

C.3 Templates for Solution descriptions

Statistics for the StregSystem project

Bibliography

Index

101

109
109
111
112

117

119

123

vili Contents

Introduction

This thesis deals with the notion ofternal documentatiom an Elucidative environment.
By internal documentation we medoncumentation which are produced by developers, used
by developers, and which documents the internal structigesh as algorithms or data
structures, of software.

The work done in the project is threefold: First we develod aresent a theoretical model
for structure of internal documentation. Next we implemiig model, using a previously
implemented Elucidator tool [Christensen et al., 2000]naly we make an experiment
using the implemented model, in order to weaken or affirm §otheses stated later in this
chapter.

This chapter introduces the project. First we discuss homamtain quality of software,
and places internal documentation in this context. Next seus$s our inheritance, which
are Literate and Elucidative programming. Finally we présmir motivations for the thesis
and poses two hypotheses, which this thesis will try to weakeaffirm.

1.1 Maintaining quality of software

We see software as a highly complex artifact. The softwarerges as a solution to a specific
problem. That is, the software is a product of the differearhdnds posed, in order to solve a
problem and/or model some part of a real or imaginative wavldny details of the software
depends on factors of the problem, world or other parts ostifevare. Regarding software
as a artifact, we focus on the following qualities of softecaunderstandability, modifiability
and reusability. These qualities are all qualities in thendim of the software developer, i.e.,
they are not direct qualities for the user of the software.

Although good modularization paradigms exist, e.g., dbggented programming, it is still
an issue how to maintain the quality of a piece of softwaremibhés changed or reused.
We see this problem as a result of an emerging lack of comsigtéoth internally in the
software and between the original design ideas and the elsangde.

1

2 Introduction

1.1.1 Views on software

Many different approaches have been attempted to descaribsave the problems of main-
taining quality of software as it changes and is being reusa& will here give a short
introduction to some of these approaches.

Peter Naur does not see the software as an artifact in it Nalfif, 1985], but rather as an
implementation or manifestation of the developers knogéedbout the solution or model.
Naurs view on programming and software has some notewodhgeguences. The prob-
lem of degenerating software is seen as a consequence dbpexsenot having the desired
knowledge or theory of the software. The software is only mmglementation of the theory
and can, according to Naur, never convey the complete thesdyby the original developers.
Hence the problem of maintaining quality in software is atevatf educating the developers
through direct communication between experienced anceranced developers.

Kent Beck agrees with Naur in the importance of direct comigation. In his description
of Extreme Programming [Beck, 1999] the quality of the saftevis maintained in a group
of developers. These developers all share the same unuldirgganf the problem at hand and
the current solution. We will not discuss these approachetetail, but just conclude that
they address the problem of maintaining quality of softwes@ matter of sharing unformal-
ized knowledge amongst a group of developers.

Other approaches focuses on the description and archeectuhe software. Frameworks
and component based programming focus on making genetiwagef that can easily be
reused. Through clear definitions of responsibility, erstégtion and good modularization,
these methods try to ensure quality of software. Commontiese approaches are that they
through better modeling, strive to make comprehension ande easier for the developers
who uses the framework or component. Both approaches tipa@cuments the interface
to, and usage of, the framework or component.

1.1.2 The insufficiency of models

The approaches described above addresses the problemrafmisig quality of software
from different angles. We see a number of problems in thedfit approaches. Naur and
Beck both deemphasize documentation. Naur claims thaimpsssible to document the
theory held by the developers. Beck claims that documemtasi seldom worth the effort,
since the knowledge is held in the development team and csily && transfered to new
members of the team.

We agree that it might be difficult to document the knowledglel vy a group of developers,
but we disagree that it is impossible. Furthermore we findrimal documentation relevant,
since unwillingness from customers to throw away old sofenas well as changes in the
development staffwill result in developers reusing old software written by otheredopers;
Developers that are possibly unavailable.

The documentation produced for frameworks and componeatsegeted towards develop-
ers that use the software to produce their own software. \&/é&ameworks and components

1.2 From Literate to Elucidative Programming 3

as a way to ensure quality of the software that is developagsing the framework or com-
ponents. There is, however, still a lack of attention on titernal documentation in the
developed software. We recognize that the object-oriemtedeling paradigm can be used
to document the internal architecture of the software, lrihave objections to this being the
only documentation. First of all, the object-oriented modgparadigm can only describe
certain aspects of the software. The success of designmmatiaderline this; An informal
textual description is used to document aspects not dyreidible in the object-oriented ar-
chitecture. Secondly, and most important, the softwarethadbject-oriented description
of the software architecture, only communicate the finasier of the software. They do not
convey the designs that where tried but rejected nor thenaegts from the developers that
made crucial decisions during design and implementati@ndd we see a need for internal
documentation that describe and argument the software.

1.2 From Literate to Elucidative Programming

In 1984 Donald E. Knuth, suggested that the time was ripe ifpificantly better docu-
mentation [Knuth, 1984]. To achieve this, he argued, thatmaer programs should be
considered works of literature.

“Let us change our traditional attitude to the constructiohprograms. Instead
of imagining that our main task is to instruct a computer whatdo, let us
concentrate rather on explaining to human beings what wet\walomputer to
do”

[Knuth, 1984]

Based on these thoughts, he developgdrate Programmingand a set of tools known as
the WEB tools This new paradigm relied on the code residing in the docuatiem rather
than the, at that time, more commonly used solution, whezeptbgram was documented
via comments written in the source code.

As we see it, Literate programming is well suited for detilgernal documentation, with a
focus on the arguments and rationales behind the progrdorthermore has the side effect
that, when used as a work method, it provides a powerful nasthaltion mechanism for the
program code. However, the advantage of this is not as bigwsed to be, since modern
programming language provides far more modularizationhmeisms than programming
languages did in the eighties.

Literate programming seems ideal for documenting algorgfor code fragments. However,
Kurt Ngrmark, points out several problems in this approdglarinark, 2000b]. Knuth'’s
WEB tools uses three languages: a documentation languggyegeamming language, and

a language to bind the two in a literate document. Ngrmarkesgthat the rhental load

of using a WEB system is highFirstly, one has to master and use three languages while
keeping the focus on problem solving. Secondly, source,caglseen by the developer and
the compiler, are different, causing problems when, eyntax errors are to be located.
Furthermore, the documentation for the code

4 Introduction

“...Is almost exclusively oriented towards a paper [aréiLtepresentation. Us-
ing todays media, a more online-oriented representatiangiypertext con-
cepts would be a big gain”

[Ngrmark, 2000b]

Ngrmark argues, that Literate Programming is well suitegfoducing publications of pro-
grams as technical literature, while the needs of the malc$oftware developer are not met.

We agree with Ngrmark on most of these problems. It shouldevewbe stated that the
problems with locating syntax errors can be solved by usieg#ic distributions of the WEB
tools, together with specific languages (e.g. using cwelilamg@reprocessor mechanisms in
C [Fischer and Jensen, 1990]).

In our opinion Literate programming has two main advantages

Proximity: Literate programming provides proximity between the doeatation and source
code, both while the documentation and source code is wrétel when it is viewed
after BETeX compilation. Since the source code and the documentatetode placed
in the same file, it becomes natural to write the documentadind the source code
at the same time. In our experience this means the processtofgithe documen-
tation becomes easier and the quality of the documentagitweightened, since the
arguments and rationales are fresh in mind.

Having the source code and the documentation in the sams fiehermore a special
advantage while maintaining the source code, since it ig ®and the place in the

documentation which needs to be updated as a consequenceai@e in the source
code. Since the source code and documentation is also pedsethe same document
after ETeX compilation, the proximity is also kept here.

Modularization mechanisms: The second main advantage of Literate programming lies
in the modularization mechanisms. In Literate programmyog are not limited to
the modularization mechanisms provided by the programr@nguage, but you are
instead able to modularize your program as it is represantgdur mind.

We do though think that this may cause some problems if yowsaieg an object
oriented programming language, since a big part of the waleding of programs
written in languages from this paradigm relies on the strecof the program. We
therefore believe that imposing further modularizatiorttogsource code, will lead to
a somewhat obfuscated structure of the program.

As a consequence of the problems stated by Ngrmark he irdesda branch of Literate
Programming, calleg&lucidative Programmindor documenting the understanding of pro-
grams.

To achieve this, Ngrmark suggests that we keep the soureammtidocumentation in sep-
arate files in order to remove the mental load experienceld tvée WEB tools. His primary
concern is to maintain the program understanding for ctraewl future developers. This

1.3 Motivation for the thesis 5

process should utilize the programming editor to bridgegiye between documentation and
source code, by integrating Elucidative programming suigpdhe editor. Furthermore, the
output is not directed towards paper, but an online reptesien suitable for web-browsers.

The concept of Elucidative Programming is coined and desdrby Ngrmark in the article
Requirements for an Elucidative Programming Environnjitrmark, 2000b] and an ex-
ample of a specific implementation of an Elucidator is présgim An Elucidative Program-
ming Environment for Scheme [Ngrmark, 2000a]. Finally, tiesign and implementation
of an Elucidative Programming environment for Java is pnesein The Elucidator — for
Java[Christensen et al., 2000].

1.3 Motivation for the thesis

Before stating the problem which we will attempt to solvehrstthesis, we must consider
in which surrounding we expect the solution to be situatedrmark states that elucidative
programming is‘for documenting the understanding of practical programsa software
development project[Ngrmark, 2000b]. We take this a little further and statest thur
target is software developers, situated in a software dpweént company, which, for some
reason, want to have internal documentation for their @ogg. Since our target user is the
software developer, we suppose that he typically do not kapecially good writing skills.
We must therefore ensure that successful usage of the Bltocitbols is not completely
dependent on the writing skills of the user of the tool.

The overall purpose of writing internal documentation istiaintain the program under-
standing. This purpose is twofold. First, since the wrigewriting down his understanding
of the program, this gives him the opportunity to reflect oa thecisions taken while de-
veloping the program. We believe this process will be a helfhé developer, since it will

provide him with a better understanding of the program heigtbping. Second, the written
documentation, is intended to help the reader when he triesderstand a piece of software.

In this project we have chosen to focus on the person readlmgdcumentation. The main
reason for this choice is that we want to make sure that dootatien is actually read. It is
important that the documentation is read for a number ofaess

¢ If the documentation is not read, we do not exploit the fuligmdial of the documen-
tation, since only one of the purposes of elucidative pnognéng is fulfilled.

e An amount of resources has been spend on making the docuioantéit is not read,
the effort is not fully utilized, since the only value is gadhin the writing process.

e Not many software developers will be willing to use time ontiwg documentation if
they know in advance that nobody will read it.

6 Introduction

1.3.1 Structuring documentation

Since we state that it is important that documentation igl,réesseems natural to consider
how to make sure the documentation is actually read. Thetdargswer it to make sure the
documentation is readable. But how do we then make sure th@kentation is readable ?
This question will be one of the main issues in this thesis.iMént to answer the question
by using the model, illustrated in Figure 1.1.

Documentation structure

=

Navigation facilities

Y

Reading

Figure 1.1: A model which illustrates the connection between struatuthe documentation, and the
readers possibility to have the documentation presented fiar him, readable form.

The basis of this model is that documentation is structuredaredefined way. This structure
allows us to provide navigation facilities with the purpagdacilitating the reader.

The structure of the documentation can only come from onecgouhe writer. It is there-
fore important to make sure the structuring mechanisms denia a way, which makes it
attractive for the writer to structure his documentatioeople might argue that developers
are anarchists, and will not accept just filling out predefieuctures. As we shall see later
in the thesis, our experience tells us that this is not true.

1.3.2 Documentation history

The most important part of internal documentation are thiemales, since these tell why the
program is developed like it is. It is therefore importargdh rationales are written down in
the documentation.

Each time some change is made to a piece of software, thisesluEcause of some rationale.
In other words developers do not make a change without redsdnerefore seems like a

natural step to document rationales each time a change is todte software. This is one

of the reasons that the history of a program is important. tAeoequally important reason,

is if developers document the history of their program, they others will be able to learn

for errors made in the past.

1.3 Motivation for the thesis 7

1.3.3 Hypotheses

Based on the observations and opinions presented abovemwwel&te two hypotheses, which
serves as our problemization and focus of the project:

To present internal documentation in order to facilitate the reader, it is nec-
essary to structure it in a predefined way. This structure, conbined with
navigation facilities, will be beneficial to the internal dacumentation.

The history of the software is important since most changesiithe software,
are made as a consequence of a rationale. The history of thefsgare can
be documented and be a natural part of the internal documenttaon.

In the remaining part of this thesis we will provide argungrib weaken or affirm these
hypotheses.

Introduction

Earlier work

The work presented in this master thesis is partly based ok amal results from the first part
of our work. This work is documented in the report: The Elata — for Java [Christensen
et al., 2000]. In this chapter we will present the main resalhd conclusions from this
work. Furthermore we describe and evaluate an documentexiperiment, conducted with
the Elucidator tool produced during the first part of our work

The implementation created in the first part of our work, aedalibed in this chapter, is
named the Elucidator 1 and the implementation created)t second, part is named the
Elucidator 2.

2.1 The first part of the master thesis

The primary focus of the first part of our master thesis, werelésign and implement
an Elucidator for Java using the same principles as used imbabx’'s Scheme Elucida-
tor [Ngrmark, 2000a]. The work resulted in a prototype inmpéatation of an Elucidator for
Java (Elucidator 1). The prototype differentiates from tdgrmark’s earlier implementa-
tion on several points. It supports Java instead of Schdmee;ITML pages is dynamically
generated and the overall design is more flexible.

Figure 2.1 on the next page illustrates the main compondrtsecElucidator 1. The roles
of these components is briefly explained in the followinggogaphs. For a more in-depth
technical description see [Christensen et al., 2000].

The Editor The editor is used to edit source code and documentation filexumenta-
tion is written in our own language calléeDocwhich has tags for defining chapters,
sections and various link elements. The editor has beem@atketo give support for
inserting links from the documentation to the source cod# @her documentation.
The editor support was disregarded to a bare minimum, assagpbto the Scheme
Elucidator by Ngrmark, which contains more advanced edtailities.

9

10 Earlier work

Editor Browser

Interface
User interface/interaction

Generator

Query
engine

\ Functionality
1
§ Data mode|
Data

Bundle
Figure 2.1: Design overview of the Elucidator 1.

Abstractor

At regular intervals the developer invokes thlestractorwhich parses the source code
and documentation. Derived information from this procesgared in th®ata model

A screen capture showing the editor can be seen in FigurertReofacing page.

The Browser By using a HTML-browser the developer can view documentediaod source
code side-by-side. The documentation contains the texiikslwritten by the devel-
oper. The source code contains links to allow jumping fromuke of a symbol to its
definition.

The browser also provides\avigation windowvhich lists all the locations to which a
source symbol or documentation is related. This resemblgsifes available in most
reverse-engineering tools today. For example the nawgatindow can list all the
locations where a method is documented, where it is usedKed) and what entities
the method itself uses.

A screen capture showing the browser can be seen in Figuenage 12.

The Generator The editor and browser communicates with @eneratomwhich is a servlet
running on a web-server. The editor retrieves informatmaupport link insertion and
the browser retrieves source code and documentation in Hiidvthat for browsing.
It is, furthermore the Generator which automatically mauksthe source code with
links.

The Abstractor The abstractor extracts information from the Java source @nd EDoc
documentation. This derived information is stored in thésDmodel. This component
is basically the only language dependent part of the Elterda Hence by providing
a abstractor for another language, e.g., C++, the Eludidatan be used for another
language.

2.1 The first part of the master thesis 11

The Data model The Data model is similar to an entity/relationship modeishitontains a
set of entities and their relationships. The use of a emilgtionship model is inspired
by the work presented in [Chen et al., 1995] and [Korn et &949].

Packages, classes, fields, methods and even parameteiaies is extracted from
the source code as entities. Examples of relationshipsdssiventities is theon-
tainmentrelationship between a method and its class)vakerelationship between
the callee’s definition and the calling method. The doculgm is also represented
in the Data model with chapter, section and link entities eftere, e.g., “refers-to”
relationships represents links in the documentation andceccode.

Buffers Files Tools Edit Search Hule JDE Java Elucidator Help

(W<l version= encoding= o3
{[Wl<7nl-stylesheet type= href= \
£ 2,

i</ DOCTYPE edoc PUBLIC
H [<IEMTITY String
2 IENTITY filter 21

c;
<titl idati ion for a Coffee Hachine</title>
{chapter label= >
<titlerElucidative documentation for a Coffee Hachine</title>
<author?Claus Wyhus Christensend/author

public void switchOné? throws ElechppException {

Systen,out,printlnd 3

rarchitecture</dlink? of the
>Evalrio

a more general nal
href= >External parts</dlink>}.

ink role=
b 2<br iy

The EvaTrio coffee nachine furthernore provides sophisticated
<dlink role= href= Servor handling wechanisws</dlirk>
</p>

ase= i

<section label= sh:
<titlerCoffee machine parts</title>

>Coffeetlachines/slink>
ponents, These are:

href=
lized trough a nunber of subcony

Figure 2.2: Screen capture of the Editor.

2.1.1 Main conclusions

As stated in [Christensen et al., 2000] we believe that tiséfiart of our master thesis made
a number of contributions. These are listed below, and atered with the contributions we
found the most important at the top, and the minor contringiat the bottom.

A prototype Elucidator for Java: We have managed to show that an Elucidator for Java
can be realized. We have furthermore implemented a progéotypich we find promis-

ing.

An architecture of an Elucidator: We have designed a modular architecture with well-
defined standard interfaces. Among the strengths of thistaature is that it is very
easy to change the Elucidator 1 to use another language)atsobject-oriented lan-
guages, or even make the Elucidator 1 use multiple languages

Easy navigation in Java source codeWe have implemented and shown that when the Java
source code is abstracted and stored in a data model it igopo8s provide the user

12 Earlier work

ol o
File Edit View Go Communicator
o

= Main document
= Honizontal mode

=% Elucidator

A A
appliances/kitchen/CoffeeMachine java

1 Elucidative documentation for a

Coffee Machine package appliances kitchen;

Claus Nyhus Christensen import appliances.general ElectricalAppliancs;
import appliances general ElecAppExcaption;

This document documents the SICAECHTE of the Evalrio (Th) coffee machine, IMpOrtappliEnces park HEAlngEleibhy

The EvaTrio coffee machine consists of @ ot of parts, some of a very coffee

maching specific: kind (see Section Colee mACAING PaHs) and some of a more Rublic class C: extends Electricalappliance {
general nature (see Section Examal parts)

private HeatingEletant He:

The EvaTrio coffee machine furthermore provides sophisticated prror handling PNvale aaneptialnet be
PSSR private WaterContainer we,
R private String producer

private String model

1.1 Coffee machine parts private int brewingTie,
fehspesinastine patte private hoolean brewing = false;

The CoffeeMaching class is realized traugh 2 number of subcompanents. These public Coffeetachine(tring producerParam
are: i String modelParam
O The CofiesContainer string worldPar) {
This class models that every coffee machine has a container for storing supertwonidPar);
the coffee while brewing. The class has a addFilter method for placing a
filter in the coffee container and a remnveFilter for rembving it The producer = producerParan

CoffeeContainer class furthermore has a method called fill which takes a model = modelFaram;
amount of spoonfuls of coffee as its argument, and fils the
CoffeeContainer with the coffee.

he = new HealingElement(model);

© The WaterContainer ¢ - new CofleeContainer(;
This class is very similar to ine CofeeContainer class, except i does not WG - new WaterContainer(y;
have methots for acding and remuving filiers, and instead of a methad)
for filling in oee is fll methods takes centi (iars of water 1o 1l in the
container public void switchOn() throws ElecAppException {
o The Fiier
This class models a coffee fitter. The only property of the class s the System outprintin(*Coffse machine tumed on..");
type of fiter which is given as & paramefer fo the consiructor
if{checkHeatingElement() {
1.2 External parts brewingTime = co.getCoffeeAmount)) * 3;
int courter - 0;
The EvaTrio (T1¥) line of coffee machines fostures a number of external parts G

which is elso used in other houschold appliances. The most importantis the System.out prninC Brewing..);

HeafingElement, Every heating element has a type which i specifiedin the ol < e

constructor, and a flag which indicate.if the element works or not, if(Counter == brewingTime) {
brewing = false;

1.3 Architecture ¥
The main architecture of the EvaTrio (TM) and related coffee machines is the J /
CinfferMachine rlass This rlass xtends the Flertrical Annliane e which takes 2] = ! Bl
2l [15 Wb oo e 2
—_—

Figure 2.3: Screen capture of the Browser.

with a plethora of navigation possibilities. We have furthere shown how these can
be integrated with documentation.

Flexible/configurable user interface: The implementation of the Elucidator 1 makes it easy
to change the look and feel of the user interface. This essufiexible solution which
can easily be adjusted to new environments.

Usage of standardized technologiesThis project shows that standardized technologies can
be used when designing and implementing an Elucidator. dtfbehermore been
shown that the usage of these technologies has made it easy external tools in the
realization of the implementation.

Dynamic presentation of documentation and Java source codeOur implementation of
the Elucidator shows that a dynamic approach to presentiagibcumentation and
Java source code in the browser is possible. We have furtrershown that this
solution is not slow but, on the contrary, rather fast.

The use of dynamically generated pages speeds up the pregas®e during abstrac-
tion of the Elucidator 1, in comparison to the Scheme Elucid#ool by Ngrmark.
E.g., the abstraction of the Elucidator tool itself takeswtt?0 seconds, as compared

to the processing time of the Scheme Elucidator by the Scliguoedator which takes
several minutes.

2.2 Initial experiment 13

Standard for Java entity names: As a side effect of implementing the Elucidator 1 we
have devised a standard for the naming of entities in Jav@s@ode. This standard
solves the problem, with the normal name standard in Javeghmintext dependent,
by being non-context dependent.

Markup of Java source code in a browser: We have shown that it is not that difficult to
markup and present Java source code in a browser.

2.2 Initial experiment

After finishing the work on designing and developing the Edator 1 tool we conducted
an experiment to explore the strengths and weaknesses @tietlive Programming and the
Elucidator 1 tool.

In this section we will describe the circumstances whichekgeriment was conducted un-
der, and discuss the experiences gained from the experiment

2.2.1 Experiment circumstances

The strategy for the experiment was to use the Elucidatordbtmment the source code of
the Elucidator 1 it self, and thereby gain experience withttiol, while documenting a real
software project. The experiment was conducted by the thogieors of this thesis during
one week, approximately two months after the developmethteoElucidator 1 was finished.

Each of the three authors was responsible for documentifeyeint components of the sys-
tem, corresponding to their main responsibilities durimgdevelopment phase. This ensured
that they knew the components they where documenting.

We acknowledge that the authors may have preconceivedoopioivards the creation of
documentation, and that this may somewhat color some ofdimed experiences. It should
furthermore be noted that the documentation process toatephfter the creation of the
program was finished.

During the documentation phase the authors took noteshanelly documented experiences
gained both with the tool (the usability of features or theklaf certain features) and the
documentation process. These noted constitutes the Hdbes wext section.

2.2.2 Gained experiences

The experiment added much to our understanding of Eluseatiogramming and our Elu-
cidator 1 tool, as it was our first real intimate use of the gayan together with the tool. It
gave us several insights and revealed both good and badvgitiete tool and the paradigm
as well — the most important is described in the followingthathe ones we consider the
most important at the top.

14 Earlier work

The one long essay documentation styl&®/hen writing documentation using the Elucida-
tor 1, the main structuring mechanisms was that the textdcbalsplit into chapters
and section. This resulted in documentation which was &trad as one long essay.

Explaining the programs in this form proved to be hard forhbthte writer and the
reader. Writing easily turned monotone and it was hard tgkeeonsistent leitmotif
in the story. It furthermore made it hard to update the doauateon if sections were
dependent on each other. The reader was often burden by tol mf@rmation for
some issues and too little for others.

The free structure of the text Neither the tool nor the paradigm presented limitations on
how the writer chose to structure his documentation. As roaetl above it actually
only required the writer to use chapters and sections asdhie building blocks and
nothing said about how the contents inside these blockddheustructured.

Our initial belief was that this anarchistic kind of freedamas an advantage to the
writer, but it turned out to be a burden in many situations.e Writer always had
to come up with his own structure for a given documentatiak.tand the resulting
structure differed a lot depending on which writer produtieel documentation. The
combination of documentation from different writers leadréaders being left with
the impression of a confusing and unstructured document.

Parallel hypertext The split window setupwhich allowed the reader to perform parallel
hypertext with documentation on the left and source coddenight proved to be an
advantage while reading the documentation. It allows thdeeto keep a persistent
focus while reading the documentation and at the same timelifierent aspects of
the source code. It would though be an advantage, if the reeateallowed to decide
in which window he want the documentation and source coddalisd. This would
furthermore make it possible to view two documentation fdethe same time, which
we experienced would be useful.

Tool support During the writing phase we found tool support, especiatlita support, is
essential for a practical use of the Elucidator. The miniswgdport provided by the
editor was appreciated. Especially the mechanisms for@upyhile inserting links
lessened the burden of creating links and furthermore madcherrors in the links.

We do, however, not believe this is enough and thereforer atieehanisms for sup-
porting the developer while producing Elucidative docutaéion, such a direct navi-
gation via links in the editor or a more intuitive/contexpe@adent method for insertion
of links, is wanted.

Furthermore the process of abstracting the documentatidnsaurce code in order
to populate the Data model, was found cumbersome. This wagalthe fact that,
whenever the documentation or source code was changetiealocumentation and
source code files had to be abstracted in order to have thetagésl correctly in the
browser. A future implementation of the Elucidator 1 woulérefore benefit from a

1This can be viewed as an example on parallel hypertext whechNelson explains in his works on Xanadu
[Nelson, 1999].

2.2 Initial experiment 15

feature such as incremental update of the Data model. Irareahupdate of the Data
model means only files that are actually change are abstrdcteng the abstraction
process.

The navigation window Documentation produced during the experiment was priyeedd
from the browser as this had the best visual appeal and it essige to jump between
documentation and source at will.

During this, the navigation window was often used for findiagvant documentation
about parts of the source code. It furthermore had the eff@tisource code was often
looked at in the browser rather than in the editor, since thegation window proved
very useful while rediscovering the source code.

Loose endsAs we have described previously the writers often foundfliailt to keep a
consistent leitmotif. This was especially the case whetingria part or aspects of a
explanation, since the writer often came to think of somaitiet related subject he
needed to mention.

Being unable to make reference to a related subject, whisihnwbdescribed yet, made
it necessary to create an empty section or chapter, with amgscriptive title. The
writer then made a reference to this “loose end” and retutaedater.

The main problem with these loose ends where, that it was etsoine to create and
find a suitable place for the loose end. At the other end it iffisult to keep track of
the loose ends in order to return to them.

Post documentation As mentioned above the documentation experiment took @hoet
two months after the implementation of the tool had finishBat surprisingly, this
proved not to be the ideal time for the creation of documémaor source code.
Even though the authors themselves had implemented theawnis they where doc-
umenting, and a detailed design report was present, thebilgatbuble remembering
details of the implementation.

This experience showed us not surprisingly that documiemtaf source code should
take place while the actual implementation is being caroied

16

Earlier work

Analysis

This chapter motivates, develops and describes a modiEdaae MRS-model, for writing
and reading internal documentation in an Elucidative emnment. This is done though a
series of steps.

First the model is motivated. We start the motivation, byspraing a study on how internal
documentation fits into the process of software developmeakt we describe the partici-
pants in a software development project, and especialljwtbeoles these participants find
themselves in when it comes to internal documentation.llyjvee describe how we believe
internal documentation should be utilized.

Based on this motivation we present and discuss the MRSInfimdmternal system doc-
umentation. Having presented and discussed the model, wedascribe how we intend
to realize the model in an Elucidative environment. Finally compare the MRS-model to
other related documentation approaches.

3.1 Internal documentation in software development

We see documentation as a vital part of any software devedopprocess. This section
presents how we view software development and how it hasusad our model of docu-
mentation.

Object oriented Software development is typically viewadaaiterative process which is
divided into phases. These phases represents analysign @esl implementation, and are
typically documented by a series of analysis and designrmdeais [Mathiassen et al., 1997]
which via text and/or special notation, e.g., UML descrilles system and its intended
architectural model. These descriptions leads to an imgieation of the system.

We are primarily focused on developers and their need foun@ntation to uphold their
program understanding. We therefore explore which situgtia software developer can

17

18 Analysis

be situated in when developing software, which again meaaiswe focus on design and
implementation.

We agree with Nowack [Nowack, 2000] in his identification ofif abstract and generalized
development cases. He divide all development into eithesition examination reuseand
change In real world development the four cases is probably integch but here we view
them as being ideal and pure. The advantage of this view isabaan discuss each case
separately and focus on their individual characteristics.

The following will describe the four cases, what they représand which kind of documen-
tation is produced/needed for them.

Software creation

Software creation is the traditional view on software depehent. When the software cre-
ation process is started, only an idea for the system exisis. idea, together with a set of
requirements for the system is used to design a model fordhgien. This model is then
used to implement a solution.

Documentation during software creation Documentation in the software creation pro-
cess normally involves the before mentioned analysis asdydelocuments. It should how-
ever, be emphasized that the documentation should not onkain a factual description of
the system. It should also document the ideas and requitsrtieat has worked as motiva-
tions for, hopefully, rational decisions when choosingejecting solutions and alternatives.

A distinguishing fact from creation and the others casethe, it is during this phase the
initial documentation, as well as the first parts of the gysi®created.

Software examination

Examination of software can be seen as exploration of am@rexisting system, with the
purpose of understanding the system in question. The daesetan reach this understanding
by building up his own model, and thereby attempt to undacsthe software. This is typi-
cally done by reading the existing documentation, if anggxar by exploring the software
directly, possibly with the help of reverse-engineeringl$o The model which represents the
developers view of the software is then used to take somergatig., to perform a change,
evaluate its quality/usability in a giving situation or paps to reuse it in another system.

Documentation during software examination In the examination of software, the exist-
ing documentation plays an important role as it can be usedwe time for the developer
while trying to understanding the software. This, of coursguires the documentation to
be accessible and understandable for the developer.

3.1 Internal documentation in software development 19

Software examination is the only case where the developastisally reading documenta-
tion, since the others cases focuses on the developer aslaceroof documentation. The
actual examination might not directly result in documebotatbut it provides input to deci-
sions made in the other cases and is therefore considerextanp

Software reuse

Software reuse can be characterized as the reuse of a (stéaysin the composition of a
system. It implies that examination has been performed asl¢iveloper need to have an
understanding of the system to reuse.

Documentation during software reuse Information on how to do the actual reuse is found
through examination of the system to reuse. In a ideal wbddibcumentation of the system
to reuse is already present and may even contains informatidhow to reuse the system.
Hence, the documentation created when doing the actua rem®t about documenting the
system that is being reused, but about documenting why andh®reuse is actually done.
The documentation should therefore focus on the resultystes and its interface to the
reused component.

Software change

Change in software covers activities typically associatéth software evolution, that is
when developers change one version of their system to aneg¢ingion. Similar to reuse it
implies examination, as developers need to have an unddistaof the system they want
to change together with a reason for why they want to changéhainge differ from reuse
as it is more than just composition of two systems. Insteadrisists of decomposing the
existing system into parts. Some of these parts are thenvexirend new parts are created.
The resulting parts is then composed into a new system.

Documentation during software change It is not enough in all situations to see only the
result of changes, i.e., the description of the currenesystomakechanges. Documentation
which describe past solutions, their alternatives andmnatie is equally important.

Documentation of the rationales for a change is importanabse it stateshy something
was changed. This information can be used to build and presvelopers understanding
on why the system is currently implemented as it is. Desiompdf solutions and alternatives
only statedrowparts of the system is or could be realized. Thus when doctingechanges
it is important to not only document the chosen new solutlarnt, also its alternatives, to-
gether with the motivations and rationales for the change.

20 Analysis

Discussion

This section has presented our views on software developraed how documentation
should be created when viewing development in their foue maises: creation, examination,
reuse and change.

We found that all cases has a common denominator. They avas#d on a rational design
process similar to the one described by Parnas and Clenfeatsgds and Clements, 1986]
in which every decision is based on good reasons. Everyisnlatdeveloper has selected
or declined, is therefore to be based on a rational discnssioch presents the arguments
for and against the decision. Similarly, the examinatiosaftware becomes more fruitful

when documentation is written with a clear distinction begw rationales and solutions. This
founding will later be used in the presentation of our docotagon model.

Another aspect in finding how a developer needs document&ian examining how he
writes and read documentation. This will be discussed im#x section.

3.2 Limiting the number of participants

In a traditional software development project a number iédent participants are involved,
e.g., senior managers, project managers, software demslaustomers and end users [Press-
man, 1997]. The problems that arise when many people workleg on the same software
project are relevant for the field of software developmergeneral. But since we focus on
internal documentation we only considerchnical software developergiowever some of
the general problems are still relevant in the context adnmél documentation, e.g., does the
project managers see the same need for documentation astinare developer? Given the
focus for our work we choose to ignore these problems.

Instead we choose to focus on a small and generic set of rdiehvapplies to the field
of internal documentation. This focus allows us to disch&sitvolved participants, with-
out muddling up the study with considerations on how refafops between the manager,
customer and the software developer will effect the intedogumentation. We remind the
reader that internal documentation is documentation pex/by software developerfor
software developers in a development team, and therefor®tlioave the same economical
parameters as, e.g., user documentation, which will tylgitee a part of the product to be
sold. We find it legitimate to leave out considerations onr#éiationship to, e.g., managers,
since their main concern will be the documentation whiclo ise part of the final product. It
furthermore has the noteworthy consequence that it wilbphbdy be the sole responsibility
of the software developers to motivate the writing of theudaentation.

We divide the software developers working in a developmeairt into two roleswriters
andreaders We define:

The writer to be the software developer that, during creation or refiserne new software
or during changes of existing softwaritesinternal documentation.

3.2 Limiting the number of participants 21

The reader to be a software developer which, during software exammagxamines and
herebyreadsinternal documentation in order to comprehend an existystesn that is
to be changed or reused.

It is important to recognize that software developers plathivoles in the development team
and often at the same time.

3.2.1 Characterizing the reader and the writer

In characterizing the reader and the writer we first look alrtbechnical skills. Gener-
ally, participants in a development team will have différégchnical skills. Some might
be highly educated with master or ph.d. degrees in compuiense, some might have
shorter programming educations and some again might beid®@pacialists, e.g., accoun-
tants or physicists, with additional programming eduaatid@his has the implication that
terms which are familiar for one type of participant in thevelepment team might be unfa-
miliar for another type of participant. An example could battthe term “observer pattern”
is likely to be well known by many computer scientists but niiyunknown to a domain
specialist like an accountant.

Besides differences in technical skills, the software tpers is likely to have different lev-

els of experience with the system being developed or withtype of system in general.

Other developers are the ones that originally created tftevaie system at hand and will

therefore understand the system much better than a softieedoper just assigned to the
project. Some might be very experienced with a specific faatlarge system but unexperi-
enced with other parts of the system.

Despite the differences in level of experience and techslals we believe that some com-
mon denominator of experience and skill exist. It is themefoot futile to write documen-
tation which match all software developers with differerperiences and skill level. The
developer should however, still try to take the differenicgés account when the documenta-
tion is written.

Another matter is the writing skills of the software devetop Given that our focus is on
the reader of the documentation, we make few assumptions &t writer. We recognize
that ideally the writer should produce documentation ohlggality. This would require the
writer to have good writing skills and know and use pedagalgicinciples.

We see two reasons for this not being a feasible option:,kitstdo not believe that the typ-
ical software developer has particularly good writing kskibr know pedagogical principles
that well. It is not an impossibility that he has these ailesit but we can certainly not require
it from him. Second, we do not believe the writer will be egpltg motivated to spend a lot
of time writing good, pedagogical correct, documentatioa typical development situation
where he is under pressure. Today it is a problem to get thevad developers to writany
documentation at all.

As to the role of the writer, we therefore choose the lowestimmn denominator; The writer
is unmotivated for writing documentation, he has no speweiding skills and no knowledge

22 Analysis

about pedagogical principles. When writing documentatlmwriter would furthermore
typically be prejudiced to believe that the reader has tineesi@chnical skills and the same
level of experience with the system as he has.

The other role a software developer can take in a developtaant is the role of the reader.
We believe that it in general is difficult or even impossildeharacterize readers uniformly,
but we do find some common characteristics for the readersayiee with Horn [Horn,
1992] in that there are two tendencies in readers: Holisdssanialists.

Holists are readers that like to have a good knowledge of the big r@diafore proceeding
to details. They read the documentation in pieces here aard.tirhey experiment,
make many hypothesizes and examine them.

Serialists like to read the documentation step by step from start to €hdy like to under-
stand one detail before proceeding to the next.

By realizing that readers can have tendencies toward behgtfras well as serialists, the
internal documentation should support a “from A to Z” stofyoat a subject as well as a
large number of references to related subjects.

The readers are also differentiated on the type of work tleeyAs described in section 3.1
on page 17 we see four different cases of software developrosration of new software
and reuse, change and examination of existing software. dkleowledge that the reader
has different need for documentation depending on the tym®ftware he is examining.
For example when examining how to reuse some part of an egigiece of software the
reader does not want detailed documentation of all preweutsion of the software. Instead
he would be more interested in documentation of other attetogeuse this specific part of
the software.

This all together leaves us with a somewhat unclear and velgaracteristic of the readers.
They have different need for the documentation given tleginihical skills, their experience
with the system, their tendency towards being either h®lst serialists and the type of
examination they are performing. Never the less, thesefsetill have to be dealt with in
order to make the system usable for the reader.

3.3 Utilizing documentation

In this section we go into detail with our focus of this prdje©thers have already praised
the effect of documentation of software, [Knuth, 1984],iff&dinger, 1992] and [Ngrmark,
2000b]. We agree with these works in thhtproper system documentatios written it

will heighten the quality of the software. That is, the do@ntation will encourage the
software developer to reflect on his own work and hence lesmumber of bugs and
probably also make the software more comprehensible. Adtifer end we agree thétthe
documentation is actuallgadit can be used by software developers to reuse and change the
software properly.

3.4 The MRS-model 23

The problem of utilizing the documentation is twofold: Ejrdocumentation is rarely written
in the first place. Second, if the documentation is actuatijten it is our impression that it
is seldom read by others that the ones who original wroteisclier and Jensen, 1990]. We
see two main of reasons for these two problems: First, thevaod developer will not be mo-
tivated to write documentation if it is unlikely that the dooentation will be read. Second,
in our experience, it is frustrating to read documentattaat tloes not suite the reading style
(holistic/serialistic) of the reader, i.e., it is frustirag to read a lot of documentation in order
to get a little amount of relevant information. Hence, thammaotivation for this project is
to utilize documentation for the reader in order to preseineequality of the software.

By utilizing documentation we mean the software developéhe role of theeadershould
benefit from the documentation. Therefore the documemtatimuld match the need of the
reader, so the reader will be able to have his questions aadviest and easy. Preferably the
software developer should have easy access to the docuransince this will encourage
him even more to write documentation.

How do we then create and provide documentation that is esabthe reader and writer ?

We start by improving the structure of the documentation. iwproved structure affects

both the writer and the reader. The writer can use the strad¢tufocus his writing as the

structure “guides” him. As for the reader, by having a commtracture on documentation
we can present to him a unified presentation of the contehis.énable the reader to faster
comprehend and see what a piece of documentation is about.

By having a structure on documentation we furthermore hheepbssibility that the Elu-
cidator tool can provide better navigation facilities angrying on the documentation. This
makes the documentation more accessible for the reader @anhgearch for related docu-
mentation and explore other documentation easier.

3.4 The MRS-model

As discussed in Section 3.1 on page 17 we see software develdpo be based on a ratio-
nal design process, in which every decision is documenteithdyleveloper by stating the
motivations, rationale and selected/declined solutions.

We therefore introduces oMRS-modelvhich categorize all internal system documentation
into three deliberativiecategoriesmotivation rationaleandsolution descriptionFigure 3.1
on the following page illustrates the categories and thasidrelationships.

Motivation is a description of a incentive, that gives occasion to ateareuse or change
in a system. A typical motivation for a creation is the idea aequirements speci-
fications. For change it can be a report about an error, orlgimfresh idea for an
improvement for the system. All of these either influencesanstrains the develop-
ment of a system. Because of this, motivations acts as a peeimrationales.

!Deliberation: A discussion and consideration by a groupenépns of the reasons for and against a measure
[Merriam-Webster, 1997].

24 Analysis

Internal -
documentation

l

Motivation Rationale Solution Description

»

declines

Figure 3.1: The MRS-model.

Rationale contains the arguments and other rationales for a selectidaclination of spe-
cific solutions. Rationales should mention a number of nabitns together with ar-
guments for a chosen solution as well as alternative solstibat has been declined
for some reason.

Solution description are factual description of the solutions that constituéestbftware sys-
tem. These descriptions can have many different forms, €L diagrams, literate
text etc.

The division into these deliberative categories is fumihere inspired by [Ruping, 1998]
and [Sanvad et al., 2000]. Rupring and Sandvad et al. aite #tat the description of
actual solutions and their rationales is equally importhnt possible subjective arguments
in rationales can muddle up a description of a solution.

Rationales is, as mentioned before, important when tryoriguild a complete understanding
of the system. However as noted by [Parnas and Clements],iB&@leveloper just needs
to use a specific part of the system, he is only interesteddmigna description of the system
explaining how it actually works and not in reliving the coletie history of the system.

The opposite situation occurs when a developer wishes tageha system. In order to have
the full understanding of the system it can be necessary derstand the evolution of the
system in detail. In this situation, having documentatibthe changes made to the system,
will become important.

The categorization of documentation is not just a logicaékgarization, but also physical.
A physical separation of documentation into motivatiomgianale and solutions will help
support the writer in focusing his writing, but even more wonjant, help readers in finding
correct information and support both holists and seriglist

3.5 Realization of the MRS-model

This section describes how the MRS-model presented aborteisded to be realized. We
do this by first describing two structuring methods which bassed as inspiration to our
choice of how to realize the MRS-model. We then relate thesbe experiences gained
during the initial experiment (see Section 2.2 on page 13J&ailed information on this

experiment and its results). Having done that, we deschibéitree main components in the

3.5 Realization of the MRS-model 25

realization of the model, namely documentation nodestiogiships in documentation and
navigation in the documentation.

3.5.1 Documentation structure

In 1965 Tracey, Rugh and Starkey presented a method for @®ngential Thematic Orga-
nization of Publications, also known as the STOP methodcgyaet al., 1999]. One of the
characteristics of the STOP method, is that the documentéidivided into small stories,
calledTopical ModulesTracey, Rugh and Starkey, gives the following descriptibthese:

Because it has obvious boundaries (both physical and edijcand an ap-
propriate capacity, the self-contained theme of two-pags@rtion becomes
a prescription for thematic coherence that is more object the author and
reviewer, while being compatible with the natural behavibrthe author and
reader.

[Tracey et al., 1999]

A Topical Module is normally structured in a predefined waydnsists of:

e a topic title, that characterize and introduces the costehthe Topical Module, and
not merely categorize it.

e an abstract, which will serve as a thematic window for theleza
¢ aleft side page with text

e a right side page with illustrations and/or text. Each teatigp contains no more than
500 words, yielding a maximum Topical Module length of 1008r@s, if no illustra-
tions are used.

Another approach for structuring documentation, is Strred Writing and the Information
Mapping method [Horn, 1999]. Structured Writing relies osyatematic and complex view
on how to create and structure documents. It relies on two rm@anponentsinformation
blocksandinformation types

Information blocks are considered the basic units in the@ggh. More than 200 common
information block has been defined, for usage in differerdutioent types. Examples of
information blocks are: table, fact, rule, decision takie énformation types are then con-
sidered to be clusters of information blocks. StructuredtMf defines seven information
types: structure, concept, procedure, process, clagsicgrinciple and fact.

Another characteristic of Structured Writing is that it firdmportant to have properly de-
fined topics for each block or cluster of information. Thisngportant in order to help the
reader quickly scan the contents and to understand thesteuaf the document.

According to Horn [Horn, 1999], the Structured Writing methhas a number of similarities
with the STOP methods, but at the same time it is very differ&€he two main similarities

26 Analysis

between STOP and Structured Writing, is that thegre both interested in better compre-
hension on the part of the reader, and both identified the auetif writing as part of the
problem” [Horn, 1999].

We find both of the approaches has similarities to our work al. \Whe biggest difference
between STOP and Structured Writing is the level of strustudetail the methods provide
for the writer to use when writing documentation. The STORhuod only provides topic,

abstract and the usage of two-page chunks, while, as mextiabhove, Structured Writ-
ing provides both a number of information blocks and types.tlAis thesis will show, our
approach lay somewhere in between these two approaches.

The documentation for the STOP method [Tracey et al., 1998¢ttually written by using
the STOP method. This has given us firsthand experience hatimethod as a reader, and
this experience is positive. The short stories made therdeatation easy and comfortable
to read, while the topic titles and abstract helped to prewddyood overview of the docu-
mentation.

The structure of a STOP document is very different from tinecstire of the documentation
produced in our initial documentation experiment (seeiSr@.2 on page 13 for details on
this experiment). However, one of the results of the expenirtomplies with the STOP
method: Neither the writer nor the reader liked one longgssa

Another result of the experiment showed that with the stmiog mechanisms used, the
writer himself always had to come up with a structure for aegiypiece of documentation,
and, while reading, this left the reader with the impres&ibimo structure”. This result fits
well with both the STOP method and Structured Writing.

The two above mentioned methods and the lessons learnedjdine mentioned experiment,
has inspired us to base the realization of the MRS-model @il seif-contained nodes, tied
together by links. In other words, we see it as natural to ypehext to realize our model.
Our definition and understanding of hypertext is the onegexi by Jeffrey Conklin in

[Conklin, 1987].

3.5.2 Documentation nodes

As mentioned, our documentation will be divided into hypgttdocumentation nodes. All
though the source code is not considered to be documeniatso have to be a part of
the hypertext network since we need to create links to it. Néegfore think of source code
entities (typically classes) as source code nodes. Thesesmoan be thought of as implicitly
defined nodes. The documentation and source code nodes|l&s \reeir relationship are
illustrated in Figure 3.2 on the next page. The dashed lide#ates that the documentation
and the source code is physically separated. This comply thi third requirement for
Elucidative Programming [Ngrmark, 2000b], stating th& $lource code must be kept intact
without surrounding documentation.

Although the source code are considered important, the roguns of this project is the
documentation to be produced. Therefore, when referrirgriode or hypertext node in the

3.5 Realization of the MRS-model 27

rest of the thesis, it should be considered a documentatida,rexcept when it is explicitly
stated otherwise.

-
e[

Figure 3.2: Documentation and source code nodes. The dashed line tedit@at the documentation
and source code is physically separated as required by theiddtive Programming
paradigm.

Placement of the documentation nodes in the MRS-model

The MRS-model states that the documentation should beaepayoth physically and logi-
cally in deliberative categories. We have furthermore degdito separate our documentation
nodes in hypertext nodes with a focused content. This leads a natural categorization of
the documentation nodes.

We categorize the documentation nodes, such that they hineised contents that apply
in one of the deliberative categories; Motivations, Radles and Solution descriptions, i.e.,
the contents of a documentation node will be either a matimag rationale or a solution

description.

This leads us to introduce a node type for the documentatboes This type indicates the
contents of the documentation node, e.g., a documentabide of type “Requirement” will
have a motivating content. It will be possible to have sdveoge types in one delibera-
tive category. This will be discussed in further detail i tbesign chapter, specifically in
Section 4.2.1 on page 46.

Internal structure of the documentation nodes

Inspired by the STOP method [Tracey et al., 1999], we urgedbas not demand, for the
writer of documentation nodes to keep them short (no mone 11890 words and hopefully
less), in order for the nodes to be manageable for the reddesubject to be documented
is to big to fit in a documentation node, it can probably bed#d into smaller nodes, which
can then be connected by links.

28 Analysis

Furthermore, also inspired by the STOP method, the writeukhstrive to make the nodes

as self-contained as possible, meaning that wheneveripp@ssnode can be read without
having to read other nodes first. The reason for this, is thigtfar easier for the reader

just to read one node, instead of having to switch back ant mtween two or more nodes.
This should however not restrain the writer from creatimdcé to documentation nodes when
needed, since it is also important that the information imdenis focused on the subject and
without too many side-anecdotes.

Besides the textual guidelines to the contents, the doctatien nodes can be characterized
by their internal structure. This structure is prescribgdthe type of the node, i.e., by
the deliberative category. This internal structure of tbeumentation node is illustrated in
Figure 3.3. The structure of a documentation node has tws:pgne fixed part and the free
part.

Topic:
Abstract:

Keywords: The fixed part

Author:

MRS-model node type

The free part

Figure 3.3: An illustration of the main internal structure of a documegiin node. The fixed part
contains common general information which is applicablealbdocumentation nodes,
while the structure of the free part depends on which MRS-hramtie type is applied to
the documentation node.

The fixed part can be viewed as a header for the node. The purpose of thisfihe node
is to provide the reader with a set of common general infoionafior all nodes. It
could, e.g., contain information such as the topic of theenath abstract for the node,
the author of the node etc.

The free part The textual contents of the free partis at largely decidethbywriter. 1t must
however follow the structure of one of the categories of the$4model mentioned
above. This structure is specified by the node type, andftirerall node of a specific
type have a common structure for the free part. As an exaraglecumentation node
in the Motivation category, could have the type “Requireth@rhich means that this
particular node is documenting some requirement posecetedftware project.

In the Design chapter (specifically Section 4.2.3 on pagdlgxact contents of the fixed
part, as well as the node types of the MRS-model will be preskrlescribed and discussed
in detail.

This characteristic of the documentation nodes compligb ®@onklins description of hy-
pertext nodes [Conklin, 1987]. Conklin state that hypdrteodes in most cases expresses

3.5 Realization of the MRS-model 29

a single concept or idea, and they are typically smaller th&naditional text file (although
nothing prevents the writer from making the nodes big). Héhfermore describes that node
may have types, and these are particularly useful to difteate the nodes when they have
an internal structure, as it is the case with our documentatodes.

3.5.3 Relationships in documentation

In the MRS-model described in Section 3.4 on page 23 the Raleaategory hasgremise
and itselectsand/ordeclinessolutions. In other words these three words describes the re
tionships between the three categories. In order to retllzenodel, we therefore need some
mechanism to express this.

As we are using hypertext to realize the MRS-model, relatgms between nodes will be
expressed as links. In the following we will describe the triogportant aspects of how
links are to be used in realizing the MRS-model. This is doneHaracterizing a number of
properties of the hyperlinking concept we use.

Roles on links

From the description of the relationships in the MRS-modbehve, it is clear that it is not
sufficient to just make links between the documentation ndle also need to give these
links a meaning (such as premise, selects and declines).

Links in hypertext can have attribute/values pairs placedhem [Conklin, 1987]. We use

this feature to introducelesto our links. The roles on our links is used to express the &ind

relationship two documentation nodes is involved in. Anregée could be that a Rationale
node makes a link with the role “premise” to a Motivation npded thereby expressing that
the Motivation node is a premise for the Rationale node.

The number of link roles is not limited to the three before trered link roles, as it can

be useful to have more specialized link types when exprgsbmrelationship between two
nodes. For example a link type which states where a solugsorgption is implemented in
the source code could have the role: “implements”. In thprewe will present a number
of link roles which will be implemented in the Elucidator tpbut the writer of the documen-
tation is free to define new link roles if the need arises. Tieroles presented in this report
is described and discussed in the Design chapter (spelsificédection 4.3.2 on page 57).

Anchoring

All links in our model is considered to be directional. Thei&bator tool should however,
provide navigation functionality to support going backd&along links.

Both the source and the destination anchor of a link is cansitito be a region. In the case
of the source of the link, the region will be a contiguous deth@racters placed between the

30 Analysis

begin and end link tags, and in the case of the destinatidmedfrik, the region will be either
a whole documentation node, or some part of it such as a sectio

Documentation nodes always has a unique id which is to bewised stating the destination
of a link. Specific parts of a node, such as sections, can asgpven a id to be used in
anchoring. This id is used as a postfix to the nodes id to ulygdentify the specific part.

Implicit and explicit links

Links can be created in two ways: Explicitly or implicitlyxglicit links are links manually
created by the writer, while implicit links are created auttdically by the system. In the
following we will discuss explicitly and implicitly createlinks in detail.

Explicit links: The first method for creating links is to let the writer makernhexplicitly.
We believe the writer will insert these links as the resulaafeflection made while
writing the documentation, and they will therefore expressie comprehension held
by the writer at the time the link is created. If this compnesien is transferred to the
reader, the links will be of value to him. Therefore, the ésiplinks is potentially
valuable links for the reader.

Since we believe that the explicit links are valuable forré@der, we need to encour-
age the creation of these links. A potential problem withdresation of explicit links
are that they need to be created by the writer, while it is hyahe reader who bene-
fits from links. A straightforward solution to this problemowd be to make the links
useful for the writer as well. This could, e.g., be done byngdhe links to provide
navigation facilities, which can then be used by the writdrile he is developing the
software. An example of this could be the Navigation Windowrfd in the original
Elucidator tool [Christensen et al., 2000]. The problem afigating the MRS-model
will be discussed in Section 3.5.5 on page 32. Another piatleptoblem with the
creation of explicit links is the burden of the work involvedthe creation of the links.
This problem can however be relatively easy lessened byigiray good and easy
editor support for the task.

Implicit links: As stated above a number of potential problems exists withettplicitly
creation of links. A solution to these problem could be tcateeas many of the links
as possiblemplicitly. This means that we let the system, instead of the writeatere
the links.

As nice as this sounds, creating links implicitly is not vaithh problems. First of all,
since the links are created by the system and not by the witiiemot likely that the
comprehension held by the writer will be expressed and tearexd to the reader in
the same degree as we believe it will by creating explickdinT his results in implicit
links being probably less valuable to the reader. Secortdgmot an easy task to have
the system determine when a links is appropriate, and to wthatr node it would be
appropriate to link to.

3.5 Realization of the MRS-model 31

Realizing this, we believe that implicitly created linkearot meant to replace explic-
itly created links, but rather to compliment them. An exaenpf how this could be

realized would be to link keywords in a node to other nodescivimave this specific

keyword in either its topic, abstract or keyword list.

In conclusion, this means that implicitly links can be cleéeazed as links who are
meant to coexist with explicit links. They are created bysiistem and they tie nodes
together whictprobablyhas some coherence.

Organizational and referential links

The final characteristic of the links used in the MRS-modgethiat they can be divided into
two categories: organizational and referential.

The idea for these two categories is inspired by Conklin [dion 1987]. The main idea
is that organizational links are used to connect parent sigdth its children nodes. This
results in a hierarchical devision of the nodes in a subgrgipfin the hypertext network,
and can be used to express, e.g., that certain nodes docudstails of other nodes.

The referential links is by far the most used links in the MR8elel. These links are used to
tie the nodes together in a non-hierarchical manner. Exesngfithis category of links could
be the premise, selects and declines links discussed above.

3.5.4 The usage of relationships to maintain the history

As mentioned in Section 3.1 on page 17 documenting the @ggrior a change is important.
This means that the history of a program is to be retainedaMRS-model. In order for this
historical information to be of value to the reader, it musth&€how be possible to express it
while writing the documentation and/or source code.

A writer would like to precisely state in his rationale daption what is introduced and what
is deprecated by a change. To do this we see it as natural theiseles on links to express
either the introduction or deprecation of a node, similasetects and declines as described
above.

Furthermore it would be naturally to be able to state whichc#jr version of a node a
link points to. The link could contain an attribute that cained version identification for a
node which could be used to access the specific instance afeathmugh a version control
system.

Figure 3.4 on the next page shows an example of a documentetde (D) which deprecates
some documentation (A) and source code (C). It also intreslacnew documentation node
(B) and a newer version of the source code (C’). We have thdingited our selves in
this thesis to only use the roles to express history on liaksl do therefore not take into
consideration the problem of versioning.

32 Analysis

Present i Past

y
B Ma,
e, 16
$ V. A
4 es
Jo dep‘eca‘ A
—
20 . Qe
oS N R " e,
oot E s, ,
E 3|
C k C

Figure 3.4: Maintaining history with links. A documentation node cae usrsion numbers on links
to model which specific version of node is deprecated (patti@past) and which ver-
sions is introduced (part of the present)

3.5.5 Navigation in documentation

One of the problems arising by using hypertext to realizeMiRS-model are what Conklin
describes as thdisorientation problenpfConklin, 1987]. Since hypertext allows you to orga-
nize your documentation in a somewhat complex manner, ibeadhfficult to know where
you currently are in the network, and how to get to some othaarepin the network. Hence,
you got a disorientation problem. Our main medicine to sahis problem is to provide
navigation facilities to the reader. This section desaibew navigation is to be realized in
the MRS-model.

One of the problems of the disorientation problem, is to raamthe context of what you
are reading when you follow a link. The setup in the curreniciflator tool help lessen this
problem, since the two side-by-side windows allow you tdklabd both documentation and
source code at the same time. See Figure 2.3 on page 12 foaampkx A problem with this
setup however exists. If you follow a documentation linknfrone piece of documentation
to another, the original implementation of the side-byesadndows will not help you, since
you can only view one piece of documentation at the time.

To improve on this we remove the strict separation with doentation on the left and source
code on the right. Instead, the reader are to chose in whisdaw he want to have the doc-
umentation or source code viewed. This will allow him to,.elgok at two documentation
nodes at the same time, and thereby keep the context he weteeimhe activates the link.
This can introduce a higher mental load when following a Jliak the reader now has to
decide if he want to show the contents of the link in eitherdbeent or opposite window.
We feel though, that with small means we can reduce this loadibimum. How this is
specifically realized can be seen in Section 4.4.2 on page 64.

Another problem with navigation in hypertext, also raisgd@onklin [Conklin, 1987], is
when the reader are to decide if he wants to follow a link or, hettypically do not have

3.6 Related documentation approaches 33

much information about the contents of the destination eflittk (he can typically only see
the name of the link). This makes the job of choosing to foleolink or not uncertain, and
the reader will almost certainly end up following links toamnentation with no interest for
him.

To solve this problem, the realization of the MRS-model dtiquovide to the reader, in-
formation about the destination of a link, before he acjualivigates to the destination of
the link. Examples of the provided information, could be tbpic or the abstract of the
destination node. He can then, with regard to this inforamtchoose if he wants to follow
the link or not.

Views on documentation

Another way to provide the reader with navigation facikties by providing what we call
views A view can be seen as a subset of the documentation nodes Inyplertext network,
presented in a manner so only certain elements from the rsodé, as the topic or the ab-
stract, is showed. The view furthermore contains a numbemeficit links which takes
the reader to the actual nodes. This notion of views is vanjlar to what Ngrmark and
@sterbye describes as antline presentatiofiNgrmark and @dsterbye, 1995].

We see two basic types of views: the Context views and thexinigsvs.

Context views: As the name implies, Context views are views which show imfatron on
the context of a node. An example could be a view which shovidpie and abstract
of all the documentation nodes linked to by a specific docuatem node. One could
also imagine that the role of the links is used to refine thet@&drview. A Context
view is always invoked on one specific documentation nodenaa specific element
in a documentation node.

Index views: Index views are views which show some subset of nodes fromsadhe
whole hypertext network, according to some specified patamdypical examples
of aindex view could be a table of contents, or a list of all@lmentation nodes in the
Motivation category.

No finite number of views exists. In this thesis we will pres@mumber of views which will
be implemented in the Elucidator tool. The views presemntetthis report is described and
discussed in the Design chapter, specifically in Sectior8B4add Section 4.4.4 on page 68.

3.6 Related documentation approaches

In the previous sections we have presented the principlesitofRS-model and how these
are to be realized through the use of documentation nodésshirt focused contents and
links with roles. In this section we present a number of eslapproaches within software
documentation. These all try, at various degrees, to maiqtzality of software through the

34 Analysis

use of documentation. The purpose of this presentation umdierline the differences and
similarities between our model and these related appr@ache

3.6.1 Object-oriented Analysis and Design Documents

In a software development process that follows the guidsliof Object-oriented Analysis
and Design [Mathiassen et al., 1997], the software devesqgmeduce a number of different
documents, e.g., requirements specifications, analysisdents, design documents and test
specifications. These documents, together with the prabessreated and use them, all
seek to maintain the quality of the software, with the exicepthat these documents ensure
quality in a wider sense, i.e., they target the product th&t be delivered to the costumer as
well as quality of the process — not just the software souockec An example could be, that
they address qualities as conformance with specificatgosg performance and adherence
to schedules.

The documents produced during object-oriented analysislasign also differ from internal
documentation (as produced in an Elucidative environmarbat they address the software
at a different level of abstraction, as illustrated on Feg8t5. An example could be that
they describe conditions in the problem world and not detalg., on how some logging
mechanism is implemented. Still, there is some overlap betwnternal documentation and
a design document, since these both describe the archéextthe source code.

Level of abstraction

Anlysis doc.

Design doc.

Internal doc.

Source code

Figure 3.5: Internal documentation compared to analysis and desigrunh@nts at their different
levels of abstraction.

In our opinion the traditional analysis and design documéat/e two important problems:

First, they are often documents with no proximity or relagawvith the actual source code.
This makes it difficult to maintain cohesion between the adoents and the source code
as the source code evolves. Second, they do not contain tiveldage gained at the im-

plementation, which effects the implementation. Both ¢hpoblems are targeted by the
MRS-model and internal documentation in an Elucidativaremment.

3.6 Related documentation approaches 35

3.6.2 Literate Programming

As opposed to the documents from object-oriented analygisdasign, Literate Program-
ming makes documents that in more than one sense are moedekbe source code. First of
all, since the source code resides inside the documentétoe is a high coupling between
the two. As we described in Section 1.2 on page 3 this proyimiliterate documents makes
it easy to keep the documentation and source code cohereatn@ly, the documentation
produced by Literate programming describes the actuaksotwde.

A number of different variations of Literate Programmingst®x — Elucidative program-
ming being one of them. If we examine the original Literated?amming as suggested by
Knuth [Knuth, 1984], one of the major problems is that is loage a paper representation,
which makes it cumbersome to navigate from one part of thementation to a related part.
This has been improved upon in one of the of the Literate ugsiaMarkus Brown et. al. has
suggested [Brown and Childs, 1990] and created [Brown arejd0z 1990] an interactive
environment for Literate programming, which apply gendrgbertext concepts in order to
make indexes with hyperlinks between related parts of tloeish@ntation.

The hypertext idea is extended by Kasper @sterbye [Dsteil®8h], where the documenta-
tion and the source code are placed in hypertext nodes. dridbi the proximity is ensured
with hyperlinks like the Elucidative environment. Experoes from small examples con-
ducted in [Dsterbye, 1995] show that both motivations arthmales appear next to the
description of the solutions, which support the basis of M&®S-model. Although the tool
offered hyperlinking these all had to be inserted manuahyciv made the tool cumbersome
to use.

For all of the presented Literate variants we see a numberaitfi@ms. The main problem
is that they all, although in different ways, change the iehéestructure of the source code.
Either by letting the source code be a part of the documemtaiti splitting the source code
up in small hypertext nodes. The advantage of this appraatttat in this way it is possible
to emphasize some subpart of a entity in the source code,aesgbpart of a method. On
the other hand, the problem with this approach is first oftedt the language or tool mech-
anisms to control this modularization complicate the doentation process. Furthermore,
the source code is so tightly entwined in the documentatohthat it becomes difficult to
use other development tools on the source code. By movirtgthetreader and the writer
away from the tools and mechanism they are accustomed tb, asjce.g., their favorite
editor, we move them away from writing documentation.

Although experiments show that Literate documentatiorsedFischer and Jensen, 1990],
these experiences appear to be from a small and homogeretmfdgvelopers. Hence we
still have doubts on the general usability of traditiondkelate Programming.

3.6.3 Object-oriented Documentation

In 1994 Johannes Sametinger suggested a documentationeschbed Object-oriented doc-
umentation [Sametinger, 1994]. This work contributed i twain areas: The first area re-

36 Analysis

sulted in a suggestion for a classification of system docuatien. The second area focused
on reuse of documentation, by using inheritance. In the@Walg we only consider the first
area.

As mentioned the first area of contribution resulted in thgg@stion for a classification of
system documentation, where system documentation is thamkntation used by software
developers. This classification divides the documentatitmstatic and dynamic documen-
tation on one axis, while overview, external and internatutaentation is placed on the
other, yielding six different categories of documentatidhis is shown in Figure 3.6.

| | Overview | External view | Internal view |

Static view || Static overview | Class interface Class implemen;

description tation description

Dynamic Dynamic Task interface de; Task implementat
view overview scription tion description

Figure 3.6: Documentation scheme for object-oriented software sysf8ametinger, 1994].

We believe that documentation made in an Elucidative enwirent (internal documentation)
can be successfully used in all six categories. However sittiee categories may be better
suited that other. As an example, documentation to be plateke internal level, both
dynamic and static, seems to fit well with our notion of ins@rlocumentation written in an
Elucidative environment. We do however, recognize thatesother types of documentation
may be better suited for some of the categories. Most obvgile external documentation
where interface documentation system such as JavaDoc beuwlded with success.

3.6.4 The gIBIS hypertext tool

A tool that uses a model similar to the MRS-model is the gIBI&,tcreated by Jeff Conklin
and Michael L. Begeman [Conklin and Begeman, 1987]. gIBkshgpertext tool to support
team design deliberation, using the IBIS method.

The IBIS method sees a design deliberation as a conversatiomg the participants. The
model of these conversations focusleaues The issues can hawositionsthat solves the
issue, with possibly many mutually exclusive positionse fositions can in turn have one
or moreArgumentdo support or object to that position. This is illustratedmigure 3.7 on
the facing page.

gIBIS works by supporting the creation of a network of hypgtinodes, being either a issue,
a position or a argument. Typed hyperlinks are inserted éetwthe nodes to state the role
between the two nodes. The gIBIS tool works by one user stadtsliberation of a issue
by adding a issue node to the network. The users of the giB3&sythen adds a number
of positions as a response to the issue raised and argunoesupport or objections to the
position. The network then be navigated using a graphigaksentation as well as indexes.

3.6 Related documentation approaches

37

Generalizes

Specializes ™~

Issue

b
Responds-to

Position

pAAh)

Is-suggested-by

Supports

Objects-to

Argument

Figure 3.7: The set of legal rethorical moves in IBIS [Conklin and Begei®87]. This is equiv-
alent to the nodes and links in gIBIS, where the boxes are snadd the arrows are

hyperlinks.

The IBIS model resembles our MRS-model, where the Positiotige IBIS model are equal
to Solution Description in the MRS-model. The argumentsaégjthe Rationales. The Issues
resemble the Motivations of the MRS-mode, since they batiate the construction of a

position/solution description.

The main difference between the Elucidator tool and the §I&lol is focus of the tool.
The gIBIS tool tries to support and control a design processle the Elucidator focus on

internal documentation.

38

Analysis

Design

This chapter present the detailed design for how the MRSefedmplemented in the Elu-
cidator environment. The Elucidative environment presdrib establish a foundation for
the design and implementation. Having established a fdiondave move on to describe
the three main issues of the implementation. First we des¢row the documentation nodes
is designed and implemented. Next, we focus on the linksallirwe describe how the
navigation facilities and the views are designed and impiaied.

4.1 The Elucidative environment

The design and implementation presented in this chapterilid bpon a environment which
was designed and implemented in the first part of this malsésis. The main components
of this environment is already presented in Section 2.1 gef®a Further design details is
given in Chapter 4 of [Christensen et al., 2000].

In this section we will focus on describing the Elucidativeeonment of both the Elucidator
1 and 2, as well as the terminology used in these environmértis is done in order to
provide the reader of this thesis with background informatn the environment.

The rest of the section is structured in the following manfénst the two languages used by
the Elucidators is presented. Secondly, the entities auedan these languages is defined.
Following this, the tools present in the Elucidator 1 and 2iemment is described. Next,
the changes which will have to be made to the different corapbof the Elucidator 1, in
order to implement the MRS-model and thereby evolve it toEBhesidator 2 is presented.
Finally, we discuss the work flow when working using an Elatide environment.

Other minor components/concepts than the ones describidsisection exist in the Elu-
cidative environment. If important, these will be dealttwih their appropriate section of
this design chapter.

39

40 Design

4.1.1 The languages in the Elucidative environment

In the Elucidative environment two languages is handleda dad the Edoc language.

The Java language: The Java language is the only programming language sugborte
both the Elucidator 1 and 2 tools. The role of the Java languaghe Elucidative
environment, is to serve as the development language us#telsoftware develop-
ers to implement the specific software project they are dasding in the Elucidative
environment.

An important point concerning the Java language, is thatexaity, such as a classes,
methods or fields, in the source code must have unique naneseTunique names
are to be used when creating links from the documentationsjoeaific entity in the
source code. We call this uniqgue name ttieame As described and discussed in
[Christensen et al., 2000, pp. 27-31] a number of problemsgsvhen creating the
idname, problems which we solve by introducing a namingdsieshfor Java entities.
We will not go into detail concerning this naming standandt, jbst state that it is also
used in the Elucidator 2 tool.

The EDoc language: The EDoc language is a XML based mark-up language which @ use
to write the documentation. The purpose of the EDoc langusg®ofold: First, it
provides a language which the writer uses to express steietud links in the docu-
mentation. Second, it provides information to the Eluaidabol, which can be used
to present the documentation typographically.

4.1.2 Entities in the Elucidative environment

Entities is the fundamental elements recognized by theiddtmrs. The Java and EDoc lan-
guages described above is used to define all source code anhéntation entities known
by the Elucidators.

Source code entities is source symbols that can be uniqiestyified, thus packages, classes,
methods, fields etc. is entities. For documentation bdgiedll elements defined in the
EDoc language is entities. Thus documentation nodesossctiink anchors and all other
structural parts of documentation nodes is entities. Ak saturce entities, all documentation
entities can be uniquely identified. The technical detdatsus uniquely identification of both
kind of entities can be found in [Christensen et al., 200(&Zér 4].

Note that entities can contain other entities. This depietfact the e.g. methods are inside
classes and sections are inside documentation nodes. €Buil in a containment relation-

ship between the two entities. Other relationships existsthis information about the en-

tities in the Elucidators is stored in the Data model as noseid in Section 2.1 on page 9.
Again, more technical details can be found in [Christengeal.e2000, Chapter 4].

4.1 The Elucidative environment 41

4.1.3 The three tools in the Elucidative environment

The Elucidative environment consists of three tools: Thadedhe Browser and the actual
Elucidator. In this section we will describe the role of thdhree tools in the Elucidative
environment, and how they interact.

The Editor: The first tool in the Elucidative environment is the editoheleditor is one of
the two components in the user interface to the Eluciddterpther being the browser.
The editor is used by the writer to produce both the source eod the documentation.
Conceptually, any editor which can be controlled by a prograng language can be
used. In the Elucidator 1 and 2, only the Emacs editor is sipgdhough.

The editor is extended with a set of functionalities to suppiwe writer working in
the Elucidative environment. First of all, it features aditspew setup with sepa-
rate frames for the documentation and source code, theralingit possible for the
writer to easily work on the documentation and source codbeasame time. Since
the insertion of links can be rather cumbersome, the editbnérmore provides func-
tionality to help the writer do this. Finally, the editor pides the ability to start an
abstraction process directly form the editor.

Besides functionality to support working in the Elucidatignvironment, the editor
supports some common software development functiondlitis is realized by using a
number of third party packages. An example of this kind ofgrp is the usage of the
Java Development Environment package [Kinnucan, 1999brawide functionality
such as lexical highlighting and the ability to compile theasource code from within
the editor. We also use a package which turns the editor istouatured xml editor,
which support the writer in writing his documentation usthg EDoc language.

The Browser: The browser is the second component in the user interfadestilucidative
environment. While the editor is used by the writer, the senis used by the reader.

The purpose of the browser is to let the user of the Elucidadoe an attractive view
and functional way of reading the produced documentati@hsmurce code. It also
provides him with navigation functionality. This functiality can be used in various
ways, both internally in the documentation or source codd,etween the documen-
tation and the source code.

The setup of the browser found in the Elucidator 1 environtmeesimilar to that of the
editor, since it has a split-view, which presents the docuaten on the left and the
source code on the right. The navigation functionalitiesiomed above, is basically
implemented as links in the documentation and source codee lsldvanced naviga-
tion features is however implemented by the usage of a sixiad window, called the
Navigation Window. This window provides information ongg.which links are cre-
ated in a particular section of the documentation, or whitieosections makes links
to this particular section. The information used to provide navigation facilities is
gathered by the Elucidator tool, as it will be described belo

In principle any Internet browser can be used. The Elucidatenvironment has,
e.g., been tested with Netscape Communicator on the Solansx and Windows

42 Design

operating system and Internet Explorer on Windows. Howeamne of the navigation
functionality to be implemented in the Elucidator 2 enviment requires the usage of
the Netscape Communicator browser.

The Elucidator: The Elucidator is considered the main tool in the Elucidaéwvironment,
since it provides the core functionality for the environrhen

The Elucidator can be seen as three components which caeperprovide the full
functionality of the Elucidator. The first of these compotseis the Abstractor. The
job of the Abstractor is to abstract information about éasitand relationships among
these entities, from the documentation and source codes iformation is then
passed on to the next component; The Data model. The job ddkee model is to
store the information provided by the Abstractor, and tobdmahe third component,
the Generator, to query and access this data. The dataie/estiby the Generator in
order to facilitate the two user interface tools mentionbdwe. Before delivering the
data to these two tool, the generator formats it accordirigeémeeds of the two tools.

The Elucidator is implemented in Java, as a server, usingSeémglet technology
[Davidson and Coward, 1999]. It communicates with the tweriflace tools through
the HTTP protocol [Fielding et al., 1999].

Having described the three tools in the Elucidative envitent, we now take a more detailed
look at how they interact. Basically three interaction st@s exist. These are illustrated in
Figure 4.1. In all three scenarios the Java source code and #Bs are used. This is shown
in the figure by the arrow from the source files to the Elucidato

Editor Browser
&

A B C
Abstractor Generatoy

N Data model"

Elucidator

Figure 4.1: Interaction in the Elucidative environment. In case (A) dnéter asks for an abstrac-
tion of the documentation and source code. In case (B) theemuises the information
gathered by the abstraction to help him insert a link in thewtoentation, and finally
in case (C) the reader has activated a link in the browser Wwiieans that a new page,
produced by the Generator, will be shown in the browser.

4.1 The Elucidative environment 43

(A) The first basic interaction in the Elucidative environmecturs when the writer, through
the editor, asks to have the documentation and source catecied. The first step
in this interaction, is that the Abstractor components @f Biucidator tool make an
abstraction of the documentation and source code. The aeattfinal, step is that the
Data model components stores the resulting data from the@dion.

(B) The second basic interaction appears when the writer wanitssert a link with the
help of the editor. This functionality is implemented in flodowing manner: First the
editor asks the writer to supply some substring of the nantieeoflestination entity the
writer wants to link to. Next, this substring is passed frdra éditor to the Generator.
The Generator asks the Data model to retrieve possible msitolthe substring, which
Is in turn returned by the Data model to the Generator. Tlegltes then passed from
the Generator to the editor, which presents the result tavtiter. The writer can then
select the correct name for the entity he wants to link to.

(C) The final basic interaction in the Elucidative environmekets place between the browser
and the Elucidator, and is triggered by the activation ofetink in the browser. When
selecting a link, a new page containing the destination®fitik should be shown. In
the first step of this interaction, the browser passes amign@epresenting the des-
tination of the link to the Generator. The Generator nexttacts the Data model to
retrieve the data necessary for it to present the destimafithe link. After retrieving
this data the Generator generates the page by using thenafion retrieved from the
Data model, as well as the source files. Finally it passesethdting document to the
browser, which then presents it to the user.

4.1.4 Changes to the Elucidator

In order to implement the Elucidator 2 tool a number of changes to be made to the tools
in the Elucidator 1 environment. This section present thetrimoportant ones.

The EDoc language:In order to express the MRS-model the EDoc language has to be
changed. This means that some of the old tags suettiapter > will be removed
from the language, and a set of new tags will be introducede giammar for the
changed version of the EDoc language can be seen in Appendix B

The Abstractor: The only part of the Abstractor which needs to be changedeipént that
abstracts the EDoc files. This is done in order to be able tradighe new entities
and relationships introduced in the extended EDoc language

The Data model: Since the entities introduced in the extended EDoc langimag®me
cases has different structure/data contents, comparée torte found in the first ver-
sion of the language, the Data model has to be changed, in wrdie able to store
these changes. Furthermore, the Query engine, which isaheopthe Data model
which handles the retrieval of data, has to be change as weltder to be able to
provide this new information to the Generator.

44 Design

The Generator: The Generator is the component which has to be changed the Aoa
consequence of the new structure of the documentation,dbengentation has to be
presented in a completely new way. New functionality, suse@ended navigation
features and views, has to be implemented as well.

The Editor: The changes to the editor will only be minor. The most impatria support
for templates for the creation of the documentation nodes.

4.1.5 The work flow in an Elucidative environment

Having described the languages, tools, interactions ampdawements to the Elucidator 2,
we now turn to a description of how the Elucidative enviromtris typically used.

As mentioned in the analysis, the software developer igeiththe role of the reader or the
writer. The two main activities while using the Elucidateevironment will thus be reading

and writing. It was also mentioned that the software dev&laan be in both the reader
and writer role at the same time. While using the Elucidaéimeironment this means that
he shifts between the two activities at will. While perfongione of these activities, the
software developer can furthermore be in one of a numberftdrdnt states. This division

into states can be seen in Figure 4.2.

Writing:

1 1
|
|
Creation 3 !
Reuse Creating new ! !
Change documentation node ! !
Writing | !
documentation T 1 ! I
| |
Creating R Browsing |
links !
|
|
|
|
|
|
|
|
|
|

1

i Reading:

' Examination
I

I

I

I

Figure 4.2: Anillustration of the work flow in the Elucidative environmeThe work flow is depicted
as a collection of states which the user can be in while udiegilucidator. The states
can be divided into the two main task performed while usiedglicidative environment;
reading and writing. While writing, you can be in a number dfegent states, but you
can only be in one state while reading.

While engaged in the reading activity the software devalopa only be in one statérows-
ing. By browsing is meant that the software developer is reattiaglocumentation using the
browser tool described earlier in this section. This atticomplies with theExamination
software development case described in Section 3.1 on pagethie Analysis chapter.

In contradiction to the reading activity, the writing adgtjvcontains a number of states, the
two main states ar@Vriting documentatiomnd Writing source code As the setup of the
editor features a split-view with documentation and sowage in separate windows, it is

4.1 The Elucidative environment 45

easy for the writer to shift between these two states. Comfooboth states is that you
can move to thébstractingstate from them, which is done when you invoke the abstmactio
command in the editor. While in the Abstracting state you &arn to either of the two
main states.

While Writing documentatiothe writer can move to two other states besides the Abstracti
state: theCreating linksand Creating new documentation nodstsites. Both states can be
viewed as sub-states to thi¢riting documentatiostate, but is described separately in order
to provide a detailed picture of the work flow while creatirmcdmentation. Whil€reating
links the writer creates links to either documentation or soum#ec Depending on how
much new documentation and source code has been producedtbewriter was in the
Creating linksstate the last time, he will typically chose to makeAdstractionjust before
he startCreating links The reason for doing an abstraction before creating lisks make
sure that the entities and relationships from the newlytegt@ocumentation and source
code is represented in the Data model, and thus include théise possible matches made
by the linking feature in the editor.

TheCreating new documentation nodgate is also entered from thi¢riting documentation
state. This is typically done for two different reason. Thstfis simply to create a new
documentation node, and start writing documentation ifflite second, is to create a loose
end. As described in Section 2.1.1 on page 11 of the Earliek wloapter, loose ends are
made to be able to make references to a related subject whiobt idescribed yet. When
Creating new documentation nodée writer will therefore typically only fill in the topic,
and then return to th@/riting documentatiostate for the original node and return to fill out
the loose end node at a later point.

Finally it should be noted that when the software developénione of the states of the
writing activity, he is performing one of the three softwatevelopment caseCreation
ReuseandChange described in Section 3.1 on page 17 in the analysis chapter.

4.1.6 Entities in the hypertext model

Since we need to reference specific details, that is entifethe documentation nodes and
the source code, in order to design the realization methedsribed above, we here give a
short introduction to entities in the documentation andsecode.

Common for all entities, both documentation and source entigies, are that they have an
unique identity. This is expressed by there idname. Thip@my of the entity is used, when
a link to an entity has to be created.

In a documentation node all tags of the EDoc language is deresil to be entities. The
means that, e.g., a documentation nodes, such as a ReguireniRationale or a Task is
considered a entity. Also, the different parts of the docotagon nodes, as well as the links
are considered to be entities. An important property of tit#ies in the documentation is
that one entity can be contained in another entity. This mdaat en entity representing a
specific part of a documentation node, is considered to becwd in the entity representing
the documentation node.

46 Design

When it comes to the source code, entities are considered solrce symbols like a class
name, a method name or a variable name.

4.2 Designing the documentation nodes

Having described the environment in which the documemagdeing produced, we now
narrow our focus to the documentation alone, and especttatigw the documentation nodes
is designed.

We do this in three steps: First we describe and discuss headbumentation nodes fit into
the MRS-model presented in the analysis. Next we introdtieesotion of thematic catalogs
and describe how these relate to the MRS-model and the dotatiz nodes. Finally, we
present how the internal structure of the documentatiorea@de designed.

4.2.1 Documentation nodes in the MRS-model

When describing how the documentation nodes fit into the Mifelel we first recall the
illustration of the extended structure of the MRS-modelpessented in Figure 4.3 on the
facing page. From this we identify three levels of abstmcti

At the highest level, above the dotted line, we have the presgmtation of the MRS-model
with its three deliberative categories: Motivation, Raate and Solution description.

At the second level, just below the dotted line, we have a rermbsub-categories. These
sub-categories can be seen as optional details of the thtegaries in the MRS-model.

At the third and final level, concrete node types are place@ntples of such are: Require-
ment, Change description and Task. These types can eitheatbgorized directly within
one of the three deliberative categories or in one of thecaubgories (and thereby indirectly
within one the three deliberative categories of the MRS-ehpdThat is, the Requirement
node type mentioned above belongs to the Motivation cayegioe Change description to
the Rationale category and the Task to the Solution desamipategory.

The documentation nodes can be seen as instances of thesetearode types. This means
that all documentation nodes has a type and can be categjovitie respect to the three
deliberative categories of the MRS-model, based on this.typ

In Figure 4.3 on the next page a dotted line has been placegptvae the pure MRS-model
from the sub-categories and node types. The dotted line mather purpose as well. It
indicates two levels of importance. We considered the paowva the dotted line to have
conceptual importance for our work, while the part below dio¢ted line only has exempili-
fying importance. In other words, this means that we condide pure MRS-model to be
fixed, while the sub-categories and node types presentéusineport is only considered as
examples, and they could therefore be exchanged with otitecategories and types as the
user sees fit.

4.2 Designing the documentation nodes 47

Internal
documentation

premise selects
Solution Description

T declines <T
Motivation Rationale Solution Description
Sub-category Sub-category

Sub-category

S bbb

Node types

Figure 4.3: The extended structure of the MRS-model. Above the doteedheZnMRS-model with
its three deliberative categories is presented. Below thiged line, sub-categories to
these deliberative categories as well as concrete nodestiypthe categories is placed.
Boxes represents categories (deliberative as well as atdgyories) and the black dots
represents node types.

In the rest of this section we will take a closer look at theeéhdeliberative categories, in
order to characterize the node types which could be placHtese categories. Furthermore
a number of concrete suggestion for node types has been nidse are presented and
described in detail in Appendix A on page 91. As mentionedehae only examples of

node type, and they are selected/presented to demonsiegpeinciples and usability of the

MRS-model.

The Elucidator 2 implementation does not allow the user ter dhe node types. In a fully
implemented version of the Elucidator it should be posdibie¢he development team using
the Elucidative environment to change and extend the ctsale types to fit their specific
documentation needs.

Sub-categories and node types of the Motivation category

All documentation nodes with a node type from the motivatiategory contains motivations

or incentives, that give occasion to a creation, reuse arghaf a system. These motivations
can describe facts from outside the system, that affectetaeldpment of the system, but also
facts based internally in the system, that affect the dg@retnt of other parts of the system.

In Figure 4.4 on the next page an example of a number of nodestgpd sub-categories
from the motivation category is presented. As it can be seeéhange requestub-category
has been made to express that the two node typpsovemenandBug reportboth can be
categorized as request for a change.

Another example of a node type in the motivation categoRaguirementDocumentation
nodes of this type will contain a description of a requiretrtbat specifies or restrains the
behavior of the design or implementation of the system. €arsbe can be seen as the infor-
mation that will typically go into a system definition wheringga Object-oriented Analysis
and Design method [Mathiassen et al., 1997].

48 Design

Internal
documentation

premise

Motivation Rationale

selects

Solution Description

declines

Requirement Change request

Improvement Bug report

Figure 4.4: An example of a number of node types and sub-categories lfi@maotivation category
of the MRS-model. Boxes represents categories (deliberaswvell as sub-categories)
and the black dots represents node types.

Section A.1 on page 91 contains a detailed description oftiteee motivation node types
mentioned above, and Figure A.1 on page 92 shows an consia@tepée of aRequirement
type documentation node.

Sub-categories and node types of the Rationale category

The purpose of a documentation nodes with a node type fromatienale category, is to
document the arguments that selects and/or declines a gg¢@f solutions. Documentation
nodes of one of the rationale node types furthermore tie tbvations together with se-
lected and/or declined solutions. This, as well as two exas@f concrete node types from
the rationale category, is shown in Figure 4.5. It should ted that both a category in the
MRS-model and a concrete node type is narRationale but that they are not considered
to be identical.

Internal
documentation

premise selects

Motivation Rationale

Solution Description

Rationale Change description

Figure 4.5: An example of two node types from the rationale categorye8wpresents deliberative
categories and the black dots represents node types.

A documentation node which has the node tjgaionale should contain a description of
the forces that affect the arguments, i.e., “what drivesous specific solution”. This will

typically be realized through a short description of the iraitons, that are relevant to the
decisions made. The documentation node should furtheraisoecontain a description and

4.2 Designing the documentation nodes 49

discussion of the selected and declined solutions. Howsiwere the actual solutions would
be described in a separate documentation node with a type tlie solution description
category, it should only contain a description of the prtipsrthat are important to the
decision made.

Finally, a rationale will often contain a somewhat subjeetiliscussion of the chosen and
declined solutions with both subjective and objective sssents of the consequences of the
choices made. Since this discussion is often subjectiveutidvbe an advantage to have a
special place in the rationale for this discussion, in otdedistinguish it from the rational
decisions. An example of a concrete instance of Ra¢ionalenode type is presented in
Figure A.2 on page 94 in the Appendix.

One of our hypothesizes states that the history of a piecefofare is important, and that
it is possible to document the history as a natural part ofdiumentation. To fulfill this
hypothesis we introduces ti@hange descriptionode type.

The description of changes contain the same elements asiendatation node of the Ratio-
nale type, i.e., a description of the forces, the solutiash@discussion of the choices made.
The difference between a rationale node type and a changeptem node type is that the
change description not only declines a set of alternatiigisms but also deprecates a set of
old solutions.

We believe that by giving the change description speciahétin in this way, we allow, the
reader to identify the history of a piece of software, whitelee same time make it more
naturally for the writer to document the rationales for tpedfic solution.

An example of a concrete instance of fikange descriptionode type is presented in Fig-
ure A.3 on page 95 in the Appendix, and Section A.1 on page Bfaots a detailed descrip-
tion of the two node types presented in this section.

Sub-categories and node types of the Solution descriptiomstegory

Documentation nodes with a node type from the Solution detsan category are all doc-
umentation nodes that contribute to a factual descriptadribe solutions that realizes the
developed system. The node types from the solution desnripategory can be further cat-
egorized in various ways dependent of the system that isdeberibed and the development
team using the documentation. In Figure 4.6 on the followpage a number of examples
of node types from the solution description category is sho#s it can be seen from the
figure, no suggestions for sub-categories to the solutiserg#ion category has be made,
since such a categorization dependents upon the develogezan using the Elucidative
environment as well as the system being documented.

The examples has been chosen to demonstrate the contehts addumentation nodes in
the solution description category. To further exemplifg tontents of the node types from
the solution description category, we here describe twhesix examples.

The first example is th®esign pattern instancaode type. The Design pattern instance
node type is used to document the usage of design pattenssiniportant to note that the

50 Design

Internal
documentation

Motivation Rationale Solution Description

-

) declines
Processj I ‘& Concept
Task

Aspect

Design pattern instance Entity implementation

Figure 4.6: An example of six different node types, that all are a parthef $olution description
category. Boxes represents deliberative categories aadlthck dots represents node
types.

documentation node documents an instance of a designrpéttbich classes are involved
in the instance of this pattern and so on), and not the desitiarp itself, since this is already
documented in the description of the design patterns,tbg)GOF-patterns” [Gamma et al.,
1995]

We consider the design patterns instance node type to betampsince it demonstrate the
ability of the Elucidative environment to document a patiarthe system, that is not obvious
visible in the source code.

An example of the usage of this node type could be to docunmentat Visitor Pattern is
used in the implementation of the Abstractor componentadadn our Elucidator tool. In
Figure A.5 on page 98 in the appendix, this is illustrated bgcrete instance of tH2esign

pattern instancenode type.

The second example of a node type from the solution desonimategory is th&€€oncept
node type. This node type is used to separate and descriligexisar concept which has
special meaning or importance for the rest of the documiemta# concept will typically be
a technical term from the problem domain of the program bengloped, but it could also
be a concept which needs clarification because one or mosdagers in the development
team is not familiar with it.

An example of the first type of concept could be a developmemitdoing a accounting
system. It would then be useful to have the conceptsitandcredit described, since soft-
ware engineers are not likely to know these in detail unlesg have developed accounting
software before.

Some might argue that a concept can not be categorized asteealescription. However,
we believe that it is a part of the solution description catggsince a concept can be seen
as a factual description of something that constitute tal#geription of the system.

An example of a concrete instance of lenceptnode type is presented in Figure A.4 on
page 97 in the Appendix, and Section A.1 on page 92 contairtaaled description of all
the six node types from the solution description category.

4.2 Designing the documentation nodes 51

4.2.2 Thematic catalogs

As previously described, the MRS-model enforce a delilneratategorization of the doc-
umentation, into three categories: Motivations, Ratieaand Solution descriptions. For
each of these categories a number of node types is specifiddic@umentation nodes are
considered to be instances of these node types. The diaéitbbe documentation into these
node types and categories says something about how the datation as a whole should
be structured in terms of deliberative categories and ngolest but it does not say anything
about how it should be physically and thematically représegnIn this section we take a
look at this problem.

The first thing to consider is how each documentation nodeldghoe stored. Inspired by

Java, and in order to secure flexibility when it comes to sgtire documentation entity to

persistent media, has lead us to state that one documenteaties equals one physical file
in the file system. The name of the files are decided by the guthtthey should be prefixed

with .edoc for easy recognition of the data type.

Next we turn to the problem of which structure to use whenrggithese file in the file
system. A solution would be to make three directories nametivdtions, Rationales and
Solutions and then save the files in these according to thete type. This is however not
an optimal solution for a number of reasons. First of allhé number of documentation
nodes are high, the directories will be “crowded” and it ved difficult for the writer to find
the documentation node he needs. Second, a division of thesnioto the three categories of
the MRS-model, is a bit crude. Often systems consists of dyeumf parts or components,
and it will typically be an advantage to separate the docuatem according to these parts
or components, in order to preserve the general view. Bindifferent development teams
may have different preferences for how they like their dioeg structure.

In order to solve these problems we introduces the notidh&hatic catalogsA thematic
catalog is considered a collection of documentation nodéfssseme common theme or sub-
ject. The thematic categories are created by the writer ance nested. They can be made
accordingly to some standard decided by the developmemt teséng the Elucidative envi-
ronment or be just as the writer sees it fit. For example then#te categorization could
follow the logical structure of the system such as Abstna&@enerator and Data model. Fi-
nally, it could be a possibility to, e.g., use one or more efthtegorizations presented in the
literature, such as the one presented by COT [Sanvad efab)] &r Sametinger [Sametinger,
1994].

As we have chosen to implement the documentation nodes a&scphfiles, the thematic
categorization is implemented through the use of direeson the file system. By using this
implementation the name of a directory becomes the namesdhthmatic category, and it is
possible to create nested thematic catalogs.

Having introduced the notion of thematic catalogs, we nowetievo ways of structuring our
documentation. Using these two methods together resulteistructuring of the documen-
tation nodes according to two axes. This is illustrated guFe 4.7 on the following page.
On one of the axe we have a physical and thematic structubeafdcumentation, while the
other axe presents a deliberative categorization of themeatation nodes.

52 Design

Deliberative
categorization Motivations Rationales Solution descriptions
Thematic
categorization
Theme A ood g gogod
Theme A.1 0 oo ogo
Theme A.2 O 0 oo
Theme B O] oo
Theme B.1 oo oo ogoo
Theme B.2 O oo oo
Theme C O] O
Theme C.1 ood gog gooogogg
Theme C.2 0 O ooog

Figure 4.7: The overall structure of the documentation. The documigmtas placed in documen-
tation nodes, which is categorized according to the thrdéddetive categories of the
MRS-model. Each documentation node (the squares) is repiegsas a separate file,
which is saved into a number of, possible nested, thematéyoges, represented by
directories in the file system.

4.2.3 The internal structure of the documentation nodes

In the previous section we have discussed a categorizatidoaumentation nodes in two
dimensions: the deliberative categories and the thematatagys. These categorize the doc-
umentation at node level by the nature of the contents of toeientation nodes. In the
following section we focus on how the structure internaltythe documentation nodes is
designed.

This internal structure has a twofold purpose. First, ipsahe writer to structure his docu-
mentation. Second, it makes the documentation easierdcsieee it is structured uniformly,
and with a focus on categorizing the internal structure.

As discussed in the analysis, a documentation node is divide two main parts: a fixed
part and a free part. These are illustrated in Figure 4.8 em#xt page. The fixed part, can
be seen as a header for the documentation node, and theceftrens information that is
applicable to all documentation nodes, regardless of tiwale type. Since the information of
the fixed part is applicable to all node types, a common siraaif this part can be created.
The free part, can be seen as the body of the documentatia) and it therefore contains
the actual documentation in the node. The structure of tisichentation is dependent upon
the node type, and a common structure for all node types eaaftire not be created. Thus,
a separate structure for each of the node types will be ateate

The internal structure of the documentation nodes is implaed by the EDoc language.
This is done by introducing a number of new tags to the EDoguage, which makes the
language able to express both the fixed and the free part otantentation node. The
grammar for EDoc language can be seen in Appendix B on page 101

In order to make it easier for the writer to create a docunterianode, an number of an-
notated templates, each expressing one of the node typefydizermore been created. A
template can be seen as an empty documentation node, whtdireoonly the EDoc tags

4.2 Designing the documentation nodes 53

Topic:
Abstract:

Keywords: The fixed part

Author:

MRS-model node type

The free part

Figure 4.8: An illustration of the two main parts of a documentation no@lee figure is the same as
Figure 3.3 on page 28.

needed to realize the node. Whenever the writer wants to malesv documentation node,
he selects one of these templates from within the editors fiésults in a new editor buffer,
containing a copy of the template. It is then the job of thdaawvrio fill out the template with
the documentation to be placed in the node. The templatesamated with guidelines that
describes the purpose of the specific tags. These guideeasplemented as comments
above each tag in the templates. This is done in order to helptiter fill out the templates.
The templates for the different node types can be seen in#gpp€& on page 109.

In the rest of this section we will take a closer look at theteats and templates for the fixed
and the free part respectively.

Structuring the fixed part of the nodes

As mentioned above the fixed part of the documentation nodéeaseen as a header for
the node. It contains a number of elements which is applkctaball documentation nodes,
regardless of their node type. Below, a list of elements @ fiked part in the Elucida-
tor 2 is presented. These elements should be seen as oussaggdor reasonable meta-
information about the entire node, but other elements magpipdicable as well.

Topic The topic should introduce the thematic contents of the nddhe topic is inspired
by the STOP method [Tracey et al., 1999], which argues‘ih& important to rec-
ognize that the topic title must characterize and introdtloe thematic contents [of
the documentation node], not merely categorize (label}tiieene body: The STOP
method furthermore states thdopic titles are more likely to be representative and
topically faithful if they are (1) constructed as senten@gients and (2) rewritten
after composition of the theme [the documentation node]”

Abstract The abstract is like the topic inspired by the STOP methodshttuld strive to
give a short summary of the contents of the node. It shoultboothe most important
words or phrases of the node, these either being the maimagis, important proper-
ties of a solution or special conditions for a motivationgkneral the abstract should
be about 3-5 lines of text. As with the topic the abstractkslyi to be representative
and topically faithful if it is written after the actual dogientation node is written.

54 Design

Keywords This is a list of important keywords that relates to the catgeof the node.
The writer should strive to use keywords that are spelledoamily throughout the
documentation, as the keywords are used for the creatiompifait links, as we will
describe in Section 4.3.4 on page 59.

Status The status element of the fixed part, is a marking of the sfatute node. Possible
values are:new in progressor finished The status is used to make it easier for the
writer to manage loose ends in the documentation, sincertteie it easier to find
these, e.g., by looking for documentation node with theustaet to new. Besides this,
it also give the reader information about the reliabilitytioé contents of the node.

Author The name of the author. This can both be the name of the otiguthor or the
name of the person who last edited it. In the Elucidator 2 toelauthor is set to the
last person who edited it.

Created The time of creation of the node.

Updated The time of the last update of the node.

As an example of the fixed part of a documentation node, censidjure 4.9. On the left
side of the figure (Figure 4.9(a)) the template for the coratf the fixed part is show (the
annotations has been removed for the sake of simplicity).tl@rright side of the figure
(Figure 4.9(b)) the result of a filled out fixed part for a do@ntation node with the node
type Change descriptioris shown as it is presented in the browser.

<head>
<topic>
</topic>

5<abstract>
<labstract>

<status><new/></status>
10 <keywords><kw></kw></keywords>
<author></author>

<created></created>

15
<last—updated></last—updated> Forces
</head>

Az e had mame nrahlame neina the Infarmiv INR™ driviar and the develnnmeant har

(@) The template for the (b) An example of how the fixed part is presented in the browser
fixed part.

Figure 4.9: An example of both the template and the final result of the feedof a documentation
node.

4.3 Designing the links 55

Structuring the free part of the nodes

The second main part of a documentation node is the free Plaig.part contains the actual
textual contents of the node. In contrast to the fixed pargaromon structure exist for the
free part. Instead the structure of this part depend on thie gpe of the documentation
node. This means that a unique structure and template hashesed for each of the node
types. The structure of the node types can be seen in the gaafonthe EDoc language as
presented in Appendix B, while Appendix C contains the teatgd of all the node types.

An example of the structure and the corresponding annotataeglate used to realize the
Rationale node type is furthermore presented in Figure.4.10

<rationale>
<!——The forces section should contain a short description of the

<!——driving forces and motivation for this rationale . The desgtion —>
<!—— should contain a number of dlinks, role:premise to motivati——>
5 <!l—— nodes, describing the motivations in detail , and/or a numbe>
<!—— slinks , to special parts of the system that motivates this>
<!——rationale . Finally the section should contain argumenoati for —>
<!——the selected and declined solutions—>
<forces>
10
</forces>
<!—— The solution part presents the selected solution . If altative ——>
<!——and/or declined solutions exists they are mentioned to. sThiart——>
15 <!—— will typically contain dlinks, role:selects and role: ddok to——>
<!—— detailed documentation of the selected and/or decliree>
<!—— solutions .——>

<solution>
20 </solution>

<!—— A discussion of consequences of the select/declined soosi——>
<!——including personal subjective assessments->
<discussiomn>
25
</discussiomn>
</rationale>

Figure 4.10: The annotated template for the Rationale node type.

It should be noted that our work should not be considered@ystn how to make an ideal
internal structure of the documentation nodes. The straabfithe templates for the node
types should therefore only be considered examples oftsheic In fact we believe that
no perfect structure for these node types can be made. Thetws® should instead be
refined and changed in continued iterations, by the devetopteam using the Elucidative
environment, in order to suite their needs.

4.3 Designing the links

Having described how the documentation nodes are desigmeaow focus our attention on
the relationships between these nodes. In Section 3.5.3@® 20 of the Analysis chapter,

56 Design

it was described that we need links in order to express tlaioalships between documen-
tation nodes in the MRS-model. In this section we describ& ks are designed and
implemented in the Elucidator 2 tool.

The links used in the Elucidator 2 can be described accordirigur characteristics: their
type their role, the type of structure they impose on the documentasind thecreation
methodo create the link. In the following sections we will discessh of these characteris-
tics in detail. We realize that, as a first impression, theattaristics of the links may seem
overwhelming and complicate. We do however, not believgtthbe the case, and it will be
explained why in the final section which contains a discussibhow these characteristics
apply to the links.

4.3.1 Linktypes

As the first characteristic of the links used in the Elucid&dool, every link has a type.
Four types of links exist, corresponding to the four typedatfa which the link can have as
its destination.

In the following a brief description of the four link types Wbe presented.

Links to documentation: Links to documentation has both the source and destinatien a
chor in adocumentation node or some part of a documentatide,rand thereby links
two documentation nodes, or parts of, together.

Links to source code: A link to source code has its source anchor some place in a-docu
mentation node or the source code, while the destinatioharis always a source
code entity, such as a class, a method or a field. This meakss tiinsource code,
relates a documentation node or source code entity to aesgcode node.

Links to external entities: A link to an external entity has, as the links to documentgtio
its source anchor in a documentation node. The destinafitredink is some entity
which is considered external to the internal documentatfm example could be an
object-oriented analysis and design document. The désimeaf a link to an external
entity is always expressed as an URL.

Links to views: Links to views has their source anchor in either a documamtat a source
code node. The destination of the link is a view. Views willdsalt with in detail in
Section 4.4 on page 62.

As it can be seen from the descriptions above the type ofrtkechn be derived, based on the
type of data the link points at. We have however chosen toesgpeach link type explicitly
by four different names. This results in the following thited tags being used in the EDoc
language:<diink >, <slink > and<xlink >. Besides these three types we also have the
<vlink > type. This link type is not present in the EDoc language, ardtherefore not be
inserted by the writer. Instead it is only used by the systerréate implicit links to views.
The notion of implicit links will be dealt with later in thisestion. We have chosen to write

4.3 Designing the links 57

the name of this link as a tags even though it is not presehifeDoc language in order to
have an uniform appearance for the four link types. We redliat naming the links types
explicitly means that we have redundancy in the system. Kewehe choice was made
to provide the writer with a practical way of distinguishittye different types of links. If

we had chosen to not give each link type an explicit name, tiitermwould instead have to
distinguish the type of the links by looking at the destioatf the link, and then derive the
type from this information. Thus, we believe that by giviragh link type a explicit name it
is easier for writer to use them when producing documentatio

4.3.2 Roles on links

Having discussed the four types of links we now move on torlesthe roles on these links.
Arole on alinkis an attribute on the link, which is used to g3 the nature of a relationship
between two nodes (this can be both documentation and socodeenodes). Furthermore, a
link can only have one role.

The links in the Elucidator 2 tools are considered to be deecHowever, when two doc-
umentation nodes are to be linked together, it is up to theewto decide which of the two
nodes should contain the source anchor of the link, and wdholuld contain the destination
anchor. This scenario demands for the names of the rolessprbmetrical [Conklin, 1987].
This is best illustrated by an example: A writer wants to eggrthat some part of a docu-
mentation node (A) is described by another node (B). He can fitace the anchors of the
link in two ways: He can create a lifkom B to Awith the roledescribesor he can make a
link from A to Bwith the roledescribed-byBoth solutions are allowed, and the result is that
the name of the role is symmetric, namely describes/desiiily. For the sake of simplicity
the roles are normally mentioned with only one of the two syatrio names.

Link roles for maintaining the MRS-model

A subset of the link roles used in the Elucidator 2 tool hasexish meaning since these roles
are used tonaintain the MRS-modeThese roles, which are considered tddeg roles are:
Premise SelectsDeclines Introducesand Deprecates By maintaining the MRS-model, is
meant that links with these roles ties the three categofid®eedVIRS-model together.

To understand how these five key roles are used to maintaM&t&-model, we first describe
them.

Premise/Premise-for: The Premiserole is placed on links between two documentation
nodes of the Motivation and Rationale categories, and id isespecify that some
documentation node serves as a premise to another docuioemade.

Selects/Selected-byThe Selectsole is placed on links between two documentation nodes
of the Rationale and Solution description categories, ansed to express that, based
on some argument, the rationale selects a certain solution.

58 Design

Declines/Declined-by: As the name implies, thBeclinesrole, does the opposite of the
Selects role, namely, expressed that a rationale declisekition.

Introduces/Introduced-by: This role is used when the writer wants to express the history
of the documentation/source code. Tih&oducesrole is used to express that some
documentation node is introduced somewhere in the histioityeoprogram, that is, it
was not present in the initial version of the program. Theoidtices role will be placed
on links going from a change description node to a solutiatdption node.

Deprecated/Deprecated-by:This is the final of the five key roles used to maintain the
MRS-model. As with the Select/Decline roles the IntroddiDeprecates roles are
also opposites. ThBeprecatesole is used to express that, due to some change, the
destination node of the link is now deprecated, and theeefiot used anymore. The
destination is not simply deleted, since this would makemipassible to track the
history of the system.

The description of the five roles revealed that they can b#héuarcategorized, since the
Premiserole is used to express relationships between Motivatiomts Rationales, while
the remaining four key roles are all used to express relaligps between Rationales and
Solution descriptions. This is illustrated in Figure 4.11.

Documentation

/ ‘ \
L . Declines . i
Motivation Rationale Introduces Solution Description
Deprecates,

Figure 4.11: The usage of the five key roles in the Elucidator 2. The Preroisds used to express
relationships between Motivations and Rationales, whiéeftur other roles are used
to express different relationships between the Rationaléstlae Solution descriptions.

Other link roles

Besides the roles used to maintain the MRS-model, a numbethef roles can be used.
Common for these roles are that they are not essential teedization of the MRS-model,

but they can be useful to express certain relationshipsdeivthe nodes. The number of
these roles are not finite. The roles presented in this regarttherefore be considered
examples of roles which the authors of this report found wisef

In this section we would like to present two of these roleschihwe find to be of a so general
nature that they will be useful in any Elucidative envirommeTlhe other examples of roles
of this category is presented in Appendix A.2 on page 99.

Describes/Described-by: The Describesole can be used in almost any case. The intended
usage of the role is to be able to specify that something eeid description of

4.3 Designing the links 59

something else, or that something is described elsewharéhdfmore it can be noted
that this role corresponds to the strong link found in thecilator 1 tool [Christensen
et al., 2000], and it is often used on links to the source code.

Mentions/Mentioned-by: The Mentionsrole is a somewhat weaker version of the De-
scribes role. The Mentions role should be used to point théeein a direction which
may shed some additional light to a subject, but which is speeially necessary in
order to understand the documentation being read. The Descrole on the other
hand, should be used to link to documentation which is ingmtrtor the understand-
ing of the documentation being read. The mentions role islairto the wear link
found in the Elucidator 1 tool [Christensen et al., 2000].

Containment/Contained-in: Finally theContainmentole is used to express that some en-
tity, that be both documentation and source code entisespmtained within another
entity. This roles is normally not used by the writer, butteesl by the system to, e.g.,
express that some documentation node is contained in disghematic catalog.

4.3.3 Structure imposed on the documentation by links

When creating links in the documentation, these links inegasstructure on the documen-
tation. This structure can be either hierarchical or nagrdnichical, corresponding to the
organizationalandreferentialcategories presented in Section 3.5.3 on page 29 of the-analy
Sis.

In the Elucidator 2, organizational links is specificallyedsn the hierarchical index view, to
express the containment relationship between two thematalogs or between a thematic
catalog and a documentation node. The hierarchical index will be described in detail
in Section 4.4.4 on page 68. The referential links on therdtlaad, will typically be used
throughout the whole documentation.

4.3.4 Creation method

The final characterization of links is the method used toterdee links. Two methods exists:
The links can be eithexplicitly or implicitly created. While Section 3.5.3 on page 29 of the
analysis, contains a detailed description and discussiocexplicitly and implicitly created
links, this section take a look at how these are realizederBlucidator 2.

Explicitly creation of links

To create a link explicitly means that the writer creates anmally. Specifically, explicitly
created links are links that are inserted directly into tbeuimentation nodes, with the help
of the editor. To do this the writer uses the three links tagsided by the EDoc language:
<dlink >, <slink >and<xlink > tolink to documentation, source code and external entities
respectively. The start and end tags are placed around@irefiext in the documentation

60 Design

node, and the destination of the explicitly created linkgsafied as an attribute on the link.
In Figure 4.12 an example of the usage of the explicitly @edinks is presented.

In this example we first make a link to a class named

<slink href="elucidator.datamodel.DBBundleController ">DBBundleController
</slink>. Next we make a link to a documentation node which ar gues
<dlink href="elucidator-2.0/datamodel/need_for_views .edoc">why we need
views</dlink> in the Elucidator 2 tool. Finally we make a lin k to the
<xlink href="http://dopu.cs.auc.dk">home page of the DOP U project</xlink>.

Figure 4.12: Example of the usage of explicitly created links.

Since the names of the destinations of the explicitly cbétiks, tend to be rather long, it
can be a tedious job to create these explicit links. In ordeetluce this problem, the editor
provides support to help the writer insert links. This suppmimplemented in the Elucidator
1 and will is be present in Elucidator 2. The functionalityusthermore described in greater
detail in Section 4.1.3 on page 41.

Implicitly creation of links

Links in the Elucidator which is not explicitly expressed tine writer in the EDoc files is
implicitly created by the Elucidator tool. They are creabgdthe Elucidator tool in order to
realize the different navigation facilities in the browser

Examples of implicit links could be links to documentatioodes from views or links to a
view from locations in the documentation nodes, e.g., framtbpic of a node to a Context
View for the node.

Another, and more interesting, usage of implicit links isis® keywords and terms to present
related information to the reader. The writer can specifisdf keywords in the fixed part
of the documentation node and can furthermore mark-up wertsthe <term > tag in the
free part of the documentation node to indicate that thesdswvmas special meaning.

The Elucidator 2 tool places implicit links from these keya® and terms to a Subject In-
dex View (the Subject Index Views will be dealt with in detainSection 4.4.4 on page 68)
which list documentation nodes that presumably contailada@ information about the ac-
tual keyword or term. The related documentation nodes isddoy matching the textual
contents of a keyword or term to the topic and abstract of dwntation nodes. This makes
it, e.g., possible to mark-up the word “Abstraction” as artend thereby implicitly link to a
Concept node explaining the Abstraction concept.

4.3.5 Discussion
Having described the four characteristics of the links we harn our attention to how these

apply to the links. The four characteristics along with thmEssible values is summarized in
Table 4.1 on the facing page.

4.3 Designing the links 61

| Characteristic | Possible values |

Type <dlink >, <slink >, <xlink > and<vlink >
Role Premise, Selects, Declines, Introduces, Deprecates,ribesg
Mentions. . .

Imposed structure Organizational and referential
Creation method | Explicitly and implicitly

Table 4.1: Summary of the four characteristics of the links in the Elator 2 tool.

The first thing to notice is that all links must have exactlyeomlue from each of the four
characteristics attached to it. This means that every laskdtype and a role, it implies a
structure on the documentation, and it is either createtatty or implicitly.

We illustrate this with a couple of examples:

First consider a situation where the writer wants to expteas some documentation node
(A) from the Motivation category acts as the premise of sotherdocumentation node (B)
from the Rationale category. The Writer will then make anliexgdink from A to B, with the
type set tocdlink >, the role will bePremiseand the link will impose a referential structure
on the documentation.

Next consider another situation where the writer has justted a new documentation node
(A), which has been placed in a catalog (B). An implicit linklwhen be created between
A and B, the type will be<dlink >, the role will beContainmentaind the link will impose a
organizational structure on the documentation.

It should be noted that not all combinations of the valuesheffour characteristics makes
sense. For example, the writer is not allowed to make an @kfihk to a view, that is
making a explicit link with the type set taviink > (although this feature might be possible
in a future version of the tool). Another example could be thanplicit link with the type
set to<xlink > cannot be made. Recall thakalink > is a link to some entity which is
considered external to the internal documentation, it ikarot possible for the Elucidator
to be able to create links to something outside and unknowimetd.

One might believe that it is very complicated and confusimgtiie writer to create a link,
since he will have to choose values from the four differeratrabteristics. We do not believe
this to be the case. First of all, one should notice that tlogcehof whether to create the link
explicitly or implicitly is not one made by the writer. Seddy, the writer will neither have
to choose between making a organizational or referentid] Bince this is implicitly given
depending on the link he creates. It should furthermore bedithat explicitly created links
in almost any situation will be referential. Finally, we dotrbelieve that choosing the type
of the link is complicated or confusing for the writer, sirtbés is just a matter of considering
the type of the data he is linking to.

This leaves only one real choice: the role of the link. Somp ban be found while making
this choice as well. First of all the writer knows that onlyetRremise roles can be used
between Motivations and Rationales. Similar, he knowshleadnly has to choose between

62 Design

four different roles when making links between Rationaled &olution descriptions. Fi-
nally, the rest of the proposed link roles are just examptesiggestions so the writer is free
to neglect these if he find using to many roles confusing.

4.4 Navigation

As mentioned in Section 3.5.5 on page 32 of the analysis, btleegroblems by using a
hypertext system is that you tend to get disoriented whilagug, and often end up miss-
ing the context of the documentation you are presently repdiAs described, our main
medicine against this problem is to provide navigationlfées to the reader. In this section
we describe how the navigation facilities are designed arpd@mented in the Elucidator 2.

In a hypertext system, such as the Elucidator, the docurientaay be read at different

levels. One reader may be reading and jumping between spdoumentation nodes at a
detailed level, while another reader may try to survey thelemetwork at a higher level in

search of relevant information. The problems concernisguientation and lack of context
are present at all these levels, but a divergence of needg&éetreaders at different levels
exists.

Readers at one of the lower levels will typically need suppar recognizing element in
the documentation nodes, such as links or special parteafdbde. Such a reader will also
need to be able to find his navigation possibilities. Readeeshigher level also have the
need for understanding the contents of a documentation aodeo identify his navigation
possibilities. Besides this he also tries to comprehenatiwe network and therefore needs
assistance to navigate and search through all the docutiweréad source code.

In order to deal with these problems, we have divided thegesadavigation needs into three
levels:Local, NeighborhoodndGlobal. For each of these levels we present a suggestion for

a method of realization. The three levels and the suggestdization methods is illustrated
in Figure 4.13.

% Global Index views
=
o
‘g Neighbourhood Context views
=
©
z N
Local Navigation menu
Category Realization method

Figure 4.13: An illustration of the three navigation levels, and theiggasted realization methods.

Local navigation, is navigation internally in a documeratnode, or between two doc-
umentation nodes. The level of navigation will be realizecbtigh the navigation menu.

4.4 Navigation 63

Neighborhood navigation is navigation between a docuntiemtaode and a number of doc-
umentation nodes, which are all related directly to the doentation node in question. This
level of navigation will be realized though the Context vigwnally, Global navigation, is
navigation in the whole network of documentation nodes,wahith will be realized though
the Index views.

Common for all these realization methods are that they ukasoThe next section will
therefore describe how these are used in the design of th@dator 2. Following this,
the rest of the section will describe these three levels hait suggestion for a realization
method in detail.

4.4.1 Coloring

Colors are used throughout the presentation of the intelmahmentation in the browser for
two main purposes: To let the reader easily distinguish tfferdnt types of links, and to
heighten the awareness of the MRS-model.

First we consider the purposes of using colors. Figure 4abfvdwo browser screen shots
containing internal documentation. On the first screenyfEgt.14(a)), the same color is
used on all the links. On the second screen (Figure 4.14f®)jnks are colored according
to their type. The types used, in the figure and throughouEtheidator 2 are:<slink >:
red, <dlink >: blue,<xlink >: green anckvlink >: black. As it can be seen, the usage of
the different colors on the links, makes it easy to distisguetween, e.g., links to docu-
mentation and links to source code.

Eorces Eorces

(a) Node with the same color (b) Node with different color
on all links on links

Figure 4.14: lllustration of the usage of colors as visual cues. (a) A natiech is rendered with only
one color for links. (b) The same node, but with links rendesgth different colors
dependent on their type.

64 Design

The second purpose for using colors was to heighten the aesseof the MRS-model.
This is realized by using a different color for each of theethcategories in the MRS-model:
motivations usesrange rationale uselkght blueand solution descriptions usgeeen These
category colorsare applied in a number of ways. The most notable being thiegoacnd of
the header (the fixed part) of the documentation node, butdhes are also used, e.g., in
the navigation menu, as we shall see in the next section.

4.4.2 Local navigation

The first of the three levels of navigation is Local navigati®ur suggestion for a realiza-
tion of navigation at this level is theavigation menu The navigation menu is a context
dependent menu which is designed to help the reader deddewfants to follow a link or
not. The menu is shown when activating a link, for which iteagible to view the contents
of the destination of the link. This destination can both beudmentation and source code,
which means that the navigation menu is applied botkdiink > and<slink >.

The navigation menu has two parts. The first part containsnabeu of possible actions to
perform, while the second part contains information of tlesttohation of the activated link.
An example of the navigation menu applied tadink > is shown in Figure 4.15.

As we had many groblems using the Informix JOBC driver an

within one week we de tabase from the war

less stable MySQl database. MySGL was chod

access to experience the a JDBC connection to MySGQL. This i B
the Elucidator project, where Claus Myhus Christensen had wri

As we had many View Bug report in this window
within one weel View Bug report in opposite window

less stable hMy$ View contextview for this Bug report

access to exper Link role: premise
e changed the DB the Elucidator pr Type: Bug report .
encapstiat Topic: It was not possible to make a
ver to the M: < connection ta the Infarmix wia JDBC
- gl Abstract: We describe some of the problems,

we had when trdng e cennedt to the &

[l

lfhg

Since our experience with the MySQL driver told us, that it was Ir
irectly in the s : UAL, we alsai
rd. Thi 0 he setin the con

by Intormix database througeh the JDBC We
change the load iaq o ditterent Infarmx JOBG divers The
Since our experi proplem seemed to be that we sither na.d the. ne
username and p WTENG driver oF Mal we Was unable to make st
dbl ar gonnection Wwaork at the aenver side, tr
st ATCIGUELITRY S L T

=5

Figure 4.15: Activation of the Navigation menu. When the reader actsvatdink, the navigation
menu pops up directly upon the link. It contains a list of fldesactions to perform,
and a short summary of the contents of the destination notleddctivated link.

The first part of the navigation menu

In earlier versions of the elucidative environment, therfeasetup in the browser dictated
the documentation to be shown in the left frame and the sarode in the right frame. As
described in the Analysis chapter, we wish to remove thigsicti®n and thereby let it be up
to the reader to decide where he wishes to view the documem&atd source code.

4.4 Navigation 65

This is realized through the first part of the navigation mesiace this part lets the reader
chose in which frame he wants to have the destination of thieased link shown. This
means that the first part of the navigation menu containg aflisplicit links for the reader
to chose from. The selection of links depend on the type ofatttevated link. For links
to documentation three possibilities exists: view desitimain the current window, view
destination in the opposite window or show the context viemtlie entity. This is shown as
the upper part of the navigation menu presented in Figurg dnlthe preceding page, which
shows a navigation menu for a link which destination is a Bagprt documentation node.

Similar actions is presented for source code entities, tuas the extra feature of allow-
ing direct access to the interface documentation for theiBpentity. For Java this means
linking to JavaDoc generated pages. This provides a dimgbling to the interface docu-
mentation and therefore provides a utilization of the in&mdocumentation together with
JavaDoc.

The second part of the navigation menu

When choosing whether to follow a link or not, informatioroaibthe destination of the link

may prove valuable. In this way, the reader has some infoomatbout the contents of the
destination, and may therefore be able to make a more quaéisessment of whether to
follow the link or not. This is the purpose of the second p&the navigation menu.

For links to documentation, the navigation menu shows th#erngpe, the topic and the
abstract of the documentation node in which the entity kihteeis contained. It furthermore
shows the role of the link. For links to source code the roléheflink, as well as the type and
name of the entity linked to, is shown. In order to improvedhareness of the MRS-model,
the background of the navigation menus placed on links tachentation, is furthermore
set with respect to the category color of the destinatiorenddhis can be see in Figure 4.15
on the facing page, where the color of the navigation menuadage since it describes a
motivation.

Implementation

As a technical note, the navigation menu is realized by udymgmic html (DHTML). The
menu is displayed by a JavaScript function that is invoke@rmwblicking on a link. The
function dynamically retrieves the contents for the memunfithe Generator, based on the
destination anchor, and displays the result in a layer ofdpe main html-document.

This implementation of the navigation menu has the notdwaronsequence that the choice
of browser is limited to only support Netscape Communicaldre navigation menu could
be implemented to also support Internet Explorer, but sineemplementation of Elucidator
2 is done as proof of concept, this was not prioritized.

66 Design

4.4.3 Neighborhood navigation

The second of the three levels of navigation is neighborhwxdgation. In order to realize
this level of navigation we introduces tk®ntext view

The purpose of the context view is to provide the reader wifbrmation on the context
concerning a specific documentation or source code entityy as a documentation node or
a class in the source code. Therefore a context view apmiasdiocumentation or source
code entity in the hypertext network. A context view dis@ay selection of information
about the links from and to the entity applied on. These liatesalso called the outgoing
and incoming links. It can therefore, e.g., be used to findctvimotivations nodes acts as
premise for a specific rationale node. A conceptual drawirth® context view is shown in
figure 4.16.

| | ? ? L~y
2?2 X —— 7?7,

Figure 4.16: Conceptual drawing of the context view. The context vieyjdied on a specific entity
(X), which is used as a base to find and display all the relatigps held between this
entity and other entities in the network.

Two different kind of Context Views exists — one for docunaidn and one for source
code.

Context view for documentation

The context view for documentation is implemented in a s&ggawindow. This window

contains two panels, one for outgoing links, and one formmicg links. The reader is then
able to switch back and forth between these two panels. AescsBot showing a context
view for documentation with its two panels is shown in Figdrg7 on the facing page.

Outgoing links contain links to both source code and othezudeentation entities (Fig-
ure 4.17(b) on the next page), while incoming links showsclvlsiocumentation entities link
to the entity (Figure 4.17(a) on the facing page). Both the outgoing andriting links is
presented in a table, with one outgoing or incoming linksacterow. For each link the
following information is presented: the role of the link, iamplicit link to the location where
the link is placed, and an implicit link to the entity in whitte link is contained (typically a
documentation node or part of a documentation node).

1Source code does not contain links to documentation — hemseurce code links is shown in incoming
links for documentation

4.4 Navigation 67

S Netacage: Flosomizdlion | Soo)| [l 565
]
ContextView for: ContextView for:
It was not possible to make a It was not possible to make a
tion to the Inf iX via JDBC tion to the Inf iX via JDBC
hel hel
Outgoing links [incoming ks] [outgotng tinks] Incoming links
ing links to d i QOutgoing links to documentation:
Origin: Link role: {Destination: Crigin: Link role: iDestination:
The database is premise [t was not possible The setup i .The bash script that sets my
moved to MySQL to make a CLASSPATH
because of connection to the N
problems with Informix via JOBC
Informix JOBC QOutgoing links to source code:
It was not i The bash script that Origin Uink role: Destination
possible to make sets my 3 T o
a connection to CLASSPATH | conoermirg descrlbhe
the Informix via The setup i L
bt # The setup describ #
= T P |E

(a) The incoming links panel (b) The outgoing links panel

Figure 4.17: A context view for a documentation node. (a) shows a list tifieéswhich link to this
node. (b) show entities which this node links to.

A context view for documentation can be shown for all typed@fumentation entities. This
means everything from catalogs, documentation nodes itesnnside these nodes. When
a context view is shown it not only presents the outgoing aedming links for the entity
it is applied on. It also presents the outgoing and incomimigl for all the entities inside
the entity the context view is applied on. Thus when showiatgoing links in the context
view for a catalog the list of links is found by recursivelyasehing for outgoing links in the
documentation nodes inside the catalog. Figure 4.181idtest the process.

Figure 4.18: A context view applied on an entity is considered recurgiwelnature. The context
view is applied to a specific entity (X) which it then used aasidito find outgoing and
incoming links to and from X but also to and from X’s childréfy (X5)

68 Design

Context view for source code

The context view for source code is like the context view focumentation implemented
in a separate window, with a number of panels. Instead of ave[s, the context view for

source code has three panels, and the contents of thesdfarerdithan those of the context
view for documentation.

Figure 4.19 shows these three panels. The first panel shoves wbcumentation entities

links to the selected source entity, thus presenting aflishere the selected source entity is
documented (Figure 4.19(a)). The two other panels showasigakhips in the source code.
One panel shows which source code entities the selectety est@s, e.g., which fields is

defined in a class (Figure 4.19(c)), while the other showslvbither source code entities
uses the selected entity, e.g., which methods instanaatésss (Figure 4.19(b)).

ocitetecepes SoureeCotestibion | 00 ©0 | [ociNetsospesSouncelontestienn 0 © 0@ | |.cjMNekscepes SouvcsConbexlisu 802
I &
ContextView for: ContextVie: ContextView for:
class DBHandler class DE dler class DEHandler
helj help help

[Documentation] Using Used by Documentation [Using] Used by Documentation Using [Used by]
Links from documentation: Using Used by

Origin: Link role: ind iSource symhbal: iLocation: Kind: Source symbol: {Location:
We need to retieve a set of i
parameters to set up the stregsystem
The database is moved to MySQL introduces
because of problems with Informix

containment
package ish
creation
constructor
methad
method

i

How we wrap all SQL in describes
the DBHandler using JOBC
How we wrap all SQL statements in describes
the DBHandler using JDBC

method
returntype
method

(a) The documentation panel (b) The using panel (c) The used by panel

Figure 4.19: The context view for the source code eniBHandler . (a) shows documentation enti-
ties which link to thedBHandler . (b) shows the source entities using Handler .
(c) shows the source entities used bymBHandler .

4.4.4 Global navigation

The final level of navigation is global navigation. This Ie@&navigation is realized using

Index viewsAll of these views are conceptually like normal table of monis and indexes in
text files.

The purpose of the index views is to provide the reader witlraey of both the documenta-
tion and the source code. Therefore the index view applitise¢avhole hypertext network.
As the name implies, the presentation of the view has the fafran index, which means
that it is presented as a list of implicit links to themati¢adags and nodes. A number of
different index views could be imagined. We have chosen sigtheand implement three: the
hierarchic index viewtheentity index viewand thesubject index viewT he hierarchic index

4.4 Navigation 69

view can be compared to a table of contents and the subjeex widw is comparable to a
normal subject index. The three views will be described iradien the rest of this section.

Hierarchic Index Views

Both the documentation and source code is physically organin a hierarchic manner. The
documentation nodes is stored in, possible nested, thecatalogs, while the source code
is organized in Java packages. The purpose ohtaerchic index views to present this
organization to the reader, while at the same time allowimg to navigate it. Since the
documentation and source code is organized in separai@thérs, separate index views
are applied to them.

The two hierarchical index views is constructed by follogrithe implicit containment links.
This is illustrated in Figure 4.20. For the documentatiois thheans that the hierarchical
index view starts by displaying a list of implicit links tolahe thematic catalogs in the
project. By activating one of these links, the reader cavetrse downward into the catalogs
and show their contents, which will be documentation nodes@ossible nested thematic
catalogs. When viewing the contents of a thematic catalegdpic, abstract and node type
is shown for the documentation nodes type, as well as a iihpiik to the documentation
node in question. Finally, the navigation menu presente8dation 4.4.2 on page 64, is
available on all the implicit links in the view.

The hierarchic view for the source code is similar to the esponding view for documenta-
tion. Instead of thematic catalogs and documentation naiddww all packages and classes
which can also be traversed to browse their contents.

L]
—]
—]

containment

containment

containment

—]
-]

Figure 4.20: A hierarchic index view is used to browse the hierarchic ctiee applied to both the
documentation and source code, by the thematic catalogpackhges respectively.

The two hierarchic views is used as the default view when daeler starts to browse a
project. This setup is shown by a screen shot in Figure 4.2h®next page.

70 Design

090
Help.

A
Verticall [Horizontal] [Reset] [Status] [Help J

ion views: [All catalogs] [D Index] [Subject Index]

o e
Source code views: [All packages] [Source Index] [e=as e ‘i“},

All catalogs All packages
[help] Ihelp]

streq [package]

streq.utils [package]

stregitasks [Catalog]
stregitheDataBase [Catalog |
stregiutilities [Catalog]

= [| e

Figure 4.21: The hierarchical index views of documentation (the leftrfed and source code (the

right frame). Both views has implicit links which can be usetraverse further down
into catalogs or packages.

Entity index views

Although the hierarchical index view presents a survey efdbcumentation and source code
to the reader, it does not use any information from the MRSkehoor the structure of the
source code, to do that. Tleatity index views, however, based on this information.

As with the hierarchical index views, two separate entitglex views are provided for
the documentation and source code respectively. The entligx view for documentation
presents an, alphabetically ordered, index of documemtaibdes while the view for source
code, presents a index of source code entities.

These two indexes can be filtered with respect to either th&Midel or the structure of
the source code. For the documentation view it is possibfdtés on three categories of
the MRS-model, the node types and the status of the node (ngwpgress or finished).

This filtering mechanism can be used to, e.g., show all dootetien nodes in the rationale
category which has the status “Finished”. The filter on staguparticular useful in regard
to loose ends, since by applying a filter to find documentatiotes with the status set to
“new”, the result will be an index of loose ends.

The source code index view can be filtered to show all sourttee=nof a specific type, e.g.,
all classes or methods. As the number of source code eritit@project is typically high
the index of source code entities tend to get rather largecantusing. Therefore a search

2In the Elucidator 2 source code there are approximately 40@ifies.

4.4 Navigation 71

facility has been implemented in this view. The entered @deatring is matched against
the idname of the entities, and can therefore, e.g., be wssidow entities inside a specific
package, class, etc.

An example of the usage of the two entity index views, is pmese in the screen capture
in Figure 4.22. The documentation view (on the left) preselttcumentation nodes in the
solution description category of the MRS-model, with thatss “in progress”, while the
source code view (on the right), presents a index of all taesgs in the project.

E— 000
Fie Edit View Go Communicstor Help
s -
Ds ion views: [All catalogs] [Ds Index] [Subject Index] g | o [Mertical] [Horizontal] [Resef] [Status] [Help] J
Source code views: [All packages] [Source Index] Project: | StregSystem = | ‘i“.?
|
A &
Alphabetic Documentation Index View Alphabetic Source Index View
Ihelp] Iheip]

How we wrap all SQL statements in the DBHandler using JDBC [Entity
plementation |

imp

A
[{5 00 @P) 2|

Figure 4.22: A screen capture illustrating the two entity index views.

Subject index view

The final index view concerns information gathered intdynial the documentation nodes.
This is called thesubject index viewand as the name implies this view presents a index of
subjects found in the documentation.

Concretely the subject index is a index of the keywords andgelaced in the documenta-
tion, for which a match could be found. Recall that keywonssspecial words listed in the
documentation nodes fixed part, and terms are special waadsah up inside the nodes free
part. How a match for these two types of special words is fagmigscribed in Section 4.3.4
on page 59 earlier in this chapter.

In order to enable the reader to search for special words xyicély stated by the writer
as terms or keywords, the subject index view furthermoreides a searching mechanisms
where the reader can search the topic, abstract and keyisoaf the documentation nodes

72 Design

for specific subject. This is illustrated in Figure 4.23 wé#re subject index view is used to
search for the subject “informix”.

000]
T e ||

D fon views: [All catalogs] [D Index] [Sublect Index] | Vertioal] [Horizontal] [Reset] [Status] [Hels]
Source code views: [All packages] [Source Index] Project: | StregSystem = | | Go|

= || —

public class o ¢

Subject Index View

hel

Subject search: |fnformix

informi DEPRECATED: These paramerts setup the stregsystem [Concept]
The database is moved to MySQL because of problems with Informix
Bi

Informix [

ption] public (String i)

It was not possible to make a connection to the Informix via JOBC [throws DBHException {

1

. setDBURL(dbur);
Informix [1 loadDriver();
The errors with the driver downloaded from Informix [] FileOutputSiream = nul
DEPRECATED: How we wrap all SOL statements in the DBHandler using try{
JDBC [Entity implementation | aFileStream = new File OutputStream("DBHandler.log");

3 catch (FileNotF oundException) {

e throw new DBHException("Kunne ikke skrive til outputioggen’);
H

Informix [Entity impler

tion]

D 1L
makeConnection();

private void 0
throws DBHException {

try{
i Class forName(*Informixapijdbc.JDBCDriver);
Class forName("informix.apl jdbc.JDBCDriver")newlnstance();
i ClassforName("com.nformixjdbe, xDriver');
3 catch (Exception ¢) {
throw new DBHException(*The DBHandler was unable to load the *
“Informix JOBC driveran®)

=

&

Figure 4.23: A screen capture illustrating the subject index.

Reflection

In order to evaluate the MRS-model and the Elucidator 2 @asinall informal experiment
is conducted. In this chapter we describe this experimeshpagsent the experiences gained
by it.

First we present the circumstances under which the expatimas conducted. Next we
present reflections on the experience gained though theimegrd. These reflections is di-
vided into two sections with respect to the experience ghimethe writer and the reader.
Finally we discuss the experiences gained by the experitogether with our own assess-
ment of the MRS-model and the implemented Elucidative emvirent.

5.1 Experiment circumstances

The strategy for conducting the experiment were to docuptaniusing the Elucidator 2
tool, the development of a project called StregSystem. Hsé of this section describes
what StregSystem is and the circumstances under which thexiexent was conducted.

Project StregSystem

StregSystem is a system used to record purchases of prostoctesl in two refrigerators
located in a shared coffee room at our department at the rsitye The system works by
having a terminal placed in the coffee room which is used terafe an internet browser
which send and retrieve data to and from a server. The seagaltist of users and records
their purchases and payments. It also keeps track of whmihyots are offered, their prices
and how much there are in stock of each product. The serveraiselational database for
persistence and runs from a standard web server.

StregSystem currently exists in a old implementation witiohs not provide all the wished
functionality and there exist no documentation for the iempéntation. The development of

73

74 Reflection

a new StregSystem with the Elucidator tool thus has a twqjalgpose — to provide a better
implementation with more features and, by using the Elucidareate a system that is well
documented. It is important that the StregSystem is doctedess the maintainers of the
system will be students which only reside at the Universtyd limited time.

Writer experiment

Development of the system were performed by Thomas Vestdamnuensis at the Depart-
ment of Computer Science Aalborg University, together witle of the authors of this thesis.
Vestdam had never used the Elucidator tool before, but haxk $mowledge of its capabili-
ties. Thus the amanuensis was briefly introduced to the MR8etrand the functionality of
the tool by the assisting author shortly before doing thaaaevelopment.

Vestdam had been designing the overall system before hediasing the Elucidator 2, but
had not done any detail design and implementation of thgSyrgtem. The experiment was
conducted in a period of one week.

After this week the assisting author conducted a small m&drinterview with Vestdam
where they discussed and collected their experiences &$uwgdator 2 for documentation.
The information collected in this interview is used in ouaation of the model and tool,
seen from the writers perspective.

Challenges for the writers

The writers successfully produced documentation for tregeand implementation of the
StregSystem, but two problems reduced their efficiency.

Vestdam and the assisting author had been informed how litereal database, to be used
for the StregSystem, should be incorporated, but due tanteahdifficulties and misinfor-
mation the relational database was not usable. Thus signifadevelopment time was used
on finding a solution to circumvent this problem. This cauaetlay in the development of
the StregSystem, but gave good experiences on how the todldththe documentation of
changes to the system and its design.

A further infliction was, that Elucidator 2 tool was beingigety developed during the span
of the experiment. The complete development of Elucidatwag only finished a day before
the experiment was finished. This did, however, not affeetdbvelopers notably as the
development on the Elucidator tool only affected navigaidssues in the browser. It did
though have the effect that the browser was not used as @gnsy the writers as expected.

Reader experiment

After the development of the StregSystem was finished thedéwaining authors of this the-
sis was allowed to read the documentation. This was donetigthburpose of evaluating the
model and tool from the readers perspective. The documentased in the reading experi-

5.2 Reflections upon the experience of the writers 75

ment was the result of one week of development. Thereforagguarts of the StregSystem
was not completely developed and consequently the docatn@mivas in the same state of
flux. We do though, not consider this a big disadvantage asabuld properly also be the
case for internal documentation written in any initial sedte project.

Project size

In order to give an idea of the size of this project this setficesents some statistical material
on the size of the project. Vestdam and the assisting autiodiuped 26 EDoc and 15 Java
files during the one week of development. The implementatmrtained 2 packages and
15 classes. The documentation spanned 9 thematic cataldg@6adocumentation nodes
was created. The writers explicitly created 32 documemndinks, 75 source links and 27

external links — a grand total of 134 links.

A more detailed report on the statistical material from th@ggxct can be found in Appendix D
on page 117.

We are aware that, due to the limited size of the experimbatgathered statistical material
can not be used as a basis to make concrete conclusions. \staed primarily using the

experiences gained by the writers and readers of the StetgiByproject in order to indicate
certain points.

5.2 Reflections upon the experience of the writers

In this section we will present and reflect upon the most irtgrdrexperiences we have
gained during the development of the Stregsystem. The expes is presented in no par-
ticular order. We reflect on these experiences and in sonesgaspose solutions that can
remedy possible found problems.

Solving problems using the MRS-model

Before the experiment started we expected that documentabdes would be produced
and structured at the same time as problems where beingdsdivéeng development. The
experiment showed that this was not always the case wheg tle@rMRS-model.

In the preliminary phases of solving a problem both writead problems dividing the doc-
umentation into segments. This was the case for dividingioh@ntation into motivation,
rationales and solution descriptions. It was also an issuenvihe writers had to choose a
specific node type for the documentation nodes.

They experienced that it were easier to just write down ttleughts and action unstruc-
tured in the preliminary phases and then later place thesegtits and action in the correct
documentation nodes. This had the effect that the docutr@mtaften was first written after
the problem was solved or when writers could grasp the swidtr the problem.

76 Reflection

We do not see this as a major problem for the MRS-model andnalteocumentation. As
long as the developer writes down his thoughts and struthi@érdocumentation while he has
his knowledge about the actual problem solved fresh in nhiedriternal documentation will
not suffer.

A contrary experience gained by the writers were that theysimered it an advantage to be
forced into segmenting the documentation when they agtuaibte the nodes. It focused
their writing and enabled also the reuse of, e.g., one midinaode in multiple rationales.

Using the templates

The templates devised for use in internal documentationfueas the start not intended to
be neither ideal nor complete. Our experiment confirmedttiiatwas the case.

When Vestdam was confronted with the templates and guigielin the beginning of the
test period he often found the guidelines confusing androeda doubt of whether he had
chosen the right node type. Later on he adapted his writingedemplates but he did not
feel that they all matched his needs for documentation.

The problems was not experienced by the other developer G@aevas on top of the prob-
lems he was solving, he used most of the documentation nodiesx@erienced it natural to
chose the right node type. This should be seen in the lighteofact that this developer had
contributed in the creation of the templates and their dinds.

We see the experiences reported above as a question of tleeswrot having enough ex-
perience with the MRS-model and the templates used, and asstion of the style of the
templates not matching with the expectations of the wrikars confirm our believes in that
the templates used by a team of developers should be gradhalhged in order to facilitate
the need and styles of the developers in the team.

The number of link roles

The intention of link roles where to strengthen the expressess of the documentation. We
therefore devised eleven (22 if you count their symmetmeathes) link roles. Unfortunately

the number of roles for the links confused the writers byrtisbear numbers. The writers
also felt some roles had close semantic meaning. This madeoitnplex task to choose the
right role for links.

A reason for the confusion could be that the writers wheranmitar with the link roles and
could not directly see the purpose of them. The size of thegSlystem was relative small
and had a low complexity which indicates there were no dineetd for expressing complex
relationships.

A response to the presented problem is to reduce the numliekgbles. One of the ways
to reduce the number of roles will be to reduce roles with €lesmantically meaning to
just one, e.g.describednstead ofdescribesanddetailed-by selectsnstead ofselectsand
introduces

5.2 Reflections upon the experience of the writers 77

Another reduction would be to limit the roles to a basic setabés, e.g.premise selects
declinesdeprecate§ describesandmentions These basic link roles would in the same way
as the templates be modified and possibly extended througimoed iterations over the use
and evaluation of the Elucidative environment.

Validation of links

As we have discussed above both writers found it difficult tal fa proper structure for

the documentation early in the problem solving phase. Agptbblems where grasped the
proper structure emerged. This had the consequence thatgotation was moved from

one node type to another and nodes that in the beginning vahezed in one catalog where
moved to another catalog.

The movement of nodes and their contents could inflict timslithat linked to these nodes
would become invalid and hereby useless. This result instamnte of the classical hypertext
problem of keeping links consistent.

Fortunately this problem can be remedied by the Elucidatmeironment because it has
information about the structure of both documentation amukree code and their linking
mechanisms. This can be used to validate links when penfayithie abstraction process.
A link validation process can be used by the writer to detears in the documentation
similar to errors from a compiler. The information could@lse used to support the writer
in moving nodes and provide semiautomatic update of passilalid links.

It was also experienced that there were cases where the @otaton surrounding source
code links that had become invalid were incorrect. We godite that with a link validation
process we could increase the proximity between source aodelocumentation when er-
rors occur. This could be used by the writer not just to cdrtiee link but also check if the
surrounding documentation still applies.

Writers motivation

One of the means we hoped would motivate the writers to woichentation was imme-
diate pay back, i.e., that they would benefit from their owiting. It turned out that none
of the writers ever used their own documentation in the tesog.

The main motivational factor for the writers was instead $e the documentation written
by the other writer and to see their own documentation besgful for others, e.g., the

time spent writing good abstracts for documentation nodesrevgreatly appreciated when
the documentation was read by the other. Thus the simplettiattthe writer could see

the documentation in the browser and felt it could be usefubthers, especially the next
generation of the developers on the StregSystem, motiveteowriters.

1The difference betweedeclinesanddeprecatesis that a solution that has been declined may be relevant
in another part of the system, where as a deprecated solstiefected throughout the system.

78 Reflection

5.3 Reflections upon the reader experiment

This section will present the most important experienceseghthrough the reading experi-
ment. The experiences is presented in no particular ordmile® to the reflection presented
in the previous section we present the experiences andtraflea them.

Starting point

The first displayed information for a project in the browsétle Elucidator environment
is the hierarchal view of documentation and source code. il teaders were unfamiliar
with the StregSystem project and the views only showed theesaf catalogs and packages
the readers found it hard to figure out where to start readiegdbcumentation. A missing
starting point consequently complicated the readers pibiggito form a general view of the
system from the start. This is especially a problem for readéth a serialistic reading style.

We do not see it as a major problem that the readers of the Stetgm could not im-
mediately form a general view of the StregSystem. The Sysgi was not completely
developed and large part of the documentation was not caatplbut still a method should
be found to enable readers to have a starting point for thesys

This could be done by having a documentation node in eaclogditaat is to be displayed

each time a user enters the catalog. This node would be whitehe writers of the system
and would be a natural place to present an overview of theeotsdf the thematic catalogs
and provide links to follow. Thus the Elucidative envirormhe&an support the writer in

providing a overview which can be used as a starting pointdaders — serialists as well
as holists.

The usage of views

As a consequence of readers not being able to find a starting gidirst glance, they both
started to traverse the hierarchal view of thematic catl¥ghen entering the catalogs their
contents were listed and each documentation node preseittettheir full topic and abstract
together with possible sub-catalogs.

Both readers used the hierarchal view to read the topic asttaadh of nodes that seemed
interesting. This enabled the readers to start comprehgmahiich documentation was avail-
able for the StregSystem without going back and forth betwibe nodes.

As both readers were aware of the capabilities of the Elwcrda they started using the
Documentation Index View. This view proved to be useful adlawed the readers to filter
documentation nodes based on their type and category. Tdssused to find motivations,
continue on to the rationales and then finally solution dpsons, i.e., the reading became
based on the MRS-model. In each step they studied the nodefkowed links to the
extent they found it necessary. The readers experiencéthin®dRS-model and the use of
relatively short documentation nodes was useful for domgfiorm of (holistic) reading.

5.3 Reflections upon the reader experiment 79

The readers also felt they actually were reverse-engingéhie documentation with the help
of the views and navigational facilities of the Elucidatorgrasp the system. It was noted
by the readers that if they have had previous knowledge ofys¢em, e.g., been active
developers on the StregSystem, they felt that the navigé#aialities also were useful. They

experienced that specific parts of the system was easy to fthchelp of the views.

Information on links

The Elucidator 2 environment and the MRS-model urge the tibeks. This can resultin a

high number of links inside documentation nodes. As sedmdrstatistics in Appendix D on
page 117 134 explicit links were created even in this smaljgat. We have made an effort
to reduce the readers need to unnecessarily explore lingsdwding information about the

destination of a link though the navigation menu.

The readers all appreciated the distinction between lipk$ythrough colors as it made the
reader aware whether a link would lead to documentatiorrcgotode or external informa-
tion. This was often used as the readers typically eitheev@oking for source code or
documentation.

When following links a navigation menu is displayed and atssiwmmary of the destination
is shown. This was of great help for the readers as it saveel Wwinile reading. Especially
when using views that displayed many implicit links it satade as, e.g., the topic and
abstract for documentation nodes provided enough infaomab decide if it was worth the
effort to follow the link.

Parallel hypertext

When exploring the system and following links as descrildeava, the readers made use of
the possibility to view documentation and/or source cod#eisan parallel.

The possibility to perform parallel hypertext with docuntetron and source code was pow-
erful. Both readers used the parallel hypertext featuré widlocumentation node that ex-
plained the overall system with links to more concrete dtdt allowed readers to open
the documentation node in one side and used this as a regdidg-and as a fixed point for
navigation. When following links the reader then considteniewed the links destination

in the opposite window to keep the context. This was true &thlviewing source code and
documentation.

In our initial experiments with the Elucidator 1 tool, docentation and source code were
always shown in parallel and hence source code was alwaiptevig side effect of parallel
hypertext with no constraints on the location of source coddocumentation were that the
focus was moved from examining source code to examiningmeatation.

80 Reflection

Visibility of the MRS-model

The readers utilized their knowledge of the MRS-model tot s&sading the documentation
as described previously. The readers was aided by the Eliacioh utilizing the MRS-model
as the documentation nodes were colored according to thesgory.

A further aspect of the MRS-model is the roles on links. Thede¥s were not using the
role on links when following the links from inside a documatidn node. This is probably
caused by the fact that the role of a link is only visible whigs activated. In the navigation
menu the role was displayed but was not emphasized enoughusdbul. Still, roles where
used, not when doing normal browsing, but in the Context \Gédocumentation and source
code. Here the link roles were used to find, e.g., the prenaseationales. Without the link
roles the readers would not able to distinguish a simpleeef® to a node from a special
usage of a node. Thus the use of links were advantageousenstiefl the MRS-model for
the readers.

Another aspect was the use of change descriptions to traakgels and thereby document
the history of the system. Both readers found the documentaf the before mentioned
technical problems to be of good use in a examination sdnafihe information was useful
and the use of “declines”, “deprecates” and “selects” taoespwhat was rejected and what
was accepted were used by the readers. A feature missingtifresystem though was the
possibility to show the documentation nodes in chroniclgeorto give a better historical

view of the changes.

Trustworthy documentation

Both readers was at several times “annoyed” by the documentaThe annoyance was
caused by some documentation nodes which was only half édiahd furthermore by links

which pointed nowhere. However by applying link validatiorthe documentation it seems
that this problem can be reduce. This was also noted in $estibon page 77.

Documentation nodes containing only a hint on what coulddpeeted and sometimes noth-
ing at all was to great distress, as the readers felt infdonavas being held back or that the
information was incorrect.

We do not believe this problem to be confined to this small erpent. Inconsistency and
lack of documentation is a general problem concerning deruation of software. We
imagine that if the internal documentation for a piece otwafe generally has these prob-
lems readers using the documentation will spend more tirselving the inconsistencies
than actually benefiting from the documentation. We thesefuggest that to increase the
trustworthiness of internal documentation, continuouklgumentation reviews is needed.

5.4 Discussion 81

5.4 Discussion

The following section contains a discussion of the expeesrgained through the experi-
ment together with our own assessment of the MRS-model anirplemented Elucidative

environment. The section is divided into three parts. Fstdiscuss the MRS-model, next
the implementation of the MRS-model in the Elucidative emwinent, and finally we discuss
the usage of the Elucidator tool to document the history @fxsoe and documentation.

54.1 The MRS-model

We see the MRS-model as one of the main contributions of oukwithis is based both on
our own assessment of the model and the experiences ganoedththe experiment.

The MRS-model was used by both the writer and the reader. &sdsipreviously in this
chapter, the writer had difficulties dividing the documeiatainto the three categories while
at the same time trying to solve a software problem at haney Experienced that is was
easier to just write down their thoughts and then structioeen later. We recognize that this
might be a problem. However, the first time you make a classaby for a software pro-
gram, it is not easy either. Therefore, we see a part of tlwblpm as a matter of getting used
to the MRS-model. A contrary experience was also gained édwiiiters: They considered it
an advantage to be forced into segmenting the documentatiwe it focused their writing
of the documentation.

As for the roles on links, it was expected that the relatidalge number of roles would
benefit the expressiveness of the documentation. This wagusr not the experienced
case, since the writers got confused by their shear numéedsherefore found it confusing
to chose between them.

As for the readers, they experienced only minor problemb thié usage of the MRS-model,
and it was therefore quickly an advantage for them. This wasnistance shown by the
fact that the MRS-model was actually used to navigate themeatation. By starting with
motivations documentation nodes, the readers navigateatitmale nodes and from there
to solution description nodes. On the down side the MRS-maales not provide a natural
place for the reader to start reading the documentatiors wWhs especially needed when the
readers started from scratch on a new and unknown system.

It should furthermore be noticed that conceptually the MR&el is applicable on other
documentation types than internal documentation. It irmore both language and paradigm
independent. This means that all documentation situatitrese it is useful to represent, re-
late and capture motivations and rationales together \Wwehr tictual description of solutions
can therefore benefit from the MRS-model.

In conclusion we believe the experiment indicates that tiSMnodel is particular useful
for the readers but also acceptable for the writer.

82 Reflection

5.4.2 The Elucidator tool

It is our position that in order for the MRS-model to becomecassful it is dependent on
good tool support. If the internal documentation and the MR&lel is to be useful, it not
only need to be practical manageable for the writer to whtedocumentation, it also has to
be accessible in a form that provide navigational facsitie grasp the possible large amount
of documentation. The Elucidative environment implementethis thesis is a suggestion
for such tool support. We believe that the experiment cordtrthis need for tool support.
The tool support is therefore seen as the second main cotinibof our work.

One of the consequences of our focus on the reader, was thegdder experienced better
support by the tool than the writer. However, the experinséifiishowed that the writers used
all the features in the editor and stated that it would be issgae to create the documentation
without these features. Particularly the support for lingartion was praised. The selection
of editor support was found short of the target though, arel@nsequence better and more
advanced editor support was queried for.

As for the reader, especially the navigation facilities \appreciated and extensively used.
Furthermore, the usage of colors to increase the visibditghe MRS-model was found
useful. As to the problem of no starting point in the docuraganh, the tool did not provide
a direct solution. It did though, help to lessen the problém providing the navigation
facilities.

On the technical front, we see the implemented elucidatiw@@nment as independent on
multiple fronts:

Physically the Elucidative environment does not confineusers to a single development
environment. The documentation is placed in EDoc files whretphysically separated from
the source code. This enables the free use of the source ¢esléenfiother environments

without modification.

Architectural the environment is also flexible. Each comgdrin the implementation is low
coupled to the other components. This means that e.g. thement is not dependent on
a specific editor, database or server and they can all relgtdasily be replaced.

Finally the environment is also language independent. &ddy there only exist a Java
abstractor for the environment, but since the ElucidateelsData model that is based on
entities and their relationships it is possible to creatalastractor for other languages. The
only requirement is that it is feasible to uniquely idengytities that should be documented
via links in the Elucidative environment.

5.4.3 History in documentation

The final topic for discussion is the usage of history in thiernnmal documentation. Not
many experiences was gained on this subject, since thedperighich the experiment was
conducted was only one week. However, due to unexpectedudiiés with the relational
databases, some experiences related to changes was reelesstigained.

5.4 Discussion 83

Initially it was planed to use the Informix database systé&imerefore source code and doc-
umentation was produced for this solution. It however tdrpat that this database could
not be used, and a switch was made to the MySQL database sysSthis switch was
documented through the usage of a Change description nodethas, the history of the
program was maintained. At a later point, the problems withIhformix database system
was resolved, and it was experienced to be relatively eaBgddhe documentation for this
solution.

We are aware that, based on this experience, nothing caveJusncerning the importance
and usability of the history of the documentation, can bé.d4dbwever, the method provided
by the MRS-model for documenting the history of the softwaas experienced to be useful
for both the writers and the readers. In our opinion this ¢atks that the history of the
software can be documented and be an natural part of theait@ocumentation.

84

Reflection

Conclusion

This chapter conclude our master thesis. This is the placgawve look back at the work
done and results accomplished throughout the project askdon these, conclude on the
two formulated hypotheses.

In order to weaken or affirm these two hypothesis an investigavith five steps was con-
ducted throughout the project. 1) First the notion of ineérdocumentation in software
development was examined. The main result of this exanoinatas that internal documen-
tation becomesnore fruitful when it is written with a clear distinction lveten rationales
and solutions2) Next we divided participants working with internal dosentation into two
roles: thereader and the writerThe reader was chosen to be the focus of our further work,
and a characterization of him, showed him to have tendenoveards beindolistas well
asserialist As for the writer it was stated thab demands for special writing skitould be
placed on him.

3) Based on these first two steps, Mi&S-modelas formulated. The main concept of the
MRS-model, is a division of the internal documentation ithieee interrelated categories. 4)
Furthermore an important part of the MRS-model iséalization in the elucidative environ-
ment This was done by using the elucidative environment deelap the first part of the
master thesis. 5) Finally, an experiment, called the Siyrstg experiment, was conducted
in order toshow the effect of the modehen applied to internal documentation in a software
development project.

The main results of the investigation presented above i$otmeulation of the MRS-model
and thepractical realization of this model in the elucidative eoviment that is, the Elu-
cidator 2 tool. These two results, together with the redutis the StregSystem experiment,
will be used to affirm the two hypotheses.

85

86 Conclusion

The first hypothesis states:

To present internal documentation in order to facilitate the reader, it is nec-
essary to structure it in a predefined way. This structure, conbined with
navigation facilities, will be beneficial to the internal dacumentation.

This hypothesis actually contains two sub-hypothesed) behtering around structure in
internal documentation. We therefore conclude on thesestehypothesis separately.

The first sub-hypothesis concerns the necessity of a prediesimucture of the internal doc-
umentation, with the purpose pfesentinghe documentation. By applying the MRS-model
to internal documentation, traceability in the preseotatf the documentation is provided
to the reader, since this model makes a clear distinctiond®st motivation, rationales and
descriptions of the solutions. By using the concrete raéibn of the MRS-model in the
elucidative environment, visibility of the three diffeterategories of documentation is pre-
sented to the reader. This is accomplished by the implertienta.g., by using a coloring
scheme which reflects the three categories. Finally, tlegnat structure of the documenta-
tion nodes also makes an uniform presentation of the doctatien possible.

The StregSystem experiment did not affirm nor weakenntbeessityof structure, but our
experiences with the structure-less documentation prediuwsth the Elucidator 1 tool indi-
cate it. With regard to the roles on links the writers did nopeeciate the full expressiveness
of the MRS-model, since they were burdened with the numbesles. We believe that this
indicates that the proposed expressiveness is not needethi@mumber of links roles can
be reduced.

The second sub-hypothesis concernslieefitaccomplished by applying structure to the
internal documentation. By applying the MRS-model to thtenmal documentation it will
benefit from the clear distinction between motivation,oatles and descriptions of the solu-
tions, and the documentation will thereby avoid being meddlp. By using the Elucidator
2 tool, it is possible to extract implicit information, suels the navigation menu and the
views, which also adds to the benefit of the internal docuatemnt.

The uniform presentation of the internal structure of thdeswas not experienced to be as
important as expected. The overall structure of MRS-modehe other hand together with
the navigation facilities proved to be beneficial to the doeuntation for the readers. In gen-
eral both the overall structure and the internal node strecimposed by the MRS-model,
helped the writers to structure their documentation. Dgyitime StregSystem experiment it
was indicated that the usability for the writer was limitedttwvo factors. The first being the
writers unfamiliarity with the MRS-model. The second facieas that the writers the pre-
liminary phases of solving a problem in the software, werall@to structure thier thoughts
and hence use the MRS-model.

87

The second hypothesis stated:

The history of the software is important since most changesithe software,
are made as a consequence of a rationale. The history of thefsgare can
be documented and be a natural part of the internal documentaon.

As with the first hypothesis this one can also be split into sub-hypotheses. Both these
sub-hypothesis centers around the history, and how thasa®lo internal documentation.

The first sub-hypothesis concerns thgortanceof the history of software in connection to
rationales. That is, will the internal documentation berfedim the presence of documenta-
tion of the history of the software. Based on the work donénis project we have not been
able to neither weaken nor affirm this hypothesis. In fact weehcome to believe that the
question of whether this hypothesis is correct or not, is tienaf opinion and point of view.
However, our work shows that if one believes that the hypsithis correct, we can affirm
the second sub-hypothesis.

The second sub-hypothesis concerns the question of whétharstorycan be documented

and furthermore be aatural part of the internal documentation. Our work affirms this
hypothesis. As a part of the realization of the MRS-modehange description node type
was created. This node type, together with the two link ratgéted at the history; introduces
and deprecates, made it possible for the writer to docuntenhistory. Besides this, the

experiences gained by the StregSystem experiment shoateththdocumented history was
actual useful, and was considered to be a natural part ofdberdentation.

0

In conclusion, the work presented in this report has not@notut indicated that it is a neces-
sity to structure the documentation in a predefined way irotd present it so it facilitates

the reader. Arguments have however been provided which ghatwf the documentation is

structured in a predefined way, it can be presented so iititei the reader. It has further-
more been shown that the internal documentation do benefit &pplying a structure to the

documentation.

Besides this, we have not been able to neither weaken nanadfir claim that the history
of software is important. We have however, showed that gienhistory is considered
important, it can be documented, and be a natural part ohtleenal documentation.

88

Conclusion

Future work

Having worked with the notion of elucidative programming#&owhole master thesis, a lot of
ideas to extension and further development of the work jpteskin this report has emerged.
In this chapter we present three ideas for subjects whichekeve would be interesting and
rewarding to work on in the future.

Experiments using the elucidative environment

In this project we have performed two small experiments mnsthat the elucidative envi-
ronment and MRS-model is usable in our own surroundings.

Seen in the light of the relatively small size and short daredf these experiments it would
be natural to conduct one or more experiments that explerese of Elucidative program-
ming and its environment to a larger extent. By larger exteamtmean the duration, com-
plexity and participants of the project has to be considgraigher than it was the case with
the experiment performed in this project.

The purpose of these experiments should be threefold:, Ersy should seek to answer if
developers productivity increases by writing internal dimentation in an elucidative envi-
ronment. Secondly, they should try expose if software, forolw internal documentation
exist, has a higher quality, i.e., is more understandabtaifiable and reusable. Finally, it
could be interesting to try to show if the history of softwéas important as claimed in this
master thesis.

Motivating the writer

Until now the writer present in our work has been solely matid for writing internal doc-
umentation through his own personal satisfaction or pgifeml obligation. Either he has
been personally interested in producing internal docuatent for his software or his devel-
opment team has obliged him to do so.

89

90 Future work

If the only motivation for the writer to produce internal douentation is rules stated by
the development team, and he personally cannot see thetadeaof producing internal
documentation, it will be hard for him to write quality docentation and even so quality
software.

Throughout our work we have attempted to reduce the burdesegdlon the writer by provid-
ing him with an elucidative environment with, e.g., navigatfacilities and editor support.
This is however only a consoling measure. It could therefi@anteresting to investigate
which non tool related measures can be devised to motivaters/to voluntarily engage in
the process of creating internal documentation.

Elucidative environment in a process

Our focus in this thesis has been on internal documentafieoftware. This type of doc-
umentation is mainly created during design and implemamtatThis is illustrated in Fig-
ure 7.1(a).

We have disregarded the documentation created during ptieees of the classical object
oriented development process. We think that an interestivagienge would be to explore
if, and how, an Elucidative environment could be used forutoenting all these phases,
while at the same time maintaining the close relation to thece code. This is illustrated
in Figure 7.1(b).

Level of abstraction Level of abstraction

Anlysis doc Anlysis doc.

- +--Designdec. -4 - -——————————— - - - - - - - - - - - - ——

Design doc.

Internal doc.

Internal doc.

Source code Source code

Supported by the Elucidator "3" tool

Supported by the Elucidator 2 tool
|
T

(a) The span of the current Elucidative en- (b) The span of a possible future Elucida-
vironment. tive environment.

Figure 7.1: lllustration of the span of the currently implemented Efiator tool, and a possible
future implementation of the Elucidator tool.

The documentation presented in the analysis and designmamds should typically be
changed over time in the iterative process. This procedgypically also include reviews
(both source code and hopefully documentation reviewdgstanes and an extended set of
roles (such as managers and customers). Therefore, bydaxgethe span of the Elucidator
tool to also include analysis and design documents, it besamportant to provide support
for this iterative process. At the moment the Elucidator@ t#oes not have any support for
processes, but we find it both natural and interesting toneitiee Elucidator tool with this
capability.

Examples of different node
types and link roles

In this appendix we present a number of different node typekslek roles. These are
all concrete examples of possible node types and link rdied,where found useful in the
experiment we have conducted. They should not be regardacthstypical examples but
merely as possible implementations of the MRS-model. Exesngf the use of the nodes in
the experiment is included as screen captures.

A.1 Examples of concrete node types

Node types in the Motivation category

Requirement is a node type that describes a requirement or a constrahsgecifies or
restrains the behavior, design or implementation of théesys This can be seen as
the information that would go into a normal system definitiortraditional Object-
oriented Analysis and Design [Mathiassen et al., 1997].ah also be an internal
requirement specifies by a developer on the software project

A requirement contains a description of the requirementaidt of the parties that
has specified the requirement.

Bug report is simply a report of a error in the system. The bug report wdlhtain a de-
scription of which part of the system that is affected by thg.b

The actual description of the bug contains a descriptiorhefdircumstances under
which the error occurs, a description of the error and pdgsiaggestion on how to fix
the bug. The description may contain debugger traces, pteciEom log files etc.

91

92 Examples of different node types and link roles

Improvement is a suggestion for an improvement of the system. The suiggesbntains
a description of which part of the system that is considenetthé improvement and a
actual description of the improvement. An example of an mepment could be that
we would like to use another and more stable database forttegS/stem.

L-

Requirement:

The stregsystem is developed by two developers with limited
time

Abstract: The development of e siragavsiam fs constrained by @ number of facts, it is
devalopad mainly By two developears Thomas Vestdam and Kristian {kkegaard
Sgrensen. The developiment is done a3 part of & inasiers prafect, that investigates
docimenialion of software, The main part of the developimant was o be dote Within one
weak.

Status: Finished

Keywords: [stregsystem | [constraints | [development] [documentation | [dopu
]

Author: Kristian Lykkegaard Sorensen

Created: Z000/05/14 14.46:18

Last updated: $Date: 2000/05/14 15:42:55

System |D: streg/conditionsFarTheDevelopment.edoc

The stregsystem is developed because the old stregsystem, had served it’s time. It was
difficult to maintain and dificult to understand. Hence was it dificult to change the system.
At this ime three master studends at the department, is working on a development tool to
support the documentation of internale system understading. This masters projectis a
part of the DOPU research programme.

It was determined that the new stregsystem should be developed by two developpers, one
Amanuensis Thomas Yestdam and one of the three masters students Kristian
Lykkegaard Serensen.

One week was the estimated deleopment time of the project. The system was not intended
to be ready for "production” in this week, but most of the development was to be placed in
this week,

Curing the development the two developers should document the development and reflect
on the experince with the documentation tool.

The contraints where set by Thomas YWestdam, hMax Rydahl Andersen, Claus MNyhus
Christensen and Kristian Lykkegaard Sarensen.

Figure A.1: A concrete example of a documentation node of the type “Remeint”.

Node types in the Rationale category

Rationale Is a node type that describes the arguments that leads tosarcisolution and a
set of declined solutions. We structure the rationales sisdipresentation of the driv-
ing forces and motivations that affect the rationales. €hastivations are described
short, since they are possibly described in a motivatioe typde.

A.1 Examples of concrete node types 93

For each motivation that appear in some other node, a linkvengwith a short de-
scription of the specific part or aspect of the motivatiort tln@kes it relevant here
and affect the rationale. Some of the driving forces may aby well be solution
description of other parts of the system, if those partscatfee decisions made in the
rationale.

The rationale contains a short description of the choserdantined solutions. As the
solutions and possibly alternatives are described in aisolalescription type node,
this description focuses on the properties of the solutibasaffects the decision.

At the end of a rationale node is a discussion of the choicedemdhis can be a
discussion of the consequences of the selected or decloletions. This part may
also include personal subjective assessments.

Change description The change descriptions structure is the same as the geagoalale
node. The difference is that this explicitly defines a chaingke system. It is through
this type of nodes, that the history of the changes to sysigreiserved.

The forces section of the change description describestdsons for the change. The
solutions section should describe the old system as welleasdw system.

Node types in the Solution description category

Concept The concept node type is used to separate and describe atsutgencept which
has special meaning/importance for the rest of the docuatient A concept will
typically be a technical term from the problem domain of thegpam being developed,
but it could e.g., also be a concept which needs clarificabtiecause one or more
developers in the development team is not familiar with it.

An example of the first type of concept could be a developneamtdoing a account-
ing system. It would then be useful to have the concdptsit andcredit described,
since software engineers are not likely to know these inikdetéess they have devel-
oped accounting systems before.

Aspect An aspect node is used to document a facet of a system whicked in various
parts of the system.

Examples of the usage of the aspect node, could be to documeninformation is
written to a log file throughout the whole system, or how thadiog and saving of
files is handled.

Design pattern instance Design Patterns [Gamma et al., 1995] has become incregsingl
popular when creating programs using object-oriented arogning languages. We
therefore introduces the design pattern instance nodddoyplee documentation of the
usage of design patterns. Itis important to note that the mleduments an instance of
a design pattern (which classes are involved in the instahtigs pattern and so on),
and not the design pattern itself, since this is already oh@ned in the description of
the design patterns.

Examples of different node types and link roles

Forces

We would have liked to use the Servlet AP| to specify the global parameters for the
stregsystem. But there is no place in the web . zm1 file, to place parameters that are
global to the context. 5o instead we use the normal Java way to specify Properties, which
is to use the Properties class,

Solution

The alternative solution would have been to use the Servlet context. When a Serviet is
initialized with its init method it revieves a ServletConfig. Throug this is it possible to fetch
the Servlet Context. And with this, shoud it be possible to acces paramerts that are
global to the servlet context, —— In theory,

Since this is not possible we use standard Java Properties.

Discussion

It might he posible in a later release of the Servlet AP, to specify parameters global to the
context in the web . zm1 file.

Figure A.2: A concrete example of a documentation node of the type “Ralgdn

A.1 Examples of concrete node types

Forces

A3 we had many problems using the Informix JOBC driver and the development had
done within one week we decided to move the datahase from the wanted Informix
solution to a less stable MySGL database. MySGL was choosen hecause one of the
developers had access to experience the a JDOBC connection to MySQL, This kySGEL
experince came from the Elucidator project, where Claus Myhus Christensen had written
a lot of JDBC for MySGL.

Solution

Instead of using the Informix JOBC driver we changed the DEHander, so that it used
the MySGL driver instead. Since all JDBC access was encapsulated in this class, we
had to change the loadDriver method from the Informix driver ta the MySGL driver,

Since our experience with the hMySGL driver told us, that it was impossible to specify the
username and password directly in the database URL, we also instroduces two extra
fields; dbUsername and dbPassword. These has ta be set in the constructor, which is
why we also change the instantiationof the DBHandler.

This has the conseguence the we have to add two extra parameters for the entire
stregsystem as opposed to the Informix version of the system, that only needed one
parameter for the database.

Discussion

There was a very good reason for the choice of the Informix database, The local Informix
datahase is used hy the systemadminstration, and is therefor much more likely to he
S i

chocl ba tao £ Thao bdor) ool il thor ool |

ok

Figure A.3: A concrete example of a documentation node of the type “Ghdegcription”.

96 Examples of different node types and link roles

An example of the usage of this node type could be to docurhanatVisitor Pattern
is used in the implementation of the Abstractor componesd Gection 2.1 on page 9
for further information on the component) found in our Eldetior tool.

ProcessA process node should describe the interaction and flownatlrin the software
system. This means that this type of node will e.g., docurhent different compo-
nents in a system interact with each other. The process ndtefign use links to
task node to describe the interaction and flow.

As an example of a process node in the description of thedtien between the Ab-
stractor, Data model and Generator components in the Etaritbol. See Section 2.1
on page 9 for information on the functionality of these comgats).

Task The task node is used for documenting a limited job the systeauld be able to
perform. This mean that this node type will typically be usedivide the documenta-
tion into manageable chunks. The task node type is ofteninssmhnection with the
process node type described above.

An example of a the usage of the task node could be a systenh wtues its prefer-
ences in afile. The task of loading these preferences will teedocumented in a task
node (and the node may link to an aspect node describing relealding of files are
generally handled in the system).

Entity implementation This node is used to describe details of the implementaticm o
entity (such as a package, a class or a method). It is imgddarote the difference
between the entity implementation nodes and interfaceeatation produced with
the help of tools such as JavaDoc. Entity implementatiorerfoduses on the actual
implementation (used data types, algorithms and so onkvirtiérface documentation
focuses (or should focus) on the usage of the entities byifgperthe interface to the
entities.

An example of an entity implementation node could be the dwmiation of the XSL-

ProcesserPool class found in the implementation of theiddtor tool. This class

manages the accounting of a list of objects. In doing so itlusatex concepts and
these will then be documented in the entity implementatimehen

Essay Our final example of solution description nodes is the essalenype. This node
type is special in that is has no inherent structure and $ésluf no other node type in
the solution description category seems to fit.

An example of an essay node could be a overview over the Stsdg8. This docu-
mentation node explains the main components of the Strég®ysnd gives a UML
class inheritance diagram to explain the overall placenoémésponsibilities in the
system.

A.1 Examples of concrete node types

97

In progress

Concept name; A bstraction

Context

"We use abstractionwhen parsing the source and documentation files and staring
abstracted information in the datamodel,

C inti

The abstraction process is used to stare a simplified model of the relationsships in a set
of files.

Implementation

The class elucidator.abstractor.iMain uses javaAbstractor and edocAbstractor to
implements this concept.

If you want to read more then look The datamodel is used when storing the result for the
abstraction,

Figure A.4: A concrete example of a documentation node of the type “Gathce

98 Examples of different node types and link roles

In progress

Design Pattern name: Visitor natern

Context

The Visitor pattern is applied to the abstraction of Java source code. |t could also be applied to the abstraction of
edoc and/or other languages that the Elucidator needs to abstract.

Purpose

The purpose of the Visitor pattern s to have a seperate a class outside the KJC Java Compiler that can
traverse the AST provided by their Java compiler.

Boles

AbstractVisitor defines the interface for any Cancrete/isitor that whishes to traverse the Elements in the AST.
The Elements are all JPhylum’s from the K.JC package which defines the accept(Visitor) method.

The acutal visiting is done by the ConcreteVisitor for Java.

Collaborations

The visitation is started by the javafbstractor, The traversal is initiated in the run method when all the AST's
has been generated for each Java file.

Iote that the AbstractVisitor handles the default traversal of the AST nodes in a left to right manner. Thus there is
no need to implement visitor methods for Elements which is irrelevant for the Concrete’/isitor.

L inti

The implementation is straightforward and hased on the paftern described in the GoF hook. The only remark is that
the AST from the KJC compiler contains Elements that represent comments which is not true visitable nodes. This
is probably fized in the newer versions of KJC, but they do not include all the changes we need to have complete
access to the AST. The handling of comments is therefore processed specially in the visitor.

Figure A.5: A concrete example of a documentation node of the type “Dgsadtern instance”.

A.2 Examples of link roles 99

A.2 Examples of link roles

The following description of link roles is supplementaryth@ other link roles described in
the Design chapter in Section 4.3.2 on page 57.

Uses/Used-by:The Usesrole is used to specify that the documentation presentedrires
documentation node, in order to explain something, usethandocumentation node.
Symmetrically, theUsed-bylink is used to specify that some documentation node is
used by another documentation node.

An example of the usage of this role, could be that a docurtientaode describing the
main Abstractor components of the Elucidator tool, wantsgecify that the Abstrac-
tor uses two other components (that is, the JavaAbstrantbtlee EDocAbstractor),
which are documented in separate nodes.

Detail-of/Detailed-by: TheDetail-ofandDetailed-byroles are similar to the Uses/Used-by
role. The main difference is that this role, contrary to treeklUsed-by role, expresses
a difference in the level of detail in the two documentatiodes.

An example of the this role could be that a documentation raeeribing the Ab-

stractor might mention that it is implemented by using a tdisPattern, and a link
with the role Detailed-by is then made to a documentatiorerd&bscribing the details
of how this instance of the Visitor Pattern is implemented.

Reuses/Reused-byThe Reusesole is used in development situations where the writer
wants to explicitly state that some part of the developedesysvas reused from an-
other system. In this case he makes a link with the role Refus@sa documentation
node describing how the piece of software is reused, to ardentation node which
is documenting the software which is being reused.

Implements/Implemented-by: The final link role isimplementsAs the name implies this
role is used to express that something described in the dextation is implemented
by a source code node. Typical examples, could be key comp®ata system which
is documented as concepts of the system. In these concegs finkls with the role
Implemented-hyand destination anchor in a source code node, could bedolace

An example of the usage of this role is present in the docuatientfor the Elucidator
tool. In this documentation, a concept node describingratisbn is placed. In this
node a link with the role Implemented-by is made to the clasglwimplements the
abstraction concept.

100 Examples of different node types and link roles

Grammar for the EDoc
language

This is the grammar for the EDoc language. The grammar isfgpeta@s a DTD [Bray et al.,
1993].

edoc2.dtd

<?xml version="1.0" encoding ="UTF8" ?>
<!——DTD for the Elucidator 2.0-—>

5<!——The Elucidator is a part of the DOPU research programme, seg
<!—— http :// dopu.cs.auc.dk—>

<!—— The edoc element is the root element. The element corrosgond——>

<!——a node in the Elucidator . It contains one element that speesf——>
10 <!—— the type of the node——>

<!——In this version we only support the essay node type->

<!ELEMENT edoc (essay| requirement | bug—report | improvement |

rationale | change-description | concept | aspect|
task | process | entity—implementation |

15 design—pattern—instance)
<l—— ->
<!—— HEAD ELEMENT AND SUBELEMENTS ——>
20 <!—— ->
<!—— The head element is to appear in all different types of nodeld —>

<!—— contain the fixed part of the node: Topic, Abstract, Keywsrénd——>
<!—— Status ——>
25 <IELEMENT head (topic, abstract, status, keywords ?, autRlpr
created , lastupdated)

<!—— The Topic element contains a topic heading for the node. Frem

<!—— the STOP method we have the following recomandations for the
30 <!—— contents of the topic+—>
<!—— The topic heading must characterize and introduce the thtiéma—>

101

102 Grammar for the EDoc language

<!—— content, not merely categorize (label) the node body. Topic>

<!—— headings are more likely to be representative and topicathy>
<!—— faithful if they are (1) constructed as sentence fragmentsd-a—>
35 <!——(2) rewritten after composition of the node—>

<IELEMENT topic (# PCDATA)>

<!—— The author element just contains the name of the author for caen——>
<!ELEMENT author (# PCDATAY>

40
<!—— The abstract element contains a abstract for the node. From—t>
<!——STOP method (again) we have the following recomandations fhe ——>
<!—— contenst of the abstract (Thesis sentences in the STOP
<!—— method).:——>

45 <!—— It is supposed to be a thematic window into the contents of the
<!——node. Some more bla. on how to write a good abstraet>

<IELEMENT abstract (#PCDATA)>

<!—— The keyword element contains a list of important keywordsroni——>
50 <!——the node. The kw element contains the single keywords>

<IELEMENT keywords (kwk>

<!ELEMENT kw (# PCDATA}>

<!—— Elements to keep track of important dates and times for the
55 <!—— node.——>

<IELEMENT created (#PCDATA)>

<IELEMENT last—updated (#PCDATA)>

<!—— The status element contains a textual representation of -the
60 <!—— status of the node: NEW, INPROGRESS and FINISHED. Additibneext ——>
<!——can be written ——>
<!ELEMENT status (new| inprogress | finished >
<IELEMENT new EMPTY>
<IELEMENT inprogress EMPTY¥
65 <!ELEMENT finished EMPTY>

<I—— ——>
<!—— STANDARD ELEMENTS ——>
70 <!—— ——>
<!—— The section element contains a title and more text->

<IELEMENT section (title , (p¥)>
<IATTLIST section

75 label ID # IMPLIED
shase CDATA # IMPLIED
>
<!—— The title element just contains a title for a section o>

80 <!—— figure .——>
<IELEMENT title (# PCDATA}x>

<!——The ordinary paragraphs—>
<!IELEMENT p (#PCDATA | figure | itemize | enumerate| desc |
85 eimage | xlink | slink | dlink | term}>

<!——The figure element are for figures in the edoc document>
<IELEMENT figure (body, title >
<IATTLIST figure

90 label ID # IMPLIED
>
<!—— The eimage element are for images that are a part of the
<!—— Elucidative documentation . Since we do not validate the>

95 <!—— documents , the writer is free to add any attributes . We-do>
<!——require that the href attribute points to some file in the ede->
<!—— bundle .—>
<!ELEMENT eimage EMPTY
<IATTLIST eimage

103

100 src CDATA #REQUIRED
>

<!——The body of the figures——>
<!ELEMENT body (# PCDATA| itemize | enumerate| desc |
105 eimage | xlink | slink | dlink | termx>

<!—— The itemize , enumerate and desc elements are typographicat
<l—— elements ——>
110 <!ELEMENT itemize (item¥>
<IELEMENT enumerate (items>
<IELEMENT desc (pair}>
<IELEMENT pair (nhame, item})
<!ELEMENT name (# PCDATA}>
115 <!ELEMENT item (# PCDATA)>

<!——The term element is used for making idexes—>
<!ELEMENT term (# PCDATA)>

120 <!—— The xlink is a URL to an external document>
<IELEMENT xlink (# PCDATA)>
<IATTLIST xlink

role (detail-of | detailed-by |
describes | described-by |
125 mentions | mentioned-by |

implements | implemented-by |
uses | used-by |
premise | premise-for |
declines | declined—by |

130 selects | seleceted-by |
deprecates| deprecatedby |
introduces | introduced-by |

reuses | reused-by) # REQUIRED
href CDATA # REQUIRED
135 >
<!——The slink is a link to some symbol in java source, included —ia>

<!——the elucidator bundle-—>
<IELEMENT slink (# PCDATA>
140 <!ATTLIST slink
role (detail-of | detailed—by |
describes | described-by |
mentions | mentioned-by |
implements | implemented-by |
145 uses | used-by |
premise | premise-for |
declines | declined—by |
selects | seleceted-by |
deprecates| deprecatedby |

150 introduces | introduced-by |
reuses | reused-by) # REQUIRED
href CDATA # REQUIRED
>

155 <!—— The dlink is a link to some node in the edoc bundle->
<!ELEMENT dlink (# PCDATA)>
<IATTLIST dlink

role (detail-of | detailed—by |
describes | described-by |
160 mentions | mentioned-by |

implements | implemented-by |
uses | used-by |
premise | premise-for |
declines | declined-by |

165 selects | seleceted-by |
deprecates| deprecatedby |
introduces | introduced-by |

170

175

180

185

190

195

200

205

210

215

220

225

230

235

104 Grammar for the EDoc language
reuses | reused-by) #REQUIRED
href CDATA # REQUIRED
>
<!—= ->
<!—— ELEMENTS USED IN THE NODES——>
<I—= ->

<!ELEMENT description (p| section >
<IATTLIST description
shase CDATA # IMPLIED
label CDATA # IMPLIED
>
<!ELEMENT specified—by (p | section x>
<IATTLIST specified—by
shase CDATA # IMPLIED
label CDATA #IMPLIED
>
<IELEMENT concerning (p| section ¥>
<IATTLIST concerning
shase CDATA # IMPLIED
label CDATA #IMPLIED
>

<!ELEMENT forces (p| section x>
<IATTLIST forces
sbase CDATA #IMPLIED
label CDATA #IMPLIED
>

<IELEMENT solution (p | section >
<IATTLIST solution
sbase CDATA #IMPLIED
label CDATA #IMPLIED
>

<!ELEMENT discussion (p| section x>
<IATTLIST discussion
sbhase CDATA # IMPLIED
label CDATA #IMPLIED
>

<IELEMENT dictionary (pk>
<IATTLIST dictionary
sbase CDATA #IMPLIED
label CDATA #IMPLIED
>

<!ELEMENT concept-name (# PCDATA}>

<!IELEMENT pre—condition (p | section x>
<IATTLIST pre—condition
sbase CDATA # IMPLIED
label CDATA # IMPLIED
>

<IELEMENT post—condition (p | section ¥>
<IATTLIST post—condition
shase CDATA # IMPLIED
label CDATA #IMPLIED
>

<IELEMENT applicable—to (p | section >
<IATTLIST applicable—to
sbase CDATA #IMPLIED
label CDATA #IMPLIED
>

105

<IELEMENT design—pattern—name (# PCDATA)»

<IELEMENT context (p| section >
240 <!ATTLIST context
shase CDATA # IMPLIED
label CDATA #IMPLIED
>

245 <!ELEMENT purpose (p| section x>
<IATTLIST purpose
shase CDATA # IMPLIED
label CDATA #IMPLIED
>
250
<IELEMENT roles (p | section ¥>
<IATTLIST roles
sbase CDATA #IMPLIED
label CDATA #IMPLIED
255 >

<!ELEMENT collaborations (p| section ¥>
<IATTLIST collaborations

shase CDATA # IMPLIED
260 label ~ CDATA #IMPLIED
>
<— -—>
265 <!—— THE ESSAY NODE ——>
<— -—>

<!—— This node type only contains a head and no additional
<!——the content ——>
270 <!ELEMENT essay (head, (p section x)>
<IATTLIST essay
sbase CDATA #IMPLIED

>

275
<I—= ——>
<!—— THE REQUIREMENT NODE ——>
<I—= ——>

280 <!ELEMENT requirement (head, (description , specifieldy))>
<IATTLIST requirement

shase CDATA #IMPLIED
>
285
<l—— ——>
<!—— THE BUG REPORT NODE——>
<l —>

290 <!ELEMENT bug-report (head, (concerning, description>))
<IATTLIST bug-report
sbase CDATA #IMPLIED

>

295
< ——>
<!—— THE IMPROVEMENT NODE ——>
<—— ——>

300 <!ELEMENT improvement (head, (concerning, description))
<IATTLIST improvement
sbase CDATA #IMPLIED
>

eleméort —>

305

310

315

320

325

330

335

340

345

350

355

360

365

370

106 Grammar for the EDoc language

<—- -2
<!—— THE RATIONALE NODE ——>
<l >

<!ELEMENT rationale (head, (forces, solution , discussiop)
<IATTLIST rationale
sbase CDATA # IMPLIED

>
<I—- ->
<!—— THE CHANGE DESCRIPTION NODE——>
<I—- ->

<!ELEMENT change-description (head, (forces, solution, discussiop))
<IATTLIST change—description
shase CDATA # IMPLIED

>

< ——>
<!—— THE CONCEPT NODE——>
< ——>

<!ELEMENT concept (head, (concephame, context, description , dictionary ®)
<IATTLIST concept

shase CDATA # IMPLIED
>
< >
<!—— THE ASPECT NODE ——>
< >

<!ELEMENT aspect (head, (applicableto, description)}
<IATTLIST aspect
sbase CDATA # IMPLIED

>

<|77 S
<!—— THE TASK NODE ——>
<|77 S

<IELEMENT task (head, (context, purpose, pfeondition, postcondition,
description)
<IATTLIST task

shase CDATA #IMPLIED
>
<l—— ——>
<!—— THE PROCESS NODE——>
<l —>

<!ELEMENT process (head, (context, purpose, description))
<IATTLIST process

sbase CDATA #IMPLIED
>
< s
<!—— THE ENTITY IMPLEMENTATION NODE ——>
<= Y

<!ELEMENT entity—implementation (head, (slink , purpose, descriptiop))
<IATTLIST entity —implementation

sbase CDATA #IMPLIED
>

107

<l—— ->
<!—— THE DESIGN PATTERN INSTANCE NODE——>
<l—— —->

375 <!ELEMENT design—pattern—instance (head, (desigppattern—name, context,
purpose, roles, collaborations,
description)}

<IATTLIST design—pattern—instance
shase CDATA # IMPLIED

380 >

108 Grammar for the EDoc language

Templates for
documentation nodes

In the following sections the different templates for thedadypes, that are implemented
in the Elucidator 2 environment is presented. The commentsked with<!-- com-
ment -->) are the guidelines that instruct the writer in using theiates.

The template for the fixed part is placed between thead > tags. Since this part of the
templates is duplicated in all the templates, we only phetfull header in the first template
in order to save space. In the remaining templates threq dot9 is placed where the fixed
part template should go.

C.1 Templates for Motivations

Requirement

<edoc>
<requirement>
<head>
5
<!—— The topic must characterize and introduce the thematic eons of——>
<!——the node, not merely categorize (label) it. The topic shoudtn——>
<!——to convey positions and results . Topics are more likely to-be>
<!—— representative and topically faithful if they are (1) comstted as——>
10 <!—— sentence fragments and (2) rewritten after composition dfe tnode ——>
<topic>
</topic>
15 <!——The abstract is supposed to be a thematic window into +the-
<!—— contents of the node. The abstract must boil down the nodeybed>
<!——to typicalle 35 lines of text. It should expose rationales, resuks>
<!——and main characteristics of content of the node->

109

110 Templates for documentation nodes

<abstract>
20
<labstract>
<!—— The status of the node, being new, inprogress or finished>
<status><new/></status>
25

<!——A list of representative keywords for the node-—>
<keywords><kw></kw></keywords>

<!—— The name of the author that has last change the node (Will-be
30 <!—— filled in automatically).——>
<author> </author>
<created> </created>
35 <last—updated> </last—updated>
</head>
<!——A description of the requirement-—>
40 <description>
</description>
45 <I—— A report of the parties that has specified the requirement>
<specified-by>
</specified—by>

50 </requirement>
</edoc>

Bug report

<edoc>
<bug-report>

<head>
5...
</head>
<!—— This section of the bug report should contain information oab——>
10 <!——which areas (classes) of the system, that are affected by-the
<!——bug. It would be a good idea to make slinks, role: mentions—te>

<!—— mark these ——>
<concerning>

15 </concerning>

<!——The description of the bug report should contain informatie—>

<!—— about the nature of the bug. It should also state the condisie—>
<!—— under which the error occurs, and possible suggestions fep

20 <!—— correction of the error. Debugger traces etc. could also-be
<!——included here——>

<description>

</description>
25

</bug-report>

</edoc>

Improvement

C.2 Templates for Rationales 111

<edoc>
<improvement-

<head>
5...
</head>

<!—— A overview of which specific part of the system the improvemie-—>

10 <!—— suggest to improve . This will typically be extressed with ethhelp——>
<!—— of a number of slinks, role: mentions to the involved entisie——>
<concerning>

</concerning>

15
<!——The actual description of the suggested improvement>
<description>

</description>
20

</improvement>
</edoc>

C.2 Templates for Rationales

Rationale

<edoc>
<rationale>

<head>

5...
</head>
<!——The forces section should contain a short description of the-

10 <!——driving forces and motivation for this rationale . The desgtion ——>
<!—— should contain a number of dlinks, role:premise to motivati——>
<!——nodes, describing the motivations in detail, and/or a numbe>
<!—— slinks , role:premise to special parts of the system that>
<!—— motivates this rationale . Finally the section should coimta—>

15 <!—— argumentation for the selected and declined solutions>
<forces>
</forces>

20 <!——The solution part presents the selected solution . If altative ——>
<!——and/or declined solutions exists they are mentioned to. sTliart——>
<!—— will typically contain dlinks, role:slects and role: declé to——>
<!l—— detailed documentation of the selected and/or declired>
<!—— solutions ——>

25 <solution>

</solution>

<!——A discussion of consequences of the select/declined s®osi—>
30 <!——including personal subjective assessments->

<discussiomn>

</discussion>

35 </rationale>
</edoc>

112 Templates for documentation nodes

Change description

<edoc>
<change-description>

<head>

5...
</head>

<!——The forces section should contain a short description of the

10 <!——driving forces and motivation for this change descriptionThe——>
<!—— description should contain a number of dlinks, role:premiso——>
<!—— motivation nodes, describing the motivations in detail ,ddor a—>
<!—— number slinks, role:premise to special parts of the systematt——>
<!—— motivates this change description . Finally the section uslo——>

15 <!—— contain argumentation for the selected , declined and depted——>
<!—— solutions ——>
<forces>
</forces>

20
<!—— The solution part presents the selected solution, and the
<!—— solution that where deprecated by the change. If alternativ>
<!——and/or declined solutions exists they are mentioned to. sTlgart——>
<!—— will typically contain dlinks, role:introduces , role:depates ——>

25 <l——role : declines to detailed documentation of the selected >
<!—— depricated and/or declined solutions—>

<solution>

</solution>

30
<!——A discussion of consequences of the select/declined s®osi—>
<!——including personal subjective assessments->

<discussion>
35 </discussion>

</change-description>
</edoc>

C.3 Templates for Solution descriptions

Concept

<edoc>
<concept>

<head>
5...
</head>

<!—— The name of the concept. May not contain any markup-—>
10 <concept-name>

</concept-name>
<!——If the concept resides in a special context, this context—is>

15 <!—— described here. This will typically be though a short oveswi of the——>
<!—— place in the system where the concept is relevant . It may beoadg—>

<!——idea to use slinks, role:mentions, role: describe -6f>

C.3 Templates for Solution descriptions 113

<!——role : implementedby to provide this overview——>
<context>

20
</context>

<!—— The actual description of the concept—>
<description>

25
</description>

<!—— OPTIONAL. Any citations from dictionaries , that will helpot——>
<!—— clarify the concept——>

30 <dictionary>
<p>

</p>

<l/dictionary>
35

</concept>

</edoc>

Aspect

<edoc>
<aspect>

<head>

5
</head>

<!—— This section should state which parts of the system the atpec——>

10 <!—— applicable to. It may also contain arguments and/or referesn to——>
<!—— arguments placed in rationale nodes, as to why the aspect-s
<!—— applicable . References to arguments should be done with—=a

<l——dlink , role : selectedby——>
<applicable-to>

15
</applicable—to>

<!——The actual description of the aspect. This may also contair—a
<!—— description of special conditions in relation to the aspecas——>
20 <!—— well as special consequences and exceptions>

<description>
</description>

25 </aspect>
</edoc>

Design pattern instance

<edoc>
<design—pattern—instance>

<head>

5...
</head>

<!—— The name of the design pattern. May not contain any markup>
10 <design—pattern—name-
</design—pattern—name-

<!—— This part should give the reader a orientation of the part dfet+—>

114 Templates for documentation nodes

15 <!—— system, where the design pattern instance resides>
<context>

</context>

20 <!——A short description of why, and for what purpose, the desigrmatfern——>

<!——was selected . It will typically contain a number of dlinks;+>
<!——role :selected-by, declined-by, introduced-by, deprecatedby and——>
<!——reused-by to rationale or changedescription nodes in order to provide—>
<!—— further information on why the design pattern was selected->
25 <!—— If necessary it may also contain a number of dlinks, role: Iempents——>
<l——to aspect or concept nodes—>
<purpose>
</purpose>
30
<!—— States which classes in the system play the different rolefs—e>
<!——the design pattern. The writer should briefly outline eacllea——>
<!——and how it contributes to the patterns essence . This part -may
<!—— contain a number of slinks, role: implements . We recommendatt the——>
35 <!—— text in the slink, be the name of the role in the design pattern>
<roles>
<lIroles>

40 <!—— This part should contain a report of the interaction of the>
<!—— system and the design pattern instance . This part may contai—>
<!—— number of slinks, role: describes and mentionrs=>
<collaborations>

45 </collaborations>

<!—— A description of the instantiation (implementation) of thdesign——>

<l—— pattern . This may be special adaptations and changes to—the
<!—— original design pattern. This part may contain a number ofinkls,——>
50 <!——role : describes and mentions—>

<description>
</description>

55 </design—pattern—instance>
</edoc>

Entity implementation

<edoc>
<entity—implementation>

<head>
5...
</head>

<!——A link to the entity being documented here. The can be a paekag->
10 <!——a class, a method or perhaps even a field, if the structure-

<!—— of the field requires special explanatiop—>

<slink ></slink >

<!—— The purpose and responsibilities of the entity . This partyma>

15 <!—— contain a number of dlinks, role: selectedy, declined-by,——>
<!——introduced-by and deprecatedby to rationale or change descriptions—>
<purpose>
</purpose>

20

<!—— A description of the entity . This could e.g., be how it works+>
<!—— difficult algorithms or any special requirements that thentety —>

C.3 Templates for Solution descriptions 115

<!——impose on the rest of the system—>
<description>

25
</description>

<lentity —implementation
</edoc>

Process

<edoc>
<process>

<head>

5...
</head>

<!—— The context section should give an overview over the part dfe +—>
10 <!—— system, that the process if a part of—>

<context>

</context>

15 <!—— A report of the rationale and purpose of the process. This tpa+r>

<!——may contain a number of dlinks, role:selectelly, ——>

<!——role :declined-by, role:introducedby, role:deprecatedby and——>

<!——role : reused-by to rationale or changedescription nodes. It may—>

<!—— also contain a number of dlinks, role:implements to aspeat—e>
20 <!—— concept nodes——>

<purpose>

</purpose>

25 <!——A description of the process, the involved parts of the syste—>
<!——and how they collaborate . The process description may natiyr——>
<!—— refer to a number of task with dlink, role:detailedby or——>
<!——role :uses——>
<description>

30
</description>

</process>
</edoc>

Task

<edoc>
<task>
<head>
5...
</head>
<!——The context section should give an overview over the part dfe +—>
10 <!—— system, that the task if a part of—>
<context>
</context>
15 <!——A report of the rationale and purpose of the process. This tpar>
<!——may contain a number of dlinks, role:selectely, ——>
<!——role :declined-by, role:introducedby, role:deprecatedby and——>
<!——role :reused-by to rationale or changedescription nodes. It may—>

<!—— also contain a number of dlinks, role:implements to aspeat—e>

116 Templates for documentation nodes

20 <!—— concept nodes——>
<purpose>

</purpose>

25 <!——A description of the special pre conditions that the task>
<!——requires ——>
<pre—condition>

</pre—condition>
30
<!——A description of the conditions the are ensured after the ktais ——>
<!—— performed ——>
<post—condition>

35 </post—condition>
<!——A description of the task, the involved parts of the systemdan>
<!——how the purposes of the task are accomplished . The task mderre—>

<!l——to a process with dlink, role:detaHof or role:usedby.——>
40 <description>

</description>

</task>
45 </edoc>

Essay

<edoc>
<essay>

<head>
5...
</head>

<lessay>
10 </edoc>

Statistics for the
StregSystem project

The following tables shows statistical for the StregSyséxperiment. The data is gathered
by querying our Data model. Table D.1 and Table D.2 on thevalg page shows informa-

tion concerning documentation and source code entitidsleTa.3 on the next page shows
how often the three link typesidiink >, <slink > and<xlink > was used and which roles
they were assigned.

| Documentation entity | Count|
Edoc Files 26
Documentation entities 317
Catalogs 9
Documentation nodes 26
Links 134
Other entities 148
Documentation to documentation relationships| 927
implicit relationships 897
explicit relationships 30
Documentation to Source relationships 75
explicit relationships 75

Table D.1: Documentation entity Statistics for the StregSystem

117

118 Statistics for the StregSystem project

| Source entity | Count|
Java files 15
Source entities 291
Packages 2
Classes 15
Fields 21
Methods 71
Parameters 120
Variables 51
Source markers 3
Source to source relationshipy 824
containment 169
access 514
invoke 76
creation 22
throws 22
typeof 13
extends 7
returntype 1

Table D.2: Source entity Statistics for the StregSystem

| Type/Role | <diink > [<slink > | <xiink > [Total |

Premise 4 4
Selects 4 4
Introduces 2 6 8
Declines 1 4 5
Deprecates 2 2 4
Described-by, (1)6 41 110
Describes (148 (148
Mentions (1)6 (4)19 12 (5)37
Detail-of 3 3
Detailed-by 4 4
Uses 7 7
‘ Total ‘ (2)32 ‘ (11)75 ‘ 27 H (13)134 ‘

Table D.3: Link type and role statistics for the StregSystem. Numlmepaienthesis are number of
links that had an invalid destination

Bibliography

[Beck, 1999] Beck, K. (1999)Extreme Programming Explained: Embrace Changddi-
son Wesley Publishing Company.

[Bray et al., 1998] Bray, T., Paoli, J., and Sperberg-McQuege. M. (1998). Extensible
markup language (xml) 1.0ttp://www.w3c.org/XML

[Brown and Childs, 1990] Brown, M. and Childs, B. (1990). Andractive environemt for
literate programming. IrStructured Programmingvolume 11, pages 11-25. Springer-
Verlag, New York Inc., Computer Science Department, Ursitgrof Alabama, Box
870290, Tuscaloonsa, AL 35487-0290.

[Brown and Czejdo, 1990] Brown, M. and Czejdo, B. (1990). Aoéstext for literate pro-
gramming. In Akl, S. G., Fiala, F., and Koczkodaj, W. W., edst Advances in Computing
and Information Department of Computer Science, University of Alabamas 860290,
Tuscaloosa, AL 35487-0290.

[Chen et al., 1995] Chen, Y.-F. R., Fowler, G. S., Koutsoftasand Wallach, R. S. (1995).
Ciao: A graphical navigator for software and document ré@pass. InInternational
Conference on Software Maintenance, 1995. Proceedipgges 66 — 75. AT&T Bell
Laboratories, 600 Mountain Avenue, Murray Hill NJ 07974.

[Christensen et al., 2000] Christensen, C. N., AnderserRMKumar, V., Staun-Pedersen,
S., and Sgrensen, K. L. (2000). The elucidator — for java.hmaal report, Aalborg
University, Department of Computer Science. Can be fouad hitp://dopu.cs.
auc.dk .

[Conklin, 1987] Conklin, J. (1987). A survey of hypertext. ACM Hypertext on Hypertext
ACM. Available online through:http://www.ai.univie.ac.at/%7Epaolo/
Iva/vu-htmm21999/

[Conklin and Begeman, 1987] Conklin, J. and Begeman, M. 887). gibis: a hypertext
tool for team design deliberation. FRroceeding of the ACM conference on Hypertext
pages 247-251.

[Davidson and Coward, 1999] Davidson, J. D. and Coward, 399). Java servlet
api specification, version 2.2.http://java.sun.com/products/servlet/
download.html#specs

119

120 Bibliography

[Fielding et al., 1999] Fielding, R., Gettys, J., Mogul, Brystyk, H., Masinter, L., Leach,
P., and Berners-Lee, T. (1999). Hypertext transfer prdteednttp/1.1. http://www.
wa3.org/Protocols/

[Fischer and Jensen, 1990] Fischer, L. P. and Jensen, R)19¢rate programming in an
industrial environment. Unpublished.

[Gamma et al., 1995] Gamma, E., Helm, R., Johnson, R., ars$ides, J. (1995)Design
Patterns - Elements of Reusable Object-Oriented Softweddison-Wesley Professional
Computing Series. Addison-Wesley.

[Horn, 1992] Horn, R. E. (1992). Commentary on the nurnbengnel. The Journal of
Computer Documentatioi6(1):8.

[Horn, 1999] Horn, R. E. (1999). Two approaches to moduylatiiomparing the stop ap-
proach with structured writingThe Journal of Computer Documentatj@3(3):7.

[Kinnucan, 1999] Kinnucan, P. (1999). Java developmeniremment for emacshttp:
/Isunsite.auc.dk/jde/

[Knuth, 1984] Knuth, D. E. (1984). Literate programmingThe Computer Journal
27(2):97-111.

[Korn et al., 1999] Korn, J., Chen, Y.-F. R., and Koutsofios,(1999). Chava: Reverse
engineering and tracking of java applets. pages 314 — 325.

[Mathiassen et al., 1997] Mathiassen, L., Munk-Madsen,Melsen, P. A., and Stage, J.
(1997). Objekt orienteret analyse og desigdarko Publishing.

[Merriam-Webster, 1997] Merriam-Webster (199Merriam-Webster’'s Collegiate Dictio-
nary. Merriam-Webster, Incorporated, Springfield, MassactiugeS.A., 10th edition.

[Naur, 1985] Naur, P. (1985). Programming as theory bugdMicroprocessing and Micro-
programming(15):253—-261. Also appears in the book “Computing: A HurAativity”.
Addison-Wesley Publishing Company.

[Nelson, 1999] Nelson, T. (1999). Xanalogical media: Nekdew more than evehttp:
Ilwww.sfc.keio.ac.jp/ ted/XU/XuSum99.html . This article is still being
revised. It has been tentatively accepted for the ACM CompguBurveys hypertext issue.

[Ngrmark, 2000a] Ngrmark, K. (2000a). An elucidative preogming environment for
scheme. InProceedings of the Ninth Nordic Workshop on Programmingr&ninent
Research, Norway

[Ngrmark, 2000b] Ngrmark, K. (2000b). Requirements for ltielative programming en-
vironment. InProceedings of the 8th International Workshop on Programtm@@hen-
sion, Ireland

Bibliography 121

[Negrmark and @sterbye, 1995] Ngrmark, K. and @sterbye, K9%). Rich hypertext:
a foundation for improved interaction techniquesnternational Journal on Human-
Computer Studie$43):301-321.

[Nowack, 2000] Nowack, P. (20005tructures and Interactions — Characterizing Object-
Oriented Software Architecturd’hD thesis, The Maersk Mc-Kinney Moller Institute for
Production Technology, University of Southern Denmarke@sk University, Campusvej
55, DK - 5230 Odense M, Denmark.

[Dsterbye, 1995] Dsterbye, K. (1995). Literate smalltatkggamming using hypertext.
IEEE Transactions on Software Engineerj2§:138 — 145.

[Parnas and Clements, 1986] Parnas, D. L. and Clements, (R986). A rational design
process: How and why to fake IEEE Transactions on Software Engineeriag(2):251—
257.

[Pressman, 1997] Pressman, R. S. (199 8oftware Engineering. A Practitioner's Ap-
proach McGraw-Hill Series in Computer Science. McGraw-Hill, 4itgzh.

[RUping, 1998] Ruping, A. (1998). The structure and layaf technical docu-
ments. http://www.coldewey.com/europlop98/Program/workshop 3.
html#Ruepingl

[Sametinger, 1992] Sametinger, J. (192PgMA: A tool for the documentation and main-
tenance of software systeméerband der wissenschaftlichen Gesellschafsterreichs
(VWGO).

[Sametinger, 1994] Sametinger, J. (1994). Object-orgtdteeumentationJournal of Com-
puter Documentatiorl8(1):3—-14.

[Sanvad et al., 2000] Sanvad, E., @sterbye, K., Madsen, @jé&tring, C., Kammeyer, O.,
Skov, S. H., Hansen, F., and Hansen, F. O. (2000). Docunemtat oo systems and
frameworks. COT/2-42-V1.2, Unpublished.

[Tracey et al., 1999] Tracey, J. R., Rugh, D. E., and StarkéyS. (1999). Sequential
thematic organization of publications (stop)he Journal of Computer Documentatjon
23(3):7.

122 Bibliography

A
abstract.............. 53
abstractor 10,42

B
Beck,Kent...............oviii... 2
browser....................... 10, 41

C
change description................... 49

D
datamodel.................... 11, 42
deliberative categories 23,46, 51
developer..............l 20
diSCO. ... 1972
documentation node........... 26, 46

fixedpart.................. 28,53
freepart................... 28,55
internal structure........ 28, 52,76

E
editor.........coiiiii 9,41
EDoclanguage...................... 40
Elucidative Programming 4
Elucidative environment 41
Elucidatortool................. 42, 82
entity................iia... 11, 4@5

entity/relationship model 11
namestandard................... 12

F
free structure 14, 26

G
generator.ooueun.. 10, 42
giBIS 36
guideline L 53

H
history 6, 31, 49, 82

123

holist............. L. 22
hypertext ..., 26
I
internal documentation................ 1
J
Java........... 40
K
keyword 54, 71
Knuth, DonaldE...................... 3
L
INK. ..o 29, 56
anchor.......................... 29
explicit..................... 30, 59
implicit 30, 60
organizational.............. 31,59
referential 31, 59
role.................... 29 57,76
type ..o 56
validation....................... 77
Literate Programming 3,35
longessayoiiiii... 14
looseends............... ...l 15
M
motivation.................. 23, 37,47
MRS-model.......... 23,27,75, 80, 81
deliberative categories............ 23
K .o 29
motivation...................... 23
rationale........................ 24
relationship..................... 29
solution description.............. 24
sub-category 46
N
Naur,Peter.......... ...t 2
navigation................. 6, 23, 32, 62

124 Index
contextview 66 thematiccatalog..................... 51
disorientation.............. 32, 62 tool support................ 14, 30, 82
entity indexview............ 70,78 abstraction...................... 14
global.......................... 68 direct navigation................. 14
hierarchal indexview 78 incremental update............... 15
hierarchic index view! 69 linkinsertion.................... 14
indexview...................... 68 tOPIC. .o 53
local ... 64
navigationmenu............. 64, 79) v
neighborhood ___________________ 66 VIEW ... 33
subject indexview 71 context............ ..., 33

navigation window 10, 15 INAEX .. oo 33

nodetype...........ooiiiiiiin... 46 W

Negrmark, Kurt 3 writer 6, 1420, 44, 75, 89

P

parallel hypertext.............. 14,79

post documentation.................. 15

proximity 4,35

Q
quality of software.................... 1
R

rationale 6, 2@4, 37, 48

reader 5,12]1,44,78

relationship.................... 29,55

S

serialist. ... 22

software development............. 17.
analysis. ... 17
change 19
creation. ..., 18
design........coviiiiiiiiiiiin.. 17
examination..................... 18
implementation.................. 17
OOA&D ...ttt 34,90
FEUSE . .ottt 19

solution description 2@4, 37,49

STOPmethod....................... 25

StregSystem ...l 73

structurel 6, 23, 26

Structured Writing................... 25
T

templates...................... h2, 76

