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Chapter 1Introdu
tion
1.1 Formal Veri�
ationFormal veri�
ation methods are a strong tool in the development of high qual-ity produ
ts. The presen
e of bugs in, for example, embedded software is very
ostly and 
an 
ause losses of lives. Software in devi
es, su
h as ABS breaks in
ars or 
ight instruments, has to be as 
lose to error free error free as possible.Formal methods provide a pre
ise notion between systems and their spe
i�
a-tions, so that it 
an be de
ided without ambiguity whether or not a systemmeets its spe
i�
ations.1.1.1 Con
urrent SystemsCon
urrent systems is a 
olle
tion of 
omponents that are exe
uted simultane-ously while intera
ting with ea
h other. Most 
ommonly 
on
urrent systemshave non-deterministi
 behavior, but sometimes also have time or probabilityproperties added. Veri�
ation of the 
orre
t behavior of 
on
urrent systemsis not an easy task to perform. First of all we need to provide a des
riptionof the system and the way it intera
ts, se
ond we must have a spe
i�
ation ofproperties for the system, and a formal 
riterion for 
on
luding 
orre
tness ofthe system. Last we need an algorithm to de
ide 
orre
tness of the system.Veri�
ation is the pro
ess of 
he
king of 
orre
tness. Kristo�ersen suggests in[Kri98℄ a 
lassi�
ation of 
omputer aided veri�
ation te
hniques in two majortrends: Theorem proving and model 
he
king. In theorem proving, the userhimself provides a formal proof of 
orre
tness, whi
h is then 
he
ked by a tool.Model 
he
king is fully automati
, whi
h is why the industry tend to �nd thismethod more appealing. 1



1.1.2 Model Che
kingVeri�
ation of large systems via model 
he
king has be
ome a widely usedte
hnique within the last de
ade. Model 
he
king has been applied to manytypes of systems, ranging from �nite state to real time and probabilisti
 sys-tems. However a major problem arises when applying model 
he
king to evenmoderate sized parallel systems. This problem is known as the state explosionproblem, and arises from the many possible 
ombinations of 
omponent states(in fa
t exponentially many in the number of 
omponents). Model 
he
king of
on
urrent systems has been proven to be PSPACE-
omplete, and is thereforemost likely theoreti
ally intra
table. However a lot of work has been done inthe �eld of atta
king the state explosion problem for pra
ti
al systems, somewith great su

ess. Se
tion 2.2 present some of these te
hniques.
1.2 Probabilisti
 SystemsSome systems 
an be designed so that they are guaranteed to behave 
orre
tlyno matter what happens. In most systems, though, this requirement 
annot be met, as there is always a risk of power failure, hardware failure oreven a failure 
aused by human intera
tion. Examples of su
h systems aretele
ommuni
ation systems, 
omputer networks or distributed systems builton these networks.Due to the fa
t that a system 
an not be guaranteed to work 
orre
tly, we needa way of des
ribing the unreliability of the system. This is espe
ially importantin safety 
riti
al systems, su
h as ABS breaks or 
ight 
ontrol systems.Probabilisti
 transition systems provide a framework that allows us to expressthat a failure 
an only o

ur with a 
ertain probability, and as a tool it 
an beused to verify that the system, with some probability, behaves a

ording to itsspe
i�
ation (i.e. there is only 0,0001% 
han
e that an airplanes 
aps doesn't
ome up).Probabilisti
 systems have been studied in many di�erent forms, and in 
hapter2 we present some of the existing work and the di�erent probabilisti
 models.In this thesis we have 
hosen to work with the so 
alled alternating probabilisti
model, whi
h will be des
ribed later. 2



1.3 The Quotient Te
hniqueThis report fo
uses on the quotient te
hnique, whi
h is a promising te
hniquefor avoiding the state explosion problem. However when applying the quotientte
hnique several other problems arise, su
h as very large formulas.The idea behind the quotient te
hnique is to fa
tor out 
omponents of a parallelsystem, one at a time, and by 
ontinuously applying simpli�
ation heuristi
s.Consider the following model 
he
king problem involving a system with npro
esses in parallel: P1j � � � jPn j= 'We wish to verify that the parallel 
omposition of these systems satis�es 'without having to 
onstru
t the 
omplete state spa
e of P1j � � � jPn. We willavoid this by removing Pi one by one while simultaneously simplifying theformula. So when fa
toring out Pn we will transform the formula ' into thequotient formula '=Pn and applying simpli�
ation heuristi
s, su
h that(P1j � � � jPn) j= ', (P1j � � � jPn�1) j= ('=Pn)s;where s denotes simpli�
ation of the formula.The quotient te
hnique has been studied for several years now, and has beenproven to be su

essful for �nite state systems and real-time systems. Thete
hnique has also been applied to Hierar
hi
al State-event systems.As an example of the quotient te
hnique assume that we want to provenz }| {a:NILja:NILj � � � ja:NIL j= haittwhere j denote parallel 
omposition of CCS.Clearly it seems a waste to examine the entire state spa
e (2n states) to estab-lish this simple property. Using the quotient te
hnique this may be avoided:n�1z }| {a:NILja:NILj � � � ja:NIL j= (haitt)=a:NILQuotient+Simpl. m a:NILja:NILj � � � ja:NIL| {z }n�1 j= ttSo we have avoided examining 2n states, but yet proved that the system sat-is�ed the property.A formal presentation of the quotient te
hnique for �nite state systems is givenin Appendix A. 3



In this thesis we de�ne the quotient te
hnique for probabilisti
 alternatingtransition systems, and implement the te
hnique in ML. Our main goal is toexamine the te
hnique, the formulas and some simpli�
ation rules, in orderto provide a working model 
he
ker using the quotient te
hnique. We willtest this implementation, to verify that it is indeed a promising method foravoiding the state explosion problem.1.4 OutlineThe outline of this report is as follows.In the next 
hapter we present the existing related work, and gives examplesand de�nitions of other probabilisti
 models.Chapter 3 is an introdu
tion to probability theory.In 
hapter 4 we de�ne probabilisti
 alternating transition systems, and givea probabilisti
 pro
ess 
al
ulus. We have 
hosen to be able to express asyn-
hronous 
ommuni
ation in our transition systems, a not so straight forwardappli
ation in the alternating model. The motivation for and 
onsequen
es ofthis 
hoi
e are also des
ribed in this 
hapter. Finally we give a probabilisti
modal logi
 PML, that allows us to express properties of su
h systems.Chapter 5 introdu
es the quotient te
hnique to the alternating probabilisti
model. We de�ne the quotient rules, and show that our initial logi
 needs to beexpanded with a more general modality in order to support the te
hnique. Wethen give proof of 
orre
tness of the quotient rules and give a small exampleof the te
hnique.Chapter 6 is dedi
ated to the dis
ussion of the general modality.In 
hapter 7 we de�ne a set of simpli�
ation rules and prove that they aresound with respe
t to the semanti
s.In Chapter 8 our model 
he
ker is presented and in 
hapter 9 we present anexample and run tests on the implemented 
he
ker.Chapter 10 ends this report with summary, 
on
lusions and ideas for furtherresear
h in the area of probabilisti
 transition systems and the quotient te
h-nique.Throughout the report we have 
hosen to in
lude extra
ts from our implemen-tation and 
orresponding explanations and 
omments to this.
4



Chapter 2Related WorkIn this 
hapter we take a look at some of the existing work in the �eld ofprobabilisti
 systems and model 
he
king in general.2.1 Probabilisti
 ModelsWe present the work in the �eld of probabilisti
 pro
esses and transition sys-tems. In [vGSST90℄ van Glabbeek, Smolka, Ste�en and Tofts 
lassify proba-bilisti
 pro
esses in three types: Rea
tive, generative and strati�ed models.� Rea
tive ModelThe rea
tive model 
onsists of states and labelled transitions asso
iatedwith probabilities. For ea
h state, the sum of probabilities on outgoingtransitions must be 1 for transitions with the same label.� Generative ModelThis model 
onsists also of states and labelled transitions with probabil-ities, but with the sum of probabilities of all outgoing transitions equalto 1.� Strati�ed ModelStrati�ed models 
onsist of states and two kinds of transitions, proba-bilisti
 and a
tion based. In the 
ase of probabilisti
 transitions, the sumof probabilities must be 1, and for the a
tions transitions the restri
tionis that there must be only one outgoing a
tion transition from a state.In the following we will present the results on these three models, and give aformal de�nition of the �rst two. 5



Though van Glabbeek et al. only distinguish between the three models men-tioned, this shall not be seen as the only probabilisti
 models available. Thisreport fo
uses on the alternating model whi
h, to our knowledge, was �rststudied by Hansson and Jonsson in [HJ89℄ and whi
h is derived from 
on
ur-rent Markov 
hains. Later in this report we de�ne probabilisti
 alternatingtransition systems, and give a full de�nition of a probabilisti
 
al
ulus for thealternating model.2.1.1 The Rea
tive ModelIn [LS91℄, Larsen and Skou de�ne a probabilisti
 bisimulation based on therea
tive model, and in the same referen
e, the authors provide a probabilisti
logi
 based on HML, whi
h they 
all probabilisti
 modal logi
 (PML).In [LS92℄, Larsen and Skou de�ne a rea
tive probabilisti
 transition system asfollows:De�nition 2.1A (rea
tive) probabilisti
 transition system is a stru
ture P = (Pr; A
t; �),where Pr is a set of pro
esses (or states), A
t is the set of a
tions that thepro
esses may perform, and � is a transition probability fun
tion � : Pr �A
t� Pr ! [0; 1℄ su
h that for ea
h P 2 Pr and a 2 A
t:XP 02Pr �(P; a; P 0) = 1 or XP 02Pr �(P; a; P 0) = 0indi
ating the possible next states and their probabilities after P has performedthe a
tion a.In �gure 2.1 is an example of a rea
tive pro
ess.a[13 ℄
[1℄ d[12 ℄d[12 ℄a[23 ℄ b[1℄
Figure 2.1: An example of a rea
tive pro
essIn [LS92℄ the authors develop a syn
hronous 
al
ulus based on the rea
tivemodel. They use a probabilisti
 
hoi
e operator parameterized by a probability,6



to obtain probabilisti
 behavior. They show that when de
omposing a PMLformula, the logi
 PML is not strong enough to express parallel de
omposition,and present an extension to PML, 
alled EPL, whi
h support de
omposition.They further axiomatize the extended logi
 EPL.2.1.2 The Generative ModelThe generative models de�ne 
ontext dependent probability distributions, andthe probabilities have to be 
al
ulated every time an a
tion is re
eived. Thegenerative model has been formally de�ned by Jou and Smolka in [JS90℄ asfollows:De�nition 2.2A (generative) probabilisti
 transition system (PLTS) is a triple hPr;P; �iwhere:� Pr is the set of all pro
esses;� � is the set of all atomi
 a
tions, and 0 is a spe
ial symbol not in �
alled the zero a
tion;� � : (Pr�(�[f0g)�Pr)! [0; 1℄ is a total fun
tion 
alled the probabilisti
transition fun
tion satisfying the following restri
tion: 8P 2 Pr,Xa2�[f0g;Q2Pr �(P; a;Q) = 1An example of the generative model 
an be seen in Figure 2.2

[1℄ d[1℄ e[1℄a[15 ℄ 
[35 ℄b[25 ℄

Figure 2.2: Example of a generative pro
ess
7



2.1.3 The Strati�ed ModelIn the strati�ed model, pure probabilisti
 
hoi
es 
an be made. Glabbeek et al.de�nes in [vGSST90℄ strati�ed operational semanti
s for a probabilisti
 pro
ess
al
ulus (PCCS). The 
al
ulus is separated in two parts, a
tion transitions andprobability transitions, whi
h enables the use of pure probabilisti
 
hoi
es.The two types of transitions are denoted P a�! Q and P p�! Q, where p is theprobability that P 
an behave as Q. The sum of all outgoing probabilisti
transitions from a state is 1, thereby making the transition system sto
hasti
.Glabbeek et al. also provides a bisimulation for the strati�ed model, 
alledstrati�ed bisimulation.An example of the strati�ed model 
an be seen in �gure 2.313
b 
Xa 12 1223

X XFigure 2.3: Example of a strati�ed transition systemIn [vGSST90℄ the authors furthermore form a hierar
hy of the probabilisti
models. They show that the generative model is an abstra
tion of the strati�edmodel, and that the rea
tive model is an abstra
tion of the generative model.2.1.4 Other Probabilisti
 ModelsApart from the rea
tive, generative and strati�ed models, other probabilisti
models have been studied. In [HJ89℄ and [Ves00℄ the authors 
onsider thealternating model, whi
h is also the model used in this report, and thereforeis des
ribed later. Hansson and Jonsson present a CTL like logi
 in [HJ89℄,in order to be able to des
ribe properties like \After a request, there is a 90%probability that the request will be 
arried out in 2 se
onds".The alternating model originates, to our knowledge, from the joint work be-tween Hansson and Jonsson in 1989, whi
h is presented along with the workin [HJ89℄ in Hans Hanssons book [Han94℄.8



2.2 Model Che
kingIn this se
tion we look at some of the existing model 
he
king te
hniques. Wedistinguish between model 
he
king for �nite state systems, real-time systemsand probabilisti
 system.2.2.1 Finite State SystemsSeveral te
hniques have been applied to �nite state systems with great su

ess.One su
h te
hnique is based on Binary De
ision Diagrams (BDD), proposed byBryant in [Bry86℄. BDD's provide a 
anoni
al form for boolean fun
tions thatare often more 
ompa
t than formulae on 
onjun
tive and disjun
tive normalform. Several eÆ
ient algorithms have been developed for manipulating for-mulae based on their BDD representation, and the model 
he
king tool SMVis based on BDD's.Partial Order Redu
tion is another atta
k on the state explosion problem withpromising results. This method is used by the tool SPIN. Compositional Ba
k-wards Rea
hability (CBR) is a te
hnique whi
h has had great su

ess. Testswith applying the CBR te
hnique to large 
on
urrent systems have proventhat CBR de�nitely is a good way to atta
k the state explosion problem. TheCBR te
hnique is used in the 
ommer
ial tool VisualSTATE, whi
h uses thestate event model. The last te
hnique we will mention for �nite state systemsis subje
t of this report, the quotient te
hnique. Larsen was one of the �rst topropose this te
hnique in [Lar86℄, and in Appendix A we give example of thete
hnique used on a simple HML logi
. The quotient te
hnique has also beenapplied to State-Event systems in [NJJ+99℄, a work whi
h has been greatlyextended in [BP00℄.2.2.2 Real-Time SystemsMethods for avoiding the state explosion problem in real-time systems in
ludeDi�eren
e Bound Matrix (DBM) an eÆ
ient data-stru
ture for the time spa
eand the rather new data-stru
ture Clo
k De
ision Diagrams (CDD), whi
h
an handle both dis
rete 
ontrol spa
e and 
ontinuous time spa
e symboli-
ally. Of model 
he
king tools for real-time systems, we 
an mention Kronos[kro℄, Hyte
h and UPPAAL [BLL+95℄. In [Seg95℄, Segala builds a frameworkfor veri�
ation of randomized distributed real-time systems, systems with bothtimed and probabilisti
 properties. The quotient te
hnique has also been stud-ied for real-time systems, by Laroussinie and Larsen in [LL95℄ and by Andersen9



in [rHA97℄.2.2.3 Probabilisti
 SystemsThe state explosion problem in probabilisti
 transition systems, has so far beenatta
ked by extending Binary De
ision Diagrams (BDD), to treat probabilisti
transition systems. Bozga and Maler introdu
e Probabilisti
 De
ision Graphs(PDG) in [BM99℄, and in [BCGH+97℄ Bahar et.al. apply Multi-terminal BDD's(MTBDD) to probabilisti
 veri�
ation.The quotient te
hnique for probabilisti
 transition systems has been studiedby Larsen & Skou in [LS92℄ but only for a rea
tive model, and with no dire
tintension of applying it to model 
he
king. They introdu
ed a simple 
al
u-lus of probabilisti
 pro
esses and a probabilisti
 modal logi
. In their paperthey study the problem of applying the quotient te
hnique (or de
omposition)and identify a new extended probabilisti
 logi
, whi
h is needed to supportthe te
hnique. Furthermore they give 
omplete axiomatization for both the
al
ulus and the logi
.The present report extends the work in [Ves00℄, in whi
h the quotient te
hniquefor probabilisti
 alternating transition systems was �rst introdu
ed.

10



Chapter 3PreliminariesBefore we 
an de�ne probabilisti
 alternating transition systems and a prob-abilisti
 pro
ess 
al
ulus, we need some general results on probabilities. Theresults in this 
hapter is mainly extra
ted from DeGroot's \Probability andStatisti
s" [DeG89℄.3.1 Probability TheoryIn this se
tion we give an axiomati
 de�nition of the term probability, and givea few important 
onsequen
es of the axioms.First we need the notion of sample spa
e. A sample spa
e of an experimentis a 
olle
tion of all the possible out
omes of the experiment. A sample spa
e
an be thought of as a set, or 
olle
tion, of di�erent possible out
omes, andea
h out
ome 
an be thought of as a point, or an element, of the sample spa
e.As an example 
onsider a roll with a six sided die, then the sample spa
e 
anbe written S = f1; 2; 3; 4; 5; 6g. An event of an experiment o

urs when theout
ome of the experiment satis�es 
ertain 
onditions spe
i�ed by that event.So an event A � S that an even number is obtained in our die example isA = f2; 4; 6g.We de�ne the probability fun
tion � as follows:De�nition 3.1The probability fun
tion � is a fun
tion from the sample spa
e S to a numberbetween 0 and 1: � : S ! [0; 1℄In a given experiment we assign ea
h event A in the sample spa
e S with11



a number �(A), whi
h is the probability that A will o

ur. The number�(A) must satisfy three axioms in order to satisfy the mathemati
al notionof probability. These axioms ensure 
ertain properties that a probability isexpe
ted to have.The �rst axiom states the fa
t that the probability � of any event A, denoted�(A), has to be non-negative.Axiom 1For any event A, �(A) � 0.The next axiom states that if an event is 
ertain to o

ur, then the probabilityof that event is 1.Axiom 2�(S) = 1.Axiom 3For any in�nite sequen
e of disjoint events A1; A2; : : :,� 1[i=1Ai! = 1Xi=1 �(Ai):We 
an now formally de�ne probability.De�nition 3.2 (Probability)A probability distribution, or a probability, on a sample spa
e S is a spe
i�-
ation of numbers �(A) whi
h satisfy Axioms 1, 2 and 3.We shall now give a few important 
onsequen
es of the axioms, starting byshowing that if an event is impossible, then the probability of that event is 0.Theorem 3.3�(;) = 0:ProofConsider the in�nite sequen
e of events A1; A2; : : :, su
h that Ai = ;; i =1; 2; : : :. Then this sequen
e is a sequen
e of disjoint events, sin
e ; \ ; = ;.Furthermore, [1i=1Ai = ;. Therefore, it follows from Axiom 3 that�(;) = � 1[i=1Ai! = 1Xi=1 �(Ai) = 1Xi=1 �(;):12



So when �(;) is added in an in�nite series, the sum of that series is the number�(;). The only number with this property is �(;) = 0. 2We state another general theorem, whi
h 
an easily be proved.Theorem 3.4For any event A, 0 � �(A) � 1.For a given probability fun
tion � on a �nite sample spa
e S, let � be de�nedby �(A) =Xa2A �(a)It is not diÆ
ult to see that � de�ned this way is a probability distributionon P(S), the set of all subsets of S1. Usually we use � instead of �, if themeaning is 
lear from the 
ontext.
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Chapter 4Probabilisti
 Transition SystemsIn this 
hapter we de�ne probabilisti
 alternating transition systems. Althoughwe work with the quotient te
hnique, for whi
h we only need a parallel opera-tor, we also give a probabilisti
 pro
ess 
al
ulus. We also de�ne a probabilisti
modal logi
, for des
ribing properties in our transition systems.4.1 PTSThe idea of a probabilisti
 alternating transition system is that we have twokinds of states, probabilisti
 and non-deterministi
. Only in the probabilis-ti
 states 
an the transition system take a probability transition, and in thenon-deterministi
 states, the system behaves like a normal non-deterministi
pro
ess, i.e. by performing some a
tion.An example of an probabilisti
 alternating transition system 
an be seen in�gure 4.1, and is formally de�ned in de�nition 4.1.The formal de�nition of a probabilisti
 alternating transition system is givenas follows:De�nition 4.1 (Probabilisti
 Alternating Transition System (PTS))Let A
t be a set of a
tions. A probabilisti
 alternating transition system is atriple hS;�!; �0i, where� S is a non-empty set of states� �!� S � A
t�Dist(S) is a �nite transition relation� �0 2 Dist(S) is an initial distribution on S15



We shall use P a�! � to denote that hP; a; �i 2�!, and P a�!= to denote thathP; a; �i =2�!, for all �. We will sometimes write � ;� P instead of �(P ) = �.a 12b b12 
34 14dFigure 4.1: A probabilisti
 alternating transition systemIn the next se
tion we give a probabilisti
 pro
ess 
al
ulus, with an asyn-
hronous parallel operator. When 
omposing transition systems later on weuse this parallel operatorWe will later show that parallel 
omposition of probabilisti
 systems is sym-metri
 (theorem 4.8), that is, the order of whi
h pro
esses or systems are
omposed does not matter.4.2 Probabilisti
 Pro
ess Cal
ulus for PTSWe will in this se
tion give a probabilisti
 pro
ess algebra, very similar to the
lassi
 pro
ess 
al
ulus CCS. Probabilisti
 extensions to several 
lassi
 pro
ess
al
uli have been studied for many years, but we will here give a 
al
ulus that,to our knowledge, di�ers from the ones studied by others. Unlike other 
al
uli,the pro
ess 
al
ulus for PTS is split in two, and 
onsists of two di�erent types ofterms, namely pro
ess terms ranged over by P , whi
h have non-deterministi
behavior, and probabilisti
 terms ranged over by �. The main reason forthis split-up is, that when implementing PTS it will be easier to di�erentiatebetween pro
ess and probabilisti
 terms.Although this report 
on
entrates on the quotient te
hnique, and therefore16



on the parallel operator, we 
hose to give a full probabilisti
 pro
ess 
al
ulus.We do this mainly to show what a 
al
ulus for the alternating model 
ouldlook like, so that this provides a basi
 framework, if others are interested inexploring this model.4.2.1 Syntax of PTSWe start out by giving a syntax for des
ribing probabilisti
 transition systems.The syntax 
onsists of a NIL operator, a 
hoi
e operator, a pre�x, a paralleloperator and the spe
ial probabilisti
 
hoi
e operator.The syntax is given in de�nition 4.2De�nition 4.2P ::= NIL j P1 + P2 j a:� j P1jAP2 j N (4.1)� ::= �NIL j �1 + �2 j �a:� j �1jA�2 j �1 �� �2 (4.2)(4.3)where A is a set of a
tions that the system syn
hronizes on, where N Def= P .4.2.2 Semanti
s of PTSThe semanti
s of PTS is given in terms of two types of judgments:P a�! �; where a 2 A� ;� P; where � 2 [0; 1℄The last is, as des
ribed before, just another way of writing �(P ) = �.We refer to the �rst as pro
ess transitions and the latter as probabilisti
 tran-sitions.Formal inferen
e rules of P and � 
an be found in table 4.1, and are furtherexplained in the following.Inferen
e Rules for nondeterministi
 transitions� NIL denotes a state with no outgoing transitions, hen
e no rule.� The non-deterministi
 
hoi
e operator is a 
hoi
e between the transitionsof the two arguments. 17



Nondeterministi
 Probabilisti
NIL NIL �NIL �NIL ;1 NILParallel1 P1 a�! �1 P2 a�! �2P1jAP2 a�! �1jA�2 if a 2 A Parallel �1 ;�1 P1 �2 ;�2 P2�1jA�2 ;�1��2 P1jAP2Parallel2 P1 a�! �1P1jAP2 a�! �1jA�P2 if a =2 APre�x a:� a�! � Pre�x �a:� ;1 a:�Choi
e1 P1 a�! �P1 + P2 a�! � Choi
e �1 ;�1 P1 �2 ;�2 P2�1 + �2 ;�1��2 P1 + P2Choi
e2 P2 a�! �P1 + P2 a�! � Prob.Choi
e �1 ;�1 P �2 ;�2 P�1 �� �2 ;���1+(1��)��2 PTable 4.1: Inferen
e rules for P and �� The pre�x operator, a:� performs an a-transition and goes to state �.� When 
omposing two non-deterministi
 transitions in parallel, we needto determine whether the a
tion to be taken is part of our syn
hronizingset A or not. If a 2 A then the system syn
hronizes, and both ma
hineshave to be able to take an a transition. If a =2 A then it suÆ
es to haveonly one ma
hine being able to take the a transition. How this works isexplained in se
tion 4.3.Inferen
e rules for probabilisti
 transitions� We de�ne the probabilisti
 version of �NIL to have a probabilisti
 tran-sition with probability 1 to the pro
ess NIL.� Probability states always syn
hronizes on probabilisti
 transitions, so
ompared to pro
ess states, there is only one rule for parallel 
ompositionhere.� The probabilisti
 transition for �a:� is similar to that for �NIL, with aprobabilisti
 transition with probability 1 to the pro
ess pre�x.18



� The 
hoi
e operator is not resolved by probabilisti
 transitions but bypro
ess transitions. This explains the 
hoi
e operator for probabilisti
transitions in table 4.1.� Probabilisti
 
hoi
e is a binary operator whi
h spe
i�es the probabilisti
transitions.4.2.3 Example of PTSAs an example of PTS, 
onsider the following expressions:A = a:�13 :b� 23 :
� B = a:�12 :b� 12 :d�The two transition systems 
an be found in �gure 4.2. We have also in
ludedthe parallel 
omposition AjAB in our example, whi
h 
an also be found the�gure below.
a a

b b
 d b 


A B AjABa13 23 12 12 16 2616 26

Figure 4.2: The example PTS
4.3 Asyn
hronous Parallel CompositionWe have in
luded asyn
hroni
y in our transition systems, by allowing somepro
ess transitions to be asyn
hronous. This has not been straightforward,and has taken a lot of 
onsideration. We will in this se
tion dis
uss the subje
tof asyn
hronous probabilisti
 transition systems, espe
ially in the 
ase of thealternating model, whi
h leads to the model we have 
hosen to use, and why.19



In �nite state systems asyn
hronous 
omposition is straight forward. Eitherpro
ess 
an take a transition independently of the other, with the resulting
omposition still well de�ned, as in the followingP a�! P 0P jQ a�! P 0jQThe problem with asyn
hroni
y in the alternating probabilisti
 model is thefa
t that the transitions alternate. When allowing pro
ess transitions to beasyn
hronous the resulting 
omposed system ends up in two di�erent kinds ofstates, a non-deterministi
 state and a probabilisti
 state. This 
ompositionis not de�ned in our 
al
ulus, so we have to de�ne a means of expressing thissituation. The problem 
an be exempli�ed by �gure 4.3. If we 
ompose Pand Q, and let A = fa; 
g, we 
an see the problem in states s1 and s2, P isallowed to take the b transition, but Q has to stay in state s2. If we do this,the next 
omposition will be transitions from state s3 and s2, two di�erentkinds of states. This is not allowed in our 
al
ulus, hen
e the need for a wayof expressing this. Pa
b






aQ
12 s1 s212 12 12 12

12s3
Figure 4.3: Two transition systems. The b transition is asyn
hronous.Other probabilisti
 models do not have the same problem, for example therea
tive model, as des
ribed by Larsen and Skou in [LS92℄, only has one kindof states, and with the transitions being a 
ombination of both probability anda
tions (P a�!� P 0). 20



There are di�erent ways of atta
king this problem. One way of doing it wouldbe to in
lude this mixed 
omposition in our 
al
ulus, as in P jA�. This is notdesirable though, be
ause it would destroy the meaning of having a split-up
al
ulus.Instead we have 
hosen to allow asyn
hronous 
omposition with the help of a�
tive distribution. We simply introdu
e a helping distribution, whi
h withprobability 1 
an rea
h the non-deterministi
 state. As an example, 
onsider�gure 4.4.
1

Q



a12 12
Figure 4.4: We solve the asyn
hronous problem by adding a 1 transition.So we 
an view the parallel 
omposition P j� as �P j�, where �P is a distribution,whi
h with probability 1 takes a transition to P , that is�P (Q) = � 0; P 6= Q1; P = Qor equivalently �P ;1 P . This e�e
tively solves the problem, and the resultingparallel 
omposition of P and Q 
an be seen in �gure 4.5.4.4 Probabilisti
 Modal Logi
In this se
tion we will give a probabilisti
 modal logi
 for our transition sys-tems. The logi
 is HML-like, but split in two parts, non-deterministi
 andprobabilisti
 properties, ranged over by F and ' respe
tively. This split-upmakes it easier to apply the quotient te
hnique to the alternating probabilisti
model, and to implement it.First we give the syntax for the logi
, and then its semanti
s is de�ned. Wehave 
hosen to give two di�erent, but equivalent versions of the semanti
s21
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b b
P jAQ

12
14 14 1414

12
Figure 4.5: The �nal parallel 
omposition P jAQfor the logi
, a semanti
s based on a satis�ability relation and a denotationalsemanti
s. The satis�ability relation semanti
s 
an sometimes be easier toread, but later when proving simpli�
ation rules, the denotational semanti
sproves to be useful. In fa
t the proofs of some of the simpli�
ation rules followalmost dire
tly from the formulation in terms of denotational semanti
s.4.4.1 SyntaxAs mentioned above, the syntax is divided into two parts whi
h refer to ea
hother by their diamond modality. The non-deterministi
 part of the logi
 islike normal HML logi
, with the only ex
eption that in the diamond modalityit does not refer to a non-deterministi
 property, but to a probabilisti
 one.De�nition 4.3 (Probabilisti
 Modal Logi
 (PML))The non-deterministi
 (ranged over by F ) and probabilisti
 (ranged over by') properties are de�ned as follows:F ::= tt j F1 ^ F2 j :F j hai'' ::= tt j '1 ^ '2 j :' j ���FWe shall later see that the logi
 is not strong enough to des
ribe 
ertainproperties when fa
toring out pro
esses using the quotient te
hnique. A
-22



tually we need to extend the logi
 with a more general modality of the form[�x1F1; : : : ; �xnFn : �1x1 + � � �+ �nxn � �℄, as will be explained in more detaillater.4.4.2 Semanti
sDe�nition 4.4 (Satis�ability for PML)We de�ne j=� (Pr � PML) [ (Dist(Pr)� PML) indu
tively as followsP j= tt i� P 2 PrP j= F1 ^ F2 i� P j= F1 and P j= F2P j= :F i� P j==FP j= hai' i� 9�:P a�! � ^ � j= '� j= tt i� � 2 Dist(P )� j= '1 ^ '2 i� � j= '1 and � j= '2� j= :' i� � j=='� j= ���F i� PP:P j=F �(P ) � �:We now give the equivalent denotational semanti
s for PML. As written in theintrodu
tion, 
ertain properties are easier to reason about using denotationalsemanti
s.De�nition 4.5 (Denotational semanti
s for PML)First the de�nition of [[F ℄℄[[tt℄℄ = Pr[[F1 ^ F2℄℄ = [[F1℄℄ \ [[F2[[[[:F ℄℄ = [[F ℄℄[[hai'℄℄ = h�a�ifj'jg:The operator h�a�i' is de�ned as fp 2 Prj9a 2 A; �:p a�! � ^ � j= 'g.The semanti
s for ' are de�ned asfjttjg = Dist(P )fj'1 ^ '2jg = fj'1jg \ fj'2jgfj:'jg = fj'jgfj ��� F jg = f�j�([[F ℄℄) � �g:As a 
onsequen
e of the de�nition, we state the following theorem:23



Theorem 4.6The following expressions are equivalent:hai('1 ^ '2) � hai'1 ^ hai'2:We 
an now de�ne a 
onne
tion between transitions and formulas, by de�ningthe semanti
s of pro
ess and probabilisti
 transitions in the following way:De�nition 4.7 hhP ii = fF jP j= Fghh�ii = f'j� j= 'gWe state and prove the following property for parallel 
omposition, whi
h willbe useful for des
ribing some important properties for the quotient te
hnique.Theorem 4.8 (Asso
iativity and 
ommutativity of parallel 
omposition)hhp j qii = hhq j piihh(p j q) j rii = hhp j (q j r)iihh�1 j �2ii = hh�2 j �1iihh(�1 j �2) j �3ii = hh�1 j (�2 j �3)iiProofIf we 
onsider the transition trees for the di�erent 
ompositions, we see thatthey are isomorphi
, whi
h is enough for theorem 4.8 to hold. 24.5 ImplementationIn this se
tion we des
ribe the implementation of probabilisti
 transition sys-tems, and the probabilisti
 logi
 we have de�ned.We have 
hosen to use the programming language Mos
ow ML to implementour systems and te
hniques. ML is a powerful fun
tional programming lan-guage, whi
h suits our needs perfe
tly.We start by developing a data type for the probabilisti
 transition systems,in
luding a parallel operator.Next we de�ne a data stru
ture for PML, and a model 
he
ker for verifyingPML properties in any probabilisti
 alternating transition system.24



4.5.1 DatatypesWe start by de�ning a few simple types, mainly for making reading easier.We de�ne key 
on
epts as probability, a
tion and state as well as an index todistinguish between di�erent 
omponents of a parallel system.type s tate = string ;type probab i l i t y = real ;type i d e n t i f i e r = string ;type a
t ion = string ;type index = int ;We de�ne two datatypes for transitions, whi
h are both parameterized by astate type, PTrans for probabilisti
 transitions whi
h are de�ned by a listof states asso
iated with a list of probabilities and target states. NTrans isthe datatype for pro
ess transitions, de�ned in same manner as probabilisti
transitions, but with a
tions instead of probabilities.datatype ' s tate NTrans = transre lN of( ' s tate � ( ( a
t ion � ' s tate ) l i s t ) ) l i s t ;datatype ' s tate PTrans = transre lP of( ' s tate � ( ( real � ' s tate ) l i s t ) ) l i s t ;The last datatype we need for PML is System, whi
h de�nes a probabilisti
alternating transition system of given pro
ess and probabilisti
 transitions.Also the datatype for the parallel operator jA, named || in the implementation,is de�ned as a 
omposition of two systems. Note that || is made in�x as tomat
h our syntax.infix 5 j jdatatype ' s tate System = system of( ' s tate NTrans ) � ( ' s tate PTrans ) � ' s tate � indexj j j of ' s tate System � ' s tate System ;Besides a list of pro
ess transitions and probability transitions, the datatypeSystem is also de�ned by a start state and an index whi
h is the systems \num-ber", as mentioned above the means of distinguishing the di�erent subsystemsof a parallel system.The Datatypes for our probabilisti
 modal logi
 is like the formal de�nitionsplit in two parts. We have 
hosen to in
lude the terms False and Or in theimplementation of the datatype, be
ause it makes it easier to read and spe
ifyformulas in
luding these terms (e.g. ff instead of :tt).25



datatype nonformula = nAp of s tate � indexj nFalsej nTruej nAnd of nonformula � nonformulaj nOr of nonformula � nonformulaj nNot of nonformulaj nDiamond of a
t ion � probformulaand probformula = pAp of s tate � indexj pFalsej pTruej pAnd of probformula � probformulaj pOr of probformula � probformulaj pNot of probformulaj pDiamondsimp of probab i l i t y � nonformulaj pDiamond of( ( p robab i l i t y � nonformula ) l i s t � probab i l i t y )infix 7 nAnd pAnd nOr pOrThe boolean operators And and Or have been made in�x, again to mat
h thesyntax.We have implemented the general diamond modality by a list of probability �formula with a 
orresponding probability (�). We do not expli
itly in
lude thedependen
y variables, but take them into a

ount when using the modality.4.5.2 The Simple Che
kerTo be able to 
he
k the 
orre
tness of our implementation of the quotientte
hnique later on, we implement a simple model 
he
ker, whi
h 
an determineif a system satis�es any formula. This model 
he
ker takes any system anda formula, and 
he
ks if the formula is satis�ed, by going through all thestates in the system. It should be 
lear that if the systems have many parallel
omponents, ea
h with a 
onsiderable amount of states, then the simple model
he
ker fails to perform well be
ause of the state explosion.We start by de�ning a fun
tion der (derivative) whi
h takes any system witha 
on�guration 
 and a list A and returns a list of probabilities or a
tionsthat the system is able to take in the state given in the 
on�guration, and the
orresponding target state.It is also in the fun
tion der that the parallel operator is de�ned, in
ludingboth syn
hronous and asyn
hronous 
ompositions depending on whether ornot the a
tion in the transition is in
luded in the list A. A 
on�guration issimply the 
urrent state of the system.26



fun der ( ( system ( ntrans , ptrans , s0 , n ) ) : string System ) 
 A =let val ( s , ) = f ind ( fn ( s ' , i ) => i = n ) 
in let val n l i s t = derN s ntransval p l i s t = derP s ptransin ( map ( fn ( a , t )=>(a , [ ( t , n ) ℄ ) ) n l i s t ,map ( fn ( p , t )=>(p , [ ( t , n ) ℄ ) ) p l i s t )endendj der ( S1 j j S2 ) 
 A =let val ( n l i s t 1 , p l i s t 1 ) = der S1 
 Aval ( n l i s t 2 , p l i s t 2 ) = der S2 
 Aval sour
e1 = sub
onf ig 
 S1val sour
e2 = sub
onf ig 
 S2in let val n l i s t =( redu
e ( fn ( ( a1 , t1 ) , restofMerge1 ) =>i f ( memberof a1 A)then ( redu
e( fn ( ( a2 , t2 ) , restofMerge2 ) =>( 
ase ( ( memberof a2 A) , ( a1=a2 ))of ( true , true ) => [ ( a1 , t1�t2 ) ℄j ( , ) => [ ℄ ) � restofMerge2 )niln l i s t 2 )� restofMerge1else ( a1 , ( t1�sour
e2 ) ) : : restofMerge1 )niln l i s t 1 )�( redu
e ( fn ( ( a2 , t2 ) , r e s to f a syn
 ) =>i f not ( memberof a2 A)then ( a2 , sour
e1�t2 ) : : r e s to f a syn
else r e s to f a syn
 )niln l i s t 2 )val p l i s t = redu
e( fn ( ( p1 : real , t1 ) , restofMerge1 ) =>( redu
e ( fn ( ( p2 , t2 ) , restofMerge2 ) =>[ ( ( p1�p2 ) , t1�t2 ) ℄ �restofMerge2 )nilp l i s t 2 ) �restofMerge1 )nilp l i s t 1in ( n l i s t , p l i s t )endendThe fun
tion der uses a few small helping fun
tions, the fun
tions derN andderP take as arguments a state s and a transition relation, and returns the27



outgoing transitions from state s. sub
onfig takes a global 
on�guration anda system and returns the spe
i�
 
on�guration for that system.The memberof fun
tion takes as argument an a
tion and a set, runs throughthe set (A) and returns true if the a
tion is found in the set.Some other basi
 fun
tions are also used, map, filter, find and redu
e, the�rst being a standard ML fun
tion and the three others de�ned as follows:fun f ind f nil = ra i s e notfoundj f ind f ( h : : t ) = i f f h then helse f ind f t ;fun redu
e f b nil = bj redu
e f b ( h : : t ) = f ( h , redu
e f b t ) ;fun f i l t e r f nil = nilj f i l t e r f ( h : : t ) = i f f h then h : : f i l t e r f telse f i l t e r f t ;We are now ready to de�ne our simple model 
he
ker. First we de�ne a mu-tually re
ursive fun
tion nSatInner and pSatInner, whi
h take as argumentsthe following:� Any transition system of the datatype System whi
h 
an also be a parallel
omposition.� A PML formula (starting with a pro
ess or a probability expression,respe
tively)� A 
on�guration� A syn
hronization set A.The fun
tion s
ans the formula and handles ea
h term re
ursively, and makesuse of the fun
tion geta
tivestate, whi
h, given a 
on�guration and an in-dex, returns the 
urrent state being examined. First we present the part thathandles pro
ess formulas. 28



fun nSatInner S nForm 
 A =
ase nForm of(nAp ( t , i )) => ( g e t a 
 t i v e s t a t e 
 i ) = tj ( nTrue ) => truej ( nFalse ) => f a l s ej ( nNot nform ) => not ( nSatInner S nform 
 A)j ( lnon nAnd rnon ) => ( nSatInner S lnon 
 A)andalso( nSatInner S rnon 
 A)j ( lnon nOr rnon ) => ( nSatInner S lnon 
 A)orelse( nSatInner S rnon 
 A)j ( nDiamond ( a , pForm)) =>( 
ase ( f ind ( fn ( a
t , 
 ' ) => ( a
t=a)andalso( pSatInner S pForm 
 ' A))( let val ( n l i s t , ) = der S 
 Ain n l i s tend))of => true )handle notfound => f a l s eIn the 
ase of nDiamond, nSatInner refers to the se
ond part of the fun
tion,pSatInner. This is 
ompletely analog to the formal de�nition, e.g. hai'.The only di�eren
e in pSatinner is the probabilisti
 modality, or rather thetwo modalities, the rest is therefore omitted in the following. The 
ase ofpDiamondsimp builds a Sum variable, whi
h for all the transitions that satisfynForm 
olle
ts the probabilities and sum them up using the fun
tion sumprob.This sum of probabilities is then 
he
ked against the �, to evaluate to true orfalse.and pSatInner S pForm 
 A =...j ( pDiamondsimp (mu, nForm)) =>let val Sum =( sumprob ( f i l t e r ( fn ( prob , 
 ')=>( nSatInner S nForm 
 ' A))( let val ( , p l i s t ) = der S 
 Ain p l i s tend ) ) )in ( Sum > mu) orelse ( Sum = mu)endThe general modality works mu
h in the same way as the simple one, only itoperates on a list of nForm's, and has 
orresponding alpha values.29



j ( pDiamond ( ( nil ) , mu)) => f a l s ej ( pDiamond ( ( ( alpha , nForm ) : : T) , mu)) =>let fun multsum nil = 0 . 0j multsum (( alpha , nForm ) : : T) =(( sumprob ( f i l t e r ( fn ( prob , 
 ')=>( nSatInner S nForm 
 ' A))( let val ( , p l i s t ) = der S 
 Ain p l i s tend ) ) )� alpha ) + multsum Tin ( ( multsum (( alpha , nForm ) : : T))>mu) orelse( ( multsum (( alpha , nForm ) : : T))=mu)endTo de�ne the �nal fun
tion Satisfy, we need a fun
tion that �nds the ini-tial 
on�guration of the parallel system. The job is done by the fun
tioninitial
onf, whi
h takes a transition system and returns the initial 
on�gu-ration.fun i n i t i a l 
 o n f ( system ( ntrans , ptrans , s0 , i ) ) = [ ( s0 , i ) ℄j i n i t i a l 
 o n f ( S1 j j S2 ) = ( i n i t i a l 
 o n f S1 )�( i n i t i a l 
 o n f S2 )This is in fa
t the only di�eren
e between Satisfy and nSatInner, that theinitial 
on�guration is found automati
ally. We here require formulas to beginwith type nFormula.fun Sa t i s f y S Form A = nSatInner S Form ( i n i t i a l 
 o n f S ) A
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Chapter 5The Quotient Te
hnique forPTSIn this 
hapter the quotient te
hnique is de�ned and proved 
orre
t for theasyn
hronous version of PTS. We give a stru
tural de�nition of the quotientte
hnique and show that our logi
 is not strong enough to support the te
h-nique. We then introdu
e a general modality, whi
h 
ompletes our logi
, andgive the two types of semanti
s for it. We prove the quotient theorem bystru
tural indu
tion, and end this 
hapter with an example of veri�
ation of asimple parallel transition system by using the quotient te
hnique.
5.1 De�nition of the Quotient Te
hniqueThe quotient te
hnique for probabilisti
 transition systems works the sameway as for �nite state systems, des
ribed in the introdu
tion and in appendixA. We re
all that the purpose of the quotient te
hnique is to try to avoid thestate explosion problem in parallel systems, by fa
toring out ma
hines one ata time and pla
ing their properties in the formula for the whole system. Bydoing this, and by repeatedly applying simpli�
ation te
hniques, we should beable to avoid the state explosion problem, and thereby redu
e the veri�
ationtime of the system.The quotient operator = is de�ned in De�nitions 5.1 and 5.2.
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De�nition 5.1 (Stru
tural de�nition of F=P )(i) tt=P2 = tt(ii) (F1 ^ F2)=P2 = (F1=P2) ^ (F2=P2)(iii) :F=P2 = :(F=P2)(iv) hai'=P = ( hai�WP a�!� '=�� a 2 Ahai[('=P ) _WP a�!� '=�℄ a =2 ADe�nition 5.2 (Stru
tural de�nition of '=�)(v) tt=�2 = tt(vi) ('1 ^ '2)=�2 = '1=�2 ^ '2=�2(vii) :'=�2 = :('=�2)(viii) ���F=�2 = [�x1(F=P1); �x2(F=P2); : : : ; �xk(F=Pk) :�1x1 + �2x2 + � � �+ �kxk � �℄where �2 ;�1 P1; : : : ; �2 ;�k Pk enumerates all probabilisti
 transitions of �2.As we see, the de�nition of the the quotient formula for ���F is not in
ludedin our logi
. We therefore need to extend our logi
, as explained next.5.2 Generalization of the Diamond ModalityThe logi
 we have given is not strong enough for des
ribing 
ertain properties,so we have to extend this logi
 with a more general 
onstru
t.Apart from the de�nition of the simple diamond modality above, it may notbe obvious why we need the generalized probabilisti
 diamond modality, andhow it works. Therefore we will give an example to illustrate that the simplemodality ���F is not expressive enough, and with the need for this modality.We start out by assuming that we only have the simple modality in our logi
.Figure 5.1 show a system with a distribution �2. Assume that we want to�nd a distribution �1, whi
h when in parallel with �2, satis�es the followingproperty: ' = �� 14 (hbitt ^ h
itt. That is we want �1 to be su
h that:�1jA�2 j= ':Now, given the existen
e of a quotient 
onstru
tion in our probabilisti
 settingthis should be equivalent to: �1 j= '=�2:32



b
 1212 �2
Figure 5.1: A small systemwhere '=�2 is the quotient formula for ' with respe
t to �2. Consider �1'stransitions (see Figure 5.2), we denote the unknown sum of the probabilitiesof the transitions leading to a state where 
 and b is possible by x1 and x2,respe
tively. In order for �1jA�2 to satisfy ' it is 
lear that the requirement

b
x1 x2Figure 5.2: The transitions of �1to � is that 12x1 + 12x2 � 14 . We 
an express this in our semanti
 terms thefollowing way 12�1[[h
itt ^ hbitt=P1℄℄ + 12�1[[h
itt ^ hbitt=P2℄℄ � 14However this is not expressible in our logi
 as a single formula. We thereforeextend our logi
 with a more general modality, that allows us to express this.De�nition 5.3 (Extension of PML)We de�ne the following to be part of the syntax for PML' j= [�x1F1; : : : ; �xnFn : �1x1 + � � �+ �nxn � �℄:The semanti
s for this modality is de�ned as:� j= [�x1F1; : : : ; �xnFn : �1x1 + � � �+ �nxn � �℄i� �1�1 + � � �+ �n�n � �where �i =PP:P j=F �(P ). 33



To see that this is a generalization of the simple modality, we note that:� j= ���F , � j= [�xF : x � �℄:The equivalent denotational semanti
 for the general modality is:fj[�x1F1; : : : ; �xnFn : �1x1+� � �+�nxn � �℄jg = f� j �1�[[F1℄℄+� � �+�n�[[Fn℄℄ � �g:We 
an now give the de�nition of the quotient te
hnique for the general modal-ity:De�nition 5.4 (Extended de�nition)We extend de�nition 5.2 to in
lude the following de�nition of the generalmodality. (ix) [�x1F1; : : : ; �xnFn : �1x1 + � � �+ �nxn � �℄=�2 =[�y11F1=Q1; : : : ; �ynkFn=Qk : kXj=1 �1�1y1j + � � �+ kXj=1 �n�nynj � �℄where �2 ;�n Qn enumerates all the probabilisti
 transitions of �2.We will later show that this extension the logi
 is strong enough to express theproperties that arise from the quotient pro
edure, i.e. applying the quotientte
hnique on a formula of the form [�x1F1; : : : ; �xnFn : �1x1 + � � �+�nxn � �℄,results in a formula of the same form.5.3 Proving Corre
tness of the Quotient Te
h-niqueWe now state the quotient theorem, and give the proof of it:Theorem 5.5Given two pro
esses P1 and P2 and two distributions �1 and �2 in PTS, thenP1jAP2 j= F i� P1 j= F=P2�1jA�2 j= ' i� �1 j= '=�2:ProofWe prove theorem 5.5 by indu
tion on the stru
ture F respe
tively �.34



(i) F = tt is trivial(ii) F = F1 ^ F2: P1jAP2 j= F1 ^ F2, P1jAP2 j= F1 and P1jAP2 j= F2IH, P1 j= F1=P2 and P1 j= F2=P2, P1 j= F1=P2 ^ F2=P2Def, P1 j= (F1 ^ F2)=P2(iii) Negation follows like ^, dire
tly from the indu
tion hypothesis.(iv) F = hai':This 
ase is divided in two parts, the syn
hronous and the asyn
hronous.First the syn
hronous 
ase:P1jAP2 j= hai', 9j; k:P1jAP2 a�! �jjj�k ^ �jjj�k j= 'IH, 9j; k:P1 a�! �j ^ P2 a�! �k ^ �j j= '=�k, 9k:(P1 j= hai('=�k)) ^ P2 a�! �k, P1 j= Wk:P2 a�!�khai'=�k, P1 j= haiWP2 a�!�2 '=�2Def, P1 j= (hai')=P2Then the asyn
hronous 
ase:P1jAP2 j= hai', 9�1:(P1 a�! �1 ^ �1jAP2 j= ') or 9�2:(P2 a�! �2 ^ P1jA�2 j= '), 9�1:P1 a�! �1 ^ �1 j= '=P2 or 9�2:P2 a�! �2 ^ P1 j= '=�2, P1 j= hai'=P2 or WP2 a�!�2 ^'=�2, P1 j= hai'=P2 _WP2 a�!�2 '=�2Def, P1 j= hai'=P2(v) ' = tt is trivial(vi) ' = '1 ^ '2. The proof of this is similar to F1 ^ F2.(vii) Negation follows dire
tly from the indu
tion hypothesis, like the previous
ase. 35



(viii) ' = ���F :�1jj�2 j= ���F, XQjAP j=F�1(Q) � �2(P ) � �IH, XP XQj=F=P�1(Q) � �2(P ) � �, �1 j= [�x1(F=P1); : : : ; �xn(F=Pn) : �1 � x1 + � � �+ �n � xn � �℄where �2 ;�1 P1; : : : ; �2 ;�n PnDef, �1 j= (���F )=�2(ix) ' = [�x1F1; : : : ; �xnFn : �(x1; : : : ; xn)℄:�1jA�2 j= [�x1F1; : : : ; �xnFn : �1x1 + � � �+ �nxn � �℄, �1�1 + � � �+ �n�n � �; where �i =PP;Qj:P jQjj=Fi �1(P ) � �2(Qj), �i =PQj 264�2(Qj)| {z }�j � yijz }| {XP:P j=Fi=Qj �1(P )375, [�y11F1=Q1; : : : ; �ynkFn=Qk :Pkj=1 �1�1y1j + � � �+Pkj=1 �n�nynj � �℄where �2 ;�i Qi enumerates all probabilisti
 transitions of �2Def, [�x1F1; : : : ; �xnFn : �1x1 + � � �+ �nxn � �℄=�2 25.4 The Use of the Quotient Te
hniqueIn this se
tion we dis
uss the pra
ti
al use of the quotient te
hnique. Weshow that when fa
toring out ma
hines, the order does not matter, and wewill examine how many ma
hines we have to fa
tor out before rea
hing any
on
lusions.Theorem 5.6When fa
toring out ma
hines by using the quotient te
hnique, the order doesnot matter.That is [[(F=P1)=P2℄℄ = [[(F=P2)=P1℄℄ProofWe know that by theorem 5.5:Q j= (F=P1)=P2 , Q j P2 j= F=P1 , (Q j P2) j P1 j= F36



We know from theorem 4.8 that the order of parallel 
omposition doesn'tmatter, so we 
an write this as(QjP2)jP1 j= F , Q j (P2 j P1) j= F , Q j (P1 j P2) j= F , (Q j P1) j P2 j= FAgain we use theorem 5.5 to get(QjP1)jP2 j= F , QjP1 j= F=P2 , Q j= (F=P2)=P1whi
h 
on
ludes the proof. 2So for the quotient te
hnique to work, it is not ne
essary to fa
tor out 
ompo-nents in any spe
i�
 order.The question is then, will the time 
omplexity be the same, when fa
toringout 
omponents in di�erent orders. We believe the answer to this question isno. We might get smaller formulas by fa
toring out one 
omponent 
omparedto another, and some formulas may be easier to simplify than others.In fa
t we 
an see that theorem 5.6 allows us to write F=P, where P is a set ofpro
esses. In parti
ular if F=P � ff for P 2 P, then F=P � ff . This impliesthat if we have to 
he
k P1 j � � � j Pn j= F1 _ � � � _Fm and Fk=Pj � ff for somek; j, then P1j � � � jPjj � � � jPn j= F1 _ � � � _ Fk _ � � � _ Fmi� P1j � � � jPjj � � � jPn j= F1 _ � � � _ Fk�1 _ Fk+1 _ � � � _ Fm:So Fk 
an be removed. We will dis
uss this further in 
hapter 7.Another question when using the quotient te
hnique is, when to terminate thepro
ess of fa
toring out 
omponents. The answer to this question dependsgreatly on the formulas involved, but with n 
omponents, we 
annot fa
torout more than n� 1. This is be
ause that hhP jNILii = hhP ii does not hold ingeneral, be
ause:if a 2 A then a:�NIL a�! �NIL, but a:�NILjNIL a�!= . Thus a:�NIL j= haitt, buta:�NILjNIL j== haitt.So be
ause we have syn
hronous transitions, we 
annot remove the last ma-
hine from a system, and thus we have to manually 
he
k the last ma
hinewith the spe
i�
ation.5.5 Example of the Quotient Te
hniqueWe will now give a simple example of the use of the quotient te
hnique. We
onsider a faulty medium whi
h 
an send, reje
t and a

ept messages. It37



a

epts and reje
ts the send messages by a 
ertain rate de�ned by a probability.The system M 
an be seen in �gure 5.3.
send M reje
ta

ept 3414 reje
t a

ept

send 11
Figure 5.3: The media MAs we 
an see in the �gure the media a

epts send messages with a probability34 , and reje
ts with 14 . When a message has been either reje
ted or a

epted,it returns to the initial state, ready to send a new message.Now suppose we want to in
rease the rate of a

epted messages. This 
an bedone by putting one or more new medias in parallel with the original one, andletting the 
omposed system be asyn
hronous on the a

ept transition. We
an now do two things, either using more of the same type of media (with lossrate of 14), and 
he
k if the resulting 
omposed system satis�es our demands,or we 
an try �nding a spe
i�
ation for a new media to use with the originalone.We 
an use the quotient te
hnique to do both, in the last 
ase, we 
an simplytake our spe
i�
ation and fa
tor out the original media, to obtain a spe
i�
a-tion for the new media. In the �rst 
ase we simply put as many 
omponentsin parallel with the original one as we think is enough, and then verify the
omposed system by fa
toring out medias on at a time.We start by putting another media N of the same type in parallel with M , toobtain M jAN . The system syn
hronizes on all other transitions but a

ept,that is A = fsend; reje
tg.We want the �nal system to be able to a

ept messages by a rate of 90%, thatis M jAN j= hsendi �� 910 ha

eptittWe will now use the quotient te
hnique to verify this formula. We fa
tor out38



M to obtain a spe
i�
ation for N , whi
h we then 
he
k manually.N j= (hsendi �� 910 ha

eptitt)=N= hsendi(�� 910 ha

eptitt)=N= hsendi[�x1ha

eptitt=s1; �x2ha

eptitt=s2 : 14x1 + 34x2 � 910 ℄When M is in state s1, it 
an't perform any a

ept transitions, so the rest ofour system has to do that in order to satisfy the spe
i�
ation. In state s2, Mhas an a

ept transition, so the rest of the system only has to be able to rea
hthis state to be satis�ed.N j= hsendi ��x1ha

eptitt; �x2tt : 14x1 + 34x2 � 910�As we shall see in 
hapter 7, we 
an set x2's value to 1, so we 
an solve ourinequality: 14 + 34 � 1 � 910 , 14x1 � 910 � 34 , x1 = 35We use this value in our spe
i�
ation and getN j= hsendi �� 35 ha

eptittSo we now have a spe
i�
ation for N , and 
an manually verify that if N is ofsame type as M , then it 
learly satis�es the spe
i�
ation. We 
an also 
hooseto �nd a media with the spe
i�
ation of N , whi
h may be 
heaper (be
ause ofthe lower a

ept rate), and use that in parallel with M .We shall later see that formulas do not always redu
e so easily, and whenapplying the quotient te
hnique to a general modality, we a
tually get quitelarge formulas.5.6 ImplementationWe will now des
ribe the implementation of the quotient te
hnique. The te
h-nique is implemented as a single fun
tion evalQuotient, whi
h take the fol-lowing as argument:� The pro
ess (of type System) that is to be fa
tored out� A formula� The syn
hronizing set A 39



This fun
tion de
lares 
 to be the initial 
on�guration of S, and 
alls a mutuallyre
ursive sub-fun
tion nonquotient and probquotient. This sub-fun
tion is
alled re
ursively on every instan
e of the formula, and simply returns the newquotient formula.We will start by de�ning the more simple formula types, like true, false, ANDand OR. Below is the 
ode for the pro
ess version of these operators.fun evalQuotient S formula A =let val 
 = i n i t i a l 
 o n f Sin let fun nonquotient ( nTrue ) = nTruej nonquotient ( nFalse ) = nFalsej nonquotient ( nAp ( s , i ) ) 
 =let val a
 s ta t e = ge t a 
 t i v e s t a t e 
 iin i f a
 s ta t e = sthen nTrueelse nFalseendj nonquotient ( nNot nform ) 
 =nNot ( nonquotient nform 
 )j nonquotient ( L nAnd R) 
 =let val LQ = nonquotient L 
val RQ = nonquotient R 
in LQ nAnd RQendj nonquotient ( L nOr R) 
 =let val LQ = nonquotient L 
val RQ = nonquotient R 
in LQ nOr RQendThe probabilisti
 
ounterparts for these simple types are similar to those ofthe pro
ess version, and are therefore omitted here.The fun
tion for pro
ess modality hai' we start by 
alling the fun
tion probquotientto 
reate the disjun
tion WP a�!� '=�. It then 
he
ks whether the a
tion a is inthe syn
hronizing set or not, and returns the 
orresponding formula.
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j nonquotient ( nDiamond ( a , pForm)) 
 =let val Dis jun
t ion =redu
e ( fn ( ( a
t , 
 ' ) , t a i lD i s j un 
 t i on ) =>( ( probquotient pForm 
 ' )pOr t a i lD i s j un 
 t i on ))pFalse( f i l t e r ( fn ( a
t , 
 ' ) => ( a
t=a ))( let val ( n l i s t , ) = der S 
 Ain n l i s tend))in i f memberof a Athen nDiamond ( a , Dis jun
t ion )else let val notA =nDiamond ( a , ( probquotient pForm 
 )pOr Dis jun
t ion )in i f ( nSatInner S notA 
 A)then nTrueelse notAendendThis quotient step also 
he
ks to see if the formula 
an be simpli�ed, it 
he
ksif the system satis�es notA, and if it does returns true.Now to the probabilisti
 
ase, for whi
h we, as mentioned above, only showthe diamond modalities.The simple diamond modality i straight forward, it simply forms a formulaof the form pDiamond, and 
alls nonquotient on the 
orresponding pro
essformula. j probquotient ( pDiamondsimp ( p , nform )) 
 =pDiamond ( ( map ( fn ( mu, 
onf ) =>(mu, nonquotient nform 
onf ))( let val ( , p l i s t ) = der S 
 Ain p l i s tend ) ) , p)The quotient formula for the general diamond modality is implemented in twosteps, one where there is no list of probabilities and pro
ess formulas (nil)and one where there is a list.The fun
tion 
alls itself re
ursively to apply the quotient te
hnique to all in-stan
es of prob, nform.
41



j probquotient ( pDiamond ( ( ( prob , nform ) : : L) , p ) ) 
 =pDiamond ( ( ( map ( fn ( mu, 
onf ) =>( ( mu�prob ) , nonquotient nform 
onf ))( let val ( , p l i s t ) = der S 
 Ain p l i s tend))�( let val pDiamond ( T, ) =probquotient ( pDiamond ( L, p ) ) 
in Tend ) ) , p)j probquotient ( pDiamond ( nil , p ) ) 
 = pDiamond ( nil , p)in nonquotient formula 
endendWe will later des
ribe the fun
tion that is used to 
all this quotient fun
tionwith, but it basi
ly works by 
hoosing the ma
hine to fa
tor out, and 
allingthe quotient fun
tion on that ma
hine and a formula, and then 
alling thesimpli�
ation fun
tion (see 
hapter 7) on the quotiented formula.
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Chapter 6The General ModalityIn this 
hapter we examine the general modality, espe
ially the linear inequal-ity �1x1 + � � ��nxn � �, in order to des
ribe it in a way that allows us toimplement the te
hnique. In [LS92℄ Larsen and Skou de�ne a general modal-ity to support their version of the quotient te
hnique (de
omposition). Theyde�ne the modality in more general terms than we do, by having some fun
-tion �(x1; : : : ; xn) instead of the inequality. This notion was also adopted in[Ves00℄.We believe that the general 
onstru
t of Larsen and Skou is unne
essary and
onfusing to read, and we devote this 
hapter to examine the general modality.We show that no matter how many times we apply the quotient te
hnique tothe modality, we end up with only one type of inequality, though with severalunknown variables.[�x1F1; : : : ; �xnFn : �1x1 + � � �+ �nxn � �℄=� = (6.1)[�y11F1=Q1; : : : ; �yijFi=Qj; : : : ; �ynkFn=Qk : kXj=1 �1�jy1j+ � � �+ kXj=1 �n�jynj � �℄:It has taken a lot of 
onsiderations to realize that the last part of the generalmodality is always a linear inequality. The te
hnique developed in this reportis based on the ideas of [LS92℄, and our work prior to this report [Ves00℄ de�nesthe general modality with a general �-fun
tion.Our studies have shown that this fun
tion is in fa
t a linear inequality. A
tu-ally, as we shall see, it just operates with new binding variables, yij, instead ofx1. 43



6.1 Des
ribing the General ModalityFirst we need to realize that, when using the quotient te
hnique on a generalmodality, we simply get another general modality, but with a few more vari-ables and probability 
onstants. That is, the general modality is always of theform: [�x1F1; : : : ; �xnFn : �1x1 + � � �+ �nxn � �℄where xi is a variable binding the probabilities. It is this inequality that is in-teresting, and we therefore need to des
ribe exa
tly how it looks. Furthermorewe know that our binding variables, be
ause they are in fa
t probabilities, havethe following property: 0 � xi � 1.Now, if we look at the de�nition of the quotient te
hnique for the generalmodality (see formula 6.1), we see that it is very similar to the one for thesimple modality. A
tually we should be able to write the quotiented modalityas follows:[�y11F1=Q1; : : : ; �ynkFn=Qk : ( kXj=1 �jy1j)�1 + � � �+ ( kXj=1 �jynj)�n � �℄The inequality 
onsists of a k and a n ve
tor and a n� k matrix:0B�264 y11 � � � y1k... ...yn1 � � � ynk 375 � 264 �1...�k 3751CAT � 264 �1...�n 375 � �So we will have n � k possibly unknown variables, and ea
h time the quotientte
hnique is applied, this number will be multipli
ated by n, thus it will growexponentially. This surely underlines the need for simpli�
ation rules andhopefully it will be possible to keep the number of unknown variables to aminimum.We also need a means of dealing with linear inequalities with multiple unknownvariables, this will be examined next.6.2 Linear InequalitiesIn order to reason about the linear inequalities with more than one unknownvariables, we need to explore some theory about this subje
t. We will startby looking at how to de�ne a range of solutions for inequalities of the form�1x1 + � � �+ �nxn � �. 44



Be
ause we work with probabilities, we know a few things about our variablesand 
onstants. First of all we know that all 
onstants �i are non-negative, andwill sum up to one, be
ause of the fa
t that all �i is from transitions from asingle state (e.g. �1 ;�i Pi):�1 + � � �+ �n = 1 and 0 � �i:We also know that the variables xi are non-negative and less than or equal to1: 0 � xi � 1; where i = 1; : : : ; nDespite this information it is not possible to give a de�nition on how to �ndthe values of the unknown variables. Instead we 
an de�ne some simpli�
ationrules, whi
h 
an eventually redu
e the inequality, and thereby the generalmodality.As we shall see in the next 
hapter, we will be able to simplify the inequalitya bit, removing some of the variables, and there by subtra
ting or removingsome of the �i's. If we assume that the 
onstant being removed is �i we get:�1 + � � �+ �i�1 + �i+1 + � � �+ �n � 1This means, that if the largest of the 
onstants multiplied with n are smallerthan � then we 
an 
on
lude that the inequality is not solvable, that is�1x1 + � � �+ �nxn � � , ff (6.2)if Max(�i) < �=nNote that this rule is only e�e
tive when at least one of the �i's have beenremoved. We 
an even give a stronger rule: If �1+�2+ � � �+�n < �, then 6.2holds.So we 
an redu
e the inequality to false, if any of the �i's are smaller than�=n. As we will see in the next 
hapter about simpli�
ation, this is in fa
tenough to de
lare the whole modality false, and thereby simplify the quotientformula a great deal.Considering repeatedly appli
ation of the quotient te
hnique, we see that thenumber of variables rises exponentially, but the 
orresponding 
onstants willget smaller and smaller, hopefully 
ausing the inequality and thereby the wholemodality to redu
e to false. We have to do some tests to see if the 
onstantsvalues lowers faster than n rises, as we 
an't say anything general about that.It all depends on �, on the prede�ned probabilities, and on the size of thetransition systems. 45



Another way to simplify the general modality is when we rea
h a situationwhere � be
omes negative. This will happen when we 
an redu
e any of thexi's to 1, and subtra
t the 
orresponding �i from �. If � be
omes negative, thenthe inequality is trivially true, be
ause of all xi's and �i's are non-negative.We will now give an example of the general modality, and some of the simpli-�
ations that 
an be applied when using the quotient te
hnique.6.3 Example of General ModalityAgain we 
onsider the example in 4.2.3, but now with a di�erent formula, andone more ma
hine in parallel whi
h we 
all C (identi
al to ma
hine B).hai �� 13 (hbitt _ h
itt)Remember that the syn
hronization set is A = fa; b; dg, so the system isasyn
hronous on the 
� transition. We start by fa
toring out C.AjABjAC j= hai �� 13 (hbitt _ h
itt), A j= hai �� 13 (hbitt _ h
itt)=C, A j= hai[�x1(hbitt _ h
itt)=P1; �x2(hbitt _ h
itt)=P2 : 13x1 + 23x2 � 13 ℄, A j= hai[�x1(hbitt _ h
itt); �x2h
itt : 13x1 + 23x2 � 13 ℄It is not possible to simplify this formula anymore, so we will fa
tor out B.AjAB j= hai[�x1(hbitt _ h
itt); �x2h
itt : 13x1 + 23x2 � 13 ℄, A j= �hai[�x1(hbitt _ h
itt); �x2h
itt : 13x1 + 23x2 � 13 ℄� =B, A j= hai[�y11(hbitt _ h
itt)=P1; �y12(hbitt _ haitt)=P2;�y21(h
itt)=P1; �y22(h
itt)=P2 : 13 � 12y11 + 13 � 12y12 + 23 � 12y21 + 23 � 12y22 � �℄When we 
al
ulate the last quotients in this formula, and simplify the formula,we gethai ��y11hbitt _ h
itt; �y12h
itt; �y21h
itt; �y22h
itt : 16y11 + 16y12 + 13y21 + 13y22 � ��Again with no 
han
e of simplifying the modality anymore. As we 
an see theformula is growing quite large, and it will grow even more if more ma
hines ofthe same type are fa
tored out.The formula is still satis�ed though, whi
h should be easy to see. The questionis now, what would have happened if we fa
tored out ma
hine A �rst?46



We will not show all 
al
ulations here, but the simpli�ed result of hai �� 13(hbitt _ h
itt)=A is haitt, whi
h de�nitely is a smaller formula and easier toverify than the above.This shows us that the order of whi
h we fa
tor out 
omponents does nota�e
t the �nal result, but formulas may simplify more easily when 
hoosingone ma
hine to fa
tor out, instead of another.
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Chapter 7Simplifying rulesWhen using the quotient te
hnique, one of the most important things arethe appli
ation of simpli�
ation heuristi
s. Formulas tend to be
ome quitelarge when fa
toring out 
omponents, and espe
ially the general modality hasan exponential blowup in the number of variables when applying the quo-tient te
hnique. This 
an not 
ompletely be avoided, but with simpli�
ationte
hniques, it may be possible to keep the formulas small and the number ofvariables low.In 
hapter 6 we dis
ussed simpli�
ation to the general modality, and the in-equalities in parti
ular. In this 
hapter we formally de�ne the notion of simpli-�
ation, and several simpli�
ation rules. We prove soundness of all the rules,and �nally des
ribe the implementation of them.7.1 Introdu
tion to Simpli�
ationSimplifying rules is a set of semanti
s preserving rules whi
h 
an be used tominimize a formula F or '. The idea is to apply these rules 
ontinuously whilequotienting, so that the �nal expression is small and easy to verify:P1jAP2 j= F , P1 j= (F=P2)SIn the example in se
tion 5.5, we already used a few simpli�
ation rules. Wewill here give the de�nition of a set of simpli�
ation rules for our systems, andshow that they are sound.Formally we write F 7! F 0 and ' 7! '0, where F 0 and '0 is smaller (simpli�ed)than F and ', but still equivalent in the following sense:8P : P j= F , P j= F 0 and 8� : � j= ', � j= '049



or equivalently [[F ℄℄ = [[F 0℄℄ and fj'jg = fj'0jgWe de�ne the following simple derived operations:ff Def� :tt F ^G Def� :(:F _ :G)F ) G Def� :F _G F , G Def� (F ) G) ^ (G) F )The de�nition of simpli�
ation rules are split into two se
tions, one for pro-
esses properties, and one for probabilisti
. There has already been put a lotof work into simplifying pro
ess formulas (e.g. [Kri98℄, [And95℄ and [rHA97℄),so we will 
on
entrate on simpli�
ation of the probabilisti
 properties.7.2 Order of Ma
hines Fa
tored OutAs dis
ussed earlier, and as shown in the previous 
hapter, the order of whi
hma
hines are fa
tored out, may have something to say when applying simpli-�
ation rules.We believe the reason that the system in example 6.3 
an be simpli�ed greatlyby fa
toring out A instead of B, is that A in
luded the asyn
hronous transition
. When a ma
hine has an asyn
hronous transition, the demands for the restof the system, when that ma
hine is fa
tored out, are loosened.This intuition also follows the de�nition of the quotient operator for asyn-
hronous 
omposition (see de�nition 5.1).We 
an 
on
lude that when we have an asyn
hronous a
tion in our spe
i�
a-tion, then we 
ould 
he
k to see weather we have any ma
hines in the parallelsystem, whi
h 
an take this transition, and fa
tor that out �rst. As we shallsee later, this is not implemented in our model 
he
ker, as the model 
he
keris doing �ne with the rules des
ribed in the next two se
tions.7.3 Simpli�
ation Rules for FBesides the logi
ally implied simpli�
ation rules like tt^ff 7! ff and tt_ff 7!tt, we need some rules to simplify expressions with general properties.50



De�nition 7.1 (Simpli�
ation rules for F )1F : haiff 7! ff2F : tt ^ F 7! F3F : ff ^ F 7! ff4F : hai'=Pi 7! ffi� P1jA � � � jAPn j= F and a 2 A and Pi a�!=; for some i = 1 ; : : : ; nTheorem 7.2The simpli�
ation rules in de�nition 7.1 are sound.ProofRules 1F through 3F are trivial.The proof of 4F follows from the de�nition of the quotient te
hnique, and fromtheorem 5.6. 27.4 Simpli�
ation rules for 'Simpli�
ation rules for ' are de�ned in 7.3. They are based on the extendedmodality and 
an be applied in the simplifying step in di�erent ways. Forexample if we have an expression like [�xtt : �x � �℄ then we 
an apply rule5� �rst to 
on
lude that x = 1 and then simplify the whole expression to tt.De�nition 7.3 (Simpli�
ation rules for ')Formulas of the type ' 
an be simpli�ed using the following rules.1' : :tt 7! ff and :ff 7! tt2' : ff ^ ' 7! ff and tt ^ ' 7! '3' : [�x1F1; : : : ; �xnFn : �1x1 + � � �+ �nxn � �℄ 7! ffif �1 + � � �+ �n < �4' : [�x1ff; �x2F2; : : : ; �xnFn : �1x1 + � � �+ �nxn � �℄ 7![�x2F2; : : : ; �xnFn : �2x2 + � � �+ �nxn � �℄5' : [�x1tt; : : : ; �xnFn : �1x1 + � � �+ �nxn � �℄ 7![�x2F2; : : : ; �xnFn : �2x2 + � � �+ �nxn � �� �1℄6' : [�x1F1; : : : ; �xnFn : �1x1 + � � �+ �nxn � �℄ 7! ttif� < 0Explanation of The Simpli�
ation RulesThe �rst two rules are simple boolean rules.51



Rule three was dis
ussed in 
hapter 6. If the 
onstants �i be
omes smallenough, the whole expression simpli�es to false.3' : [�x1F1; : : : ; �xnFn : �1x1 + � � �+ �nxn � �℄ 7! ffif �1 + � � �+ �n < �The fourth rule states that if �x1ff : �1x1 � �, then it 
an be 
on
luded that x1is zero, whi
h removes both the variable and the 
onstant from the inequality.4' : [�x1ff; �x2F2; : : : ; �xnFn : �1x1 + � � �+ �nxn℄ 7![�x2F2; : : : ; �xnFn : 0 + �2x2 + � � �+ �nxn℄Rule 5 states that if �x1tt : �1x1 � � then the probability variable x1 is equalto one, and thereby disappears from the inequality.5' : [�x1tt; : : : ; �xnFn : �1x1 + � � �+ �nxn℄ 7![�x2F2; : : : ; �xnFn : �1 + �2x2 + � � �+ �nxn℄If we 
an simplify any of the xi's to 1, we subtra
t the 
orresponding �i from �.When doing this, we 
an rea
h a situation where � be
omes negative, thereby
ausing the inequality to be trivially satis�ed.6' : [�x1F1; : : : ; �xnFn : �1x1 + � � �+ �nxn � �℄ 7! ttif� < 0Some of the rules form part of the 
omplete axiomatization of validity for thelogi
 o�ered by Larsen and Skou in [LS92℄.Theorem 7.4The simpli�
ation rules in de�nition 7.3 are sound.ProofWe prove the theorem by showing that the semanti
s for the original formulaare the same as for the simpli�ed formula, for all 
ases in de�nition 7.3.The �rst two are quite simple and standard rules, and we will only prove the
orre
tness of 3' � 6'3' : Suppose that �1+� � �+�n < �. As �i � 1 for all i, also �1x1+� � �+�nxn <�.4' : This rule is proved in same way as 5', so proof is omitted here.52



5' : To prove 
orre
tness of this, we have to show thatfj[�x1tt; : : : ; �xnFn : �1x1 + � � �+ �nxn � �℄jg =fj[�x2F2; : : : ; �xnFn : [�2x2 + � � �+ �nxn � �� 1℄jg:We start on the left side of the equation, writing down the semanti
s,and minimizing:fj[�x1tt; : : : ; �xnFn : �1x1 + � � �+ �nxn � �℄jg =f� j �1�[[tt℄℄ + � � �+ �n�[[Fn℄℄ � �g =f� j �2�[[F2℄℄ + � � �+ �n�[[Fn℄℄ � �� 1g =fj[�x2F2; : : : ; �xn : �2x2 + � � �+ �nxn � �� 1℄jgSin
e the semanti
s of the right side is equal to the redu
ed semanti
s ofthe left side, this rule is sound.6' : This proof is trivial sin
e: �i � 0 and xi � 0:This 
on
ludes the proof of soundness of the rules in de�nition 7.3 2
7.5 ImplementationWe have implemented the simpli�
ation rules de�ned in this 
hapter as a singlefun
tion Simplify, whi
h is to be 
alled after ea
h 
all to the evalQuotientfun
tion. The fun
tion has a mutually re
ursive fun
tion 
alled nonSimp andprobSimp, this sub-fun
tion is de�ned on all the possible 
ombination of for-mula instan
es.The fun
tion runs through the (quotiented) formula and simpli�es it in respe
tto the simplifying rules, and returns a simpli�ed formula.53



fun Simpl i fy Form 
 =let fun nonSimp ( nTrue ) = nTruej nonSimp ( nFalse ) = nFalsej nonSimp ( nAp ( s , i )) = let val a
 s ta t e =ge t a 
 t i v e s t a t e 
 iin i f a
 s ta t e = sthen nTrueelse nFalseendj nonSimp ( nNot F) = let val SF = nonSimp Fin i f ( SF = nTrue )then nFalseelse i f ( SF = nFalse )then nTrueelse nNot SFendAbove is the 
ode for the simple expression, true and false redu
es, not sur-prisingly, to true and false. nAp 
he
ks for the 
urrent state of the system, andnNot 
alls the simpli�
ation formula re
ursively to get the simpli�ed expres-sion for F. If F is either true or false, it simply returns the opposite, and in anyother 
ase F, it returns nNot F.The 
ase of nAnd and nOr is handled by re
ursively 
alling the simpli�
ationfun
tion on the left and right sides of the operator. It 
he
ks if any of thesides redu
es to true or false, and if this is the 
ase, it makes the de�nedsimpli�
ation, if not, it returns the (still with simpli�ed left and right parts)expressions with the 
orresponding operator.
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j nonSimp ( L nAnd R) = let val LS = nonSimp Lval RS = nonSimp Rin i f ( LS = nFalse )orelse ( RS = nFalse )then nFalseelse i f ( LS = nTrue )then RSelse i f ( RS = nTrue )then LSelse LS nAnd RSendj nonSimp ( L nOr R) = let val LS = nonSimp Lval RS = nonSimp Rin i f ( LS = nTrue )orelse ( RS = nTrue )then nTrueelse i f ( LS = nFalse )then RSelse i f ( RS = nFalse )then LSelseLS nOr RSendThe diamond modality for pro
ess transitions is quite straightforward, as theonly rule for simpli�
ation of it is haiff 7! ff The fun
tion uses the fun
-tion probSimp on the probabilisti
 formula pform, and if that redu
es tofalse, then the fun
tion returns nFalse. In any other 
ase it returns formulanDiamond(a,pform), where pform is simpli�ed.j nonSimp ( nDiamond ( a , pform )) =let val PS = probSimp pformin i f ( PS = pFalse )then nFalseelse nDiamond ( a , PS)endThe simple formula types as pNot, pAnd and pOr, are implemented in a similarway as their pro
ess 
ounterparts, and are therefore omitted here.The simpli�
ation fun
tion for the simple probabilisti
 modality, ��� 
he
ks ifthe value of the probability � is valid (0 � � � 1) and returns pFalse if thatis not the 
ase.Then it uses the pro
ess simpli�
ation formula nonSimp, and 
he
ks if it eitheris or simpli�es to false, and if so returns pFalse.
55



j probSimp ( pDiamondsimp( p , nform )) =i f ( p>1 . 0 ) orelse ( p<0 . 0 ) then pFalseelse let val NS = nonSimp nformin i f ( NS = nFalse )then pFalseelse pDiamondsimp( p , NS)endFinally we have the simpli�
ation fun
tion for the general modality. This isthe most 
omplex of them all, as it needs to 
he
k a lot of 
ases, and be
auseof the number of rules for this type.j probSimp ( pDiamond (L,mu)) =let fun DiamondInner ( nil , mu) = ( nil , mu)j DiamondInner ( ( ( p , nform ) : : T) , mu) =
ase ( nonSimp nform ) of( nTrue ) => DiamondInner ( T, ( mu�p ))j ( nFalse ) => DiamondInner ( T,mu)j ( nform ') =>let val ( T' , mu' ) = DiamondInner (T,mu)in ( ( ( p , nform ' ) : : T' ) , mu' )endin 
ase DiamondInner (( L) , mu) of( nil , mu') =>i f ( 0 . 0>mu' ) then pTrue else pFalsej ( [ ( p , nform ) ℄ , mu') =>i f ( ( mu'/ p)>1 . 0)then pFalseelse i f ( ( mu'/ p)<0 . 0 )then pTrueelse ( probSimp( pDiamondsimp((mu'/ p ) , nform )) )j ( L ' , mu') => i f ( mu'<0 . 0 ) then pTrueelselet val p rob l i s t = getprob ( L' )val max = findmax p rob l i s tval amount = 
ount p r ob l i s tin i f ( max<(mu'/ amount ))then pFalseelse ( pDiamond(L ' , mu' ) )endendin nonSimp Formend ;In the 
ase of pDiamond the fun
tion probSimp de�nes an inner fun
tion 
alled56



DiamondInner. This fun
tion handles di�erent 
ases of pro
ess formulas, anduses rules 4' and 5' to simplify expressions where a pro
ess formula simpli�esto true or false.DiamondInner is then 
he
ked in di�erent 
ases, the simple nil, the 
ase ofonly one inner formula and variable (whi
h 
an then either be simpli�ed ordes
ribed by pDiamondsimp), and the 
ase of a full general modality. In thelatter 
ase the fun
tion uses three basi
 sub-fun
tions to 
he
k for rule 3'.Rule 6' is 
he
ked in every di�erent 
ase in the fun
tion, and if no moresimpli�
ation 
an be done, the fun
tion returns a general modality.
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Chapter 8The Model Che
kerThroughout the report we have des
ribed various bits from our implementa-tion of a model 
he
ker for probabilisti
 alternating transition systems. Wehave presented almost everything from de�nition of datatypes to the quotientte
hnique and 
orresponding simpli�
ation rules. In this 
hapter we 
ompletethe implementation by des
ribing the last fun
tions in our model 
he
ker.We have 
hosen not to implement any graphi
al user interfa
e or other beau-ti�
ation features, as we are solely interested in the results and performan
eof the model 
he
ker.
8.1 The Fun
tionsThe fun
tions we need to des
ribe are �rst of all a fun
tion whi
h, given a par-allel system, 
hooses a ma
hine to fa
tor out, and 
alls the quotient and sim-pli�
ation fun
tions. This fun
tion 
alled 
hooseIndexAndFa
torOut, needsa helping fun
tion divideMa
hine, whi
h basi
ly divides the system into dif-ferent 
ases.The fun
tion 
hooseIndexAndFa
torOut takes as input a full parallel system,a formula and a syn
hronizing set. It 
hooses a ma
hine to fa
tor out (the�rst ma
hine of the system), 
alls the quotient and simpli�
ation formulas
ontinuously until one ma
hine is left. It then 
he
ks if this ma
hine satis�edthe quotiented formula or not, and returns true or false.59



fun divideMa
hine (M as system ( , , , index ) ) s e l e 
 t ed Index =i f index = se l e 
 t ed Indexthen ( SOME M, NONE)else (NONE, SOME M)j divideMa
hine (M1 j j M2) se l e 
 t ed Index =let val ( sele
tM1 , restM1 ) = divideMa
hine M1 se l e 
 t ed Indexval ( sele
tM2 , restM2 ) = divideMa
hine M2 se l e 
 t ed Indexin ( 
ase ( sele
tM1 , sele
tM2 ) of( SOME M1' , NONE) => SOME M1'j ( NONE, SOME M2') => SOME M2'j ( NONE,NONE) => NONE, 
ase ( restM1 , restM2 ) of( SOME M1' , NONE) => SOME M1'j ( NONE, SOME M2' ) => SOME M2'j ( SOME M1' , SOME M2') => SOME (M1' j j M2' )j ( NONE, NONE) => NONE)endfun 
hooseIndexAndFa
torOut subMa
hine 
urrentFormula A =let val s e l e 
 t ed Index = indexOfMa
hine ( f i r s t subMa
hine )in let val ( SOME sele
tedMa
hine , restOpt ) =divideMa
hine subMa
hine s e l e 
 t ed Indexin let val nextFormula =Simpl i fy ( evalQuotientse le
tedMa
hine
urrentFormula A)( i n i t i a l 
 o n f se le
tedMa
hine )in 
ase restOpt ofSOME ( system ( ntrans , ptrans , s0 , i )) =>nSat i s f y( system ( ntrans , ptrans , s0 , i ) ) nextFormula Aj SOME restM =>
hooseIndexAndFa
torOut restM nextFormula Aendendend8.2 E�e
tiveness of the Model Che
kerAs des
ribed in se
tion 5.4 and 7.3 we might obtain some advantage in 
reatingan algorithm whi
h 
he
ks for spe
i�
 ma
hines to fa
tor out �rst. As themodel 
he
ker is now, it fa
tors out ma
hines from one end, not 
on
ernedabout the des
ription of this ma
hine.It 
ould add to the e�e
tiveness of the implemented model 
he
ker to do su
ha 
he
k, but we have not found it needful in our implementation. This is60



mainly be
ause that, as our systems and formulas are de�ned, we believe thatwe would not gain a lot by adding this 
he
k.If future implementation would in
lude some kind of re
ursiveness of formulas,and perhaps in�nite transition relations, then this 
he
k would be mu
h moreuseful.In the next 
hapter we give a large example of our implementation, in order totest the quotient te
hnique against the simple 
he
ker (ie. by running throughall states).
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Chapter 9Testing the Model Che
kerIn this 
hapter we run our implementation on some examples in order tomeasure performan
e of the quotient model 
he
ker 
ompared to the simple
he
ker.9.1 A Telephone CallAs an example of systems whi
h 
an be des
ribed using probabilisti
 system,we assume 
ell-phone 
ommuni
ation system. When making a 
all from one
ell-phone to another, the signal is transmitted via air to a transmitting station,and again via air to the re
eiver of the 
all. Obviously it 
annot be guaranteedthat no errors will o

ur, and the more users, the bigger 
han
e of losing the
onne
tion.We will try to model a 
all from a 
ell phone, by using our probabilisti
 al-ternating transition systems. We will then 
ompose this 
all with other 
alls,and give a spe
i�
ation for this 
omposed system.We start by 
reating a pure syn
hronous system (with more than half of thepopulation in large 
ities owning a 
ell-phone, the 
han
e of at least a fewpeople using their 
ell-phones simultaneously should be quite large). We willthen 
he
k if the 
omposed formula satis�es the spe
i�
ation, by using ourmodel 
he
ker, and 
ompare the 
omputing time with the time for 
he
kingthe same system with the simple 
he
ker.In �gure 9.1 we show a graphi
al view of our the intuition we have about a
all from a 
ell phone. Note that this is a theoreti
al example, and may nothave anything to do with how the real life GSM system works.As we see in the �gure, the 
aller might be pla
ed in between two transmitting63
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iever
Figure 9.1: A graphi
al vies of a 
all from a 
ell phonestations, whi
h gives us the 
hoi
e of two di�erent stations, whi
h we de�neto a
t similar to ea
h other. We will therefore assume in our example that weonly have one transmitting station. We de�ne our transition system as seen in�gure 9.2.As we see there is 1% 
han
e that the 
all fails even before it rea
hes thetransmitting station, and again 1% 
han
e that the 
all won't be �nished.

9.2 Test #1As mentioned before, we start by 
omposing our 
alls using pure syn
hronizingtransition. That means that our syn
hronizing set isA = f
all; 
onne
t; error; 
ompleteg.We know that when having syn
hronous transitions, then the probability 
on-ne
ted to that transition will be
ome smaller when 
omposing the system. Inthis example, this means that if more than one person tries to make a 
all atthe same time, the probability for failure be
omes larger.Initially there is only 1% 
han
e of failure, so what is a

eptable when thereare, say, 20 people making 
alls at the same time. Well if you ask a 
ell-phoneuser he would probably answer no loss at all. Fortunately we do not have toask anyone, so we set the allowed loss rate to 5%.64
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Figure 9.2: The transition system for a phone 
allThis gives us the following spe
i�
ation for our system:h
alli �� 95100 h
onne
ti �� 95100 h
ompleteittFor testing we name the di�erent ma
hines 
all1, 
all2 and so on. The
omposed system is named Call, the spe
i�
ation Callformula and the syn-
hronizing set is named CallA.9.2.1 Veri�
ationWe verify the 
orre
tness of the quotient te
hnique by running an examplewith two ma
hines in parallel. A graphi
al view of the 
omposed system isseen in �gure 9.3.First we use the simple model 
he
ker:� Sa t i s f y ( 
 a l l 1 j j 
 a l l 2 ) Cal l formula CallA ;> val i t = true : boolNot surprisingly it returns true, whi
h we 
an verify by looking at �gure 9.3.We now run the same example with the quotient te
hnique, and get� 
hooseIndexAndFa
torOut ( 
 a l l 1 j j 
 a l l 2 ) Cal l formula CallA ;> val i t = true : bool 65
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Figure 9.3: The 
omposed systemSo we have veri�ed that the two te
hniques returns the same result.
9.2.2 Test ResultsWe will now 
ompare the two 
he
kers, to see whi
h one is fastest. By runningsome tests, we �nd out that our spe
i�
ation does not hold when we have morethan 5 ma
hines in parallel. This is obviously not a good sign if we were toimplement a 
ell-phone 
ommuni
ation system, but for testing our te
hniqueit should be �ne.The Test settingFor our test setting we use the above spe
i�
ations of our system and formula,and we run the tests on an AMD Duron 600 MHz pro
essor with WindowsME. The fun
tions are 
alled from within ema
s, using MosML.66



The TestWe test our example by starting with two ma
hines in parallel, and in
reasingthis number until we have a system 
onsisting of 20 ma
hines in parallel. Weplot the times in a diagram, whi
h 
an be found in �gure 9.4.As we 
an see in the �gure, this example really shows the bene�ts of the quo-tient te
hnique. When verifying 20 parallel ma
hines, the te
hnique 
on
ludesquite early that the system doesn't satisfy the spe
i�
ation, and thereby re-du
ing to false.The simple 
he
ker does not have this 
he
k, and therefore still 
he
ks all statesof the parallel system. In this example though, we 
an only 
he
k up to 17ma
hines in parallel with the simple 
he
ker, above that the 
omputer runsout of memory.9.3 Test #2For the se
ond test we introdu
e a new ma
hine, whi
h has two ways of 
on-ne
ting a 
all. We will use one instan
e of this ma
hine in our 
omposedsystem, and give a new spe
i�
ation for the system. The new ma
hine 
an beseen in �gure 9.5.The spe
i�
ation we wish to test in this example is the following:h
alli �� 12 ((h
onne
ti �� 25 h
ompleteitt) _ (h
onne
t2i �� 910 h
ompleteitt))We test this in similar way as test #1, and plot the result into a diagram, seenin �gure 9.6.The results for this test is also very satisfying. The simple 
he
ker growsexponentially in time, whereas the 
omputation time for the quotient te
hniquegrows more moderately. A
tually we see that in this 
ase the simple 
he
kerperforms even worse than before, while the quotient te
hnique is mu
h thesame as in test #1.
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Figure 9.4: Exe
ution time for the simple 
he
ker and the quotient te
hnique.68
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Figure 9.6: Time diagram for Test #270



Chapter 10Con
lusionThe main goal of this report was to develop further the theory introdu
ed in[Ves00℄, and implement the te
hnique, whi
h this theory o�ers. Espe
ially thegeneral modality needed to be explored, but also asyn
hronous 
ompositionand simpli�
ation were to be studied more thoroughly.10.1 Probabilisti
 Transition SystemsWe have explored the theory of probabilisti
 alternating transition systems inmore detail than we did in the above mentioned referen
e. Some basi
 proba-bility theory has been introdu
ed, in order to get a better understanding of thebehavior of the systems. We have de�ned a probabilisti
 pro
ess 
al
ulus, anda probabilisti
 modal logi
 (PML). As we 
on
entrate on the quotient te
h-nique, we have fo
used on the transition systems rather than the 
al
ulus. Wehave de�ned an asyn
hronous parallel operator, by introdu
ing a �P transitionto ea
h P , in order to be able to keep the two part syntax.10.2 The Quotient Te
hniqueWe have de�ned the quotient te
hnique for our transition systems and ourlogi
, and shown that the original logi
 was not strong enough to supportthe te
hnique. This is not a revolutionary result, as it was shown by Larsenand Skou in [LS92℄. However we have de�ned the general modality in a morespe
i�
 version than the one of Larsen and Skou's. We have also shown that thelast part of the modality is indeed one linear inequality, and have furthermoregiven a quotient de�nition of this modality.71



10.3 The General ModalityThe question of how the general modality would behave when being part ofa quotient formula, has been answered. There will never be more than oneinequality 
on
erning the instantiation of ea
h variable, only the number ofbinding variables will 
hange. As the number of variables in the inequality raisewhen 
ontinuously fa
toring out 
omponents of a system, we have exploredsome ways of redu
ing it.Be
ause of the fa
t that we most of the times are able to simplify the bind-ing variables, thereby 
ausing some of the 
onstants in the inequality to beremoved, we found that we 
an a
tually show that there is a big 
han
e thatthe whole modality 
an be redu
ed to false after we have fa
tored out somema
hines. This and the dis
overy that the right side of the inequality some-times be
omes negative and thereby 
ausing the modality to redu
e to true,gives a good hope for the appli
ability of the quotient te
hnique.10.4 Simpli�
ationWe have explored new ways of simplifying the quotiented formulas. For exam-ple have we dis
ussed that making a 
he
k on the 
omposed system, in orderto 
hoose a spe
i�
 ma
hine 
ould be a promising way of obtaining formulaswhi
h easily simpli�es. This 
an both be used in the 
ase of asyn
hronous andsyn
hronous 
omposition of systems.We dis
ussed two of the most important simpli�
ation rules for probabilisti
formulas above. Besides those two, we still have some basi
 rules, whi
h helpus in simplifying probabilisti
 formulas.10.5 The ImplementationWe have implemented our theory in the programming language Mos
ow ML.This has resulted in a model 
he
ker whi
h uses the quotient te
hnique toverify satis�ability of probabilisti
 alternating transition systems. We havealso implemented a simple 
he
ker, whi
h runs through all states in order to
he
k the spe
i�
ation.In our tests, we 
an 
learly see the problem of state explosion, when usingthe simple 
he
ker. The quotient te
hnique does ex
eptionally well, whi
hwas a
tually the intuition we had from the start. It should be 
lear by now,72



that if we 
an simplify the quotiented formulas quite early, then the quotientte
hnique spends very little time verifying even large systems. It seems thatthe simpli�
ation rules we have implemented are quite e�e
tive, as our model
he
ker is very fast, at least in our test examples.10.6 Further WorkAlthough we have explored and dis
ussed some of the the important areas inapplying the quotient te
hnique to probabilisti
 systems, there are still lots ofinteresting things to be explored.Bisimulation is one interesting area to study. Another possible extension wouldbe to add re
ursive properties to the logi
, whi
h again would 
all for moretheory about simpli�
ation, by for example studying some �xed point theory.Furthermore there is the question of adding time to probabilisti
 systems (orvi
e versa). This 
ould enable us to express things like \
ertain events o

urswith probability x within z se
onds".
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Appendix AThe Quotient Te
hnique forFinite State SystemsTheorem A.1Given two pro
esses P1 and P2 and two distributions �1 and �2 in CPS, thenP1jjP2 j= F () P1 j= F=P2�1jj�2 j= '() �1 j= '=�2ProofWe proof theorem A.1 by indu
tion on the stru
ture F respe
tively �.(i) F = tt is trivial(ii) F = F1 ^ F2: P1jjP2 j= F1 ^ F2, P1jjP2 j= F1 and P1jjP2 j= F2IH, P1 j= F1=P2 and P1 j= F2=P2, P1 j= F1=P2 ^ F2=P2, P1 j= (F1 ^ F2)=P2(iii) The negation is trivial and thus not proved(iv) F = hai':This 
ase is divided in two parts, the syn
hronous and the77



asyn
hronous. First the syn
hronous 
ase:P1jjP2 j= hai', 9j; k:P1jjP2 a�! �jjj�k ^ �jjj�k j= 'IH, 9j; k:P1 a�! �j ^ P2 a�! �k ^ �j j= '=�k, 9j:(P1 j= hai'=�k) ^ P2 a�! �k, P1 j= Wk:P1 a�!�khai'=�k, P1 j= haiWP2 a�!�2 '=�2, P1 j= (hai')=P2Then the asyn
hronous 
ase:P1jAP2 j= hai', 9�1; �2:(P1 a�! �1 ^ �1jAP2 j= ') _ (P1 a�! �1 ^ P2 a�! �2 ^ �1jA�2 j= '), 9�2:(P1 j= hai'=P2) _ (P1 j= hai'=�2 ^ P2 a�! �2), P1 j= hai'=P2 _WP2 a�!�2 '=�2(v) ' = tt is trivial(vi) ' = '1 ^ '2: �1jj�2 j= ' ^ ', �1jj�2 j= '1 and �1jj�2 j= '2IH, �1 j= '1=�2 and �1 j= '2=�2, �1 j= '1=�2 ^ '2=�2, �1 j= ('1 ^ '2)=�2(vii) Negation is trivial(viii) ' = ���F :�1jj�2 j= ���F, XQjjP j=F�1(Q) � �2(P ) � �IH, XP XQj=F=P�1(Q) � �2(P ) � �, �1 j= [�x1(F=P1); : : : ; �xn(F=Pn) : �1 � x1 + � � �+ �n � xn � �℄where �2 ;�1 P1; : : : ; �2 ;�n Pn, �1 j= (���F )=�2 78



(ix) ' = [�x1F1; : : : ; �xnFn : �(x1; : : : ; xn)℄:�1jj�2 j= [�x1F1; : : : ; �xnFn : �(x1; : : : ; xn)℄, �(�1; : : : ; �n) = True; where �i =PP;Qj:P jQj j=Fi �1(P ) � �2(Qj), �i =PQj �2(Qj)| {z }�j � yijz }| {XP:P j=Fi=Qj �1(P ), �1 j= [�y11F1=Q1; : : : ; �yijFi=Qj; : : : ; �ynkFn=Qk : �(Pj �jy1j; : : : ;Pj �jynj)℄, �1 = [�x1F1; : : : ; �xnFn : �(x1; : : : ; xn)℄=�2 2
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