
Aalborg UniversityDepartment of Computer Siene dFredrik Bajersvej 7E DK-9220 Aalborg � Phone: +45 96 35 80 80Title: Building a Temporal Cartridge for Orale8iPeriod: period('01-02-2000', '12-06-2000');
Projet members:Bo GundersenKim Thrys�eSupervisor:Kristian TorpCopies: 7Pages: 69
Completed: June 12th 2000

Abstrat:A large number of appliations manage timevarying data most of them in an ad-ho manner,with all temporal logi stored in the appliationlayer. This is beause none of the major OR-DBMS vendors atively support management oftemporal data as proposed by researhers.This projet aims to migrate parts of thelarge amount of researh done on temporaldatabases into existing ORDBMS tehnology.The prinipal goals of the projet is to examinetwo matters: One, if the task of managingtemporal data in urrent ORDBMSs an beeased by extending it with ustom ADTs andproedures. Two, to examine if suh an exten-sion an support eÆient exeution of knowntemporal queries. A pratial approah is takento these matters, and as a part of the answeran Orale artridge is designed and implemented.The report is strutured in three parts. The�rst onerns the redution of ode omplexity.The seond desribe implementation spei�s.Finally, the third part ontains performanemeasurements and evaluations.The result shows that although it is possibleto obtain a substantial redution in ode om-plexity, the maturity of database extensibilityfeatures prevent eÆient exeution of temporalqueries, thus limiting the usefulness of a tempo-ral artridge.
Copyright 2000, Department of Computer Siene, AAU.

ii

Aalborg UniversitetInsitut for Datalogi dFredrik Bajersvej 7E DK-9220 Aalborg � Tlf: +45 96 35 80 80Titel: Building a Temporal Cartridge for Orale8iPeriode: period('01-02-2000', '12-06-2000');
Projektdeltagere:Bo GundersenKim Thrys�eProjektvejleder:Kristian TorpOplag: 7Antal sider: 69
Dato: 12. juni 2000

Synopsis:Mange applikationer h�andterer data der variererover tid, de este p�a en ad-ho m�ade, hvor dentemporale logik ligger i applikations laget. Detteer ikke overaskene, da ingen af de store OR-DBMS leverand�rer aktivt st�tter h�andteringenaf temporal data.M�alet med dette projekt er, at g�re dele af denstore m�ngde temporal forskning der er lavettilg�ngelig p�a eksisterende ORDBMS teknologi.I projektet unders�ger vi to ting, for det f�rsteom det er muligt at lette arbejdet med temporaldata i de nuv�rende ORDBMSer ved hj�lp afADTer og bruger de�nerede funktioner. Fordet andet, om s�adanne udvidelser underst�ttere�ektiv eksekvering af temporale forsp�rgsler. Iprojektet er der taget en praktisk tilgangsvinkeltil disse sp�rgsm�al, og et Orale artridge erdesignet og implementeret.Rapporten er indelt i tre dele, den f�rste omhan-dler reduktion i kode kompleksiteten, den andenbeskriver implementations detaljer, den sidsteindeholder hastighedsm�alinger og evaluering.Resultaterne viser, at selvom det er muligt atopn�a en stor reduktion i antal linier kode, s�aforhindrer det lave modenhendsniveau af OR-DBMS udvidelses teknologien e�ektiv udf�relseaf temporale forsp�rgsler, og dermed mindskesbrugbarheden af et temporalt artridge.
Copyright 2000, Institut for Datalogi, AAU.

iv

PrefaeThis report is the outome of a master thesis projet arried out at the Department of ComputerSiene at Aalborg University, Aalborg, Denmark.The themati frame for the thesis projet is database systems. Within this frame, it is hosen totake a pratial approah to the integration of support for time-varying data in existing databasemanagement systems.The report is organized as follows. Chapter 1 ontains an introdution to the initial problem of theprojet along with a de�nition of goals and requirements for the projet. Chapter 1 also relatesthe work of developing a temporal artridge to other topis from the temporal researh ommunity.Chapter 2 ontains a disussion of how to redue the expressional omplexity of temporal queries. Thehapter presents two example databases and identi�es a number of interesting temporal query types,eah of whih are expressed for both example databases. The di�erene in query ode omplexityin the two databases is �nally shown. Chapter 3 disusses onrete implementation onsiderationsin relation to the extensibility features of the Orale objet-relational database. Chapter 4 presentsthe results of a performane test arried out for a subset of the features designed for the temporalartridge. The test inludes methods for indexing periods and the exeution of the identi�ed temporalquery types. Finally, Chapter 5 onludes on the feasibility of designing a temporal artridge. Thisevaluation is based on the goals and requirements de�ned in Chapter 1.Aalborg, June 12th, 2000
Bo Gundersen Kim Thrys�e

i

ii

Contents
1 Introdution 11.1 Goals and Requirements . 21.2 Related work . 22 Expressing Temporal Queries 52.1 Temporal Query Types . 52.2 Shema for TerraTele . 62.3 Temporal Queries . 92.3.1 Expressing Join . 92.3.2 Expressing Set Operations . 112.3.3 Expressing Coalesing . 142.3.4 Expressing Time-slie . 162.3.5 Expressing Aggregation . 172.4 Evaluation of Code Complexity . 183 Cartridge Design 233.1 User-De�ned Objet Types . 233.1.1 Extensible Type System . 233.1.2 Limitations of the DBMS Extensible Type System 243.1.3 The New Objet Types . 243.2 Indexes . 263.2.1 Extensible Indexing . 263.2.2 Index Sans . 263.2.3 MAP21 . 273.2.4 Hilbert Index . 313.3 Optimization . 333.3.1 Extensible Optimizer . 333.3.2 Use of Extensible Indexing . 354 Performane Test 374.1 Test Setup . 374.2 Index Tests . 374.2.1 Searh Depth of Hilbert Index . 384.2.2 Index Split of Hilbert and Map21-2 Indexes . 394.2.3 Length of Periods . 394.2.4 Now Relative Periods . 404.2.5 Query Area . 404.2.6 Amount of Tuples . 424.3 Query Tests . 424.3.1 Join . 434.3.2 Set-Di�erene . 434.3.3 Coalesing . 434.3.4 Aggregation . 45iii

4.3.5 Time-Slie . 454.4 Evaluation of Performane . 465 Conlusion 49A Semantis 51A.1 General Semantis . 51A.2 Data Types . 52A.2.1 Instant . 52A.2.2 Interval . 52A.2.3 Relative Instant . 53A.2.4 Period . 53A.2.5 Instant Container . 53A.2.6 Interval Container . 54A.2.7 Period Container . 54A.3 Basi Operations on Temporal Data Types . 54A.4 Operations of Temporal Types . 55A.4.1 Instant . 55A.4.2 Interval . 56A.4.3 Relative Instant . 56A.4.4 Period . 56A.4.5 Instant Container . 57A.4.6 Interval Container . 60A.4.7 Period Container . 63

iv

Chapter 1IntrodutionA large number of appliations manage time-varying data. Often these appliations do not take advan-tage of the large amount of researh done in the area of temporal databases [RP92, WJW98℄. Applia-tions suh as portfolio-management, �nanial appliations, personnel administration and sheduling,e.g., travel booking, are prime examples of appliations managing time-varying data [Sno00℄.By de�nition databases store fats about a modeled world. Researh suggests that two main timedimensions an be assoiated with these fats [Sno00, Jen99℄: valid time and transation time. Thevalid time assoiated with fats store information about when the fat is true in the modeled world.Valid time may span the past, present, and future and by de�nition all fats have a valid time, whereasit is not neessary that this valid time is reorded in the database. The database may have severalvalid times reorded for eah fat. Transation time reords when the fat is urrent in the database.Transation time annot span into the future and may be interpreted as a subset of the valid timedimension. A database that reords both valid time and transation time is alled bi-temporal [Je98℄.A user-de�ned time dimension has also been suggested whih has no known semantis to the database.Valid time is the most general time dimension in temporal databases and is the fous in this paper.This fous is based on the fat that ideas from valid-time support an be used to handle transationtime, user-de�ned time, and bi-temporal timestamped data.In addition to �xed valid-time periods, it is also possible to speify growing periods. These are allednow-relative periods, beause their end time is the speial temporal value now. now is not bound to aspei� time value until it is aessed, where it evaluates to the time at that moment. A �xed periodis for example \05-05-2000 - 05-06-2000" and a now relative one is \05-05-2000 - now." These periodswill be equal when evaluated on June 5th, 2000.Without temporal support from the DBMS, developers of temporal appliations must express temporalqueries in standard non-temporal query languages. This results in two problems, namely that of odewhih is (1) hard to understand by developers [Sno00℄, and (2) omplex to exeute by the DBMS[BSS97, TGJ99, MLI99℄. As an example, a onventional join query an be written in three to fourlines of SQL92, whereas a temporal join query may require as muh as ten times as many lines ofSQL92 [Sno00℄.Although it must be expeted that the work of the temporal database researh ommunity is gainingthe interest of ommerial database management system (DBMS) and database appliation vendors,the researh results has not yet been integrated into any ommerial produts. If the researh intemporal databases is to gain general publi and ommerial aeptane, it has to be available for usewith the major objet-relational DBMSs (ORDBMS). The ongoing work to inlude SQL/Temporal[Mel96℄ into the oming SQL:1999 standard is an e�ort to make it so [ME00℄.In the light of the problem of transferring temporal support to DBMSs, we de�ne a number of re-quirements and goals for the projet. These requirements are the subjet of the following setion.1

1.1 Goals and RequirementsThe overall goals with and sope of the present work is as follows.GOAL1: Examine the possibilities of easing the task of managing now-relative valid-time data inommerial ORDBMSsGOAL2: Provide a framework in the form of an extensibility module for eÆient exeution of tem-poral statements.The fat that most temporal researh is related to relational data models and the widespread useof ORDBMSs in the industry is the reason that we fous on tehnologies and onepts that an bereadily implemented on these platforms. Tehnologies inlude extensibility tehnologies suh as theartridge onept used by Orale [RRM99℄, and the DataBlade onept used by Informix [DLM97℄.Having de�ned the goals we now list �ve requirements for the temporal framework.REQ1: Existing ommerially available tehnology. The framework should use proven tehnologies,aepted by the industry, appliation developers, and major ORDBMS vendors.REQ2: Simple ode. The framework must make it easy to express temporal queries, in the fat thatthe number of lines of soure ode neessary and the omplexity of it is redued, ompared toSQL92.REQ3: Fast exeution. Temporal queries that are expressed using the onstruts of this work shouldexeute at least as fast as temporal SQL92 based queries.REQ4: Strutural platform independene. The major omponents from whih the frame-work isbuild, should be portable to major ORDBMSs.REQ5: Horizontal support. The funtionality of the system developed should over a wide spetrumof temporal onepts and be generally useful.REQ1 ensures that the framework an be used by developers with out muh hange. REQ2 ensuresthat the ode written using augmented SQL1 is less omplex that the ode written in SQL92. REQ3ensures that the performane of the augmented SQL should be at least as fast as the SQL92 ode.REQ4 ensures that although the implementation is done in the Orale ORDBMS, the design is portableto other ORDBMSs. REQ5 ensures that the framework developed an be used to express a broadrange of temporal queries.Beause of REQ4, REQ5, and REQ1, Orale's artridge tehnology is hosen as the basis for imple-menting the framework.1.2 Related workWhen adding temporal support to any system, four di�erent approahes an be taken [B�oh95℄. Eahof these approahes has its advantages and disadvantages. The approahes are as follows.1. Appliation. In the appliation approah, the appliation itself has the responsibility of handlingthe temporal semantis. This is done on top of a onventional DBMS [Sno00℄.1Augmented SQL is ORDBMS vendor spei� SQL implementations ontaining objet relational onstruts refer-ening the funtionality of the temporal artridge developed in this projet.2

2. Layer. In the layered approah, systems implement a layer between the appliation and theDBMS. The layer translates from a temporal query language suh as TSQL2 [Sno95℄ to standardSQL. This approah is desribed in [TJS98℄.3. ORDBMS. It is also possible to embed some temporal extensions in an ORDBMS, using ex-tensibility interfaes. Not muh researh has been done in this area, but a onrete exampleof a projet that uses the embedding approah is TIP [YWY99℄, a temporal objet-model forInformix. This is also the approah taken in this projet.4. Core. An approah is to implement the handling of temporal semantis in the ore of the DBMS.In this approah appliations use a temporal query language to query the database diretly. Thisis the approah taken in some versions of the Postgres DBMS [RS87℄.Various books [Sno95, Sno00, Jen99℄ and artiles [BBS98, DSJ93, DS91℄ over the semantis of tem-poral data. Query languages have been suggested [BSS97, YC91, Sno95, BJ96℄ inluding initiativesto add temporal support to the SQL:1999 standard [Mel96, ME00℄.Several strutures for indexing temporal data has been suggested, inluding the use of B+-trees [ND98℄,GR-trees [BSSJ98℄, MVB trees [dBS96℄, and R-tree based strutures [BJSS98, SN98℄.Temporal algorithms inlude oalesing [BSS97℄, di�erene [TGJ99℄, aggregation [KS95, MLI99℄, time-slie [TJS98℄, and join [PJ98℄.Temporal onepts have been implemented in various prototype database systems. Tiger [BBM+99℄is an implementation based on the temporal query language ATSQL [BJ96℄. TimeDB [BJSS95℄ is asimilar approah, also based on the temporal query language ATSQL. TIP [YWY99℄ uses a di�erentmethod, whih is very like the one taken in the work of this paper, namely to add temporal data typesto an existing ORDBMS using objet-relational extensibility features. In suh an approah queriesare expressed using user-spei�ed operators. This is the subjet of the next hapter.

3

4

Chapter 2Expressing Temporal QueriesIn this setion we present a framework that makes temporal queries easier to express. The setion isaimed at REQ1 and REQ4, and is strutured as follows. First basi temporal query types are identi�ed,then two database designs in a running example from a �titious tele ommuniation ompany alledTerraTele is introdued. The TerraTele example serves as an illustration in the setions to ome. The�rst database (whih we will refer to as onventional) is designed with temporal support as desribedin the literature [Sno00℄ while the other (alled augmented) utilizes new temporal data types providedby the temporal artridge designed in the projet.For eah of the temporal query types of interest, we desribe the query and point out what for andwhere the query may be used. Following this simple desription more thorough examples of thetemporal query, based on the onventional and augmented TerraTele database, is disussed.At the end of the setion we evaluate the improvements possible with the augmented SQL. Theevaluation is foused on the redution in omplexity of the queries, and is based on redution in linesof ode.The temporal type system later desribed (Chapter 3) supports now relative data. This is not the asewith the SQL92 queries in the following setions, whih are expressed to work on non-now-relativedata only. The new, augmented queries in this hapter an thus support now-relative data, as thisfat does not hange the way those queries are expressed.2.1 Temporal Query TypesTemporal queries an be divided into three kinds: Current/time-slie queries, sequened queries, andnon-sequened queries [BSS97℄. Sequened queries are the most omplex of the three to express [Sno00℄and are the subjet of this investigation. A sequened query an be viewed as a onventional queryexeuted sequentially at eah of the states of a temporal relation. Non-sequened queries make no useof the fat that timestamps assoiated with data have speial semantis. This argues why we are notinterested in exploring non-sequened queries.Eah of the relational operators seletion, projetion, join, di�erene, union, intersetion, and aggre-gation [SKS97℄ has a temporal ounterpart. Furthermore two speial temporal relational operatorsexists, namely the oalese and the time-slie operators [Je98℄.Sequened seletion and projetion are not onsidered as they are simple to express in the fat thatthey are similar to the snapshot ounterparts, exept that they also referene the two extra attributes.This leaves us with the oalesing and time-slie operators and the following sequened operators toonsider in the present work : join, di�erene, union, intersetion, and aggregation.5

In order to express examples of these queries we present two example databases.2.2 Shema for TerraTeleTerraTele is a �titious tele ommuniation ompany for whih the two databases are designed. Thedatabases over the same modeled world, namely how persons subsribe to servies and plae telephonealls. The one database is designed only with data types available in todays RDBMSs. This designis illustrated in the ER diagram in Figure 2.1. The other database is designed using the augmentedtemporal data types (for an introdution to the new types see Setion 3.1.1). The seond design isshown in the ER diagram in Figure 2.2.
vtevtsvtevts vtevts vtevtsserv_idamounttype

desc.

price

vte

vts	

vtevts nameaddress SSN

prices subscribers

persons

services

pays_for

calls subs_to

phone

1

1

1
N N

N

1

Figure 2.1: ER Diagram Showing the Conventional TerraTele Database Design
vtvt

vt	

vtsserv_idamounttype desc.

price

vt	

vt nameaddress SSN

vt vt

prices subscribers

persons

services

pays_for

calls subs_to

phone

1

1

1
N N

N

1

Figure 2.2: ER Diagram Showing the TerraTele Database Design Using Augmented Data TypesThe temporal ER model shown in Figure 2.2 is not an example of temporal ER modeling, but is anattempt to stay as lose to the onventional ER model as possible, while still optimizing temporalqueries. This is done to ensure ompatibility with REQ1. For a desription of temporal oneptualmodeling, see [GJ97℄.Eah entity in both shemas is de�ned with a primary key, but beause the databases ontain temporaldata, the issue of primary keys are non-trivial. The semantis of the primary keys used are that oftemporal primary keys, and is desribed in [Sno00℄. The funtionality of temporal primary keys arenot implemented.The onventional TerraTele Database is explained next, followed by a disussion of how the enhaneddatabase di�ers. 6

Conventional Database DesignThe ER model for the onventional TerraTele database ontains the following four entitiesEntity Attribute Desriptionsubsribers phone Subsriber telephone number.pries type Desription of the prie type.amount The amount of money the prie ategory osts.vts The date desribing when a prie ategoryame into e�et.vte The date desribing when the prie ategoryno longer is in e�et.servies serv id Unique servie id.desription A textual desription of the servie.prie The prie of the servie.vts Point in time from whih the servie was avail-able.vte Point in time from whih the servie was nolonger available.persons SSN The persons soial seurity number.name The persons name.address The persons address.vts The time from whih this person was a us-tomer and registered in the database.vte The time from whih this person was no longera ustomer.The entities are related by three relationships as follows.alls The terteriary alls relationship relates two subsribers and a prie with eah other to forma telephone all. Eah subsriber an be assoiated with any number of other subsribers andpries, but never with more than one at any point in time.pays for Pays for relates a subsription to spei� persons. At eah point in time, eah person mayappear as several subsribers whereas eah subsriber is assoiated with exatly one person.subs to Subs to relates subsribers to the servies they subsribe to. A subsriber may subsribe toany number of servies and a servie an be subsribed by any number of subsribers.The ER model gives rise to the seven tables listed in the table below.7

Table Attribute Desriptionsubsribers phone The phone number assoiated with this subsription.pays for phone Telephone number.SSN Subsribers assoiation with a personvts The time from when a person is assoiated with thesubsriber.vte The time from when a person is no longer assoiatedwith the subsriber.pries type The type of prie, an for example be \internationalall."amount The prie of this type.vts The valid time start of this type of prie, i.e., from whenthis prie was e�etive.vte The valid time end, i.e. from when this prie was nolonger valid.alls aller The alling subsriber.allee The subsriber that reeives the all.vts The start time of the all.vte The end time of the all.persons SSN The soial seurity number of the person.name The name of a person.address The address of the person.vts The time from when this person was valid.vte The time from when this person was no longer valid.subs to phone Foreign key to subsriber. The subsriber involved inthe subsription.serv id Foreign key to servies. The servie involved in thesubsription.vts The time from when this subsriber subsribed to thisservie.vte The from when this subsriber no longer subsribed tothis servie.servies serv id The servie identi�er.des Textual desription of the servie.prie The prie of this servie measured in amount permonth.vts From when this servie was valid.vte To when this servie was valid.Enhaned Database DesignThe enhaned database di�ers from the desription above, in the fat that the timestamps have beenreplaed with the data types spei�ed in the present work. The vts and vte timestamps have beenhanged in this way to Period attributes in the following entities and relationships: pries, persons,servies, alls, subs to, and is a. The start and end points an be aessed as vt.s and vt.e.Modi�ation of the DatabaseWhen working with temporal data, insert, delete and update operations are performed di�erentlythan when working with non-temporal data.Inserts into a valid-time table an be done in two ways, either the tuple has a spei�ed valid-time orit is assigned a valid time. When inserting tuples with a spei�ed valid-time, it is possible to insert8

tuples that was valid in the past, or is valid in the future. The standard valid-time assigned to newlyinserted tuples are however from the urrent time till now.When deleting tuples from a valid-time table, the tuple is not physial deleted. Instead the tuples\valid-time end" is hanged from now, to the urrent time.A temporal update is, muh like a non-temporal update, oneptually a temporal deletion followedby a temporal insertion.The semantis desribed above is a simpli�ed version of the temporal semantis desribed in [BJ97℄,whih over the modi�ation of temporal data in more detail.Inserting, updating, and deleting in the augmented database is performed in muh the same way asin the onventional temporal database. Instead of updating the individual timestamps, the periodobjet is hanged aordingly.2.3 Temporal QueriesThis setion ontains a desription of the join, set, oalesing, time-slie, and aggregation operators.2.3.1 Expressing JoinA join query ombines information from two or more tables. In relational database design, informationis split between tables by the normal forms [SKS97℄. When querying the database for information,this distribution of data often results in the fat that the data wanted is stored in several tables.Therefore the query has to ombine this information.Temporal joins have added omplexity ompared to non-temporal joins. In a non-temporal join, tuplesfrom eah table is ompared only on the join prediate. In valid time temporal joins, they are alsoompared on valid time and only tuples with overlapping valid time are added to the result. The validtime of the resulting tuples, is omputed as the intersetion of the two soure tuples. For a formaldesription of the semantis of temporal joins see [BJ97℄.SQL92An example of a valid time temporal join query is written in Code Listing 1. The SQL92 ode inListing 1 returns the prie of eah all that subsriber X has made, in the Period Y. It ombinesinformation from three tables, namely subsribers, alls and pries.Expressing a valid time temporal join in standard SQL92, is written as four separate SELECT state-ments unioned together. The query is split into four parts based on how the valid time of the twosoure tuples an relate to eah other, and therefore what should be the valid time of the resultingtuple. Two suh periods an relate to eah other in six di�erent ways, two of whih are not interestingfor join beause they do not overlap. Figure 2.3 shows the remaining four ways a all an overlap aprie. Lines 1 to 10 of Code Listing 1 mathes ase 1, lines 11 to 21 mathes ase 3, lines 22 to 31mathes ase 2, and �nally lines 33 to 41 mathes ase 4.
prices

calls

1 2 3

4Figure 2.3: How the Valid Time of a Call an Overlap the Valid Time of a Prie.9

Code Listing 1 - Temporal Join Written in SQL921 /� Cal l l e f t over laps Pries �/2 SELECT s . phone , . a l l e e , (.VTE�p .VTS)� p . amount3 FROM Pr i e s p , Cal l s , Subs r ibe r s s4 WHERE .VTS < p .VTS AND5 .VTE > p .VTS AND6 .VTE < p .VTE AND7 .VTS >= Y.VTS AND8 .VTS <= Y.VTE AND9 s . phone = X AND10 . a l l e r = s . phone11 UNION ALL12 /� Cal l r i g h t over laps Pries �/13 SELECT s . phone , . a l l e e , (p .VTE� . VTS)� p . amount14 FROM Pr i e s p , Cal l s , Subs r ibe r s s15 WHERE .VTS > p .VTS AND16 .VTS < p .VTE AND17 .VTE > p .VTE AND18 .VTS >= Y.VTS AND19 .VTS <= Y.VTE AND20 s . phone = X AND21 . a l l e r = s . phone22 UNION ALL23 /� Cal l i s wi th in Pries �/24 SELECT s . phone , . a l l e e , (.VTE� . VTS)� p . amount25 FROM Pr i e s p , Cal l s , Subs r ibe r s s26 WHERE .VTS > p .VTS AND27 .VTE < p .VTE AND28 .VTS >= Y.VTS AND29 .VTS <= Y.VTE AND30 s . phone = X AND31 . a l l e r = s . phone32 UNION ALL33 /� Cal l ontains Pries �/34 SELECT s . phone , . a l l e e , (p .VTE�p .VTS)� p . amount35 FROM Pr i e s p , Cal l s , Subs r ibe r s s36 WHERE .VTS < p .VTS AND37 .VTE > p .VTE AND38 .VTS >= Y.VTS AND39 .VTS <= Y.VTE AND40 s . phone = X AND41 . a l l e r = s . phone

10

As we an see from Code Listing 1, eah of the four parts returns a di�erent valid time. This is sobeause only the intersetion of the two tuples serve as the valid time of the result tuple.Augmented SQLAs desribed the reason for splitting the query into four parts, was to return the intersetion of thevalid time of the two soure tuples. This an be done with the Interset method on the Period objet.The Interset methods returns a new Period objet, whih is the intersetion between the two inputperiods.Another part of the query is to make sure that we only onsider overlapping tuples, this an be doneby using the Overlaps method as a prediate for the SELECT statement.By using the Interset and Overlaps methods, the join query from Code Listing 1 an be expressedas shown in Code Listing 2Code Listing 2 - Temporal join written in augmented SQL1 SELECT s . phone , . a l l e e , . vt . I n t e r s e t (p . vt)� p . amount2 FROM Subsr ibe r s s , Cal l s , Pr i e s p3 WHERE . vt . Overlaps (p . vt) = 1 AND4 . vt . Overlaps (Y) AND5 s . phone = X AND6 . a l l e r = s . phone
2.3.2 Expressing Set OperationsApplying set operations (i.e. union, intersetion, and di�erene) on temporal data is di�erent fromthe ase of non-temporal data. The reason for this is that when expressing the temporal query itmust be taken into aount, that the valid time of a period must be inspeted and most often will behanged for the result. Temporal union an be expressed as a query that either eliminates or retainstemporal dupliates [BSS97℄ in the result. The version where dupliates are retained is trivial, asit is simply expressed in the same way as a snapshot union. Temporal union where dupliates areeliminated orrespond to oalesing the result of a snapshot union, and is therefore also, by itself,trivial to express in SQL92. The intersetion operator may be expressed as either two set di�erenesor as a sequened equi-join with the equality prediate overing all attributes.Set di�erene is oneptually quite simple, but diÆult to express. The onept is to subtrat periodsof tuples with mathing expliit attributes whose periods overlap or are adjaent. Figure 2.4 illustratesthis, by showing one tuple from the servies table and two tuples from the subs to table. The bottomline shows the two tuples that result from subtrating the subs to tuples from the servies table.

services
subs_to

resultFigure 2.4: Illustration of the Set Di�erene OperatorConretely onsider the following two examples of the servies and subs to tables respetively:11

serviesserv id des. prie vts vteMOBILE Mobile servie 10 2 12LONGDIS Long distane all 20 2 10LONGDIS Long distane all 30 11 15In this table we see two servies, MOBILE and LONGDIS. MOBILE osts 10 from time 2 to 12, whileLONGDIS osts 20 from time 2 to time 10 and then 30 from time 11 to 15. The table is oalesedand therefore has no temporal dupliates. subs tophone serv id vts vte555-1 LONGDIS 5 10555-2 MOBILE 2 4555-3 MOBILE 2 3555-3 MOBILE 5 9The subs to table is also oalesed and ontains the mapping from subsribers to servies. In this waywe an see that 555-1 subsribed to LONGDIS from time 5 to 10. Subsriber 555-2 subsribes to theMOBILE servie from time 2 to 4, and the last subsriber, 555-3, subsribes to mobile from 2 to 3and again from time 5 to 9.The two tables are not union ompatible, whih they have to be in order to use them in relationwith the set di�erene operator. After projeting the tables, the result of performing a set di�ereneoperation on the subs to table and the servies table yields the following result.servies n subs toserv id vts vteMOBILE 10 12LONGDIS 2 4LONGDIS 11 15This result means that nobody subsribed to the MOBILE servie from time 10 to 12. From time 2to 4 the LONGDIS was not subsribed to whih was also the ase from time 11 to 15.For a desription of the formal semantis of set di�erene, union, and intersetion see [BJ97℄.SQL92Expressing set di�erene in SQL92 an be written as a four part statement [Sno00℄, an example ofsuh a statement an be seen in Code Listing 3.The four sub-queries represent the four ways that an output row an be found. The �rst ase, in lines1 to 7, is where a servie is never subsribed to, so the entire period is returned. In the seond ase,in lines 9 to 18, the servie starts to exist before a subsriber begins a subsription, i.e., the subs toperiod overlaps the servies period to the right. The output tuple will in this ase have a period thatgoes from the servies period start to the start time of the subsription. In the third ase, shown inlines 20 to 29, the subsription was for some reason terminated before the servie eased to exist. Theresulting tuple will then go from the subsription end time to the servie end time. The fourth andlast ase, shown in lines 31 to 45, handles holes in the subsription period. An example of suh a hole,is the seond range of the result in Figure 2.4 12

Code Listing 3 - Set Di�erene Written in SQL921 SELECT p1 . s e r v i d , p1 . des , p1 .VTS, p1 .VTE2 FROM s e r v i e s p13WHERE NOT EXISTS (SELECT �4 FROM subs to s35 WHERE p1 . s e r v i d = s3 . s e r v i d AND6 p1 .VTS < s3 .VTE AND7 s3 . VTS < p1 .VTE)8 UNION ALL9 SELECT p1 . s e r v i d , p1 . des , p1 .VTS, s1 . VTS10 FROM s e r v i e s p1 , subs to s111WHERE p1 . s e r v i d = s1 . s e r v i d AND12 p1 .VTS < s1 . VTS AND13 s1 . VTS < p1 .VTE AND14 NOT EXISTS (SELECT �15 FROM subs to s316 WHERE p1 . s e r v i d = s3 . s e r v i d AND17 p1 .VTS < s3 .VTE AND18 s3 . VTS < s1 . VTS)19 UNION ALL20 SELECT p1 . s e r v i d , p1 . des , s1 .VTE, p1 .VTE21 FROM s e r v i e s p1 , subs to s122WHERE p1 . s e r v i d = s1 . s e r v i d AND23 s1 .VTE < p1 .VTE AND24 p1 .VTS < s1 .VTE AND25 NOT EXISTS (SELECT �26 FROM subs to s327 WHERE p1 . s e r v i d = s3 . s e r v i d AND28 s1 .VTE < s3 .VTE AND29 s3 . VTS < p1 .VTE)30 UNION ALL31 SELECT p1 . s e r v i d , p1 . des , s1 .VTE, s2 . VTS32 FROM s e r v i e s p1 , subs to s1 , subs to s233WHERE p1 . s e r v i d = s1 . s e r v i d AND34 s2 . s e r v i d = s1 . s e r v i d AND35 s2 . phone = s1 . phone AND36 s1 .VTE < s2 .VTS AND37 p1 .VTS < s1 .VTE AND38 s1 . VTS < p1 .VTE AND39 p1 .VTS < s2 .VTE AND40 s2 . VTS < p1 .VTE AND41 NOT EXISTS (SELECT �42 FROM subs to s343 WHERE p1 . s e r v i d = s3 . s e r v i d AND44 s1 .VTE < s3 .VTE AND45 s3 . VTS < s2 . VTS)
13

Augmented SQLCode Listing 4, shows the query expressed using augmented SQL.Code Listing 4 - Set Di�erene Written in Augmented SQL1 SELECT p1 . s e r v i d , p1 . des , r e a t e p e r i od (p1 . vt . s , p1 . vt . e)2 FROM s e r v i e s p13WHERE NOT EXISTS (SELECT �4 FROM subs to s35 WHERE p1 . s e r v i d = s3 . s e r v i d AND6 p1 . vt . over laps (s3 . vt) = 1)7 UNION ALL8 SELECT p1 . s e r v i d , p1 . des , r e a t e p e r i od (p1 . vt . s , s1 . vt . s)9 FROM s e r v i e s p1 , subs to s110WHERE p1 . s e r v i d = s1 . s e r v i d AND11 s1 . vt . S t a r t s I n s i d e (p1 . vt) = 1 AND12 NOT EXISTS (SELECT �13 FROM subs to s314 WHERE p1 . s e r v i d = s3 . s e r v i d AND15 s3 . vt . over laps (r e a t e p e r i od (p1 . vt . s , s1 . vt . s)) = 1)16 UNION ALL17 SELECT p1 . s e r v i d , p1 . des , r e a t e p e r i od (s1 . vt . e , p1 . vt . e)18 FROM s e r v i e s p1 , subs to s119WHERE p1 . s e r v i d = s1 . s e r v i d AND20 s1 . vt . EndsIndside (p1 . vt) = 1 AND21 NOT EXISTS (SELECT �22 FROM subs to s323 WHERE p1 . s e r v i d = s3 . s e r v i d AND24 s3 . vt . over laps (r e a t e p e r i od (s1 . vt . e , pe . vt . e)) = 1)25 UNION ALL26 SELECT p1 . s e r v i d , p1 . des , r e a t e p e r i od (s1 .VTE, s2 .VTS)27 FROM s e r v i e s p1 , subs to s1 , subs to s228WHERE p1 . s e r v i d = s1 . s e r v i d AND29 s2 . s e r v i d = s1 . s e r v i d AND30 s2 . phone = s1 . phone AND31 s1 . vt . over laps (p1 . vt) = 1 AND32 s2 . vt . over laps (p1 . vt) = 1 AND33 s1 . vt . e < s2 . vt . s AND34 NOT EXISTS (SELECT �35 FROM subs to s336 WHERE p1 . s e r v i d = s3 . s e r v i d AND37 s3 . vt . over laps (r e a t e p e r i od (s1 . vt . e , s2 . vt . s)) = 1)The overall struture of the augmented version is the same as the standard SQL92 version. This isbeause we still have to distinguish between the di�erent ways of overlapping in order to handle thespeial ase of periods being split in two.The reate period method is a funtion used as a onstrutor of periods. StartInside and EndInsideare funtions that speify whether a period in question starts or ends inside another given period. Forthe semantis of these funtions see Appendix A.2.3.3 Expressing CoalesingCoalesing temporal data is similar in onept to removing dupliates from onventional data. Theonept being that tuples in a table with mathing expliit attributes, and overlapping or adjaentvalid-times ontains dupliate information. When oalesing a table, tuples with mathing expliitattributes, and overlapping or adjaent valid-times are ombined into one tuple with a valid-time thatis the union of the soure tuple valid-times.As an example onsider the following table, it is a small part of the subs to table.14

subs tophone serv id vts vte555-1 LONGDIS 1 4555-1 LONGDIS 5 10555-2 MOBILE 1 5555-2 MOBILE 4 8555-3 MOBILE 1 3555-3 MOBILE 5 9In the table we an see that 555-1 subsribed to the LONGDIS produt from 1 to 4 and again from5 to 10, 555-2 subsribed to the MOBILE produt from 1 to 5 and from 4 to 8, and �nally that555-3 subsribed to the MOBILE produt from 1 to 3 and from 5 to 9. The table ontains two kindsof unoalesed data, �rst 555-1's subsription to LONGDIS from 1 to 4 and again from 5 to 10 isadjaent. Also 555-2's subsription to MOBILE is unoalesed beause of the overlap of periods 1 to5 and 4 to 8.If we oalese the table, the result is as follows.oalesed subs tophone serv id vts vte555-1 LONGDIS 1 10555-2 MOBILE 1 8555-3 MOBILE 1 3555-3 MOBILE 5 9For a detailed desription of the formal semantis of oalesing see [BJ97℄SQL92Expressing oalesing in SQL92 an be written as a three part statement [BSS97℄, an example of suha statement an be seen in Code Listing 5.Code Listing 5 - Coalesing Written in SQL921 SELECT DISTINCT f . phone , f . s e r v i d , f . vts , l . vte2 FROM subs to f , subs to l3 WHERE f . vts < l . vte AND4 f . phone = l . phone AND5 f . s e r v i d = l . s e r v i d AND6 NOT EXISTS (SELECT �7 FROM subs to m8 WHERE f . phone = m. phone AND9 f . s e r v i d = m. s e rv i d AND10 f . vts < m. vts AND11 m. vts < l . vte AND12 NOT EXISTS (SELECT �13 FROM subs to a114 WHERE f . phone = a1 . phone AND15 f . s e r v i d = a1 . s e r v i d AND16 a1 . vts < m. vts AND17 m. vts <= a1 . vte)) AND18 NOT EXISTS (SELECT �19 FROM subs to a220 WHERE f . phone = a2 . phone AND21 f . s e r v i d = a2 . s e r v i d AND22 (a2 . vts < f . vts AND f . vts <= a2 . vte OR23 a2 . vts <= l . vte AND l . vte < a2 . vte))15

The �rst part (lines 1 to 5) selets two value-equivalent tuples, and uses them as start and end pointsof the resulting tuple. The seond part (lines 6 to 17) ensures that a hain of value-equivalent tuplesover the entire valid-time between the start and end points seleted in the �rst part. The last part(lines 18 to 23) ensures that the start and end points seleted in the �rst part, over the longestpossible period.Augmented SQLCode Listing 6, shows the query expressed using augmented SQL.Code Listing 6 - Coalesing Written in Augmented SQL1 SELECT DISTINCT f . phone , f . s e r v i d , Create per iod (f . vt . s , l . vt . e)2 FROM subs to f , subs to l3 WHERE f . vt . s < l . vt . e AND4 f . phone = l . phone AND5 f . s e r v i d = l . s e r v i d AND6 NOT EXISTS (SELECT �7 FROM subs to m8 WHERE f . phone = m. phone AND9 f . s e r v i d = m. s e rv i d AND10 m. vt . LeftOverlap (f . vt . s , l . vt . e) AND11 NOT EXISTS (SELECT �12 FROM subs to a113 WHERE f . phone = a1 . phone AND14 f . s e r v i d = a1 . s e r v i d AND15 a1 . vt . LeftOverlap (m. vt) = 1)) AND16 NOT EXISTS (SELECT �17 FROM subs to a218 WHERE f . phone = a2 . phone AND19 f . s e r v i d = a2 . s e r v i d AND20 (a2 . vt . s < f . vt . s AND f . vt . s <= a2 . vt . e OR21 a2 . vt . s <= l . vt . e AND l . vt . e < a2 . vt . e))The struture of the augmented version is the same as the standard SQL92 version, and the aug-mentations is not used muh. The size of the augmented version is 2 lines smaller than the standardversion. The LeftOverlaps funtion takes a period and returns true if it overlaps the end point of theperiod it is ompared with.2.3.4 Expressing Time-slieThe time-slie query is a temporal query, used to slie the data in the database along a time-dimension,thereby viewing the data stored in the database at that time (transation-time) or how the modeledworld looked at that time (valid-time).An example of a time-slie query is to �nd the alls that where ongoing at a given time. The followingtable is an example of the data in the alls table.allsaller allee vts vte555-1 555-2 1 10555-3 555-4 2 4555-3 555-5 5 7From this table we an see that 555-1 alled 555-2 from 1 to 10, and 555-3 alled 555-4 from 2 to 4and 555-1 from 5 to 7. If we time-slie the table at 6, we get the following table.16

alls time sliedaller allee555-1 555-2555-3 555-5SQL92The expression of a time-slie query in SQL92 is very straight forward, as seen in Code Listing 7.This query time-slies the alls at the time point X.Code Listing 7 - Time-slie Written in SQL921 SELECT a l l e r , a l l e e2 FROM Cal ls3 WHERE vts <= X AND4 vte >= X;Augmented SQLAs with SQL92 it is straight forward to express time-slie in augmented SQL, the only di�erene beingthat the prediate is hanged to use an Overlaps method. The ode for augmented SQL time-sliean be seen in Code Listing 8.Code Listing 8 - Time-slie Written in Augmented SQL1 SELECT a l l e r , a l l e e2 FROM Cal ls3 WHERE vt . Overlaps (X) = 1 ;2.3.5 Expressing AggregationAggregation queries summarizes data, and presents them in a more ompat and informative way.They an be simple as ounting the number of employees or alulating the average salary in theR&D department, or omplex like showing the development in the number of ustomers over time.The latter is an example of a temporal aggregation query, that summarizes over time.In the example from Setion 2.2 the data from the persons table an be used to ount the number ofustomers related to the ompany at any given time. The following table shows an example of thedate ontained in the persons table. personsSSN name address vts vte1 John Wall Street 1 102 Jane Yonge Street 1 33 Joe El Camino Real 5 11From the table we an see that John was a ustomer from 1 to 10, Jane from 1 to 3 and Joe from 5to 11. Using this data to alulate the number of ustomers related to the ompany would yield thefollowing result. 17

aggregated personsount from to2 1 31 4 42 5 101 11 11Figure 2.5 illustrates how the the aggregation result is found.
John

Jane

Joe

1 2 3 4 5 6 7 8 9 10 11

2 1 2 1

time

Figure 2.5: Aggregation of the Persons TableSQL92When expressing temporal aggregations, one very important part of the query is �nding onstantregions. That is, regions where the information being aggregated did not hange. As shown in CodeListings 9 and 10 the SQL ode from line 3 in Listing 9 to line 52 in Listing 10 is responsible for�nding onstant regions.When the onstant regions are found, a ount is made for eah onstant region.Augmented SQLAlthough it is not possible to make generi table operators that is shema independent, it is possibleto make funtions with a table operator like funtionality with ertain limitations [Thr00℄. It ispossible to make a funtion that, given a table name and a Period olumn name, an return theonstant regions of that table. By using this funtion, the ode shown in Code Listing 9 and 10 anbe expressed as shown in Code Listing 11.2.4 Evaluation of Code ComplexityThe idea with this Chapter is to evaluate the possibility of ful�lling REQ2 under the restraints imposedby the implementation environment. We have shown examples of the most ommon queries, expressedboth in SQL92 and in the augmented SQL proposed in this work.To evaluate on the omplexity of these queries, we ompare the number of lines of ode neessary toexpress the query in SQL92 and augmented SQL respetively. The following table ontains a list ofqueries and the number of lines of ode for both SQL92 and augmented SQL.18

Code Listing 9 - Aggregation Written in SQL92 (part 1 of 2)1 SELECT COUNT(Persons . SSN) , agg tab l e . vts AS vts , agg tab l e . vte AS vte2 FROM Persons , (3 /� No s t a r t or stop over lap of p1 �/4 SELECT p1 . vts AS vts , p1 . vte AS vte5 FROM Persons p16 WHERE NOT EXISTS (SELECT �7 FROM Persons p28 WHERE ((p1 . vts < p2 . vts AND9 p2 . vts < p1 . vte)10 OR11 (p1 . vts < p2 . vte AND12 p2 . vte < p1 . vte)))13 UNION14 /� Gap from p1 . vte to p2 . vts �/15 SELECT p1 . vte AS vts , p2 . vts AS vte16 FROM Persons p1 , Persons p217 WHERE p1 . vte < p2 . vts AND18 NOT EXISTS (SELECT �19 FROM Persons p320 WHERE ((p1 . vte < p3 . vts AND21 p3 . vts < p2 . vts)22 OR23 (p1 . vte < p3 . vte AND24 p3 . vte < p2 . vts)))25 UNION26 /� p2 l e f t over laps p1 : F i r s t �/27 SELECT p2 . vts AS vts , p1 . vts AS vte28 FROM Persons p1 , Persons p229 WHERE p2 . vts < p1 . vts AND30 p1 . vts < p2 . vte AND31 p2 . vte < p1 . vte AND32 NOT EXISTS (SELECT �33 FROM Persons p334 WHERE ((p2 . vts < p3 . vts AND35 p3 . vts < p1 . vts)36 OR37 (p2 . vts < p3 . vte AND38 p3 . vte < p1 . vts)))39 UNION40 /� p2 l e f t over laps p1 : Seond �/41 SELECT p1 . vts AS vts , p2 . vte AS vte42 FROM Persons p1 , Persons p243 WHERE p2 . vts < p1 . vts AND44 p1 . vts < p2 . vte AND45 p2 . vte < p1 . vte AND46 NOT EXISTS (SELECT �47 FROM Persons p348 WHERE ((p1 . vts < p3 . vts AND49 p3 . vts < p2 . vte)50 OR51 (p1 . vts < p3 . vte AND52 p3 . vte < p2 . vte)))53 UNION
19

Code Listing 10 - Aggregation Written in SQL92 (part 2 of 2)1 /� p2 l e f t over laps p1 : Third �/2 SELECT p2 . vte AS vts , p1 . vte AS vte3 FROM Persons p1 , Persons p24 WHERE p2 . vts < p1 . vts AND5 p1 . vts < p2 . vte AND6 p2 . vte < p1 . vte AND7 NOT EXISTS (SELECT �8 FROM Persons p39 WHERE ((p2 . vte < p3 . vts AND10 p3 . vts < p1 . vte)11 OR12 (p2 . vte < p3 . vte AND13 p3 . vte < p1 . vte)))14 UNION15 /� p1 in ludes p2 : F i r s t �/16 SELECT p1 . vts AS vts , p2 . vts AS vte17 FROM Persons p1 , Persons p218 WHERE p1 . vts < p2 . vts AND19 p2 . vte < p1 . vte AND20 NOT EXISTS (SELECT �21 FROM Persons p322 WHERE ((p1 . vts < p3 . vts AND23 p3 . vts < p2 . vts)24 OR25 (p1 . vts < p3 . vte AND26 p3 . vte < p2 . vts)))27 UNION28 /� p1 in ludes p2 : Seond �/29 SELECT p2 . vts AS vts , p2 . vte AS vte30 FROM Persons p1 , Persons p231 WHERE p1 . vts < p2 . vts AND32 p2 . vte < p1 . vte AND33 NOT EXISTS (SELECT �34 FROM Persons p335 WHERE ((p2 . vts < p3 . vts AND36 p3 . vts < p2 . vte)37 OR38 (p2 . vts < p3 . vte AND39 p3 . vte < p2 . vte)))40 UNION41 /� p1 in ludes p2 : Third �/42 SELECT p2 . vte AS vts , p1 . vte AS vte43 FROM Persons p1 , Persons p244 WHERE p1 . vts < p2 . vts AND45 p2 . vte < p1 . vte AND46 NOT EXISTS (SELECT �47 FROM Persons p348 WHERE ((p2 . vte < p3 . vts AND49 p3 . vts < p1 . vte)50 OR51 (p2 . vte < p3 . vte AND52 p3 . vte < p1 . vte)))) agg tab l e53 WHERE Persons . vts (+) < agg tab l e . vte AND54 agg tab l e . vts < Persons . vte (+)55 GROUP BY agg tab l e . vts , agg tab l e . vte ;Code Listing 11 - Aggregation Written in Augmented SQL1 SELECT COUNT(Persons . SSN) , agg tab l e . vt AS vt2 FROM Persons p ,3 TABLE(CAST(ConstantRegion ('Persons' , 'vt') AS ag tab)) agg tab l e4 WHERE p . vt . Overlaps (agg tab l e . vt) = 15 GROUP BY agg tab l e . vt ; 20

Query SQL92 Augmented SQL Pt. SavedJoin 41 6 85%Set-di�erene 45 37 18%Coalesing 23 21 9%Time-slie 4 3 25%Aggregation 108 5 95%221 72 67%Not taking into aount the distribution of use among the di�erent query types, we an see from thetable that temporal augmented queries on average is one third the size of temporal SQL92 queries.It is espeially join and aggregation queries that is optimized by the augmentation, but all queriesbene�t.This onludes the disussion of reduing query omplexity using user-de�ned data types available ina artridge. The matter of speifying suh data types and index support for them is the topi of thenext hapter.

21

22

Chapter 3Cartridge DesignIn this hapter, we desribe the atual implementation of the temporal artridge along with the Oraleonepts used in the implementation. First we desribe the objet hierarhy, then the index types,and �nally how it is possible to interfae with the query optimizer.As already mentioned the hosen platform is Orale's ORDBMS. An other major ORDBMS ould havebeen hosen for the task. The three major databases, Orale8i, Informix Universal Server [DLM97℄,DB2 Universal Database [Dav00℄ all have an extensibility framework available whih enables thespei�ation of user de�ned data types, indexes and ost-based optimization.To experiment with the Orale extension interfae, we have implemented the following. The foursimple data types, instant, interval, relative instant, and period are implemented as UDOTs. Thethree indexes, map21, map21-2, and hilbert are implemented. The map21 index is based on a simplespae-�lling urve tehnique, the map21-2 extends this approah by partitioning the indexed periods,and �nally the hilbert index is based on the hilbert spae-�lling urve.In total, and disregarding omments, the artridge onsists of approximately 5.200 lines of PL/SQLode.3.1 User-De�ned Objet TypesThis setion desribes how the objet-relational extensibility interfaes are used to delare new objettypes that serve as a basis for the temporal artridge.3.1.1 Extensible Type SystemTraditionally database appliations have been onerned with aessing data whih is stored in tablesusing onventional data types suh as INTEGER, DATE, or CHAR. Today the trend is moving towardsexploiting objet-relational properties of ORDBMSs by moving data into user de�ned objet types(UDOT). Orale supports suh UDOTs along with numerous other data types, suh as olletions(VARRAYS and nested tables), relationships (REF), large objets (BLOB and CLOB), and external�les (BFILE) [RRM99℄.UDOTs are used to extend the modeling failities of the database and to impose struture on the datastored in it. UDOTs are analogous to the onept of lasses in the world of objet orientation.In the following we examine the possibilities for speifying UDOTs in the Orale ORDBMS1. User-1All omments regarding the status of and limitation in the Orale DBMS is related to Orale 8.1.623

de�ned objet types onsists of one or more attributes and optionally also a number of member andmap methods. Attributes may be any of Orales data types inluding other UDOTs. Member methodsare proedures or funtions that an manipulate the data ontents of the objet. Map methods areused to ompare and order objets of the given type. The methods on an objet an be implementedin PL/SQL or be linked to stored Java methods or external C funtions.SQL onstruts are available in the DBMS extensibility interfaes for delaring, modifying and other-wise managing objets and objet types. It is possible to store objets in the olumns of a table andto use objets as parameters for funtions and proedures.3.1.2 Limitations of the DBMS Extensible Type SystemThe objet-relational tehnology in the Orale ORDBMS has a number of limitations, some of whihonern the temporal artridge designed. Spei�ally the following points have made an inuene onhow we designed and implemented the artridge.� For eah UDOT a onstrutor is impliitly available. The onstrutor is named after the objetand takes as parameters the same types as the attributes listed in the objet spei�ation. Noother onstrutors an be de�ned ([FP97℄, page 616). This has fored us to reate a set ofstand-alone objet onstrutor funtions and violates the objet oriented design of the objetframework.� Aess to attributes and member methods annot be restrited, whih violates objet-orientedpriniples of data enapsulation ([FP97℄, page 597). In spite of the fat that missing dataenapsulation is not ruial, it might enourage future users to bypass the available methodsand in stead rely on internal spei�s.� It is not possible to use objet-oriented onstruts suh as inheritane and polymorphism([RCG+99℄ page 18-33). This means that an unneessary large number of methods need tobe spei�ed.� In PL/SQL it is possible to immediately use an objet returned from a funtion, this is not possi-ble in SQL. This prevents onstruts like the following \t1.vt.Move('10 days').Overlaps(t2.vt)",where Move returns a Period, whose vt has been moved 10 days [LO99℄.� Objets annot be used as keys ([LO99℄ page 7-359). This limits our index design as we have torevert to using dates in stead of relative instants (explained shortly) in our open ended tables(see Setion 3.2).� PL/SQL variables of user-de�ned types annot be bound into dynami SQL statements as nativedata types an ([FP97℄ page 949). This impats the implementation of our indexes, as the dy-namially generated internal queries ontain periods that must be unfolded into its onventionaldata type onstituents.3.1.3 The New Objet TypesSeven temporal objet types are spei�ed for the artridge. Shematially the objet types are orderedin a hierarhy as shown in Figure 3.1. The basi types, instant and interval are plaed in the top ofthe �gure and is the basis of all other objet types. A relative instant is a speialization (shown by thearrow in Figure 3.1) of an instant. In spite of the fat that the Orale DBMS does not support suhspeializations, the onept of a relative instant being a speialization of an instant is still oneptuallytrue. The relative instant is also assoiated (shown by a line in Figure 3.1) with an interval andan instant ontainer. Periods are assoiated with exatly two relative instants. Instant ontainers,interval ontainers, and period ontainers may hold an arbitrary number of relative instants, intervals,and periods respetively. 24

period

instant

relative instant

period container

interval

2

*

*

*

*

1

interval container

*

*

instant container * *

Figure 3.1: Hierarhy of Temporal Objet TypesThe following list ontains a desription of the seven objet types. The list shows what data theyontain, gives examples of them, and points out were they may be used.Instant Instants are used to model anhored points in time. Examples of instants are \Marh 2000"or \2000-03-27 12:30:00" at granularities month and seond, respetively. An instant is imple-mented as a positive number whih represents an amount of granules that have passed sine someprede�ned point in time, and a granularity speifying the type of granules. Instants may forexample be used to store temporal information about meteorologial samplings of temperatureor humidity at di�erent points in time.Interval Intervals are used to represent durations of time, that are not anhored to the time line.Like instants, they are implemented as a ount of granules and a granularity. Examples inlude\1 month" and \3 pioseonds". Intervals may be used to store how long a patients peniillintreatment was.Relative instant Relative instants are muh like instants only that they an be spei�ed relative tosome anhored point in time or take on speial values like now. They are implemented as a type,an optional instant objet and an optional interval serving as an o�-set. The type determinesif the spei� instant is a speial value, or a onventional relative instant. Examples are thus\Marh 2000 - 1 month" whih represents February, year 2000, or \now" whih represents thespeial temporal value. Relative instants are used in the same way as instants.Period A period is a duration of time whih is anhored to the time line. Periods are implementedas two relative instants. Examples of periods are \June 2000 - August 2000" whih would be aperiod ontaining the three summer months of the year 2000. Examples of the use of periodsinlude when an employee was working for a ompany, or when an apartment was vaant.Instant Container An instant ontainer is a multi set of (relative) instants and an for example beused to register all days that an employee was absent from work.Interval Container Interval ontainers are multi sets of intervals and may be used to store infor-mation about whih valid ontrat durations exists in a ontrating organization.Period Container Period ontainers are multi sets of periods and an be used to store informationabout when a given fat was true.Eah data type ontains a number of attributes and methods. The underlying semanti details ofthese attributes and methods are spei�ed in greater detail in Appendix A.25

3.2 IndexesThis setion desribes the index part of the temporal artridge. First we desribe the domain indexinterfae of the Orale artridge tehnology [RRM99℄. Then we desribe two index types, both froma theoretial and from an implementation point of view.3.2.1 Extensible IndexingThrough the artridge tehnology, Orale provides an interfae for reating ustom index types forUDOTs. This interfae was spawned by a growing need to store more advaned data types, typesthat ould not readily be indexed with standard tree strutures ([RRM99℄ page 7-3).Addition of a domain index to Orale is done by reating a new UDOT whih has a prede�ned set ofmethods. When this UDOT is reated, a CREATE INDEX TYPE statement is used to register the indexand whih operators it an handle. The methods that Orale uses to ontrol the index an be dividedinto four setions.� De�nition: The de�nition methods are used to reate, alter, trunate, and drop an indexinstant. These methods have no transation restritions, and as suh are free to use DML andDDL statements.� Maintenane: These methods are used to maintain the ontent of an index instant, and inludemethods for inserting, updating, and deleting ontent from an index instant. These methodsare only allowed to use DML statements and are not allowed to read or modify the base tableon whih the index is reated.� San: The san methods are used to evaluate prediates using an index instant. Given aprediate with arguments, these methods return the ROWIDs of all rows where the prediateholds true. These methods are only allowed to exeute DML query statements.� Meta data: The meta data methods are used by the Orale export utility to retrieve informationabout the index, that an later be used to restore the index.For a thorough desription of de�nition, maintenane and meta data methods see [RRM99℄. Sanmethods are essential elements in the fat that they serve as index-based implementations for evalu-ating prediates with operators. A desription of the san methods follows.3.2.2 Index SansWhen an index san is initiated by a user query, the �rst method alled is ODCIIndexStart. Thearguments to this method is among others the prediate and arguments from the user query, and thename of the index being used. The ODCIIndexStart method initiates the index san, and readies theindex for inrementally fething the result.After ODCIIndexStart has �nished, ODCIIndexFeth is alled. This method inrementally returnsparts of the result to the query engine of the DBMS. The result is the ROWIDs that math theprediate of the user query. The state of indexes is transfered betweenODCIIndexStart and subsequentalls to ODCIIndexFeth through an index type objet. This means that it is the aller (DBMS queryengine) that has the responsibility of maintaining the index state rather than the index itself.When the entire result set has been returned to the DBMS, ODCIIndexClose is alled. This methodleans up after ODCIIndexStart and ODCIIndexFeth.26

3.2.3 MAP21The MAP21 index [ND98℄ is an index based on a spae-�lling urve, and is used to index periods.The idea behind indexes based on spae-�lling urves is to transform the two-dimensional points theyindex into one-dimensional values that an be indexed by onventional indexes.Transformation FuntionThe transformation funtion transforms a Period into a salar value that an be indexed by a on-ventional index. The MAP21 transformation funtion is as follows.T = ls(S;) +EHere T is the salar value, and S and E are the start and end time-points of the Period respetively. is the maximum number of digits used to represent a time-point, and ls is a funtion that shift it'sargument digits to the left. The number of digits needed to store T is 2� . If we transform thePeriod [2000-01-01, 2001-01-01℄ we get the following result.ls(0200001010; 8) + 20010101 =2000010100000000+ 20010101 =2000010120010101As shown in Figure 3.2, this transformation funtion results in a mapping where the two-dimensionalloality is poorly preserved. Even when two points are lose in the one-dimensional mapping, therean be a large distane between the two orresponding points in the two-dimensional spae. Thereason for this is the large jumps in the MAP21 path, as seen with the jump from ell 5 to ell 6 inFigure 3.2Figure 3.2 shows a 5x5 two-dimensional spae whih is mapped to one dimension by a MAP21 spae-�lling urve. Eah ell in the two-dimensional spae is assigned a unique index determined by thepath, suh that the �rst index is plaed in the origin of the path.The transformation of the speial temporal value now is not handled by the general funtion, but istreated speially and will be explained shortly.Query TranslationBeause of the information stored in the index, it is neessary to translate the prediates from Periodsto a range of MAP21 values before querying the index. The mapping from Periods to a range ofMAP21 values that need to be fethed from index is dependent of the prediate being evaluated. Thefollowing is a desription of how it is done for the overlaps prediate, similar mappings an be madefor preedes, sueeds, ontains, and inludes [ND98℄.Code Listing 12 - Use of Overlaps Operator1 SELECT �2 FROM t13 WHERE t1 . vt . Overlaps ([2000�01�01 , 2001�01�01 ℄) ;Given a query as shown in Code Listing 12, it is neessary to translate the Period to a range ofMAP21 values before we an query the index. The translation has to take into aount, that it shouldenompass all MAP21 values that ould possible overlap with [2000-01-01, 2001-01-01℄. If nothing27

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

1 2 3 4 5

1

2

3

4

5

start

en
d

Figure 3.2: The Mapping Order of MAP21 Transformation Funtionwas known about the length of the periods being indexed, all periods starting before 2001-01-01 ouldpossible overlap. This ase an be avoided by keeping trak of the longest period being indexed (whihwe will all �), with this knowledge the range of MAP21 values that ould possible overlap is shownas a grey retangle in Figure 3.3.Only the area above the diagonal in Figure 3.3 is interesting, beause points below the diagonalrepresents invalid periods (that end before they begin).The periods that ould possible overlap, are those starting between 2000-01-01 - � to 2001-01-01, andending between 2000-01-01 to 2001-01-01 + �. Translated into MAP21 values, we need to examinethe values between [2000-01-01 - �, 2000-01-01℄ to [2001-01-01, 2001-01-01 + �℄.Beause the previously mentioned region overs all the periods that ould possible overlap, it isneessary to hek periods that either starts before S or ends after E for atual overlap.ImplementationThe implementation of the MAP21 index type uses one table for meta data and two other tables perindex instant, the meta data stored for eah index is as follows.tmpidx MAP21Name DesriptionName The name of the index, inluding shemaDest table The name of the base table on whih the index is reatedMax length The length of the longest period being indexed28

s-∆

e+∆

s

es

e

start

en
d

Figure 3.3: Possible Overlapping Periods

29

For eah index we reate two tables, one for now-relative periods, and one for non-now-relative periods.The table ontaining the now-relative periods is an index-organized table [RCG+99℄ with the followingshema. indexname oetName DesriptionStart The start of the now-relative periodSeq A unique sequened numberr The ROWID of the tuple ontaining the periodBeause we know that all periods in the now-relative table ends now, it is only neessary to store thestart point of the periods. The start and sequened number is used to de�ne a omposite primary keyfor the now-relative table.The non-now-relative periods are also stored in an index-organized table, this table has the followingshema. indexname pidName DesriptionMAP21 The MAP21 value for the periodSeq A unique sequened numberr The ROWID of the tuple ontaining the periodThe MAP21 value and the sequened number is used to de�ne a omposite primary key.When an index san is initiated, the ODCIIndexStart method opens two ursors. The SQL for thesetwo ursors are shown in Code Listings 13 and 14.In Code Listing 13, X and Y refers to the MAP21 values of the lower left orner and upper rightorner of the searh area respetively, as shown in Figure 3.3.Code Listing 13 - SQL Code For Querying Non-now-relative Table1 SELECT r2 FROM indexname pid3 WHERE map21 >= X AND4 map21 <= Y AND5 MAP21Overlaps ([searh per iod ℄ , map21) = 1Code Listing 14 - SQL Code For Querying Now-relative Table1 SELECT r2 FROM indexname oet3 WHERE [searh per iod ℄ . s ta r t <= SYSDATE AND4 s ta r t <= [searh per iod ℄ . endThe MAP21Overlaps funtion takes a period and a map21 value and heks for overlap. The funtionis used to eliminate false hits.As shown in the previous setion, the length of the longest period in the index has a large impat onthe performane of the index. This has lead [ND98℄ to propose an alternative struture of the index.The idea is to split the periods being indexed into three distint tables, one whih ontains all theshort periods, one whih ontains all the long periods, and one whih ontains the now-relative data.This setup prevents the ase where one long period impats the searh performane of the whole index.In addition to the original implementation, where no partitioning on period durations is performed,we have implemented this alternative setup. This has been done by adding another non-now-relativetable of the same struture as the present one (indexname pid), and by adding two extra olumns to30

the meta data table, namely the maximum length of the new non-now-relative table and the lengthat whih periods are onsidered long.3.2.4 Hilbert IndexThe Hilbert index is, like MAP21, based on a spae �lling urve, and the struture of the Hilbertindex type is also muh like that of the MAP21 index type.Transformation FuntionThe Hilbert transformation funtion has several properties that make it suitable for use in an index.First it is an optimal spae-�lling urve, in the fat that it has the optimal preservation of loality inthe mapping between two dimensions and one dimension [LKC99℄. Seondly, it has a tree struture,making it possible to adjust the omplexity of the query at the expense of auray.The Hilbert index type logially divides the indexed domain into a quad-tree struture [Sam84℄. Theidea is as follows, the domain is divided into four parts, eah of these parts again divided into fourparts. This division is ontinued until eah of the parts has an appropriate size, the results of thisdivision is a grid of ells overing the entire spae. The Hilbert funtion is then used to de�ne anorder for these ells, this order is shown in Figure 3.4.
1

0

2

3

5

4

3

0

6

7

2

1

9

8

13

14

10

11

12

15

21

20

19

16

22

23

18

17

25

24

29

30

26

27

28

31

15

14

1

0

12

13

2

3

11

8

7

4

10

9

6

5

37

36

35

32

38

39

34

33

41

40

45

46

42

43

44

47

53

54

57

58

52

55

56

59

51

50

61

60

48

49

62

63

(1) (2) (3)Figure 3.4: Hilbert Curves of levels 1 (1), 2 (2) and 3 (3)For a desription of the algorithm used to alulate the plaement of a point within the Hilbert order,see [Gut99℄. The algorithm starts at the top level of the logi quad-tree struture, and progresses downthe tree. At eah level the algorithm alulates whih ell ontains the searh point, and progressesdown that path.Query TranslationBeause of the quad-tree struture of the Hilbert index, it is possible to adjust the preision of theindex query and thereby redue the omplexity of the index san.As with the MAP21 index, eah query an be translated into a query region, an example of suh aquery region is shown in Figure 3.5. As the �gure shows, the Hilbert ordering an enter and exit thequery region several times, eah of these visits results in a range of Hilbert values that is ontainedin the query region. When all ranges are found, they are used to searh the index-organized table forperiods in the query region. 31

21

20

19

16

22

23

18

17

25

24

29

30

26

27

28

31

15

14

1

0

12

13

2

3

11

8

7

4

10

9

6

5

37

36

35

32

38

39

34

33

41

40

45

46

42

43

44

47

53

54

57

58

52

55

56

59

51

50

61

60

48

49

62

63

start

en
d

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Figure 3.5: Example of a Query Region over a Level 3 Hilbert SpaeThe number of ranges in a query region is dependent on the size of the region and the size of theells. If the region gets too big, or the ells too small, the number of ranges beome substantial. Itis possible to avoid this, by using the quad-tree struture of the Hilbert ordering. As eah step ofthe reursive algorithm is used to re�ne the result, it is possible to stop before the algorithm hitsthe bottom of the logial quad-tree struture. Thereby getting a result with fewer ranges, but whihinludes more Hilbert values than neessary. These superuous values are eliminated by an extraprediate (as shown in Code Listing 15 on the faing page).ImplementationBeause the overall struture of the MAP21 index type and the Hilbert index type is so muh alike,their implementations are also muh alike.Like MAP21, the Hilbert index type stores two types of data. One is the meta data assoiated withan index, and the other is the atual index data. The meta data stored for a Hilbert index instant isas follows. tmpidx HilbertName DesriptionName The name of the index, inluding shemaDest table The name of the base table on whih the index is reatedMax length The length of the longest period being indexed, used for determining searh areas.Min The lower point of the domain being indexedMax The upper point of the domain being indexedSdepth The searh depthTdepth The height of the logial quad-treeThe index data stored is similar to the MAP21 index data (indexname oet, indexname pid), exeptthat it is now Hilbert values that is stored instead of Map21 values. Now-relative Periods are alsohandled similarly to the MAP21 index, and will therefore not be desribed here.32

When an index is reated, an upper and lower bound is de�ned for the indexed domain. These boundsare time points that de�ne the area of time overed by the index. From these bounds, the height of thelogial quad-tree is alulated. The omputational omplexity of the Hilbert funtion is dependent ofthe height of the tree, so it is advisable not to hoose a larger index domain than neessary. A searhdepth is also de�ned for the index, this depth is used when alulated overlapping ranges and de�nesat whih level the searh for ranges should be stopped.The omputation of Hilbert values, is de�ned as one funtion. The arguments to this funtion is aquery region, the depth of the tree, the searh depth, and the maximum number of ranges that maybe returned. The funtion returns the list of ranges that are ontained in the query region.When alulating a Hilbert value for a Period being inserted into the index, the query region argumentis a point, and the funtion returns a single range ontaining only one value, whih is the Hilbert valueof the spei� point.When performing an index san, the ranges returned from the Hilbert funtion is used to ompose adynami SQL statement to query the index-organized table. An example of suh an SQL statementan be seen in Code Listing 15.Code Listing 15 - SQL Code For Querying Hilbert Index1 SELECT r2 FROM indexname pid3 WHERE ((h i l b e r t >= X AND h i l b e r t <= Y) OR4 (h i l b e r t >= G AND h i l b e r t <= H)) AND5 HILBOverlaps ([searh per iod ℄ , h i l b e r t) = 1The query in Code Listing 15 have two ranges, one from X to Y and another from G to H. hilbert isthe hilbert value stored in the meta data tables. The HILBOverlaps method takes as input a periodand the Hilbert value and heks for overlap in order to eliminate false hits.3.3 OptimizationThis setion desribes the third and last part of the extensibility interfaes used in the developmentof the temporal Cartridge, namely extensible query optimization.First Orale's extensible query optimization interfae is desribed followed by a brief disussion ofhow this feature may be used in a temporal artridge.Extensible optimization for the artridge has only been examined briey2, and has not been inludedin the atual implementation. The fous of this setion is therefore on the extensibility interfae andnot a onrete implementation. The desription is based on Orale doumentation inluding [RRM99℄.3.3.1 Extensible OptimizerThe query optimizer is the part of a DBMS whih has the responsibility of hoosing the most eÆientway of exeuting a query statement. Exeution, for example, depends on the order in whih tables andindexes are aessed. An optimizer an either use ost-based optimization or rule-based optimization.A ost-based optimizer onsiders between di�erent aess paths by using statistis, e.g., in the form ofhistograms, about the involved database objets. The Orale DBMS supports this kind of optimizationthrough SQL statements suh as ANALYZE and COMPUTE STATISTICS. A rule-based optimizer on theother hand hooses between aess paths by onsidering the ranks of these aess paths.2A stand-alone prototype extensible optimizer was implemented for periods.33

Orale supports both ost-based and rule-based optimization. A number of features an however onlybe used by the ost-based optimization strategy, inluding extensible optimization.The extensible optimizer allows three kinds of funtions to be de�ned for user-de�ned funtions andindexes: statistis olletion funtions, seletivity funtions, and ost funtions.All extending of the optimizer is done by delaring funtions that the optimizer alls when appropriate.Suh funtions are spei�ed in an objet implementing the ODCIStats interfae. This objet isregistered with the query exeution engine using the ASSOCIATE STATISTICS WITH ommand. Eahof the three funtionalities in the extensible optimizer is explained below.Statistis Colletion FuntionsStatistis on database olumns and indexes are olleted using the ANALYZE ommand. With theintrodution of user-de�ned domain indexes the DBMS annot, on its own, ollet statistis on suhindexes, beause it does not know the internal struture of the index.In the light of this problem the optimizer has been extended to let users de�ne and assoiate ustomstatistis olletion funtions (SCF). SCFs an be assoiated with individual olumns, objet types,index types, and domain indexes. The SCFs are alled by the optimizer whenever a domain index orolumn is analyzed. The statistis generated by the user-de�ned SCF is anonymous to the DBMS, inthe fat that it has no knowledge of its struture, representation, or meaning. Any interpretation ofthe statistis is done in the user-de�ned query optimization funtions. In the ase of table olumnsand objet types SCFs are alled whenever an appropriate olumn is analyzed. If the data type of theolumn is native to the DBMS, the statistis generated by the SCF is olleted along with the onven-tional statistis. Two funtions must be spei�ed in onnetion with the statistis gathering part ofthe extensible optimizer objet. The �rst, ODCIStatsCollet, ollets the statistis when the ANALYZEommand is issued. The other, ODCIStatsDelete, deletes the statistis when the ANALYZE DELETEommand is issued. Both ODCIStatsCollet and ODCIStatsDelete are overloaded in order to workwith both table olumns/objet types and with user-de�ned domain indexes.Seletivity FuntionsThe statistis gathered by the SCFs above are used to determine the seletivity of a given queryprediate. The seletivity is a measure for how many perent of the rows that are hosen by theprediate. This seletivity is in turn used to estimate the ost of a partiular aess method.With extensible optimization it is possible to de�ne ustom seletivity funtions (SF), whih an beassoiated with user-de�ned operators, stand-alone funtions, funtions in pakages and methods inobjet types. The SF is alled by the optimizer eah time it enounters a prediate with a user-de�ned operator, funtion, pakage funtion or objet method. If we, for example, have the objetmethod overlaps, assoiated with a SF, this SF will we alled when a query ontains prediates suhas \overlaps(...) = 1". The entire prediate is passed to the SF as an argument.Only a single funtion, ODCIStatsSeletivity, needs to be delared in the optimization objet in orderto make use of ustom seletivity measures with the extensible optimizer.Cost FuntionsAs in the ase of statistis and seletivity funtions the optimizer has no way of determining the ostof a partiular user-de�ned domain index based aess method. The reason again being that theoptimizer has no knowledge of the internal struture of the domain index.Therefore it is an option to speify user-de�ned ost funtions (CF) and assoiate them with user-de�ned stand-alone funtions, pakage funtions and objet type methods. When the optimizer en-34

ounters a prediate involving a stand-alone funtion, pakage funtion or objet type method withwhih a CF has been assoiated it initiates a all to this CF. The same is possible with domain indexesand index types exept now the prediate referenes an operator, that an be evaluated using suh adomain index.A single funtion, ODCIStatsCost, is neessary to add ustom ost alulations. This funtion takesas parameters a desription of the operator and the arguments to this operator. The funtion returnsa ost, onsisting of two omponents, namely the CPU and I/O osts. The ODCIStatsCost funtionis overridden in order to support both domain indexes and funtion operators.3.3.2 Use of Extensible IndexingTurning our attention to the partiular problem of developing the temporal artridge, we have tospeify funtions for the three tasks of olleting statistis, estimating seletivity, and alulatingost. Statistis olletion and seletivity estimation are losely linked in the fat that the statistisare used in the seletivity estimation proess. Statistis and seletivity is likewise used to alulateost.To our knowledge no-one has treated the topi of estimating statistis for temporal data diretly, butonepts of use an be found in the spatial temporal researh [LKC99℄.Many approahes have been given for determining the seletivity of queries [MCS88℄, inluding sam-pling, parametri tehniques, and histograms, where input data is partitioned into a number of subsetsalled bukets. Researh distinguishes between seletivity estimations for 1-dimensional data and formulti-dimensional data [LKC99℄. Aording to [LKC99℄ histograms are well suited for data with di-mensionality lower than three. Multi-dimensional seletivity estimation tehniques inlude Hilbertnumbering, multi-level grid �les [PI97℄. Neural networks have been suggested [LZ98℄ as a method forestimating seletivity on user-de�ned data types.This onludes the disussion of the Orale Extensibility Interfae in regards to de�ning user-de�nedobjet types with the Extensible Type System and user-de�ned domain indexes in the ExtensibleIndexing feature and query optimization funtions with the Extensible Optimizer funtionality.

35

36

Chapter 4Performane TestIn this hapter we evaluate the performane of the artridge, this is to evaluated whether REQ3 isful�lled. The evaluation is divided into two parts, �rst an evaluation of the index performane, andseondly a performane evaluation of the queries desribed in Chapter 2. In the index evaluation, weompare the performane of the indexes to eah other, and to an implementation using native data-types indexed with a B+ tree. The query evaluation will ompare the performane of the augmentedqueries to the performane of queries using native data-types, both with and without indexes.4.1 Test SetupThe tests are onduted on a Orale instant equipped with the TerraTele shema desribed in Chapter2. The software used for the evaluation is as follows.� Orale 8.1.6.1.0� SQL*Plus 8.1.6.1.0� Windows 2000 v5.00.2195The hardware used is as follows.� Proessor: 400Mhz Pentium II� Memory: 256MB� Disk: 10Gb 4400rpm ATAThe on�guration of the Orale instant is not hanged from default, whih is 14793 disk bu�ers of8192 bytes eah.Eah test is onduted �ve times, the fastest and slowest times are removed, and the result is alulatedas the average of the remaining three times.4.2 Index TestsWe hoose six tests to evaluate the performane of the implemented indexes. Two of these tests areaimed at tuning spei� index parameters on Hilbert and Map21-2, and four are aimed at testing37

the ability of eah index to handle di�erent types of data, e.g. long or now-relative Periods. Foromparison we have inluded an implementation using native data types and B+ indexes.In eah measurement we have inluded four indexes, namely a Hilbert index labeled \Hilbert", a Map21index labeled \Map21", a Map21 index with the Periods divided into a long and short table labeled\Map21-2" and �nally a query using onventional data types and B+ indexes labeled \Conventional".For these tests we use a standard dataset onsisting of 50000 tuples eah assoiated with an Period,and uniformly distributed over a period of �ve years. 5 perent of the Periods are now-relative. 95perent of the remaining Periods have a length uniformly distributed between 10 to 100 days, and 5perent a length uniformly distributed between 100 to 1000 days. The size of the datasets are 3.9MBfor the augmented and 2.0MB for the onventional.The query used for these tests, is a simple overlaps query that returns all Periods that overlap a givenPeriod. The Period used, over 10 perent of the indexed time region.4.2.1 Searh Depth of Hilbert IndexOne of the parameters in the Hilbert index is the searh depth. This parameter ontrols how deep asearh should go down the tree, and thereby how preise the initial seletion of Periods is. Adjustingthis parameter is a tradeo� between the omplexity of alulating searh ranges, and the omplexityof eliminating false Periods.We have inluded the Map21, Map21-2 and onventional index in this test, only to serve as referenemarks. They are not a�eted by the searh depth, and their performane are therefor onstant.

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6 7 8 9 10

T
im

e
in

 s
ec

on
ds

Hilbert search depth

Hilbert
Map21

Map21-2
Conventional

Figure 4.1: Performane Relative to Searh Depth in the Hilbert IndexAs we an see from �gure 4.1 the performane of the Map21, Map21-2 and Convention indexes remainonstant, while the performane of the Hilbert index improves to a ertain point, at whih is dereasesrapidly. The inrease in performane is due to fewer false tuples being inluded in the Hilbert ranges,while the sudden derease is due to the time it takes to alulate the Hilbert ranges. The followingtable shows how long it takes to alulate Hilbert ranges at a given depth, and how many ranges arereturned. The table is alulated using the same overlaps query as Figure 4.1.38

Searh Depth Ranges returned Time to alulate (se.)6 20 0,6517 30 1,7928 45 6,6599 95 26,00810 262 102,000We an see from the table, that the time used to alulate the Hilbert ranges is exponential. Thissuggest that it is better to alulate too few ranges than too many, and that a large number of indexedPeriods is neessary to justify going deep into the tree.4.2.2 Index Split of Hilbert and Map21-2 IndexesAnother index tuning parameter is when to onsider a Period long. This parameter determines thedistribution of Periods between the short period table and the long period table in the Map21-2 andHilbert index.

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100

T
im

e
in

 s
ec

on
ds

Pct. of short periods

Hilbert
Map21

Map21-2
Conventional

Figure 4.2: Performane Relative to Index Split LimitThe x-axis of Figure 4.2, is the amount of Periods in the data-set that is onsidered short, and thereforeis stored in the short period table in the Map21-2 and Hilbert indexes.As we an see from Figure 4.2, this split has a huge e�et on the Map21-2, and is optimal when thesmall Periods onstitute 95 perent. This is onsistent with the distribution of data, where 95 perentof the Periods is 10 to 100 days in length, and 5 perent is between 100 and 1000 days in length. Thesplit limit has very little inuene on the performane of the Hilbert index, this may be due to thefat that most of the time spent in the Hilbert index is used to alulate Hilbert ranges.4.2.3 Length of PeriodsLong Periods are often a problem with temporal indexes, beause they result in both an unevendistribution of Periods between the long Period and short Period tables, and an inreasingly largesearh area for querying the indexes. 39

The data used for this test ontains progressively more long Periods, starting with no long Periodsand ending with only long Periods. Short Periods are between 10 and 100 days, and long Periods arebetween 100 and 1000 days.

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100

T
im

e
in

 s
ec

on
ds

Pct. long periods

Hilbert
Map21

Map21-2
Conventional

Figure 4.3: Performane Relative to Length of Indexed PeriodsAs expeted, Figure 4.3 shows that the performane of Map21 degrades even with a small perentageof long tuples. This is onsistent with the fat that Map21 stores all Periods in one table, and a singlelong Period an therefore alter the size of the searh area for all Periods. The other indexes also su�erfrom a large amount of long Periods, but this may be remedied by hanging the split limit as theamount of long Periods rise.4.2.4 Now Relative PeriodsThe fourth test is designed to test the ability of the indexes in handling now-relative Periods. Eahof the indexes handle now-relative Periods similarly, namely by keeping them separate from the non-now-relative Periods.As we an see from Figure 4.4, all indexes improve as the perentage of now-relative Periods rise.This is beause querying and indexing now-relative Periods is simpler than non-now-relative Periods.Beause the end point of now-relative Periods is known, we only have to index the start point and noHilbert or Map21 translation is neessary, thereby making the query simpler. As shown, all augmentedindexes perform that same when indexing 100 perent now-relative Periods. This is expeted, as allindexes handle now-relative tuples in the same manner.4.2.5 Query AreaThe �fth test is designed to test the ability of eah index in handling di�erent size query areas.As Figure 4.5 shows, all indexes handle large query areas fairly well. Not surprisingly Map21 outper-forms both Map21-2 and Hilbert when the query area approximates 100 perent of the indexed area.This is beause the Map21 algorithm is simpler, but returns many false Periods. This is a problem40

0

5

10

15

20

25

30

0 20 40 60 80 100

T
im

e
in

 s
ec

on
ds

Pct. now-relative periods

Hilbert
Map21

Map21-2
Conventional

Figure 4.4: Performane Relative to the Amount of Now-relative Periods in Index

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100

T
im

e
in

 s
ec

on
ds

Size of query area in pct. of index domain

Hilbert
Map21

Map21-2
Conventional

Figure 4.5: Performane Relative to Size of Query Area
41

with small queries, but with large queries the amount of false Periods return is small ompared to theamount of true Periods.4.2.6 Amount of TuplesThe last index test, test the ability of the index in handling large amounts of tuples.

0

50

100

150

200

0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

T
im

e
in

 s
ec

on
ds

Number of tuples

Hilbert
Map21

Map21-2
Conventional

Figure 4.6: Performane Relative to Amount of TuplesFigure 4.6 shows, that all indexes handle large amounts of data almost equally. Map21 is faster thanboth Map21-2 and Hilbert at 100000 tuples, whereas Map21-2 and Hilbert perform equally throughoutthe range.4.3 Query TestsIn this setion we test the performane of the queries de�ned in Chapter 2. Both queries usingonventional data types and queries using augmented temporal data types are tested.Eah query was tested using a unique dataset without now-relative Periods. Now-relative Periodswas left out of the dataset beause none of the queries, based on onventional data types, supportnow-relative Periods. The algorithm used for reating the data-sets, is the same as desribed in setion4.2. The queries were tested using the TerraTele shema desribed in Chapter 2.In the following setions eah test ontains six series. Four series with augmented data-types, namely\Augmented" whih is without any index de�ned, and \Map21", \Map21-2" and \Hilbert" for therespetive indexes. The last two series uses onventional data-types, and are named \Conventional"for the one using onventional data-types and no index, and \B+" for onventional data-types withB+ indexes. 42

4.3.1 JoinThe data-set used to test the join query ontains 1000 objets in eah of the tables, and is designedas desribed in Setion 4.2.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 20 40 60 80 100

T
im

e
in

 s
ec

on
ds

Pct. selectivity

Augmented
Hilbert
Map21

Map21-2
Conventional

B+

Figure 4.7: Performane of the Join QueryAs we an see from Figure 4.7, the augmented query annot ompete with the query using onventionaldata types. This is beause the RDBMS has no knowledge of the semantis of user de�ned methods(UDMs), and therefore have to hek eah Period from the Pries table with eah Period from theCalls table, resulting in a nested loop omparison. This nested loop is not neessary with onventionaldata types, beause nothing is hidden from the RDBMS, and it an therefor optimize the query. Thisoptimization onsists, among other things, of sorting the two tables and thereby only omparingpossibly overlapping Periods.By adding an index, the nested loop omparison is made a bit faster as eah Period in the Pries tableresults in an index san instead of a full table san. The seletivity of the index san is determinedby the length of the Periods in the Pries table, and is in this ase roughly 3 perent.4.3.2 Set-Di�ereneThe data-set used to test the set-di�erene query ontains 1000 objets in eah of the tables, and isdesigned as desribed in Setion 4.2.The SQL for the set-di�erene query using augmented data types is very similar in struture to thequery using onventional data types. This similarity ombined with the added overhead in workingwith UDTs, makes the augmented set-di�erene query slower than the onventional query.4.3.3 CoalesingThe data-set used for testing the oalesing query ontained 100 unique objets, eah onsisting of 1to 5 tuples, for a total of 311 tuples. This resulted in a oalesing fator of 66%.43

0

5

10

15

20

0 20 40 60 80 100

T
im

e
in

 s
ec

on
ds

Pct. selectivity

Augmented
Hilbert
Map21

Map21-2
Conventional

B+

Figure 4.8: Performane of the Set-Di�erene Query

0

5

10

15

20

25

30

35

40

45

50

0 20 40 60 80 100

T
im

e
in

 s
ec

on
ds

Pct. selectivity

Augmented
Hilbert
Map21

Map21-2
Conventional

B+

Figure 4.9: Performane of the Coalesing Query
44

As shown on Figure 4.9, the augmented index queries are several times faster than the non-indexedaugmented query. Within the augmented index queries, there are virtually no di�erene in performanebetween the di�erent indexes. This is beause the low number of tuples in the table, make theperformane di�erene of the indexes insigni�ant. Although the augmented index queries are fasterthan the non-index augmented query, they are slower than the onventional queries when the seletivitygoes up.The onventional query with the B+ index are slower than the onventional query without the index.This ould be avoided by using the ost based query optimizer, whih probably would have seletednot to use the index, thus making the indexed query at least as fast as the non-indexed query.4.3.4 AggregationThe data-set used to test the aggregation query ontains 150 objets, and is designed as desribed inSetion 4.2.

0

5

10

15

20

25

30

35

40

45

50

0 20 40 60 80 100

T
im

e
in

 s
ec

on
ds

Pct. selectivity

Augmented
Hilbert
Map21

Map21-2
Conventional

B+

Figure 4.10: Performane of the Aggregation QueryThe performane measurements for the aggregation query is shown on Figure 4.10, where we an seethat all the augmented queries are equally fast, but the onventional queries are faster.As expeted all the augmented queries are equally fast, this is beause the query does not use anyindex optimized operations, and therefore does not bene�t from the generated index.Even though the augmented aggregation query substantial fewer lines of ode than the onventionalquery, it is still slower. This is beause the query engine alls the ConstantRegion funtion for eahtuple in the master table, resulting in a full table san of the master table for eah tuple, resulting ina nested loop.4.3.5 Time-SlieThe dataset used to test the time-slie query ontains 50000 objets, and is designed as desribed inSetion 4.2. 45

0

50

100

150

200

0 20 40 60 80 100

T
im

e
in

 s
ec

on
ds

Pct. selectivity

Augmented
Hilbert
Map21

Map21-2
Conventional

B+

Figure 4.11: Performane of the Time-Slie QueryThe timings for time-slie is shown in Figure 4.11, here we an see that the onventional query isonsistently faster than the augmented queries. Among the augmented queries, there is little di�ereneon Map21-2 and Hilbert, whih both are a bit faster than Map21. As the seletivity rises above 70perent, it beomes faster to use full table sans that to use indexes.The augmented query without indexes takes the same amount of time, regardless of the seletivity.This is beause regardless of the seletivity, it has to do one full table san to retrieve the mathingtuples.4.4 Evaluation of PerformaneThe basis for this hapter, was to evaluate the performane of the suggested temporal frame-work. Thehapter ontained a test of the indexes ompared to using onventional data-types and B+ indexes,and a test of the queries suggested in Chapter 2. This performane evaluation is used, to deidewhether the suggested frame-work ful�lls REQ3.The implemented temporal indexes was onsistently slower than the onventional B+ indexes, sometimes more than 150 times as slow. The temporal indexes did not sale as well as B+ indexes, andthe performane was more dependent on the struture of the data than the B+ indexes.Based on redution in lines of ode, the queries tested in this hapter an be divided into three groups.The simple queries, the ones that did not bene�t from the augmented temporal data-types and �nallythe ones that did bene�t from the augmented data-types.The performane of the simple query, time-slie, did not bene�t from the augmentation. It is asimple query, both to express and to exeute, and there where little possibility for improvement byaugmentation.The queries that did not bene�t from the augmented data-types was oalesing and set-di�erene, thestruture of these queries did not hange with the augmented temporal data-types. The performaneof these queries where very slow ompared to queries using onventional data-types, this is probablybeause of the added overhead of using UDTs. 46

The last group of queries are those, that improved struturally by adding the augmented temporaldata-types, these are the join and aggregation queries. The join query, although simpler to express,was more omplex to exeute. The Overlaps operator translated into a nested loop, where the RDBMSmakes an index searh for eah Period in the master table. This makes the augmented join slowerthan the onventional join. The aggregation query su�ers from the same problem as the join query, itis exeuted as a nested loop. The query was expressed as a join between the virtual table of onstantregions and the master table. Unfortunately the RDBMS exeutes the ContinuousRegion funtionfor eah period in the master table. This nested loop makes the augmented version slower than theonventional.Based on the performane of the indexes and the performane of the expressed queries, we an say thatthe frame-work desribed does not meet REQ3. Queries like aggregation ould improve in performaneif the RDBMS heked the dependenies of the funtion before exeution, while others like join ouldnot easily be improved in performane.

47

48

Chapter 5ConlusionConluding on the work performed and disoveries made in this projet we �rst list the ontributionsof the projet. Following this, we disuss how the goals were met and requirements ful�lled. The testresults of Chapter 4 are summarized and related to the goals and requirements. Finally we disusswhat future work is relevant with regards to our task.The ontributions of this projet in relation to the �eld of temporal databases are as follows.� We suggest a way of reduing the omplexity of temporal queries with as muh as 95% omparedto the existing SQL queries. On average the suggested method saves roughly two thirds of thequery measured in lines of ode.� A hierarhy of objet types omplying with aepted researh results from over 20 years ofresearh ativities in temporal databases are designed. The objet hierarhy is easily extendibleto enompass onepts suh as ustom alendars, indeterminay, and user de�ned granularitiesand time domains, whih have so far been limited to researh database prototypes.� Theoretially desribed indexes are adapted to the new objet types, implemented and testedas an extension to a ommerial ORDBMS platform.� The projet studies Orale's artridge tehnology in relation to the implementation of valid timetemporal data.Together all ontributions serve as a demonstration of a framework for adding omplex temporalfuntionality to an existing ORDBMS by enapsulating it in the database using existing extensibilityfeatures of the ORDBMS.GOAL1 was to examine the possibilities of easing the task of managing now-relative valid-time datain ommerial ORDBMSs. It was shown that it is possible to redue the number of lines of odeneessary to express a temporal query by a fator three. This ful�lls REQ2 whih onerns simpleode. The objetive is related to REQ4 and REQ5 in the fat that the database features needed forpursuing our goal of reduing ode omplexity via new objets, in fat is met by major ORDBMSplatforms. However these features are still not mature enough for also supporting eÆient use of thetemporal data types in queries.GOAL2 was to provide a framework for eÆient exeution of temporal statements. It was shown thatit is not possible to ahieve high performane of queries based on the temporal framework in todaysORDBMS platforms. Requirement REQ1 that deals with use of only existing tehnology, an thusnot be ful�lled along with REQ3. The performane tests indiate that the enhaned queries exeuteseveral times slower than the original ounterparts.49

Overall we onlude that while it is possible to redue the omplexity of temporal ode, the relatedperformane degradation is not aeptable for most appliations. With little e�ort from the RDBMSvendors, queries like aggregation ould be made faster, while others, like join, need a larger amountof work.We think that the onept of a period might be too simple to justify being modeled as an objet,and believe that more omplex objets, suh as temporal ontainers, are more suitable. The temporalontainers have several bene�ts, among others they allow table operator like funtionality, and allowfor more objet oriented shema design.Future WorkIn this rapport we have desribed some of the hallenges of working with temporal data in ORDBMSs,but before it is possible for ompanies to use this tehnology a number of tasks have to be done.We have reated three indexes, all based on spae-�lling urves. These are just one type of temporalindexes, and it might prove useful to explore other index types, e.g., the R-Tree ontained in thespatial artridge [Coo99℄.The user-de�ned objets desribed in Chapter 3 is designed and implemented to support multiplealendars. The alendar system has not been implemented, but we feel that the added omplexity ofdealing with user de�ned alendars might justify the added overhead from the temporal artridge.Several researhers, within both the temporal and spatial researh ommunity, have worked withindeterminate data. The user-de�ned objets de�ned here, would be able to enapsulate this indeter-minay, thus making it almost transparent to the user.The urrent implementation of the temporal artridge is done ompletely in PL/SQL, whih is onlyone of the languages supported by Orale. Beause some of the methods are proessor intensive weexpet that they are faster when implemented in C or Java.

50

Appendix ASemantisThis setion introdues the semantis for the temporal framework applied in the temporal artridgedeveloped. The appendix has the following struture: First it introdues the general semantis ofgranularities, operations on basi temporal data types, and the new artridge objet types themselves. Then a more detailed semantis of the operators on the objet types are given.A.1 General SemantisA point in time an be seen as a point on a ontinuous time line [DELS98℄, beginning at the Big Bang[Wal92℄ and ending at the end of the universe. However, sine databases store disrete values, weadopt a disrete representation of time. This disrete representation of time is based on units alledinstants and are related with the matter of granularity, alendars and indeterminay as explained inthe following.Temporal data types suh as instants are assoiated with a granularity whih spei�es to what preisionthe information an be interpreted. A granule is a subset of the time domain and the granularity anbe de�ned as a mapping G from the set of integers N to granules, suh that the granules inside thegranularity are non-overlapping and totally ordered [DELS98℄.A relationship exists between granularities, in the fat that the granules of a given granularity an beaggregated into new granules of a oarser granularity. Similarly a granularity may be �ner than another. If a granularity is oarser or �ner than an other granularity, we say that the two granularitiesare omparable. The �ner-than and oarser-than relationships have been desribed as follows.If G and H are two omparable granularities we an say that� H is oarser than G (GEH)� G is �ner than H (GDH)if for eah granule h 2 H there exists a set of granules S � G suhthat h = Sg2S gAn example of these relationships inlude the fats that a month is �ner than a year (month E year)and that an hour is oarser than a minute (hour D minute), whereas a week is neither oarser nor �nerthan a month. The reason for this is that a month is not omposed of an integer number of weeks.Granularities are given with respet to alendar. We leave the treatment of alendars to others([SS94℄) exept for the brief introdution in this paragraph. The above mentioned granularities are,51

for example, those of the Gregorian alendar. A alendar is thus a partitioning of the underlyingtime line into granules [DS94℄. It provides a mapping between granules and harater strings andfuntionality for handling suh granularities.A.2 Data TypesAs outlined in Setion 3.1.1 seven objet types are de�ned for the system. Shematially the datatypes are ordered in a hierarhy as previously shown in Figure 3.1 on page 25. Semantis for the sevenobjet types are listed in the following paragraphs.A.2.1 InstantA time point is the atual moment an event ours and is modeled in the disrete framework by aninstant. Instants are either determinate or indeterminate. Indeterminate instants store un-preise or\do-not-know-when" information, whereas determinate instants store preisely known information.All instants are omposed of a sequene of granules, whih is alled the support. The granules in thesupport are the granules g in granularity G during whih the time point of the given event may exist.If the lower granule of this support is equal to the upper granule (i.e. the support onsists of exatlyone granule) it is a determinate instant, otherwise indeterminate.In the following we use the notation g = lG � uG for an instant g in granularity G. lG and uH arethe �rst and last granule of the support respetively. We thus have thatlG � uG = fg 2 G j l � g � ugIn the following, instants are referred to by the symbol \ins". An indeterminate instant a and andeterminate instant b is illustrated in Figure A.1 below.
...

ba

1g g g2 3 gnFigure A.1: Indeterminate Instants a and b in Granularity GIn the following instants (Ins) are determinate and ontains the following:� Granule index i 2 N� Granularity G 2 G al , where G al is the set of granularities in alendar al.Instants (and other data types) are written with a subsript denoting their granularity, e.g. 2000yearsor 2000-15-03days. The following are examples of determinate instants.2000-01-01days The date 1 January year 2000.1976-10-26 09:20:00seonds The 26 Otober 1976 at 9:20am.1900years The year 1900.A.2.2 IntervalIntervals represent unanhored periods of time. If assoiated with a the valid-time of a fat, intervalsontain only information about the length of time the fat was valid, but no information about whenit was. An interval an be both forward and bakward pointing.52

Intervals are muh like instants, and onsists of a granule ount and a granularity. We de�ne intervalsas a signed number of granules in some granularity G.The determinate intervals (Inv) are referred to by the symbol \inv" in our semantis and onsists of:� Granule ount i 2 N� Granularity G 2 G al , where G al is the granularities in alendar al.The following are examples of determinate intervals.1weeks One week.7days 7 days forward from some instant.-8hours 8 hours bakward from some instant.A.2.3 Relative InstantA relative instants of granularity G onsists of an interval and an instant both of granularity G.A relative instant may be of a speial type, e.g., now, whih means that the instant is not bound to a timevalue until it is used.Relative instants (Ri) ontain:� ins: Instant (i; G) 2 Ins� inv: Interval (i; G) 2 InvThe following are examples of relative instants.nowdays - 1days Yesterday.nowdays + 01-00days Same day next month.2000-01-01days - 7days 1999-12-25days.A.2.4 PeriodWe de�ne a period per of granularity G to be a ontiguous subset of the time domain between two instants i1and i2 represented by granules g1 and g2 both belonging to G. I.e. a period is omposed of the set of granulesbetween g1 and g2, given that g1 � g2. The granules i1 and i2 are represented by two relative instants.Conretely periods (Per) ontain:� ri� Start relative instant (ins; inv) 2 Ri� ri+ End relative instant (ins; inv) 2 RiThe following are examples of periods.[2000-01-01days, 2001-01-01days℄ The time between 2000-01-01 and 2001-01-01.[1988-01-01days, nowdays- 01-00-00days℄ The time from 1988-01-01 to one year ago.[1976-10-26days, nowdays℄ The time from 1976-10-26 until now.[nowweeks- 1weeks, nowweeks℄ The previous week.A.2.5 Instant ContainerThe instant ontainer data type is a multi set, IC, ontaining n instants fins1; ins2:::insng.53

A.2.6 Interval ContainerInterval ontainers, IV C, ontain n intervals finv1; inv2:::invng.A.2.7 Period ContainerFinally period ontainers, PC ontain n periods fper1; per2:::perng.A.3 Basi Operations on Temporal Data TypesFour semantis are possible for operations on temporal data of non-equal granularities and in all ases it maybe neessary to onvert between granularities. In the present semanti spei�ation we leave it as an option touse any of the four semantis whih are desribed shortly. For onverting between granularities two operationsare suggested [DELS98℄ : sale and ast. The two di�er in the fat that sale may return indeterminate data,whereas ast always returns determinate data. The sale and ast operators are de�ned as follows:sale(g;H) The sale operator takes as input an instant g = lG � uG in granularity G and another granularityH. It returns an instant h = lH � uH in granularity H suh that lG � uG � lH � uH . If no suhinstant exist an error is returned.ast(g;H) The ast operator is the determinate version of sale and is parameterized with an instant g =lG � uG in granularity G and a granularity H. Cast returns an instant h = lH � uH in H wherelH 2 min(sale(lG; H)) and uH 2 min(sale(uG; H)). h is thus determinate if input g is determinate.The min funtion returns the smallest granule of the (possibly indeterminate) interval given.Examples of the sale and ast funtions for instants aresale(2000years, months) 2000� 01months � 2000� 12monthsast(2000years, months) 2000� 01monthssale(ast(2000days, months)) 2000� 01monthsSimilar semantis an be given for saling and asting intervals, where an unanhored interval an be saledto the indeterminate interval in a oarser granularity. Examples inludesale(1days, years) 0years � 1yearsast(1days, months) 0monthsGiven two operands o1 and o2 from the set fIns[Invg , a binary operator/prediate � 2 f>;<;=;+;�;�g,and two granularities F and C that are �ner respetively minimally oarser than G, we an express foursemantis for operators:Coarser semantis o1 � o28><>:sale(o1; Go2):i� o2:i if Go1 EGo2o1:i� sale(o2; Go1):i if Go1 DGo2sale(o1; C):i� sale(o2; C):i otherwiseFiner semantis o1 � o28><>:o2:i� sale(o2; Go1):i if Go1 EGo2sale(o1; Go2):i� o2:i if Go1 DGo2sale(o1; F):i� sale(o2; F):i otherwiseRight operand semantis o1 � o2 = sale(o1; Go2):i� o2:iLeft operand semantis o1 � o2 = o1:i� sale(o2; Go1):i54

In the ase of oarser semantis we sale the operand with the �nest granularity to that of the other. Ifthe granularities are not diretly omparable we sale to a granularity that is minimally oarser than bothoperand-granularities (e.g. weeks and months will be saled to year).In the ase of �ner semantis the opposite is the ase. Here we round the oarsest operand down to that ofthe �nest or one that is �ner than both.Right (left) operand semantis sales the left (right) operand to that of the right (left) one.Construting and Converting the Data TypesWhen a funtion returns a result, the data type is onstruted using the appropriate onstrutor operator.For our purpose of speifying a semantis it is suÆient to use a simple notation for suh onstrutors. Thenotation is a tuple ontaining the elements of the data type in question. We add a subsript for eah tuplefor readability. The notation an be illustrated as follows.Data type Notationinstant (i; G)insinterval (i; G)invrelative instant (ins; inv)riperiod (ri; ri)perinstant ontainer (ins1; ins2; : : : ; insn)iinterval ontainer (inv1; inv2; : : : ; invn)ivperiod ontainer (per1; per2; : : : ; pern)pRoutines for onverting between data types are spei�ed with the pre�x \to ", e.g. ri:to ins(), whih reatesan instant from a relative instant.A.4 Operations of Temporal TypesThis setion ontains a desription of all operations available on the seven datatypes introdued above.Notation is based on that mentioned in the previous setion, suh that for example \ins > per:ri+" wouldmean ins ompared to the end instant of per using either of the omparison semantis.A.4.1 InstantAn instant onsists of the following operators.We assume that ri�; ri+; ri 2 Ri; G 2 G al ; ins 2 Ins, and inv 2 InvSyntax Ret Semantisins:Granularity() gran ins:Gins1:Smaller(ins2) bool ins1 < ins2ins:Smaller(per) bool ins < per:ri�ins1:Greater(ins2) bool ins1 > ins2ins:Greater(per) bool ins > per:ri+ins1:Equal(ins2) bool ins1 = ins2ins1:T otalyEqual(ins1) bool ins1 = ins2 ^ ins1:G = ins2:Gins:Add(inv) ins ins+ invins:Add(per) ins ins+ per:Duration()ins:Sub(inv) ins ins� invins:Sub(per) ins ins� per:Duration()ins:Cast(G) ins ast(ins; G)ri:to ins() ins (ri:ins:Add(ri:inv); ri:ins:G)ins55

A.4.2 IntervalAn interval has the following operators.We assume that G 2 G al ; inv 2 Inv; and i 2 NSyntax Ret Semantisinv1:Granularity() gran inv1:�inv1:Smaller(inv2) bool inv1 < inv2inv:Smaller(per) bool inv < per:Duration()inv1:Greater(inv2) bool inv1 > inv2inv1:Equal(inv2) bool inv1 = inv2inv1:T otalyEqual(inv2) bool inv1 = inv2 ^ inv1:� = inv2:�inv:Neg() inv �inv:iinv1:Abs() inv (inv1 inv1:i > 0inv1:Neg() Otherwise:inv1:Sub(inv2) inv inv1 � inv2inv:Sub(per) inv inv � per:Duration()inv1:Add(inv2) inv inv1 + inv2inv:Add(per) inv inv + per:Duration()inv1:Div(inv2) inv inv1inv2inv:Div(per) inv invper:Duration()inv:Cast(G) inv ast(inv; G)A.4.3 Relative InstantAssuming G 2 G al ; inv 2 Inv; ri�; ri+; ri 2 Ri; ins 2 Ins; and per 2 Per we speify the operators ofrelative instants below.Syntax Ret Semantisri:Granularity() gran ri:ins:Granularity()ri1:Smaller(ri2) bool ri1:to ins():Smaller(ri2:to ins())ri:Smaller(ins) bool ri:to ins():Smaller(ins)ri:Smaller(per) bool ri:to ins():Smaller(per:ri�)ri1:Greater(ri2) bool ri1:to ins():Greater(ri2:to ins())ri:Greater(ins) bool ri:to ins():Greater(ins)ri:Greater(per) bool ri:to ins():Greater(per:ri+)ri1:Equal(ri2) bool ri1:to ins():Equal(ri2:to ins())ri:Equal(ins) bool ri:to ins():Equal(ins)ri1:T otalEqual(ri2) bool ri1:to ins():T otalEqual(ri2:to ins()) ^ ri1:inv(TotalEqual(ri2:inv)ri:Add(inv) ins (ins; ri:inv:Add(inv))riri:Sub(inv) ins (ins; ri:inv:Sub(inv))riri:Add(per) ins (ins; ri:inv:Add(per:Duration())riri:Sub(per) ins (ins; ri:inv:Sub(per:Duration())riri:to ins() ins (ins if ri is of type normal(urrent system time)ins if ri is of type nowri:Cast(G) ins (ins:Cast(G); inv:Cast(G))riA.4.4 PeriodThe operators of the period data type is as follows:We assume that G 2 G al ; ins 2 Ins; inv 2 Inv; ri�; ri+; ri 2 Ri; and per 2 Per56

Syntax Ret Semantisper:Granularity() gran per:ri�:Gper1:T otalEqual(per2) bool per1:ri�:T otalEqual(per2:ri�) ^ per1:ri+:T otalEqual(per2:ri+)per:Add(inv) per (ri�; ri+:Add(inv))perper1:Add(per2) per per1:Add(per2:Duration())per:Sub(inv) per (ri�; ri+:Sub(inv))perper1:Sub(per2) per per1:Sub(per2:Duration())per:Move(inv) per (ri�:Add(inv); ri+:Add(inv))perper:Move(per) per (ri�:Add(per); ri+:Add(per))perper:Duration() inv per:ri+:Sub(per:ri�)per:Smaller(inv) bool per:Duration():Smaller(inv)per:Greater(inv) bool per:Duration():Greater(inv)per:Equal(inv) bool per:Duration():Equal(inv)per1:Equal(per2) bool per1:ri+:Equals(per2:ri+) ^ per1:ri�:Equals(per2:ri�)per1:Interset(per2) per (max(per1:ri�; per2:ri�); min(per1:ri+; per2:ri+))perper1:Contains(per2) bool per2:ri�:Greater(per1:ri�) ^ per2:ri+:Smaller(per1:ri+)per:Contains(ins) bool per:ri�:Smaller(ins) ^ per2:ri+:Greater(ins)per:Contains(ri) bool per:ri�:Smaller(ri:to ins()) ^ per2:ri+:Greater(ri:to ins())per1:RightOverlaps(per2) bool per1:ri+:Greater(per2:ri+) _ per1:ri�:Smaller(per2:ri+)per1:LeftOverlaps(per2) bool per1:ri+:Greater(per2:ri�) _ per1:ri�:Smaller(per2:ri�)per1:StartsInside(per2) bool per1:ri�:Greater(per2:ri�) _ per1:ri�:Smaller(per2:ri+)per1:EndsInside(per2) bool per1:ri+:Greater(per2:ri�) _ per1:ri+:Smaller(per2:ri+)per1:Overlaps(per2) bool per1:ri+:Greater(per2:ri�) _ per1:ri�:Smaller(per2:ri+)per:Overlaps(ins) bool per:ri�:Smaller(ins) ^ per2:ri+:Greater(ins)per:Overlaps(ri) bool per:ri�:Smaller(ri:to ins()) ^ per2:ri+:Grater(ri:to ins())per1:Meets(per2) bool per1:ri�:Equal(per2:ri+) _ per1:ri+:Equal(per2:ri�)per:Meets(ins) bool per:ri�:Equal(ins) _ per:ri+:Equal(ins)per:Meets(ri) bool per:ri�:Equal(ri:to ins()) _ per:ri+:Equal(ri:to ins())per1:P reedes(per2) bool per1:ri+:Smaller(per2:ri�)per:Preedes(ins) bool per1:ri+:Smaller(ins)per:Preedes(ri) df bool per1:ri+:Smaller(ri:to ins())per1:Suedes(per2) bool per1:ri�:Greater(per2:ri+)per:Suedes(ins) bool per1:ri�:Greater(ins)per:Suedes(ri) bool per1:ri�:Greater(ri:to ins())per:Cast(G) per (per1:ri�:Cast(G); per1:ri+:Cast(G)perA.4.5 Instant ContainerThe semantis of the available operators on instant ontainers are listed below. First operators whih are alsofound on the instant data type is listed. Following, set operators appliable to instant ontainers are listed.G 2 G al , ins 2 Ins, inv 2 Inv, ri�; ri+; ri 2 Ri, per 2 Per, n 2 N

57

Instant Container SemantisSyntax Ret SemantisIC:Granularity() gran 8<:ins:Granularity()where ins 2 PC if granularity is homoge-neous in the ontainererror otherwiseIC1:Smaller(IC2) IC fins0 j IC:Contains(ins0) ^ ins0:Smaller(IC:Smallest())gIC:Smaller(ins) IC fins0 j IC:Contains(ins0) ^ ins0:Smaller(ins)gIC:Smaller(ri) IC fins0 j IC:Contains(ins0) ^ ins0:Smaller(to ins(ri))gIC:Smaller(per) IC fins0 j IC:Contains(ins0) ^ ins0:Smaller(per:ri�)gIC1:Greater(IC2) IC fins0 j IC:Contains(ins0) ^ ins0:Greater(IC:Greatest())gIC:Greater(ins) IC fins0 j IC:Contains(ins0) ^ ins0:Greater(ins)gIC:Greater(ri) IC fins0 j IC:Contains(ins0) ^ ins0:Greater(to ins(ri))gIC:Greater(per) IC fins0 j IC:Contains(ins0) ^ ins0:Greater(per:ri+)gIC1:Equal(IC2) IC fins0 j IC1:Contains(ins0) ^ IC2:Contains(ins0)gIC:Equal(ins) IC fins0 j IC1:Contains(ins0) ^ ins0:Equal(ins)gIC:Equal(ri) IC fins0 j IC1:Contains(ins0) ^ ins0:Equal(to ins(ri))gIC1:T otalEqual(IC2) bool 8ins0(ins0 2 IC2 ^ IC1:Contains(ins0)) ^8ins(ins 2 IC1 ^ IC2:Contains(ins))IC:Add(ins) IC (ins1:Add(ins); ins2:Add(ins); : : : ; insn:Add(ins))ICIC:Add(per) IC (ins1:Add(per); ins2:Add(per); : : : ; insn:Add(per))ICIC:Sub(ins) IC (ins1:Sub(ins); ins2:Sub(ins); : : : ; insn:Sub(ins))ICIC:Sub(inv) IC (ins1:Sub(inv); ins2:Sub(inv); : : : ; insn:Sub(inv))ICIC:Sub(per) IC (ins1:Sub(per); ins2:Sub(per); : : : ; insn:Sub(per))ICIC1:Interset(IC2) IC fins j IC1:Contains(ins) ^ IC2:Contains(ins)gIC1:Interset(ins) IC fins j IC1:Contains(ins) ^ IC2:Contains(ins)gIC1:Interset(ri) IC fins j IC1:Contains(ins) ^ IC2:Contains(ins)gIC1:Interset(per) IC fins j IC1:Contains(ins) ^ IC2:Contains(ins)gIC1:Contains(IC2) bool 8ins0(IC2:Contains(ins0) ^ IC1:Contains(ins0))IC:Contains:(ins) bool 9ins0(IC:Contains(ins0) ^ ins:Equal(ins0))IC:Contains(ri) bool 9ins0(IC:Contains(ins0) ^ to ins(ri):Equal(ins0))IC:Contains(per) bool 9ins0(IC:Contains(ins0) ^ per:Contains(ins0))IC1:Overlaps(IC2) bool IC1:Contains(IC2)IC:Overlaps(ins) bool IC1:Contains(ins)IC:Overlaps(ri) bool IC1:Contains(ri)IC:Overlaps(per) bool IC1:Contains(per)IC:Greatest() ins fins j ins 2 IC ^ :9ins0(IC:Contains(ins0) ^ ins0:Smaller(ins))IC:Smallest() ins fins j ins 2 IC ^ :9ins0(IC:Contains(ins0) ^ ins0:Greater(ins))IC:Count() num nIC:Dupliates() bool 9ins9ins0(IC:Contains(ins) ^ IC:Contains(ins0) ^ ins:Equal(ins0))

58

Instant Container SemantisIC:Coalese() IC Returns the oalesed version of IC, i.e. where du-pliate instanes have been ombined into just oneinstant.IC:Cast(G) IC (ins1:Cast(G); ins2:Cast(G); : : : ; insn:Cast(G))ICIC:AddInstant(ins) IC fins0 j IC:Contains(ins0) _ ins0:Equals(ins)gIC:AddInstant(ri) IC fins0 j IC:Contains(ins0) _ ins0:Equals(to ins(ri))gIC:RemoveInstant(ins) IC fins0 j IC:Contains(ins0) ^ :ins0:Equals(ins)gIC:RemoveInstant(ri) IC fins0 j IC:Contains(ins0) ^ :ins0:Equals(to ins(ri))g

59

A.4.6 Interval ContainerThe semantis of various operations on interval ontainers is given below. As in the ase of instant ontainersabove, we �rst speify operations inherited from intervals, then set and other operations.Given G 2 G al ; inv 2 Inv; per 2 Per; and n 2 N we have the following operations on interval ontainers.

60

Interval Container SemantisSyntax Ret SemantisIV C:Granularity() gran 8<:inv:Granularity()where inv 2 IV C if granularity is homoge-neous in the ontainererror otherwiseIV C1:Smaller(IV C2) IVC finv0 j IV C:Contains(inv0) ^ ins0:Smaller(IV C:Smallest())gIV C:Smaller(inv) IVC finv0 j IV C:Contains(inv0) ^ ins0:Smaller(inv))gIV C:Smaller(per) IVC finv0 j IV C:Contains(inv0) ^ ins0:Smaller(per:Duration()))gIV C1:Greater(IV C2) IVC finv0 j IV C:Contains(inv0) ^ ins0:Greater(IV C:Greatest())gIV C:Greater(inv) IVC finv0 j IV C:Contains(inv0) ^ ins0:Greater(inv))gIV C:Greater(per) IVC finv0 j IV C:Contains(inv0) ^ ins0:Greater(per:Duration()))gIV C1:Equal(IV C2) IVC finv0 j IV C1:Contains(inv0) ^ IV C2:Contains(inv0)gIV C:Equal(inv) IVC finv0 j IV C1:Contains(inv0) ^ ins0:Equal(inv)gIV C:Equal(per) IVC finv0 j IV C1:Contains(inv0) ^ ins0:Equal(per:Duration())gIV C1:T otalEqual(IV C2) bool 8inv0(IV C2:Contains(inv0)) IV C1:Contains(inv0)) ^8inv(IV C1:Contains(inv)) IV C2:Contains(inv))IV C:Sub(inv) IVC finv0 j 9inv00(IV C:Contains(inv00) ^ inv00:Sub(inv):Equals(inv0))gIV C:Sub(per) IVC finv0 j 9inv00(IV C:Contains(inv00) ^ inv00:Sub(per):Equals(inv0))gIV C:Add(inv) IVC finv0 j 9inv00(IV C:Contains(inv00) ^ inv00:Add(inv):Equals(inv0))gIV C:Add(per) IVC finv0 j 9inv00(IV C:Contains(inv00) ^ inv00:Add(per):Equals(inv0))gIV C:Div(inv) IVC finv0 j 9inv00(IV C:Contains(inv00) ^ inv00:Div(inv):Equals(inv0))gIV C:Div(per) IVC finv0 j 9inv00(IV C:Contains(inv00) ^ inv00:Div(per):Equals(inv0))gIV C:Neg() IVC finv0 j 9inv(IV C:Contains(inv) ^ inv0:Equals(inv:Neg()))gIV C:Abs() IVC finv0 j 9inv(IV C:Contains(inv) ^ inv0:Equals(inv:Abs()))gIV C2:Interset(IV C2) IVC finv0 j IV C1:Contains(inv0) ^ IV C2:Contains(inv0)gIV C:Interset(inv) IVC IV C:Equal(inv)IV C:Interset(per) IVC IV C:Equal(per)IV C1:Contains(IV C2) bool 8inv0(IV C1:Contains(inv0) ^ IV C2:Contains(inv0))IV C:Contains(inv) bool 9inv0(IV C:Contains(inv0) ^ inv:Equal(inv0))IV C:Contains(per) bool 9inv0(IV C:Contains(inv0) ^ per:Duration():Equal(inv0))IV C1:Overlaps(IV C2) bool IV C1:Contains(IV C2)IV C:Overlaps(inv) bool IV C1:Contains(inv)IV C:Overlaps(per) bool IV C1:Contains(per)IV C:Greatest() inv finv j IV C:Contains(inv) ^ :9inv0(IV C:Contains(inv0) ^ inv0:Greater(inv))gIV C:Smallest() inv finv j IV C:Contains(inv) ^ :9inv0(IV C:Contains(inv0) ^ inv0:Smaller(inv))gIV C:Count() num nIV C:Dupliates() bool 9inv; inv0(IV C:Contains(inv) ^ IV C:Contains(inv0) ^ inv:Equals(inv0))

61

Interval Container SemantisIC:Coalese() IC Returns the oalesed version of IVC, i.e. wheredupliate instanes have been ombined into justone interval of the given size and granularity.IV C:Cast(G) IVC (inv1:Cast(G); inv2:Cast(G); : : : ; invn:Cast(G))IV CIV C:AddInterval(inv) IVC finv0 j IV C:Contains(inv0) _ inv0:Equals(inv)gIV C:AddInterval(per) IVC finv0 j IV C:Contains(inv0) _ inv0:Equals(per:Duration())gIV C:RemoveInterval(inv) IVC finv0 j IV C:Contains(inv0) ^ :inv0:Equals(inv)gIV C:RemoveInterval(per) IVC finv0 j IV C:Contains(inv0) ^ :inv0:Equals(per:Duration())g

62

A.4.7 Period ContainerThe semantis of a period ontainer is listed below, one again with period operations �rst, then set operations.Given G 2 G al ; ins 2 Ins; inv 2 Inv; ri�; ri+; ri 2 Ri; per 2 Per; and n 2 N we speify the followingoperations.

63

Period Container SemantisSyntax Ret SemantisPC:Granularity() gran 8<:per:Granularity()where per 2 PC if granularity is homoge-neous in the ontainererror otherwisePC1:Smaller(PC2) PC fper0 j PC1:Contains(per0) ^ per0:Duration():Smaller(PC2:Smallest():Duration())gPC:Smaller(inv) PC fper0 j PC:Contains(per0) ^ per0:Duration():Smaller(inv)gPC1:Greater(PC2) PC fper0 j PC1:Contains(per0) ^ per0:Duration():Greater():(PC2:Greatest():Duration())gPC:Greater(inv) PC fper0 j PC:Contains(per0) ^ per0:Duration():Greater(inv)gPC1:Equal(PC2) PC fper0 j PC1:Contains(per0) ^ PC2:Contains(per0)gPC:Equal(inv) PC fper0 j PC1:Contains(per0) ^ per0:Duration():Equal(inv)gPC:Equal(per) PC fper0 j PC1:Contains(per0) ^ per0:Equal(per)gPC1:T otalEqual(PC2) bool 8per0(PC2:Contains(per0) ^9per00(PC1:Contains(per00) ^per00:Equals(per0))) ^ 8 per(PC1:Contains(per) ^9per000(PC1:Contains(per000) ^ per000:Equals(per))PC:Sub(inv) PC fper0 j 9per00(PC:Contains(per00) ^ per00:Sub(inv):Equals(per0)gPC:Sub(per) PC fper0 j 9per00(PC:Contains(per00) ^ per00:Sub(per):Equals(per0)gPC:Add(inv) PC fper0 j 9per00(PC:Contains(per00) ^ per00:Add(inv):Equals(per0)gPC:Add(per) PC fper0 j 9per00(PC:Contains(per00) ^ per00:Add(per):Equals(per0)gPC:Durations() IVC finv0 j 9per(PC:Contains(per)^ per:Duration:Equals(inv0))gPC:Move(inv) PC fper0 j 9per(PC:Contains(per)^ per:Move(inv):Equals(per0))gPC:Move(per) PC fper0 j 9per(PC:Contains(per)^ per:Move(per):Equals(per0))gPC1:Overlaps(PC2) bool 8per8per0(PC1:Contains(per) ^ PC2:Contains(per0) ^ per:Overlaps(per0))PC:Overlaps(per) bool 9per0(PC1:Contains(per0) ^ per0:Overlaps(per))PC:Overlaps(ins) bool 9per0(PC1:Contains(per0) ^ per0:Overlaps(ins))PC:Overlaps(ri) bool 9per0(PC1:Contains(per0) ^ per0:Overlaps(ri))PC1:Meets(PC2) bool 8per8per0(PC1:Contains(per) ^ PC2:Contains(per0) ^ per:Meets(per0))PC:Meets(per) bool 9per0(PC1:Contains(per0) ^ per0:Meets(per))PC:Meets(ins) bool 9per0(PC1:Contains(per0) ^ per0:Meets(ins))PC:Meets(ri) bool 9per0(PC1:Contains(per0) ^ per0:Meets(ri))PC1:P reedes(PC2) bool 8per8per0(PC1:Contains(per) ^ PC2:Contains(per0) ^ per:Preedes(per0))PC:Preedes(per) bool 9per0(PC1:Contains(per0) ^ per0:P reedes(per))PC:Preedes(ins) bool 9per0(PC1:Contains(per0) ^ per0:P reedes(ins))PC:Preedes(ri) bool 9per0(PC1:Contains(per0) ^ per0:P reedes(ri))PC1:Sueeds(PC2) bool 8per8per0(PC1:Contains(per) ^ PC2:Contains(per0) ^ per:Sueeds(per0))PC:Sueeds(per) bool 9per0(PC1:Contains(per0) ^ per0:Sueeds(per))PC:Sueeds(ins) bool 9per0(PC1:Contains(per0) ^ per0:Sueeds(ins))PC:Sueeds(ri) bool 9per0(PC1:Contains(per0) ^ per0:Sueeds(ri))

64

Period Container SemantisPC:Cast(G) PC (per1:Cast(G); per2:Cast(G); : : : ; pern:Cast(G))PCPC:Remove(inv) PC fper0 j PC:Contains(per0) ^ :per0:Equals(per)gPC:Remove(per) PC fper0 j PC:Contains(per0) ^ :per0:Equals(per)gPC1:Contains(PC2) bool 8per0(PC2:Contains(per0) ^ PC1:Contains(per0))PC:Contains(per) bool 9per0(PC:Contains(per0) ^ per0:Equals(per))PC:Contains(inv) bool 9inv0(PC:Contains(per0) ^ inv0:Duration():Equals(inv))PC2:Interset(PC2) PC fper j PC1:Contains(per) ^ PC2:Contains(per)gPC1:Union(PC2) PC fper j PC1:Contains(per) _ PC2:Contains(per)gPC:Largest() PC fper j PC:Contains(per) ^ :9per0(PC:Contains(per0) ^ per0:Suedes(per))gPC:Smallest() PC fper j PC:Contains(per) ^ :9per0(PC:Contains(per0) ^ per0:P reedes(per))gPC:Count() num nPC:Dupliates() bool 9per9per0(PC:Contains(per) ^ PC:Contains(per0) ^ per:Equals(per0))PC:Coalese() PC Returns PC0 whih is the oalesed version of PC, i.e. all du-pliates have been merged into just one single periodPC:T imeSlie(ins) bool 9per(PC:Contains(per)^ per:Contains(ins))PC:T imeSlie(per) PC fper0 j 9per00(PC:Contains(per00) ^ per00:Overlaps(per)^ per0:Equals(per:Interset(per00)))gPC:Cover() per (PC:Smallest:ri�; PC:Largest():ri+)per65

66

Bibliography[BBM+99℄ M. B�ohlen, L. Bukauskas, R. Marti, R. T. Snodgrass, and C. S. Jensen. Tiger, 1999. Implementa-tion of Tiger an be downloaded from the Tiger web pages at URL: http://www.s.au.dk/ tiger.[BBS98℄ M. B�ohlen, R. Busatto, and C. S.Jensen. Point versus Interval-based Temporal Data Models.Tehnial report, TimeCenter, January 1998.[BJ96℄ M. H. B�ohlen and C. S. Jensen. A Seamless Integration of Time into SQL. Tehnial report, Teh-nial Report R-96{2049, Aalborg University, Department of Computer Siene, Frederik BajersVej 7E, DK{9220 Aalborg �st, Denmark, Deember 1996.[BJ97℄ M. H. B�ohlen and C. . Jensen. Temporal Statement Modi�ers. Available viahttp://www.s.au.dk/researh/DBS/teahing/DAT5E99/tdb2.ps.gz, 1997.[BJSS95℄ M. B�ohlen, C. S. Jensen, A. Steiner, and R. Snodgrass. Implementation of TimeDB an be down-loaded at URL: http://www.iesd.au.dk/general/DBS/tdb/TimeCenter/Software/TimeDB.tar.gz,1995.[BJSS98℄ R. Bliujute, C. S. Jensen, S. Saltenis, and G. Slivinskas. Light-Weight Indexing of General Bitem-poral Data. Tehnial report, TimeCenter, September 1998.[B�oh95℄ M. B�ohlen. Temporal Database System Implementations. ACM SIGMOD Reord, 24(4), Deember1995.[BSS97℄ M. B�ohlen, R. T. Snodgrass, and M. D. Soo. Coalesing in Temporal Databases. Tehnial report,TimeCenter, April 1997.[BSSJ98℄ R. Bliujute, S. Saltenis, G. Slivinskas, and C. S. Jensen. Developing a DataBlade for a New Index.Tehnial report, TimeCenter, September 1998.[Coo99℄ Orale Coorporation. Orale8i Spatial. http://tehnet.orale.om/do.pdf/inter.815/a67295.pdf,February 1999.[Dav00℄ Judith R. Davis. Ibm db2 universal database : Building extensible, salable business solutions.IBM Coorporation, http://www-4.ibm.om/software/data/pubs/papers/db2udb/db2udb.pdf, Feb2000.[dBS96℄ Johen Van den Berken and Bernhard Seeger. Query proessing tehniques for multiversion aessmethods. In T. M. Vijayaraman, Alejandro P. Buhmann, C. Mohan, and Nandlal L. Sarda, editors,VLDB'96, Proeedings of 22th International Conferene on Very Large Data Bases, September 3-6,1996, Mumbai (Bombay), India, pages 168{179. Morgan Kaufmann, 1996.[DELS98℄ C. E. Dyreson, W. S. Evans, H. Lin, and R. T. Snodgrass. EÆiently Supporting TemporalGranularities. Tehnial report, TimeCenter, 1998.[DLM97℄ B. Daniell, J. Leland, and D. Maneval. INFORMIX Universal Server,DataBlade API Programmer's manual, June 1997. Available online fromhttp://www.informix.om/answers/english/dos/912ius/4115.pdf.[DS91℄ C. E. Dyreson and R. T. Snodgrass. Temporal Indeterminay. Tehnial Report TR 91-30,University of Arizona Department of Computer Siene, Deember 1991.[DS94℄ C. E. Dyreson and R. T. Snodgrass. Temporal Granularity and Indeterminay: Two Sides of theSame Coin. Tehnial Report TR 94-06, uazsd, Feb. 1994.[DSJ93℄ C. E. Dyreson, R. T. Snodgrass, and C. S. Jensen. On the Semantis of \Now" in TemporalDatabases. TempIS Tehnial Report 42, University of Arizona Department of Computer Siene,April 1993. 67

[FP97℄ S. Feuerstein and B. Pribyl. Orale PL/SQL programming. O'Reilly & Assoiates, In., seondedition, 1997.[GJ97℄ H. Gregersen and C. S. Jensen. Temporal Entity-Relationship Models - a Survey. Tehnial report,TimeCenter, January 1997.[Gut99℄ R. Gutman. Spae-Filling Curves in Geospatial Appliations. Dr. Dobbs Journal, July 1999.[Je98℄ C. S. Jensen and C. E. Dyreson [eds℄. A Consensus Glossary of Temporal Database Conepts.In Temporal Databases: Researh and Pratie. (the book grow out of a Dagstuhl Seminar, June23-27, 1997), number 1, pages 367{405. Springer, February 1998.[Jen99℄ C. S. Jensen. Temporal Database Management. August 1999. http://www.s.au.dk/~sj/Thesis/.[KS95℄ N. Kline and R.T. Snodgrass. Computing Temporal Aggregates. In Proeedings of the IEEEInternational Conferene on Database Engineering, 1995, Tapei, Taiwan, Marh 1995.[LKC99℄ J. Lee, D. Kim, and C. Chung. Multi-dimensional Seletivity Estimation Using Compressed His-togram Information. In A. Delis, C. Faloutsos, and S. Ghandeharizadeh, editors, SIGMOD 1999,Proeedings ACM SIGMOD International Conferene on Management of Data, June 1-3, 1999,Philadephia, Pennsylvania, USA, pages 205{214. ACM Press, 1999.[LO99℄ D. Lorentz and D. Oertel. Orale8i SQL Referene, release 8.1.5. Orale Coorporation, February1999.[LZ98℄ M. S. Lakshmi and S. Zhou. Seletivity Estimation in Extensible Databases - A Neural NetworkApproah. In A. Gupta, O. Shmueli, and J. Widom, editors, VLDB'98, Proeedings of 24rdInternational Conferene on Very Large Data Bases, August 24-27, 1998, New York City, NewYork, USA, pages 623{627. Morgan Kaufmann, 1998.[MCS88℄ M. V. Mannino, P. Chu, and T. Sager. Statistial Pro�le Estimation in Database Systems. Com-puting Surveys, 20(3):191{221, 1988.[ME00℄ J. Melton and A. Eisenberg. SQL Standardization: The Next Steps. SIGMOD Reord, 29(1),Marh 2000.[Mel96℄ J. Melton. SQL/Temporal. ISO/IEC JTC1/SC 21/WG 3 DBL-MCI-0012, July 1996.[MLI99℄ B. Moon, I. F. V. L�opez, and V. Immanuel. Salable Algorithms for Large Temporal Aggregation.In Proeedings of the 15th International Conferene on Data Engineering, 23-26 Marh 1999,Sydney, Austrialia. IEEE Computer Soiety, 1999.[ND98℄ M. A. Nasimento and M. H. Dunham. Indexing Valid Time Databases Via B+-trees - The MAP21Approah. Tehnial report, TimeCenter, Marh 1998.[PI97℄ Viswanath Poosala and Yannis E. Ioannidis. Seletivity estimation without the attribute valueindependene assumption. In Matthias Jarke, Mihael J. Carey, Klaus R. Dittrih, Frederik H.Lohovsky, Periles Louopoulos, and Manfred A. Jeusfeld, editors, VLDB'97, Proeedings of 23rdInternational Conferene on Very Large Data Bases, August 25-29, 1997, Athens, Greee, pages486{495. Morgan Kaufmann, 1997.[PJ98℄ D. Pfoser and C. S. Jensen. Inremental Join of Time-Oriented Data. Tehnial report, Time-Center, September 1998.[RCG+99℄ D. Raphaely, M. Cyran, J. Gibb, V. Krishnamurthy, M. Krishnaprasad, J. Melnik, and R. UrbanoR. Smith. Appliation Developer's Guide - Fundamentals. Orale Coorporation, release 8.1.5edition, Feburay 1999.[RP92℄ J. F. Roddik and J. D. Patrik. Temporal Semantis in Information Systems { A Survey. Infor-mation Systems, 17(3):249{267, Otober 1992.[RRM99℄ D. Raphaely, J. Rawles, and C. Murray. Orale8i Data Cartridge Developer's guide. OraleCoorporation, release 2 (8.1.6) edition, Deember 1999.[RS87℄ L. Rowe and M. Stonebraker. The postgres papers. Tehnial Report UCB/ERL M86/85, Uni-versity of California, Berkeley, CA, June 1987.[Sam84℄ Hanan Samet. The quadtree and related hierarhial data strutures. Computing Surveys,16(2):187{260, 1984.[SKS97℄ A. Silbershatz, H. F. Korth, and S. Sudarsahn. Database System Conepts. MGraw-Hill, thirdedition, 1997. 68

[SN98℄ J. R. O. Silva and M. A. Nasimento. An Inremental Index for Bitemporal Databases. Tehnialreport, TimeCenter, November 1998.[Sno95℄ R. T. Snodgrass. The TSQL2 Temporal Query Language. Number 0-7923-9614-6. Kluwer AademiPublishers, 1995.[Sno00℄ R. Snodgrass. Developing Time-Oriented Appliations in SQL. Morgan Kaufmann, 2000.[SS94℄ R. T. Snodgrass and M. Soo. Supporting Multiple Calendars in TSQL2: An Overview. ommen-tary, TSQL2 Design Committee, September 1994.[TGJ99℄ K. Thrys�e, B. Gundersen, and T. J�rgensen. Optimizing Algorithms for Temporal Set Di�erene.May 1999.[Thr00℄ K. Thrys�e. Extending the Orale8i ORDBMS for Temporal Data. PostSript available fromhttp://www.s.au.dk/~suaq/extendingOrale.ps, January 2000.[TJS98℄ K. Torp, C. S. Jensen, and R. T. Snodgrass. Stratum Approahes to Temporal DBMS Imple-menations. In Jianhua Shao Barry Eaglestone, Bipin C. Desai, editor, Proeedings of the 1998International Database Engineering and Appliations Symposium, Cardi�, Wales, U.K., July 8-10, 1998, pages 4{13. IEEE Computer Soiety, 1998.[Wal92℄ R. M. Wald. Spae, Time and Gravity: the Theory of the Big Bang and Blak Holes. Universityof Chiago, 2nd edition, 1992.[WJW98℄ Y. Wu, S. Jajodia, and X. S. Wang. Temporal Database Bibliography Update. In TemporalDatabases: Researh and Pratie. (the book grow out of a Dagstuhl Seminar, June 23-27, 1997),pages 338{366. Springer, 1998.[YC91℄ C. Yau and G. S. W. Chat. TempSQL { A Language Interfae to a Temporal Relational Model.Information S. & Teh., pages 44{60, Otober 1991.[YWY99℄ J. Yang, J. Widom, and H. C. Ying. TIP: A Temporal Extension to Informix. Available viahttp://www-db.stanford.edu/pub/papers/yyw-tipdemp.ps. Demonstration desription., Otober1999.

69

