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ABSTRACT:

In this thesis we present a compositional
technique, called the quotient technique,
for verification of probabilistic transi-
tion systems. The quotient technique
is a promising method for avoiding the
state explosion problem, arising from the
many possible combinations of compo-
nent states. The technique works by
gradually removing components from the
system, while transforming the specifica-
tion accordingly.

We present the theory of probabilistic
alternating transition systems, system
which can have both non-deterministic
and probabilistic behavior, and allow
these systems to have both synchronous
and asynchronous behavior.

We furthermore present a probabilistic
modal logic, PML, for which we define
the quotient technique. This leads to an
extension of the logic, a so called gen-
eral modality, which we explore in detail
in order apply simplification heuristics to
the formulas.

The correctness of the quotient technique
is justified in a formal proof, and the very
important aspect of simplification of quo-
tiented formulas is studied.

We implement the technique in Moscow
ML, and explain included elements of the
implementation in the report. Finally
we run tests on the implementation, to
evaluate the effectiveness of the quotient
technique.
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Synopsis:

I denne afhandling praesenterer vi en
kompositionel teknik, kaldet kvotient
teknikken, til verifikation af probabilis-
tiske transitions systemer.  Kvotient
teknikken er en lovende metode til at
undga “state explosion” problemet, som
opstar ud fra de mange mulige kom-
binationer af komponenternes tilstande.
Teknikken virker ved at fjerne kompo-
nenter fra systemet, og samtidig trans-
formere specifikationen tilsvarende.

Vi praesenterer  probabilistiske  al-
ternerende transitions systemer, som
er systemer som kan have bade non-
deterministiske og probabilistiske
egenskaber, og tillader disse systemer at
have bade synkron og asynkron adfaerd.
Vi praesenterer desuden en probabilistisk
modal logik, PML, som vi definerer kvo-
tient teknikken for. Dette leder til en
udvidelse af logikken, med en sakaldt
generel modalitet.  Denne modalitet
studerer vi i detaljer, for at satte os i
stand til at simplificere vores formler.
Korrektheden af kvotient teknikken vises
i et formelt bevis, og det vigtige punkt
vedrgrende simplification af kvotient
formler undersoges.

Vi implementerer teknikken i Moscow
ML, og forklarer de inkluderede el-
ementer fra implementationen i rap-
porten. Til sidst tester vi den imple-
menterede teknik, for at kunne evaluere
effektiviteten af kvotient teknikken.
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Chapter 1

Introduction

1.1 Formal Verification

Formal verification methods are a strong tool in the development of high qual-
ity products. The presence of bugs in, for example, embedded software is very
costly and can cause losses of lives. Software in devices, such as ABS breaks in
cars or flight instruments, has to be as close to error free error free as possible.
Formal methods provide a precise notion between systems and their specifica-
tions, so that it can be decided without ambiguity whether or not a system
meets its specifications.

1.1.1 Concurrent Systems

Concurrent systems is a collection of components that are executed simultane-
ously while interacting with each other. Most commonly concurrent systems
have non-deterministic behavior, but sometimes also have time or probability
properties added. Verification of the correct behavior of concurrent systems
is not an easy task to perform. First of all we need to provide a description
of the system and the way it interacts, second we must have a specification of
properties for the system, and a formal criterion for concluding correctness of
the system. Last we need an algorithm to decide correctness of the system.

Verification is the process of checking of correctness. Kristoffersen suggests in
[Kri98] a classification of computer aided verification techniques in two major
trends: Theorem proving and model checking. In theorem proving, the user
himself provides a formal proof of correctness, which is then checked by a tool.
Model checking is fully automatic, which is why the industry tend to find this
method more appealing.



1.1.2 Model Checking

Verification of large systems via model checking has become a widely used
technique within the last decade. Model checking has been applied to many
types of systems, ranging from finite state to real time and probabilistic sys-
tems. However a major problem arises when applying model checking to even
moderate sized parallel systems. This problem is known as the state explosion
problem, and arises from the many possible combinations of component states
(in fact exponentially many in the number of components). Model checking of
concurrent systems has been proven to be PSPACE-complete, and is therefore
most likely theoretically intractable. However a lot of work has been done in
the field of attacking the state explosion problem for practical systems, some
with great success. Section 2.2 present some of these techniques.

1.2 Probabilistic Systems

Some systems can be designed so that they are guaranteed to behave correctly
no matter what happens. In most systems, though, this requirement can
not be met, as there is always a risk of power failure, hardware failure or
even a failure caused by human interaction. Examples of such systems are
telecommunication systems, computer networks or distributed systems built
on these networks.

Due to the fact that a system can not be guaranteed to work correctly, we need
a way of describing the unreliability of the system. This is especially important
in safety critical systems, such as ABS breaks or flight control systems.

Probabilistic transition systems provide a framework that allows us to express
that a failure can only occur with a certain probability, and as a tool it can be
used to verify that the system, with some probability, behaves according to its
specification (i.e. there is only 0,0001% chance that an airplanes flaps doesn’t
come up).

Probabilistic systems have been studied in many different forms, and in chapter
2 we present some of the existing work and the different probabilistic models.

In this thesis we have chosen to work with the so called alternating probabilistic
model, which will be described later.



1.3 The Quotient Technique

This report focuses on the quotient technique, which is a promising technique
for avoiding the state explosion problem. However when applying the quotient
technique several other problems arise, such as very large formulas.

The idea behind the quotient technique is to factor out components of a parallel
system, one at a time, and by continuously applying simplification heuristics.
Consider the following model checking problem involving a system with n
processes in parallel:

PPy
We wish to verify that the parallel composition of these systems satisfies ¢
without having to construct the complete state space of Py|---|P,. We will

avoid this by removing FP; one by one while simultaneously simplifying the
formula. So when factoring out P, we will transform the formula ¢ into the
quotient formula ¢/ P, and applying simplification heuristics, such that

(Br] - 1Bn) oo (P |Pay) = () Fa)*,
where s denotes simplification of the formula.

The quotient technique has been studied for several years now, and has been
proven to be successful for finite state systems and real-time systems. The
technique has also been applied to Hierarchical State-event systems.

As an example of the quotient technique assume that we want to prove

n

.NIL|a.NIL|---|a.NIL = {a)tt

where | denote parallel composition of CCS.

Clearly it seems a waste to examine the entire state space (2" states) to estab-
lish this simple property. Using the quotient technique this may be avoided:

n—1

.NIL|a.NIL|---|a.NIL = ({a)tt)/a.NIL
Quotient+Simpl. {
a.NIL|a.NIL|---|a.NIL k= tt

n—1

So we have avoided examining 2" states, but yet proved that the system sat-
isfied the property.

A formal presentation of the quotient technique for finite state systems is given
in Appendix A.



In this thesis we define the quotient technique for probabilistic alternating
transition systems, and implement the technique in ML. Our main goal is to
examine the technique, the formulas and some simplification rules, in order
to provide a working model checker using the quotient technique. We will
test this implementation, to verify that it is indeed a promising method for
avoiding the state explosion problem.

1.4 Outline

The outline of this report is as follows.

In the next chapter we present the existing related work, and gives examples
and definitions of other probabilistic models.

Chapter 3 is an introduction to probability theory.

In chapter 4 we define probabilistic alternating transition systems, and give
a probabilistic process calculus. We have chosen to be able to express asyn-
chronous communication in our transition systems, a not so straight forward
application in the alternating model. The motivation for and consequences of
this choice are also described in this chapter. Finally we give a probabilistic
modal logic PM L, that allows us to express properties of such systems.

Chapter 5 introduces the quotient technique to the alternating probabilistic
model. We define the quotient rules, and show that our initial logic needs to be
expanded with a more general modality in order to support the technique. We
then give proof of correctness of the quotient rules and give a small example
of the technique.

Chapter 6 is dedicated to the discussion of the general modality.

In chapter 7 we define a set of simplification rules and prove that they are
sound with respect to the semantics.

In Chapter 8 our model checker is presented and in chapter 9 we present an
example and run tests on the implemented checker.

Chapter 10 ends this report with summary, conclusions and ideas for further
research in the area of probabilistic transition systems and the quotient tech-
nique.

Throughout the report we have chosen to include extracts from our implemen-
tation and corresponding explanations and comments to this.



Chapter 2

Related Work

In this chapter we take a look at some of the existing work in the field of
probabilistic systems and model checking in general.

2.1 Probabilistic Models

We present the work in the field of probabilistic processes and transition sys-
tems. In [vGSST90] van Glabbeek, Smolka, Steffen and Tofts classify proba-
bilistic processes in three types: Reactive, generative and stratified models.

e Reactive Model
The reactive model consists of states and labelled transitions associated
with probabilities. For each state, the sum of probabilities on outgoing
transitions must be 1 for transitions with the same label.

e Generative Model
This model consists also of states and labelled transitions with probabil-
ities, but with the sum of probabilities of all outgoing transitions equal
to 1.

e Stratified Model
Stratified models consist of states and two kinds of transitions, proba-
bilistic and action based. In the case of probabilistic transitions, the sum
of probabilities must be 1, and for the actions transitions the restriction
is that there must be only one outgoing action transition from a state.

In the following we will present the results on these three models, and give a
formal definition of the first two.



Though van Glabbeek et al. only distinguish between the three models men-
tioned, this shall not be seen as the only probabilistic models available. This
report focuses on the alternating model which, to our knowledge, was first
studied by Hansson and Jonsson in [HJ89] and which is derived from concur-
rent Markov chains. Later in this report we define probabilistic alternating
transition systems, and give a full definition of a probabilistic calculus for the
alternating model.

2.1.1 The Reactive Model

In [LS91], Larsen and Skou define a probabilistic bisimulation based on the
reactive model, and in the same reference, the authors provide a probabilistic
logic based on HML, which they call probabilistic modal logic (PML).

In [LS92], Larsen and Skou define a reactive probabilistic transition system as
follows:

Definition 2.1
A (reactive) probabilistic transition system is a structure P = (Pr, Act, ),
where Pr is a set of processes (or states), Act is the set of actions that the

processes may perform, and 7 is a transition probability function m : Pr X
Act x Pr — [0, 1] such that for each P € Pr and a € Act:

Z m(P,a, P") =1 or Z m(P,a, P") =0

P'ePr P'ePr

indicating the possible next states and their probabilities after P has performed
the action a.

In figure 2.1 is an example of a reactive process.

Figure 2.1: An example of a reactive process

In [LS92] the authors develop a synchronous calculus based on the reactive
model. They use a probabilistic choice operator parameterized by a probability,
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to obtain probabilistic behavior. They show that when decomposing a PML
formula, the logic PML is not strong enough to express parallel decomposition,
and present an extension to PML, called EPL, which support decomposition.
They further axiomatize the extended logic EPL.

2.1.2 The Generative Model

The generative models define context dependent probability distributions, and
the probabilities have to be calculated every time an action is received. The
generative model has been formally defined by Jou and Smolka in [JS90] as
follows:

Definition 2.2

A (generative) probabilistic transition system (PLTS) is a triple (Pr,>", i)
where:

e Pr is the set of all processes;

e Y is the set of all atomic actions, and 0 is a special symbol not in ¥
called the zero action;

o 1 (Prx(XU{0})xPr) — [0,1] is a total function called the probabilistic
transition function satisfying the following restriction: VP € Pr,

>, nPaQ=1

acXU{0},QePr

An example of the generative model can be seen in Figure 2.2

Figure 2.2: Example of a generative process



2.1.3 The Stratified Model

In the stratified model, pure probabilistic choices can be made. Glabbeek et al.
defines in [vGSST90] stratified operational semantics for a probabilistic process
calculus (PCCS). The calculus is separated in two parts, action transitions and
probability transitions, which enables the use of pure probabilistic choices.
The two types of transitions are denoted P = @ and P 2 @, where p is the
probability that P can behave as ). The sum of all outgoing probabilistic
transitions from a state is 1, thereby making the transition system stochastic.
Glabbeek et al. also provides a bisimulation for the stratified model, called
stratified bisimulation.

An example of the stratified model can be seen in figure 2.3

Figure 2.3: Example of a stratified transition system

In [vGSSTI0] the authors furthermore form a hierarchy of the probabilistic
models. They show that the generative model is an abstraction of the stratified
model, and that the reactive model is an abstraction of the generative model.

2.1.4 Other Probabilistic Models

Apart from the reactive, generative and stratified models, other probabilistic
models have been studied. In [HJ89] and [Ves00] the authors consider the
alternating model, which is also the model used in this report, and therefore
is described later. Hansson and Jonsson present a CTL like logic in [HJ89],
in order to be able to describe properties like “After a request, there is a 90%
probability that the request will be carried out in 2 seconds”.

The alternating model originates, to our knowledge, from the joint work be-
tween Hansson and Jonsson in 1989, which is presented along with the work
in [HJ89] in Hans Hanssons book [Han94].

8



2.2 Model Checking

In this section we look at some of the existing model checking techniques. We
distinguish between model checking for finite state systems, real-time systems
and probabilistic system.

2.2.1 Finite State Systems

Several techniques have been applied to finite state systems with great success.
One such technique is based on Binary Decision Diagrams (BDD), proposed by
Bryant in [Bry86]. BDD’s provide a canonical form for boolean functions that
are often more compact than formulae on conjunctive and disjunctive normal
form. Several efficient algorithms have been developed for manipulating for-
mulae based on their BDD representation, and the model checking tool SMV
is based on BDD'’s.

Partial Order Reduction is another attack on the state explosion problem with
promising results. This method is used by the tool SPIN. Compositional Back-
wards Reachability (CBR) is a technique which has had great success. Tests
with applying the CBR technique to large concurrent systems have proven
that CBR definitely is a good way to attack the state explosion problem. The
CBR technique is used in the commercial tool VisualSTATE, which uses the
state event model. The last technique we will mention for finite state systems
is subject of this report, the quotient technique. Larsen was one of the first to
propose this technique in [Lar86], and in Appendix A we give example of the
technique used on a simple HML logic. The quotient technique has also been
applied to State-Event systems in [NJJT99], a work which has been greatly
extended in [BP0O].

2.2.2 Real-Time Systems

Methods for avoiding the state explosion problem in real-time systems include
Difference Bound Matrix (DBM) an efficient data-structure for the time space
and the rather new data-structure Clock Decision Diagrams (CDD), which
can handle both discrete control space and continuous time space symboli-
cally. Of model checking tools for real-time systems, we can mention Kronos
[kro], Hytech and UPPAAL [BLL"95]. In [Seg95], Segala builds a framework
for verification of randomized distributed real-time systems, systems with both
timed and probabilistic properties. The quotient technique has also been stud-
ied for real-time systems, by Laroussinie and Larsen in [LL95] and by Andersen

9



in [rHA9T].

2.2.3 Probabilistic Systems

The state explosion problem in probabilistic transition systems, has so far been
attacked by extending Binary Decision Diagrams (BDD), to treat probabilistic
transition systems. Bozga and Maler introduce Probabilistic Decision Graphs
(PDG) in [BM99], and in [BCGH"97] Bahar et.al. apply Multi-terminal BDD’s
(MTBDD) to probabilistic verification.

The quotient technique for probabilistic transition systems has been studied
by Larsen & Skou in [LS92] but only for a reactive model, and with no direct
intension of applying it to model checking. They introduced a simple calcu-
lus of probabilistic processes and a probabilistic modal logic. In their paper
they study the problem of applying the quotient technique (or decomposition)
and identify a new extended probabilistic logic, which is needed to support
the technique. Furthermore they give complete axiomatization for both the
calculus and the logic.

The present report extends the work in [Ves00], in which the quotient technique
for probabilistic alternating transition systems was first introduced.

10



Chapter 3

Preliminaries

Before we can define probabilistic alternating transition systems and a prob-
abilistic process calculus, we need some general results on probabilities. The

results in this chapter is mainly extracted from DeGroot’s “Probability and
Statistics” [DeG89).

3.1 Probability Theory

In this section we give an axiomatic definition of the term probability, and give
a few important consequences of the axioms.

First we need the notion of sample space. A sample space of an experiment
is a collection of all the possible outcomes of the experiment. A sample space
can be thought of as a set, or collection, of different possible outcomes, and
each outcome can be thought of as a point, or an element, of the sample space.

As an example consider a roll with a six sided die, then the sample space can
be written S = {1,2,3,4,5,6}. An event of an experiment occurs when the
outcome of the experiment satisfies certain conditions specified by that event.

So an event A C S that an even number is obtained in our die example is
A ={2,4,6}.

We define the probability function 7 as follows:

Definition 3.1
The probability function 7 is a function from the sample space S to a number

between 0 and 1:
m:S —[0,1]

In a given experiment we assign each event A in the sample space S with

11



a number II(A), which is the probability that A will occur. The number
ITI(A) must satisfy three axioms in order to satisfy the mathematical notion
of probability. These axioms ensure certain properties that a probability is
expected to have.

The first axiom states the fact that the probability IT of any event A, denoted
II(A), has to be non-negative.

Axiom 1
For any event A, II(A) > 0.

The next axiom states that if an event is certain to occur, then the probability
of that event is 1.

Axiom 2
I(s) =1.

Axiom 3
For any infinite sequence of disjoint events Ay, As, .. .,

We can now formally define probability.

Definition 3.2 (Probability)
A probability distribution, or a probability, on a sample space S is a specifi-
cation of numbers 7w(A) which satisfy Axioms 1, 2 and 3.

We shall now give a few important consequences of the axioms, starting by
showing that if an event is impossible, then the probability of that event is 0.

Theorem 3.3

I1(0) = 0.

Proof

Consider the infinite sequence of events A;, Ay, ..., such that 4; = 0,7 =
1,2,.... Then this sequence is a sequence of disjoint events, since ) N0 = (.

Furthermore, U, A; = (). Therefore, it follows from Axiom 3 that

(p) =11 (U Ai> = Z II(4;) = ) _11(0).

=1

12



So when II(() is added in an infinite series, the sum of that series is the number
I[1((). The only number with this property is I1(()) = 0. O

We state another general theorem, which can easily be proved.

Theorem 3.4
For any event A, 0 <TI(A4) < 1.

For a given probability function II on a finite sample space S, let II be defined
by

acA

It is not difficult to see that IT defined this way is a probability distribution
on P(S), the set of all subsets of S;. Usually we use 7 instead of II, if the
meaning is clear from the context.

13
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Chapter 4

Probabilistic Transition Systems

In this chapter we define probabilistic alternating transition systems. Although
we work with the quotient technique, for which we only need a parallel opera-
tor, we also give a probabilistic process calculus. We also define a probabilistic
modal logic, for describing properties in our transition systems.

4.1 PTS

The idea of a probabilistic alternating transition system is that we have two
kinds of states, probabilistic and non-deterministic. Only in the probabilis-
tic states can the transition system take a probability transition, and in the
non-deterministic states, the system behaves like a normal non-deterministic
process, i.e. by performing some action.

An example of an probabilistic alternating transition system can be seen in
figure 4.1, and is formally defined in definition 4.1.

The formal definition of a probabilistic alternating transition system is given
as follows:

Definition 4.1 (Probabilistic Alternating Transition System (PTS))
Let Act be a set of actions. A probabilistic alternating transition system is a
triple (S, —, my), where

e S is a non-empty set of states
e —C S x Act x Dist(S) is a finite transition relation

e 1 € Dist(S) is an initial distribution on S

15



We shall use P = 7 to denote that (P, a,7) €—, and P to denote that
(P,a,m) ¢ —, for all m. We will sometimes write 7 ~», P instead of 7(P) = p.

Figure 4.1: A probabilistic alternating transition system

In the next section we give a probabilistic process calculus, with an asyn-
chronous parallel operator. When composing transition systems later on we
use this parallel operator

We will later show that parallel composition of probabilistic systems is sym-
metric (theorem 4.8), that is, the order of which processes or systems are
composed does not matter.

4.2 Probabilistic Process Calculus for PTS

We will in this section give a probabilistic process algebra, very similar to the
classic process calculus CCS. Probabilistic extensions to several classic process
calculi have been studied for many years, but we will here give a calculus that,
to our knowledge, differs from the ones studied by others. Unlike other calculi,
the process calculus for PTS is split in two, and consists of two different types of
terms, namely process terms ranged over by P, which have non-deterministic
behavior, and probabilistic terms ranged over by w. The main reason for
this split-up is, that when implementing PTS it will be easier to differentiate
between process and probabilistic terms.

Although this report concentrates on the quotient technique, and therefore

16



on the parallel operator, we chose to give a full probabilistic process calculus.
We do this mainly to show what a calculus for the alternating model could
look like, so that this provides a basic framework, if others are interested in
exploring this model.

4.2.1 Syntax of PTS

We start out by giving a syntax for describing probabilistic transition systems.
The syntax consists of a NIL operator, a choice operator, a prefix, a parallel
operator and the special probabilistic choice operator.

The syntax is given in definition 4.2

Definition 4.2

n= NIL|P + P, |an|P|aP| N (4.1)
T = Ty | T+ T2 | Tan | T|ame | T @y o (4.2
(4.3

where A is a set of actions that the system synchronizes on, where N 2l p.

4.2.2 Semantics of PTS

The semantics of PTS is given in terms of two types of judgments:

P37, whereac A
m~, P, where p € [0,1]

The last is, as described before, just another way of writing 7(P) = p.

We refer to the first as process transitions and the latter as probabilistic tran-
sitions.

Formal inference rules of P and 7 can be found in table 4.1, and are further
explained in the following.

Inference Rules for nondeterministic transitions

e NIL denotes a state with no outgoing transitions, hence no rule.

e The non-deterministic choice operator is a choice between the transitions
of the two arguments.
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Nondeterministic Probabilistic
NIL NIL 7TNIL 7TNIL f\/'>1 NIL
a a P ‘ P
Parallell | D2 M AT e g | papallel | DL m ST T
P1|AP2—>7T1|A7T2 7r1|A7r2MM1'M2 P1|AP2
a
Parallel2 A a_> n ifad A
P1|AP2 — 7T1|A7TP2
Prefix ar ST Prefix Tam ~1 QT
a P, P,
Choicel _bh=T Choice T 21 T2 s 22
Pl—f—Pgi)ﬂ' 7r1+7r2/\">,u1',u2P1+P2
@ P P
Choice2 P‘?—T Prob.Choice T 2 T2
P+P =7 T Op T2 e+ (1) P

Table 4.1: Inference rules for P and 7«

e The prefix operator, a.7m performs an a-transition and goes to state 7.

e When composing two non-deterministic transitions in parallel, we need
to determine whether the action to be taken is part of our synchronizing
set A or not. If a € A then the system synchronizes, and both machines
have to be able to take an a transition. If a ¢ A then it suffices to have
only one machine being able to take the a transition. How this works is
explained in section 4.3.

Inference rules for probabilistic transitions

e We define the probabilistic version of 7y;; to have a probabilistic tran-
sition with probability 1 to the process NIL.

e Probability states always synchronizes on probabilistic transitions, so
compared to process states, there is only one rule for parallel composition
here.

e The probabilistic transition for 7, is similar to that for my,,, with a
probabilistic transition with probability 1 to the process prefix.
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e The choice operator is not resolved by probabilistic transitions but by
process transitions. This explains the choice operator for probabilistic
transitions in table 4.1.

e Probabilistic choice is a binary operator which specifies the probabilistic
transitions.

4.2.3 Example of PTS

As an example of PTS, consider the following expressions:

1 2 1 1
A=a. | -. —. B=a.|-. —.
a<3b®3c> a<21)®2d>

The two transition systems can be found in figure 4.2. We have also included
the parallel composition A|4B in our example, which can also be found the
figure below.

A Al4B

Figure 4.2: The example PTS

4.3 Asynchronous Parallel Composition

We have included asynchronicy in our transition systems, by allowing some
process transitions to be asynchronous. This has not been straightforward,
and has taken a lot of consideration. We will in this section discuss the subject
of asynchronous probabilistic transition systems, especially in the case of the
alternating model, which leads to the model we have chosen to use, and why.
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In finite state systems asynchronous composition is straight forward. Either
process can take a transition independently of the other, with the resulting
composition still well defined, as in the following

P4 p
PlQ = P'|Q

The problem with asynchronicy in the alternating probabilistic model is the
fact that the transitions alternate. When allowing process transitions to be
asynchronous the resulting composed system ends up in two different kinds of
states, a non-deterministic state and a probabilistic state. This composition
is not defined in our calculus, so we have to define a means of expressing this
situation. The problem can be exemplified by figure 4.3. If we compose P
and @, and let A = {a,c}, we can see the problem in states s; and sy, P is
allowed to take the b transition, but ) has to stay in state s,. If we do this,
the next composition will be transitions from state s3 and sy, two different
kinds of states. This is not allowed in our calculus, hence the need for a way
of expressing this.

Figure 4.3: Two transition systems. The b transition is asynchronous.

Other probabilistic models do not have the same problem, for example the
reactive model, as described by Larsen and Skou in [LS92], only has one kind
of states, and with the transitions being a combination of both probability and
actions (P %, P').
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There are different ways of attacking this problem. One way of doing it would
be to include this mixed composition in our calculus, as in P| 7. This is not
desirable though, because it would destroy the meaning of having a split-up
calculus.

Instead we have chosen to allow asynchronous composition with the help of a
fictive distribution. We simply introduce a helping distribution, which with
probability 1 can reach the non-deterministic state. As an example, consider
figure 4.4.

Figure 4.4: We solve the asynchronous problem by adding a 1 transition.

So we can view the parallel composition P|m as 7p|m, where 7p is a distribution,
which with probability 1 takes a transition to P, that is

WP(Q):{ (1): Jiig

or equivalently mp ~»; P. This effectively solves the problem, and the resulting
parallel composition of P and @) can be seen in figure 4.5.

4.4 Probabilistic Modal Logic

In this section we will give a probabilistic modal logic for our transition sys-
tems. The logic is HML-like, but split in two parts, non-deterministic and
probabilistic properties, ranged over by F' and ¢ respectively. This split-up
makes it easier to apply the quotient technique to the alternating probabilistic
model, and to implement it.

First we give the syntax for the logic, and then its semantics is defined. We
have chosen to give two different, but equivalent versions of the semantics
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Figure 4.5: The final parallel composition P|,Q

for the logic, a semantics based on a satisfiability relation and a denotational
semantics. The satisfiability relation semantics can sometimes be easier to
read, but later when proving simplification rules, the denotational semantics
proves to be useful. In fact the proofs of some of the simplification rules follow
almost directly from the formulation in terms of denotational semantics.

4.4.1 Syntax

As mentioned above, the syntax is divided into two parts which refer to each
other by their diamond modality. The non-deterministic part of the logic is
like normal HML logic, with the only exception that in the diamond modality
it does not refer to a non-deterministic property, but to a probabilistic one.

Definition 4.3 (Probabilistic Modal Logic (PML))
The non-deterministic (ranged over by F') and probabilistic (ranged over by
) properties are defined as follows:

F:tt|F1/\F2|_|F|<CL>Q0
gDiZ:tt|g01/\g02|_lg0|<>ZuF

We shall later see that the logic is not strong enough to describe certain
properties when factoring out processes using the quotient technique. Ac-
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tually we need to extend the logic with a more general modality of the form
(00, F1, .oy 0p, Fy t cqwy + -+ - + apxy, > p], as will be explained in more detail
later.

4.4.2 Semantics

Definition 4.4 (Satisfiability for PML)
We define =C (Pr x PML) U (Dist(Pr) x PML) inductively as follows

Pt iff PePr
PEFRAF iff PEF andPEF,
PE-F  iff PHF
P = (a)p iff TP S TATER

Tttt iff e Dist(P)
TE@ Apy ff 7FEp and 7 @
T if e

mlEoxF il Y pppm(P) >

We now give the equivalent denotational semantics for PM L. As written in the
introduction, certain properties are easier to reason about using denotational
semantics.

Definition 4.5 (Denotational semantics for PM L)
First the definition of [F]

tt] = Pr

[

[ AN E]
[

[

N

2NN

5
Il

[F]
(@e] = Cadllel

The operator (-a-)¢ is defined as {p € Pr|3a € A,m.p % 7 A7 k= ¢}

The semantics for ¢ are defined as

(¢t} — Dist(P)

{les Aot = {lel N {eald
{I=¢lt = {lolt

{losu It = Ax(=([F]) > n}-

As a consequence of the definition, we state the following theorem:
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Theorem 4.6
The following expressions are equivalent:

(a)(p1 A p2) = (@)1 A (@) 2.

We can now define a connection between transitions and formulas, by defining
the semantics of process and probabilistic transitions in the following way:

Definition 4.7
(P) ={F|P E F}
(m) = {elm E ¢}

We state and prove the following property for parallel composition, which will
be useful for describing some important properties for the quotient technique.

Theorem 4.8 (Associativity and commutativity of parallel composition)

((my [ 72) [ ms)) = (o | (w2 | 7))

Proof
If we consider the transition trees for the different compositions, we see that
they are isomorphic, which is enough for theorem 4.8 to hold. O

4.5 Implementation

In this section we describe the implementation of probabilistic transition sys-
tems, and the probabilistic logic we have defined.

We have chosen to use the programming language Moscow ML to implement
our systems and techniques. ML is a powerful functional programming lan-
guage, which suits our needs perfectly.

We start by developing a data type for the probabilistic transition systems,
including a parallel operator.

Next we define a data structure for PM L, and a model checker for verifying
PML properties in any probabilistic alternating transition system.
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4.5.1 Datatypes

We start by defining a few simple types, mainly for making reading easier.
We define key concepts as probability, action and state as well as an index to
distinguish between different components of a parallel system.

type state = string;
type probability = real;
type identifier = string;
type action = string;
type index = int;

We define two datatypes for transitions, which are both parameterized by a
state type, PTrans for probabilistic transitions which are defined by a list
of states associated with a list of probabilities and target states. NTrans is
the datatype for process transitions, defined in same manner as probabilistic
transitions, but with actions instead of probabilities.

datatype ’state NTrans = transrelN of

(” state x ((action = ’state) list)) list;
datatype ’state PTrans = transrelP of

(’ state x ((real = ’state) list)) list;

The last datatype we need for PM L is System, which defines a probabilistic
alternating transition system of given process and probabilistic transitions.
Also the datatype for the parallel operator | 4, named | | in the implementation,
is defined as a composition of two systems. Note that || is made infix as to
match our syntax.

infix 5 ||
" state System = system of

(’ state NTrans) x (’ state PTrans) % ’state x index
| || of ’state System x ’state System;

datatype

Besides a list of process transitions and probability transitions, the datatype
System is also defined by a start state and an index which is the systems “num-
ber”, as mentioned above the means of distinguishing the different subsystems
of a parallel system.

The Datatypes for our probabilistic modal logic is like the formal definition
split in two parts. We have chosen to include the terms False and Or in the
implementation of the datatype, because it makes it easier to read and specify
formulas including these terms (e.g. ff instead of —tt).
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datatype nonformula = nAp of state x index
| nFalse
| nTrue
| nAnd of nonformula % nonformula
| nOr of nonformula % nonformula
| nNot of nonformula
| nDiamond of action % probformula
and probformula = pAp of state x index
| pFalse
| pTrue
| pAnd of probformula % probformula
| pOr of probformula * probformula
| pNot of probformula
| pDiamondsimp of probability % nonformula
| pDiamond of
(( probability * nonformula)list xprobability )

infix 7 nAnd pAnd nOr pOr

The boolean operators And and Or have been made infix, again to match the
syntax.

We have implemented the general diamond modality by a list of probability =
formula with a corresponding probability (x). We do not explicitly include the
dependency variables, but take them into account when using the modality.

4.5.2 The Simple Checker

To be able to check the correctness of our implementation of the quotient
technique later on, we implement a simple model checker, which can determine
if a system satisfies any formula. This model checker takes any system and
a formula, and checks if the formula is satisfied, by going through all the
states in the system. It should be clear that if the systems have many parallel
components, each with a considerable amount of states, then the simple model
checker fails to perform well because of the state explosion.

We start by defining a function der (derivative) which takes any system with
a configuration ¢ and a list A and returns a list of probabilities or actions
that the system is able to take in the state given in the configuration, and the
corresponding target state.

It is also in the function der that the parallel operator is defined, including
both synchronous and asynchronous compositions depending on whether or
not the action in the transition is included in the list A. A configuration is
simply the current state of the system.
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fun der ((system (ntrans, ptrans, s0, n)):string System) c A=
let val (s,.) = find (fn (s’,i) =>1 =n) ¢
in let wval nlist = derN s ntrans
val plist = derP s ptrans
in (map (fn (a,t)=>(a,[(t,n)])) nlist,
map (fn (p.t)=>(p.[( t,n)])) plist )
end
end
| der ( S1 || S2 ) ¢ A=
let val (nlistl,plistl) = der S1 ¢ A
val (nlist2,plist2) = der S2 ¢ A
val sourcel = subconfig c S1
val source2 = subconfig c¢ S2
in
let val nlist =
(reduce (fn ((al,tl), restofMergel) =>
if (memberof al A)
then (reduce
(fn ((a2,t2), restofMerge2) =>
(case (( memberof a2 A),(al=a2))
of (true,true) => [(al,t1@t2)]
| (-,-) =>[]) @ restofMerge2)
nil
nlist2)
@ restofMergel
else (al,(tl@source2)):: restofMergel)
nil
nlist1)
Q@
(reduce (fn ((a2,t2), restofasync) =>
if not (memberof a2 A)
then (a2,sourcel@t2):: restofasync
else restofasync)
nil
nlist2)
val plist = reduce
(fn ((pl:real,tl), restofMergel) =>
(reduce (fn ((p2,t2), restofMerge2) =>
[(( plxp2), t1@t2 )] @restofMerge2)
nil
plist2 ) @QrestofMergel)
nil
plistl
in (nlist, plist)
end
end

The function der uses a few small helping functions, the functions derN and
derP take as arguments a state s and a transition relation, and returns the
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outgoing transitions from state s. subconfig takes a global configuration and
a system and returns the specific configuration for that system:.

The memberof function takes as argument an action and a set, runs through
the set (A) and returns true if the action is found in the set.

Some other basic functions are also used, map, filter, find and reduce, the
first being a standard ML function and the three others defined as follows:

fun find f nil = raise notfound
| find f (h::t) = if {f h then h
else find f t;

fun reduce f b nil = b
| reduce f b (h::t) = f (h,reduce f b t);
fun filter f nil = nil

| filter f (h::t) = if f h then h:: filter f t
else filter f t;

We are now ready to define our simple model checker. First we define a mu-
tually recursive function nSatInner and pSatInner, which take as arguments
the following:

Any transition system of the datatype System which can also be a parallel
composition.

e A PML formula (starting with a process or a probability expression,
respectively)

A configuration

A synchronization set A.

The function scans the formula and handles each term recursively, and makes
use of the function getactivestate, which, given a configuration and an in-
dex, returns the current state being examined. First we present the part that
handles process formulas.
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fun nSatInner S nForm c¢ A=
case nForm of
(nAp (t,1)) => (getactivestate c i) = t
| (nTrue) => true
| (nFalse) => false
| (nNot nform) => not (nSatInner S nform c A)
| (lnon nAnd rnon) => (nSatInner S lnon c A)
andalso
(nSatInner S rnon c A)
| (lnon nOr rnon) => (nSatInner S lnon c A)
orelse
(nSatInner S rnon c A)
| ( nDiamond (a,pForm)) =>
(case (find (fn (act,c’) => (act=a)
andalso
(pSatInner S pForm c¢’ A))
(let wval (nlist, ) = der S ¢ A
in nlist
end))
of _ => true)
handle notfound => false

In the case of nDiamond, nSatInner refers to the second part of the function,
pSatInner. This is completely analog to the formal definition, e.g. (a)ep.

The only difference in pSatinner is the probabilistic modality, or rather the
two modalities, the rest is therefore omitted in the following. The case of
pDiamondsimp builds a Sum variable, which for all the transitions that satisfy
nForm collects the probabilities and sum them up using the function sumprob.
This sum of probabilities is then checked against the pu, to evaluate to true or
false.

and pSatlnner S pForm ¢ A=

| ( pDiamondsimp (mu,nForm)) =>
let val Sum =
(sumprob ( filter (fn(prob,c’)=>
(nSatInner S nForm ¢’ A))

(let val (_,plist) = der S ¢ A
in plist
end)))

in (Sum > mu) orelse (Sum = mu)

end

The general modality works much in the same way as the simple one, only it
operates on a list of nForm’s, and has corresponding alpha values.
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| ( pDiamond (( nil),mu)) => false
| ( pDiamond ((( alpha,nForm):: T),mu)) =>
let fun multsum nil = 0.0
| multsum (( alpha,nForm)::T) =
(( sumprob ( filter (fn (prob,c’)=>
(nSatInner S
(let val (_,plist) =
in plist
end)))* alpha) + multsum T
in ((multsum (( alpha,nForm)::T))>mu) orelse
(( multsum (( alpha,nForm):: T))=mu)

nForm ¢’ A))
der S c A

end

To define the final function Satisfy, we need a function that finds the ini-
tial configuration of the parallel system. The job is done by the function
initialconf, which takes a transition system and returns the initial configu-
ration.

fun initialconf (system (ntrans, ptrans, sO0, i)) = [(s0,i)]
| initialconf (S1 || S2) = (initialconf S1)@(initialconf S2)

This is in fact the only difference between Satisfy and nSatInner, that the
initial configuration is found automatically. We here require formulas to begin
with type nFormula.

fun Satisfy S Form A = nSatInner S Form (initialconf S) A
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Chapter 5

The Quotient Technique for
PTS

In this chapter the quotient technique is defined and proved correct for the
asynchronous version of PTS. We give a structural definition of the quotient
technique and show that our logic is not strong enough to support the tech-
nique. We then introduce a general modality, which completes our logic, and
give the two types of semantics for it. We prove the quotient theorem by
structural induction, and end this chapter with an example of verification of a
simple parallel transition system by using the quotient technique.

5.1 Definition of the Quotient Technique

The quotient technique for probabilistic transition systems works the same
way as for finite state systems, described in the introduction and in appendix
A. We recall that the purpose of the quotient technique is to try to avoid the
state explosion problem in parallel systems, by factoring out machines one at
a time and placing their properties in the formula for the whole system. By
doing this, and by repeatedly applying simplification techniques, we should be
able to avoid the state explosion problem, and thereby reduce the verification
time of the system.

The quotient operator / is defined in Definitions 5.1 and 5.2.
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Definition 5.1 (Structural definition of F'/P)

(4) tt/P, = tt
0 -F/P, = —(F/P,)

(1) (ayp/P = { (a) (Vpi>7r %D/W> ac A

(@ (e/P)VV e o/t] a¢ A

Definition 5.2 (Structural definition of ¢/7)

(v) tt/my = tt
(vi) (p1Aw2)/m2 = @1/ma A pa/m
(vid) /e = =(p/m)
(vidi) o F/my = [04(F/P1),05,(F/P),..., 05 (F/P):
Q1T] + oy + -+ - + QT > ]
where my ~>o, Py, ..., Ty ~q, P enumerates all probabilistic transitions of 7.

As we see, the definition of the the quotient formula for ¢ ,F" is not included
in our logic. We therefore need to extend our logic, as explained next.

5.2 Generalization of the Diamond Modality

The logic we have given is not strong enough for describing certain properties,
so we have to extend this logic with a more general construct.

Apart from the definition of the simple diamond modality above, it may not
be obvious why we need the generalized probabilistic diamond modality, and
how it works. Therefore we will give an example to illustrate that the simple
modality ¢>,F' is not expressive enough, and with the need for this modality.

We start out by assuming that we only have the simple modality in our logic.
Figure 5.1 show a system with a distribution 5. Assume that we want to
find a distribution my, which when in parallel with 7, satisfies the following
property: ¢ = 02%(<b>tt A (c)tt. That is we want 7 to be such that:

| ame = .

Now, given the existence of a quotient construction in our probabilistic setting
this should be equivalent to:

™ | @/ms.
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2

N
N

Figure 5.1: A small system

where ¢/, is the quotient formula for ¢ with respect to m,. Consider m’s
transitions (see Figure 5.2), we denote the unknown sum of the probabilities
of the transitions leading to a state where ¢ and b is possible by x; and w9,
respectively. In order for m|4ms to satisfy ¢ it is clear that the requirement

/N

— = @ @
4o T2

cl lb
Figure 5.2: The transitions of m;

to m is that %3:1 + %3:2 > i. We can express this in our semantic terms the

following way

%m[[(c)tt A (b)tt/P] + %m[[(c)tt A (0)tt/Py] =

A~ =

However this is not expressible in our logic as a single formula. We therefore
extend our logic with a more general modality, that allows us to express this.

Definition 5.3 (Extension of PML)
We define the following to be part of the syntax for PML

0 E[0e,F1,. . 00, Fn i iy + -+ + ey, > .

The semantics for this modality is defined as:
T E[0e, F1y- oy 0u, Fnionzy + -+ ey > plif oq&y 4+ -+ -+ @& > 1
where & =3 p pp (D).
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To see that this is a generalization of the simple modality, we note that:

TEosF e mE[0F: o>y

The equivalent denotational semantic for the general modality is:

{0z, F1s- - 0u, Fn s cqzi+- - Hanx, > pllt = {7 | aexw[Fi]+- - +a,7[F,] > u}.

We can now give the definition of the quotient technique for the general modal-
ity:
Definition 5.4 (Extended definition)

We extend definition 5.2 to include the following definition of the general
modality.

(i) [0g, F1,- -, 0u, Fy i oqmy + - - 4 gy > pl/me =
k k
[0y F1/Q1, -+ s 0y Fn/ Qi : Z vyt e+ Zynanynj > i
j=1 j=1

where 79 ~,, (), enumerates all the probabilistic transitions of m,.

We will later show that this extension the logic is strong enough to express the
properties that arise from the quotient procedure, i.e. applying the quotient
technique on a formula of the form [0, F, ..., 0. Fy, gz + - - + apx, > il
results in a formula of the same form.

5.3 Proving Correctness of the Quotient Tech-
nique

We now state the quotient theorem, and give the proof of it:

Theorem 5.5
Given two processes P, and P, and two distributions m; and my in PTS, then

PiuP> E F iff P, = F/P
m|ame @ iff m | @/,

Proof
We prove theorem 5.5 by induction on the structure F' respectively 7.
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(i) F = tt is trivial

(11) F:FI/\FQ:
P4P, EFyNF,
P1|AP2):F1 aIldP1|AP2):F2

P1 ):FI/PQ and P1 ):FQ/PQ
P EF/P,\F,/P,

P = (FLNF)/P

T =0

02

(iii) Negation follows like A, directly from the induction hypothesis.

(iv) F = (a)yp:
This case is divided in two parts, the synchronous and the asynchronous.
First the synchronous case:

Pi|ab; = (a)p

3j, kPl APy = mj|me A il b=

3§, k.P, % i NPy Ny AT = o/m
3k.(Py | (a)(@/mk)) A Py = mp,

PV, e (ahe/m
PE(a)V,, o 0/

P E ((a)p)/ P

1 =

02

Then the asynchronous case:

PiaPs E (a)p

m.(Py 25 1 AT APy | @) or 3m.(Py 2wy A Pramy = )
Ir.PL S m AT E@/Pyor 3m.Py 5 m APy = /T

Py = {a)p/Pyor Vo Ap[m

P E o/ BV, e ol

P =

= (a)p/ Py

tot e

02

(v) @ =tt is trivial
(vi) ¢ = @1 A @y. The proof of this is similar to F} A Fy.

(vii) Negation follows directly from the induction hypothesis, like the previous
case.
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(vili) ¢ = o5, F"
mimy = o F

& Y mQ) - m(P)>p
QaPEF

IH

S YD m(Q)-m(P) > p
P Q=F/P

& m E0n(F/P),...,0u (F/P) iy a1+ -+ ay -2y > i
where mo ~o, Pi, ..., To~>g, Py

E 1k (osuF)/m

(ix) o = [0, F1,y -0, Fp : @(xq,...,2,)]:

7T1|A7T2 ): [OxlFla . 7<>mnFn Tory s+ oy, Z /L]
& oé + -+ o, > p, where § = ZP,Q]-.P|Q]-\:Fi 7T1(P) ) 7r2(Qj)
Yij
& =Y, [m@) X m(e)
M P.PEF;/Q;
And [OyllFl/Q17 ey Oynan/Qk : Z?:1 Vlalylj + -t Zle Vna’nynj Z /u]
where my ~,,. (); enumerates all probabilistic transitions of 7,
pad (00, F1y ooy 0u, Fry sy + - -+ + Qi > ] /o

5.4 The Use of the Quotient Technique

In this section we discuss the practical use of the quotient technique. We
show that when factoring out machines, the order does not matter, and we
will examine how many machines we have to factor out before reaching any
conclusions.

Theorem 5.6
When factoring out machines by using the quotient technique, the order does
not matter.

That is
[[(F/Pl)/PZ]] = [[(F/PZ)/PI]]

Proof
We know that by theorem 5.5:

QE(F/P)/PeQ|REF/P&Q|R)|PAEF
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We know from theorem 4.8 that the order of parallel composition doesn’t
matter, so we can write this as

QRPR)PAEFeQ|(BRIR)EFFeQ|(P|R)EFeQ@Q|P)|[REF

Again we use theorem 5.5 to get

QPR EF QP EF/P,eQFE(F/R)/P

which concludes the proof. O

So for the quotient technique to work, it is not necessary to factor out compo-
nents in any specific order.

The question is then, will the time complexity be the same, when factoring
out components in different orders. We believe the answer to this question is
no. We might get smaller formulas by factoring out one component compared
to another, and some formulas may be easier to simplify than others.

In fact we can see that theorem 5.6 allows us to write F'/P, where P is a set of
processes. In particular if F//P = ff for P € P, then F/P = ff. This implies
that if we have to check P, | --- | P, = F1V---V F,, and F}/P; = ff for some
k, 7, then
p1|...|Pj|...|pn ):Fl\/"'VFkV"'VFm

iff

PPl |PoEFRANV NV EF  V Fep VooV Fy.
So Fy can be removed. We will discuss this further in chapter 7.

Another question when using the quotient technique is, when to terminate the
process of factoring out components. The answer to this question depends
greatly on the formulas involved, but with n components, we cannot factor
out more than n — 1. This is because that (P|NIL)) = (P)) does not hold in
general, because:

if a € A then .7y — 1z, but a7y |NIL 4. Thus a7y = (a)tt, but
CL.7TN[L|NIL |7£<a>tt

So because we have synchronous transitions, we cannot remove the last ma-
chine from a system, and thus we have to manually check the last machine
with the specification.

5.5 Example of the Quotient Technique

We will now give a simple example of the use of the quotient technique. We
consider a faulty medium which can send, reject and accept messages. It
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accepts and rejects the send messages by a certain rate defined by a probability.
The system M can be seen in figure 5.3.

Figure 5.3: The media M

As we can see in the figure the media accepts send messages with a probability
%, and rejects with i. When a message has been either rejected or accepted,
it returns to the initial state, ready to send a new message.

Now suppose we want to increase the rate of accepted messages. This can be
done by putting one or more new medias in parallel with the original one, and
letting the composed system be asynchronous on the accept transition. We
can now do two things, either using more of the same type of media (with loss
rate of i), and check if the resulting composed system satisfies our demands,
or we can try finding a specification for a new media to use with the original
one.

We can use the quotient technique to do both, in the last case, we can simply
take our specification and factor out the original media, to obtain a specifica-
tion for the new media. In the first case we simply put as many components
in parallel with the original one as we think is enough, and then verify the
composed system by factoring out medias on at a time.

We start by putting another media N of the same type in parallel with M, to
obtain M|4N. The system synchronizes on all other transitions but accept,
that is A = {send, reject}.

We want the final system to be able to accept messages by a rate of 90%, that
is

M|aN [ (send) o5 o (accept)tt

We will now use the quotient technique to verify this formula. We factor out
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M to obtain a specification for /N, which we then check manually.

N E ((send) o5 8 (accept)tt) /N
= (send) (021% (accept)tt) /N
= (send)[oy, (accept)tt/s,, oz, (accept)tt/sy : tu1 + 229 > 5]

When M is in state s1, it can’t perform any accept transitions, so the rest of
our system has to do that in order to satisfy the specification. In state so, M
has an accept transition, so the rest of the system only has to be able to reach
this state to be satisfied.
1 3 9
N = (send) |0z, {accept)tt, op,tt : —x1 + 19 > —
4 4 10
As we shall see in chapter 7, we can set x3’s value to 1, so we can solve our

inequality:
1 + 3 1> ) = 1 > J 3 = 3
— — J— — - — = €rT1 = —
44 710 4710 4 175

We use this value in our specification and get
N = (send) Ox3 (accept)tt

So we now have a specification for N, and can manually verify that if /V is of
same type as M, then it clearly satisfies the specification. We can also choose
to find a media with the specification of N, which may be cheaper (because of
the lower accept rate), and use that in parallel with M.

We shall later see that formulas do not always reduce so easily, and when
applying the quotient technique to a general modality, we actually get quite
large formulas.

5.6 Implementation

We will now describe the implementation of the quotient technique. The tech-
nique is implemented as a single function evalQuotient, which take the fol-
lowing as argument:

e The process (of type System) that is to be factored out
e A formula

e The synchronizing set A
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This function declares ¢ to be the initial configuration of S, and calls a mutually
recursive sub-function nonquotient and probquotient. This sub-function is
called recursively on every instance of the formula, and simply returns the new
quotient formula.

We will start by defining the more simple formula types, like true, false, AND
and OR. Below is the code for the process version of these operators.

fun evalQuotient S formula A =

let val ¢ = initialconf S
in let fun nonquotient (nTrue) - = nTrue
| nonquotient (nFalse) _ = nFalse

| nonquotient (nAp (s,i)) c =
let val acstate = getactivestate c i
in if acstate = s
then nTrue
else nFalse
end
| nonquotient (nNot nform) c
nNot (nonquotient nform c)
| nonquotient (L nAnd R) ¢ =
let val LQ = nonquotient L
val RQ = nonquotient R
in LQ nAnd RQ
end
| nonquotient (L nOr R) ¢ =
let val LQ = nonquotient L
val RQ = nonquotient R ¢
in LQ nOr RQ

end

o o

o

The probabilistic counterparts for these simple types are similar to those of
the process version, and are therefore omitted here.

The function for process modality (a)y we start by calling the function probquotient
to create the disjunction \/Pi>7r @/m. 1t then checks whether the action a is in
the synchronizing set or not, and returns the corresponding formula.
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| nonquotient (nDiamond (a,pForm)) c =
let wval Disjunction =
reduce (fn ((act,c’), tailDisjunction ) =>
(( probquotient pForm c”)
pOr tailDisjunction ))
pFalse
(filter (fn (act,c’) => (act=a))
(let wval (nlist,_.) = der S c A
in nlist
end))
in if memberof a A
then nDiamond (a,Disjunction )
else let wval notA =
nDiamond (a,( probquotient pForm c)
pOr Disjunction )
in if (nSatInner S notA ¢ A)
then nTrue
else notA
end
end

This quotient step also checks to see if the formula can be simplified, it checks
if the system satisfies notA, and if it does returns true.

Now to the probabilistic case, for which we, as mentioned above, only show
the diamond modalities.

The simple diamond modality i straight forward, it simply forms a formula
of the form pDiamond, and calls nonquotient on the corresponding process
formula.

| probquotient (pDiamondsimp (p,nform)) c =
pDiamond ((map (fn (mu, conf) =>
(mu, nonquotient nform conf))
(let val (_,plist) = der S ¢ A
in plist
end)), p)

The quotient formula for the general diamond modality is implemented in two
steps, one where there is no list of probabilities and process formulas (nil)
and one where there is a list.

The function calls itself recursively to apply the quotient technique to all in-
stances of prob, nform.
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| probquotient (pDiamond ((( prob,nform)::L),p)) ¢ =
pDiamond (((map (fn (mu, conf) =>
((muxprob ), nonquotient nform conf))
(let val (_,plist) = der S c A
in plist
end))@
(let wval pDiamond (T,.) =
probquotient (pDiamond (L,p)) c
in T
end)), p)
| probquotient (pDiamond (mnil,p)) ¢ = pDiamond ( nil,p)
in nonquotient formula ¢
end
end

We will later describe the function that is used to call this quotient function
with, but it basicly works by choosing the machine to factor out, and calling
the quotient function on that machine and a formula, and then calling the
simplification function (see chapter 7) on the quotiented formula.
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Chapter 6

The General Modality

In this chapter we examine the general modality, especially the linear inequal-
ity aqxy + - -, > i, in order to describe it in a way that allows us to
implement the technique. In [LS92] Larsen and Skou define a general modal-
ity to support their version of the quotient technique (decomposition). They
define the modality in more general terms than we do, by having some func-
tion ®(xy,...,z,) instead of the inequality. This notion was also adopted in
[Ves00].

We believe that the general construct of Larsen and Skou is unnecessary and
confusing to read, and we devote this chapter to examine the general modality.
We show that no matter how many times we apply the quotient technique to
the modality, we end up with only one type of inequality, though with several
unknown variables.

(00, F1y ooy 0u By iy + - - + ey, > pl/m = (6.1)

k k
[OyllFl/Q17 s 7<>yij‘F17:/Qj7 tee 70ynan/Qk : Zl/la’jylj+' ) '+Zyna’jynj Z M]

J=1 J=1

It has taken a lot of considerations to realize that the last part of the general
modality is always a linear inequality. The technique developed in this report
is based on the ideas of [LS92], and our work prior to this report [Ves00] defines
the general modality with a general ®-function.

Our studies have shown that this function is in fact a linear inequality. Actu-
ally, as we shall see, it just operates with new binding variables, y;;, instead of
xI1.
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6.1 Describing the General Modality

First we need to realize that, when using the quotient technique on a general
modality, we simply get another general modality, but with a few more vari-
ables and probability constants. That is, the general modality is always of the
form:

[00, F1y ooy 0p, Fry i aqy + - 4 iy, > 1

where x; is a variable binding the probabilities. It is this inequality that is in-
teresting, and we therefore need to describe exactly how it looks. Furthermore
we know that our binding variables, because they are in fact probabilities, have
the following property: 0 < x; < 1.

Now, if we look at the definition of the quotient technique for the general
modality (see formula 6.1), we see that it is very similar to the one for the
simple modality. Actually we should be able to write the quotiented modality
as follows:

k k
[0y F1/ Q1 -0y Fu Qi = (O vjynj)an + -+ (O vitmg)am > 4
j=1 j=1

The inequality consists of a £ and a n vector and a n x k£ matrix:
T
Yuu o Yk " aq
) ) > 1

Yn1 * Ynk Vi Oy

So we will have n - k possibly unknown variables, and each time the quotient
technique is applied, this number will be multiplicated by n, thus it will grow
exponentially. This surely underlines the need for simplification rules and
hopefully it will be possible to keep the number of unknown variables to a
minimum.

We also need a means of dealing with linear inequalities with multiple unknown
variables, this will be examined next.

6.2 Linear Inequalities

In order to reason about the linear inequalities with more than one unknown
variables, we need to explore some theory about this subject. We will start
by looking at how to define a range of solutions for inequalities of the form
1Ty + -+, > 6.
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Because we work with probabilities, we know a few things about our variables
and constants. First of all we know that all constants «; are non-negative, and
will sum up to one, because of the fact that all «; is from transitions from a
single state (e.g. m ~,, B):

ar+---+a,=1 and 0 <q;.

We also know that the variables x; are non-negative and less than or equal to
1:
0<z; <1, wheret=1,...,n

Despite this information it is not possible to give a definition on how to find
the values of the unknown variables. Instead we can define some simplification
rules, which can eventually reduce the inequality, and thereby the general
modality.

As we shall see in the next chapter, we will be able to simplify the inequality
a bit, removing some of the variables, and there by subtracting or removing
some of the a;’s. If we assume that the constant being removed is a; we get:

a1+---+ai_1+ai+1+---+an§1

This means, that if the largest of the constants multiplied with n are smaller
than S then we can conclude that the inequality is not solvable, that is

ary+ -t ar, > e ff (6.2)
if
Mazx(a;) < B/n
Note that this rule is only effective when at least one of the a;’s have been

removed. We can even give a stronger rule: If oy +agy+-- -+, < (3, then 6.2
holds.

So we can reduce the inequality to false, if any of the a;’s are smaller than
p/n. As we will see in the next chapter about simplification, this is in fact
enough to declare the whole modality false, and thereby simplify the quotient
formula a great deal.

Considering repeatedly application of the quotient technique, we see that the
number of variables rises exponentially, but the corresponding constants will
get smaller and smaller, hopefully causing the inequality and thereby the whole
modality to reduce to false. We have to do some tests to see if the constants
values lowers faster than n rises, as we can’t say anything general about that.
It all depends on p, on the predefined probabilities, and on the size of the
transition systems.
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Another way to simplify the general modality is when we reach a situation
where 1 becomes negative. This will happen when we can reduce any of the
x;’s to 1, and subtract the corresponding «; from p. If 4 becomes negative, then
the inequality is trivially true, because of all x;’s and «;’s are non-negative.

We will now give an example of the general modality, and some of the simpli-
fications that can be applied when using the quotient technique.

6.3 Example of General Modality

Again we consider the example in 4.2.3, but now with a different formula, and
one more machine in parallel which we call C (identical to machine B).

(a) 051 ()it V (c)it)

Remember that the synchronization set is A = {a,b,d}, so the system is
asynchronous on the ¢ — transition. We start by factoring out C.

A[4B|4C | (a) ox1 ((B)iE V (c)it)
s A E (a)¢ >1 ((b)tt v (c)tt)/C
& A = (a)[ou, (D)t V (e)tt)/P1, o, (D)t V (c)tt) /P2 : 22y + 2y >
& A = (a)[on, ((b)tE V (c)tt), 0p, (C)tt : 221 + 225 > 1]

It is not possible to simplify this formula anymore, so we will factor out B.

AlaB >= (a)[oy (< >ttV< )tt), ou, (C)tt : xl + x2 > %]
& A E ((a)[on, ((b)tt V (c)tt), 0p, (c)tt : 134 + 21, > 1)) /B
< A F (a)lo yu(< >ttV< >tt)/P1, Oy, ( b>ttV< >tt)/P2,
y21(< >tt)/P1=<>y22(<C>tt)/P2 ‘3 %yll + % ' %yl? + % ’ %yﬂ + % ) %

When we calculate the last quotients in this formula, and simplify the formula,
we get

—~

W=

1

1 1 1
(a) yn<b>tt Vv {o)tt, <>yu< )tt, <>y21< )tt, <>y22< )it gyn + Eyu + gym + §y22 >

Again with no chance of simplifying the modality anymore. As we can see the
formula is growing quite large, and it will grow even more if more machines of
the same type are factored out.

The formula is still satisfied though, which should be easy to see. The question
is now, what would have happened if we factored out machine A first?
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We will not show all calculations here, but the simplified result of (a) 051

((bytt v (c)tt)/A is (a)tt, which definitely is a smaller formula and easier to
verify than the above.

This shows us that the order of which we factor out components does not
affect the final result, but formulas may simplify more easily when choosing
one machine to factor out, instead of another.
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Chapter 7
Simplifying rules

When using the quotient technique, one of the most important things are
the application of simplification heuristics. Formulas tend to become quite
large when factoring out components, and especially the general modality has
an exponential blowup in the number of variables when applying the quo-
tient technique. This can not completely be avoided, but with simplification
techniques, it may be possible to keep the formulas small and the number of
variables low.

In chapter 6 we discussed simplification to the general modality, and the in-
equalities in particular. In this chapter we formally define the notion of simpli-
fication, and several simplification rules. We prove soundness of all the rules,
and finally describe the implementation of them.

7.1 Introduction to Simplification

Simplifying rules is a set of semantics preserving rules which can be used to
minimize a formula F' or ¢. The idea is to apply these rules continuously while
quotienting, so that the final expression is small and easy to verify:

P1|AP2):F<:>P1):(F/P2)S

In the example in section 5.5, we already used a few simplification rules. We
will here give the definition of a set of simplification rules for our systems, and
show that they are sound.

Formally we write F' — F' and ¢ — ¢', where F” and ¢’ is smaller (simplified)
than F' and ¢, but still equivalent in the following sense:

VP:PEFSPEF andVr:nEporEY
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or equivalently
[F1=[F] and {lo}t = {¢'}

We define the following simple derived operations:

)

e

ff = it FAG
r=¢ % rve recg

e
o
@

e

—(=F Vv —G)
(F=G)ANG=F)

s
ol
™

s

The definition of simplification rules are split into two sections, one for pro-
cesses properties, and one for probabilistic. There has already been put a lot
of work into simplifying process formulas (e.g. [Kri98], [And95] and [rHA97]),
so we will concentrate on simplification of the probabilistic properties.

7.2 Order of Machines Factored Out

As discussed earlier, and as shown in the previous chapter, the order of which
machines are factored out, may have something to say when applying simpli-
fication rules.

We believe the reason that the system in example 6.3 can be simplified greatly
by factoring out A instead of B, is that A included the asynchronous transition
c. When a machine has an asynchronous transition, the demands for the rest
of the system, when that machine is factored out, are loosened.

This intuition also follows the definition of the quotient operator for asyn-
chronous composition (see definition 5.1).

We can conclude that when we have an asynchronous action in our specifica-
tion, then we could check to see weather we have any machines in the parallel
system, which can take this transition, and factor that out first. As we shall
see later, this is not implemented in our model checker, as the model checker
is doing fine with the rules described in the next two sections.

7.3 Simplification Rules for F

Besides the logically implied simplification rules like tt A ff — ff and ttV ff —
tt, we need some rules to simplify expressions with general properties.
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Definition 7.1 (Simplification rules for F)

1p: (a)ﬁ Hﬁ
3p ﬁ/\F i—>ﬁ
dp: (a)p/P; = If

iff Py|g-|uPy = Fanda € A and P; # for somei=1,...,n

Theorem 7.2
The simplification rules in definition 7.1 are sound.

Proof
Rules 1z through 35 are trivial.

The proof of 45 follows from the definition of the quotient technique, and from
theorem 5.6. 0

7.4 Simplification rules for ¢

Simplification rules for ¢ are defined in 7.3. They are based on the extended
modality and can be applied in the simplifying step in different ways. For
example if we have an expression like [0, tt : ax > u| then we can apply rule
5, first to conclude that x = 1 and then simplify the whole expression to tt.

Definition 7.3 (Simplification rules for ¢)
Formulas of the type ¢ can be simplified using the following rules.

l,: —ttw— ff and —ff — tt
200 ffhe= ffandtt Ao @

3o [0a Fhyey0p, Bt aqmy + -+ an, > i — ff
ifoap+--4+a, <p

4ot [op M, 0usFoy oo 0p, Fy i 0nmy + - oy, > p]
(02, Fay ooy 0p Fry i 0o + -+ - + iy, > i

5p 1 [Optt, ..., 05, Fnronmy + -+, > g >
[O0, Foy .oy 00 Fry i oo + -+ - + Qi > 1 — ]

6p: [02 Fhye .y 0p, Fn i 0nmy + -+ aan > i — tt
ifpu <0

Explanation of The Simplification Rules

The first two rules are simple boolean rules.
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Rule three was discussed in chapter 6. If the constants «; becomes small
enough, the whole expression simplifies to false.

300 [0aFr, o 0p Fon i + o+ agry, > pl o= ff
ifo)+- - 4+a, <p

The fourth rule states that if o, ff : ayz1 > p, then it can be concluded that x4
is zero, which removes both the variable and the constant from the inequality.

4ot Jog M, 0u oy ooy 0p, Fy i 0qmy + 0o+ o] =
(00, Foy ooy 0u Fry 0 0+ oo + - - - + 0y

Rule 5 states that if o, ¢t : ayx; > p then the probability variable z; is equal
to one, and thereby disappears from the inequality.

5,0 [0ptt,. .. 0p, Fyt iy + - - 4 0y, >
(00, oy ooy 0, oyt o) + oty + -+ - 4 Qi Ty

If we can simplify any of the z;’s to 1, we subtract the corresponding «; from .
When doing this, we can reach a situation where p becomes negative, thereby
causing the inequality to be trivially satisfied.

6y [0x F1,y oo 0p Bty + - oy, > p] >t
ifpu <0

Some of the rules form part of the complete axiomatization of validity for the
logic offered by Larsen and Skou in [LS92].

Theorem 7.4
The simplification rules in definition 7.3 are sound.

Proof
We prove the theorem by showing that the semantics for the original formula
are the same as for the simplified formula, for all cases in definition 7.3.

The first two are quite simple and standard rules, and we will only prove the
correctness of 3, — 6,

3, : Suppose that o+ - -+a,, < p. Asa; < 1foralli, also a2+ - -4z, <
L.

4, : This rule is proved in same way as 5, so proof is omitted here.
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5, : To prove correctness of this, we have to show that

{l[oz,tt, ..., 00, Fp: 1z + -+ -+ apxy, > plff =

{[0z:F2s - -y 0, Fr : [anze + -+ + apay, > p— 1]}

We start on the left side of the equation, writing down the semantics,
and minimizing:

{l[oz,tt, ..., 0p, Fr: 1z + -+ - + oz, > plff =
{m | aqrftt] + - - + [ Fn] > pu} =

{m| o [Fy] + - -+ apn[F,] > p— 1} =
{[og, Foy ..y 0p, t Qamy + -+ -+ aay, > p— 1]}

n

Since the semantics of the right side is equal to the reduced semantics of
the left side, this rule is sound.

6, : This proof is trivial since:

a; > 0 and z; > 0.

This concludes the proof of soundness of the rules in definition 7.3 O

7.5 Implementation

We have implemented the simplification rules defined in this chapter as a single
function Simplify, which is to be called after each call to the evalQuotient
function. The function has a mutually recursive function called nonSimp and
probSimp, this sub-function is defined on all the possible combination of for-
mula instances.

The function runs through the (quotiented) formula and simplifies it in respect
to the simplifying rules, and returns a simplified formula.
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fun Simplify Form c =

let fun nonSimp (nTrue) = nTrue
| nonSimp (nFalse) = nFalse
| nonSimp (nAp (s,i)) = let val acstate =

getactivestate c i
in if acstate = s
then nTrue
else nFalse
end
| nonSimp (nNot F) = let wval SF = nonSimp F
in if (SF = nTrue)
then nFalse
else if (SF = nFalse)
then nTrue
else nNot SF

end

Above is the code for the simple expression, true and false reduces, not sur-
prisingly, to true and false. nAp checks for the current state of the system, and
nNot calls the simplification formula recursively to get the simplified expres-
sion for F. If F is either true or false, it simply returns the opposite, and in any
other case F, it returns nNot F.

The case of nAnd and nOr is handled by recursively calling the simplification
function on the left and right sides of the operator. It checks if any of the
sides reduces to true or false, and if this is the case, it makes the defined
simplification, if not, it returns the (still with simplified left and right parts)
expressions with the corresponding operator.
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| nonSimp (L nAnd R) = let wval LS = nonSimp L
val RS = nonSimp R
in if (LS = nFalse)
orelse (RS = nFalse)
then nFalse
else if (LS = nTrue)
then RS
else if (RS = nTrue)
then LS
else LS nAnd RS
end
| nonSimp (L nOr R) = let wval LS = nonSimp L
val RS = nonSimp R
in if (LS = nTrue)
orelse (RS = nTrue)
then nTrue
else if (LS = nFalse)
then RS
else if (RS = nFalse)
then LS
else
LS nOr RS

end

The diamond modality for process transitions is quite straightforward, as the
only rule for simplification of it is {(a)ff — ff The function uses the func-
tion probSimp on the probabilistic formula pform, and if that reduces to
false, then the function returns nFalse. In any other case it returns formula
nDiamond (a,pform), where pform is simplified.

| nonSimp (nDiamond (a,pform)) =
let val PS = probSimp pform
in if (PS = pFalse)
then nFalse
else nDiamond (a, PS)
end

The simple formula types as pNot, pAnd and pOr, are implemented in a similar
way as their process counterparts, and are therefore omitted here.

The simplification function for the simple probabilistic modality, ¢>, checks if
the value of the probability u is valid (0 < g < 1) and returns pFalse if that
is not the case.

Then it uses the process simplification formula nonSimp, and checks if it either
is or simplifies to false, and if so returns pFalse.
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| probSimp (pDiamondsimp(p,nform)) =
if (p>1.0) orelse (p<0.0) then pFalse
else
let val NS = nonSimp nform
in if (NS = nFalse)
then pFalse
else pDiamondsimp (p,NS)
end

Finally we have the simplification function for the general modality. This is
the most complex of them all, as it needs to check a lot of cases, and because
of the number of rules for this type.

| probSimp (pDiamond(L,mu)) =
let fun DiamondInner (nil,mu) = (nil,mu)
| DiamondInner (((p,nform)::T),mu) =
case (nonSimp nform) of
(nTrue) => DiamondInner (T,(mu-p))
| ( nFalse) => DiamondInner (T,mu)
| ( nform’) =>

let val (T’,mu’) = DiamondInner (T, mu)
in (((p,nform’)::T’), mu’)
end

in case DiamondInner ((L), mu) of
(nil ,mu’) =>
if (0.0>mu’) then pTrue else pFalse
| ([( p, nform)], mr’) =>
if ((mu'/p)>1.0)
then pFalse
else
if ((mu’/p)<0.0)
then pTrue
else (probSimp
( pDiamondsimp ((mu’/ p), nform)))

| (L’,mu’) => if (mu’'<0.0) then pTrue
else

let val problist = getprob (L’)
val max = findmax problist
val amount = count problist

in if (max<(mu’/amount))

then pFalse

else (pDiamond(L’, mu’))

end

end
in nonSimp Form

end;

In the case of pDiamond the function probSimp defines an inner function called
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DiamondInner. This function handles different cases of process formulas, and
uses rules 4, and 5, to simplify expressions where a process formula simplifies
to true or false.

DiamondInner is then checked in different cases, the simple nil, the case of
only one inner formula and variable (which can then either be simplified or
described by pDiamondsimp), and the case of a full general modality. In the
latter case the function uses three basic sub-functions to check for rule 3.
Rule 6, is checked in every different case in the function, and if no more
simplification can be done, the function returns a general modality.
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Chapter 8

The Model Checker

Throughout the report we have described various bits from our implementa-
tion of a model checker for probabilistic alternating transition systems. We
have presented almost everything from definition of datatypes to the quotient
technique and corresponding simplification rules. In this chapter we complete
the implementation by describing the last functions in our model checker.

We have chosen not to implement any graphical user interface or other beau-
tification features, as we are solely interested in the results and performance
of the model checker.

8.1 The Functions

The functions we need to describe are first of all a function which, given a par-
allel system, chooses a machine to factor out, and calls the quotient and sim-
plification functions. This function called chooseIndexAndFactorOut, needs
a helping function divideMachine, which basicly divides the system into dif-
ferent cases.

The function chooseIndexAndFactorOut takes as input a full parallel system,
a formula and a synchronizing set. It chooses a machine to factor out (the
first machine of the system), calls the quotient and simplification formulas
continuously until one machine is left. It then checks if this machine satisfied
the quotiented formula or not, and returns true or false.
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fun divideMachine (M as system (_,_,_,index)) selectedIndex =
if index = selectedIndex
then (SOME M, NONE)
else (NONE, SOME M)
| divideMachine (M1 || M2) selectedIndex =
let val (selectM1l,restM1l) = divideMachine M1 selectedIndex
val (selectM2,restM2) = divideMachine M2 selectedIndex
in (case (selectM1, selectM2) of
(SOME M1’, NONE) => SOME ML’
| (NONE, SOME M2’) => SOME M2’

| ( NONE, NONE) => NONE
, case (restM1l, restM2) of
(SOME M1’, NONE) —> SOME M1’
| (NONE, SOME M2’) => SOME M2’
| (SOME M1’, SOME M2’) => SOME (M1’ || M2’)
| (NONE, NONE) => NONE

)

end

fun chooselndexAndFactorOut subMachine currentFormula A =
let val selectedIndex = indexOfMachine ( first subMachine)
in let val (SOME selectedMachine , restOpt) =
divideMachine subMachine selectedIndex
in let wval nextFormula =
Simplify (evalQuotient
selectedMachine
currentFormula A)(initialconf selectedMachine)
in case restOpt of
SOME ( system ( ntrans, ptrans,s0,i)) =>
nSatisfy
(system (ntrans, ptrans,s0,i)) nextFormula A
| SOME restM =>
chooseIndexAndFactorOut restM nextFormula A
end
end
end

8.2 Effectiveness of the Model Checker

As described in section 5.4 and 7.3 we might obtain some advantage in creating
an algorithm which checks for specific machines to factor out first. As the
model checker is now, it factors out machines from one end, not concerned
about the description of this machine.

It could add to the effectiveness of the implemented model checker to do such
a check, but we have not found it needful in our implementation. This is
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mainly because that, as our systems and formulas are defined, we believe that
we would not gain a lot by adding this check.

If future implementation would include some kind of recursiveness of formulas,
and perhaps infinite transition relations, then this check would be much more
useful.

In the next chapter we give a large example of our implementation, in order to
test the quotient technique against the simple checker (ie. by running through
all states).
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Chapter 9

Testing the Model Checker

In this chapter we run our implementation on some examples in order to
measure performance of the quotient model checker compared to the simple
checker.

9.1 A Telephone Call

As an example of systems which can be described using probabilistic system,
we assume cell-phone communication system. When making a call from one
cell-phone to another, the signal is transmitted via air to a transmitting station,
and again via air to the receiver of the call. Obviously it cannot be guaranteed
that no errors will occur, and the more users, the bigger chance of losing the
connection.

We will try to model a call from a cell phone, by using our probabilistic al-
ternating transition systems. We will then compose this call with other calls,
and give a specification for this composed system.

We start by creating a pure synchronous system (with more than half of the
population in large cities owning a cell-phone, the chance of at least a few
people using their cell-phones simultaneously should be quite large). We will
then check if the composed formula satisfies the specification, by using our
model checker, and compare the computing time with the time for checking
the same system with the simple checker.

In figure 9.1 we show a graphical view of our the intuition we have about a
call from a cell phone. Note that this is a theoretical example, and may not
have anything to do with how the real life GSM system works.

As we see in the figure, the caller might be placed in between two transmitting
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Figure 9.1: A graphical vies of a call from a cell phone

stations, which gives us the choice of two different stations, which we define
to act similar to each other. We will therefore assume in our example that we
only have one transmitting station. We define our transition system as seen in
figure 9.2.

As we see there is 1% chance that the call fails even before it reaches the
transmitting station, and again 1% chance that the call won’t be finished.

9.2 Test #1

As mentioned before, we start by composing our calls using pure synchronizing
transition. That means that our synchronizing set is A = {call, connect, error, complete}.

We know that when having synchronous transitions, then the probability con-
nected to that transition will become smaller when composing the system. In
this example, this means that if more than one person tries to make a call at
the same time, the probability for failure becomes larger.

Initially there is only 1% chance of failure, so what is acceptable when there
are, say, 20 people making calls at the same time. Well if you ask a cell-phone
user he would probably answer no loss at all. Fortunately we do not have to
ask anyone, so we set the allowed loss rate to 5%.
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Figure 9.2: The transition system for a phone call

This gives us the following specification for our system:

{call) O 9 (connect) o5 9 (complete)tt

For testing we name the different machines calll, call2 and so on. The
composed system is named Call, the specification Callformula and the syn-
chronizing set is named CallA.

9.2.1 Verification

We verify the correctness of the quotient technique by running an example
with two machines in parallel. A graphical view of the composed system is
seen in figure 9.3.

First we use the simple model checker:

— Satisfy (calll || call2) Callformula CallA;
> val it = true : bool

Not surprisingly it returns true, which we can verify by looking at figure 9.3.

We now run the same example with the quotient technique, and get

— chooselndexAndFactorOut (calll || call2) Callformula CallA;
> val it = true : bool
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error complete
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Figure 9.3: The composed system

So we have verified that the two techniques returns the same result.

9.2.2 Test Results

We will now compare the two checkers, to see which one is fastest. By running
some tests, we find out that our specification does not hold when we have more
than 5 machines in parallel. This is obviously not a good sign if we were to

implement a cell-phone communication system, but for testing our technique
it should be fine.

The Test setting

For our test setting we use the above specifications of our system and formula,
and we run the tests on an AMD Duron 600 MHz processor with Windows
ME. The functions are called from within emacs, using MosML.

66



The Test

We test our example by starting with two machines in parallel, and increasing
this number until we have a system consisting of 20 machines in parallel. We
plot the times in a diagram, which can be found in figure 9.4.

As we can see in the figure, this example really shows the benefits of the quo-
tient technique. When verifying 20 parallel machines, the technique concludes
quite early that the system doesn’t satisfy the specification, and thereby re-
ducing to false.

The simple checker does not have this check, and therefore still checks all states
of the parallel system. In this example though, we can only check up to 17
machines in parallel with the simple checker, above that the computer runs
out of memory.

9.3 Test #2

For the second test we introduce a new machine, which has two ways of con-
necting a call. We will use one instance of this machine in our composed
system, and give a new specification for the system. The new machine can be
seen in figure 9.5.

The specification we wish to test in this example is the following:

(call) o5 1 (((connect) Ox2 (complete)tt) V ({connect2) os 9 (complete)tt))
We test this in similar way as test #1, and plot the result into a diagram, seen
in figure 9.6.

The results for this test is also very satisfying. The simple checker grows
exponentially in time, whereas the computation time for the quotient technique
grows more moderately. Actually we see that in this case the simple checker
performs even worse than before, while the quotient technique is much the
same as in test #1.
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Figure 9.4: Execution time for the simple checker and the quotient technique.
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Figure 9.5: The new machine
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Chapter 10

Conclusion

The main goal of this report was to develop further the theory introduced in
[Ves00], and implement the technique, which this theory offers. Especially the
general modality needed to be explored, but also asynchronous composition
and simplification were to be studied more thoroughly.

10.1 Probabilistic Transition Systems

We have explored the theory of probabilistic alternating transition systems in
more detail than we did in the above mentioned reference. Some basic proba-
bility theory has been introduced, in order to get a better understanding of the
behavior of the systems. We have defined a probabilistic process calculus, and
a probabilistic modal logic (PML). As we concentrate on the quotient tech-
nique, we have focused on the transition systems rather than the calculus. We
have defined an asynchronous parallel operator, by introducing a 7p transition
to each P, in order to be able to keep the two part syntax.

10.2 The Quotient Technique

We have defined the quotient technique for our transition systems and our
logic, and shown that the original logic was not strong enough to support
the technique. This is not a revolutionary result, as it was shown by Larsen
and Skou in [LS92]. However we have defined the general modality in a more
specific version than the one of Larsen and Skou’s. We have also shown that the
last part of the modality is indeed one linear inequality, and have furthermore
given a quotient definition of this modality.
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10.3 The General Modality

The question of how the general modality would behave when being part of
a quotient formula, has been answered. There will never be more than one
inequality concerning the instantiation of each variable, only the number of
binding variables will change. As the number of variables in the inequality raise
when continuously factoring out components of a system, we have explored
some ways of reducing it.

Because of the fact that we most of the times are able to simplify the bind-
ing variables, thereby causing some of the constants in the inequality to be
removed, we found that we can actually show that there is a big chance that
the whole modality can be reduced to false after we have factored out some
machines. This and the discovery that the right side of the inequality some-
times becomes negative and thereby causing the modality to reduce to true,
gives a good hope for the applicability of the quotient technique.

10.4 Simplification

We have explored new ways of simplifying the quotiented formulas. For exam-
ple have we discussed that making a check on the composed system, in order
to choose a specific machine could be a promising way of obtaining formulas
which easily simplifies. This can both be used in the case of asynchronous and
synchronous composition of systems.

We discussed two of the most important simplification rules for probabilistic
formulas above. Besides those two, we still have some basic rules, which help
us in simplifying probabilistic formulas.

10.5 The Implementation

We have implemented our theory in the programming language Moscow ML.
This has resulted in a model checker which uses the quotient technique to
verify satisfiability of probabilistic alternating transition systems. We have
also implemented a simple checker, which runs through all states in order to
check the specification.

In our tests, we can clearly see the problem of state explosion, when using
the simple checker. The quotient technique does exceptionally well, which
was actually the intuition we had from the start. It should be clear by now,
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that if we can simplify the quotiented formulas quite early, then the quotient
technique spends very little time verifying even large systems. It seems that
the simplification rules we have implemented are quite effective, as our model
checker is very fast, at least in our test examples.

10.6 Further Work

Although we have explored and discussed some of the the important areas in
applying the quotient technique to probabilistic systems, there are still lots of
interesting things to be explored.

Bisimulation is one interesting area to study. Another possible extension would
be to add recursive properties to the logic, which again would call for more
theory about simplification, by for example studying some fixed point theory.

Furthermore there is the question of adding time to probabilistic systems (or
vice versa). This could enable us to express things like “certain events occurs
with probability  within z seconds”.
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Appendix A

The Quotient Technique for
Finite State Systems

Theorem A.1
Given two processes P; and P, and two distributions m; and w9 in CPS, then

P1||P2 ):F<:>P1 ):F/PQ

M E @ = m | ¢/m

Proof
We proof theorem A.1 by induction on the structure F' respectively 7.

(i) F = tt is trivial

(11) F:Fl/\FQI

PP, = Fi N F

P1||P2 ):Fl and P1||P2 ):FQ
Pl ):Fl/Pgandpl ):FZ/PQ
P =EF/P,\F,/P,

P E(FiN\NF)/P,

T eET

(iii) The negation is trivial and thus not proved

(iv) F = (a)y:This case is divided in two parts, the synchronous and the
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asynchronous. First the synchronous case:

PP (a)p

3j, kPP = mj|me Amrj|me =

3, k.P, % i NPy 2 T A b= /Ty
35.(Py = (a)o/mp) A Py = T

PV, e (ah/m
PiE(@)V, o of/m

P = ((a)p)/ Py

(1 =

Then the asynchronous case:

PilaPs = (a)p

3ry, T (P S m AT AP, E )V (PL S 1 APy S my Ay |amy = @)
Imy.(PL = (a)p/P2) V (Py | (a)p/ms A Py = )

P @el PV e o

tTe 0

(v) @ =tt is trivial

(Vi) @ = o1 A pa:

mi|m E @A

mi| o | @1 and mi Ty = 0o
1 ): Q01/7T2 and 1 ): Q02/7T2
T = p1/Ta A o/ T

1 = (1 A p2) /T

te el

(vii) Negation is trivial
(vili) ¢ = o5, F"

mi|ma = osy F

& ) m(Q) m(P) = pu
QIPE=F

TH

S 3> Mm@ -m(P)>p
P QEF/P

o 11 [on (F/P), - 00 (F/Pa) : jin - 21+ -+ fin - 2 > 1]
where my ~> ) Pr, ... T~y Py

& = (0xuF)/m
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(ix) o = [0g, F1,y ..y 0p, Fp t @(zq,...,2,)]:

m|me E [0 F1y o0, Fr s (21, ..., 2]
& 0w, ... vn) =True, where v; =3 p 5 pio.rp M(P) - (@)

& vi=Y,m@) >, m(P)
Q j
! P.P‘:Fi/Qj

]
T [0y F1/Qus - 0y Fif Q- -5 0y, B/ Qi = @35 131 - -5 D25 1))
T = [0, F1, .., 00, Fy t @(21, ..., 2,)] /T2

I

|
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