
Aalborg UniversityInstitute of Computer Siene � Fredrik Bajers Vej 7 � 9220 Aalborg �st.eTITLE:The Aware Design ToolA Tool Supporting a Data Warehouse Design MethodologyPROJECT PERIOD:February 2nd. - May 26th. 2000PROJECT GROUP:E1-209aTERM:Dat 6AUTHORS:Carsten NielsenFlemming N. LarsenPeter S. KristiansenSUPERVISOR:Netaria Tryfona

ABSTRACT:This Masters Thesis desribes the arhi-teture of the Aware Design Tool.The Aware Design Tool supports adata warehouse design methodology. Webriey desribe the advantages of utiliz-ing a design methodology.We desribe the arhiteture of theAware Design Tool. This inludes adesription of the ommuniation amongthe omponents in the Aware DesignTool. Furthermore, we desribe allthe omponents in the Aware DesignTool.We suggest expansions to the AwareDesign Tool. This inlude a Con-troller, a Guardian and a oneptualquery language.Finally, we onlude about our expe-rienes regarding the Aware DesignTool as well as providing suggestions tofuture work.NUMBER PRINTED: 8NUMBER OF PAGES: 90APPENDIX: 3 Copyright � 2000Group E1-209a

Aalborg UniversitetInstitut for Datalogi � Fredrik Bajers Vej 7 � 9220 Aalborg �st eTITEL:The Aware Design ToolA Tool Supporting a Data Warehouse Design MethodologyPROJEKT PERIODE:2. Februar - 26. Maj 2000PROJEKT GRUPPE:E1-209aSEMESTER:Dat 6FORFATTERE:Carsten NielsenFlemming N. LarsenPeter S. KristiansenVEJLEDER:Netaria Tryfona

SYNOPSIS:Denne rapport beskriver arkitekturen afet data warehouse design v�rkt�j, theAware Design Tool. ProgrammetAware Design Tool st�tter en datawarehouse design metodik. I denne rap-port beskriver vi kort fordelene ved atbruge en design metodik.Vi beskriver arkitekturen af v�rkt�jetAware Design Tool. Dette inklud-erer en beskrivelse af kommunikatio-nen mellem komponenterne i v�rkt�jetAware Design Tool.Vi foresl�ar udvidelser til v�rkt�jetAware Design Tool. Disse foreslaginkluderer en Controller, en Guardian oget koneptuelt sp�rgesprog.Til sidst konkluderer vi omkring vores er-faringer ang�aende v�rkt�jetAware De-sign Tool, og vi giver foreslag til frem-tidigt arbejde.OPLAG: 8SIDETAL: 90APPENDIKS: 3
Copyright � 2000Gruppe E1-209a

Preface

This Master's Thesis is the presentation of the results of group E1-209a'swork at Aalborg University, Institute of Computer Siene in spring 2000.This report onstitutes part I of the Master's Thesis. Part II of the Master'sThesis is a seperate report; The Aware Design Tool, A User Guide.Literature referenes are written on the form [Ora99a℄. A bibliography anbe found on page 89. Figures are enumerated by hapter number followedby a onseutive number within the hapter. All referenes to elements in�gures are written in italis.Aalborg, May 26th. 2000
Peter S. Kristiansen Carsten Nielsen

Flemming N. Larsen

Contents

1 Introdution 91.1 Motivation . 91.2 The Aware Design Tool Prototype 101.3 Our Contribution . 111.4 Contents of the Report . 122 Methodology 152.1 A Data Warehouse Design Methodology 152.2 The Design Phases . 172.2.1 The Coneptual Design Phase 182.2.2 The Logial Design Phase 182.2.3 The Physial Design Phase 192.3 The Aware Design Tool Supporting the Methodology . . . 193 Arhiteture of the Aware Design Tool 233.1 The General Arhiteture . 233.2 Communiation among the omponents in the Aware De-sign Tool . 263.3 Metadata Containers . 283.3.1 starER Metadata Containers 283.3.2 Snowake Metadata Containers 313.4 Parsers and Generators . 363.4.1 StarLanguage Parser & Generator 377

3.4.2 SnowLanguage Parser & Generator 383.5 Shema Translators . 393.5.1 starER to Extended Snowake 393.5.2 Extended Snowake to SQL 413.6 The Repository . 484 Expanding the Aware Design Tool 534.1 Maintaining Shemas . 534.2 The Controller . 544.3 Data Seurity . 584.4 Coneptual Query Language 615 Conlusion & Future Work 675.1 Conlusion . 675.2 Future Work . 68A The StarLanguage Syntax 69B The SnowLanguage Syntax 73C Translation Rules 77

8

1Introduction

This hapter begins with a desription of the motivation that has led to thereation of a data warehouse design tool, along with a presentation of theprevious work that led to the arhiteture of the design tool. Following, ourontribution to the data warehousing ommunity in this report is desribed.At the end of this hapter, the ontents of the rest of the report is desribed.1.1 MotivationThis report fouse upon the reation of a data warehouse design tool. Thisdesign tool supports the data warehouse design methodology whih was de-sribed in [NLK99℄. Beause of the theoretial advantages of utilizing thisdata warehouse design methodology, we deided to implement a tool to sup-port the methodology.The main advantage of utilizing a data warehouse design methodology isabstration. That is, the designer is provided with the ability to design adata warehouse using high-level onepts. This has the advantage that atthe oneptual design phase, the designer an work in onjuntion with theend-users of the data warehouse, and thereby the resultant data warehouseshema should reet the requirements of the end-user. At the logial designphase, the data warehouse designer is able to supply additional informa-tion, suh as data types and attribute domains. The physial design phaserepresents the atual implementation of the data warehouse, and allows thedesigner to speify implementation issues, suh as reord size.An important aspet of data warehouse modeling is the ability to limit the9

Chapter 1 Aware Design Tool Setion 1.2data to be loaded into the data warehouse. That is, not all data from thesoure systems are wanted in the data warehouse. For example, data re-garding ustomers below 18 years of age may not be of interest in the datawarehouse. One way to handle this is to introdue expliit onstraints aspresented in [NLK99℄. The onstraints presented are:� Existene Dependeny onstraints (EDs).� Domain Existene Dependeny onstraints (DEDs).� Equality Expressions (EEs).In this report, the names of the above listed onstraints have been altered inorder to larify the intension of these onstraints.Existene Dependeny onstraints (EDs) have been renamed to Entity Con-straints (ECs). Entity onstraints are used for onstraining entity sets. Thatis, by speifying an entity onstraint, the designer an limit instanes ofentities.Domain Existene Dependeny onstraints (DEDs) have been renamed to At-tribute Constraints (ACs). Attribute Constraints an be imposed on regularattributes1, and are used to limit instanes of attribute values.Equality Expressions (EEs) have been renamed to Summarizable AttributeConstraints (SACs). These onstraints are imposed on summarizable at-tributes. SACs are used for speifying how a summerizable attribute mustbe aggregated.1.2 The Aware Design Tool PrototypeA prototype of the Aware Design Tool has been implemented. Thissetion �rst provides a brief desription of the requirements to a data ware-house design tool. Following, the hoies regarding implementation issues ofthe prototype of the Aware Design Tool are desribed.In a previous report we identi�ed and desribed a number of general require-ments for a data warehouse design tool [NLK99℄. These requirements, brieyskethed, are:1A regular attribute is an attribute, that is not a summerizable attribute.10

Setion 1.3 Aware Design Tool Chapter 1� The design phases of the data warehouse design methodology must beexpliitly supported in order to take advantage of the bene�ts of thisdesign methodology.� It is desirable that the design tool is able to generate doumentationbased on the shemas. This would allow the data warehouse designerto verify the struture of the data warehouse regarding the data re-quirements provided by the end-users.� The design tool should supply on-line help, in order to assist the de-signer of the data warehouse. The on-line help must inlude a desrip-tion of the design methodology supported by the design tool, the datamodels and the languages supported in eah design phase.� The graphial user interfae of the design tool must be intuitive andeasy to use. This is neessary in order to redue the time spent onlearning how to use a design tool. Moreover, the intention of the de-sign tool is that the designer should fous upon the design of the datawarehouse, and not how to use the tool.The prototype of theAware Design Tool supports the oneptual and log-ial design phase fully, while it does not support the physial design phase. Atthe oneptual design phase, the Aware Design Tool supports the starERmodel, as desribed in [TBC99℄. At the logial design phase, the AwareDesign Tool supports the Extended Snowake Shema as desribed by[Kel99℄. In addition, the Aware Design Tool allows the data warehousedesigner to speify expliit onstraints at the oneptual design phse. Thephysial design phase is not supported in the Aware Design Tool. Cre-ation and management of the physial shema has been left for the Orale8.i DBMS.For the implementation, Windows NT has been hosen as the platform forthe prototype of the Aware Design Tool. The atual implementation isnot platform independent and therefore the Aware Design Tool is noteasily ported.1.3 Our ContributionThis setion ontains a brief summary of the ontributions provided by thisreport towards the data warehouse ommunity.11

Chapter 1 Aware Design Tool Setion 1.4The usefulness of utilizing a data warehouse design methodology already hasbeen established, as an be seen in [NLK99℄. Therefore, we propose that thearhiteture of a design tool should utilize a design methodology. In order tofailitate the ommuniation between the various omponents of this designtool, we propose the utilization of metadata for this ommuniation. Morespei�ally, the starER Metadata Containers should be used to ommuniateoneptual shemas, and the Snowake Metadata Containers should be usedto ommuniate logial shemas.We propose how to translate an Extended Snowake shema into SQL *Plusstatements. The translation enables the data warehouse shema, reated inthe Aware Design Tool, to be implemented in an existing DBMS.We propose how to translate the onstraints spei�ed on a starER shemainto onstraints for an Extended Snowake shema. Furthermore, we providemeans for translating onstraints into SQL *Plus statements.We propose the Aware Design Tool being expanded by the inlusion of aController. This Controller should be able to dynamially maintain shemas.We propose inlusion of data seurity into a design tool. We argue why it isneessary to administrate user groups at the oneptual design phase, andwe suggest how the Aware Design Tool an failitate suh funtionality.Finally, we propose a data mining tool to extrat and view data in a datawarehouse. This data mining tool should be partly independent from theAware Design Tool. Moreover, we exemplify how a graphial query lan-guage ould make it possible to speify oneptual queries.1.4 Contents of the ReportIn hapter 2, we present a methodology for data warehouse design. Thismethodology is based on the traditional database design methodology (see[BCN92℄ and [EN94℄). We argue why a data warehouse design methodologyshould be utilized as well as desribe the advantages gained by utilizingsuh a design methodology. Furthermore, the individual design phases ofthis methodology are desribed along with how the Aware Design Toolsupports data warehouse design methodology.In hapter 3, the arhiteture of the Aware Design Tool is desribed.First, the general arhiteture of the Aware Design Tool is desribed.Following, the ommuniation among the omponents in the Aware DesignTool is desribed. Thereafter, the metadata ontainers used for ommuni-12

Setion 1.4 Aware Design Tool Chapter 1ation within the tool are desribed. Then the parsers and generators usedin the oneptual and logial design phases are desribed. After this, thetranslators used between eah of the design phases supported in the AwareDesign Tool are desribed. The last setion in hapter 3 desribes therepository.Chapter 4 desribes the ideas for expanding theAware Design Tool. Firsta Controller is proposed. Subsequently, a brief desription of the suggestionsfor how data seurity an be integrated into the Aware Design Tool ispresented. Finally, a oneptual query language is proposed. This querylanguage should enable the end users to speify queries on a oneptualshema. For this purpose, we introdue a new tool, the Aware Query Tool.Finally, hapter 5 provides onlusions upon our work as well as giving sug-gestions for future work.

13

2Methodology

In this hapter, a data warehouse design methodology is desribed, alongwith the advantages of using a design methodology. This is followed by a de-sription of the individual design phases in the design methodology. Finally,it is desribed how the Aware Design Tool supports the desribed designmethodology.2.1 A Data Warehouse Design MethodologyDatabases are traditionally designed using a database design methodologythat onsists of three separate design phases (see [BCN92℄ and [EN94℄). Thedatabase design is divided into the oneptual, logial, and physial designphases. The onept of having these three seperate design phases has beenutilized toward the design of data warehouses by using a data warehousedesign methodology [NLK99℄.Figure 2.1 shows eah of the design phases that exists in the data warehousedesign methodology. Moreover, this �gure shows the input and output ofeah of the design phases.Designing a data warehouse starts with the data requirements supplied by theend-users of the data warehouse. These data requirements are proessed ineah of the design phases of the methodology. The result of the oneptualdesign phase is a oneptual shema that reets the data requirements,based upon a spei� oneptual data model. The oneptual shema is usedas input for the logial design phase, whih is based on a spei� logialmodel, e.g. the relational data model.15

Chapter 2 Aware Design Tool Setion 2.1
requirements

User

The conceptual design phase

The physical design phase

Conceptual
schema

Logical
schema

Physical
schema

The logical design phase

Figure 2.1: The phases of the data warehouse design methodology.The logial design phase fouses on modelling logial aspets of the data re-quirements e.g., the struture of a shema. The result of the logial designphase, i.e. a logial shema, is used as input for the physial design phase.The physial design phase is the �nal design phase, whih is dependent on aspei� physial data model i.e., a spei� DBMS system and a spei� plat-form. In the physial design phase, a physial shema is reated based on thelogial shema. The physial shema onstitutes the atual implementationof the designed data warehouse. The advantages of using a data warehousedesign methodology are:� Abstration: A data warehouse design methodology allows plaementof onepts at a proper level of abstration, whih redues the omplex-ity of the individual design phases. That is, high-level onepts suhas entity sets, relationship sets, hierarhies et. are modelled in theoneptual design phase, and onepts suh as tables, data types, andattribute domains are modeled at the logial level. Low-level oneptsthat are dependent on a spei� physial data model, suh as bloksizes and data partioning, are modelled in the physial design phase.� Doumentation: The output of eah design phase i.e., a shema, an16

Setion 2.2 Aware Design Tool Chapter 2be used as part of the data warehouse doumentation.� Evaluation: The shemas between the various design phases an be usedfor evaluating the orretness of the designed shema. This evaluationshould be performed by the persons that are involved in the designphases.� Maintenane: The data warehouse beomes easier to maintain by fol-lowing a design methodology. A hange upon the data warehouse willbe made in a spei� design phase. If the hange involves onep-tual aspets, the hange will be made in the oneptual design phase.Similarly, if the hange involves either logial or physial aspets, thehange will be be made at the logial or physial design phase respe-tively. Changes made in the oneptual or logial design phases arepropagated to the underlying design phases.� Reusability and Portability: The shemas from the oneptual and log-ial design phases an be reused, whih is useful if the data warehousemust be implemented on di�erent platforms. A oneptual shema isreusable, due to the fat that a oneptual shema must be independentof any implementation related issues. A logial shema is independentof the atual physial implementation, but reusable for the same logi-al data model only. That is, if a logial shema is based on e.g., therelational data model, the logial shema is reusable another DBMSthat supports the relational model.Now that the advantages of using a data warehouse design methodology havebeen desribed, eah of the individual design phases of the methodology aredesribed in the following.2.2 The Design PhasesIn this setion, the harateristis and advantages of eah design phase inthe data warehouse methodology are desribed. First the oneptual designphase is desribed. Seondly, the logial design phase is desribed, and �nallythe physial design phase is desribed.17

Chapter 2 Aware Design Tool Setion 2.22.2.1 The Coneptual Design PhaseThe purpose of the oneptual design phase is to model a data warehousebased on the data requirements provided by the end-users. The oneptualdesign phase fouses on modelling onepts by abstration. That is, theoneptual design phase fouses on modelling onepts that are well-knownto the end-users. Thus, the oneptual design phase should always strive toutilize as simple and expressive a oneptual data model as possible. As thenotions of simpliity and expressiveness are oniting, a balane betweenthese two terms must be reahed.The oneptual data model used in the oneptual design phase must beindependent of any implementation issues. This allows the design of thedata warehouse to initiate before deisions have been made regarding whattehnial platform to use for implementing the data warehouse.
2.2.2 The Logial Design PhaseThe purpose of the logial design phase is to onstrut a logial shemabased on the oneptual shema, provided from the oneptual design phase.The logial shema is required in order to map the onepts de�ned in theoneptual shema into onepts that exists in a spei� logial data model,e.g., the relational data model. This implies that a spei� logial datamodel have been hosen regarding the implementation of the data warehouse.Moreover, a spei� DBMS type have hosen, whih is based on this logialdata model. That is, if the relational data model has been hosen as thelogial data model, the data warehouse will be implemented on a relationalDBMS.The logial design phase is independent of the hoie of a spei� DBMS.This means that the logial shema an be reused in di�erent DBMS' thatsupports the same logial data model.At the logial design phase, additional information must be provided onthe logial shema, suh as de�ning data types and domains on attributes.Furthermore, at the logial design phase, it is possible to restruture thelogial shema. For example, it an be neessary to restruture the logialshema in order to meet the end-users requirements regarding fast queryperformane. 18

Setion 2.3 Aware Design Tool Chapter 22.2.3 The Physial Design PhaseAt the physial design phase, the logial shema reated in the logial designphase is mapped into an atual implementation of the data warehouse. Thatis, in this design phase the physial shema is reated. Thus, the physialshema is ompletely dependent on the spei� DBMS system hosen for theatual implementation of the data warehouse.At the physial design phase, it is possible to tweak implementation issues.This means that the designers of the data warehouse are able to modifydetails in the physial shema if neessary, suh as hanging the reord size,index struture, data partioning et. of the underlying database.In the following setion, the support of the design methodology into theAware Design Tool is desribed along with the basi onepts of theAware Design Tool.2.3 The Aware Design Tool Supporting theMethodologyThe design methodology desribed above provides a plethora of advantages.Beause of these advantages, we have deided to support the methodologyin the Aware Design Tool.The Aware Design Tool is used for designing oneptual and logialshemas, but not physial shemas. Thus, the Aware Design Tool onlysupports the oneptual and logial design phases. The physial design phasehas been omitted from the Aware Design Tool as the main fous of thistool have been to support the oneptual and logial design phase.The proess of designing a data warehouse by utilizing the Aware DesignTool is desribed in the following:1) Creation of the oneptual shema. The oneptual shema is designedin order to model the onepts, whih the end-users wants to be modelledin the data warehouse.2) Transformation of the oneptual shema into a logial shema. When theoneptual shema has been designed, it is translated into a orrespondinglogial shema. 19

Chapter 2 Aware Design Tool Setion 2.33) Modi�ation of the logial shema. After translating the oneptualshema into a logial shema, the designer has the opportunity to modifythe logial shema. Modi�ations on the logial shema inlude restru-turing the shema, speifying data types and the domain of attributes.4) Translation of the logial shema into SQL statements. When the mod-i�ations of the logial shema have been made, the logial shema istranslated into SQL statements. These SQL statements are used as in-put to the physial design phase.5) Exeution of the SQL statements in the DBMS. The physial shemais reated by exeuting the SQL statements provided from the logialdesign phase. Note that the Aware Design Tool does not support thephysial design phase.Figure 2.2 shows the design phases of the Aware Design Tool. Thespei� ativities that takes plae in eah of these design phases are alsoshown on this �gure.The data model supported in the Aware Design Tool for the oneptualdesign phase is the starER model as presented by [TBC99℄, and enrihedwith onstraints by [NLK99℄.The oneptual design phase is the �rst phase the designer enounters in theAware Design Tool. It is assumed that at this point, the designer hasaquired knowledge about the data requirements provided by the end-users.A oneptual shema is designed either by drawing a starER shema, bywriting StarLanguage soure ode, or by a ombination of these two designapproahes. For more information about the StarLanguage, see appendix A.Note that the two representations of a starER shema are interhangeably.Thus, in the Aware Design Tool it is possible to transform a graphialrepresentation of a starER shema into StarLanguage soure ode and vieversa (see �gure 2.2).In order to transform a graphial representation of the starER shema intoStarLanguage soure ode, the graphial starER shema is �rst onvertedinto an instane of the starER Metadata Containers (see �gure 2.2. ThestarER Metadata Containers are desribed in setion 3.3.1. Seondly, thisinstane is onverted into StarLanguage soure ode, whih ompletes theproess of the onversion. If StarLanguage soure ode must be onvertedinto a graphial representation of a starER shema, this proess is reversed.A logial shema is onstruted by translating the oneptual shema i.e., astarER shema, into an Extended Snowake shema. In the Aware Design20

Setion 2.3 Aware Design Tool Chapter 2

starER to Snowflake
Schema Translator:

yyyy yyy yyy
yy yyy yyy yy
yyyy yyy yyy
yy yyy yy y

Snowflake to SQL
Schema Translator:

SQL *Plus
Statements

Physical Design Phase

Oracle DBMS

xxxx xxx xx x
xx xxxx xxx x
xxxxx xxxxxx
xx xx xx xxxx

Logical Design Phase

Graphical Extended
Snowflake schema

Snowflake Metadata
Containers

SnowLanguage
source code

Su
pp

or
te

d
in

 th
e

A
w

ar
e

D
es

ig
n

T
oo

l

Conceptual Design Phase

Graphical starER schema StarLanguage
source codeContainers

starER Metadata

Figure 2.2: The design phases supported in the Aware Design Tool.
21

Chapter 2 Aware Design Tool Setion 2.3Tool this is done automatially by a built-in shema translator (see �gure2.2. When the shema translation have been made, it is possible for thedesigner to modify the logial shema.An Extended Snowake shema an be modi�ed either graphially, by writ-ting SnowLanguage soure ode, or by a ombination of these two designproedures. For more information about the SnowLanguage, see appendixB, whih provides the syntax of this language. Note that it is possible totransform an Extended Snowake shema into SnowLanguage soure odeand vie versa in the Aware Design Tool (see �gure 2.2.In order to transform a graphial representation of the Extended Snowakeshema into SnowLanguage soure ode, the graphial shema is �rst on-verted into an instane the Snowake Metadata Containers. The SnowakeMetadata Containers are desribed in setion 3.3.2. Seondly, this instaneis translated into SnowLanguage soure ode, whih ompletes the proessof onverting the graphial Extended Snowake shema. If SnowLanguagesoure ode is to be onverted into a graphial representation of an ExtendedSnowake shema, this proess is reversed.When the logial shema has been designed i.e., when the logial shemaful�lls the requirements, the logial shema is translated into Orale SQL*Plus statements [Ora99a℄. These SQL *Plus statements are used as inputfor the physial design phase. For the physial design phase, the Orale 8iDBMS have been hosen. The SQL *Plus statements must be exeuted inthe physial design phase in order to generate the physial shema of thedata warehouse.As mentioned earlier, the physial design phase is not supported by theAware Design Tool. This is due to the fat that this design phasedeals with the atual implementation of the data warehouse using a spe-i� database supplied by a spei� DBMS system. This task is onsideredto be out of the sope of the Aware Design Tool.

22

3Architecture
of the Aware
Design Tool

In this hapter, the arhiteture of the Aware Design Tool is desribed.Firstly an overview of the general arhiteture Aware Design Tool isprovided. Then the ommuniation among the omponents in the AwareDesign Tool is desribed. Furthermore, the funtionality and internalstruture of the omponents in the arhiteture will be desribed in greaterdetail.3.1 The General ArhitetureThe arhiteture of the Aware Design Tool is divided into �ve omponents,the Graphial User Interfae (GUI), the Repository, the Soure ode parsers,the Soure ode generators and the Shema translators as an be seen in�gure 3.1.The GUI omponent ontains the Visualizer, whih is a sub-omponentresponsible for visualizing the oneptual and logial shemas. Moreover,the GUI ontains the Method knowledge sub-omponent whih provides on-line help. Furthermore, the GUI ontains the Method objet shema sub-omponent, whih ontains the de�nitions of the supported models of the23

Chapter 3 Aware Design Tool Setion 3.1
knowledge
Method

User-defined

Application
specifications

specifications
Logical
parser

Conceptual
parser

Logical
generator

Conceptual
generator logical

Conceptual to

translator

physical
translator

Logical to

Graphical User Interface

Visualizer

Source codeSource code
parsers

Schema
translators

Method

schema
object

generators
Repository

Figure 3.1: Arhiteture of the Aware Design Tool.design tool.The Soure ode generators omponent handles the onversion of shemasinto soure ode. This omponent onsists of two sub-omponents, the Con-eptual generator and the Logial generator. The Coneptual generator on-verts starER shemas into StarLanguage soure ode, and the Logial gener-ator onverts Extended Snowake shemas into SnowLanguage soure ode.The Soure ode parsers omponent are used for onverting soure ode intoshemas. The Soure ode parsers ontains the sub-omponents Coneptualparser and Logial parser. The Coneptual parser enables the Aware De-sign Tool to transform StarLanguage soure ode into a starER shema.At the logial design phase, the transformation of SnowLanguage into anExtended Snowake shema is handled by the Logial parser.The Shema translators omponent is used for translation shemas betweenthe di�erent design phases. The Shema translators ontains the Coneptualto logial translator and the Logial to physial translator. The Coneptual tologial translator sub-omponent handles translation of starER shemas intoExtended Snowake shemas. The sub-omponent Logial to physial trans-lator translates Extended Snowake shemas into SQL *Plus statements.The last omponent of the Aware Design Tool is the Repository. This24

Setion 3.1 Aware Design Tool Chapter 3omponent is responsible for storing shemas from the oneptual and logialdesign phases. The repository onsists of two sub-omponents: the Appli-ation spei�ations, and User-de�ned spei�ations. The Appliation spe-i�ations is the sub-omponent of the Repository that stores and loads theshemas reated at the various design phases of the Aware Design Tool.The User-de�ned spei�ations is the part of the Repository that enables theAware Design Tool to store and retrieve user-de�ned omponents.

25

Chapter 3 Aware Design Tool Setion 3.23.2 Communiation among the omponentsin the Aware Design ToolIn this setion, the ommuniation among the various omponents in thearhiteture of the Aware Design Tool is briey desribed.The GUI omponent is responsible for ontrolling all the other omponentsin the Aware Design Tool. In addition, none of the other omponentsommuniate diretly with eah other. The bene�t of this arhiteture isthat it is easy to replae, modify, or test the omponents that the GUIomponent is ommuniating with. Eah of the omponents that the GUI isommuniating with an be replaed, modi�ed, or tested independently, asthese omponents are not dependent upon eah other.Figure 3.2 provides an overview of the general ommuniation among theomponents in the arhiteture of the Aware Design Tool.
Repository

Graphical User Interface (GUI)

4321

Source code Source code
parsers

Schema
translatorsgeneratorsFigure 3.2: The general ommuniation among the omponents.In the following, the general ommuniation among the GUI omponent andeah of the other omponents is desribed.1. The Repository provides funtionality for storing and loading onep-tual and logial shemas. The GUI requests the Repository to store anew or modi�ed shema, or to load a previously stored shema.2. When soure ode view is required by the desinger, the GUI sends theshema to the Soure Code Generator. The Soure Code Generatorthen generates soure ode based on the shema omponents, strutureand onstraints, and returns the soure ode to the GUI. The GUI thendisplay the soure ode. 26

Setion 3.2 Aware Design Tool Chapter 33. In order to view a shema based on the soure ode of the shema,the GUI sends the soure ode to the Soure Code Parser. The SoureCode Parser onstruts the shema by parsing the soure ode, andsends the onstruted shema to the GUI. The GUI then displays thegraphially shema.4. Shema translators are used for translating a shema from one designphase to a shema in another design phase. That is, a shema translatoris used for translating a oneptual shema into a logial shema, and ashema translator is used for translating a logial shema into a physialshema.

27

Chapter 3 Aware Design Tool Setion 3.33.3 Metadata ContainersIn this setion the metadata ontainers for the Aware Design Tool aredesribed. The metadata ontainers are used for ommuniation among thevarious omponents in the Aware Design Tool.The metadata ontainers are objet-oriented and onsist of two separate lasshierarhies. One lass hierarhy is provided for ommuniation at the on-eptual design phase, and the other lass hierarhy is provided for ommu-niation at the logial design phase.In this ontext, we provide a de�nition of metadata:Metadata: Data about a shema.The metadata ontainers for the oneptual design phases are used for om-muniating starER shemas only, and the metadata ontainers for the logialdesign phase are used for ommuniating Extended Snowake shemas only.The data about a shema inludes all the elements that exists in the shemae.g., entity sets, relationship sets, onstraint de�nitions et. This inludes thestruture of the shema i.e., how the elements are onneted and graphialinformation needed to display the elements in a shema.In the following two subsetions the metadata ontainers used for ommuni-ation among the omponents are desribed.3.3.1 starER Metadata ContainersIn this subsetion the metadata ontainers used at the oneptual designphase are desribed. These metadata ontainers are alled the starER Meta-data Containers. Figure 3.3 shows the lass hierarhy of the starERMetadataContainers using the objet-oriented Uni�ed Modelling Language (UML)[MMMNS97℄. In the following, the lasses in this hierarhy are desribed.Throughout the remainder of this setion the term omponent is used. Thisdoes not refer to any of the omponents of the Aware Design Tool, butan abstrat notion of the parts of the metadata ontainers.ShemaThe Shema lass is used for representing a starER shema. The Shemalass is the main lass in the lass hierarhy of the starER Metadata Contain-ers. At the oneptual design phase, the various omponents in the Aware28

Setion 3.3 Aware Design Tool Chapter 3
ComponentSchema

attributes

Component
with Attribute

Entity set
set

RelationshipFact set

Constraint
definition

Membership

Relationship
SuperClass

Subpart

1

0..*
1 0..*

0..1

0..*

0..1

1

2..*

0..*

1 0..*

1

0..*

1

0..*

Class

Specialization

Aggregation

Granularity0..*

Role

Legend:

Figure 3.3: The starER metadata ontainers.Design Tool ommuniates by sending and reieving an instane of theShema lass. An Shema instane ontain zero to many instanes of theComponent with Attribute lass. These instanes are the main omponentsin a shema.ComponentAll omponents in a starER shema are speializations of the Componentlass. The Component lass ontains data about the ID and graphial posi-tion of omponents in a shema. The ID of a omponent must be unique. Thegraphial position of a Component is used when the omponent is visualized.Component with AttributesThe Component with Attributes is a speialized Component lass. This lassis used for representing omponents that has attributes. That is, the Compo-nent with Attributes lass is a generalization over the lasses Fat Set, EntitySet, and Relationship Set. Instanes of the Component with Attributes lassan ontain zero to many attributes.29

Chapter 3 Aware Design Tool Setion 3.3AttributeThe Attribute lass is a speialized Component. This lass is used for repre-senting attributes on fat sets, entity sets, or relationships sets in a shema.The Attribute lass ontains data about the type of the attribute, whih anbe one of the following: a regular attribute, a key or a summarizable attributeas type ow, stok, or value-per-unit.Constraint De�nitionIn order to model expliit onstraints in the starER model, the ConstaintDe�nition lass is used. The Constraint De�nition lass is used for mod-elling onstraints on any omponent that an have onstaints. A ConstraintDe�nition onsists of a text string ontaining StarLanguage soure ode.Currently, it is possible to speify Attribute Constaints (ACs), SummarizableAttribute Constraints (SACs), and Entity Constraints (ECs) in a starERshema. Therefore only instanes of the Attribute lass and the Entity lassan ontain onstraint de�nitions.In order to model ACs and SACs on an attribute, an Attribute instane anontain zero to many onstraint de�nitions. Moreover, an Entity Set instanean ontain zero to many onstraint de�nitions in order to model ECs on anentity set. Note, that both entity sets and attributes an ontain multipleonstraint de�nitions.Entity SetThe Entity Set lass is mainly used to model entity sets. This lass is alsoused for modelling aggregated and speialized entity sets.In order to model aggregated and speialized entity sets, a single Entity Setinstane an referene zero to many other Entity Set instanes. An Entity Setinstane that referenes another Entity Set instane has a role as either beinga subpart of an aggregated entity set or being a super lass of a speializedentity set.MembershipThe Membership lass is used to model hierarhies. A membership betweentwo entity sets is modelled on the entity set of lower granularity in the hier-arhy. That is, the Entity Set instane of the lower granularity must ontaina Membership instane, and this Membership instane must be referene theEntity Set instane of the higher granularity. Note that an entity set an30

Setion 3.3 Aware Design Tool Chapter 3take part in zero to many memberships. Thus, an Entity Set instane anontain zero to many Membership instanes.A Membership instane ontains data about the ardinality of the member-ship. The ardinality of a Membership an be either strit, omplete, ornon-omplete.Relationship Set and RelationshipThe Relationship Set lass is used for modelling binary and high-order re-lationship sets. In order to model a relationship in a relationship set, theRelationship lass is used. A Relationship instane referenes either a FatSet or an Entity Set instane.A Relationship Set instane ontains the number of Relationship instanesthat orresponds to the order of the relationship set. Hene, in order tomodel a binary relationship set, a Relationship Set instane must ontain twoRelationship instanes. Note that a Relationship Set instane must ontainat least two Relationship instanes. That is, a relationship set annot beunary.A Relationship instane ontains data about the granularity of the relatedentity set or fat set, whih an be either one or many.This onludes the desription of the starER Metadata Containers. The fol-lowing subsetion will ontinue with a desription of the Snowake MetadataContainers.3.3.2 Snowake Metadata ContainersIn this subsetion the metadata ontainers used at the logial design phaseare desribed. These metadata ontainers are alled the Snowake MetadataContainers.The Snowake Metadata Containers are used for ommuniating ExtendedSnowake shemas. Although these ontainers are used for ommuniatingExtended Snowake shemas, they an also be used for ommuniating Starand Snowake shemas. This is possible beause these shemas uses the sameomponents i.e., fat tables and dimension tables. The only di�erene amongthese shemas is the allowed number of fat tables1, and the possibility of1A Star shema and a Snowake shema ontain a single fat table only, whereasExtended Snowake shemas an ontain several fat tables.31

Chapter 3 Aware Design Tool Setion 3.3having hierarhial strutures2.Figure 3.4 shows a lass hierarhy of the Snowake Metadata Containers. Inthe following, the various lasses in this hierarhy are desribed.

Primary
key

Attribute

Table

Foreign
key

Dimension
table

Fact table

definition
Constraint

Schema

Data Type

Integer

Numeric

Real

VarChar

Float

Date

Time

11

1 1
1

0..11..*
1..*

1..*

0..* 0..1

0..10..*

0..*0..*
0..1 0..*

0..*

0..* 1Figure 3.4: The Snowake metadata ontainers.ShemaThe Shema lass is used for representing Extended Snowake shemas. TheShema lass is the main lass in the lass hierarhy of the Snowake Meta-data Containers. At the logial design phase, the omponents in the AwareDesign Tool ommuniates by sending and reeiving an instane of theShema lass.A Shema instane ontain zero to many instanes of the Table lass. TheseTable instanes are the main omponents in the shema. In addition, aShema instane ontain zero to many Constraint De�nition instanes.Table, Fat Table, and Dimension TableThe Table lass is used for representing tables in a Snowake shema. TheTable lass is a generalization over the speialized lasses Fat Table and2Hierarhial strutures are allowed on Snowake shemas and Extended Snowakeshemas only. 32

Setion 3.3 Aware Design Tool Chapter 3Dimension Table. The speialized versions of the Table lass are used todistinguish the semantis of a table. That is, the Fat Table lass is usedfor representing fat tables and the Dimension Table is used for representingdimension tables in the Extended Snowake shema.Only fat tables an ontain fats [Kel99℄. If no primary key is de�ned for afat table expliitly, the primary key is onstituted of all the foreign keys inthe fat table.Dimension tables ontains desriptive data about fats [Kel99℄. In addition,a primary key must be spei�ed on a dimension table, as a dimension tableis always refered to by another dimension or fat table.The Table lass ontains data about the ID of the table and the graphialposition of the table in the shema. The ID of a table must be unique inorder to distinguish the tables in a shema. The graphial position of a tableis used when the table is visualized.AttributeThe Attribute lass is used to represent an attribute on a table. A Tableinstane must ontain at least one Attribute instane 3.It is possible to speify a not null onstraint for an Attribute instane. If anot null onstraint is spei�ed for an Attribute instane, this means that noinstane of the attribute is allowed to ontain the null value. This is usefulwhen an attribute is part of a primary key, as primary keys are not allowedto be null [SKS97℄.Data TypeAt the logial phase, a data type must be spei�ed for eah attribute. Thisimplies that an Attribute instane must ontain an instane of a Data Typelass.The Data Type lass is an abstrat lass of the data type lasses: Integer,Numeri, Real, Float, VarChar, Date, and Time. These lasses are usedfor speifying the data type of an Attribute instane, inluding the domain,preision, format et.IntegerThe Integer lass is used for representing signed integers of any length. AnInteger lass ontains data about minimum and maximum values, if spei�ed.3A table that does not ontain any attributes annot ontain any data. Thus, an emptytable on a shema an be left out of the shema.33

Chapter 3 Aware Design Tool Setion 3.3NumeriIn order to represent �xed-sized and signed numbers, the Numeri lass isused. This lass ontains data about the number of deimals and the prei-sion of a number, as well as data about minimum and maximum values, ifspei�ed.RealThe Real lass is used for representing real numbers of any length. This lassontain data about the preision, and number of deimals, as well as dataabout minimum and maximum values, if spei�ed.FloatIn order to represent �xed-sized oating-point numbers, the Float lass isused. This lass ontains data about the size of a oating point number, aswell as data about minimum and maximum values, if spei�ed.VarCharThe VarChar lass is used for representing variable-sized strings. This lassontains data about the upper limit of the number of haraters that thestring an ontain.DateIn order to represent dates, the Date lass is used, as well as data aboutminimum and maximum values, if spei�ed.TimeThe Time lass is used for representing time instants, as well as data aboutminimum and maximum values, if spei�ed.Primary KeyAn Attribute instane does not ontain any data whether it is a primary keyor not. In order to speify that an Attribute instane is a part of a primarykey, the Primary Key lass must be used.A Primary Key instane is inluded in a table, and ontains data aboutwhih attributes that takes part of the primary key of the table. Note thata Table instane is allowed to ontain a single Primary Key instane only.Foreign KeyIn order to speify that an Attribute instane is part of a foreign key, theForeign Key lass must be used. It is possible to inlude zero to manyforeign keys instanes in a table. Eah of these instanes ontain data aboutwhih attributes that are part of the foreign key.34

Setion 3.3 Aware Design Tool Chapter 3Constraint De�nitionIn order to model onstaints in the Extended Snowake model, the ConstaintDe�nition lass is used. The Constaint De�nition lass is a general lass usedfor modelling onstraints on any table or attribute that has a onstraint i.e.,a Table or an Attribute instane. A Constraint De�nition onsists of a textstring ontaining SnowLanguage soure ode.

35

Chapter 3 Aware Design Tool Setion 3.43.4 Parsers and GeneratorsA shema in the Aware Design Tool an be designed either graphially,by writing soure ode, i.e., a textual desription of a shema using a languageor a ombination of these. This bene�ts the data warehouse designer whoan hoose between drawing the shema graphially and using a language bywriting soure ode, whih desribe the ontents of the shema.The main advantage of drawing the shema is that the data warehouse de-signer is able to have an intuitive view of the shema. The main advantageof writing soure ode for the shema using a language is that the soureode is in a textual form, whih an be used for transferring the shema toanother design tool, another platform, and for storing the shema. Moreover,a designer skilled in writing soure ode will be faster in designing shemasby writing than by drawing.In order to ombine the advantages of the two di�erent approahes to design-ing a shema, the design tool must make it possible to transform a graphialshema into soure ode and vie versa. However, in order to make this pos-sible, the language for desribing shemas and the graphial representationof the shema must be equivalent. That is, the two approahes must be equalin expressiveness and power.In this ontext, we provide two de�nitions for translating a shema into soureode and vie versa.Parser: A omponent, that takes soure ode as input and produes agraphial shema.The output of the parser is metadata ontainers, whih ontains the produedshema in terms of metadata. This an be seen in �gure 3.5.
xxx xx xxxxx
xxxxxx xxxxx
xx xxxxx xxx

xxxx
xxx xxx

Parser

Schema metadata
containers Schema

Source code

Input Output Contains

Figure 3.5: The input and output of a parser.
36

Setion 3.4 Aware Design Tool Chapter 3Generator: A omponent, that takes a graphial shema as input, andgenerates soure ode as output.The input and output of a generator an be seen in �gure 3.6.
Schema

Schema metadata
containers

Parser

xxx xx xxxxx
xxxxxx xxxxx
xx xxxxx xxx

xxxx
xxx xxxContained in Input Output

Source codeFigure 3.6: Input and output of a generator.Hene, in order to provide the funtionality for translating a graphial rep-resentation of a shema into soure ode and the other way around, both agenerator and a parser is needed.The Aware Design Tool supports a design methodology allowing thedesigner to speify shemas at a oneptual phase, and modify shemas at alogial phase. Hene, the design tool must provide a parser and a generatorat both the oneptual and the logial phase, in order to allow the designerto hoose whether to design the shemas graphially or write soure ode forthe shemas. In the following subsetions, the parsers and generators usedin the oneptual and logial design phases are desribed.3.4.1 StarLanguage Parser & GeneratorAt the oneptual design phase, starER shemas are designed graphially bydrawing starER shemas or by textually writing StarLanguage soure ode(the StarLanguage syntax is de�ned in appendix A).Figure 3.7 shows the parser and generator provided in the Aware DesignTool for the oneptual design phase. The StarLanguage Generator takesa starER shema ontained in the starER Metadata Containers (desribedin 3.3.1) as input, and produes StarLanguage soure ode as output. TheStarLanguage Parser takes StarLanguage soure ode as input, and produesa starER shema ontained in the starER Metadata Containers as output.37

Chapter 3 Aware Design Tool Setion 3.4
ComponentSchema

Component

attributes
with Attribute

fact "Repaym
 has attribute
 has position
entity "C
has a

Input

InputOutput

Output

starER Metadata Containers

StarLanguage
Parser

Generator
StarLanguage

Figure 3.7: Input and output of the StarLanguage Parser and Generator.3.4.2 SnowLanguage Parser & GeneratorAt the logial design phase, Extended Snowake shemas are designed graphi-ally by drawing Extended Snowake shemas or, textually by writing SnowL-anguage soure ode or a ombination (the SnowLanguage syntax is de�nedin appendix B).Figure 3.8 shows the parser and generator that are provided in the AwareDesign Tool for the logial design phase. The SnowLanguage Generatortakes an Extended Snowake shema ontained in the Snowake MetadataContainers (desribed in 3.3.2) as input, and produes SnowLanguage soureode as output. The SnowLanguage Parser takes SnowLanguage soureode as input, and produs a Extended Snowake shema ontained in theSnowake Metadata Containers as output.
set facttable "
set dimension
set constraint
 et dim

Input

InputOutput

Output
Generator

Parser

Schema

Table Attribute

Snowflake Metadata Containers

SnowLanguage

SnowLanguage

Figure 3.8: Input and output of the SnowLanguage Parser and Generator.
38

Setion 3.5 Aware Design Tool Chapter 33.5 Shema TranslatorsWhen a starER shema has been designed at the oneptual design phase,it is translated into an Extended Snowake shema. At the logial designphase, it is possible to speify data types and domains on attributes. Also,it is possible to restruture Extended Snowake shemas. When the logi-al phase is �nished i.e., when the Extended Snowake shema reet allrequired hanges, the Extended Snowake shema must be translated intoSQL statements. These statements are used for reating the physial shemaof the data warehouse and implement the onstraints spei�ed for the datawarehouse.The Aware Design Tool is made to assist the designer with designingoneptual shemas, translating a oneptual shema into a logial shema,restruturing the logial shema, and translating a logial shema into aphysial shema. In the Aware Design Tool, two of these proesses areahieved automatially. That is, the Aware Design Tool is able to trans-late a starER shema into an Extended Snowake shema, and is able totranslate an Extended Snowake shema into SQL *Plus statements uto-matially. However, a requirement is that a shema,whih is about to betranslated, must be a valid shema.3.5.1 starER to Extended SnowakeThe shema translator between the oneptual and logial design phase takesa starER shema expressed by the starER Metadata Containers as input,and produes an Extended Snowake shema expressed by the SnowakeMetadata Containers as output. This is illustrated in �gure 3.9.The translator uses the translation rules provided in appendix C for trans-lating a starER shema into an Extended Snowake shema. The translationrules provide a proper translation of the elements and onstraints in starERshemas into dimension tables, fat tables, and logial onstraints for theExtended Snowake shema.No data type is de�ned on an attribute at the oneptual design phase,as the oneptual design phase is foused on modelling onepts of a datawarehouse. However, at the logial design phase, a data type must be de�nedon attributes. If no data type is spei�ed on an attribute in the logial designphase, a default data type is provided for the attribute 4. Thus, as no data4In the Aware Design Tool, the default data type is a varhar(0).39

Chapter 3 Aware Design Tool Setion 3.5

Schema Component

Attribute
Component

with
attribute

Contains

contained in

Table Attribute

starER schema

Conceptual Design Phase

Logical Design Phase

Extended Snowflake schema

starER Metadata Containers

Translation
Schema Translator
starER to Extended

Output

Input

Schema

Snowflake Metadata Containers

Snowflake

Figure 3.9: The translator between the oneptual and logial design phase.
40

Setion 3.5 Aware Design Tool Chapter 3type is spei�ed on a oneptual shema, the shema translator used betweenthe oneptual and logial design phase provides the default data type on thetranslated attribute in the resulting logial shema.In the following, we ontinue by desribing the shema translator providedin the Aware Design Tool between the logial and the physial designphase.3.5.2 Extended Snowake to SQLThe shema translator between the logial and physial design phases takesan Extended Snowake shema expressed by Snowake Metadata Containersas input, and produes a set of �les ontaining SQL *Plus statements asoutput. This is illustrated in �gure 3.10.
Contains

Schema

Table Attribute

Snowflake Metadata containers

Extended Snowflake
Schema Translator

to SQL
Translation

Input

Output

Files containing SQL statements

create table "
 name varcha
 street varcha
 city

Logical Design Phase

Extended Snowflake schema

Physical Design PhaseFigure 3.10: The translator between the logial and physial design phase.The shema translator produes several �les ontaining SQL statements us-41

Chapter 3 Aware Design Tool Setion 3.5ing the SQL Data De�nition Language (DDL) and the SQL Data Manipu-lation Language (DML). One of these �les ontains DDL statements only,whih are used for de�ning and reating all the tables that must exists inthe physial shema. In addition, the DDL statements are used for de�ningintegrity onstraints on the various tables. The integrity onstraints guardagainst aidential damage to the data warehouse [SKS97℄, and are used foronstraining the domain of attributes.The other produed �les ontains DML statements, whih are used for manip-ulation of the data in the data warehouse. Note that the fats and desriptivedata about fats must be preserved i.e., this data is read-only [Mat96℄. Theprodued DML statements are used only for the purpose of aggregating exist-ing data in the data warehouse. That is, the aggregated data5 does not a�etexisting data in the data warehouse, but is provided for the data warehouseas additional data.Translation of a Logial Shema to SQLWhen the shema translator translates an Extended Snowake shema intoSQL statements, eah table in the Extended Snowake shema is translatedinto a CREATE TABLE statement [Ora99b℄, whih spei�es:� the table name,� the name and data type of eah attribute that exists on the table,� the primary key of the table,� foreign keys of the table, and� integrity onstraints on the attributes of the table.If one or more integrity onstraints are de�ned on attributes of a spei�table, the CHECK lause [Ora99b℄ is used in onjuntion with the CREATETABLE statement in order to preserve the integrity onstraints. The CHECKlause spei�es a ondition that must be heked for eah row in the table,when new data is inserted into table or when existing data in the tableis modi�ed [SKS97℄. New data an only be inserted into the table if theondition of the CHECK lause is not violated. Moreover, data an only beinserted into the data warehouse if the ondition of the CHECK lause is notviolated.5The aggregated data is data of oarser granularity, whih an be derived from theexisting data in the data warehouse. 42

Setion 3.5 Aware Design Tool Chapter 3In the following, we provide an example of how a table is translated intoa SQL statement. Figure 3.11 shows the dimension table Inventory, whihontains the primary key inventory, the foreign key store, and the attributevalue. An integrity onstrain is de�ned on value, whih spei�es that theattribute value must be positive.
Primary key
Foreign key
Constraint: minimum value is 0

Inventory

inventory
store
valueFigure 3.11: The Inventory dimension table.This dimension table is translated into the following SQL statement:CREATE TABLE Inventory(inventory VARCHAR(30),store VARCHAR(25),value REAL,PRIMARY KEY (inventory),FOREIGN KEY (store) REFERENCES Store,CHECK (value >= 0))The domains of the inventory, store, and value attributes reet the domainsspei�ed for these attributes on the Inventory table at the logial designphase. By default, an attribute an assume null values. An attributes whihtakes part in a primary key is not allowed to assume a null value [SKS97℄.Note that the foreign key of the Inventory table refers to the table Store. TheStore table must exist when the Inventory table is reated. Thus, the orderof the CREATE TABLE statements produed by the shema translator isimportant. However, it is not always possible to determine if a table mustbe reated before other tables. This is the ase when a table is involved in areferential yle as shown in �gure 3.12.In this �gure, Table1 refers to Table2, whih refers to Table3. Table3 refers toTable1, and thus it annot be determined whih table must be reated �rst.This problem an be solved by omitting the de�nition of the foreign keys inthe produed CREATE TABLE statements. Hene, the various tables anbe reated in any order. When the tables have been reated, the foreignkey de�nitions, that have been left out of the CREATE TABLE statements,43

Chapter 3 Aware Design Tool Setion 3.5
Table1

id
Table2.id

Table2

id
Table3.id

Table3

id
Table1.idFigure 3.12: Tables involved in a referential ylemust be inserted into their respetive tables. This an be ahieved by theALTER TABLE statement [SKS97℄.Translation of expliit onstraintsExpliit onstraints are expressed in the logial design phase using the setonstraint statement from the SnowLanguage. The set onstraint statementis used for expressing the onstraints derived from the oneptual designphase. The set onstraint statement is used for three di�erent purposes inorder to reet the ACs, SACs, and ECs from the oneptual design phase:� For onstraining the domain of an attribute. These onstraints arederived from ACs.� For speifying how a summarizable attribute must be aggregated. Suhonstraints are derived from SACs.� For onstraining the row instanes (tuples) of a table. These onstraintsare derived from ECs.The set onstraint statement has the following syntax:set onstraint identi�er for (table id j attr id) ":"(aggr expr j ranges)The keywords of the set onstraint statement are written in boldfae. The�rst identi�er is the name of the onstraint. The keyword for is followedby either a table id or an attr id. The table id is used for speifying a table,and the attr id is used for speifying an attribute on a table. The semiolon44

Setion 3.5 Aware Design Tool Chapter 3is followed by either an aggr expr (aggregation expression) or ranges. Theaggr expr is used when the onstraint de�nition is used for speifying how anattribute must be aggregated. The ranges are used for two purposes. If theonstraint de�nition is spei�ed for an attribute on a table, the ranges is usedfor de�ning the domain of the spei�ed attribute. If the onstraint de�nitionis spei�ed for an table, the ranges are used for de�ning a ondition for atable.A set onstraint statement that is used for onstraining the domain of anattribute in a table, is translated into a CONSTRAINT lause [Ora99b℄. TheCONSTRAINT lause is useful for onstraining the domain of an attribute,where the domain must depend on other attribute values. By speifying aCHECK lause together with the CONSTRAINT lause, the CONSTRAINTlause expresses a ondition that must always be satis�ed. That is, whenevernew data is loaded into the data warehouse, the new data is aepted onlyif it does not violate the onstraint de�ned by the CONSTRAINT-CHECKlause.In the following we provide an example of how a onstraint de�nition onan attribute domain is translated into SQL statements. The name of theonstraint de�nition is aLoanAmount. The onstraint de�nition spei�esthat the value of the amount attribute on the Loan table must be lesser than10000, if the value of the age attribute on the Person table is lesser than 25.set onstraint aLoanAmount for Loan.amount:Loan.amount < 10000 if Person.age < 25;Figure 3.13 shows the relation between the Loan and the Person tables,whih are related through the Repayment table.
Repayment

Loan.id
Person.ssn

Loan

id
amount

Person

ssn
ageFigure 3.13: The relation between the Loan, Repayment and Person tablesIn order to translate the aLoanAmount onstraint de�nition into a CON-STRAINT-CHECK lause, the NOT-EXISTS lause [Ora99b℄ is used in theCHECK lause. The NOT-EXISTS lause is used for speifying that theresult of a query must be empty i.e., no rows exist in the result returned bya query. This is useful, as this an be used for forming a query that extratsdata on from the Loan and Person tables about the values of the amount45

Chapter 3 Aware Design Tool Setion 3.5and age attributes. Thus, the aLoanAmount onstraint de�nition an betranslated into the following SQL onstraint lause:CONSTRAINT aLoanAmount CHECK(NOT EXISTS(SELECT * FROM Person WHERE age < 25 and ssn =(SELECT ssn FROM Repayment WHERE id =(SELECT id FROM Loan WHERE NOT amount < 10000))));The innermost query in the onstraint lause extrats all ids from the Loantable where the amount is not lesser than 10000. These ids are used forextrating all the ssn (Soial Seurity Number) values from the Repaymenttable, where the id of the Repayment equals the extrated ids from the in-nermost query. The outermost query uses the extrated ssn values fromthe subquery in order to extrat all tuples in the Person table, where theage is lesser than 25 and the ssn equals an ssn value extrated in the sub-query. Thus, the NOT-EXISTS lause is used for heking if any tables havebeen extrated from the outermost query. If this is the ase, the onstraintde�nition is violated.A set onstraint de�nition that is used for speifying how an attribute mustbe aggregated is translated into the SQL statement: SELECT-FROM. Thisstatement is used for forming one or more queries, where the extrated datais aggregated. The SQL aggregate funtions AVG, COUNT, MAX, MIN,and SUM are used for aggregating data extrated from the queries.In the following, we provide an example of how a set onstraint de�nition,used for speifying how an attribute must be aggregated, is translated intoSQL statements. The following onstraint de�nition must be translated intoSQL statements:set onstraint saSumValue for Store.stok_value:sum(Inventory.value)The name of the onstraint de�nition is saSumValue, and is used for identi-fying the onstraint de�nition. The onstraint de�nition is spei�ed for theattribute stok value on the Store table. The stok value must be aggregatedby summing all the values of the value attribute on the Inventory table. Thisonstraint de�nition is translated into the following SQL statements:UPDATE Store SET stok_value =(SELECT SUM(value) FROM Inventory);46

Setion 3.5 Aware Design Tool Chapter 3The UPDATE-SET statement is used for updating the value of the attributestok value in the Store table. The SELECT-SUM-FROM query sums thevalues of the value attribute from the Inventory table.A set onstraint de�nition that is used for onstraining row instanes (tuples)is translated into the SQL statement: CREATE TRIGGER. The CREATETRIGGER statement is an Orale SQL spei� statement [Ora99b℄, whihis used for reating a trigger. A trigger is a statement that is exeutedautomatially by the DBMS as a side e�et of a modi�ation to the database[SKS97℄. A trigger spei�es the onditions under whih the trigger is to beexeuted, and the ations to be taken when the trigger exeutes [SKS97℄.The CREATE TRIGGER statement is available in SQL *Plus, and an beused for onstraining an entire row in a table.In the following, we provide an example of how a set onstraint de�nition,used for onstraining the row instanes of a table, is translated into SQLstatements. The following onstraint de�nition must be translated into SQLstatements:set onstraint ePersonAge for Person: Person.age > 18;The name of the onstraint de�nition is ePersonAge. This onstraint isde�ned on the Person table, and spei�es that row instanes (tuples) inthis table an be inserted or updated, if the value of the age attribute isgreater than 18. This ePersonAge onstraint de�nition is translated intothe following SQL statement:CREATE TRIGGER ePersonAge BEFORE UPDATE OF age ON PersonFOR EACH ROW ePersonAgePro;This trigger statement spei�es that the proedure ePersonAgePro will bealled, before an update of the age attribute on the Person table ours.The FOR EACH ROW lause [Ora99b℄ spei�es that the ePersonAgeProproedure will be alled for eah row in the table that is a�eted by an updateoperation on the age attribute.Note that the ePersonAgePro is a proedure that is not generated by thetranslator. It is the task of the designer to provide the proedure for thetrigger.
47

Chapter 3 Aware Design Tool Setion 3.63.6 The RepositoryThe Repository omponent of the design tool arhiteture (see �gure 3.1) isthe omponent that store shemas in the Aware Design Tool.

Logical

GUI

Repository

Application Specification

Oracle DBMS

ConceptualConceptual

Repository Interface

User-defined Specification

Figure 3.14: Arhiteture of the Repository.The Repository omponent onsists of the following sub-omponents (see�gure 3.14):Repository Interfae: This part of the Repository provides aess to thefuntionality of the Appliation Spei�ation sub-omponent and User-de�ned Spei�ation sub-omponent.Appliation Spei�ation: This omponent is split into two sub-omponents,as seen in �gure 3.14. These sub-omponents perform the storing andloading of shemas. Eah of the sub-omponents provide funtionalityfor a spei� design phase. Thus, there is a sub-omponent for boththe oneptual and the logial design phase.User-de�ned Spei�ation: This omponent handles storage of user de-�ned omponents. In the urrent implementation of the Aware De-48

Setion 3.6 Aware Design Tool Chapter 3sign Tool, the User-de�ned spei�ation omponent has one sub-om-ponent, namely for the oneptual design phase (see �gure 3.14). Thus,it is possible to store and load user-de�ned omponents from the on-eptual design phase only.Two storage shemas has been de�ned for the Repository: a Coneptual stor-age shema and a Logial storage shema. The Coneptual storage shemarepresents the starER model. The Coneptual storage shema an be seen in�gure 3.15.
key info

name

typedefinition

name

number

type

number

number
type

name

name

Conceptual
schema

name

is
part
of

is a

is in

connect

connect
has

has

limits limits

N

N

N

N

1

N1

N

N

1 1

1

N

N

1

1

1 1 1

1

1

N

has

Membership
set

Aggregation
set

Generalization/
specialization

set

Entity set
Relationship

set

Attribute

Constraint

Fact set

N

N

user component

consists

consists

of

of

cardinality

Figure 3.15: ER diagram of the Coneptual storage shema.The elements in the Coneptual storage shema will be desribed in the fol-lowing. Emphasized words refer to spei� sub-omponents in the Coneptualstorage shema.� The entity set Coneptual shema represents de�nitions of oneptualshema (starER shemas). For a oneptual shema, the name of theshema is stored along with data about whether the shema is a user-de�ned omponent or not.� The entity set named Entity set represents de�nitions of entity sets ina oneptual shema. For an entity set, the name of the entity set isstored. 49

Chapter 3 Aware Design Tool Setion 3.6� The entity set Fat set represents de�nitions of fat sets in a oneptualshema. For a fat set, the name of the fat set is stored.� The entity set Relationship set represents de�nitions of relationshipsets in a oneptual shema. For a relationship set, the name of therelationship set is stored along with data desribing the ardinality ofthe relationship.� The entity setMembership set represents de�nitions of membership setsin a oneptual shema. A membership set is de�ned on the entity setwhih is the member of another entity set. For a membership set, itis neessary to store the type (strit, omplete or non-omplete) and anumber to identify the membership set.� The entity set Generalization/speialization set represent de�nitions ofgeneralizations/speialization sets in a oneptual shema. A general-ization/speialization set is de�ned on the speialized entity set. Foreah generalization/speialization set, it is neessary to store a numberthat uniquely identi�es the generalization/speialization set.� The entity set Aggregation set represents de�nitions of aggregation setsin a oneptual shema. An aggregation is spei�ed on the entity setwhih is a part of another entity set. For aggregation sets, a number isstored to uniquely identify the aggregation sets.� The entity set Attribute represents de�nitions of attributes in a on-eptual shema. For attributes, it is neessary to store the name of theattribute along with data about the type (Stok, Flow, Value-per-unitor regular attribute) and what key type (foreign, primary, or not a key)the attribute is.� The entity set Constraint represents onstraint de�nitions in a onep-tual shema. For onstraints, it is neessary to store the de�nition ofthe onstraint. This de�ntion is unique beause it ontains the nameof the entity set or attribute it is de�ned upon.Figure 3.16 shows the ER diagram of the Logial storage shema. As an beseen in �gure 3.16, the Logial storage shema is simpler than the Coneptualstorage shema. The Logial storage shema allows the Repository to storedata about logial shemas (Extended Snowake shemas).The elements in the Logial storage shema are desribed in the following.50

Setion 3.6 Aware Design Tool Chapter 3
name

name

attribute domain

min value

key type name

decimal

precisionmax value

name

consist
of

consist
of

Constraint

Attributes

Dimension
table

Fact
table

has has

Logical
schema

limits

limits

limits

definition

N

11

N

1

1

1

1

1

1

11

N N

Figure 3.16: ER diagram of the Logial storage shema.� The entity set Logial shema represents the de�nition of a logialshema (an Extended Snowake shema). For logial shemas, it isneessary to store the name of the shema. A logial shema onsistsof Fat tables and Dimension tables.� The entity set Fat table represents de�nitions of fat tables in a logialshema. For fat tables, it is neessary to store the name of the fattable.� The entity set Dimension table represents dimension tables in a logialshema. As with fat tables, it is neessary to store the name of thedimension table. Both dimension and fat tables has Attributes de�nedupon them.� The entity set Attributes represents de�nitions of attributes in a logialshema. For attributes, it is neessary to store their name and dataabout whether the attribute is a key (foreign or primary) or not a key.In addition, it is neessary to store data about the domain (varhar,integer et.) of the attribute. Along with this data, it is neessary tostore data about the preision, number of deimals, min value and max51

Chapter 3 Aware Design Tool Setion 3.6value for the attribute.� The entity set Constraint represents onstraints de�ned on either Di-mension tables, Fat tables or Attributes. For onstraints, it is nees-sary to store the de�nition. This de�nition ontains the name of theonstraint, and is therefore suÆient as primary key for a onstraint.In this hapter, we have desribed the omponents in the Aware DesignTool. It is our onlusion, that the arhiteture, as desribed in setion3.1, has proved to be an advantage when implementing the Aware DesignTool, as it made the implementation of the sub-omponents of the AwareDesign Tool easier. Regarding the ommuniation among the omponentsin the arhiteture, we realize that the oupling between the GUI and otheromponents in the Aware Design Tool is too strong. This makes theGUI omponent inexible regarding hanges to the Aware Design Tool.We onlude that the metadata ontainers are very useful regarding om-muniation among omponents in the Aware Design Tool. The parsersand generators, as desribed in setion 3.4, are neessary in order to onvertgraphial shemas to soure ode and via versa. The translators are nees-sary in order to support the methodology, as desribed in hapter 2, as theymake it possible to translate a shema from one design phase to the next.We also onlude, that a database is suitable for storing data about shemas.In the next hapter, we propose di�erent expansions to the Aware DesignTool.

52

4Expanding the
Aware Design Tool

In this hapter, ideas for expanding the funtionality of the Aware DesignTool are presented. First we shortly desribe how shemas are urrentlymaintained in the Aware Design Tool, and we desribe how they shouldbe maintained. Next we present our idea for a Controller. We desribehow the Controller an be used for maintaining onstraints, and we givean example of how the Controller should handle strutural hanges to ashema. Then we present di�erent ideas of how the Controller ould be usedregarding the Aware Design Tool. These ideas inlude the desriptionof a oneptual query language, and how the Controller ould be used toimplement a data seurity administration in the data warehouse design tool.4.1 Maintaining ShemasWhen expliit oneptual onstraints (ACs, SACs and ECs) are de�ned ina oneptual shema, an important issue is how these onstraints are main-tained in the logial shema. This issue also applies when onstraints arede�ned for a shema, either oneptual or logial, and the shema strutureis hanged subsequently.In the Aware Design Tool, onstraints are urrently handled in a statimanner. This means that expliit oneptual onstraints are translated intoonstraint de�nitions in the logial shema (see appendix C for onstraint53

Chapter 4 Aware Design Tool Setion 4.2translations). Moreover, if the struture of a shema is hanged or if an ele-ment in a shema is renamed, the hanges are not reeted in the onstraintde�nitions. This is a problem, beause when renaming our, the onstraintsmust still be imposed on the elements upon whih they were de�ned. Inorder to overome this problem, it must be possible to maintain onstraintsin a dynami manner. That is, when an element is renamed, any onstraintthat is imposed, on the element being renamed, must be updated to reetthe hange.Regarding onstraint de�nitions, a problem our if an attribute is referenedin a onstraint de�nition, and this attribute is either moved or renamed.This is a problem beause it would ause inonsisteny within the onstraintde�nitions. Suh hanges must be reeted in the onstraint de�nitions whihreferenes the attribute. To overome this problem, it should be possibleto handle strutural hanges in a dynami manner. For example, when anattribute is moved, all onstraint referenes to this attribute must be hanged.Another problem is how to handle oneptual onstraints when the onep-tual shema has been translated into a logial shema. If a onstraint isimposed on either an entity set or an attribute, this onstraint must be im-posed on the orresponding table or attribute in the logial shema. For anEC, this means that the table, orresponding to the entity set upon whihthe EC was de�ned, annot be deleted. That is, the entity set annot bedeleted, as this would violate the EC de�nition from the oneptual designphase that must be maintained in the logial design phase. Moreover, itshould not be possible to delete or move any attribute in this table. For ACsand SACs, this means that the attribute in the logial shema orrespondingto the attribute upon whih the AC or SAC was de�ned annot be deleted.In fat, we suggest that in a logial shema, no attribute whih originatesfrom a oneptual shema an be deletedIn order to overome the above desribed problems, we introdue the ideaof a Controller. The Controller must ensure that a shema is always on-sistent regarding referenes. The Controller an ahieve this by propagatinghanges throughout a shema whenever they our. The funtionality andthe struture of the Controller is desribed in the next setion.4.2 The ControllerIn order to overome the problems listed in the previous setion, we suggesta Controller. First we de�ne the notion of a Controller.54

Setion 4.2 Aware Design Tool Chapter 4Controller: A omponent whih enfores that onstraints are maintaineddynamially in a shema.The Controller should be integrated as the other omponents in the AwareDesign Tool arhiteture (see setion 3.1). We suggest that the Controlleronsists of three distint sub-omponents (see �gure 4.1). These are desribedin the following.
GUI

Omniscient Propagator

Controller
Communicator

Figure 4.1: Struture of the Controller
Propagator: A omponent that propagates hanges throughout a shema.The funtionality of the Propagator an be ahieved by letting the Propagatoruse the metadata ontainers (see setion 3.3) in order to maintain the shemastruture. When hanges our to the shema, the Propagator hanges theontents of the metadata ontainers where neessary, and thereby hangingthe shema. This means that the GUI omponent must use the ontents ofthe metadata ontainers maintained by the Propagator to reet the urrentshema state.Omnisient: A omponent that is used for determining whether a hangeto a shema is allowed or not.The Omnisient omponent holds information about whih onstraints areimposed on a shema, whether it being expliit, impliit or inherent on-straints, these onstraints are desribed in [NLK99℄. Also, the Omnisientholds information about whih impliit onstraints an be deduted from the55

Chapter 4 Aware Design Tool Setion 4.2de�nition of expliit onstraints. This information is used to hek whether ahange to a shema an be allowed or not. Beause the Omnisient holds in-formation about inherent onstraints, this implies that the Omnisient, andthereby the Controller, is dependent upon the used data model. Therefore,a Controller must be implemented for eah design phase supported in theAware Design Tool.Communiator: A omponent that handles ommuniation among thesub-omponents in the Controller and the GUI.The purpose of the Communiator omponent is to send requests to the Om-nisient and, if the request is granted, to inform the Propagator about whihhanges must be made. If a request is not granted, then the Omnisient in-forms the Communiator about this deision, and the Communiator returnsan error message to the GUI.
Computer

P p_number
credit_price

Product

P p_number

price

Request: move the attribute price from
the table Product to the table of

Logical schema presented by the GUI

Product.p_number
Computer.p_number

of

quantity

set constraint Minprice
for Computer.credit_price:
Product.price > 1000

Omniscient Propagator
Checks existing
constraints to see
if the change is
admissible.

Controller
Communicator

Does nothing yetFigure 4.2: The GUI request permission to make a hange.To larify how the Controller handles hanges to a shema struture, anexample from the Sales data warehouse logial shema is presented in �gure4.2 (see [KLN00℄ for more information about the Sales ase study). Thisexample desribes how strutural hanges to the Produt1 dimension should1Note that elements in the dimension has been left out sine they are not of interest inthis example. 56

Setion 4.2 Aware Design Tool Chapter 4be handled dynamially by the Controller.The hanges we want to impose on the shema struture is omplete denor-malization of all dimensions. This means that the tables Produt and Com-puter should be ollapsed into the of table. This hange has e�et on theonstraint Minprie, whih referenes the attributes Computer.redit prieand Produt.prie (see �gure 4.2).The most interesting step in this ontext is to move the attribute prie fromthe Produt table into the of table. This results in a request being send tothe Communiator from the GUI (see �gure 4.2). The Communiator passthe request on to the Omnisient. The Omnisient heks if any onstraintde�nitions that would make the ation impossible.In this example, no suh onstraint is de�ned. Therefore, the Omnisientonludes that the hange is admissible and inform the Communiator aboutthis (see �gure 4.3). The Communiator then prompts the Propagator tomake the neessary hanges to the shema. The Propagator then traversesthe metadata ontainers and perform hanges where ever they are neessaryin the shema. Finally, the Propagator orders the GUI to rebuild the shema(see �gure 4.3). Suh ation will be performed everytime the designer attempsto make a hange to the shema.
Computer

P p_number
credit_price

Omniscient Propagator

Controller
Communicator

P p_number

Product

Product.p_number
Computer.p_number

of

quantity
Product.price

set constraint Minprice
for Computer.credit_price:
of.Product.price > 1000

Message: rebuild schema

request
Grants the

Result: The schema structure and constraints are changed

Propagates changes
throughout the schemaFigure 4.3: The request is granted.57

Chapter 4 Aware Design Tool Setion 4.3In the next setion, we suggest to expand the Aware Design Tool, so itis possible to administrate seurity at the oneptual design phase.4.3 Data SeurityDue to legislation regarding seurity for data registers and beause ompaniesmay not allow their data warehouse users to query upon all data in the datawarehouse, data seurity is needed for data warehouses. By data seurity,we mean that it should be possible to hide data from ertain user groups.For example, sales managers should not be able to query about ustomers'personal information (soial seurity number, inome et.). We suggest thatseurity should be administrated at the oneptual design phase. This makesit possible for a ompany manager to partiipate in the administration alongwith the data warehouse designer, using onepts familiar to the manager.In order to handle seurity administration in the Aware Design Tool, wesuggest a Guardian.Guardian: A omponent that ensures that ertain data in a datawarehouse is aessable to seleted user groups only.The Guardian must be able to reate the neessary protetion mehanismsfor the data in the data warehouse. In addition, the Guardian must be ableto assign user groups to parts of the data warehouse shema and to reateuser groups.Beause the Aware Design Tool permits the designer to hange the stru-ture of logial shemas (see hapter 2), the Guardian should be able to dealwith suh hanges dynamially. That is, the restritions on user aess to thedata in the data warehouse must be onsistent regardless of the shema stru-ture. The Controller, as proposed in setion 4.2, handles shema hangesdynamially. Thus the Guardian should be noti�ed about hanges in theshema by the Controller in order to provide the neessary funtionality thatensures that the restritions of the user aess will be onsistent, even whenhanges are made to the shema struture of the data warehouse.Figure 4.4 shows how the GUI and the Controller should ommuniate withthe Guardian.Handling administration of user groups in the Aware Design Tool anbe ahieved by using an administrative window in the GUI. In this window,it should be possible to administrate user groups. This should be done in58

Setion 4.3 Aware Design Tool Chapter 4
GUI

Guardian

ControllerFigure 4.4: The GUI and the Controller ommuniating with the Guardian.a similar manner as Orale Seurity Manager, whih permits the databaseadministrator to maintain pro�les (see [Ora99a℄).To larify how the Guardian should handle seurity administration, an exam-ple from the Sales data warehouse is presented (see [KLN00℄ for elaborationon the Sales ase study). In this example, store managers should only beable to query upon sales regarding the store they manage. The �rst step inthis example is to reate a Store Manager user group. The next step is torestrit the Store Manager user group by assigning elements in the shemarelevant to this user group (see �gure 4.5).
Marking relevant
elements

of

at

F sales
Sales

Store

sold
at

Product

Day

N

1

1

N

N

M

Manager

quantity

name

1hasN

Administration language construct

= Group memberFigure 4.5: Restriting data aess for Store Managers.59

Chapter 4 Aware Design Tool Setion 4.3In order to express how user groups an be restrited to ertain parts of datain the data warehouse, we suggest a oneptual administration language.The Group member ould be a onstrut in suh a oneptual administrationlanguage (see �gure 4.5). The Group member onstrut is used to ensure thatthe group members (Store Managers) are restrited to queries that involvesthe store they manage. A oneptual administration language should alsoinlude onstruts that makes it possible to express other restritions. Forexample, it would be desirable to inlude a onstrution that an be used torestrit user groups to query upon parts of the data. For example, the StoreManager group should be restrited to only query upon produts, whereprodut number equals 12.000.Reall that when the oneptual shema has been designed, the oneptualshema is translated into a logial shema whih may be modi�ed. Whenthe logial shema is modi�ed, inonsisteny in the user group restritionsan our. Therefore, when modi�ations are made to the logial shema,the Controller must notify the Guardian about the hanges. The Guardianshould then make the neessary hanges in order to ensure that the usergroup aess rights are onsistent with the urrent shema struture.Finally, when the logial shema is translated into SQL statements, theGuardian outputs an additional set of SQL statements. These SQL state-ments are used to enfore the seurity restritions in the underlying DBMS.

60

Setion 4.4 Aware Design Tool Chapter 44.4 Coneptual Query LanguageIn this setion, we provide a desription of ideas for developing a oneptualquery language. This oneptual query language should make it possibleto speify queries at a oneptual level, based on the starER model as pre-sented by [TBC99℄. We propose a high-level graphial query language thatallows end-users to speify queries on a starER shema in an intuitive way.This query language should make it possible for the end-users of the datawarehouse to extrat and view data from the data warehouse graphially.The Aware Design Tool does not support a oneptual query language,as this is not the purpose of this tool i.e, the Aware Design Tool is usedonly for designing data warehouses. Therefore, we propose that an additionaltool is developed, whih makes data mining possible i.e., a data mining tool.In the following, we refer to this tool as the Aware Query Tool. When a datawarehouse has been designed using the Aware Design Tool, and data hasbeen loaded into the data warehouse, the Aware Query Tool should be usedfor querying upon the data in the data warehouse.In order to speify queries using the Aware Query Tool, the starER shemasmust be provided for the Aware Query Tool. These starER shemas areavailable in the repository of the Aware Design Tool (see 3.6). Thus,the repository in the Aware Design Tool should be aessible from theAware Query Tool. Note that the Aware Query Tool should not be allowedto modify the shemas stored in the repository, as modi�ations to a datawarehouse shema is a design issue.A query an be spei�ed on a starER shema by seleting elements in theshema. A seleted element is an element that will partiipate in the query,and is marked by a thik border around the element on the shema. If theseleted element is an attribute, this attribute will partiipate in the query.If the seleted element is an entity set, relationship set, or fat set, all of theattributes de�ned on the seleted element will partiipate in the query. Notethat it should be possible to selet several attributes de�ned on the sameelement individually.It should be possible to onstrain the values of a seleted attribute thatpartiipates in a query. This is ahieved by de�ning a query onstraint onthe seleted attribute.Query onstraint: A ondition that limits the query result.A query onstraint is spei�ed on a shema by a dashed box that is onneted61

Chapter 4 Aware Design Tool Setion 4.4to the seleted attribute.In the following, we provide an example of how a graphial query an bespei�ed on a oneptual shema. This example is based on the Sales datawarehouse as desribed in [KLN00℄. Note that in order to keep this exampleas simple as possible, only the Time and Produt dimensions are onsidered.In the example, we want to extrat all sales for a spei� range of produtsin a spei� year. More spei�, we want to extrat all sales in 1999 forproduts that have a produt number between 10.000 and 13.000. Figure4.6 shows how suh a query ould be spei�ed on a starER shema. In this�gure, the following elements are seleted:� The attribute year on the Year entity set in the Time dimension.� The attribute p number on the Produt entity set in the Produt di-mension.

Sales

of Product

at Day

Month

Week

Year

week

M

p_number

sales

N

1

day

month

N

year

price

F

= 10.000 to 13.000

Product dimension

= 1999

quantity

Time dimension

Figure 4.6: A oneptual query.In order to speify that only sales from year 1999 must be onsidered in thequery, a query onstraint is de�ned for the year attribute on the Year entity62

Setion 4.4 Aware Design Tool Chapter 4set (see �gure 4.6). This query onstraint spei�es that the value of the yearattribute must be equal to 1999. That is, an expression, "= 1999", is writtenwithin the query onstraint. Thus, the query is onstrained to only returnvalues where the year attribute equals the value 1999.Similarly, a query onstraint is de�ned on the p number, whih is used forspeifying that only produts with a produt number (p number) in the rangeof 10.000 to 13.000 are onsidered in the query. In this ase the expression,"= 10.000 to 13.000", is written within the query onstraint (see �gure 4.6).By marking elements using a olor, it is possible to speify what elementsthe query should return. In �gure 4.6, the following elements are marked bya olor, and thus de�nes the result of the query:� The summarizable attribute sales on the Sales fat set.� The regular attribute p number on the Produt entity set in the Produtdimension.The result of the query in the example is shown in table 4.1. This tableonsists of two olumns ontaining the values of the marked attributes intabel 4.1 i.e., the p number and sales attributes.Produt.p number Sales.sales10.000 2.71010.001 5.11710.002 7.589... ...12.998 4.16512.999 3.584Table 4.1: Sales of Produt.p number = 10.000 to 13.000 at Year.year =1999.Another aspet of a graphial query language is the ability to speify thatextrated data in a query must be aggregated. For example, we might wantto sum the sales of all the produt numbers for 1999 returned by the queryshown in �gure 4.1. This an be ahieved by speifying a Sum funtion2 forthe sales attribute on the Sales fat set using a dashed box as shown in �gure4.7. The result of using the Sum funtion in the query is shown in table 4.2.2Note that the graphial query language should also support other aggregation fun-tions. 63

Chapter 4 Aware Design Tool Setion 4.4
Sales salesF Sum()Figure 4.7: Speifying an aggregation query.We suggest that a oneptual query spei�ed using the graphial query lan-guage is translated into a SQL query at the logial level in the Aware QueryTool. This SQL query should then be used for extrating data in the datawarehouse. In order to ahieve the translation into a SQL query, the AwareQuery Tool must ontain a query translator. This query translator must beable to identify the query paths that exists among seleted elements in aquery. That is, the query translator must be able to join the elements thatexists in a query path, in order to make the translation of the query intoSQL possible. Summed Sales.sales14.253.789Table 4.2: Summed sales of Produt.p number = 10.000 to 13.000 atYear.year = 1999.The query translator must have aess to data regarding the mapping be-tween the oneptual shema to the logial shema. This is a requirement, asthe elements and struture in the oneptual shema ould be very di�erentfrom the resulting logial shema. That is, �rst the oneptual shema hasbeen translated into a logial shema by the Aware Design Tool. Se-ondly, the struture of the logial shema, and the names of the elements inthis shema may have been hanged during the logial design phase. Thus,by aessing data regarding the mapping between the oneptual shemaand the resulting logial shema, the translator should be able to map theoneptual query into a logial query, i.e. a SQL query.In this hapter, we have desribed problems regarding shema hanges. TheAware Design Tool does not handle these problems in the urrent im-plementation. In order to overome these problems, we have suggested aController. A Controller is useful if the Aware Design Tool should beable to dynamially handle hanges to a shema. Also, a Controller ompo-64

Setion 4.4 Aware Design Tool Chapter 4nent is neessary in order to implement the proposed Guardian that should beable to handle the administration of seurity at the oneptual design phase.Finally, we have suggested to implement a oneptual query language.

65

5Conclusion &
Future Work

In this hapter we onlude on the work desribed in this report, and wesuggest future researh issues.5.1 ConlusionIn this report, we have desribed a data warehouse design methodology.It is our onlusion, that a design methodology provides the designer withseveral advantages when designing a data warehouse. In order to utilize theseadvantages, we have implemented the Aware Design Tool to support themethodology. We onlude that it is possible to implement a design tool thatsupports suh a methodology, and that the advantages of the methodologyare retained in the Aware Design Tool.Regarding the arhiteture of the Aware Design Tool, we an onludethat de�ning this arhiteture has been an advantage. The arhiteture hasmade it easy to split the atual implementation of the Aware Design Toolinto smaller parts. Moreover, the arhiteture has made it easy to test theimplementation of omponents in the arhiteture individually. Also, the ar-hiteture provided makes it easy to replae any omponent when neessary,as well as adding new omponents.We onlude that the metadata ontainers implemented in the Aware De-sign Tool has proven very useful to us. They are useful beause they make67

Chapter 5 Aware Design Tool Setion 5.2the ommuniation between the other omponents in the Aware DesignTool easy. Also, the metadata ontainers an be utilized when expandingthe funtionality of the Aware Design Tool. This is an advantage be-ause it is possible to let a omponent maintain the metadata ontainers,and make the GUI reet the ontents of the ontainers.Regarding the shema translators, we onlude that these are neessary inorder to translate a shema from one design phase to the next automatially.Furthermore, we onlude that it is neessary to perform the translationof the shema elements in a spei� order to ensure that the translation isperformed orretly.An advantage of using a database for storing shemas in the repository isthat it is possible for other tools to utilize the shemas, and the shemas areeasily ported to other platforms.5.2 Future WorkRegarding future work we suggest that the Controller, as desribed in setion4.2, is implemented in the Aware Design Tool. The Controller shouldbe an important part of the Aware Design Tool, but beause of thelimited time at our disposal, there was not time enough to implement thisomponent.When the Controller is implemented, we suggest that the areas of a onep-tual query language and oneptual seurity administration are explored. Aoneptual query language should be implemented in a separate data miningtool, but utilize the funtionality of the Controller and the Repository of theAware Design Tool.Another suggestion for future work is the ability of speifying how data inthe data warehouse should be pre-aggregated. Suh funtionality should beimplemented at the logial design phase in the Aware Design Tool.Another expansion of the Aware Design Tool funtionality ould be toallow assoiating data from external data soures with elements in the log-ial shema. This ould be used to semi-automatially reate a data feth-ing/leansing omponent.Finally, It would be desirable to extend the Aware Design Tool into aCASE tool. This would require the funtionality of e.g., projet managementand version ontrol of shemas. 68

AThe StarLanguage
Syntax

This appendix provides the syntax of the StarLanguage using the BakusNaur Form (BNF) notation [Guy00℄. Keywords are written in boldfae, andterminals that onsists of only one or two haraters are surrounded by quotes(").shema ::=shema identi�er is de�nition f de�nition g j f de�nition gde�nition ::=fat j entity j relationship j e j a j safat ::=fat identi�er properties "."entity ::=entity identi�er entity spe ".";entity spe ::=isa and properties j propertiesisa ::= is is spe 69

is spe ::=a identi�er list j part of identi�er list j membership listidenti�er list ::=identi�er f "," [and ℄ identi�er gmembership list ::=membership f "," [and ℄ membership gmembership ::=membership type membership spemembership type ::=omplete j non-omplete j stritmembership spe ::=member of identi�errelationship ::=relationship identi�er relationship spe ".";relationship spe ::=onnetions [and properties ℄onnetions ::=onnets onnetion "," [and ℄ onnetion listonnetion list ::=onnetion f "," [and ℄ onnetion gonnetion ::=identi�er [ardinality spe ℄ardinality spe ::=with ardinality ardinalityardinality ::=one j manyproperties ::=has attributes [and has position ℄ j has position [and has attributes ℄

attributes ::=attributes attribute f "," [and ℄ attribute gattribute ::=identi�er attribute spe [at position ℄attribute spe ::=as type attribute typeattribute type ::=regular j key j stok j ow j value-per-unitposition ::=position pointpoint ::="(" value "," value ")"e ::= e identi�er ":" expra ::= a attr id ":" domain expr list "."sa ::= sa attr id ":=" aggr expr dim listexpr ::=log expr j omp expr j arit expr j aggr expr j value expr j "(" expr ")"log expr ::=not expr j expr and expr j expr or expromp expr ::=expr omp op exprarit expr ::=expr arit op expraggr expr ::=aggr op "(" expr ")"value expr ::=

value j identi�er j attr iddomain expr list ::=domain expr f ";" domain expr gdomain expr ::=[expr ":" ℄ domaindomain ::=range f "," range grange ::=value [to value ℄ j omp expraggr expr dim list ::=aggr expr [per identi�er list ℄identi�er ::=single word id j quoted idattr id ::=identi�er "." identi�ervalue ::=digit f digit g ["." digit f digit g ℄single word id ::=letter f letter j digit gquoted id ::=""" f any harater g """omp op ::="=" j "<>" j "<" j ">" j "<=" j "=>"arit op ::="+" j "�" j "�" j "="aggr op ::=sum j avg j min j max j ount

BThe SnowLan-
guage Syntax

This appendix provides the syntax of the SnowLanguage using the BakusNaur Form (BNF) notation [Guy00℄. Keywords are written in boldfae, andterminals that onsists of only one or two haraters are surrounded by quotes(").stmt list ::=[stmt f ";" stmt list g ℄stmt ::= set set stmtset stmt ::=fat table stmt j dim table stmt j onstr stmtfat table stmt ::=fattable table spedim table stmt ::=dimtable table speonstr stmt ::=onstraint identi�er for (identi�er j attr id) ":" (aggr expr j ranges)73

table spe ::=identi�er attr list and key list at "(" number "," number ")"attr list ::=with attr f "," [and ℄ attr gkey list ::=primary key list f "," [and ℄ key list g j foreign key list f "," [and ℄ key list gprimary key list ::=primary key identi�er listforeign key list ::=foreign key referene list referenes identi�erkey identi�er list ::=key "f" identi�er list "g" j key identi�eridenti�er list ::=identi�er f "," [and ℄ identi�er gkey referene list ::=key "f" referene list "g" j key referenereferene list ::=referene f "," [and ℄ referene gattr ::=identi�er as attr type [not null ℄attr type ::=integer j real j numeri "(" integer "," integer ")" j oat "(" integer ")" jvarhar "(" integer ")" j date j timeexpr ::=log expr j omp expr j arit expr j aggr expr j value expr j "(" expr ")"ranges ::=range ond opt f "," range ond opt glog expr ::=

not expr j expr and expr j expr or expromp expr ::=expr omp op exprarit expr ::=expr arit op expraggr expr ::=aggr op "(" expr ")" [dim identi�er list ℄value expr ::=number j identi�er j attr idrange ond opt ::=range [if expr ℄range ::=number ["�" number ℄ j omp exprdim identi�er list ::=per "f" identi�er list "g" j per identi�eridenti�er ::=single word id j quoted idreferene ::=identi�er "->" identi�er j identi�erattr id ::=identi�er "." identi�erinteger ::=digit f digit gnumber ::=integer ["." integer ℄single word id ::=letter f letter j digit g

quoted id ::=""" f any harater g """omp op ::="=" j "<>" j "<" j ">" j "<=" j ">="arit op ::="+" j "�" j "�" j "="aggr op ::=sum j avg j min j max j ount

CTranslation Rules

The translation rules are used for translating a starER shema into an Ex-tended Snowake shema. The translation rules ensure that all omponentsin a starER shema are translated properly into omponents in an ExtendedSnowake shema. Moreover, onstraints that are de�ned in the starERshema are translated into onstraints in the the Extended Snowake shema.The translation is performed in 11 steps. The �rst 8 steps are used fortranslating all omponents in a starER shema, i.e., fat sets, entity set,relationship sets et. The last 3 steps are used for translating onstraintde�nitions in the starER shema. The translation rules must be followed stepby step in the order they are presented in order to obtain a valid ExtendedSnowake shema.A primary key must be present in all the dimension tables in an ExtendedSnowake shema. This is neessary as all dimension tables in the ExtendedSnowake Shema must be referened to by another dimension or fat table.Thus, if no primary key is provided for a dimension table it is neessary forthe translation rules to provide a primary key for the dimension table.Relationship sets are handled in two separate steps. First one-to-many rela-tionship sets are handled. Seondly, many-to-many and high-order relation-ship sets are handled. The two steps are required in order to translate fatsets properly. Fat sets in a starER shema are translated into fat tablesfor the Extended Snowake shema. In order to translate a many-to-manyor high-order relationship set between a fat set and an entity set, a pri-mary key must exist on the fat table in the Extended Snowake shemaorresponding to the fat set in the starER shema. The primary key of afat table is omposed entirely of all its foreign keys. Thus, these foreign77

keys must �rst be inluded into the fat table before the many-to-many andhigh-order relationship sets an be properly translated. This is ahieved inthe translation step for the one-to-many relationship set. This translationstep inludes foreign keys in fat tables.Summarizable attributes are handled in a separate step, as all summariz-able attributes on entity sets and relationship sets are translated into fattables [NLK99℄. However, this is not the ase for summarizable attributesde�ned on fat sets. Summarizable attributes de�ned on fat sets in thestarER shema are inluded in the orresponding fat table in the ExtendedSnowake shema.During the translation of a starER shema into an Extended Snowakeshema, it an be neessary to rename an attribute that is about to be in-luded in a table in the Extended Snowake shema. This is neessary onlyif an attribute already exists in the table, whih has the same name as theattribute that is about to be inluded in the table.In the following subsetions, the translation steps are desribed.Fat SetsIn this initial step a new fat table is reated in the Extended Snowakeshema for eah fat set that exists in the starER shema. All regular andsummarizable attributes on the fat set in the starER shema are inludedin the orresponding fat table in the Extended Snowake shema.Translation Rule:For eah fat set F in the starER shema, reate a new fat table TF in theExtended Snowake shema.� Inlude regular and summarizable attributes of F as attributes of TF .Entity SetsIn this step, entity sets from the starER shema are translated into dimensiontables for the Extended Snowake shema, exept for entity sets that are asubpart in an aggregation set. Entity sets that are a subpart in an aggrega-tion set are handled separately in the step used for translating aggregationsets.

All regular attributes on an entity set in the starER shema must be inludedin the orresponding dimension table in the Extended Snowake shema.Note that summarizable attributes are not inluded in the dimension tables,as these are handled separately in the step used for translating summarizableattributes.If a primary key is de�ned on an entity set in the starER shema, this key isused as the primary key in the orresponding dimension table in the ExtendedSnowake shema. If no primary key is de�ned on the entity set, then aprimary key must be provided for the orresponding dimension table in orderto ensure that the dimension table has a primary key.Translation Rule:For eah entity set E in the starER shema that is not a subpart of anaggregation set, reate a new dimension table TE in the Extended Snowakeshema.� Inlude all regular attributes of E as attributes of TE.� If a primary key K is spei�ed on E, then K beomes the primary keyof TE; else reate a new primary key K and inlude this key in tableTE.Aggregation SetsNo dimension table should be reated in the Extended Snowake shemafor entity sets in the starER shema that are subparts of an aggregation.Instead, all regular attributes from these entity sets (subparts) are inludedin the dimension table in the Extended Snowake shema that orrespondsto the aggregated entity set in the starER shema. At this point of thetranslation, this dimension table has already been reated in the step usedfor translating entity sets.Translation Rule:For eah aggregated entity set A in the starER shema, identify the orre-sponding dimension table TA in the Extended Snowake shema, and identifyall entity sets E1; E2; : : : ; En that are subparts of A in the starER shema.

� Inlude all regular attributes from eah entity set Ei into TA.One-to-many Relationship SetsNo dimension table is reated in the Extended Snowake shema in order torepresent a one-to-many relationship set from the starER shema. Insteadthe table in the Extended Snowake shema orresponding to an entity setor fat set at the many-side of a relationship set in the starER shema is usedfor representing the one-to-many relationship set. In this table the primarykey of the table at the one-side of the relationship set is inluded as a foreignkey. If the relationship set has regular attributes, these are inluded in thetable that is used for representing the relationship set.Translation Rule:For eah one-to-many relationship set R in the shema, identify the table TMin the Extended Snowake shema that orresponds to the entity set or fatset at the many-side of the relationship set. Let the table in the ExtendedSnowake shema that orresponds to the entity set on the one-side in thestarER shema be T1. If the one-to-many relationship set has a generalizedentity set at the many-side in the starER shema, then identify the dimensiontables tS1 ; tS2 ; : : : ; tSn that orresponds to the speialized entity sets of thisgeneralized entity set.� Inlude the primary keys of T1, tS1 ; tS2 ; : : : ; tSn as foreign keys in TM .� If the relationship set R has regular attributes then inlude these inTM .Many-to-many and High-order Relationship SetsIn order to represent a many-to-many or high-order relationship set fromthe starER shema, a new dimension table must be reated in the ExtendedSnowake shema. The primary keys of all the related tables in the Snowakeshema orresponding to the related entity sets and/or fat sets in the starERshema are inluded in this dimension table as foreign keys. If the relationshipset has regular attributes, these are inluded in the dimension table thatrepresents the relationship set.

Translation Rule:For eah many-to-many or high-order relationship set R in the starER shemathat relates the entity sets or fat sets X1; X2; : : : ; Xn in the starER shema,reate a dimension table TR in the Extended Snowake shema. If the rela-tionship set is related to one or more generalized entity sets in the starERshema, then identify the dimension tables tS1 ; tS2 ; : : : ; tSn that orrespondsto the speialized entity sets of the generalized entity sets.� Inlude the primary keys K1; K2; : : : ; Kn of the entity sets or fat setsX1; X2; : : : ; Xn as foreign keys in the dimension table TR.� Inlude the primary keys of tS1 ; tS2; : : : ; tSn as foreign keys in TR.� The primary key of TR is the ombination of all the inluded foreignkeys.� If the relationship set R has regular attributes then inlude these inTR.SpeializationsWhen translating entity sets that are speializations of a generalized entityset in the starER shema, the dimension table orresponding to the gener-alized entity set and eah dimension table orresponding to the speializedentity sets in the Extended Snowake shema must be identi�ed. All the at-tributes and foreign keys that are de�ned on the dimension table orrespond-ing to the generalized entity set, must be inluded in eah of the dimensiontables that orresponds to the speialized entity sets.In the step used for translating entity sets, a primary key has already beenprovided for all dimension tables that have been reated in the ExtendedSnowake shema. A speialized entity set in the starER shema inher-its the primary key from its super lasses (generalized entity sets). Thus,the primary key of the dimension tables in the Extended Snowake shemaorresponding to speialized entity sets in the starER shema must be re-plaed with a new primary key. This new primary key is omposed of all theprimary keys from the dimension tables in the Extended Snowake shemaorresponding the speialized entity set's super lasses in the starER shema.

Translation Rule:For eah speialized entity set S in the starER shema, identify the dimensiontables TG1 ; TG2 ; : : : ; TGn in the Extended Snowake shema that orrespondsto the super lasses of entity set S in the starER shema.� Inlude all the regular attributes from TG1 ; TG2 ; : : : ; TGn as new at-tributes of S.� Inlude all the foreign keys from TG1 ; TG2 ; : : : ; TGn as new foreign keysof S.� Replae the primary key of S with a new primary key that is omposedof all the primary keys from TG1 ; TG2; : : : ; TGn.Membership SetsIn this step, dimension tables in the Extended Snowake shema that orre-sponds to entity sets that take part in membership sets in the starER shemaare handled. This is ahieved by identifying the dimension table orrespond-ing to the entity set of �ner granularity, and then inluding the primarykey of this table into the dimension table orresponding to the entity set ofoarser granularity as a foreign key.Translation Rule:For eah membership set M in the starER shema, identify the dimensiontables TEi and TEj that takes part in M , whih orresponds to the memberentity set Ei of oarser granularity and the member entity set Ej of �nergranularity from the starER shema.� Inlude the primary key KEi of TEi as a new foreign key in the dimen-sion table TEj .Summarizable AttributesA summarizable attribute on an entity set or relationship set in the starERshema is translated into a fat table in the Extended Snowake shema.The primary key of the dimension table orresponding to the entity set or

relationship set on whih the summarizable attribute is de�ned, must beinluded as a foreign key in this fat table.A summarizable attributes is aggregated over one or more hierarhies. This isspei�ed on the summarizable attribute by an aggregation expression. Theaggregation expression spei�es an entity set from eah of the hierarhies,that the summarizable attribute is aggregated over. Eah of the spei�edentity sets from the hierarhies are used for de�ning the granularity of theaggregation over a spei� hierarhy. Thus, the primary key of eah of thedimension tables orresponding to an entity set from the spei�ed hierarhiesmust be inluded as foreign keys in the fat table, whih have been reatedfor the summarizable attribute.By default a summarizable attribute will use the granularities of the entityset or relationship set in the starER shema, whih has the summarizable at-tribute. However, if a Summarizable Attribute Constraint (SAC) is spei�edfor the summarizable attribute, whih spei�es other granularities, then thesummarizable attribute must use these granularities instead.Translation Rule:For eah entity set or relationship set X in the starER shema that has asummarizable attribute A, identify the orresponding dimension table TX inthe Extended Snowake shema.� Create a new aggregate fat table TA for the summarizable attributeA.� The primary key KX of TX is inluded in TA as a foreign key.� Inlude the primary keys K1; K2; : : : ; Kn as foreign keys in TA fromthe dimension tables T1; T2; : : : ; Tn orresponding to the member entitysets in the starER shema, whih spei�es the granularities of A.� The primary key of TA is omposed of all foreign keys of TA.Entity Constraints (ECs)An Entity Constraint (EC) de�nition in the StarLanguage is translated intoa set onstraint statement for the Extended Snowake shema. An EC de�-nition is spei�ed on an entity set, and its ondition is expressed using regular

and/or summarizable attributes. The entity set and the attributes, whih arespei�ed in the EC de�nition have been translated into tables and attributesfor the Extended Snowake shema by the previous translation rules. Thus,when an EC de�nition is translated into a set onstraint statement, thisstatement must speify the translated tables and attributes in the ExtendedSnowake shema, whih orresponds to the entity set and attributes fromthe starER shema that is spei�ed in the EC de�nition.Translation Rule:An EC de�nition for a starER shema is de�ned using the following Star-Language syntax:e identi�er ":" exprThe identi�er is used for identifying the entity set in the starER shemawhih the onstraint de�nition is spei�ed on. The expr is the expressionused for speifying the ondition of the onstraint de�nition.An EC de�nition is translated into a set onstraint statement using the fol-lowing SnowLanguage syntax:set onstraint onstraint id for table id ":" expr ";"The onstraint id is used to identify the onstraint de�nition in the ExtendedSnowake shema. The table id is used to indentify the table in the ExtendedSnowake shema whih this onstraint de�nition is spei�ed on. The expr isthe expression used for speifying the ondition of the onstraint de�nition.For eah EC de�nition that is de�ned in the starER shema, reate a set on-straint statement for the Extended Snowake shema and translate aordingto the following:� Create an unique onstraint id for identifying the onstraint de�nitionin the Extended Snowake shema.� Identify the table in the Extended Snowake shema that orrespondsto the translated entity set from the starER shema that is spei�edby the identi�er in the EC de�nition. Set the table id of the onstraintde�nition to identify this table.

� Translate the expression of the EC de�nition from the starER shemainto a orresponding expression for the Extended Snowake shema.Attribute Constraints (ACs)An Attribute Constraint (AC) de�nition for an attribute is translated intoa set onstraint statement in the Extended Snowake shema. An AC de�-nition is spei�ed for an attribute, and its ondition is expressed using reg-ular and/or summarizable attributes. The attributes whih are spei�ed inthe AC de�nition have been translated into attributes on tables for the Ex-tended Snowake shema by the previous translation rules. Thus, when anAC de�nition is translated into a set onstraint statement, this statementmust speify the translated tables and attributes in the Extended Snowakeshema that orresponds to the entity sets, fat sets and atributes from thestarER shema, whih are spei�ed in the AC de�nition.Translation Rule:An AC de�nition for a starER shema is de�ned using the following Star-Language syntax:a attr id ":" exprThe attr id is used for identifying the attribute in the starER shema, whihthe onstraint de�nition is spei�ed on. The expr is the expression used forspeifying the ondition of the onstraint de�nition.An AC de�nition from a starER shema must be translated into a set on-straint statement for the Extended Snowake shema using the followingSnowLanguage syntax:set onstraint onstraint id for attr id ":" expr ";"The onstraint id is for identifying the onstraint de�nition in the ExtendedSnowake shema. The attr id is used for indentifying the attribute for whihthis onstraint de�nition is spei�ed on. The expr is the expression used forspeifying the ondition of the onstraint de�nition.

For eah AC de�nition that is de�ned in the starER shema, reate a set on-straint statement for the Extended Snowake shema and translate aordingto the following:� Create a unique onstraint id for identifying the onstraint de�nitionin the Extended Snowake shema.� Identify the attribute in the Extended Snowake shema, whih or-responds to the translated attribute from the starER shema that isspei�ed by the attr id in the AC de�nition. Set the attr id of the on-straint de�nition for the Extended Snowake shema to identify thisattribute and the table it is de�ned on.� Translate the expression of the AC de�nition from the starER shemainto a orresponding expression for the Extended Snowake shema.Summariable Attribute Constraints (SACs)A Summarizable Attribute Constraint (SAC) de�nition expressed in the Star-Language for a summarizable attribute is translated into a set onstraintstatement from the SnowLanguage for the Extended Snowake shema. ASAC de�nition is spei�ed for a summarizable attribute, and its onditionis expressed using regular attributes and/or other summarizable attributes.The attributes whih are spei�ed in the SAC de�nition have been translatedinto attributes in the Extended Snowake shema by the previous translationrules. Thus, when an SAC de�nition is translated into a set onstraint state-ment, this statement must speify the translated tables and attributes in theExtended Snowake shema, whih orresponds to the entity sets, fat setsand atributes from the starER shema that is spei�ed in the SAC de�nition.Translation Rule:An SAC de�nition for a starER shema is de�ned using the following Star-Language syntax:sa sum attr id ":=" aggr exprThe sum attr id is used for identifying the summarizable attribute in thestarER shema, whih the onstraint de�nition is spei�ed on. The aggr expr

is the aggregation expression used for speifying how the summarizable at-tribute must be aggregated.An SAC de�nition from a starER shema must be translated into a set on-straint statement for the Extended Snowake shema using the followingSnowLanguage syntax:set onstraint onstraint id for attr id ":" aggr expr ";"The onstraint id is for identifying the onstraint de�nition in the ExtendedSnowake shema. The attr id is used for indentifying the attribute in theExtended Snowake shema whih this onstraint de�nition is spei�ed on.The expr is the expression used for speifying the ondition of the onstraintde�nition.For eah SAC de�nition that is de�ned in the starER shema, reate a setonstraint statement for the Extended Snowake shema and translate a-ording to the following:� Create a unique onstraint id for identifying the onstraint de�nitionin the Extended Snowake shema.� Identify the attribute in the Extended Snowake shema, whih orre-sponds to the summarizable attribute from the starER shema that isspei�ed by the sum attr id in the SAC de�nition. Set the attr id ofthe onstraint de�nition for the Extended Snowake shema to identifythis attribute and the table it is de�ned on.� Translate the expression of the SAC de�nition from the starER shemainto a orresponding expression for the Extended Snowake shema.

Bibliography

[BCN92℄ Carlo Batini, Stefano Ceri, and Shamkant B. Navathe. Con-eptual Database Design. The Benjamin/Cummings PublishingCompany, in., 1992.[EN94℄ Ramez Elmasri and Shamnkant B. Navathe. Fundamentalsof Database Systems. The Benjamin/Cummings PublishingCompany, in., seond edition, 1994.[Guy00℄ J. Guyot. What is bnf notation? http://ui.unige.h/db-researh/Enseignement/analyseinfo/AboutBNF.html, May21st 2000.[Kel99℄ Thomas J. Kelly. Dimensional data modeling. Available on-line at:http://www.gate1.om/solutions/whitepapers/sybase/syb dim data mod.html, 27th otober 1999.[KLN00℄ Peter S. Kristiansen, Flemming N. Larsen, and CarstenNielsen. The aware design tool, a user guide. Master's the-sis, Aalborg University, 2000.[Mat96℄ Rob Mattison. Data Warehousing. MGraw-Hill, 1996.[MMMNS97℄ Lars Mathiassen, Andreas Munk-Madsen, Peter Axel Nielsen,and Jan Stage. Objet Orienteret Analyse og Design. ForlagetMarko Aps, 1997.[NLK99℄ Carsten Nielsen, Flemming N. Larsen, and Peter S. Kris-tiansen. Aware design tool, a data warehouse design tool. Dat5report, CS department Aalborg University, 1999.[Ora99a℄ Orale. Orale warehouse builder. Available on-line athttp://www.orale.om/datawarehouse/produts/builder/index.html,12th November 1999. 89

[Ora99b℄ Orale Corporation. Orale Lite SQL Referene,release 4.0 edition, 1999. Available on-line athttp://tehnet.orale.om/dos/produts/8i lite/do index.htm.[SKS97℄ Abraham Silbershatz, Henry F. Korth, and S. Sudarshan.Database System Conepts. MGraw-Hill, third edition, 1997.[TBC99℄ Netaria Tryfona, Frank Busborg, and Jens G. Borh Chris-tiansen. starer: A oneptual model for data warehouse design.Proeedings of DOLAP'99, 1999.

