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Chapter 1Introdution
1.1 Formal Veri�ationFormal veri�ation methods are a strong tool in the development of high qual-ity produts. The presene of bugs in, for example, embedded software is veryostly and an ause losses of lives. Software in devies, suh as ABS breaks inars or ight instruments, has to be as lose to error free error free as possible.Formal methods provide a preise notion between systems and their spei�a-tions, so that it an be deided without ambiguity whether or not a systemmeets its spei�ations.1.1.1 Conurrent SystemsConurrent systems is a olletion of omponents that are exeuted simultane-ously while interating with eah other. Most ommonly onurrent systemshave non-deterministi behavior, but sometimes also have time or probabilityproperties added. Veri�ation of the orret behavior of onurrent systemsis not an easy task to perform. First of all we need to provide a desriptionof the system and the way it interats, seond we must have a spei�ation ofproperties for the system, and a formal riterion for onluding orretness ofthe system. Last we need an algorithm to deide orretness of the system.Veri�ation is the proess of heking of orretness. Kristo�ersen suggests in[Kri98℄ a lassi�ation of omputer aided veri�ation tehniques in two majortrends: Theorem proving and model heking. In theorem proving, the userhimself provides a formal proof of orretness, whih is then heked by a tool.Model heking is fully automati, whih is why the industry tend to �nd thismethod more appealing. 1



1.1.2 Model ChekingVeri�ation of large systems via model heking has beome a widely usedtehnique within the last deade. Model heking has been applied to manytypes of systems, ranging from �nite state to real time and probabilisti sys-tems. However a major problem arises when applying model heking to evenmoderate sized parallel systems. This problem is known as the state explosionproblem, and arises from the many possible ombinations of omponent states(in fat exponentially many in the number of omponents). Model heking ofonurrent systems has been proven to be PSPACE-omplete, and is thereforemost likely theoretially intratable. However a lot of work has been done inthe �eld of attaking the state explosion problem for pratial systems, somewith great suess. Setion 2.2 present some of these tehniques.
1.2 Probabilisti SystemsSome systems an be designed so that they are guaranteed to behave orretlyno matter what happens. In most systems, though, this requirement annot be met, as there is always a risk of power failure, hardware failure oreven a failure aused by human interation. Examples of suh systems areteleommuniation systems, omputer networks or distributed systems builton these networks.Due to the fat that a system an not be guaranteed to work orretly, we needa way of desribing the unreliability of the system. This is espeially importantin safety ritial systems, suh as ABS breaks or ight ontrol systems.Probabilisti transition systems provide a framework that allows us to expressthat a failure an only our with a ertain probability, and as a tool it an beused to verify that the system, with some probability, behaves aording to itsspei�ation (i.e. there is only 0,0001% hane that an airplanes aps doesn'tome up).Probabilisti systems have been studied in many di�erent forms, and in hapter2 we present some of the existing work and the di�erent probabilisti models.In this thesis we have hosen to work with the so alled alternating probabilistimodel, whih will be desribed later. 2



1.3 The Quotient TehniqueThis report fouses on the quotient tehnique, whih is a promising tehniquefor avoiding the state explosion problem. However when applying the quotienttehnique several other problems arise, suh as very large formulas.The idea behind the quotient tehnique is to fator out omponents of a parallelsystem, one at a time, and by ontinuously applying simpli�ation heuristis.Consider the following model heking problem involving a system with nproesses in parallel: P1j � � � jPn j= 'We wish to verify that the parallel omposition of these systems satis�es 'without having to onstrut the omplete state spae of P1j � � � jPn. We willavoid this by removing Pi one by one while simultaneously simplifying theformula. So when fatoring out Pn we will transform the formula ' into thequotient formula '=Pn and applying simpli�ation heuristis, suh that(P1j � � � jPn) j= ', (P1j � � � jPn�1) j= ('=Pn)s;where s denotes simpli�ation of the formula.The quotient tehnique has been studied for several years now, and has beenproven to be suessful for �nite state systems and real-time systems. Thetehnique has also been applied to Hierarhial State-event systems.As an example of the quotient tehnique assume that we want to provenz }| {a:NILja:NILj � � � ja:NIL j= haittwhere j denote parallel omposition of CCS.Clearly it seems a waste to examine the entire state spae (2n states) to estab-lish this simple property. Using the quotient tehnique this may be avoided:n�1z }| {a:NILja:NILj � � � ja:NIL j= (haitt)=a:NILQuotient+Simpl. m a:NILja:NILj � � � ja:NIL| {z }n�1 j= ttSo we have avoided examining 2n states, but yet proved that the system sat-is�ed the property.A formal presentation of the quotient tehnique for �nite state systems is givenin Appendix A. 3



In this thesis we de�ne the quotient tehnique for probabilisti alternatingtransition systems, and implement the tehnique in ML. Our main goal is toexamine the tehnique, the formulas and some simpli�ation rules, in orderto provide a working model heker using the quotient tehnique. We willtest this implementation, to verify that it is indeed a promising method foravoiding the state explosion problem.1.4 OutlineThe outline of this report is as follows.In the next hapter we present the existing related work, and gives examplesand de�nitions of other probabilisti models.Chapter 3 is an introdution to probability theory.In hapter 4 we de�ne probabilisti alternating transition systems, and givea probabilisti proess alulus. We have hosen to be able to express asyn-hronous ommuniation in our transition systems, a not so straight forwardappliation in the alternating model. The motivation for and onsequenes ofthis hoie are also desribed in this hapter. Finally we give a probabilistimodal logi PML, that allows us to express properties of suh systems.Chapter 5 introdues the quotient tehnique to the alternating probabilistimodel. We de�ne the quotient rules, and show that our initial logi needs to beexpanded with a more general modality in order to support the tehnique. Wethen give proof of orretness of the quotient rules and give a small exampleof the tehnique.Chapter 6 is dediated to the disussion of the general modality.In hapter 7 we de�ne a set of simpli�ation rules and prove that they aresound with respet to the semantis.In Chapter 8 our model heker is presented and in hapter 9 we present anexample and run tests on the implemented heker.Chapter 10 ends this report with summary, onlusions and ideas for furtherresearh in the area of probabilisti transition systems and the quotient teh-nique.Throughout the report we have hosen to inlude extrats from our implemen-tation and orresponding explanations and omments to this.
4



Chapter 2Related WorkIn this hapter we take a look at some of the existing work in the �eld ofprobabilisti systems and model heking in general.2.1 Probabilisti ModelsWe present the work in the �eld of probabilisti proesses and transition sys-tems. In [vGSST90℄ van Glabbeek, Smolka, Ste�en and Tofts lassify proba-bilisti proesses in three types: Reative, generative and strati�ed models.� Reative ModelThe reative model onsists of states and labelled transitions assoiatedwith probabilities. For eah state, the sum of probabilities on outgoingtransitions must be 1 for transitions with the same label.� Generative ModelThis model onsists also of states and labelled transitions with probabil-ities, but with the sum of probabilities of all outgoing transitions equalto 1.� Strati�ed ModelStrati�ed models onsist of states and two kinds of transitions, proba-bilisti and ation based. In the ase of probabilisti transitions, the sumof probabilities must be 1, and for the ations transitions the restritionis that there must be only one outgoing ation transition from a state.In the following we will present the results on these three models, and give aformal de�nition of the �rst two. 5



Though van Glabbeek et al. only distinguish between the three models men-tioned, this shall not be seen as the only probabilisti models available. Thisreport fouses on the alternating model whih, to our knowledge, was �rststudied by Hansson and Jonsson in [HJ89℄ and whih is derived from onur-rent Markov hains. Later in this report we de�ne probabilisti alternatingtransition systems, and give a full de�nition of a probabilisti alulus for thealternating model.2.1.1 The Reative ModelIn [LS91℄, Larsen and Skou de�ne a probabilisti bisimulation based on thereative model, and in the same referene, the authors provide a probabilistilogi based on HML, whih they all probabilisti modal logi (PML).In [LS92℄, Larsen and Skou de�ne a reative probabilisti transition system asfollows:De�nition 2.1A (reative) probabilisti transition system is a struture P = (Pr; At; �),where Pr is a set of proesses (or states), At is the set of ations that theproesses may perform, and � is a transition probability funtion � : Pr �At� Pr ! [0; 1℄ suh that for eah P 2 Pr and a 2 At:XP 02Pr �(P; a; P 0) = 1 or XP 02Pr �(P; a; P 0) = 0indiating the possible next states and their probabilities after P has performedthe ation a.In �gure 2.1 is an example of a reative proess.a[13 ℄[1℄ d[12 ℄d[12 ℄a[23 ℄ b[1℄
Figure 2.1: An example of a reative proessIn [LS92℄ the authors develop a synhronous alulus based on the reativemodel. They use a probabilisti hoie operator parameterized by a probability,6



to obtain probabilisti behavior. They show that when deomposing a PMLformula, the logi PML is not strong enough to express parallel deomposition,and present an extension to PML, alled EPL, whih support deomposition.They further axiomatize the extended logi EPL.2.1.2 The Generative ModelThe generative models de�ne ontext dependent probability distributions, andthe probabilities have to be alulated every time an ation is reeived. Thegenerative model has been formally de�ned by Jou and Smolka in [JS90℄ asfollows:De�nition 2.2A (generative) probabilisti transition system (PLTS) is a triple hPr;P; �iwhere:� Pr is the set of all proesses;� � is the set of all atomi ations, and 0 is a speial symbol not in �alled the zero ation;� � : (Pr�(�[f0g)�Pr)! [0; 1℄ is a total funtion alled the probabilistitransition funtion satisfying the following restrition: 8P 2 Pr,Xa2�[f0g;Q2Pr �(P; a;Q) = 1An example of the generative model an be seen in Figure 2.2
[1℄ d[1℄ e[1℄a[15 ℄ [35 ℄b[25 ℄

Figure 2.2: Example of a generative proess
7



2.1.3 The Strati�ed ModelIn the strati�ed model, pure probabilisti hoies an be made. Glabbeek et al.de�nes in [vGSST90℄ strati�ed operational semantis for a probabilisti proessalulus (PCCS). The alulus is separated in two parts, ation transitions andprobability transitions, whih enables the use of pure probabilisti hoies.The two types of transitions are denoted P a�! Q and P p�! Q, where p is theprobability that P an behave as Q. The sum of all outgoing probabilistitransitions from a state is 1, thereby making the transition system stohasti.Glabbeek et al. also provides a bisimulation for the strati�ed model, alledstrati�ed bisimulation.An example of the strati�ed model an be seen in �gure 2.313
b Xa 12 1223

X XFigure 2.3: Example of a strati�ed transition systemIn [vGSST90℄ the authors furthermore form a hierarhy of the probabilistimodels. They show that the generative model is an abstration of the strati�edmodel, and that the reative model is an abstration of the generative model.2.1.4 Other Probabilisti ModelsApart from the reative, generative and strati�ed models, other probabilistimodels have been studied. In [HJ89℄ and [Ves00℄ the authors onsider thealternating model, whih is also the model used in this report, and thereforeis desribed later. Hansson and Jonsson present a CTL like logi in [HJ89℄,in order to be able to desribe properties like \After a request, there is a 90%probability that the request will be arried out in 2 seonds".The alternating model originates, to our knowledge, from the joint work be-tween Hansson and Jonsson in 1989, whih is presented along with the workin [HJ89℄ in Hans Hanssons book [Han94℄.8



2.2 Model ChekingIn this setion we look at some of the existing model heking tehniques. Wedistinguish between model heking for �nite state systems, real-time systemsand probabilisti system.2.2.1 Finite State SystemsSeveral tehniques have been applied to �nite state systems with great suess.One suh tehnique is based on Binary Deision Diagrams (BDD), proposed byBryant in [Bry86℄. BDD's provide a anonial form for boolean funtions thatare often more ompat than formulae on onjuntive and disjuntive normalform. Several eÆient algorithms have been developed for manipulating for-mulae based on their BDD representation, and the model heking tool SMVis based on BDD's.Partial Order Redution is another attak on the state explosion problem withpromising results. This method is used by the tool SPIN. Compositional Bak-wards Reahability (CBR) is a tehnique whih has had great suess. Testswith applying the CBR tehnique to large onurrent systems have proventhat CBR de�nitely is a good way to attak the state explosion problem. TheCBR tehnique is used in the ommerial tool VisualSTATE, whih uses thestate event model. The last tehnique we will mention for �nite state systemsis subjet of this report, the quotient tehnique. Larsen was one of the �rst topropose this tehnique in [Lar86℄, and in Appendix A we give example of thetehnique used on a simple HML logi. The quotient tehnique has also beenapplied to State-Event systems in [NJJ+99℄, a work whih has been greatlyextended in [BP00℄.2.2.2 Real-Time SystemsMethods for avoiding the state explosion problem in real-time systems inludeDi�erene Bound Matrix (DBM) an eÆient data-struture for the time spaeand the rather new data-struture Clok Deision Diagrams (CDD), whihan handle both disrete ontrol spae and ontinuous time spae symboli-ally. Of model heking tools for real-time systems, we an mention Kronos[kro℄, Hyteh and UPPAAL [BLL+95℄. In [Seg95℄, Segala builds a frameworkfor veri�ation of randomized distributed real-time systems, systems with bothtimed and probabilisti properties. The quotient tehnique has also been stud-ied for real-time systems, by Laroussinie and Larsen in [LL95℄ and by Andersen9



in [rHA97℄.2.2.3 Probabilisti SystemsThe state explosion problem in probabilisti transition systems, has so far beenattaked by extending Binary Deision Diagrams (BDD), to treat probabilistitransition systems. Bozga and Maler introdue Probabilisti Deision Graphs(PDG) in [BM99℄, and in [BCGH+97℄ Bahar et.al. apply Multi-terminal BDD's(MTBDD) to probabilisti veri�ation.The quotient tehnique for probabilisti transition systems has been studiedby Larsen & Skou in [LS92℄ but only for a reative model, and with no diretintension of applying it to model heking. They introdued a simple alu-lus of probabilisti proesses and a probabilisti modal logi. In their paperthey study the problem of applying the quotient tehnique (or deomposition)and identify a new extended probabilisti logi, whih is needed to supportthe tehnique. Furthermore they give omplete axiomatization for both thealulus and the logi.The present report extends the work in [Ves00℄, in whih the quotient tehniquefor probabilisti alternating transition systems was �rst introdued.
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Chapter 3PreliminariesBefore we an de�ne probabilisti alternating transition systems and a prob-abilisti proess alulus, we need some general results on probabilities. Theresults in this hapter is mainly extrated from DeGroot's \Probability andStatistis" [DeG89℄.3.1 Probability TheoryIn this setion we give an axiomati de�nition of the term probability, and givea few important onsequenes of the axioms.First we need the notion of sample spae. A sample spae of an experimentis a olletion of all the possible outomes of the experiment. A sample spaean be thought of as a set, or olletion, of di�erent possible outomes, andeah outome an be thought of as a point, or an element, of the sample spae.As an example onsider a roll with a six sided die, then the sample spae anbe written S = f1; 2; 3; 4; 5; 6g. An event of an experiment ours when theoutome of the experiment satis�es ertain onditions spei�ed by that event.So an event A � S that an even number is obtained in our die example isA = f2; 4; 6g.We de�ne the probability funtion � as follows:De�nition 3.1The probability funtion � is a funtion from the sample spae S to a numberbetween 0 and 1: � : S ! [0; 1℄In a given experiment we assign eah event A in the sample spae S with11



a number �(A), whih is the probability that A will our. The number�(A) must satisfy three axioms in order to satisfy the mathematial notionof probability. These axioms ensure ertain properties that a probability isexpeted to have.The �rst axiom states the fat that the probability � of any event A, denoted�(A), has to be non-negative.Axiom 1For any event A, �(A) � 0.The next axiom states that if an event is ertain to our, then the probabilityof that event is 1.Axiom 2�(S) = 1.Axiom 3For any in�nite sequene of disjoint events A1; A2; : : :,� 1[i=1Ai! = 1Xi=1 �(Ai):We an now formally de�ne probability.De�nition 3.2 (Probability)A probability distribution, or a probability, on a sample spae S is a spei�-ation of numbers �(A) whih satisfy Axioms 1, 2 and 3.We shall now give a few important onsequenes of the axioms, starting byshowing that if an event is impossible, then the probability of that event is 0.Theorem 3.3�(;) = 0:ProofConsider the in�nite sequene of events A1; A2; : : :, suh that Ai = ;; i =1; 2; : : :. Then this sequene is a sequene of disjoint events, sine ; \ ; = ;.Furthermore, [1i=1Ai = ;. Therefore, it follows from Axiom 3 that�(;) = � 1[i=1Ai! = 1Xi=1 �(Ai) = 1Xi=1 �(;):12



So when �(;) is added in an in�nite series, the sum of that series is the number�(;). The only number with this property is �(;) = 0. 2We state another general theorem, whih an easily be proved.Theorem 3.4For any event A, 0 � �(A) � 1.For a given probability funtion � on a �nite sample spae S, let � be de�nedby �(A) =Xa2A �(a)It is not diÆult to see that � de�ned this way is a probability distributionon P(S), the set of all subsets of S1. Usually we use � instead of �, if themeaning is lear from the ontext.
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Chapter 4Probabilisti Transition SystemsIn this hapter we de�ne probabilisti alternating transition systems. Althoughwe work with the quotient tehnique, for whih we only need a parallel opera-tor, we also give a probabilisti proess alulus. We also de�ne a probabilistimodal logi, for desribing properties in our transition systems.4.1 PTSThe idea of a probabilisti alternating transition system is that we have twokinds of states, probabilisti and non-deterministi. Only in the probabilis-ti states an the transition system take a probability transition, and in thenon-deterministi states, the system behaves like a normal non-deterministiproess, i.e. by performing some ation.An example of an probabilisti alternating transition system an be seen in�gure 4.1, and is formally de�ned in de�nition 4.1.The formal de�nition of a probabilisti alternating transition system is givenas follows:De�nition 4.1 (Probabilisti Alternating Transition System (PTS))Let At be a set of ations. A probabilisti alternating transition system is atriple hS;�!; �0i, where� S is a non-empty set of states� �!� S � At�Dist(S) is a �nite transition relation� �0 2 Dist(S) is an initial distribution on S15



We shall use P a�! � to denote that hP; a; �i 2�!, and P a�!= to denote thathP; a; �i =2�!, for all �. We will sometimes write � ;� P instead of �(P ) = �.a 12b b12 34 14dFigure 4.1: A probabilisti alternating transition systemIn the next setion we give a probabilisti proess alulus, with an asyn-hronous parallel operator. When omposing transition systems later on weuse this parallel operatorWe will later show that parallel omposition of probabilisti systems is sym-metri (theorem 4.8), that is, the order of whih proesses or systems areomposed does not matter.4.2 Probabilisti Proess Calulus for PTSWe will in this setion give a probabilisti proess algebra, very similar to thelassi proess alulus CCS. Probabilisti extensions to several lassi proessaluli have been studied for many years, but we will here give a alulus that,to our knowledge, di�ers from the ones studied by others. Unlike other aluli,the proess alulus for PTS is split in two, and onsists of two di�erent types ofterms, namely proess terms ranged over by P , whih have non-deterministibehavior, and probabilisti terms ranged over by �. The main reason forthis split-up is, that when implementing PTS it will be easier to di�erentiatebetween proess and probabilisti terms.Although this report onentrates on the quotient tehnique, and therefore16



on the parallel operator, we hose to give a full probabilisti proess alulus.We do this mainly to show what a alulus for the alternating model ouldlook like, so that this provides a basi framework, if others are interested inexploring this model.4.2.1 Syntax of PTSWe start out by giving a syntax for desribing probabilisti transition systems.The syntax onsists of a NIL operator, a hoie operator, a pre�x, a paralleloperator and the speial probabilisti hoie operator.The syntax is given in de�nition 4.2De�nition 4.2P ::= NIL j P1 + P2 j a:� j P1jAP2 j N (4.1)� ::= �NIL j �1 + �2 j �a:� j �1jA�2 j �1 �� �2 (4.2)(4.3)where A is a set of ations that the system synhronizes on, where N Def= P .4.2.2 Semantis of PTSThe semantis of PTS is given in terms of two types of judgments:P a�! �; where a 2 A� ;� P; where � 2 [0; 1℄The last is, as desribed before, just another way of writing �(P ) = �.We refer to the �rst as proess transitions and the latter as probabilisti tran-sitions.Formal inferene rules of P and � an be found in table 4.1, and are furtherexplained in the following.Inferene Rules for nondeterministi transitions� NIL denotes a state with no outgoing transitions, hene no rule.� The non-deterministi hoie operator is a hoie between the transitionsof the two arguments. 17



Nondeterministi ProbabilistiNIL NIL �NIL �NIL ;1 NILParallel1 P1 a�! �1 P2 a�! �2P1jAP2 a�! �1jA�2 if a 2 A Parallel �1 ;�1 P1 �2 ;�2 P2�1jA�2 ;�1��2 P1jAP2Parallel2 P1 a�! �1P1jAP2 a�! �1jA�P2 if a =2 APre�x a:� a�! � Pre�x �a:� ;1 a:�Choie1 P1 a�! �P1 + P2 a�! � Choie �1 ;�1 P1 �2 ;�2 P2�1 + �2 ;�1��2 P1 + P2Choie2 P2 a�! �P1 + P2 a�! � Prob.Choie �1 ;�1 P �2 ;�2 P�1 �� �2 ;���1+(1��)��2 PTable 4.1: Inferene rules for P and �� The pre�x operator, a:� performs an a-transition and goes to state �.� When omposing two non-deterministi transitions in parallel, we needto determine whether the ation to be taken is part of our synhronizingset A or not. If a 2 A then the system synhronizes, and both mahineshave to be able to take an a transition. If a =2 A then it suÆes to haveonly one mahine being able to take the a transition. How this works isexplained in setion 4.3.Inferene rules for probabilisti transitions� We de�ne the probabilisti version of �NIL to have a probabilisti tran-sition with probability 1 to the proess NIL.� Probability states always synhronizes on probabilisti transitions, soompared to proess states, there is only one rule for parallel ompositionhere.� The probabilisti transition for �a:� is similar to that for �NIL, with aprobabilisti transition with probability 1 to the proess pre�x.18



� The hoie operator is not resolved by probabilisti transitions but byproess transitions. This explains the hoie operator for probabilistitransitions in table 4.1.� Probabilisti hoie is a binary operator whih spei�es the probabilistitransitions.4.2.3 Example of PTSAs an example of PTS, onsider the following expressions:A = a:�13 :b� 23 :� B = a:�12 :b� 12 :d�The two transition systems an be found in �gure 4.2. We have also inludedthe parallel omposition AjAB in our example, whih an also be found the�gure below.
a a

b b d b 
A B AjABa13 23 12 12 16 2616 26

Figure 4.2: The example PTS
4.3 Asynhronous Parallel CompositionWe have inluded asynhroniy in our transition systems, by allowing someproess transitions to be asynhronous. This has not been straightforward,and has taken a lot of onsideration. We will in this setion disuss the subjetof asynhronous probabilisti transition systems, espeially in the ase of thealternating model, whih leads to the model we have hosen to use, and why.19



In �nite state systems asynhronous omposition is straight forward. Eitherproess an take a transition independently of the other, with the resultingomposition still well de�ned, as in the followingP a�! P 0P jQ a�! P 0jQThe problem with asynhroniy in the alternating probabilisti model is thefat that the transitions alternate. When allowing proess transitions to beasynhronous the resulting omposed system ends up in two di�erent kinds ofstates, a non-deterministi state and a probabilisti state. This ompositionis not de�ned in our alulus, so we have to de�ne a means of expressing thissituation. The problem an be exempli�ed by �gure 4.3. If we ompose Pand Q, and let A = fa; g, we an see the problem in states s1 and s2, P isallowed to take the b transition, but Q has to stay in state s2. If we do this,the next omposition will be transitions from state s3 and s2, two di�erentkinds of states. This is not allowed in our alulus, hene the need for a wayof expressing this. Pa
b




aQ
12 s1 s212 12 12 12

12s3
Figure 4.3: Two transition systems. The b transition is asynhronous.Other probabilisti models do not have the same problem, for example thereative model, as desribed by Larsen and Skou in [LS92℄, only has one kindof states, and with the transitions being a ombination of both probability andations (P a�!� P 0). 20



There are di�erent ways of attaking this problem. One way of doing it wouldbe to inlude this mixed omposition in our alulus, as in P jA�. This is notdesirable though, beause it would destroy the meaning of having a split-upalulus.Instead we have hosen to allow asynhronous omposition with the help of a�tive distribution. We simply introdue a helping distribution, whih withprobability 1 an reah the non-deterministi state. As an example, onsider�gure 4.4.
1

Q


a12 12
Figure 4.4: We solve the asynhronous problem by adding a 1 transition.So we an view the parallel omposition P j� as �P j�, where �P is a distribution,whih with probability 1 takes a transition to P , that is�P (Q) = � 0; P 6= Q1; P = Qor equivalently �P ;1 P . This e�etively solves the problem, and the resultingparallel omposition of P and Q an be seen in �gure 4.5.4.4 Probabilisti Modal LogiIn this setion we will give a probabilisti modal logi for our transition sys-tems. The logi is HML-like, but split in two parts, non-deterministi andprobabilisti properties, ranged over by F and ' respetively. This split-upmakes it easier to apply the quotient tehnique to the alternating probabilistimodel, and to implement it.First we give the syntax for the logi, and then its semantis is de�ned. Wehave hosen to give two di�erent, but equivalent versions of the semantis21
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Figure 4.5: The �nal parallel omposition P jAQfor the logi, a semantis based on a satis�ability relation and a denotationalsemantis. The satis�ability relation semantis an sometimes be easier toread, but later when proving simpli�ation rules, the denotational semantisproves to be useful. In fat the proofs of some of the simpli�ation rules followalmost diretly from the formulation in terms of denotational semantis.4.4.1 SyntaxAs mentioned above, the syntax is divided into two parts whih refer to eahother by their diamond modality. The non-deterministi part of the logi islike normal HML logi, with the only exeption that in the diamond modalityit does not refer to a non-deterministi property, but to a probabilisti one.De�nition 4.3 (Probabilisti Modal Logi (PML))The non-deterministi (ranged over by F ) and probabilisti (ranged over by') properties are de�ned as follows:F ::= tt j F1 ^ F2 j :F j hai'' ::= tt j '1 ^ '2 j :' j ���FWe shall later see that the logi is not strong enough to desribe ertainproperties when fatoring out proesses using the quotient tehnique. A-22



tually we need to extend the logi with a more general modality of the form[�x1F1; : : : ; �xnFn : �1x1 + � � �+ �nxn � �℄, as will be explained in more detaillater.4.4.2 SemantisDe�nition 4.4 (Satis�ability for PML)We de�ne j=� (Pr � PML) [ (Dist(Pr)� PML) indutively as followsP j= tt i� P 2 PrP j= F1 ^ F2 i� P j= F1 and P j= F2P j= :F i� P j==FP j= hai' i� 9�:P a�! � ^ � j= '� j= tt i� � 2 Dist(P )� j= '1 ^ '2 i� � j= '1 and � j= '2� j= :' i� � j=='� j= ���F i� PP:P j=F �(P ) � �:We now give the equivalent denotational semantis for PML. As written in theintrodution, ertain properties are easier to reason about using denotationalsemantis.De�nition 4.5 (Denotational semantis for PML)First the de�nition of [[F ℄℄[[tt℄℄ = Pr[[F1 ^ F2℄℄ = [[F1℄℄ \ [[F2[[[[:F ℄℄ = [[F ℄℄[[hai'℄℄ = h�a�ifj'jg:The operator h�a�i' is de�ned as fp 2 Prj9a 2 A; �:p a�! � ^ � j= 'g.The semantis for ' are de�ned asfjttjg = Dist(P )fj'1 ^ '2jg = fj'1jg \ fj'2jgfj:'jg = fj'jgfj ��� F jg = f�j�([[F ℄℄) � �g:As a onsequene of the de�nition, we state the following theorem:23



Theorem 4.6The following expressions are equivalent:hai('1 ^ '2) � hai'1 ^ hai'2:We an now de�ne a onnetion between transitions and formulas, by de�ningthe semantis of proess and probabilisti transitions in the following way:De�nition 4.7 hhP ii = fF jP j= Fghh�ii = f'j� j= 'gWe state and prove the following property for parallel omposition, whih willbe useful for desribing some important properties for the quotient tehnique.Theorem 4.8 (Assoiativity and ommutativity of parallel omposition)hhp j qii = hhq j piihh(p j q) j rii = hhp j (q j r)iihh�1 j �2ii = hh�2 j �1iihh(�1 j �2) j �3ii = hh�1 j (�2 j �3)iiProofIf we onsider the transition trees for the di�erent ompositions, we see thatthey are isomorphi, whih is enough for theorem 4.8 to hold. 24.5 ImplementationIn this setion we desribe the implementation of probabilisti transition sys-tems, and the probabilisti logi we have de�ned.We have hosen to use the programming language Mosow ML to implementour systems and tehniques. ML is a powerful funtional programming lan-guage, whih suits our needs perfetly.We start by developing a data type for the probabilisti transition systems,inluding a parallel operator.Next we de�ne a data struture for PML, and a model heker for verifyingPML properties in any probabilisti alternating transition system.24



4.5.1 DatatypesWe start by de�ning a few simple types, mainly for making reading easier.We de�ne key onepts as probability, ation and state as well as an index todistinguish between di�erent omponents of a parallel system.type s tate = string ;type probab i l i t y = real ;type i d e n t i f i e r = string ;type at ion = string ;type index = int ;We de�ne two datatypes for transitions, whih are both parameterized by astate type, PTrans for probabilisti transitions whih are de�ned by a listof states assoiated with a list of probabilities and target states. NTrans isthe datatype for proess transitions, de�ned in same manner as probabilistitransitions, but with ations instead of probabilities.datatype ' s tate NTrans = transre lN of( ' s tate � ( ( at ion � ' s tate ) l i s t ) ) l i s t ;datatype ' s tate PTrans = transre lP of( ' s tate � ( ( real � ' s tate ) l i s t ) ) l i s t ;The last datatype we need for PML is System, whih de�nes a probabilistialternating transition system of given proess and probabilisti transitions.Also the datatype for the parallel operator jA, named || in the implementation,is de�ned as a omposition of two systems. Note that || is made in�x as tomath our syntax.infix 5 j jdatatype ' s tate System = system of( ' s tate NTrans ) � ( ' s tate PTrans ) � ' s tate � indexj j j of ' s tate System � ' s tate System ;Besides a list of proess transitions and probability transitions, the datatypeSystem is also de�ned by a start state and an index whih is the systems \num-ber", as mentioned above the means of distinguishing the di�erent subsystemsof a parallel system.The Datatypes for our probabilisti modal logi is like the formal de�nitionsplit in two parts. We have hosen to inlude the terms False and Or in theimplementation of the datatype, beause it makes it easier to read and speifyformulas inluding these terms (e.g. ff instead of :tt).25



datatype nonformula = nAp of s tate � indexj nFalsej nTruej nAnd of nonformula � nonformulaj nOr of nonformula � nonformulaj nNot of nonformulaj nDiamond of at ion � probformulaand probformula = pAp of s tate � indexj pFalsej pTruej pAnd of probformula � probformulaj pOr of probformula � probformulaj pNot of probformulaj pDiamondsimp of probab i l i t y � nonformulaj pDiamond of( ( p robab i l i t y � nonformula ) l i s t � probab i l i t y )infix 7 nAnd pAnd nOr pOrThe boolean operators And and Or have been made in�x, again to math thesyntax.We have implemented the general diamond modality by a list of probability �formula with a orresponding probability (�). We do not expliitly inlude thedependeny variables, but take them into aount when using the modality.4.5.2 The Simple ChekerTo be able to hek the orretness of our implementation of the quotienttehnique later on, we implement a simple model heker, whih an determineif a system satis�es any formula. This model heker takes any system anda formula, and heks if the formula is satis�ed, by going through all thestates in the system. It should be lear that if the systems have many parallelomponents, eah with a onsiderable amount of states, then the simple modelheker fails to perform well beause of the state explosion.We start by de�ning a funtion der (derivative) whih takes any system witha on�guration  and a list A and returns a list of probabilities or ationsthat the system is able to take in the state given in the on�guration, and theorresponding target state.It is also in the funtion der that the parallel operator is de�ned, inludingboth synhronous and asynhronous ompositions depending on whether ornot the ation in the transition is inluded in the list A. A on�guration issimply the urrent state of the system.26



fun der ( ( system ( ntrans , ptrans , s0 , n ) ) : string System )  A =let val ( s , ) = f ind ( fn ( s ' , i ) => i = n ) in let val n l i s t = derN s ntransval p l i s t = derP s ptransin ( map ( fn ( a , t )=>(a , [ ( t , n ) ℄ ) ) n l i s t ,map ( fn ( p , t )=>(p , [ ( t , n ) ℄ ) ) p l i s t )endendj der ( S1 j j S2 )  A =let val ( n l i s t 1 , p l i s t 1 ) = der S1  Aval ( n l i s t 2 , p l i s t 2 ) = der S2  Aval soure1 = subonf ig  S1val soure2 = subonf ig  S2in let val n l i s t =( redue ( fn ( ( a1 , t1 ) , restofMerge1 ) =>i f ( memberof a1 A)then ( redue( fn ( ( a2 , t2 ) , restofMerge2 ) =>( ase ( ( memberof a2 A) , ( a1=a2 ))of ( true , true ) => [ ( a1 , t1�t2 ) ℄j ( , ) => [ ℄ ) � restofMerge2 )niln l i s t 2 )� restofMerge1else ( a1 , ( t1�soure2 ) ) : : restofMerge1 )niln l i s t 1 )�( redue ( fn ( ( a2 , t2 ) , r e s to f a syn ) =>i f not ( memberof a2 A)then ( a2 , soure1�t2 ) : : r e s to f a synelse r e s to f a syn )niln l i s t 2 )val p l i s t = redue( fn ( ( p1 : real , t1 ) , restofMerge1 ) =>( redue ( fn ( ( p2 , t2 ) , restofMerge2 ) =>[ ( ( p1�p2 ) , t1�t2 ) ℄ �restofMerge2 )nilp l i s t 2 ) �restofMerge1 )nilp l i s t 1in ( n l i s t , p l i s t )endendThe funtion der uses a few small helping funtions, the funtions derN andderP take as arguments a state s and a transition relation, and returns the27



outgoing transitions from state s. subonfig takes a global on�guration anda system and returns the spei� on�guration for that system.The memberof funtion takes as argument an ation and a set, runs throughthe set (A) and returns true if the ation is found in the set.Some other basi funtions are also used, map, filter, find and redue, the�rst being a standard ML funtion and the three others de�ned as follows:fun f ind f nil = ra i s e notfoundj f ind f ( h : : t ) = i f f h then helse f ind f t ;fun redue f b nil = bj redue f b ( h : : t ) = f ( h , redue f b t ) ;fun f i l t e r f nil = nilj f i l t e r f ( h : : t ) = i f f h then h : : f i l t e r f telse f i l t e r f t ;We are now ready to de�ne our simple model heker. First we de�ne a mu-tually reursive funtion nSatInner and pSatInner, whih take as argumentsthe following:� Any transition system of the datatype System whih an also be a parallelomposition.� A PML formula (starting with a proess or a probability expression,respetively)� A on�guration� A synhronization set A.The funtion sans the formula and handles eah term reursively, and makesuse of the funtion getativestate, whih, given a on�guration and an in-dex, returns the urrent state being examined. First we present the part thathandles proess formulas. 28



fun nSatInner S nForm  A =ase nForm of(nAp ( t , i )) => ( g e t a  t i v e s t a t e  i ) = tj ( nTrue ) => truej ( nFalse ) => f a l s ej ( nNot nform ) => not ( nSatInner S nform  A)j ( lnon nAnd rnon ) => ( nSatInner S lnon  A)andalso( nSatInner S rnon  A)j ( lnon nOr rnon ) => ( nSatInner S lnon  A)orelse( nSatInner S rnon  A)j ( nDiamond ( a , pForm)) =>( ase ( f ind ( fn ( at ,  ' ) => ( at=a)andalso( pSatInner S pForm  ' A))( let val ( n l i s t , ) = der S  Ain n l i s tend))of => true )handle notfound => f a l s eIn the ase of nDiamond, nSatInner refers to the seond part of the funtion,pSatInner. This is ompletely analog to the formal de�nition, e.g. hai'.The only di�erene in pSatinner is the probabilisti modality, or rather thetwo modalities, the rest is therefore omitted in the following. The ase ofpDiamondsimp builds a Sum variable, whih for all the transitions that satisfynForm ollets the probabilities and sum them up using the funtion sumprob.This sum of probabilities is then heked against the �, to evaluate to true orfalse.and pSatInner S pForm  A =...j ( pDiamondsimp (mu, nForm)) =>let val Sum =( sumprob ( f i l t e r ( fn ( prob ,  ')=>( nSatInner S nForm  ' A))( let val ( , p l i s t ) = der S  Ain p l i s tend ) ) )in ( Sum > mu) orelse ( Sum = mu)endThe general modality works muh in the same way as the simple one, only itoperates on a list of nForm's, and has orresponding alpha values.29



j ( pDiamond ( ( nil ) , mu)) => f a l s ej ( pDiamond ( ( ( alpha , nForm ) : : T) , mu)) =>let fun multsum nil = 0 . 0j multsum (( alpha , nForm ) : : T) =(( sumprob ( f i l t e r ( fn ( prob ,  ')=>( nSatInner S nForm  ' A))( let val ( , p l i s t ) = der S  Ain p l i s tend ) ) )� alpha ) + multsum Tin ( ( multsum (( alpha , nForm ) : : T))>mu) orelse( ( multsum (( alpha , nForm ) : : T))=mu)endTo de�ne the �nal funtion Satisfy, we need a funtion that �nds the ini-tial on�guration of the parallel system. The job is done by the funtioninitialonf, whih takes a transition system and returns the initial on�gu-ration.fun i n i t i a l  o n f ( system ( ntrans , ptrans , s0 , i ) ) = [ ( s0 , i ) ℄j i n i t i a l  o n f ( S1 j j S2 ) = ( i n i t i a l  o n f S1 )�( i n i t i a l  o n f S2 )This is in fat the only di�erene between Satisfy and nSatInner, that theinitial on�guration is found automatially. We here require formulas to beginwith type nFormula.fun Sa t i s f y S Form A = nSatInner S Form ( i n i t i a l  o n f S ) A
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Chapter 5The Quotient Tehnique forPTSIn this hapter the quotient tehnique is de�ned and proved orret for theasynhronous version of PTS. We give a strutural de�nition of the quotienttehnique and show that our logi is not strong enough to support the teh-nique. We then introdue a general modality, whih ompletes our logi, andgive the two types of semantis for it. We prove the quotient theorem bystrutural indution, and end this hapter with an example of veri�ation of asimple parallel transition system by using the quotient tehnique.
5.1 De�nition of the Quotient TehniqueThe quotient tehnique for probabilisti transition systems works the sameway as for �nite state systems, desribed in the introdution and in appendixA. We reall that the purpose of the quotient tehnique is to try to avoid thestate explosion problem in parallel systems, by fatoring out mahines one ata time and plaing their properties in the formula for the whole system. Bydoing this, and by repeatedly applying simpli�ation tehniques, we should beable to avoid the state explosion problem, and thereby redue the veri�ationtime of the system.The quotient operator = is de�ned in De�nitions 5.1 and 5.2.
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De�nition 5.1 (Strutural de�nition of F=P )(i) tt=P2 = tt(ii) (F1 ^ F2)=P2 = (F1=P2) ^ (F2=P2)(iii) :F=P2 = :(F=P2)(iv) hai'=P = ( hai�WP a�!� '=�� a 2 Ahai[('=P ) _WP a�!� '=�℄ a =2 ADe�nition 5.2 (Strutural de�nition of '=�)(v) tt=�2 = tt(vi) ('1 ^ '2)=�2 = '1=�2 ^ '2=�2(vii) :'=�2 = :('=�2)(viii) ���F=�2 = [�x1(F=P1); �x2(F=P2); : : : ; �xk(F=Pk) :�1x1 + �2x2 + � � �+ �kxk � �℄where �2 ;�1 P1; : : : ; �2 ;�k Pk enumerates all probabilisti transitions of �2.As we see, the de�nition of the the quotient formula for ���F is not inludedin our logi. We therefore need to extend our logi, as explained next.5.2 Generalization of the Diamond ModalityThe logi we have given is not strong enough for desribing ertain properties,so we have to extend this logi with a more general onstrut.Apart from the de�nition of the simple diamond modality above, it may notbe obvious why we need the generalized probabilisti diamond modality, andhow it works. Therefore we will give an example to illustrate that the simplemodality ���F is not expressive enough, and with the need for this modality.We start out by assuming that we only have the simple modality in our logi.Figure 5.1 show a system with a distribution �2. Assume that we want to�nd a distribution �1, whih when in parallel with �2, satis�es the followingproperty: ' = �� 14 (hbitt ^ hitt. That is we want �1 to be suh that:�1jA�2 j= ':Now, given the existene of a quotient onstrution in our probabilisti settingthis should be equivalent to: �1 j= '=�2:32



b 1212 �2
Figure 5.1: A small systemwhere '=�2 is the quotient formula for ' with respet to �2. Consider �1'stransitions (see Figure 5.2), we denote the unknown sum of the probabilitiesof the transitions leading to a state where  and b is possible by x1 and x2,respetively. In order for �1jA�2 to satisfy ' it is lear that the requirement

bx1 x2Figure 5.2: The transitions of �1to � is that 12x1 + 12x2 � 14 . We an express this in our semanti terms thefollowing way 12�1[[hitt ^ hbitt=P1℄℄ + 12�1[[hitt ^ hbitt=P2℄℄ � 14However this is not expressible in our logi as a single formula. We thereforeextend our logi with a more general modality, that allows us to express this.De�nition 5.3 (Extension of PML)We de�ne the following to be part of the syntax for PML' j= [�x1F1; : : : ; �xnFn : �1x1 + � � �+ �nxn � �℄:The semantis for this modality is de�ned as:� j= [�x1F1; : : : ; �xnFn : �1x1 + � � �+ �nxn � �℄i� �1�1 + � � �+ �n�n � �where �i =PP:P j=F �(P ). 33



To see that this is a generalization of the simple modality, we note that:� j= ���F , � j= [�xF : x � �℄:The equivalent denotational semanti for the general modality is:fj[�x1F1; : : : ; �xnFn : �1x1+� � �+�nxn � �℄jg = f� j �1�[[F1℄℄+� � �+�n�[[Fn℄℄ � �g:We an now give the de�nition of the quotient tehnique for the general modal-ity:De�nition 5.4 (Extended de�nition)We extend de�nition 5.2 to inlude the following de�nition of the generalmodality. (ix) [�x1F1; : : : ; �xnFn : �1x1 + � � �+ �nxn � �℄=�2 =[�y11F1=Q1; : : : ; �ynkFn=Qk : kXj=1 �1�1y1j + � � �+ kXj=1 �n�nynj � �℄where �2 ;�n Qn enumerates all the probabilisti transitions of �2.We will later show that this extension the logi is strong enough to express theproperties that arise from the quotient proedure, i.e. applying the quotienttehnique on a formula of the form [�x1F1; : : : ; �xnFn : �1x1 + � � �+�nxn � �℄,results in a formula of the same form.5.3 Proving Corretness of the Quotient Teh-niqueWe now state the quotient theorem, and give the proof of it:Theorem 5.5Given two proesses P1 and P2 and two distributions �1 and �2 in PTS, thenP1jAP2 j= F i� P1 j= F=P2�1jA�2 j= ' i� �1 j= '=�2:ProofWe prove theorem 5.5 by indution on the struture F respetively �.34



(i) F = tt is trivial(ii) F = F1 ^ F2: P1jAP2 j= F1 ^ F2, P1jAP2 j= F1 and P1jAP2 j= F2IH, P1 j= F1=P2 and P1 j= F2=P2, P1 j= F1=P2 ^ F2=P2Def, P1 j= (F1 ^ F2)=P2(iii) Negation follows like ^, diretly from the indution hypothesis.(iv) F = hai':This ase is divided in two parts, the synhronous and the asynhronous.First the synhronous ase:P1jAP2 j= hai', 9j; k:P1jAP2 a�! �jjj�k ^ �jjj�k j= 'IH, 9j; k:P1 a�! �j ^ P2 a�! �k ^ �j j= '=�k, 9k:(P1 j= hai('=�k)) ^ P2 a�! �k, P1 j= Wk:P2 a�!�khai'=�k, P1 j= haiWP2 a�!�2 '=�2Def, P1 j= (hai')=P2Then the asynhronous ase:P1jAP2 j= hai', 9�1:(P1 a�! �1 ^ �1jAP2 j= ') or 9�2:(P2 a�! �2 ^ P1jA�2 j= '), 9�1:P1 a�! �1 ^ �1 j= '=P2 or 9�2:P2 a�! �2 ^ P1 j= '=�2, P1 j= hai'=P2 or WP2 a�!�2 ^'=�2, P1 j= hai'=P2 _WP2 a�!�2 '=�2Def, P1 j= hai'=P2(v) ' = tt is trivial(vi) ' = '1 ^ '2. The proof of this is similar to F1 ^ F2.(vii) Negation follows diretly from the indution hypothesis, like the previousase. 35



(viii) ' = ���F :�1jj�2 j= ���F, XQjAP j=F�1(Q) � �2(P ) � �IH, XP XQj=F=P�1(Q) � �2(P ) � �, �1 j= [�x1(F=P1); : : : ; �xn(F=Pn) : �1 � x1 + � � �+ �n � xn � �℄where �2 ;�1 P1; : : : ; �2 ;�n PnDef, �1 j= (���F )=�2(ix) ' = [�x1F1; : : : ; �xnFn : �(x1; : : : ; xn)℄:�1jA�2 j= [�x1F1; : : : ; �xnFn : �1x1 + � � �+ �nxn � �℄, �1�1 + � � �+ �n�n � �; where �i =PP;Qj:P jQjj=Fi �1(P ) � �2(Qj), �i =PQj 264�2(Qj)| {z }�j � yijz }| {XP:P j=Fi=Qj �1(P )375, [�y11F1=Q1; : : : ; �ynkFn=Qk :Pkj=1 �1�1y1j + � � �+Pkj=1 �n�nynj � �℄where �2 ;�i Qi enumerates all probabilisti transitions of �2Def, [�x1F1; : : : ; �xnFn : �1x1 + � � �+ �nxn � �℄=�2 25.4 The Use of the Quotient TehniqueIn this setion we disuss the pratial use of the quotient tehnique. Weshow that when fatoring out mahines, the order does not matter, and wewill examine how many mahines we have to fator out before reahing anyonlusions.Theorem 5.6When fatoring out mahines by using the quotient tehnique, the order doesnot matter.That is [[(F=P1)=P2℄℄ = [[(F=P2)=P1℄℄ProofWe know that by theorem 5.5:Q j= (F=P1)=P2 , Q j P2 j= F=P1 , (Q j P2) j P1 j= F36



We know from theorem 4.8 that the order of parallel omposition doesn'tmatter, so we an write this as(QjP2)jP1 j= F , Q j (P2 j P1) j= F , Q j (P1 j P2) j= F , (Q j P1) j P2 j= FAgain we use theorem 5.5 to get(QjP1)jP2 j= F , QjP1 j= F=P2 , Q j= (F=P2)=P1whih onludes the proof. 2So for the quotient tehnique to work, it is not neessary to fator out ompo-nents in any spei� order.The question is then, will the time omplexity be the same, when fatoringout omponents in di�erent orders. We believe the answer to this question isno. We might get smaller formulas by fatoring out one omponent omparedto another, and some formulas may be easier to simplify than others.In fat we an see that theorem 5.6 allows us to write F=P, where P is a set ofproesses. In partiular if F=P � ff for P 2 P, then F=P � ff . This impliesthat if we have to hek P1 j � � � j Pn j= F1 _ � � � _Fm and Fk=Pj � ff for somek; j, then P1j � � � jPjj � � � jPn j= F1 _ � � � _ Fk _ � � � _ Fmi� P1j � � � jPjj � � � jPn j= F1 _ � � � _ Fk�1 _ Fk+1 _ � � � _ Fm:So Fk an be removed. We will disuss this further in hapter 7.Another question when using the quotient tehnique is, when to terminate theproess of fatoring out omponents. The answer to this question dependsgreatly on the formulas involved, but with n omponents, we annot fatorout more than n� 1. This is beause that hhP jNILii = hhP ii does not hold ingeneral, beause:if a 2 A then a:�NIL a�! �NIL, but a:�NILjNIL a�!= . Thus a:�NIL j= haitt, buta:�NILjNIL j== haitt.So beause we have synhronous transitions, we annot remove the last ma-hine from a system, and thus we have to manually hek the last mahinewith the spei�ation.5.5 Example of the Quotient TehniqueWe will now give a simple example of the use of the quotient tehnique. Weonsider a faulty medium whih an send, rejet and aept messages. It37



aepts and rejets the send messages by a ertain rate de�ned by a probability.The system M an be seen in �gure 5.3.
send M rejetaept 3414 rejet aept

send 11
Figure 5.3: The media MAs we an see in the �gure the media aepts send messages with a probability34 , and rejets with 14 . When a message has been either rejeted or aepted,it returns to the initial state, ready to send a new message.Now suppose we want to inrease the rate of aepted messages. This an bedone by putting one or more new medias in parallel with the original one, andletting the omposed system be asynhronous on the aept transition. Wean now do two things, either using more of the same type of media (with lossrate of 14), and hek if the resulting omposed system satis�es our demands,or we an try �nding a spei�ation for a new media to use with the originalone.We an use the quotient tehnique to do both, in the last ase, we an simplytake our spei�ation and fator out the original media, to obtain a spei�a-tion for the new media. In the �rst ase we simply put as many omponentsin parallel with the original one as we think is enough, and then verify theomposed system by fatoring out medias on at a time.We start by putting another media N of the same type in parallel with M , toobtain M jAN . The system synhronizes on all other transitions but aept,that is A = fsend; rejetg.We want the �nal system to be able to aept messages by a rate of 90%, thatis M jAN j= hsendi �� 910 haeptittWe will now use the quotient tehnique to verify this formula. We fator out38



M to obtain a spei�ation for N , whih we then hek manually.N j= (hsendi �� 910 haeptitt)=N= hsendi(�� 910 haeptitt)=N= hsendi[�x1haeptitt=s1; �x2haeptitt=s2 : 14x1 + 34x2 � 910 ℄When M is in state s1, it an't perform any aept transitions, so the rest ofour system has to do that in order to satisfy the spei�ation. In state s2, Mhas an aept transition, so the rest of the system only has to be able to reahthis state to be satis�ed.N j= hsendi ��x1haeptitt; �x2tt : 14x1 + 34x2 � 910�As we shall see in hapter 7, we an set x2's value to 1, so we an solve ourinequality: 14 + 34 � 1 � 910 , 14x1 � 910 � 34 , x1 = 35We use this value in our spei�ation and getN j= hsendi �� 35 haeptittSo we now have a spei�ation for N , and an manually verify that if N is ofsame type as M , then it learly satis�es the spei�ation. We an also hooseto �nd a media with the spei�ation of N , whih may be heaper (beause ofthe lower aept rate), and use that in parallel with M .We shall later see that formulas do not always redue so easily, and whenapplying the quotient tehnique to a general modality, we atually get quitelarge formulas.5.6 ImplementationWe will now desribe the implementation of the quotient tehnique. The teh-nique is implemented as a single funtion evalQuotient, whih take the fol-lowing as argument:� The proess (of type System) that is to be fatored out� A formula� The synhronizing set A 39



This funtion delares  to be the initial on�guration of S, and alls a mutuallyreursive sub-funtion nonquotient and probquotient. This sub-funtion isalled reursively on every instane of the formula, and simply returns the newquotient formula.We will start by de�ning the more simple formula types, like true, false, ANDand OR. Below is the ode for the proess version of these operators.fun evalQuotient S formula A =let val  = i n i t i a l  o n f Sin let fun nonquotient ( nTrue ) = nTruej nonquotient ( nFalse ) = nFalsej nonquotient ( nAp ( s , i ) )  =let val a s ta t e = ge t a  t i v e s t a t e  iin i f a s ta t e = sthen nTrueelse nFalseendj nonquotient ( nNot nform )  =nNot ( nonquotient nform  )j nonquotient ( L nAnd R)  =let val LQ = nonquotient L val RQ = nonquotient R in LQ nAnd RQendj nonquotient ( L nOr R)  =let val LQ = nonquotient L val RQ = nonquotient R in LQ nOr RQendThe probabilisti ounterparts for these simple types are similar to those ofthe proess version, and are therefore omitted here.The funtion for proess modality hai' we start by alling the funtion probquotientto reate the disjuntion WP a�!� '=�. It then heks whether the ation a is inthe synhronizing set or not, and returns the orresponding formula.
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j nonquotient ( nDiamond ( a , pForm))  =let val Dis junt ion =redue ( fn ( ( at ,  ' ) , t a i lD i s j un  t i on ) =>( ( probquotient pForm  ' )pOr t a i lD i s j un  t i on ))pFalse( f i l t e r ( fn ( at ,  ' ) => ( at=a ))( let val ( n l i s t , ) = der S  Ain n l i s tend))in i f memberof a Athen nDiamond ( a , Dis junt ion )else let val notA =nDiamond ( a , ( probquotient pForm  )pOr Dis junt ion )in i f ( nSatInner S notA  A)then nTrueelse notAendendThis quotient step also heks to see if the formula an be simpli�ed, it heksif the system satis�es notA, and if it does returns true.Now to the probabilisti ase, for whih we, as mentioned above, only showthe diamond modalities.The simple diamond modality i straight forward, it simply forms a formulaof the form pDiamond, and alls nonquotient on the orresponding proessformula. j probquotient ( pDiamondsimp ( p , nform ))  =pDiamond ( ( map ( fn ( mu, onf ) =>(mu, nonquotient nform onf ))( let val ( , p l i s t ) = der S  Ain p l i s tend ) ) , p)The quotient formula for the general diamond modality is implemented in twosteps, one where there is no list of probabilities and proess formulas (nil)and one where there is a list.The funtion alls itself reursively to apply the quotient tehnique to all in-stanes of prob, nform.
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j probquotient ( pDiamond ( ( ( prob , nform ) : : L) , p ) )  =pDiamond ( ( ( map ( fn ( mu, onf ) =>( ( mu�prob ) , nonquotient nform onf ))( let val ( , p l i s t ) = der S  Ain p l i s tend))�( let val pDiamond ( T, ) =probquotient ( pDiamond ( L, p ) ) in Tend ) ) , p)j probquotient ( pDiamond ( nil , p ) )  = pDiamond ( nil , p)in nonquotient formula endendWe will later desribe the funtion that is used to all this quotient funtionwith, but it basily works by hoosing the mahine to fator out, and allingthe quotient funtion on that mahine and a formula, and then alling thesimpli�ation funtion (see hapter 7) on the quotiented formula.
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Chapter 6The General ModalityIn this hapter we examine the general modality, espeially the linear inequal-ity �1x1 + � � ��nxn � �, in order to desribe it in a way that allows us toimplement the tehnique. In [LS92℄ Larsen and Skou de�ne a general modal-ity to support their version of the quotient tehnique (deomposition). Theyde�ne the modality in more general terms than we do, by having some fun-tion �(x1; : : : ; xn) instead of the inequality. This notion was also adopted in[Ves00℄.We believe that the general onstrut of Larsen and Skou is unneessary andonfusing to read, and we devote this hapter to examine the general modality.We show that no matter how many times we apply the quotient tehnique tothe modality, we end up with only one type of inequality, though with severalunknown variables.[�x1F1; : : : ; �xnFn : �1x1 + � � �+ �nxn � �℄=� = (6.1)[�y11F1=Q1; : : : ; �yijFi=Qj; : : : ; �ynkFn=Qk : kXj=1 �1�jy1j+ � � �+ kXj=1 �n�jynj � �℄:It has taken a lot of onsiderations to realize that the last part of the generalmodality is always a linear inequality. The tehnique developed in this reportis based on the ideas of [LS92℄, and our work prior to this report [Ves00℄ de�nesthe general modality with a general �-funtion.Our studies have shown that this funtion is in fat a linear inequality. Atu-ally, as we shall see, it just operates with new binding variables, yij, instead ofx1. 43



6.1 Desribing the General ModalityFirst we need to realize that, when using the quotient tehnique on a generalmodality, we simply get another general modality, but with a few more vari-ables and probability onstants. That is, the general modality is always of theform: [�x1F1; : : : ; �xnFn : �1x1 + � � �+ �nxn � �℄where xi is a variable binding the probabilities. It is this inequality that is in-teresting, and we therefore need to desribe exatly how it looks. Furthermorewe know that our binding variables, beause they are in fat probabilities, havethe following property: 0 � xi � 1.Now, if we look at the de�nition of the quotient tehnique for the generalmodality (see formula 6.1), we see that it is very similar to the one for thesimple modality. Atually we should be able to write the quotiented modalityas follows:[�y11F1=Q1; : : : ; �ynkFn=Qk : ( kXj=1 �jy1j)�1 + � � �+ ( kXj=1 �jynj)�n � �℄The inequality onsists of a k and a n vetor and a n� k matrix:0B�264 y11 � � � y1k... ...yn1 � � � ynk 375 � 264 �1...�k 3751CAT � 264 �1...�n 375 � �So we will have n � k possibly unknown variables, and eah time the quotienttehnique is applied, this number will be multipliated by n, thus it will growexponentially. This surely underlines the need for simpli�ation rules andhopefully it will be possible to keep the number of unknown variables to aminimum.We also need a means of dealing with linear inequalities with multiple unknownvariables, this will be examined next.6.2 Linear InequalitiesIn order to reason about the linear inequalities with more than one unknownvariables, we need to explore some theory about this subjet. We will startby looking at how to de�ne a range of solutions for inequalities of the form�1x1 + � � �+ �nxn � �. 44



Beause we work with probabilities, we know a few things about our variablesand onstants. First of all we know that all onstants �i are non-negative, andwill sum up to one, beause of the fat that all �i is from transitions from asingle state (e.g. �1 ;�i Pi):�1 + � � �+ �n = 1 and 0 � �i:We also know that the variables xi are non-negative and less than or equal to1: 0 � xi � 1; where i = 1; : : : ; nDespite this information it is not possible to give a de�nition on how to �ndthe values of the unknown variables. Instead we an de�ne some simpli�ationrules, whih an eventually redue the inequality, and thereby the generalmodality.As we shall see in the next hapter, we will be able to simplify the inequalitya bit, removing some of the variables, and there by subtrating or removingsome of the �i's. If we assume that the onstant being removed is �i we get:�1 + � � �+ �i�1 + �i+1 + � � �+ �n � 1This means, that if the largest of the onstants multiplied with n are smallerthan � then we an onlude that the inequality is not solvable, that is�1x1 + � � �+ �nxn � � , ff (6.2)if Max(�i) < �=nNote that this rule is only e�etive when at least one of the �i's have beenremoved. We an even give a stronger rule: If �1+�2+ � � �+�n < �, then 6.2holds.So we an redue the inequality to false, if any of the �i's are smaller than�=n. As we will see in the next hapter about simpli�ation, this is in fatenough to delare the whole modality false, and thereby simplify the quotientformula a great deal.Considering repeatedly appliation of the quotient tehnique, we see that thenumber of variables rises exponentially, but the orresponding onstants willget smaller and smaller, hopefully ausing the inequality and thereby the wholemodality to redue to false. We have to do some tests to see if the onstantsvalues lowers faster than n rises, as we an't say anything general about that.It all depends on �, on the prede�ned probabilities, and on the size of thetransition systems. 45



Another way to simplify the general modality is when we reah a situationwhere � beomes negative. This will happen when we an redue any of thexi's to 1, and subtrat the orresponding �i from �. If � beomes negative, thenthe inequality is trivially true, beause of all xi's and �i's are non-negative.We will now give an example of the general modality, and some of the simpli-�ations that an be applied when using the quotient tehnique.6.3 Example of General ModalityAgain we onsider the example in 4.2.3, but now with a di�erent formula, andone more mahine in parallel whih we all C (idential to mahine B).hai �� 13 (hbitt _ hitt)Remember that the synhronization set is A = fa; b; dg, so the system isasynhronous on the � transition. We start by fatoring out C.AjABjAC j= hai �� 13 (hbitt _ hitt), A j= hai �� 13 (hbitt _ hitt)=C, A j= hai[�x1(hbitt _ hitt)=P1; �x2(hbitt _ hitt)=P2 : 13x1 + 23x2 � 13 ℄, A j= hai[�x1(hbitt _ hitt); �x2hitt : 13x1 + 23x2 � 13 ℄It is not possible to simplify this formula anymore, so we will fator out B.AjAB j= hai[�x1(hbitt _ hitt); �x2hitt : 13x1 + 23x2 � 13 ℄, A j= �hai[�x1(hbitt _ hitt); �x2hitt : 13x1 + 23x2 � 13 ℄� =B, A j= hai[�y11(hbitt _ hitt)=P1; �y12(hbitt _ haitt)=P2;�y21(hitt)=P1; �y22(hitt)=P2 : 13 � 12y11 + 13 � 12y12 + 23 � 12y21 + 23 � 12y22 � �℄When we alulate the last quotients in this formula, and simplify the formula,we gethai ��y11hbitt _ hitt; �y12hitt; �y21hitt; �y22hitt : 16y11 + 16y12 + 13y21 + 13y22 � ��Again with no hane of simplifying the modality anymore. As we an see theformula is growing quite large, and it will grow even more if more mahines ofthe same type are fatored out.The formula is still satis�ed though, whih should be easy to see. The questionis now, what would have happened if we fatored out mahine A �rst?46



We will not show all alulations here, but the simpli�ed result of hai �� 13(hbitt _ hitt)=A is haitt, whih de�nitely is a smaller formula and easier toverify than the above.This shows us that the order of whih we fator out omponents does nota�et the �nal result, but formulas may simplify more easily when hoosingone mahine to fator out, instead of another.
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Chapter 7Simplifying rulesWhen using the quotient tehnique, one of the most important things arethe appliation of simpli�ation heuristis. Formulas tend to beome quitelarge when fatoring out omponents, and espeially the general modality hasan exponential blowup in the number of variables when applying the quo-tient tehnique. This an not ompletely be avoided, but with simpli�ationtehniques, it may be possible to keep the formulas small and the number ofvariables low.In hapter 6 we disussed simpli�ation to the general modality, and the in-equalities in partiular. In this hapter we formally de�ne the notion of simpli-�ation, and several simpli�ation rules. We prove soundness of all the rules,and �nally desribe the implementation of them.7.1 Introdution to Simpli�ationSimplifying rules is a set of semantis preserving rules whih an be used tominimize a formula F or '. The idea is to apply these rules ontinuously whilequotienting, so that the �nal expression is small and easy to verify:P1jAP2 j= F , P1 j= (F=P2)SIn the example in setion 5.5, we already used a few simpli�ation rules. Wewill here give the de�nition of a set of simpli�ation rules for our systems, andshow that they are sound.Formally we write F 7! F 0 and ' 7! '0, where F 0 and '0 is smaller (simpli�ed)than F and ', but still equivalent in the following sense:8P : P j= F , P j= F 0 and 8� : � j= ', � j= '049



or equivalently [[F ℄℄ = [[F 0℄℄ and fj'jg = fj'0jgWe de�ne the following simple derived operations:ff Def� :tt F ^G Def� :(:F _ :G)F ) G Def� :F _G F , G Def� (F ) G) ^ (G) F )The de�nition of simpli�ation rules are split into two setions, one for pro-esses properties, and one for probabilisti. There has already been put a lotof work into simplifying proess formulas (e.g. [Kri98℄, [And95℄ and [rHA97℄),so we will onentrate on simpli�ation of the probabilisti properties.7.2 Order of Mahines Fatored OutAs disussed earlier, and as shown in the previous hapter, the order of whihmahines are fatored out, may have something to say when applying simpli-�ation rules.We believe the reason that the system in example 6.3 an be simpli�ed greatlyby fatoring out A instead of B, is that A inluded the asynhronous transition. When a mahine has an asynhronous transition, the demands for the restof the system, when that mahine is fatored out, are loosened.This intuition also follows the de�nition of the quotient operator for asyn-hronous omposition (see de�nition 5.1).We an onlude that when we have an asynhronous ation in our spei�a-tion, then we ould hek to see weather we have any mahines in the parallelsystem, whih an take this transition, and fator that out �rst. As we shallsee later, this is not implemented in our model heker, as the model hekeris doing �ne with the rules desribed in the next two setions.7.3 Simpli�ation Rules for FBesides the logially implied simpli�ation rules like tt^ff 7! ff and tt_ff 7!tt, we need some rules to simplify expressions with general properties.50



De�nition 7.1 (Simpli�ation rules for F )1F : haiff 7! ff2F : tt ^ F 7! F3F : ff ^ F 7! ff4F : hai'=Pi 7! ffi� P1jA � � � jAPn j= F and a 2 A and Pi a�!=; for some i = 1 ; : : : ; nTheorem 7.2The simpli�ation rules in de�nition 7.1 are sound.ProofRules 1F through 3F are trivial.The proof of 4F follows from the de�nition of the quotient tehnique, and fromtheorem 5.6. 27.4 Simpli�ation rules for 'Simpli�ation rules for ' are de�ned in 7.3. They are based on the extendedmodality and an be applied in the simplifying step in di�erent ways. Forexample if we have an expression like [�xtt : �x � �℄ then we an apply rule5� �rst to onlude that x = 1 and then simplify the whole expression to tt.De�nition 7.3 (Simpli�ation rules for ')Formulas of the type ' an be simpli�ed using the following rules.1' : :tt 7! ff and :ff 7! tt2' : ff ^ ' 7! ff and tt ^ ' 7! '3' : [�x1F1; : : : ; �xnFn : �1x1 + � � �+ �nxn � �℄ 7! ffif �1 + � � �+ �n < �4' : [�x1ff; �x2F2; : : : ; �xnFn : �1x1 + � � �+ �nxn � �℄ 7![�x2F2; : : : ; �xnFn : �2x2 + � � �+ �nxn � �℄5' : [�x1tt; : : : ; �xnFn : �1x1 + � � �+ �nxn � �℄ 7![�x2F2; : : : ; �xnFn : �2x2 + � � �+ �nxn � �� �1℄6' : [�x1F1; : : : ; �xnFn : �1x1 + � � �+ �nxn � �℄ 7! ttif� < 0Explanation of The Simpli�ation RulesThe �rst two rules are simple boolean rules.51



Rule three was disussed in hapter 6. If the onstants �i beomes smallenough, the whole expression simpli�es to false.3' : [�x1F1; : : : ; �xnFn : �1x1 + � � �+ �nxn � �℄ 7! ffif �1 + � � �+ �n < �The fourth rule states that if �x1ff : �1x1 � �, then it an be onluded that x1is zero, whih removes both the variable and the onstant from the inequality.4' : [�x1ff; �x2F2; : : : ; �xnFn : �1x1 + � � �+ �nxn℄ 7![�x2F2; : : : ; �xnFn : 0 + �2x2 + � � �+ �nxn℄Rule 5 states that if �x1tt : �1x1 � � then the probability variable x1 is equalto one, and thereby disappears from the inequality.5' : [�x1tt; : : : ; �xnFn : �1x1 + � � �+ �nxn℄ 7![�x2F2; : : : ; �xnFn : �1 + �2x2 + � � �+ �nxn℄If we an simplify any of the xi's to 1, we subtrat the orresponding �i from �.When doing this, we an reah a situation where � beomes negative, therebyausing the inequality to be trivially satis�ed.6' : [�x1F1; : : : ; �xnFn : �1x1 + � � �+ �nxn � �℄ 7! ttif� < 0Some of the rules form part of the omplete axiomatization of validity for thelogi o�ered by Larsen and Skou in [LS92℄.Theorem 7.4The simpli�ation rules in de�nition 7.3 are sound.ProofWe prove the theorem by showing that the semantis for the original formulaare the same as for the simpli�ed formula, for all ases in de�nition 7.3.The �rst two are quite simple and standard rules, and we will only prove theorretness of 3' � 6'3' : Suppose that �1+� � �+�n < �. As �i � 1 for all i, also �1x1+� � �+�nxn <�.4' : This rule is proved in same way as 5', so proof is omitted here.52



5' : To prove orretness of this, we have to show thatfj[�x1tt; : : : ; �xnFn : �1x1 + � � �+ �nxn � �℄jg =fj[�x2F2; : : : ; �xnFn : [�2x2 + � � �+ �nxn � �� 1℄jg:We start on the left side of the equation, writing down the semantis,and minimizing:fj[�x1tt; : : : ; �xnFn : �1x1 + � � �+ �nxn � �℄jg =f� j �1�[[tt℄℄ + � � �+ �n�[[Fn℄℄ � �g =f� j �2�[[F2℄℄ + � � �+ �n�[[Fn℄℄ � �� 1g =fj[�x2F2; : : : ; �xn : �2x2 + � � �+ �nxn � �� 1℄jgSine the semantis of the right side is equal to the redued semantis ofthe left side, this rule is sound.6' : This proof is trivial sine: �i � 0 and xi � 0:This onludes the proof of soundness of the rules in de�nition 7.3 2
7.5 ImplementationWe have implemented the simpli�ation rules de�ned in this hapter as a singlefuntion Simplify, whih is to be alled after eah all to the evalQuotientfuntion. The funtion has a mutually reursive funtion alled nonSimp andprobSimp, this sub-funtion is de�ned on all the possible ombination of for-mula instanes.The funtion runs through the (quotiented) formula and simpli�es it in respetto the simplifying rules, and returns a simpli�ed formula.53



fun Simpl i fy Form  =let fun nonSimp ( nTrue ) = nTruej nonSimp ( nFalse ) = nFalsej nonSimp ( nAp ( s , i )) = let val a s ta t e =ge t a  t i v e s t a t e  iin i f a s ta t e = sthen nTrueelse nFalseendj nonSimp ( nNot F) = let val SF = nonSimp Fin i f ( SF = nTrue )then nFalseelse i f ( SF = nFalse )then nTrueelse nNot SFendAbove is the ode for the simple expression, true and false redues, not sur-prisingly, to true and false. nAp heks for the urrent state of the system, andnNot alls the simpli�ation formula reursively to get the simpli�ed expres-sion for F. If F is either true or false, it simply returns the opposite, and in anyother ase F, it returns nNot F.The ase of nAnd and nOr is handled by reursively alling the simpli�ationfuntion on the left and right sides of the operator. It heks if any of thesides redues to true or false, and if this is the ase, it makes the de�nedsimpli�ation, if not, it returns the (still with simpli�ed left and right parts)expressions with the orresponding operator.
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j nonSimp ( L nAnd R) = let val LS = nonSimp Lval RS = nonSimp Rin i f ( LS = nFalse )orelse ( RS = nFalse )then nFalseelse i f ( LS = nTrue )then RSelse i f ( RS = nTrue )then LSelse LS nAnd RSendj nonSimp ( L nOr R) = let val LS = nonSimp Lval RS = nonSimp Rin i f ( LS = nTrue )orelse ( RS = nTrue )then nTrueelse i f ( LS = nFalse )then RSelse i f ( RS = nFalse )then LSelseLS nOr RSendThe diamond modality for proess transitions is quite straightforward, as theonly rule for simpli�ation of it is haiff 7! ff The funtion uses the fun-tion probSimp on the probabilisti formula pform, and if that redues tofalse, then the funtion returns nFalse. In any other ase it returns formulanDiamond(a,pform), where pform is simpli�ed.j nonSimp ( nDiamond ( a , pform )) =let val PS = probSimp pformin i f ( PS = pFalse )then nFalseelse nDiamond ( a , PS)endThe simple formula types as pNot, pAnd and pOr, are implemented in a similarway as their proess ounterparts, and are therefore omitted here.The simpli�ation funtion for the simple probabilisti modality, ��� heks ifthe value of the probability � is valid (0 � � � 1) and returns pFalse if thatis not the ase.Then it uses the proess simpli�ation formula nonSimp, and heks if it eitheris or simpli�es to false, and if so returns pFalse.
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j probSimp ( pDiamondsimp( p , nform )) =i f ( p>1 . 0 ) orelse ( p<0 . 0 ) then pFalseelse let val NS = nonSimp nformin i f ( NS = nFalse )then pFalseelse pDiamondsimp( p , NS)endFinally we have the simpli�ation funtion for the general modality. This isthe most omplex of them all, as it needs to hek a lot of ases, and beauseof the number of rules for this type.j probSimp ( pDiamond (L,mu)) =let fun DiamondInner ( nil , mu) = ( nil , mu)j DiamondInner ( ( ( p , nform ) : : T) , mu) =ase ( nonSimp nform ) of( nTrue ) => DiamondInner ( T, ( mu�p ))j ( nFalse ) => DiamondInner ( T,mu)j ( nform ') =>let val ( T' , mu' ) = DiamondInner (T,mu)in ( ( ( p , nform ' ) : : T' ) , mu' )endin ase DiamondInner (( L) , mu) of( nil , mu') =>i f ( 0 . 0>mu' ) then pTrue else pFalsej ( [ ( p , nform ) ℄ , mu') =>i f ( ( mu'/ p)>1 . 0)then pFalseelse i f ( ( mu'/ p)<0 . 0 )then pTrueelse ( probSimp( pDiamondsimp((mu'/ p ) , nform )) )j ( L ' , mu') => i f ( mu'<0 . 0 ) then pTrueelselet val p rob l i s t = getprob ( L' )val max = findmax p rob l i s tval amount = ount p r ob l i s tin i f ( max<(mu'/ amount ))then pFalseelse ( pDiamond(L ' , mu' ) )endendin nonSimp Formend ;In the ase of pDiamond the funtion probSimp de�nes an inner funtion alled56



DiamondInner. This funtion handles di�erent ases of proess formulas, anduses rules 4' and 5' to simplify expressions where a proess formula simpli�esto true or false.DiamondInner is then heked in di�erent ases, the simple nil, the ase ofonly one inner formula and variable (whih an then either be simpli�ed ordesribed by pDiamondsimp), and the ase of a full general modality. In thelatter ase the funtion uses three basi sub-funtions to hek for rule 3'.Rule 6' is heked in every di�erent ase in the funtion, and if no moresimpli�ation an be done, the funtion returns a general modality.
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Chapter 8The Model ChekerThroughout the report we have desribed various bits from our implementa-tion of a model heker for probabilisti alternating transition systems. Wehave presented almost everything from de�nition of datatypes to the quotienttehnique and orresponding simpli�ation rules. In this hapter we ompletethe implementation by desribing the last funtions in our model heker.We have hosen not to implement any graphial user interfae or other beau-ti�ation features, as we are solely interested in the results and performaneof the model heker.
8.1 The FuntionsThe funtions we need to desribe are �rst of all a funtion whih, given a par-allel system, hooses a mahine to fator out, and alls the quotient and sim-pli�ation funtions. This funtion alled hooseIndexAndFatorOut, needsa helping funtion divideMahine, whih basily divides the system into dif-ferent ases.The funtion hooseIndexAndFatorOut takes as input a full parallel system,a formula and a synhronizing set. It hooses a mahine to fator out (the�rst mahine of the system), alls the quotient and simpli�ation formulasontinuously until one mahine is left. It then heks if this mahine satis�edthe quotiented formula or not, and returns true or false.59



fun divideMahine (M as system ( , , , index ) ) s e l e  t ed Index =i f index = se l e  t ed Indexthen ( SOME M, NONE)else (NONE, SOME M)j divideMahine (M1 j j M2) se l e  t ed Index =let val ( seletM1 , restM1 ) = divideMahine M1 se l e  t ed Indexval ( seletM2 , restM2 ) = divideMahine M2 se l e  t ed Indexin ( ase ( seletM1 , seletM2 ) of( SOME M1' , NONE) => SOME M1'j ( NONE, SOME M2') => SOME M2'j ( NONE,NONE) => NONE, ase ( restM1 , restM2 ) of( SOME M1' , NONE) => SOME M1'j ( NONE, SOME M2' ) => SOME M2'j ( SOME M1' , SOME M2') => SOME (M1' j j M2' )j ( NONE, NONE) => NONE)endfun hooseIndexAndFatorOut subMahine urrentFormula A =let val s e l e  t ed Index = indexOfMahine ( f i r s t subMahine )in let val ( SOME seletedMahine , restOpt ) =divideMahine subMahine s e l e  t ed Indexin let val nextFormula =Simpl i fy ( evalQuotientse letedMahineurrentFormula A)( i n i t i a l  o n f se letedMahine )in ase restOpt ofSOME ( system ( ntrans , ptrans , s0 , i )) =>nSat i s f y( system ( ntrans , ptrans , s0 , i ) ) nextFormula Aj SOME restM =>hooseIndexAndFatorOut restM nextFormula Aendendend8.2 E�etiveness of the Model ChekerAs desribed in setion 5.4 and 7.3 we might obtain some advantage in reatingan algorithm whih heks for spei� mahines to fator out �rst. As themodel heker is now, it fators out mahines from one end, not onernedabout the desription of this mahine.It ould add to the e�etiveness of the implemented model heker to do suha hek, but we have not found it needful in our implementation. This is60



mainly beause that, as our systems and formulas are de�ned, we believe thatwe would not gain a lot by adding this hek.If future implementation would inlude some kind of reursiveness of formulas,and perhaps in�nite transition relations, then this hek would be muh moreuseful.In the next hapter we give a large example of our implementation, in order totest the quotient tehnique against the simple heker (ie. by running throughall states).
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Chapter 9Testing the Model ChekerIn this hapter we run our implementation on some examples in order tomeasure performane of the quotient model heker ompared to the simpleheker.9.1 A Telephone CallAs an example of systems whih an be desribed using probabilisti system,we assume ell-phone ommuniation system. When making a all from oneell-phone to another, the signal is transmitted via air to a transmitting station,and again via air to the reeiver of the all. Obviously it annot be guaranteedthat no errors will our, and the more users, the bigger hane of losing theonnetion.We will try to model a all from a ell phone, by using our probabilisti al-ternating transition systems. We will then ompose this all with other alls,and give a spei�ation for this omposed system.We start by reating a pure synhronous system (with more than half of thepopulation in large ities owning a ell-phone, the hane of at least a fewpeople using their ell-phones simultaneously should be quite large). We willthen hek if the omposed formula satis�es the spei�ation, by using ourmodel heker, and ompare the omputing time with the time for hekingthe same system with the simple heker.In �gure 9.1 we show a graphial view of our the intuition we have about aall from a ell phone. Note that this is a theoretial example, and may nothave anything to do with how the real life GSM system works.As we see in the �gure, the aller might be plaed in between two transmitting63
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TransmitStation
TransmitStation

Caller Lost message Reiever
Figure 9.1: A graphial vies of a all from a ell phonestations, whih gives us the hoie of two di�erent stations, whih we de�neto at similar to eah other. We will therefore assume in our example that weonly have one transmitting station. We de�ne our transition system as seen in�gure 9.2.As we see there is 1% hane that the all fails even before it reahes thetransmitting station, and again 1% hane that the all won't be �nished.

9.2 Test #1As mentioned before, we start by omposing our alls using pure synhronizingtransition. That means that our synhronizing set isA = fall; onnet; error; ompleteg.We know that when having synhronous transitions, then the probability on-neted to that transition will beome smaller when omposing the system. Inthis example, this means that if more than one person tries to make a all atthe same time, the probability for failure beomes larger.Initially there is only 1% hane of failure, so what is aeptable when thereare, say, 20 people making alls at the same time. Well if you ask a ell-phoneuser he would probably answer no loss at all. Fortunately we do not have toask anyone, so we set the allowed loss rate to 5%.64
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Figure 9.2: The transition system for a phone allThis gives us the following spei�ation for our system:halli �� 95100 honneti �� 95100 hompleteittFor testing we name the di�erent mahines all1, all2 and so on. Theomposed system is named Call, the spei�ation Callformula and the syn-hronizing set is named CallA.9.2.1 Veri�ationWe verify the orretness of the quotient tehnique by running an examplewith two mahines in parallel. A graphial view of the omposed system isseen in �gure 9.3.First we use the simple model heker:� Sa t i s f y (  a l l 1 j j  a l l 2 ) Cal l formula CallA ;> val i t = true : boolNot surprisingly it returns true, whih we an verify by looking at �gure 9.3.We now run the same example with the quotient tehnique, and get� hooseIndexAndFatorOut (  a l l 1 j j  a l l 2 ) Cal l formula CallA ;> val i t = true : bool 65
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Figure 9.3: The omposed systemSo we have veri�ed that the two tehniques returns the same result.
9.2.2 Test ResultsWe will now ompare the two hekers, to see whih one is fastest. By runningsome tests, we �nd out that our spei�ation does not hold when we have morethan 5 mahines in parallel. This is obviously not a good sign if we were toimplement a ell-phone ommuniation system, but for testing our tehniqueit should be �ne.The Test settingFor our test setting we use the above spei�ations of our system and formula,and we run the tests on an AMD Duron 600 MHz proessor with WindowsME. The funtions are alled from within emas, using MosML.66



The TestWe test our example by starting with two mahines in parallel, and inreasingthis number until we have a system onsisting of 20 mahines in parallel. Weplot the times in a diagram, whih an be found in �gure 9.4.As we an see in the �gure, this example really shows the bene�ts of the quo-tient tehnique. When verifying 20 parallel mahines, the tehnique onludesquite early that the system doesn't satisfy the spei�ation, and thereby re-duing to false.The simple heker does not have this hek, and therefore still heks all statesof the parallel system. In this example though, we an only hek up to 17mahines in parallel with the simple heker, above that the omputer runsout of memory.9.3 Test #2For the seond test we introdue a new mahine, whih has two ways of on-neting a all. We will use one instane of this mahine in our omposedsystem, and give a new spei�ation for the system. The new mahine an beseen in �gure 9.5.The spei�ation we wish to test in this example is the following:halli �� 12 ((honneti �� 25 hompleteitt) _ (honnet2i �� 910 hompleteitt))We test this in similar way as test #1, and plot the result into a diagram, seenin �gure 9.6.The results for this test is also very satisfying. The simple heker growsexponentially in time, whereas the omputation time for the quotient tehniquegrows more moderately. Atually we see that in this ase the simple hekerperforms even worse than before, while the quotient tehnique is muh thesame as in test #1.
67



Number ofMahines1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Time (in milliseonds * 100)

24
68
1012
1416
1820
2224
26

The simple hekerThe quotient tehnique

Figure 9.4: Exeution time for the simple heker and the quotient tehnique.68
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Figure 9.5: The new mahine
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Figure 9.6: Time diagram for Test #270



Chapter 10ConlusionThe main goal of this report was to develop further the theory introdued in[Ves00℄, and implement the tehnique, whih this theory o�ers. Espeially thegeneral modality needed to be explored, but also asynhronous ompositionand simpli�ation were to be studied more thoroughly.10.1 Probabilisti Transition SystemsWe have explored the theory of probabilisti alternating transition systems inmore detail than we did in the above mentioned referene. Some basi proba-bility theory has been introdued, in order to get a better understanding of thebehavior of the systems. We have de�ned a probabilisti proess alulus, anda probabilisti modal logi (PML). As we onentrate on the quotient teh-nique, we have foused on the transition systems rather than the alulus. Wehave de�ned an asynhronous parallel operator, by introduing a �P transitionto eah P , in order to be able to keep the two part syntax.10.2 The Quotient TehniqueWe have de�ned the quotient tehnique for our transition systems and ourlogi, and shown that the original logi was not strong enough to supportthe tehnique. This is not a revolutionary result, as it was shown by Larsenand Skou in [LS92℄. However we have de�ned the general modality in a morespei� version than the one of Larsen and Skou's. We have also shown that thelast part of the modality is indeed one linear inequality, and have furthermoregiven a quotient de�nition of this modality.71



10.3 The General ModalityThe question of how the general modality would behave when being part ofa quotient formula, has been answered. There will never be more than oneinequality onerning the instantiation of eah variable, only the number ofbinding variables will hange. As the number of variables in the inequality raisewhen ontinuously fatoring out omponents of a system, we have exploredsome ways of reduing it.Beause of the fat that we most of the times are able to simplify the bind-ing variables, thereby ausing some of the onstants in the inequality to beremoved, we found that we an atually show that there is a big hane thatthe whole modality an be redued to false after we have fatored out somemahines. This and the disovery that the right side of the inequality some-times beomes negative and thereby ausing the modality to redue to true,gives a good hope for the appliability of the quotient tehnique.10.4 Simpli�ationWe have explored new ways of simplifying the quotiented formulas. For exam-ple have we disussed that making a hek on the omposed system, in orderto hoose a spei� mahine ould be a promising way of obtaining formulaswhih easily simpli�es. This an both be used in the ase of asynhronous andsynhronous omposition of systems.We disussed two of the most important simpli�ation rules for probabilistiformulas above. Besides those two, we still have some basi rules, whih helpus in simplifying probabilisti formulas.10.5 The ImplementationWe have implemented our theory in the programming language Mosow ML.This has resulted in a model heker whih uses the quotient tehnique toverify satis�ability of probabilisti alternating transition systems. We havealso implemented a simple heker, whih runs through all states in order tohek the spei�ation.In our tests, we an learly see the problem of state explosion, when usingthe simple heker. The quotient tehnique does exeptionally well, whihwas atually the intuition we had from the start. It should be lear by now,72



that if we an simplify the quotiented formulas quite early, then the quotienttehnique spends very little time verifying even large systems. It seems thatthe simpli�ation rules we have implemented are quite e�etive, as our modelheker is very fast, at least in our test examples.10.6 Further WorkAlthough we have explored and disussed some of the the important areas inapplying the quotient tehnique to probabilisti systems, there are still lots ofinteresting things to be explored.Bisimulation is one interesting area to study. Another possible extension wouldbe to add reursive properties to the logi, whih again would all for moretheory about simpli�ation, by for example studying some �xed point theory.Furthermore there is the question of adding time to probabilisti systems (orvie versa). This ould enable us to express things like \ertain events ourswith probability x within z seonds".
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Appendix AThe Quotient Tehnique forFinite State SystemsTheorem A.1Given two proesses P1 and P2 and two distributions �1 and �2 in CPS, thenP1jjP2 j= F () P1 j= F=P2�1jj�2 j= '() �1 j= '=�2ProofWe proof theorem A.1 by indution on the struture F respetively �.(i) F = tt is trivial(ii) F = F1 ^ F2: P1jjP2 j= F1 ^ F2, P1jjP2 j= F1 and P1jjP2 j= F2IH, P1 j= F1=P2 and P1 j= F2=P2, P1 j= F1=P2 ^ F2=P2, P1 j= (F1 ^ F2)=P2(iii) The negation is trivial and thus not proved(iv) F = hai':This ase is divided in two parts, the synhronous and the77



asynhronous. First the synhronous ase:P1jjP2 j= hai', 9j; k:P1jjP2 a�! �jjj�k ^ �jjj�k j= 'IH, 9j; k:P1 a�! �j ^ P2 a�! �k ^ �j j= '=�k, 9j:(P1 j= hai'=�k) ^ P2 a�! �k, P1 j= Wk:P1 a�!�khai'=�k, P1 j= haiWP2 a�!�2 '=�2, P1 j= (hai')=P2Then the asynhronous ase:P1jAP2 j= hai', 9�1; �2:(P1 a�! �1 ^ �1jAP2 j= ') _ (P1 a�! �1 ^ P2 a�! �2 ^ �1jA�2 j= '), 9�2:(P1 j= hai'=P2) _ (P1 j= hai'=�2 ^ P2 a�! �2), P1 j= hai'=P2 _WP2 a�!�2 '=�2(v) ' = tt is trivial(vi) ' = '1 ^ '2: �1jj�2 j= ' ^ ', �1jj�2 j= '1 and �1jj�2 j= '2IH, �1 j= '1=�2 and �1 j= '2=�2, �1 j= '1=�2 ^ '2=�2, �1 j= ('1 ^ '2)=�2(vii) Negation is trivial(viii) ' = ���F :�1jj�2 j= ���F, XQjjP j=F�1(Q) � �2(P ) � �IH, XP XQj=F=P�1(Q) � �2(P ) � �, �1 j= [�x1(F=P1); : : : ; �xn(F=Pn) : �1 � x1 + � � �+ �n � xn � �℄where �2 ;�1 P1; : : : ; �2 ;�n Pn, �1 j= (���F )=�2 78



(ix) ' = [�x1F1; : : : ; �xnFn : �(x1; : : : ; xn)℄:�1jj�2 j= [�x1F1; : : : ; �xnFn : �(x1; : : : ; xn)℄, �(�1; : : : ; �n) = True; where �i =PP;Qj:P jQj j=Fi �1(P ) � �2(Qj), �i =PQj �2(Qj)| {z }�j � yijz }| {XP:P j=Fi=Qj �1(P ), �1 j= [�y11F1=Q1; : : : ; �yijFi=Qj; : : : ; �ynkFn=Qk : �(Pj �jy1j; : : : ;Pj �jynj)℄, �1 = [�x1F1; : : : ; �xnFn : �(x1; : : : ; xn)℄=�2 2
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