
Home Automation
Systems Integration

Integrating home automation systems to promote openness and adoption.

Software Engineering Master Thesis, spring 2010

Tim M. Madsen

Department of Computer Science

Aalborg University

Selma Lagerlöfs Vej 300

DK-9220 Aalborg Øst

http://www.cs.aau.dk

Title
Home Automation Systems Integration

Semester theme
Programming Technologies and Embedded Systems

Project term
SW10, spring 2010

Project group
d510b

Supervisor
Lone Leth Thomsen

Co-supervisor
Arne Skou

Abstract
This report documents the development of a range of systems that enable home
automation systems to be integrated and exposed to the Web. Requirements for
the systems are elicited. Various implementation strategies are considered. The
terminology pertaining to the strategies is explored and explained. The strate-
gies are compared, and an informed choice between them is made. Two home
automation simulation systems is developed. They are exposed and integrated
using the chosen implementation strategy and developed according to the elicited
requirements.

Participant
Tim M. Madsen

Preface

The following report is written during the spring 2010 by a single software engineer-
ing student at the computer science department at Aalborg University.

When the words I or my are used, they refer to the author of the report. When the
word you is used, it refers to whomever is reading this. When the word we is used, it
refers to you and I.

You are expected to have basic knowledge of object oriented programming and
patterns. Other knowledge required is introduced in the report as needed.

When source code is presented, it may differ from actual source. It may have been
altered to heighten the legibility the source code. The source code is available online
at http://tmadsen.net/sw10-src.zip.

I would like to thank Lone Leth Thomsen for her supervision during this project.

Tim M. Madsen

iii

Contents

Preface iii

1 Problem Statement 1
1.1 Home Automation Primer . 2
1.2 Benefits and Obstacles . 2

1.2.1 Potential Benefits . 3
1.2.2 Obstacles . 3

1.3 Hypothesis . 4
1.4 Project Goals . 4
1.5 Report Roadmap . 5

2 Requirements 7
2.1 Requirements Definition . 7
2.2 Business Requirements . 8

2.2.1 Potential Benefits . 9
2.2.2 Scope . 10
2.2.3 Vision Summary . 11

2.3 User Requirements . 11
2.3.1 The Smiths . 12
2.3.2 Interface Implementers . 16

2.4 Functional Requirements . 19
2.5 Summary . 19

3 Technical Terminology 21
3.1 Web Service Definitions . 21

3.1.1 Universal Description, Discovery and Integration Consortium . 21
3.1.2 World Wide Web Consortium . 22
3.1.3 Richardson and Ruby . 22

3.2 Hypertext Transfer Protocol . 23
3.3 Service Oriented Architecture . 24

3.3.1 WSDL . 25
3.3.2 UDDI . 26
3.3.3 SOAP . 27

3.4 Resource Oriented Architecture . 28
3.4.1 Guiding Principles of REST . 29

4 Choosing an Architecture 31
4.1 Coupling . 32
4.2 Practical Example . 35

v

vi Contents

4.3 SOA Hello World API . 35
4.4 ROA Hello World API . 36
4.5 General Discussion . 37

5 Implementation 39
5.1 Home Automation System Simulators 39

5.1.1 Problem Domain Analysis . 39
5.1.2 Implementation . 41

5.2 Interface . 45
5.2.1 Interface Methods . 46
5.2.2 Interface Implementation . 47

5.3 Exposure . 51
5.3.1 Web Framework . 51
5.3.2 Exposure Implementation . 52

5.4 Aggregation . 55
5.4.1 General Structure . 55
5.4.2 Rules . 56

5.5 Client . 58
5.5.1 General Features and Layout . 59
5.5.2 Application State Issue . 59

6 Test 63
6.1 Systems . 64
6.2 Devices . 66
6.3 Rules . 67

7 Conclusion 71

8 Future Work and Evaluation 73
8.1 TV Simulator . 73
8.2 Lighting Simulator . 73
8.3 REHAB Interface . 74
8.4 REHAB Exposure . 74
8.5 REHAB Hub . 74
8.6 Ajax Client . 75

Bibliography 75

Chapter 1

Problem Statement

This master’s thesis is a project done at Aalborg University in cooperation with its
programming language technology and distributed and embedded systems groups. My
preceding three semesters have all been done in this fashion and has allowed for a
continuous theme throughout my graduate studies. Below follows a short presenta-
tion of my three preceding semesters, they have all involved home automation in on
way or another.

7th semester had the theme Internet Development. The project was about interfac-
ing one specific home automation system, called Innovus, with Web services.
Thus allowing information from Web services to control the Innovus home
automation system. This was a two person project, described in [CM08].

8th semester was about Distributed and Mobile Software. An iPhone application that
functioned as a mobile and distributed remote control for the Innovus home
automation system was developed. In essence, the application enabled multi-
ple users to both manually control devices and set up rules to control devices
based on locations on the same home automation system. This was a one
person project, described in [Mad09].

9th semester was used for a broad investigation in the possibilities of applying rule
engines to home automation. Rule engines are quite memory-intensive appli-
cations, and the purpose of the project was to reach an assessment to whether
it is feasible to run rule engines on an embedded platform used for home
automation. This was a two person project, described in [CM10].

The home automation theme continues in this project, that originates from ideas
gained through these projects. The rest of this chapter accounts for the problem I will
solve in this project and is organized as follows:

Section 1.1 gives a brief introduction to home automation.

Section 1.2 discusses what potential benefits home automation offer and some of the
problems that still exist in home automation.

Section 1.3 identifies one problem and state a hypothesis on how to solve the prob-
lem.

Section 1.4 present goals that needs to be reached during an implementation of a
solution.

1

2 Problem Statement

1.1 Home Automation Primer

A home automation system is a means that allow users to control electric appliances
of varying kind. Home automation is also known as domotics, a contraction of the words
“domestic robotics”. When home automation principles are applied to buildings not
falling in the “home” category, building automation system is a commonly used term.

The most common usage scenario of a home automation system is lighting control,
which is fairly easy to both explain and set up. The main components are:

• A hardware controller, or central control unit,

• an actuator, and

• a lamp.

The actuator in this case is a device that controls the flow of current from a wall
socket to the lamp in question. It does so by being plugged into both the wall socket,
and the lamp. The control unit communicates with the actuator to tell how much
current to let through to the lamp. The control unit may be operated through a Web
site, a remote control, or something similar. The setup is illustrated in Figure 1.1. The
wireless communication between the remote, control unit, and the actuator is done
using a home automation communications protocol, e.g. ZigBee [Kin03] or Z-Wave
[GEI06].

TCP/IP Wireless home automation protocol

Figure 1.1: A typical home automation setup for controlling a lamp.

1.2 Benefits and Obstacles

This section presents the potential benefits from home automation and then looks at
some of the obstacles, that are somewhat hindering these benefits.

1.2 Benefits and Obstacles 3

1.2.1 Potential Benefits

The potential benefits we can gain from home automation are almost only limited by
imagination and as such it would be infeasible to create a comprehensive list of them.
The short list below exemplifies potential benefits in four areas of home automation.
The examples are meant to spark the imagination.

Energy Savings Through user tracking both in- and outdoors, a home automation
system would potentially be able to make sure that, for example, no unnecessary
light or heat is turned on in individual rooms.

Convenience Trough Web based access to the home automation system a forgetful
user will potentially no longer have to worry about if the coffee machine was
left on when he left for work. Simply go to a Web page, check it, and turn it off
if necessary.

Security Tracking user locations can assist in automatic alarm system arming. Also,
security cameras might be accessed from a vacation to check that the house is
alright.

Home Entertainment When engaging in movie watching, the lights might be set to
an appropriate dimming level. When listening to music, speakers might be
changing from room to room for your listening pleasure throughout the house.
Digital paintings on the wall might change according to persons currently
occupying the room.

1.2.2 Obstacles

For most of the above examples the technology required to realize them already exists:
People can be tracked with Bluetooth, RFID chips, or digital people counters, used at
some supermarkets and conferences. Some home automation systems feature Web
based access to domestic appliances and alarm systems. Other home automation
systems come with home entertainment integration, featuring control of television
and stereo sets.

With the technology being available, the question is what obstacles are hindering all
of the above examples from being common in a setup similar to that of Figure 1.1.

Proprietorship Many of the systems (TV, stereo, surveillance camera, etc.) men-
tioned in the examples are proprietary and as such each have their own pro-
grammatic interface that control them, or none at all. Thus to obtain a system
able to handle the examples, the buyer has to seek out a home automation
vendor that specializes in custom home automation solutions and likely has to
buy a whole range of appliances that the vendor is endorsing. This introduces
a high cost due to the amount of work required to realize these systems. High
cost means that home automation is less likely to become a common household
system, unfortunate for both home automation vendors and households.

Extensibility Even if the buyer has acquired such a custom system, there is no
guarantee that it can be extended with completely new, yet home automation
related, features. For instance, the buyer might later purchase a system able
to keep track of his refrigerator by means of a camera enabled mobile phone
and software able to recognize bar codes. This might be a functionality that the
buyer would like to add to his home automation system, much like he would

4 Problem Statement

install a new program on his computer, but most likely will be unable to due to
a complicated, or even completely incompatible, system structure.

Standardization To obtain an extensible system of home automation related de-
vices, that system must provide an agreed upon standard for device commu-
nication. One that companies providing proprietary systems are willing to
implement. ZigBee, which is an open source communication protocol, is said
to have boosted wireless sensor network standardization [GKC04]. Still, many
other sensor network protocols exists and are widely used in home automation
solutions, either through wired or wireless communication. Another problem
with these kinds of protocols is that they require special hardware to func-
tion. In the case with the mobile phone application for keeping track of the
refrigerator, a ZigBee, or equivalent, chip might not be available.

1.3 Hypothesis

Summing up the problems described in the previous section into one word yields:
communication.

Domestic appliances such as TVs, stereo systems, lights, heaters, etc. have no stan-
dardized common communication platform and consequently it becomes difficult to
extend a home automation system to include new features. I hypothesize that it is
possible to create:

A standardized communication platform, that is able to handle communication between
many different kinds of home automation related systems.

As stated in Section 1.1, two common communication protocols are Z-Wave and
ZigBee. Section 1.2.2 explains that neither of these are agreed upon standards (at least
not in the way as TCP/IP is the agreed upon standard in Internet communication),
and how that creates a need for custom solutions that may have a lot of functionality,
but still lacks extensibility.

The overall idea for the hypothesized platform is to lift the abstraction level for
communicating with domestic devices, thus lift the level for inter-device communi-
cation as well as human to device communication. By lifting the abstraction level for
communication it is possible to overcome standardization problems with low-level
protocols, thus facilitating extensibility and (hopefully) promoting adoption. The
major challenge in lifting the abstraction level is to do it in an already standardized
way, otherwise the platform will be too hard to use. The way that this project attempts
to meet this challenge is described in Chapter 2.

1.4 Project Goals

The goals for this project can be divided into the following steps:

1. Define requirements for a system that accommodates my hypothesis.

2. Identify more than one way in which the system can me implemented.

3. Compare the alternatives and make an informed choice between them.

1.5 Report Roadmap 5

4. Implement a system that accommodates my hypothesis, if possible.

5. Confirm that the implemented system fulfills the defined requirements through
testing.

6. Evaluate the system with established requirements in mind and state possible
limitations and suggest future work in the area.

7. Conclude upon the project.

Since I am a student, the main goal of any project is to learn new things. During this
report I describe many technologies that, before this project, were unfamiliar to me.

1.5 Report Roadmap

The rest of the report is structured according to the project goals:

Chapter 2 identifies the requirements and possible implementation strategies for a
system that accommodates the hypothesis stated in Section 1.3. It also elabo-
rates on the vision for the system and states potential benefits.

Chapter 3 reviews the technical terminology related to the implementation strategies
identified in Chapter 2.

Chapter 4 compares implementation strategies on a conceptual level. The chapter
concludes with an informed choice between strategies.

Chapter 5 reviews the systems implemented during this project to fulfill the hypoth-
esis in Section 1.3. The systems are implemented according to the implementa-
tion strategy chosen in Chapter 4.

Chapter 6 tests the implemented systems according to requirements identified in
Chapter 2 to see if they accommodate the hypothesis.

Chapter 7 concludes upon the project by summarizing the work performed and
answer whether the developed systems accommodate the hypothesis.

Chapter 8 evaluates the shortcoming and future work, on the systems developed
and present my thoughts on the technologies used to implement them.

Chapter 2

Requirements

This chapter concretize the hypothesis stated in Section 1.3 by first stating a vision
for the completed system, a number of potential benefits entailed by that vision, and
a scope for this project in Section 2.2. Section 2.3 presents use cases, which serve as
implementation and testing guidelines. Lastly, Section 2.4 sum up the use cases in
a list of functions that is to be implemented according to use cases. To begin with
though, the term “requirements” is defined in the next section.

2.1 Requirements Definition

IEEE states in [RGK90] that a requirement can be one of the following:

1. A condition or capability needed by a user to solve a problem or achieve an
objective.

2. A condition or capability that must be met or possessed by a system or sys-
tem component to satisfy a contract, standard, specification, or other formally
imposed document.

3. A documented representation of a condition or capability as in 1 or 2.

The following sections outline requirements as defined in bullet number one, by:

1. Stating the objective of the completed solution.

2. Stating the capabilities needed by users to obtain the objective.

3. Stating the systemic conditions required to obtain the capabilities.

This approach thus includes three levels of requirements. I refer to as them, respec-
tively: business, user, and functional requirements [Wie03]. Figure 2.1 illustrates the
flow and products of these individual steps.

7

8 Requirements

Business
Requirements

User
Requirements

Functional
Requirements

Vision and Scope

Use Cases

Software Requirements

Figure 2.1: A requirement engineering work flow.

2.2 Business Requirements

Section 1.2.2 states proprietorship, extensibility, and standardization as some of the
current obstacles in home automation. This project aims to alleviate these problems
by providing a system that through standardization is proprietor-independent and
extensible.

The hypothesis in Section 1.3 states that this is possible by lifting the abstraction
level for communication with home automation related devices. A common way
of lifting the abstraction level for communication is to implement an interface that
acts as a proxy between the home automation related system and the higher level of
abstraction. Such a system is also known as middleware [Hoa].

Home automation systems commonly provides a graphical user interface through
a browser, and communicates with devices over a wireless network. Due to this
networked property of home automation related systems, it is natural that commu-
nication with the interface (as suggested by [Hoa] is carried out over a networked
structure as well. The Internet is a network that already exists, is highly standardized,
and been proven able to handle information sharing in a heterogeneous environment.
Thus it is a prime candidate for the higher level of abstraction.

The approach is then to facilitate exposure of domestic devices as Web services or Web
resources, encapsulated in either a Service Oriented Architecture (SOA) or a Resource
Oriented Architecture (ROA). These terms are reviewed in Chapter 3, which will
illustrate differences between the two architectural styles will assist in an informed
choice between the two, documented in Chapter 4. For now it suffices to say that
the main principle in both SOA and ROA is to utilize the Web as middleware. Web
services are Web accessible systems written in an object oriented, functional, scripted,
or similar programming environment. The Web service is said to be “bound” to the
system in question.

Since this project is about exposing home automation systems as Web services, a
suitable working title for the solution is a contraction of the words Home Automation
Bindings: HAB. The concept of HAB is illustrated in Figure 2.2, which shows a three-

2.2 Business Requirements 9

tier architecture that facilitates the exposure of home automation related systems.

Home Automation System,
Home Entertainment System,

Security System,
Refrigerator Application, etc.

REHAB interface

REHAB exposure

Figure 2.2: The HAB concept. The developer of the home automation related system
in question implements the HAB interface that facilitates the exposure of domestic
devices as Web services.

There are basically two ways to realize the concept. Approach number one is that the
home automation vendors have their own custom application programming interface
(API) and a hobbyist developer implements the HAB interface so that it translates
messages into the home automation vendor specific API, which, based on personal
experience, is often based on XML messages.

Approach number two is that home automation vendors implement the HAB in-
terface themselves. Every vendor has some interface to facilitate control of devices,
commonly through a graphical user interface (GUI). Implementing a standardized
interface should be in their own interest because the decisions involved in inter-
face development will be obsoleted. Some of the benefits that can be gained by
implementing HAB is discussed in the next section.

2.2.1 Potential Benefits

Each of the following sections describe a potential benefit triggered by a system
such as HAB. The benefits concentrate mostly on home automation systems, but are
applicable to any home automation related system. Due to the time constraints of
this project, these benefits is not considered main goals of HAB, they are food for
thought.

2.2.1.1 Aggregation of Home Automation Networks

Some home automation vendors sell systems to large institutions with thousands of
devices they want to control from a single location. Unfortunately, there is a limit on
how many devices can co-exist in the same home automation network, for instance,
the limit for a Z-Wave network is 232 [GEI06]. This means that a home automation
system with thousands of devices to control requires a number of control units.

By exposing the devices as standardized Web services it becomes easy for the home
automation developers to aggregate their systems in one central system with a user
interface that facilitates central control.

10 Requirements

2.2.1.2 Out-of-the-box User Interface for Home Automation Developers

With a standardized interface it is easy to represent the devices, and the functions
of them on a Web page. This means that home automation developers would no
longer have to develop their own graphical representation of the system, they may
simply use one provided for them. Cascading Style Sheets (CSS) is a clear-cut way
of customizing the look of the Web page(s) to suit the home automation vendor’s
needs.

2.2.1.3 System Independent Distributed Rule System

A home automation system is inherently based on rules, e.g. when a switch is pressed,
light should turn on. This property is easily extendible to more complex scenarios, for
instance in the “Energy Savings” example in Section 2.2.1. A standardized interface
should allow devices from different systems to subscribe to each others’ change in
state and act according to a set of user specified rules to achieve desirable behaviour.

Such a rule system would be, in a sense, distributed. Meaning that memory-intensive
rule inferencing algorithms such as RETE [For82] [CM10] could possibly be replaced
with more simple approaches without a significant change in the time it takes to infer
rules.

2.2.1.4 Internet Access to Domestic Devices Behind NAT’ed Networks

Another evident use of HAB would be to implement a feature allowing users on a
Network Address Translated (NAT) network to access their domestic devices when
on a vacation for instance. The nature of NAT requires some extra work for such a
feature to become a reality. HAB could implement this feature once and for all home
automation vendors, thus shortening their product development time and making
their product more attractive.

2.2.2 Scope

The usage scenarios and potential benefits of a finished HAB are manifold, only a few
are listed in the previous sections. Unfortunately, a university project can only last for
“so long”, thus the project needs a scope. The purpose of HAB is first and foremost
to show one possible solution to the home automation integrations challenge, using
already established standards. This means, for instance, that implementing Inter-
net access to domestic devices behind NAT networks (a potential benefit described
earlier) is not a primary objective in developing HAB.

Even though important in real world use, security takes the proverbial back seat
when implementing HAB. Security is a big subject, and to say that a system is secure
requires a lot of testing, which, in turn, requires a lot of time. Still, I will not ignore
security either; Safe guards against obvious security holes should be included in any
software and they will be in HAB as well. HAB will not, however, make use of secure
(encrypted) communications protocols.

Another important issue in real world use is the act of adding new systems to HAB.
Ideally, when end users buy a new system, the system should announce itself and

2.3 User Requirements 11

be discovered and added to HAB automatically. Implementing such functionality is
not part of this project.

2.2.3 Vision Summary

The project vision is to create a standards-based interface that, when implemented
by e.g. home automation vendors, enables a central point of control for domestic
devices, as illustrated in Figure 2.3. More detailed requirements for fulfilling the
vision are described in Sections 2.3 and 2.4. If HAB meets those requirements, it
should show that there is an untapped potential in home automation as described in
Section 2.2.1.

REHAB
Control

Home
Automation

System

Television

Alarm
System

Refrigerator

Surveillance
System

Stereo
System

Figure 2.3: The HAB vision, where lines represent communication enabled by the
HAB interface.

2.3 User Requirements

Exposing domestic devices on the Web implies two kinds of users: interface imple-
menters (as per Figure 2.2) and “Mr. and Mrs. Smith”. Implementers are vendors or
hobbyists, who implement the interface to enable communication with HAB, and the
Smiths are “common folk” who would like to control their domestic devices through
a Web browser. Vendors are characterized by having intimate knowledge of the inner
workings of their home automation system. Hobbyists are characterized by having
access to a home automation system API and know how to utilize it. This section
starts of by investigating the needs the Smiths might have, and then goes on to the
interface implementers.

12 Requirements

2.3.1 The Smiths

Each of the following sections has a title, representing a use-case title as suggested
in [Wie03]. Each section contains a step-by-step guide to achieving the use-case, and
a state transition diagram. Both the step-by-step guides and state diagrams is used
during implementation. Each state diagram has a starting point, denoted by a filled
black circle, that is the main Web page of the HAB graphical user interface (GUI).
The state diagrams also contain a black circle contained within an unfilled circle,
representing the end point of the state transitions in a use-case.

2.3.1.1 Add a Device or System

First of all, the Smiths need a means for adding a new system, e.g. home automation
system, or device, e.g. the refrigerator application, to HAB. This should be obtained
as follows: (illustrated in Figure 2.4)

1. The Smiths navigate to a “System Overview” page on the Web site.

2. They press an “Add System” button.

3. They are prompted to supply an installation file for the system.

4. Once the file is supplied, they press a “Submit” button and one of two things
will happen:

• The file may be erroneous, the Smiths will see the “System Overview”
page once again, with a description of the error.

• The file is accepted, the new system is added, and they will see a page
describing the newly added system.

System Overview
1. Press "Add System."
2. Supply installation file.
3. Press "Submit."

New System
Overview

Go to "System Overview"

Error / Show Error Message

Success /
Add New System

Figure 2.4: The state transitions when the Smiths want to add a new system to HAB.

2.3.1.2 Remove a Device or System

If the Smiths discontinue use of a system already added to HAB they need a means of
removing it. Again they use a Web site to navigate to the “System Overview” page.

2.3 User Requirements 13

Here they will press a “Remove System” button, and one of two things happen:
(illustrated in Figure 2.5.)

1. If there is no system to be removed, the Smiths will be presented with an
appropriate message, and stay on the “System Overview” page.

2. Otherwise, they are presented with a new page, called “Remove System,”
where they select which system to remove by clicking its name. Upon clicking,
they will be asked to confirm the deletion and may choose to either confirm or
cancel the deletion.

(a) Disconfirmation results in being returned to the “Remove System” page
without the system being removed.

(b) Confirmation results in removal of the device, and being returned to the
“System Overview” page.

System Overview
1. Press "Remove System."

Go to "System Overview"

Error

Success Remove System
1. Choose system.

System Overview

Disconfirmation

Confirmation

Remove
System

Error

Success

Figure 2.5: The state transitions relevant to removing a system from HAB.

2.3.1.3 See the Status of a Device

When systems have been added, the Smiths may want to see the status of the de-
vice(s) included in the system. This is accomplished through a page called “Device
Overview,” which shows an overview of all device status. If no devices have been
added to HAB, the “Device Overview” explains this.

Device Overview

Go to "Device Overview"

Figure 2.6: The state transition for obtaining an overview of devices status.

14 Requirements

2.3.1.4 Change the Status of a Device

The Smiths also want to control devices included in HAB. This can be accomplished
either by using the aforementioned “Device Overview” page, or a “Device Details”
page. The “Device Overview” page shows information about the current status of a
device, but also allows the Smiths to input values to be used for updating the device.
Updating a device goes as follows: (illustrated in Figure 2.7)

1. Navigate to either the “Device Overview” or “Device Details” page.

2. Input a new value into the text field associated with the device to be updated.

3. Press an “Update” button, which may yield one of the following:

• An error, resulting in the same page to be shown again, this time with the
relevant error information. The error might be one of the following:

– If detected at the “Device Overview” page, it is because the input
value is unacceptable, e.g. inputting −1 or 101 into a percentage field.

– If detected while trying to update the device, it is because HAB is
unable to communicate with the device in question.

• A success, resulting in the same page being shown again, this time with
the device’s updated value(s).

Device Overview
1. Input update value at the
device to be updated.
2. Press "Submit."

Go to "Device Overview"

Error

Success

Device Overview

Update
Device

Success

Error

Figure 2.7: The state transitions involved in update a state attribute of a device.
The “Device Overview” page can be replaced by a “Device Details” page without
difference in state transitions.

2.3.1.5 Create a Rule

Being able to create rules in HAB demonstrates its ability to communicate with
different kinds of systems. To exemplify this use-case, it is assumed that the Smiths
have added a home automation system that controls their lighting, and a motion
sensing system to HAB. Now, they would like to use the motion sensing system to

2.3 User Requirements 15

detect when nobody is at home and, when this is the case they want to turn off lights.
Generally, a rule has the form of a control statement known from programming
languages:

if condition is fulfilled then take action

The current example might be formulated as:

if motion sensors detect everyone left home then turn off all
lights

The example can be accomplished by navigating to a page called “Rule Overview”
and pressing an “Add Rule” button: (illustrated in Figure 2.8)

1. Configure one or more conditions, by:

(a) Specifying a device to base the condition on, e.g. motion sensor.

(b) Specifying a status attribute of that device, e.g. number of people at home.

(c) Specifying a comparison operator for the status attribute, e.g. “equals.”

(d) Specifying a value to compare against the status attribute by using the
operator, e.g. 0.

2. Configure one or more actions to be taken, by:

(a) Specifying a device to affect, e.g. a lamp.

(b) Specifying a status attribute of that device, e.g. its on/off state.

(c) Specifying a value that the status attribute should change to, e.g. “off”.

3. Click a “Save Rule” button, which may result in one of the following:

• An error if the rule cannot be saved. This may happen if the rule conflicts
with an already created rule, or if there is a conflict within the rule being
created.

• The rule being saved.

2.3.1.6 Change a Rule

Once created, it might be necessary to change a rule. This is obtained by: (illustrated
in Figure 2.9)

1. Navigate to the “Rule Overview” page.

2. Click on the rule to be modified, be taken to a “Rule Details” page.

3. Either:

• Remove conditions or actions.

• Add conditions or actions.

• Modify status attributes of the devices being used in conditions or actions.

4. Click a “Save Rule” button, which may result in one of the following:

• An error if the rule cannot be saved.

– Either the comparison values are invalid, or

16 Requirements

Rule Overview
1. Press "Add Rule."

Go to "Rule Overview"

New Rule
1. Configure conditions.
2. Configure actions.
3. Press "Save Rule."

Success

Error

Save Rule
Success

Error

Rule Overview
Success

Figure 2.8: The state transitions involved in creating a new rule.

– the rule conflicts with an already created rule, or

– there is a conflict within the rule itself.

• The rule being saved.

2.3.1.7 Remove a Rule

Created rules can also be deleted. The Smiths can delete a rule by doing the following:
(illustrated in Figure 2.10)

1. Navigate to the “Rule Overview” page.

2. Identify the rule to be deleted, and press its associated “Delete” button.

3. The Smiths are now asked to confirm their decision, which may result in one
of the following:

• Disconfirmation results in being returned to the “Rule Overview” page
without the rule being removed.

• Confirmation results in removal of the rule, and being returned to the
“Rule Overview” page.

2.3.2 Interface Implementers

The use-cases for the Smiths outline the basic functionality and behaviour of HAB,
relevant to achieve the vision presented in Section 2.2.3. The main use-case of inter-

2.3 User Requirements 17

Rule Overview
1. Click on a rule.

Go to "Rule Overview"

Rule Details
1. Reconfigure conditions.
2. Reconfigure actions.
3. Press "Save Rule."

Success

Error

Save Rule
Success

Error

Rule Overview
Success

Figure 2.9: The state transitions involved in updating a rule.

Rule Overview
1. Press "Remove Rule."

Go to "Rule Overview"

Disconfirmation

Confirmation

Rule Overview

Remove
Rule

Error

Success

Figure 2.10: The state transitions involved in deleting a rule.

18 Requirements

face implementers can be called Enable Control of System. The use case is illustrated
with a state diagram in Figure 2.11. There is quite a bit of technical know-how
required before describing exactly how the communication will be conducted, and
this will be devised during the implementation. What can be done now is describe
requirements that are desirable for the interface to achieve, which is done in the
following sections.

REHAB
Home

Automation
System

Update

Success

Error

RHBI

Figure 2.11: HAB issuing an update to a device, through the HAB interface (RHBI).
The system containing the device report either success or failure in updating the
device.

2.3.2.1 Homogeneity

For HAB to be used by home automation developers, it should be as easy to use
as possible. This is obtainable by creating homogeneous interfaces that are easily
memorized. While being homogeneous, the HAB interface should also be able to
support many different kinds of home automation related systems, i.e. be able to
operate in a heterogeneous environment.

2.3.2.2 Convenience

If HAB is to gain a footing in home automation it needs to excel in providing con-
venience for its users, both for vendor and hobbyist developers. Ideally, it should
be as easy to extend the HAB environment with new systems, as it is to install a
new application on a computer. This requires a way of describing the system being
added, and the devices it contains.

2.3.2.3 Standardization

As mentioned on numerous occasions already, the HAB interface should be based
on standards, mainly for two reasons:

1. Established standards are already known in developer communities.

2. Standards are more likely to be long-lasting, than a custom interface developed
“in a jiffy.”

2.4 Functional Requirements 19

2.4 Functional Requirements

Functional requirements denote the functions that a developer must build into the
software to achieve use-cases [Wie03]. The functional requirements for HAB are thus,
according to use-cases described in Section 2.3.1:

• Add system.

• Remove system.

• Display device status.

• Change device status.

• Create rule.

• Change rule.

• Remove rule.

These functions will be implemented such that they enable vendor independent
system-to-system communication.

The functionality of the HAB interface shall be implemented in such a way that
it is homogeneous, based on standards, and convenient to use, according to the
requirements stated in Section 2.3.2.

2.5 Summary

To quickly sum up, the vision for HAB is to function as a central place from which
the Smiths can control their home automation related systems. Furthermore, HAB is
a platform for vendor independent system-to-system communication. HAB will be
implemented with certain usage scenarios in mind to prove this vision. HAB enables
the use-cases through a Web site, which itself is enabled by the HAB interface. The
interface will be implemented with desirable properties, specifically homogeneity,
standardization, and convenience, in mind. These properties will be demonstrable by
the completed system.

Chapter 3

Technical Terminology

With HAB being an attempt to expose domestic devices as Web services, we enter a
world of buzzwords like: Web service, SOA, ROA, REST, SOAP, etc. Some of these
terms describe technologies while others describe architectures, thus the mixture
can quickly become confusing. This chapter provides descriptions of technologies
relevant to HAB, covering all of the above terms and other, more basic, terms needed
to understand the more elaborate ones.

We start at the very top, by examining what constitutes a Web service, according to
authoritative sources on the subject. Then we go all the way to the bottom and take
a look at the basic technological commonality of Web service implementations: the
Hypertext Transfer Protocol (HTTP). Knowing the basics of HTTP, we are ready to
see how HTTP is being utilized in different technologies to obtain Web services of
varying architectural styles.

3.1 Web Service Definitions

Various authoritative sources have tried to define Web services over the years. This
section presents three of these definitions. There are two purposes in presenting three
definitions: one is to introduce varying uses of the term, another is to demonstrate
that a definitive Web service definition does not exist. The three definitions are
presented in each their own section, each section shortly introduces the source.

3.1.1 Universal Description, Discovery and Integration Consortium

The Universal Description, Discovery and Integration (UDDI) Consortium was com-
prised by prominent companies, such as IBM and Microsoft, with the purpose of
creating a standard analogous to a “phone book for Web services” [Con00]. Today,
the UDDI Consortium is part of another consortium called OASIS; Organization for
the Advancement of Structured Information Standards, and the UDDI standard is
maintained by OASIS. In 2000, the UDDI Consortium state that:

21

22 Technical Terminology

Web services are self-contained, modular business applications that have open,
Internet-oriented, standards-based interfaces. Web services communicate di-
rectly with other Web services via standards-based technologies. [Con00]

This is a rather business oriented definition, stating that a Web service is a business
application that communicates with other business applications through standards-
based technologies. An example usage of Web services that abide by this definition
could be a supply chain management (SCM) service. An SCM service can for instance
monitor a business’s inventory and automatically order parts from another business’s
SCM service, if this is required.

3.1.2 World Wide Web Consortium

The World Wide Web Consortium (W3C) is founded by Tim Berners-Lee (the author
of HTML), and maintains standard specifications such as HTML, XML, and SOAP.
W3C’s definition of Web services, which takes specific technologies into considera-
tion, is from 2004 and states that:

A Web service is a software system designed to support interoperable machine-to-
machine interaction over a network. It has an interface described in a machine-
processable format (specifically WSDL). Other systems interact with the Web
service in a manner prescribed by its description using SOAP-messages, typically
conveyed using HTTP with an XML serialization in conjunction with other
Web-related standards. [W3C04]

W3C mentions four specific technologies that they consider essential in Web ser-
vices: WSDL (Section 3.3.1), SOAP (Section 3.3.3), HTTP (Section 3.2), and XML (this
report does not dive into the eXtensible Markup Language specification, for more
information see [BP+].) With exception of HTTP, these technologies are all W3C
“recommendations”, which is W3C’s word for standard.

3.1.3 Richardson and Ruby

Leonard Richardson and Sam Ruby are co-authors on the book “RESTful Web Ser-
vices” ([RR07].) The two previous sources are strong proponents of the service
oriented architecture, while [RR07] explains the principles of a resource oriented
architecture. In 2007 Richardson and Ruby simply state that:

Web services are Web sites.[RR07]

Their claim is substantiated through an examination of the process involved in re-
questing information from both sites and services on the Web. The process is identical
in both cases and involves three steps:

1. Find out what you want to request and how you request it.

2. Formulate the request as an HTTP request and send it to the appropriate HTTP
server.

3. Parse the response data into data structures that your program needs.

For a Web site user these steps are handled mostly by a Web browser, the user only
needs to consider “what to request”, e.g. by entering a search term in Google’s search
field, and click “Search”. The underlying Hypertext Markup Language (HTML) of

3.2 Hypertext Transfer Protocol 23

the Google search site contains the information the browser needs to formulate an
appropriate HTTP request and also where to send it. When receiving the response,
the browser knows how to parse it in order to display human readable search results.
In short, the browser is a program that utilizes services on the Web even though we
might think of these services as sites.

3.2 Hypertext Transfer Protocol

The Hypertext Transfer Protocol (HTTP) is an application-level protocol (on the Open
Systems Interconnection (OSI) model [DZ83]). This section is based on [FGM+99].

HTTP is a request/response communication protocol, initiated by a client issuing a
request message to a server that sends a response message back. Thus there are two
kinds of HTTP messages: requests and responses. Common for the kinds of messages
is that they are composed of a number of headers (required) and a body (not required).
The body contains data relevant to the application to which it is sent, the data can be
formatted as HTML (for Web browsers), XML (for XML applications), or any other
format — HTTP allows any kind of data in the body. Headers are more strict, here
we concentrate only on request headers. They contain information about e.g.:

• Resource location (where a Web site, or service, resides),

• What to do with the resource (e.g. read its contents),

• What content type is being sent (e.g. HTML), and

• What content type is expected in return from the server.

Addressing is obtained through Unique Resource Identifiers (URIs), composed of a
host, e.g. www.example.com, and a resource residing on that host, e.g. /index.php.
The URI scheme further allows for a query to be performed on the resource denoted
with a question mark (“?”). For instance, appending “?page=1&search=xyz” to the
index.php resource can indicate to search for “xyz” on page number one, which is
delivered by index.php.

Request headers must also specify a method (also known as actions or verbs [RR07])
to be performed on the specified resource. HTTP defines eight methods that can be
performed on resources, described below.

OPTIONS A request for information about how to communicate with the specified
resource.

GET Request all information associated with the specified resource.

HEAD Request header information associated with the specified resource to check
e.g. if the resource is available.

POST Request the body of the message to become a new subordinate of the specified
resource. This kind of request can result in a new URI addressable resource, an
annotation of the specified resource, or an append operation to a database.

PUT Request update of the specified resource according to the information provided
in the message body.

DELETE Request deletion of the specified resource.

24 Technical Terminology

TRACE A client sending a request with this method name in the header invokes
what is called an “application-layer loopback of the request message.” This
means that by sending a TRACE request, the client requests the server to send
back the request message, as received. This can be used for diagnostic purposes,
e.g. to examine the chain of servers that have redirected the message from client
to server.

CONNECT The specification ([FGM+99]) states that this method name is reserved
“for use with a proxy that can dynamically switch to being a tunnel (e.g. SSL
tunneling [Luo98]).” In practice, this means that Internet users that do not
have their own IP address, i.e. uses a proxy, can establish a “direct” connection
with a server using this method name. The communication between client and
server is, in reality, not direct but instead redirected (tunneled) by the proxy,
allowing the client and server to establish a TCP connection, that can utilize the
Secure Sockets Layer (SSL) or Transport Layer Security (TLS) when transmitting
messages.

HTTP is typically used for wrapping documents (much like an envelope) to be trans-
ferred between clients and servers. The document contained within the “envelope”
can be any number of things, for example HTML, XML, JSON, JPEG, etc. The docu-
ment is said to have a “content type”, which is specified in the “content-type” header
of an HTTP message. HTTP requests also specify an “accept” header field, which is
a way for the server to return the content-type that the client expects in the response.

3.3 Service Oriented Architecture

Service Oriented Architecture (SOA) is an abstraction over a great deal of SOA related
technologies. An in-depth explanation of all the technological terms related to SOA
would be a project in itself [AKL+06]. Therefore this section superficially explains
only essential technological terms.

SOA has come to life through a “strangely competitive and collaborative arena”
consisting of software vendors and standards organizations described below [Erl05].

W3C As mentioned earlier, W3C is concerned with standardizing Web-related mark-
up languages such as HTML and XML, but have also contributed the SOAP
protocol (Section 3.3.3) and the XML based WSDL (Section 3.3.1).

OASIS An abbreviation for “Organization for the Advancement of Structured In-
formation Standards”, whose goal is to promote online trade and commerce
via specialized Web services standards. They have contributed UDDI (Sec-
tion 3.3.2) and ebXML, a set of XML-based standards whose purpose is to
provide an open infrastructure for e-businesses.

WS-I An abbreviation for Web Services Interoperability is an industry consortium
founded by, among others, Microsoft and IBM. The purpose of WS-I is to
establish interoperability for selected groups of the Web service standards stack,
also known as WS-* (Section 3.3.3.1).

As its name suggests, the basic element in SOA is a service. A service is an abstraction
over application logic and business processes. An example of a service could be
“create customer order”, which may require a number of steps in order to be fulfilled,
for example: [Erl05]

3.3 Service Oriented Architecture 25

1. Retrieve order data.

2. Check if inventory has necessary items.

3. Possibly generate backorder, if some items are missing from the inventory.

4. Generate invoice for the customer.

All of these steps are useful not only in the “create customer order” service, thus
each individual step can be provided as a service and be combined into the “create
customer order” service. Such a division entails desirable SOA principles such as
reusability and composability. The services know about each other through registration
in a service registry, which holds information about how to communicate with each
service. The basic principle is illustrated in Figure 3.1 and the following sections each
describe one of the technical terms mentioned in the figure. [Erl05]

Service
Registry
(UDDI)

Service
Requester

Publish
WSDL

Discover and
Retrieve

WSDL

Exchange SOAP
Messages

Service
Provider

WS-*
Extensions

Figure 3.1: The basic principle of SOA.

3.3.1 WSDL

The first technology necessary to communicate with Web services is the Web Services
Description Language (WSDL), which is a W3C recommendation. WSDL is an XML-
based language that provides a component model for describing Web services, the
model is illustrated in Figure 3.2. [CMRW07]

Interface The component responsible for declaring interface names that a client can
use. There may be defined any number (including zero) of interfaces within a
description. The InterfaceFault component is used to define types of failures that
can occur when using the interfaces operations. The InterfaceOperation defines
operation names, message exchange patterns (Section 3.3.3) and whether or not
the operation is safe (regarding side effects), and data types that the interface
accepts. The data typing is specified in XML Schema (XSD). If the client does
not comply with the data typing, the operation refers to one of the InterfaceFault
components described earlier. [CMRW07]

Binding The interface component defines what is to be transferred between service
requester and provider, but not how — this is the function of bindings. A

26 Technical Terminology

Description

Interface

Binding

Service Endpoint

BindingFault

BindingOperation

InterfaceOperation

InterfaceFault

Figure 3.2: The WSDL 2.0 component model.

binding specifies the message format (e.g. SOAP) and transmission protocol
(e.g. HTTP) to be used for messages being transferred between requester
and provider. “Transmission” is the word used in [CMRW07]. However, a
more correct term would be “transfer”. Using “transmission” easily leads to
confusion with the Transmission Control Protocol (TCP). TCP is in the transport
layer in the OSI model [DZ83] while the protocols used for message transfer
is in the application layer. Bindings reference individual operations within
interfaces so that each operation can use its own message format and transfer
protocol (BindingOperation). The BindingFault is similar to the earlier mentioned
InterfaceFault in that it will be invoked if the client does not use the correct
message format, or transmission protocol. [CMRW07]

Service The purpose of the service component is to specify where to send messages.
A service component references an interface component allowing each defined
interface to have their own endpoint. The endpoint component references a
binding and further specifies a URI to which messages are to be sent. [CMRW07]

In short, WSDL specifies what to send, how to send it, and where to send it.

3.3.2 UDDI

Universal Description, Discovery and Integration (UDDI) is a standard used in ser-
vice registries to provide a standardized way for humans to look up available services
on the Web. There are four data structures involved in a UDDI registry, illustrated in
Figure 3.3, providing information which business is providing the service, what the
service does, and how to use the service. [CHvRR04]

businessEntity Information about the company offering the service, e.g. address,
phone number, etc.

businessService A description of what the service does, e.g. “Stock Quotes”.

3.3 Service Oriented Architecture 27

tModelbusinessEntity

businessService(s)

bindingTemplate(s)

contains

contains
references

Figure 3.3: UDDI data structures.

bindingTemplate Specifies how to access the service, e.g. through HTTP or tele-
phone call. Also provided is a reference to a tModel.

tModel Represents the interface that a user, or service, can utilize. Often used to
reference the WSDL of a Web service.

3.3.3 SOAP

SOAP is a “lightweight protocol intended for exchanging structured information in
a decentralized, distributed environment”. Formerly, SOAP was an acronym for
Simple Object Access Protocol — currently, SOAP is a standalone term. [GHM+07]

Messages adhering to SOAP are formatted in XML [GHM+07]. The messages are
contained within what is called a “SOAP envelope”. A SOAP envelope contains a set
of headers and a body. The envelopes can be transferred between client and server
using a number of transfer protocols, e.g. the Simple Mail Transfer Protocol1 (SMTP)
or the more commonly used HTTP. Either way a SOAP message looks like the one
illustrated in Figure 3.4.

The SOAP body contains XML formatted messages, conforming to the specifications
in a WSDL file, if available. The SOAP header can for instance contain information
about what encoding the messages use, or whether it is mandatory to parse the header
information. The headers also allow extensions to be made to SOAP. One example is
the WS-Security extension, which describe how to sign, encrypt, or decrypt a message
for instance. [GHM+07] [NKMHB06]

SOAP messages are sent in one of two “Message Exchange Patterns” (MEP), either
in a “SOAP Response” pattern, or a “SOAP Request-Response” pattern.

SOAP Response A pattern that does not require the client to send a SOAP message
to the server. Instead, the client issues an HTTP GET request, and the response
contains a SOAP message. [ML03]

SOAP Request-Response A pattern that requires the client to send a SOAP message
to the server in an HTTP POST request. The service responds with a SOAP
message as well. [ML03]

1If quibbling over semantics, using SMTP invalidates the term “Web service” as mail is not part of the
Web, but rather the Internet.[Kle01]

28 Technical Terminology

SOAP Envelope

SOAP Headers

SOAP Body

Figure 3.4: A SOAP envelope.

3.3.3.1 WS-*

WS-* is also known as “second generation Web service standards”, the first gener-
ation standards being represented by WSDL, UDDI, and SOAP. WS-* standards are
extensions for SOAP messages that concern security (WS-Security) or addressing
(WS-Addressing) for instance. There are also message exchange pattern extensions
that provide notification protocols in addition to the two base MEPs mentioned
above. [Erl05]

Other message exchange patterns are available through WS-* protocols, but not
explained in this report.

The list of WS-* standards is very long (thus not shown or explained here), and not all
of them are exactly standards, rather they are protocols under consideration for stan-
dardization. Visit http://www.oasis-open.org/specs for a comprehensible
list of WS-* protocols.

3.4 Resource Oriented Architecture

Resource oriented architectures are also known as RESTful architectures [RR07].
RESTful services base themselves on representational state transfer (REST), which is
an architectural style described in [Fie00]. REST has guided the design and develop-
ment of the Web [Fie00]. The basic elements of REST are displayed in Table 3.1 and
explained afterwards.

Where the basic element in SOA is services, the basic element in REST is resources
[Fie00]. One example of a resource is a user. The user resource is a representation
of information pertaining to that user, e.g. email address. REST dictates that a

http://www.oasis-open.org/specs

3.4 Resource Oriented Architecture 29

Data Element Modern Web Examples
resource the representation of a hypertext reference
resource identifier URL, URN
representation HTML document, JPEG image
representation metadata media type, last-modified time
resource metadata source link, alternates, vary
control data if-modified-since, cache-control

Table 3.1: REST data elements [Fie00].

resource is addressable with a Uniform Resource Identifier (URI), so a specific user
is identified like: www.example.com/user/1/ for instance. The aforementioned email
address that is associated with a user can also be regarded as a resource, identified
as www.example.com/user/1/email for instance. It is not a strict requirement that each
detail about a user is addressable in this manner, the resource granularity is decided
by the developer [AA10].

Regarding everything as resources requires a general way of interaction with them.
This can be achieved by employing the CRUD (Create, Read, Update, Delete) princi-
ple known from relational databases. CRUD conveniently maps to four of the eight
HTTP methods:

POST For creating a representation of a resource, e.g. a new user.

GET For reading a representation of a resource, e.g. an existing user.

PUT For updating a representation of a resource, e.g. the user’s email address.

DELETE For deleting a representation of a resource, e.g. a user who wishes to
destroy his account.

The method information lies in the header of an HTTP message, interpreted by the
Web server receiving a request. The HTTP body then contains an application specific
format, for instance XML or JSON, to be interpreted in context of the method used.
Messages sent in RESTful Web service always follows the same “message exchange
pattern”, request-response. So a deletion request, for instance, can expect a confir-
mation response that the deletion was actually performed. The response is formatted
according to the “representation metadata” data element, which is supplied in the
initial request. If relevant, the “resource metadata” element may provide links to
alternate representations of the resource in question. The last data element in Ta-
ble 3.1 is “control data”, which can e.g. be used to minimize traffic when dealing
with cached resources. A request for a cached resource yields a response with a
“Last-Modified” header. A later request for the same resource should include an
“If-Modified-Since” header with the value from the “Last-Modified” header. By
comparing the two values, the server may respond with only header fields, meaning
that the resource has not been modified sine the time specified, or the response will
include a body, meaning that the requested resource has been modified since the time
specified.

3.4.1 Guiding Principles of REST

REST imposes some constraints, or design principles that a Web service must follow to
call itself “RESTful”. The constraints are described in [Fie00] and briefly summarized

30 Technical Terminology

below.

Client-Server Implies a separation of concern in that client and server must be
separate. The client requests either retrieval or modification of server data
through requests and the server informs of success or failure through responses.

Stateless The service must be stateless, such that each request from the client contains
all the data necessary for the service to understand the intent. If the service
was instead stateful, the client could send information that only makes sense
in a certain state of the service. That would add a great deal of complexity to
the service.

Cache To improve network efficiency, responses from the server should be cacheable.
By introducing a cache, the service may have to correspond less with system it
is exposing, thus providing faster access to data.

Uniform Interface By providing a uniform interface, the system exposed by the
service is decoupled. REST has four interface constraints: identification of
resources, manipulation of resources through representations, self-describing
messages, and hypermedia as the engine of application state. The first is
accomplished through URIs, the second through message formats such as XML
and/or JSON, the third through making the XML and/or JSON messages self-
descriptive, and the fourth is accomplished by providing information about to
which URIs a client go from the current URI.

Layered System A layered systems means that the client cannot see what system
lies behind the service. Layers improve scalability by enabling the introduction
of load-balancing at the service level. It also further decouples clients from
systems, since the two only communicate through a service.

Code-On-Demand REST allows clients to download and execute applets or scripts,
which simplifies client development by reducing the number of features to be
implemented, if these features can be provided by the service.

Chapter 4

Choosing an Architecture

We are investigating an easy way to provide home automation integration, we know
the requirements for a system that can provide it, and the terminology involved with
using the Web as middleware which is how the solution provides the integration.
Now, it is time to choose the architectural foundation on which HAB is to be built.
As mentioned earlier, there are two alternatives:

• Resource Oriented Architecture (ROA), or

• Service Oriented Architecture (SOA).

Both architectures have strong proponents and opponents, and online debates about
which is “best” are long-winded, inconclusive and even resort to name-calling. Fortu-
nately academia take more quantitative approaches to compare the two architectures.
This chapter relies on the findings of these comparisons.

This chapter does not try to answer the question of which is best. The truth is that
are equally good from an application point of view i.e., both can be used to create
systems of equal complexity [RR07]. In this regard comparing ROA and SOA would
be like comparing Java and C#, which are both Turing-complete languages, from a
functional point of view, which would be a waste of time.

Instead, the two can be compared on other merits like coupling, complexity, and
architectural decisions. As for coupling, I briefly present (in Section 4.1) the findings
of an article ([PW09]) concerning coupling facets in Web services and how SOA and
ROA are either tightly or loosely coupled with regard to those facets. As for com-
plexity, I show (in Section 4.2) how a simple “Hello World” service can be consumed
in ROA and SOA environments.

As for architectural decisions, [PW09] compares ROA and SOA from three perspec-
tives:

1. The number of decision that have to be made.

2. The number of alternative options available regarding a decision.

3. The relative cost indicated by development effort required in one architectural
style over the other.

The article concludes that less architectural decisions must be made in service ori-
ented architectures. There are more options for each decision because of the many

31

32 Choosing an Architecture

WS-* protocols. With regard to cost the article states that ROA has a very low barrier
for adoption, requires minimal tooling and is thus low-cost and low-risk. However,
the article also states that for larger and more complex services it is no simple matter
to extend a service built in a resource oriented architecture. This leads to the main
conclusion that is to use ROA for “ad hoc” integration over the Web, and to prefer
SOA in “professional enterprise application integration”.

4.1 Coupling

Text books and articles like [PI05] and [Par72] recommend to modularize systems
and keep coupling between modules as loose as possible. Modularization and loose
coupling is also a defining property of systems implemented as Web services [Kay03],
meaning that Web services should be cohesive modules, that can be used with other
Web services to form a larger system. The degree of coupling regarding Web services
is an expression of how dependent users of the service is on specific details about
the service implementation. Tight coupling entails that users (be it clients like you
and me or other services) depend on service implementation details. Loose coupling
entails that users of a service should be able to use it without knowing anything
about how it is implemented.

Coupling in Web services can arise in a number of ways and this section presents 12
coupling aspects based on [PW09]. Table 4.1 summarizes the aspects of Web service
coupling, and categorizes ROA and SOA as either loosely coupled, tightly coupled,
or neither for aspects that are not clearly dictated by either architectural style.

Each coupling aspect is explained in more detail during the remainder of this sec-
tion, which finishes off by summarizing the findings of [PW09] and discussing how
coupling might have an impact on HAB.

Aspect Tight Coupling Loose Coupling ROA SOA
Discovery Registration Referral Loose Tight
Identification Context-based Global Loose Tight
Binding Early Late Loose Loose
Platform Dependent Independent Loose Loose
Interaction Synchronous Asynchronous Loose Loose
Interface Horizontal Vertical Loose Tight
Model Shared model Self-describing

messages Loose Loose
Granularity Fine Coarse Neither Neither
State Shared state Stateless Loose Loose
Evolution Breaking Compatible Neither Neither
Generated code Static None/Dynamic Loose Tight
Conversation Explicit Reflective Loose Tight

Table 4.1: Coupling Facets [PW09].

Discovery From Chapter 3 we know that, in SOA, a service requester discovers and
retrieves a WSDL for a service through a service registry. ROA, on the other
hand is discovered just as ordinary Web sites; by a URI, which may be indexed
by a search engine.

4.1 Coupling 33

A decentralized (referral) means of discovery is more loosely coupled than a
centralized (registry) one. Centralized discovery means that for a service to be
discovered, another service (the registry) must be available.

Identification As described in Chapter 3, entities in a ROA (i.e. resources) is identi-
fied universally (globally), through a URI. With a SOA, identification is based
on context, meaning that the identity of an entity is only valid within the con-
text of a specific service. Reusing an identifier from one service in the context
of another may yield very different results.

Binding Refers to resolving symbolic names (e.g. www.example.com) to identifiers
(e.g. 192.0.32.10) to be used at a lower level of abstraction. Resolving the
server www.example.com to the IP address 192.0.32.10 happens through do-
main name system (DNS) lookup and is loosely coupled because if necessary,
the IP address associated with www.example.com can be changed in the do-
main name system, without users of www.example.com ever noticing it due to
the late binding. Early binding would be the exact opposite, where instead of
going to www.example.com a user would have to go to 192.0.32.10.

Due to the extensive use of URIs in ROA, ROA is inherently loosely coupled
in this regard. The same is true for SOA; the WSDL for a service defines a URI
endpoint and protocol to which the user of a service sends requests.

Platform Both ROA and SOA can reside on, and communicate with, heterogeneous
hardware and operating systems. Were they instead dependent on, for instance,
a specific operating system they would be tightly coupled.

Interaction Synchronous interaction means that a service being requested has to be
available (online) at the time being requested for the interaction to be successful.
The underlying protocol in all ROA and most SOA, HTTP, is often thought as
a synchrounous protocol. For instance, if a dynamic Web site’s database is
unavailable, the site becomes unavailable. This is not entirely true though,
as Web sites may be cached and thus delivered even tough e.g. a database
is offline. Also, a request that may take a long time to process should yield
an HTTP response 202, meaning that the request has been accepted and will
be processed. Along with this code, the response should include a URI to a
status monitor of the request, or an estimate on when the request has been
fully processed [FGM+99]. ROA and SOA is both capable of asynchronous
interaction, meaning they are both loosely coupled in this regard.

Interface Table 4.1 gives two alternatives for interfaces: vertical or horizontal, which
is actually the orientation of the interface. Figure 4.1(a) illustrates how a hori-
zontal interface introduces more coupling through an API specifically designed
to a service. If the service changes, e.g. to offer new functionality, the API needs
to be augmented with this new functionality through new method names, thus
the client must be rewritten as well. This is the case with SOA, whose service
interfaces are described in WSDL.

The vertical interface (Figure 4.1(b)) shows a client communicating with a ser-
vice using no API, but only the protocol needed to transfer messages between
client and server, e.g. HTTP. HTTP has, as mentioned earlier, eight meth-
ods with well-defined semantics as documented in [FGM+99]. Services imple-
mented in ROA implements at least four of the methods, those that corresponds
to create, read, update, and delete (CRUD.) Adding new functionality in a ROA

34 Choosing an Architecture

service is done through URIs, that can be referenced by hyperlinks. ROA is
thus loosely coupled with regard to this aspect.

Client

Service
APIService

Horizontal
interface

Service Client

Vertical
interface

(a) (b)

Figure 4.1: Interface orientation [PW09].

Model This aspect is about whether the client and service shares data model or
not. If the client and service has a shared data model, messages transferred
between them may simply be serializations of the model. A shared data model
entails tight coupling since the client is intimately aware of the service’s inner
representation of data. Both ROA and SOA can be implemented in ways that
share data model between client and server, but it is not recommended and
the practice is usually to transfer self-descriptive messages between client and
server, which is the loosely coupled alternative to shared model.

Granularity Refers to amount of interactions with a service is required to perform
a task. The finer the granularity, the more interactions required. More in-
teractions may put an unnecessary load on the server, that can be avoided
by a coarser granularity. Granularity is decided by developers in both ROA
and SOA. In SOA, developers decide how many methods their API offer.
In ROA, the number of methods is dictated by HTTP, but URI schemes de-
termine the granularity. For instance, http://example.com/lamp/1/brightness
refers to a brightness atrribute of “lamp 1”, and shows a finer granularity than
http://example.com/lamp/1 which just refers to “lamp 1”.

State Refers to whether the server remembers state or not. An example is a shopping
cart service, to which a user incrementally adds items. A stateful service
would save the state (items) of the shopping cart either in memory or in a
database, but doing so requires lots of interactions (one for each add/delete
item, and one for getting the current contents of the cart) and does not scale
well. Instead, by implemeting the cart on the client-side (e.g. in JavaScript),
the client keeps track of shopping cart state information and the ordering can
be carried out in one request containing all the items to be purchased. In this
last case, the server is stateless, which is preferrable with regards to scaling,
but also coupling. Sharing state requires that the client is tightly coupled with
the service, so changing the service requires changing the client. If the server
instead is stateless, change in either client or service does not require changing
the other.

Evolution This aspect says something about if evolution (e.g. a new version) of the
service breaks clients. As with all other software, this depends on developers
and consequently both ROA and SOA can not universally be categorized as
either tightly or loosely coupled with regards to evolution.

Generated code In SOA WSDLs are often used to generate code, producing tight

4.2 Practical Example 35

coupling between the description and the code. ROA uses declarative mehcan-
isms, and follow hyperlinks.

Conversation In SOA with SOAP, message exchange patterns are defined in both the
SOAP specification, but also in some WS-* specifications. The client receives
explicit instruction through these specifications on how to converse with the
service. ROA takes a more reflective approach because hyperlinks from one
resource to another outlines how a conversation can be carried out.

4.2 Practical Example

As promised in the introduction to this chapter, this section presents a simple “Hello
World” API to a service that simply returns a “Hello name” message, where name is to
be defined by the user of the service. We start by looking at how this is achieved in
SOA using WSDL and then in ROA.

4.3 SOA Hello World API

The following example is taken from the book “Web Services Essentials” [CL02]. The
example exposes a class with one method called sayHello. The entire WSDL is shown
in Listing 4.1 and explained afterwards.

Listing 4.1: An API written in WSDL that exposes a “Hello World” service.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <definitions name="HelloService"
3 targetNamespace="http://www.ecerami.com/wsdl/HelloService.wsdl"
4 xmlns="http://schemas.xmlsoap.org/wsdl/"
5 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
6 xmlns:tns="http://www.ecerami.com/wsdl/HelloService.wsdl"
7 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
8

9 <message name="SayHelloRequest">
10 <part name="firstName" type="xsd:string"/>
11 </message>
12 <message name="SayHelloResponse">
13 <part name="greeting" type="xsd:string"/>
14 </message>
15

16 <portType name="Hello PortType">
17 <operation name="sayHello">
18 <input message="tns:SayHelloRequest"/>
19 <output message="tns:SayHelloResponse"/>
20 </operation>
21 </portType>
22

23 <binding name="Hello Binding" type="tns:Hello PortType">
24 <soap:binding style="rpc"
25 transport="http://schemas.xmlsoap.org/soap/http"/>
26 <operation name="sayHello">
27 <soap:operation soapAction="sayHello"/>
28 <input>
29 <soap:body
30 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
31 namespace="urn:examples:helloservice"

36 Choosing an Architecture

32 use="encoded"/>
33 </input>
34 <output>
35 <soap:body
36 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
37 namespace="urn:examples:helloservice"
38 use="encoded"/>
39 </output>
40 </operation>
41 </binding>
42

43 <service name="Hello Service">
44 <documentation>WSDL File for HelloService</documentation>
45 <port binding="tns:Hello Binding" name="Hello Port">
46 <soap:address
47 location="http://localhost:8080/soap/servlet/rpcrouter"/>
48 </port>
49 </service>
50 </definitions>

Line 2 begins with stating what the service is called, and what namespaces to use. The
namespaces help the API programmer later on to reference data types and message
exchange patterns.

Lines 9 through 14 defines what kinds of messages are allowed to be transmitted
to and from the service. The first message tag states that a request to the service
must contain one parameter, called firstName of type string. The second message tag
states that as a response the client receives a greeting, also of type string. Here we
see the first sign of tight coupling; the first message tag has a name attribute, which
corresponds directly to the parameter that the method responsible for returning the
greeting takes. If the name attribute was first instead of firstName, the service would
not be able to greet you properly.

Lines 16 through 21 defines a PortType, which specifies the method to be called in the
service class on the server side through the operation tag. The operation tag further
specifies that that the method takes a string as input and returns a string. This is
the second example of tight coupling. If the developer wants to change the method
name on the server side from sayHello to SayHello to accommodate a new coding
styleguide for instance, the WSDL would also have to modified.

Lines 23 through 41 defines how the messages are to be transmitted and how they
are encoded. And lastly, in lines 43 through 49 specifies the location (the URI) of the
service.

4.4 ROA Hello World API

There is no definitive format, like WSDL, in which to define an API for a services that
resides in a resource oriented architecture. What is done instead is asking oneself
what the appropriate HTTP verb for a “Hello name” request would be. DELETE is out
of the question, as we are definitely not trying to delete anything. PUT seems very
unlikely as well, as we are not trying to update any resource. POST is not it, because
we are not trying to create a new resource in the service. GET is the last option then,
and makes sense since we are trying to get a greeting from the service. Since GET

requests means to retrieve a resource identified by the URI [FGM+99], it would be

4.5 General Discussion 37

logical to simply append the name to the base URI of the service. So if the service’s
base URI is http://localhost:8080/hello/, a response with a given name would be
caused by a request to http://localhost:8080/hello/name. This is not something that
client developers necessarily have to figure out on their own, the service may present
some documentation through its base URI.

4.5 General Discussion

Twelve coupling facets from [PW09] have been presented. ROA is clearly more
loosely coupled than SOA with regard to these twelve facets. Being loosely coupled
is a desirable property in itself and facilitates easier extension of the system. The
purpose of HAB is to connect different home automation related systems, thus it is
important that HAB facilitates easy extension.

The article presenting concerning architectural decisions ([PZL08]) states that ROA
is suitable for “ad hoc” implementations, which is the exact nature of HAB as it
should accommodate new types of systems along the way. The conclusion that SOA
should be used for “professional enterprise application integration” does not scare
me, mainly because the conclusion seems subjective; I find myself asking “Can ROA
services not be professional?”.

The example though, is the deciding factor. The WSDL API specification is very
complicated in my opinion, whereas achieving the same functionality in ROA seems
very easy. Thus I use a resource oriented architecture to implement the HAB service.
Given that resource oriented architectures build on the principles of REST, it only
seems natural to rename HAB to REHAB, for RESTful Home Automation Bindings.

Chapter 5

Implementation

This chapter presents the implementation of REHAB. In Chapter 2, the general three
tier architecture shows that home automation systems can be exposed to the Web
through an interface. This chapter starts by taking a look at two home automation
simulation implementations. I have tried getting hold of actual systems that could be
exposed, but have not been able to, which is why I instead have implemented simu-
lation systems. After having presented their structure and functionality, I present an
interface that enables exposure to the Web. After having exposed the systems to the
Web I show the “standardized communication platform” hypothesized in Section 1.3
have been implemented, the system which I call REHAB. Lastly I talk about the
experiences with implementing a client for REHAB.

5.1 Home Automation System Simulators

The purpose of REHAB as stated in Section 1.3 is to create a communication plat-
form that facilitates communication between home automation related systems. Not
having been able to obtain source code for a real world home automation system1,
I have implemented two home automation simulation systems i.e. systems that ex-
hibit the same functionality as real world home automation systems, but without
implementing a protocol that communicates with actual devices.

Home automation is briefly described in Section 1.1. This section explores home
automation systems further through a method known as “problem domain analysis”
[MMMNS00]. After having performed the analysis, I present the implementations
of two home automation simulation systems made during this project.

5.1.1 Problem Domain Analysis

The two main concepts in a problem domain analysis are: The problem domain, which
is the part of an environment that is managed, monitored or controlled of a system,

1The vendors I have been in contact with uses the Z-Wave wireless protocol, which requires signing a
non-disclosure agreement.

39

40 Implementation

and a model, which is a description of classes, objects, structures and behavior in a
problem domain. [MMMNS00]

We start by looking at the problem domain by considering examples of home au-
tomation systems and their use. A common usage scenario for home automation is
presented in Section 1.1 and has to do with lighting. The lighting scenario and three
other scenarios are described below, they are available for purchase from multiple
vendors. The lighting and heating examples described here derive from Danish com-
pany flex-control2, the TV and people counter examples are fictive examples (though
controlling a TV through a home automation system is possible). The purpose with
the descriptions is to identify the problem domain and later use the observations in
creating a model for the problem domain.

Lighting A home automation system that controls lighting does so by controlling
the level of current let through from a power outlet to the lamp. There are two
main ways of achieving this, either by an on/off plug or a dimmer plug. They
are both plugged into a power outlet, and the lamp is connected to the plug.
The on/off plug has two states as the name implies, either it is on or off. The
dimmer plug has the same states but also has a “brightness level” attribute.

Heating Heating is controlled through a thermostat fitted with a wireless receiver.
The thermostat can be used as any ordinary thermostat by turning the knob to
adjust a radiator’s temperature, or it can be controlled wirelessly by sending
messages that are translated into a thermostat level setting.

TV Control of a TV is facilitated through a set-top box. Through the set-top box,
the user can control for instance the channel being watched or the volume
of the speakers. The set-top box facilitates control through a remote control,
similar to ordinary TVs, or through the home automation system’s graphical
user interface.

People Counter In a big building it might be energy efficient to control lighting
based on whether there are people in a room. Not by motion sensing, but by
keeping a count of how many people are in the room. Such a system would
have one or more sensors that each know if there are people in the room in
which they are placed.

5.1.1.1 Problem Domain Model

With the above descriptions in mind, we can now make some observations about
the common traits in the systems and create a general model for home automation
systems.

Following the analysis method of [MMMNS00], we can identify a single class that
encompasses all of the above systems (which are objects in the problem domain),
the class simply called: home automation system. Each home automation system
encapsulates a number of devices (e.g. dimmer switch, thermostat, or people sensor),
that in turn encapsulates a set of properties which describe the state of the device.
Figure 5.1 depicts a general model for a home automation system.

2http://www.flex-control.dk

5.1 Home Automation System Simulators 41

Home Automation System

Device
Property-0 : Type-0
..
Property-n : Type-n

1..*

Figure 5.1: A general model for home automation systems. A system has a number
of devices, which have a number of properties of varying type.

5.1.1.2 Problem Domain Behavior

The last exercise in the problem domain analysis is describing the domain’s behavior.
In the examples we see that there are two ways of interacting with a device in a home
automation system; either by its “native” control (such as the TV’s remote control or
the thermostat’s knob) or by the home automation system’s graphical user interface.
If the property change is initiated through the “native control” the change should be
reflected in the graphical user interface, and vice versa. The behavioural model is
depicted in Figure 5.2.

Device

Start

Native Change Push change to
home automation

system

End

Graphical User Interface Push change to
device

Change

Home Automation System

Figure 5.2: The behavioural model for a home automation system.

5.1.2 Implementation

With an understanding of the home automation problem domain and its behavior,
we are ready to explore the two simulation systems implemented during this project.
The two systems simulate a home automation controlled TV and lighting system. I
have chosen to implement these two because they are different in that the lighting
system has multiple devices, and the TV system only has one device (the TV itself).
Since I have been unable to obtain real world source code for a home automation
system to see how such systems may be implemented, I have made two assumptions:

42 Implementation

1. The protocol used for communication with devices (e.g. Z-Wave or ZigBee)
is implemented in C. I find this a reasonable assumption because protocol
messages need to be transferred over an antenna, thus a driver is needed. C is
a common language for driver implementation due to the low-level operations
required on Linux, Mac OS X, and Windows operating systems.

2. The home automation systems themselves are implemented in object oriented
languages. I find this a reasonable assumption due to the stateful nature of
a home automation system. The state of devices in a system could be polled
from the devices every time state is needed, but that would incur unnecessary
communication delays.

These assumptions entail some requirements of the language used to implement
the simulation systems. The language has to be “friendly” with C and it has to
object oriented. The two home automation simulation systems implemented during
this project have been implemented in different languages that both meet these
requirements.

First, a home automation controlled lighting system has been implemented in Python.
Python has a C API, which facilitates extension of the Python interpreter through C
programs [Com]. The second system is a home automation controlled TV system
implemented in C++. C++was designed to be “source-and-link compatible with C”
[Str], thus C code can be executed from within a C++ program.

Before beginning this project I had no experience with either language. As part of this
project’s goals is to educate me in new technologies this has been a welcome challenge
and the following sections detailing the simulator system implementations highlight
not only their functionality, but also what I have found to be notable language
features. The following sections present first the lighting-, then the TV simulator.

5.1.2.1 The Lighting Simulator

The lighting simulator is a fairly simple system that pretends to control light switches
or dimmers as in the example presented earlier.

We have already seen a generic problem domain model for home automation systems,
and the model for the lighting simulator fits in nicely: it has a collection of devices,
encapsulated by the Lights class. The devices themselves have LightAppliance as
superclass, which defines a unique identifier and a name for an appliance. Switch

defines an additional property called on, a boolean value indicating if a lamp is on
or off. The Dimmer class also has the on attribute (thus inherits Switch) and defines
one more property: level, an integer describing current brightness level of a lamp.
The class diagram is shown in Figure 5.3. Listing 5.1 presents the source code for the
LightAppliance class.

Listing 5.1: The LightAppliance class of LightSim

1 class LightAppliance(object):
2 def init (self, identifier=-1, name=""):
3 self.identifier = identifier
4 self.name = name
5

6 @property
7 def identifier(self):
8 return self. identifier

5.1 Home Automation System Simulators 43

Lights
LightAppliance

identifier : integer
name : string

Switch
on : boolean

Dimmer
level : integer

Lighting Simulator

Figure 5.3: The model of the home automation lighting system.

9

10 @identifier.setter
11 def identifier(self, value):
12 self. identifier = value
13

14 @property
15 def name(self):
16 return self. name
17

18 @name.setter
19 def name(self, value):
20 self. name = value

Regarding the appearance of Python, notice the absence of semicolons and curly
braces. Python relies on newline characters for denoting the end of a statement, and
indentation (either through tabs or spaces) for grouping of statements, also known
as code blocks. Code blocks are initiated with a colon.

If we examine the first line in Listing 5.1 we see the definition of the class itself, and
that it inherits object, which is the base object for what the Python community calls
“new style classes”. It is perfectly legal not to inherit anything, in which case the line
would simply have been class LightAppliance:, but inheriting object facilitates the
use of property decorators, described shortly.

The second line in Listing 5.1 defines the class initialize method, commonly known as
“constructor” in other object oriented languages. Methods in Python may or may not
have named parameters, depending on personal taste. In this case, the parameters
are named and in addition have default values. In lines 2 and 3, the arguments are
passed on property setters defined on lines 10 and 18.

The @property decorator syntax in lines 6 and 14 define property getters. For instance
LightAppliance.name (no parentheses) would return the name of the appliance object,
as per line 8. Note that the attribute returned is prefixed with an underscore. This is
because there is no notion of private class attributes in Python, everything is public.
Instead, “private” attributes are prefixed with an underscore so users of a class know
not to get or set that attribute. Lines 10 and 18 demonstrate how to use decorators to
define setter methods for properties, that can be used by doing LightAppliance.name

= ‘‘An example’’.

44 Implementation

The Switch and Dimmer classes are very similar, though their inheritance is not of
object, but as indicated in Figure 5.3. Their property setters include correctness check
of the input, such that a Switch’s on property can never be anything else than a
boolean value and a Dimmer’s level must be between 0 and 100, both inclusive. As
mentioned, the system is only a simulator, but if it was a “live” system, the mentioned
property setters should invoked calls to C programs that would relay the changes to
the relevant device.

Next up is the Lights class in Listing 5.2 that holds references to all instantiated
LightAppliance objects in the lighting simulator. Normally, I would make sure to
make such a class a Singleton (or a Highlander3), but while searching on how to
implement a Highlander class in Python I stumbled over another design pattern
dubbed “Borg”. Borg is a reference to the classic science fiction series “Star Trek”,
where the Borg is a race of cybernetic organisms with the social structure of a bee
hive. The important difference between a Highlander and a Borg class is that where
a Highlander class is concerned with identity, a Borg class is concerned with state
(which is shared among all Borg classes). The important thing is not that there is
only one Lights object, but that all Lights objects hold reference to the same Switch

and Dimmer objects. I implemented the Borg design pattern because it is very easily
accomplished in Python and the pattern is presented in Listing 5.2.

Listing 5.2: The Lights class of LightSim

1 class Lights(object):
2 appliances = []
3 shared state = {}
4 def init (self):
5 self. dict = self. shared state # borg design pattern
6 if not self.appliances:
7 self.testFill()
8

9 @property
10 def appliances(self):
11 return self. appliances
12

13 def testFill(self):
14 """
15 Appends test appliances to the ’appliances’ property.
16 """
17 switch = Switch(identifier = 0, name = "switch", on = False)
18 self.appliances.append(switch)# add a switch to appliances.
19

20 dimmer = Dimmer(identifier = 1, name = "dimmer", level = 40)
21 self.appliances.append(dimmer) # add a dimmer to appliances.

The relevant lines in Listing 5.2 are 2 through 7, where the following happens: First,
a class list appliances is defined, then a class dictionary called shared state. In the
initializer method, we leverage the fact that all objects’ state in Python is represented
through the special dict attribute; we set that dictionary to our shared state

dictionary. In line 8 we check if the object’s appliance property has been set, and
if not we fill it with some test devices through a method defined on line 13. Now
we can be certain that whenever we want a Lights object, the appliances it reference
have only been instantiated once.

The last detail missing is handling the native controls of the lighting system i.e. when
3The tagline of the Higlander movie from 1986 is “There can only be one.”

5.2 Interface 45

the user presses e.g. a physical light switch. To emulate this behavior, the lighting
simulator makes use of the SocketServer module in Python’s standard library. Upon
instantiation of the Lights class, a thread is created that handles incoming requests
on a predefined TCP port so that changes to appliances may occur from outside the
lighting simulator module.

5.1.2.2 The TV Simulator

The TV simulator system has a lot fewer lines than the lighting simulator. This is
because the TV is both a system and a device, thus theres is no need for a Borg
or Highlander class to reference devices within the TV. The TV is simply a class
with, in this case, two properties channel and volume. Both are represented by
integers. The source code is displayed in Listing 5.3 and should be pretty self-
explanatory. A namespace called TVSim is defined to avoid cluttering up the global
namespace. Then a class called TV is defined. Its constructor sets the channel and
volume properties to 4 and 40, respectively. After the constructor, setters and getters
for the two properties are defined. The class end with private declarations of the two
attributes.

Listing 5.3: The TV Simulator

1 #include <iostream>
2 #include <string>
3

4 namespace TVSim {
5 class TV {
6 public:
7 TV() {
8 // Initializtion values.
9 this->volume = 40;

10 this->channel = 4;
11 }
12 int getChannel() { return channel; }
13 void setChannel(int channel) {
14 // In "live" system, invoke C code for setting the channel here.
15 this->channel = channel;
16 }
17 int getVolume() { return volume; }
18 void setVolume(int volume) {
19 // In "live" system, invoke C code for setting the volume here.
20 this->volume = volume;
21 }
22 private:
23 int volume;
24 int channel;
25 };
26 }

5.2 Interface

The two simulator systems described in Section 5.1 do not have any interface available
for third parties to interact with. This is, from personal experience, the usual case
with home automation systems. As mentioned in Section 1.3 REHAB is an attempt

46 Implementation

to provide such an interface to facilitate communication between home automation
systems.

From the problem domain analysis in Section 5.1.1 we know that a home automation
system consists of devices that have properties. We know from the behavioral model
that a home automation system must deal with two ways of interaction with a home
automation device, either via the device’s native control or via the home automation
system’s graphical user interface. The exposed interface should thus reflect a system’s
devices end their properties and allow for users to be notified of any changes in the
home automation system. This section deals only with the interface definition and
how it is implemented in the simulation systems, Section 5.3 deals with how that
interface is used to expose a RESTful interface for third party use.

The interface is defined and implemented in Python. We start by taking a look at the
methods the interface define in Section 5.2.1, then how the TV and lighting simulators
implement the interface in Section 5.2.2.

5.2.1 Interface Methods

The interface in its entirety is shown in Listing 5.5 and defines one initializer method,
four methods to be overridden by the home automation system, and two methods
that enable third party systems to listen in on changes.

The get devicesmethod should return a list of all the devices in the home automations
system, get device with id should return a device with the given device identifier

parameter, update device enables update of a device property’s value from a third
party, and get metadata should return the data type and valid inputs on a device’s
property. Note that after all these method definitions is only a single line with
the Python keyword pass, meaning that the method is not implemented, only de-
fined, each of these methods are to be overridden by the simulation system (see
Section 5.2.2).

The exposure of the interface should not have to concern itself with details about
how the devices are implemented in the home automation system, as such concern
would require more work than is necessary. Instead all returns are JSON4 in a format
defined by REHAB. The format for a device is a dictionary of its properties and their
values and is shown in Listing 5.4. A list of devices (as is required in the get devices

method) is achieved by separating devices with a comma, and surrounding the list
with square brackets (JSON’s array notation).

Listing 5.4: The JSON device format.

1 {’property name0’: property value0, ’property name1’: property value1}

Listing 5.5: The methods in the REHAB interface.

1 import urllib2
2 class Interface(object):
3 def init (self):
4 self.listeners = []
5

4JavaScript Object Notation is a lightweight data-interchange format, comparable to XML. See more at
http://json.org

5.2 Interface 47

6 def get devices(self):
7 pass
8

9 def get device with id(self, device identifier):
10 pass
11

12 def update device(self, device identifier, property, value):
13 pass
14

15 def get metadata(self, device identifier, property):
16 pass
17

18 def register listener(self, listener url):
19 self.listeners.append(listener url)
20

21 def device was updated(self, device identifier):
22 if self.listeners:
23 for listener in self.listeners:
24 urllib2.urlopen(listener).read()

The last two method in the interface are already implemented and enables third
parties to listen on changes made in the home automation system. This is achieved
enabling third parties to register a URI to be called whenever a change happens.
The URI should be bound to a controller that will fetch the changes from the home
automation system. It could have been implemented so that the changes be sent in the
body of the HTTP request issued, but that would incur some inconvenience. First, the
third party should maintain state of devices on their side (and update the appropriate
device’s property with the new value), which should not be their concern as they
should be oblivious to device implementation. Second, it complicates refactoring in
both the home automation system and the third party system if for some reason, the
JSON format of devices would be changed for some reason.

5.2.2 Interface Implementation

Since the main contribution of this project is to provide an easily implemented in-
terface, that enables effortless exposure to third parties, I will go through the im-
plementation of the interface in both the lighting- and TV simulation systems in the
following sections. The two simulation systems’ implementation of the interface
are tightly coupled to the systems’ individual implementation. This is only natural,
but the interface provides a homogeneous representation of the systems, which is
leveraged when exposing the systems to third parties in a loosely coupled manner.
Exposure of the systems is explained in Section 5.3.

5.2.2.1 Lighting Simulator

The lighting system is already written in Python, so all that has to be done when
implementing the interface is three things:

1. Import the interface module (called RHBI).

2. Define a class that inherits the interface class presented in Section 5.2.1.

3. Override the four system specific methods presented in Section 5.3

48 Implementation

One thing still remains; since the “get” methods in the interface should return JSON
formatted devices and meta information on properties we need a way to encode
LightAppliance objects (Section 5.1.2.1). Python’s standard library has a module
called json, which is able to turn standard Python types into a JSON object. This
means all the simulator needs to do is convert LightApplicance into a dictionary of
its properties (as per Listing 5.4), which in turn can be encoded in JSON, effortlessly.

Converting a LightAppliance into a dictionary a fairly easily accomplished task as
shown in Listing 5.6.

Listing 5.6: The lighting simulator’s REHAB encoder.

1 def rehab encode(self, la):
2 # la means LightAppliance
3 properties = [n for n in dir(la) if not n.startswith(’ ’)]
4 attributes = {}
5 for property in properties:
6 attributes[property] = getattr(la, property)
7

8 return attributes

The method in the above listing takes a LightAppliance object and creates a list of its
properties using a list comprehension and a Python built-in function called dir().
The dir() function takes an object as input and returns a list of the object’s attributes.
Since it is conventional in Python to prefix private attributes with an underscore we
only want those not prefixed with an underscore i.e. public attributes, in this case, the
properties defined on a LightAppliance. For instance, the property list for a Switch

object would be [’identifier’, ’name’, ’on’].

After having created a list of properties we use another Python built-in function
called getattr(x, ’attr’), where ’attr’ is a string of the named attribute we want
to access on x, to create a dictionary representation of the given LightAppliance.

Now we are ready to examine the interface implementation in Listing 5.7. It’s a
relatively simple matter now that a utility method convert an appliance into a built-
in data type. The get devices method simply iterates the appliances property of the
Lights Borg class, encodes each appliance as a dictionary, appends the dictionary
to a list and returns the list as a JSON object. get device with id is similar but only
returns one appliance as a JSON object.

Listing 5.7: The lighting simulator’s REHAB interface implementation.

1 import json
2 import RHBI # The rehab interface.
3 class RHBInterface(RHBI.Interface):
4 # You need to define the string that serves as key for the device
5 # identifier here. This is used when exposing the interface.
6 identifier = ’identifier’
7

8 def get devices(self):
9 devlist = []

10 for appliance in Lights().appliances:
11 devlist.append(rehab encode(appliance))
12

13 return json.dumps(devlist)
14

15 def get device with id(self, device identifier):
16 for appliance in Lights().appliances:
17 if appliance.identifier == device identifier:

5.2 Interface 49

18 return json.dumps(rehab encode(
19 Lights().appliances[device identifier]))
20 return None
21

22 def update device(self, device identifier, property, value):
23 for appliance in Lights().appliances:
24 if appliance.identifier == string.atoi(device identifier):
25 dev = appliance
26

27 if dev:
28 setattr(dev, property, value)
29

30 def get metadata(self, device identifier, property):
31 meta = {}
32 if property == "on":
33 meta[’type’] = ’bool’
34 meta[’values’] = {’false’:’off’, ’true’:’on’}
35 return json.dumps(meta)
36 elif property == "level":
37 meta[’type’] = ’int’
38 meta[’values’] = {’min’: 0, ’max’: 100}
39 return json.dumps(meta)
40

41 return None

The update device method also iterates all the appliances, finds the one with the
relevant identifier, and then uses Python’s built-in function setattr to update the
relevant attribute through the property’s setter method.

The last overridden method in the interface returns meta data on a property, i.e. the
property’s type and possibly valid values. The meta data is used when representing
the devices in a graphical user interface, where the meta data is translated into
interactive controls on the screen. The get metadata method in Listing 5.7 is not very
elegant, the meta data should reside in the relevant LightAppliance classes.

5.2.2.2 TV Simulator

Since the TV simulator is implemented in C++ and the REHAB interface is imple-
mented in Python, the TV simulator needs to be made available to the Python inter-
preter in order to implement the interface. To that end, the Boost.Python5 library has
been used. Boost.Python enables C++ structures (such as classes end methods) to be
compiled into a Python module.

It works by defining the classes and methods to be available to Python. Once defined
the C++ file is built using Boost’s make system called Jam. Jam produces a shared
object (.so) file that can be imported in Python as if it were a Python module.
Listing 5.8 shows the source code that defines which classes and methods to make
available in the resulting shared object, the code is included in the same class as the
TV class from Listing 5.3.

Listing 5.8: Making the TV simulator available as a Python module using Boost.Python.

1 #include <boost/python.hpp>
2 using namespace boost::python;
3

5Boost is a collection of libraries for the C++ programming language.

50 Implementation

4 BOOST PYTHON MODULE(TVSim)
5 {
6 class <TV>("TV", init<>())
7 .def("setChannel", &TV::setChannel)
8 .def("getChannel", &TV::getChannel)
9 .def("setVolume", &TV::setVolume)

10 .def("getVolume", &TV::getVolume)
11 ;
12 }

Since there is only one TV (unlike LightAppliance objects in the lighting simula-
tor), both the encoder and interface looks a little different from that of the lighting
simulation. Let us take a look at the encoder first, in Listing 5.9.

Listing 5.9: The TV simulator’s REHAB encoder.

1 def rehab encode(self, obj):
2 attributes = {}
3 attributes[’channel’] = obj.getChannel()
4 attributes[’volume’] = obj.getVolume()
5 attributes[’identifier’] = 1
6 attributes[’name’] = "TV"
7 return attributes

As in Listing 5.6, the TV object is translated into a dictionary representation. The
difference is that since there is only one TV object, it is sufficient to “hard-code” the
attribute keys instead of iterating over a list of properties.

The interface implementation also differs because the TV system only has one appli-
ance, see Listing 5.10. Whenever the variable tv is used in Listing 5.10 it is referencing
a global (in a module in which the interface is implemented) TV variable. The get

devices method simply returns a list with only one element, the get device with id

disregards the device identifier argument and returns the JSON encoded TV ob-
ject. The update device method also disregards the device identifier argument and
updates the specified property with to the provided value.

Listing 5.10: The TV simulator’s REHAB interface implementation.

1 import json
2 class RHBInterface(RHBI.Interface):
3 identifier = ’identifier’
4

5 def get devices(self):
6 return json.dumps([rehab encode(tv)])
7

8 def get device with id(self, device identifier):
9 return json.dumps(rehab encode(tv))

10

11 def update device(self, device identifier, property, value):
12 if property == ’channel’:
13 tv.setChannel(string.atoi(value))
14 elif property == ’volume’:
15 tv.setVolume(string.atoi(value))
16

17 def get metadata(self, device identifier, property):
18 meta = {}
19 if property == "volume" or property == "channel":
20 meta[’type’] = ’int’
21 meta[’values’] = {’min’: 0, ’max’: 100}
22 return json.dumps(meta)

5.3 Exposure 51

23

24 return None

5.3 Exposure

With an implemented interface, we are ready to look at how the home automation
systems are exposed. Before we do, we follow up on interface orientation introduced
in Section 4.1.

Client

HA
System

Horizontal
interface

REHAB
Interface

REHAB
Exposure

Vertical
interface

Figure 5.4: The interface orientations relevant to the interface and exposure of a home
automation system through that interface.

As can be seen in Figure 5.4 the interface orientation between the home automation
system and the REHAB interface is horizontal, i.e. the home automation system and
interface is tightly coupled, also mentioned in Section 5.2. The goal is to provide the
client with a vertical interface, i.e. provide an interface to the client which is loosely
coupled (the client need not know anything about any implementation details).
The vertical interface is achieved by exposing information (obtained through the
interface) in a RESTful webservice.

5.3.1 Web Framework

The RESTful exposure service has been implemented using a Web service framework
for Python. There are multiple options when it comes to Python Web frameworks,
the most commonly known is probably Django6 and Pylons7.

Having no previous experience with either framework I took a quick look at them
(both the frameworks’ come with a “Getting started tutorial”), and found them both
to be quite similar to the Ruby on Rails8 Web framework for Ruby. I have previous
experience with the Rails framework and while it is very popular among many Ruby

6http://djangoproject.com
7http://pylonshq.com
8http://rubyonrails.com

52 Implementation

developers, I found it to be too complex for my taste, too much “framework magic”
happening, that I didn’t grasp.

Not wanting to face a framework similar to Rails again, I continued my search on
Pythons wiki page on web frameworks9 and stumbled upon one called web.py10. It
seemed very minimalistic and very easy to use. As an example, the first thing that
meets the eye on the website is a complete Web application in 10 lines of code that
is easy to understand. After having seen that incredible simple example and after
having written a RESTful blog application to explore the framework a little further,
I decided to write all the Web services in web.py.

5.3.2 Exposure Implementation

In this section you will see how a RESTful Web service has been written in Python,
using the web.py framework. Almost all the source code is presented in this section.

The first thing to decide is how to identify resources through URIs. Considering the
findings in the problem domain analysis this is fairly simple. We know that a system
has devices that in turn have properties. Thus, the URI scheme in Listing 5.11 seems
logical.

Listing 5.11: The URI scheme exposing a home automation system.

1 uris = (
2 ’/’, ’Index’,
3 ’/listeners’, ’Listener’,
4 ’/(.*)’, ’Device’,
5 ’/(.*)/(.*)’, ’Property’,
6 ’/(.*)/(.*)/meta’, ’PropertyMeta’
7)

In line 1, a tuple called uris is defined. Odd-numbered elements in the tuple are
URIs with support for regular expressions, (.*) means zero or more characters of
any kind. The even-numbered elements in the tuple defines class names that should
handle requests made to URIs matching the preceding elements. The URI scheme
in Listing 5.11 fulfills the REST principle called “Identification of resources”. In
Listing 5.12 you can see how the Index class handles requests to /.

5.3.2.1 Index Class

Listing 5.12: The Index class in the exposure service.

1 class Index:
2 def GET(self):
3 devices = json.loads(interface.get devices())
4 uris = []
5 for dev in devices:
6 uristring = ’{0}/{1}’.format(
7 web.ctx.home,
8 dev[interface.identifier])
9 uris.append(uristring)

10

9http://wiki.python.org/moin/WebFrameworks
10http://webpy.org

5.3 Exposure 53

11 return json.dumps(uris)

Line 1 defines the class, line 2 defines a method named GET, which is called whenever
an HTTP GET request is issued to the index URI. This is where I find web.py extremely
easy to use, each class may define as many methods as desired, but the ones named
after the HTTP methods is called when such a request is issued. The purpose of the
index URI is to give the user an overview over which devices are exposed through
the service.

Line 3 fetches the array of devices through the interface. The interface variable is
defined by the home automation developer, and is the only variable that differs in the
exposure services for the lighting- and TV simulation systems. After having fetched
the devices, an iteration over them is performed to create a list of URIs identifying
device resources. The web.ctx.home variable in line 7 is a variable within the web.py
framework that returns the protocol used to make the request and the application’s
base path, for instance http://localhost:5050. In line 8 the identifier variable in the
interface (see Listing 5.10) is used make the URI unique, for instance a device with
0 as its identifier has URI http://localhost:5050/0. The last line returns the list of
URIs in JSON notation, exemplified in Listing 5.13. Ideally, the service should be able
to return XML and HTML responses as well, but unfortunately time did not permit
it. Returning different representations of resources (such as the one in Listing 5.13)
should be done by looking at the ACCEPT header in the client’s HTTP request and if
the header states that the client accepts application/xml, an XML encoder should be
used in place of the JSON encoder.

Listing 5.13: An example of the JSON response to a GET request on ’/’.

1 ["http://localhost:5050/0", "http://localhost:5050/1"]

This example shows how all the REST principles from Section 3.4.1 is accomplished.
The index resource is a list of URIs to device resource, showing that application state
is driven by hypertext. The uniform HTTP interface is available, although only one
HTTP method have been implemented. Requests with other method names will
receive an HTTP error 405 (method not allowed). The message is self-descriptive as
the index of any Web site is a starting point that lets the user know where to go from
there. The service is stateless, it fetches all state from the home automation system
behind the service, and the user of the service is oblivious to whether it is the home
automation itself or an intermediary that returns the information.

5.3.2.2 Device Class

By accessing one of the URIs in Listing 5.13 a device representation like the one in
Listing 5.14 is returned. It is a JSON dictionary of the device properties, much like
the dictionary the home automation system returns in the interface (see Listing 5.10).
There is one difference though, instead of return the property’s value, the value in this
dictionary is a URI. This makes responses to a device cache-able, since it is unlikely
that the device suddenly gains new kinds of properties while the system is running
and it is also unlikely that a device’s identifier (the 0 in the URI) will change during
run-time, as the identifier should be maintained by the home automation system and
not be subject to change by a user. Returning a cached response puts less strain on
the home automation system and is a desirable property of RESTful Web services as
mentioned in Section 3.4.1.

54 Implementation

Listing 5.14: An example of the JSON response to a GET request on ’/(.*)’.

1 {"on": "http://localhost:5050/0/on",
2 "identifier": "http://localhost:5050/0/identifier",
3 "name": "http://localhost:5050/0/name"}

The Device class also only allows GET requests, as can be seen in Listing 5.15. To
update a device, PUT requests to the relevant attribute is issued. It is not REHAB’s
purpose to allow users to either add (POST) or remove (DELETE) devices from a home
automation system, thus these methods are not implemented.

Listing 5.15: The Device class in the exposure service.

1 class Device:
2 def GET(self, device):
3 try:
4 device = json.loads(interface.get device with id(device))
5 except Exception:
6 raise web.notfound()
7

8 properties = {}
9 for property in device:

10 uri = "{0}/{1}/{2}".format(
11 web.ctx.home,
12 device,
13 property)
14 properties[property] = uri
15

16 return json.dumps(properties)

The source code in Listing 5.15 is very similar to that of Listing 5.12, the only difference
being that instead of returning a list of devices, a dictionary of the relevant device’s
properties is returned. The GET starts by trying to redefine the device argument
(which is a device identifier) into a dictionary representation obtained through the
interface. If the interface cannot return a device, an exception is thrown (“raised” in
Python lingo) in which case the user is informed that device does not exist through
an HTTP 404 error (not found).

5.3.2.3 Property Class

The Property class responds to a URI like one of the ones shown in Listing 5.14 and
returns the actual value of the property on a GET request. The Property class also
implements a PUT method, since we want to enable update of devices’ properties
through the exposure service. The entire class is shown in Listing 5.16.

Listing 5.16: The Property class in the exposure service.

1 class Property:
2 def GET(self, device, property):
3 device = json.loads(interface.get device with id(device))
4 try:
5 return json.dumps(device[property])
6 except Exception:
7 raise web.notfound()
8

9 def PUT(self, device, property):
10 interface.update device(

5.4 Aggregation 55

11 device identifier = device,
12 property = property,
13 value = web.data())

The PUT method ought to utilize a try statement, as in the GET method, to allow for
validation of the value input and return of a suitable error message to the user if
the update fails. This is not the case due to time limitations. The PropertyMeta class
referenced in Listing 5.11 simply returns the meta data that the interface returns, and
its source code will not be listed here. The Listener class is equally simple, it can
either return a list of current listeners via GET or register a new one with a simple call
to the interface via POST.

5.4 Aggregation

Now that the simulation systems have been exposed, it is time to look at REHAB
itself. REHAB functions as a hub for home automation systems that implement the
REHAB interface and is exposed through the exposure Web service described in the
last section. REHAB is fairly similar to the exposure service so instead of doing
a thorough presentation of all the source code, I present the general structure of
REHAB and go more into depth with a functionality that shows that changes in one
home automation system may effect devices in another. The functionality is called
“Rules”.

5.4.1 General Structure

A general overview of REHAB and its communication with “REHAB enabled” home
automation systems is depicted in Figure 5.5.

REHAB

Lighting

REHAB
Interface

REHAB
Exposure

TV

REHAB
Interface

REHAB
Exposure

Figure 5.5: The communication to and from REHAB and home automation systems.

As showed in Figure 5.5, REHAB has taken the client role shown in Figure 5.4. The
URIs REHAB responds to are show in Listing 5.4.2.

56 Implementation

Listing 5.17: The URI scheme implemented in REHAB.

1 urls = (
2 ’/’, ’Index’,
3 ’/rules’, ’Rule’,
4 ’/(.*)’, ’System’
5 ’/(.*)/(.*)’, ’Device’,
6 ’/(.*)/(.*)/(.*)’, ’Property’,
7)

All the classes, except Rule will be briefly described below, Rule is described in
Section 5.4.2

Index Responds only to GET requests. Returns a JSON dictionary of the systems
added to REHAB. The key in the dictionary is the system name (so no two
systems can have the same name), and the value is a URI to the system’s
devices. The URIs are of the form defined in line 4 in Listing 5.4.2. Systems
added to REHAB are serialized onto disk, so they will not be forgotten between
launches of REHAB.

System Responds to GET, POST, and DELETE requests. GET returns a JSON dictionary,
where the keys are URIs for the devices exposed by system specified (of the
form specified in line 5 in Listing 5.4.2), the value is that device’s name. HTTP
POST requests adds a new system to REHAB, and DELETE requests removes the
specified system. The System class ought to respond to PUT requests as well, but
that has not been implemented.

Device Responds only to GET requests and return a dictionary similar to that of a
GET request to a device in the exposure service.

Property Responds to GET and PUT requests and behaves identical to requests of
those types to the exposure service.

5.4.2 Rules

REHAB has, as mentioned, a “Rules” feature, which shows that REHAB can be used
to “mash up” home automation systems. Rules have the same form as an if statement,
namely:

1 if rule’s conditions are true:
2 execute rule’s actions

The Rule module’s model is displayed in Figure 5.6. The classes in the model is
described in the following sections, beginning with Condition, ending with Rule.

5.4.2.1 Condition

The Condition class has one method, which checks if the condition is true. It is shown
in Listing 5.18.

Listing 5.18: The check method in the rule module’s Condition class.

1 def check(self):
2 current value = urllib2.urlopen(property uri).read()

5.4 Aggregation 57

Rule
conditions : list
actions : list

Condition
system : string
device : string
property : string
comparison_operator : string
comparison_value : <unknown>

Rule Module

Action
system : string
device : string
property : string
value : <unknown>

Figure 5.6: The Rule module’s model.

3 current value = json.loads(current value)
4

5 if type(current value) == int:
6 if not type(self. comparison value) == int:
7 self. comparison value = string.atoi(self. comparison value)
8 else:
9 current value = current value.lower

10 comparison value = comparison value.lower
11

12 if self. comparison operator == ’equals’:
13 return current value == self. comparison value
14 elif self. comparison operator == ’greater’:
15 return current value > self. comparison value
16 elif self. comparison operator == ’less’:
17 return current value < self. comparison value
18 elif self. comparison operator == ’not equals’:
19 return current value != self. comparison value

The property uri variable used to fetch the current value of the device is built using
the condition’s system, device, and property variables. Once the value is fetched (and
loaded via JSON) it is checked whether it is of type int, and if it is we convert the
condition’s comparison value to an int as well. This is necessary, for if the comparison
value were, for instance, “01”, the current value were “1”, and the operator “equals”
the expression would not be true, even though that was the intention (Python com-
pares string lexicographically using the numeric equivalents of each character). If
the type is not int, the string is simply turned into lowercase and compared using the
relevant operator. The method returns a boolean corresponding to the comparison
statement.

5.4.2.2 Action

Like Condition, the Action class has only one method method of interest, called fire.
It updates the relevant property’s value and is show in Listing 5.19.

Listing 5.19: The fire method in the rule module’s Action class.

1 def fire(self):
2 property uri = "{0}{1}/{2}".format(
3 system uris()[self. system],

58 Implementation

4 self. device,
5 self. property)
6

7 opener = urllib2.build opener(urllib2.HTTPHandler)
8 request = urllib2.Request(property uri, data = self. value)
9 request.get method = lambda: ’PUT’

10 update = opener.open(request)

Here we see how to build the property uri variable (the code omitted from List-
ing 5.18). It is done by fetching the system URI dictionary stored on disk by REHAB,
and getting the relevant system URI from that dictionary. Then a request to that URI
is built. The HTTP request issued has method PUT and the HTTP body contains the
value that the relevant property should be updated to.

5.4.2.3 Rule

The Rule class encapsulates a list of Conditions and Actions, and has two important
methods called check and fire, they are both listed in Listing 5.20.

Listing 5.20: The check and fire method in the rule module’s Rule class.

1 def check(self):
2 for condition in self.conditions:
3 if not condition.check():
4 return False
5 return True
6

7 def fire(self):
8 for action in self.actions:
9 action.fire()

They are very simple methods that simply utilizes the check and fire methods in the
Condition and Action classes respectively.

The rule module is imported into REHAB so that every time REHAB is notified of
a change in a home automation system, it will check all rules saved on disk, on the
rules that are fulfilled will be “fired”. This shows that REHAB indeed functions as a
hub between home automation systems.

5.5 Client

The last piece of the REHAB puzzle is a client that enables “Mr. and Mrs. Smith”
to benefit from the aggregation that REHAB performs. The client developed in this
project is a Web application, but could just as well have been a desktop- or mobile
application. The composition of all the systems is shown in Figure 5.7.

The client is an AJAX11 Web application, meaning that is able to fetch data from a
server asynchronously, without reloading the Web site. Asynchronous fetching of
data is done using an API called XMLHttpRequest (XHR), which also enables the client
to send HTTP PUT and DELETE messages, which are not included in HTML at this

11Used to be an acronym for Asynchronous JavaScript and XML. Now it is just a word, spelled “Ajax”,
that denotes a Web application with a desktop feel to it.

5.5 Client 59

REHAB

Lighting

REHAB
Interface

REHAB
Exposure

TV

REHAB
Interface

REHAB
Exposure

REHAB
Client

Figure 5.7: All the systems developed during this project put together.

point (they may be in HTML5[Hic10]). Before this project, I was not familiar with
the principles involved in programming an Ajax Web application and it turned out
to be a lot more complicated than I originally thought. I will not describe the entire
client, it has more lines of code than any of the other systems developed during this
project. Instead I present the general features (and layout), and the main Ajax issue
that arose while building the client which has to do with application state.

5.5.1 General Features and Layout

The general layout of the client is shown in Figure 5.8. It consists of a site logo, a
navigation area, a content area, and a loading indicator area.

The navigation bar is a list with three items: Systems, Devices, and Rules. The items
are list themselves that function as sub-menus. When the user presses the System
menu item, a sliding animation reveals the sub-menu consisting of an Add option,
that enables the user to add a new systems to REHAB.

At the same time, when the user clicks the Systems menu item, the content area fades
out, an asynchronous request for systems is made and the loading indicator, which
has been invisible until this time, becomes visible with th purpose of informing the
user that a request is being made. When the request finishes, the response is loaded
into the content area, the content area fades back in, and the loading indicator is
again made invisible. This is also the procedure when the user navigates to either
Devices or Rules.

5.5.2 Application State Issue

When the user presses the Systems menu item, the application switches state from
whatever page was being viewed previously to a state where it shows the systems in

60 Implementation

Site Logo

Navigation
Bar

Main Content

Loading
Indicator

Figure 5.8: The layout of the client GUI.

REHAB. In synchronous Web applications the new state is reflected in the browser’s
address bar in form a new URI, for instance it changes from http://localhost:8080/

to http://localhost:8080/systems.

When using the XHR object to load data asynchronously (instead of requesting an
entire page and loading a new URI in the browser) data is fetched and loaded into
the content area in Figure 5.8. Since the page is not reloaded, the window’s location
(the browser’s address bar) is not being updated, which means that going back and
forward using the browser’s buttons for this does not yield the desired behavior.
Instead of going back to the page previously being viewed, the browser redirects the
user to the previous URI visited.

It is possible to update the address bar using JavaScript’s window.location object to
a new address, but that would cause the browser to reload that new address, which
is what is trying to be avoided to give the application more of a desktop feel. What
can be done instead is updating the window.location.hash which will not cause a
reload. So for instance, let’s say a user wants to link to the page with systems in
the client, then the link could look like http://localhost:8080/#/systems instead of
http://localhost:8080/systems.

However, when the user enters that link in the browser’s address bar, the server
serving the page does not receive the hash portion of the link, meaning it will serve
the page corresponding to http://localhost:8080/. That page then has to implement
a JavaScript function that can initialize the desired application state by animating the
navigation to show the Systems sub-menu and display the loading indicator while
making an asynchronous request to the server for the systems which are loaded into
the content area when the request finishes.

This application state issue is one of many that I have encountered while program-
ming the client. Chapter 8 goes into more detail about the experiences I have gained

5.5 Client 61

from programming my first Ajax application.

Chapter 6

Test

There are two fundamental approaches to testing called, black- and white box testing
[PI05]. White-box testing means that the tester has access to the source code, and the
tester commonly write unit tests using this knowledge [Cop03].

Unit testing is the testing of the smallest unit of isolated code. A unit test in an
object oriented environment commonly tests a single method by making assertions
on what output is expected from the method given certain input. The purpose of
unit tests is thus to make certain that a method behaves as expected even when given
unexpected input, for instance a string instead of an integer or an integer above
a certain threshold (for instance in the home automation system, a Dimmer’s level

property should never exceed 100). Generally all the “corners” should be tested.
Unit tests are written for whole classes, meaning for every method in a class, and a
so-called “driver” is written to automate the execution of unit tests.

This form of testing have not been employed in any of the systems implemented
during this project. This is unfortunate as unit testing, from personal experience, is
a good way to perform code review to both secure and optimize methods, but time
simply has not permitted it.

The “black” in black box testing implies that the tester has no access to the source code,
but can interact with the system being tested to see if it fulfills system requirements.
Section 2.3.1 defines requirements for REHAB end-users (a.k.a. “Mr. and Mrs. Smith)
and the system is tested in a black box manner, to show that it fulfills the functional
requirements listed there, namely:

• Add home automation system to REHAB.

• Remove home automation system from REHAB.

• Display status of devices in said home automation systems.

• Update status of devices said home automation systems.

• Create a rule that shows REHAB is able to incur changes in one home au-
tomation system when a device in another home automation system changes
status.

• Remove said rule.

63

64 Test

To document that these functions is fulfilled by REHAB I resort to screenshots of the
REHAB client in action. When entering the client URI in a web browser, the user is
met with the screen in Figure 6.1.

Figure 6.1: The start screen in the REHAB client.

6.1 Systems

This section presents the tests conducted regarding adding and removing a system,
and thus its devices from REHAB. Figure 6.2 shows the screen the user sees when
pressing the “Systems” link in the navigation bar, at this time there are no systems
added to REHAB, and the user sees a text explaining this and how to add a system.
Figure 6.3 shows the dialog in which the user can enter the details about a system to
add. The details are the system’s name and the URI of its exposure service, in this case
the TV simulator is added whose exposure service is running on http://localhost

:3030/. Figure 6.4 shows the screen presented to the user has added a system. At this
time, the user may remove the system again by pressing the “Remove” button. If the
user presses this button, another dialog is presented, shown in Figure 6.5, asking the
user to confirm the removal of the system.

Figure 6.2: The system overview screen is initially empty, the user adds a system by
pressing the “Add” link in the navigation bar.

6.1 Systems 65

Figure 6.3: The dialog allowing input of system details.

Figure 6.4: The updated system overview, the user can now remove the system again
by pressing the “Remove” button

66 Test

Figure 6.5: The dialog asking for system removal confirmation.

6.2 Devices

This section shows the tests that have been carried out to show that REHAB is able
to present an overview over devices and their status and update that status as well.
Before any of the following screenshots can appear, the user must first have added
a system to REHAB, in this case the TV simulator has been added as shown in the
previous section. Figure 6.6 shows a device overview. The device name is underlined
by a horizontal rule and immediately following that ruler is its properties, in this case
the name is “TV” and the properties are “volume”, “name”, and “channel”. Figure 6.7
shows what has happened after the user has altered to volume property from 40 to
100 and pressed submit. Behind the scenes, the property has been updated, and the
user is presented with the new current value.

Figure 6.6: An overview of device and their status.

6.3 Rules 67

Figure 6.7: The overview after user has changed the volume property from 40 to 100.

6.3 Rules

The last end-user feature of REHAB is rules. The following screenshots assume
that both the simulators developed during this project have been added to REHAB
following the procedure described in Section 6.1. Figure 6.8 shows the screen when
no rules have been created yet, it simply explains this fact and guides the user on how
to create a rule. Figure 6.9 shows the dialog that allows the user to create a new rule.
The user should input a name for the rule, and create at least one condition and action.
The condition is created by choosing a device from the device list. Once chosen, the
property list is updated to contain the relevant properties. After having selected a
property, the user selects an “operator”, in this case “is less than” and inputs a value,
in this case “10”. The action is created in much the same way. Figure 6.10 shows that
if the user wants it, a rule can have multiple conditions and actions, they are added
by pressing the plus buttons in the respective sections, the added conditions and/or
actions can be removed again by pressing the minus button. After adding the rule,
the overview is updated as is the case with systems in Figure 6.4.

After having created the rule that if the TV’s volume is less than 10, the Switch should
be turned off, we can test that the rule is actually put in effect by going to the devices
overview. Figure 6.11 shows that the TV’s volume is 90, and the Switch is currently
on. Figure 6.12 shows what has happened after the user changed the TV’s volume to
9, the Switch has turned off. Figure 6.13 shows the dialog in which the user is asked
to confirm the removal of a rule.

68 Test

Figure 6.8: The initial rule overview, no rules have been created.

Figure 6.9: The dialog used to create new rules, in this case a rule with one condition,
that the TV volume is less than 10, and one action, that the Switch should turn off.

6.3 Rules 69

Figure 6.10: The user has pressed the plus button to add another condition and
action.

Figure 6.11: The devices before the rule has been executed.

70 Test

Figure 6.12: The devices after the rule has been executed.

Figure 6.13: The dialog box asking for rule removal confirmation.

Chapter 7

Conclusion

In this report I have documented my efforts to create a range of systems that enable
integration of home automation systems in a platform based on already established
standards. I have identified the requirements and implementation strategies for such
a system in Chapter 2. I have reviewed the technical terminology pertaining to the
identified implementation strategies in Chapter 3. In Chapter 4 I compare the strate-
gies from a conceptual point of view, which enables me to make an informed choice
between implementation strategies. In Chapter 5 I show the actual implementation
of a number of systems that show one possible way of integrating home automation
systems, and that the systems are implemented according the chosen implementa-
tion strategy. Chapter 6 documents testing of the finalized systems to show that they
fulfill requirements identified in Chapter 2.

The hypothesis stated in Chapter 1 was that it is possible to create:

A standardized communication platform, that is able to handle communication between
many different kinds of home automation related systems.

The main result is three systems that show the hypothesis to be true. The systems
are my contributions with this project, they are:

REHAB Interface A simple interface that requires home automation developers to
implement four methods in order to expose a home automation system to the
Web. My findings is that it is sufficient to provide methods that return: a list
of all devices, on device in particular, meta data about a device, and a method
that facilitates updating a device. The interface further implements a “listener”
mechanism, allowing third parties to be informed when a change in the system
happens.

REHAB Exposure A system that exposes any home automation system that imple-
ments the REHAB Interface to the Web through a RESTful Web service. Home
automation developers need only change a single line of code to enable this
exposure. By implementing the service according to REST principles it exhibits
a familiar interface, which is that of the Web. The familiar interface promotes
easier adoption of a home automation system by third parties.

REHAB Hub A system that aggregates systems exposed with REHAB Exposure.
REHAB Hub further exposes these systems, in a collected manner, through a
RESTful Web service that enables central control of multiple home automation

71

72 Conclusion

systems through a client written for that purpose. REHAB Hub also implements
a Rule feature that shows how changes in one home automation system can
incur changes in another, whether the change happens through REHAB Hub
or by means such as a remote control or wall switch within the home automation
system.

To show that these three systems actually works, I have implemented two home
automation simulators; one the simulate a home automated lighting system, and
another that simulates a home automated TV set. The systems can be migrated to
embedded platforms similar to those that host real world systems. Both systems
implement the REHAB Interface, are exposed through REHAB Exposure, and ag-
gregated in REHAB Hub. Lastly, I have implemented an Ajax Web application as a
REHAB Hub client, that enable the user to add systems, monitor and change device
status, and create rules.

During the implementation I have become familiar with C++, and become very fas-
cinated with Python, two programming languages I had never touched before this
project. I have learned how to implement a Web service that is loosely coupled from
the system it exposes by following principles laid out by REST (which has guided
the modern Web since 1994 [Fie00]). Thus, I have been standing on the shoulders
on giants, which has given me valuable insight into the differences between two
architectural styles, SOA and ROA. One detail that is particularly noteworthy is that
REHAB has become a reality, not only through knowledge about these architectural
styles, but also by implementing the link between them using object oriented prin-
ciples. The REHAB Interface is comparable to interfaces, also known as protocols,
in Java or C# for instance. The listener mechanism in REHAB Interface employs the
same principle as observer pattern described in

With regard to the project goals stated in Section 1.4 they have all been accomplished
as described in the introduction to this chapter. The main goal: “to learn new things”,
has also been accomplished and is demonstrated by the amount of programming
languages and technologies I were unfamiliar with before this project.

Chapter 8

Future Work and Evaluation

This chapter evaluates the work that this report documents, especially the lessons
learned from the technologies used during implementation, and suggests future
work to the systems developed during this project.

8.1 TV Simulator

The TV simulator, written in C++, unfortunately lacks the ability to receive changes
through native controls, which is simulated by a socket running in a separate thread
in the lighting simulator. I have spent countless hours trying to implement a more
sophisticated TV simulator that had this ability, but ended up with a simple system
due to time limitations. To get threads and sockets working cross-platform requires a
great deal of work due to operating system specific implementation of these features.
I tried to use Boost library (I already use the Boost.Python library to compile a Python
module based on C++ code), but simply used too much time getting it to work. I
have to admit that I find that C++ has a very steep learning curve, mainly due to its
syntax, pointers, and memory allocation/deallocation. I did not expect this to be as
big a challenge as it turned out to be because of my knowledge about Objective-C,
which I have used for iPhone application development in an earlier project, but I was
mistaken; it was a much larger challenge than anticipated.

The Boost.Python library also took some time to understand, but was not nearly as
complicated as I had expected. It introduces no new syntax to C++, which is the
case with similar libraries. It also comes with comprehensible documentation and
examples that ease adoption greatly.

8.2 Lighting Simulator

The lighting simulator implements the REHAB interface fully, and is able to receive
updates via native controls, simulated through a socket running in a separate thread.
The simulator exhibits the same features as a home automation system that I am
already familiar with, called Innovus.

73

74 Future Work and Evaluation

The simulator is implemented in Python, which is also used to implement a real
world home automation system project at Aalborg University, called HomePort.
HomePort uses C programs to send messages in a wireless fashion using the ZigBee
protocol. As such, I find the lighting simulator to be an accurate facsimile of a real
world system.

The lighting simulator was my initial introduction to Python. I have previously
worked with dynamically typed programming languages, which has made me firm
believer in statically typed programming languages. Too often, I have found myself
in a situation expecting one result, gotten another, and consequently wasted hours
of perfectly good time. Thus, I was apprehensive about using Python, but have not
experienced any significant problems using Python. I found it to be an easy language
to learn with many libraries that seem to be well-documented.

8.3 REHAB Interface

The main concern with REHAB Interface was to determine which functionality it
should provide, how it could be implemented in the simulation systems, and how
it could be used to expose those systems. Realizing that the interface was not that
different from interfaces used in object oriented environments, eased to development
process greatly as it was then a matter of applying patterns from the object oriented
world.

8.4 REHAB Exposure

It would have been nice to have time to implement a standard client that could enable
interaction with home automation systems exposed through REHAB Exposure, but
time has not permitted it. When exposing home automation systems to the Web, a
lot of security concerns is also introduced. To accommodate these security concerns,
the exposure service should implement user verification and communicate over a
secure connection, e.g. by using the HTTPS protocol that combines HTTP and SSL.

As it is now, a REHAB Hub user needs to know the base URI of the exposure services
running. It is very conceivable that “Mr. and Mrs. Smith” is unfamiliar with the
URIs serving a home automation system. Thus it would be nice to implement a
service discovery protocol like the IETF authored “Zeroconf”1. Apple has their own
implementation of zeroconf, called Bonjour, which locate e.g. printing services on a
local network.

8.5 REHAB Hub

The “Rules” feature of REHAB Hub requires more attention than there has been
time for in this project. One concern that needs to be addressed is the possibility for
loops in rules. This can be explained by a very simple example, imagine having the
following two rules:

1http://zeroconf.org

8.6 Ajax Client 75

1. If switch is on, turn it off, and

2. If switch is off, turn it on.

Such rules contradict each other and causes the lamp connected to the switch to be
turned on and off indefinitely. To accommodate this problem a procedure checking
for loops in rules can be implemented by doing the following when a new rule is
being created:

• Make sure to have a list of all existing rules.

• Fire the new rule’s actions.

• Check to see if any rule in the list of existing rules is fulfilled.

• If there is a fulfilled rule, execute its actions and put the rule in a list of executed
rules.

• Now check the list of executed rules, to see if any rule in that list is fulfilled.

• If no rule in the executed list if fulfilled, continue the check in the list of existing
rules.

• If a rule in the executed list is fulfilled at any time, the new rule causes a loop
and should not created.

Another issue concerning rules is that devices may not behave is the user expects.
Imagine the following rule: (from Chapter 6)

• If volume is less than 10, turn off switch.

If the user wants to turn off the lamp when the volume is less than 10, the lamp will
immediately be turned off again because rules are checked. This can be avoided by,
while checking rules, making sure that a rule to be fired has no effect on the just
updated device, and if it has not firing the rule. However, that approach would only
be a temporary solution since the next device update to occur would also trigger a
checking of rules and cause the switched to be turned off. All in all, a more elaborate
rule system is required.

8.6 Ajax Client

The Ajax client that enables a user to control systems added to the REHAB Hub. As
stated earlier, it has more lines of code than any other system implemented during
this project and it has a lot of quirks. This is a result of me not being very familiar with
JavaScript before this project, and it turned out to be a bigger challenge than expected.
One thing that would improve the user experience is more robust controls to update
a device’s status. Currently, the user has a text field to his disposal, and whatever is
entered into the text field is transmitted to the home automation system relevant to
the device. If the home automation system lacks safeguards against accidental input
this may cause errors in the home automation system. Figure 8.1 shows more user
friendly controls to update device states. The controls are loaded based on the meta
data provided through REHAB Interface, but unfortunately time ran out and they
are not functional, i.e. does not initialize to to correct values, nor do they have any
impact on device states.

76 Future Work and Evaluation

Figure 8.1: More user friendly GUI controls to control device states.

Bibliography

[AA10] S. Allamaraju and M. Amundsen. RESTful Web Services Cookbook: So-
lutions for Improving Scalability and Simplicity. Oreilly & Associates Inc,
2010.

[AKL+06] Nikolaj Andersen, Thomas Legaard Kjeldsen, Christiand Planck
Larsen, Morten Vejen Nielsen, and JÃ¸rn Martin Rasmussen.
A Technical View on SOA and Related Acronyms. On-
line: https://services.cs.aau.dk/cs/tools/library/
details.php?id=1166605744 [Accessed February 2010], 2006.

[BP+] T. Bray, J. Paoli, et al. Extensible Markup Language (XML) 1.0 (5th
edn.). W3C Recommendation (November 26, 2008). Online: http://
www.w3.org/TR/2008/REC-xml-20081126/ [Accessed February
2010].

[CHvRR04] L. Clement, A. Hately, C. von Riegen, and T. Rogers. UDDI Version
3.0. 2 (UDDI Spec Technical Committee Draft). 2004.

[CL02] E. Cerami and S.S. Laurent. Web services essentials. O’Reilly & Asso-
ciates, Inc. Sebastopol, CA, USA, 2002.

[CM08] Yanik K. Challand and Tim M. Madsen. Context Aware Device Control.
Online: https://services.cs.aau.dk/cs/tools/library/
details.php?id=1229376701 [Accessed February 2010], 2008.

[CM10] Yanik K. Challand and Tim M. Madsen. Using Rule Engines in
Home Automation. Online: https://services.cs.aau.dk/
cs/tools/library/details.php?id=1262858090 [Accessed
February 2010], 2010.

[CMRW07] R. Chinnici, J.J. Moreau, A. Ryman, and S. Weerawarana. Web services
description language (WSDL) version 2.0 part 1: Core language. On-
line: http://www.w3.org/TR/2007/REC-wsdl20-20070626/
[Accessed February 2010], 2007.

[Com] Python Community. Python/c api reference manual. Online: http:
//docs.python.org/c-api/ [Accessed May 2010].

[Con00] UDDI Consortium. UDDI Executive White Paper. On-
line: www.uddi.org/pubs/UDDI_Executive_White_Paper.
pdf [Accessed February 2010], 2000.

[Cop03] Lee Copeland. A Practitioner’s Guide to Software Test Design. Artech
House, Incorporated, MA, USA, 2003.

77

https://services.cs.aau.dk/cs/tools/library/details.php?id=1166605744
https://services.cs.aau.dk/cs/tools/library/details.php?id=1166605744
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/2008/REC-xml-20081126/
https://services.cs.aau.dk/cs/tools/library/details.php?id=1229376701
https://services.cs.aau.dk/cs/tools/library/details.php?id=1229376701
https://services.cs.aau.dk/cs/tools/library/details.php?id=1262858090
https://services.cs.aau.dk/cs/tools/library/details.php?id=1262858090
http://www.w3.org/TR/2007/REC-wsdl20-20070626/
http://docs.python.org/c-api/
http://docs.python.org/c-api/
www.uddi.org/pubs/UDDI_Executive_White_Paper.pdf
www.uddi.org/pubs/UDDI_Executive_White_Paper.pdf

78 Bibliography

[DZ83] JD Day and H. Zimmermann. The OSI reference model. Proceedings of
the IEEE, 71(12):1334–1340, 1983.

[Erl05] T. Erl. Service-oriented architecture: concepts, technology, and design. Pren-
tice Hall PTR Upper Saddle River, NJ, USA, 2005.

[FGM+99] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee. RFC2616: Hypertext Transfer Protocol–HTTP/1.1. RFC
Editor United States, 1999.

[Fie00] R.T. Fielding. Architectural styles and the design of network-based software
architectures. PhD thesis, Citeseer, 2000.

[For82] C.L. Forgy. Rete: A fast algorithm for the many pattern/many object
pattern match problem* 1. Artificial intelligence, 19(1):17–37, 1982.

[GEI06] MT Galeev, S. Engineer, and M. Inc. Catching the Z-Wave. Embedded
Systems Design, 19(10):28, 2006.

[GHM+07] M. Gudgin, M. Hadley, N. Mendelsohn, J.J. Moreau, H.F. Nielsen,
A. Karmarkar, and Y. Lafon. SOAP version 1.2 part 1: Messaging
framework. Online: http://www.w3.org/TR/soap12-part1/
[Accessed February 2010], 2007.

[GKC04] N. Gershenfeld, R. Krikorian, and D. Cohen. The Internet of Things.
Scientific American, 291(4):76–81, 2004.

[Hic10] Ian Hickson. HTML5, A vocabulary and associated APIs for
HTML and XHTML. Online: http://dev.w3.org/html5/spec/
Overview.html [Accessed June 2010], 2010.

[Hoa] L.N. Hoang. Middlewares for Home Monitoring and Control.

[Kay03] D. Kaye. Loosely coupled: the missing pieces of Web services. RDS Strategies
LLC, 2003.

[Kin03] P. Kinney. Zigbee technology: Wireless control that simply works. In
Communications Design Conference, volume 2, 2003.

[Kle01] J. Klensin. RFC2821: Simple mail transfer protocol. RFC Editor United
States, 2001.

[Luo98] A. Luotonen. Tunneling TCP based protocols through Web proxy
servers. Work in Progress, 1998.

[Mad09] Tim M. Madsen. Distributed and Mobile Application Development.
Online: https://services.cs.aau.dk/cs/tools/library/
details.php?id=1243439802 [Accessed February 2010], 2009.

[ML03] N. Mitra and Y. Lafon. Soap version 1.2 part 0: Primer. W3C Recom-
mendation, 24, 2003.

[MMMNS00] L. Mathiassen, A. Munk-Madsen, P.A. Nielsen, and J. Stage. Object-
Oriented Analysis and Design. Marko, Aalborg, 2000.

[NKMHB06] A. Nadalin, C. Kaler, R. Monzillo, and P. Hallam-Baker. Web services
security: Soap message security 1.1 (ws-security 2004). OASIS Standard
Specification, 1, 2006.

http://www.w3.org/TR/soap12-part1/
http://dev.w3.org/html5/spec/Overview.html
http://dev.w3.org/html5/spec/Overview.html
https://services.cs.aau.dk/cs/tools/library/details.php?id=1243439802
https://services.cs.aau.dk/cs/tools/library/details.php?id=1243439802

BIBLIOGRAPHY 79

[Par72] DL Parnas. On the criteria to be used in decomposing systems into
modules. Communications of the ACM, 15(12):1058, 1972.

[PI05] R.S. Pressman and D. Ince. Software engineering: a practitioner’s approach.
McGraw-Hill New York, 2005.

[PW09] C. Pautasso and E. Wilde. Why is the web loosely coupled?: a multi-
faceted metric for service design. In Proceedings of the 18th international
conference on World wide web, pages 911–920. ACM, 2009.

[PZL08] C. Pautasso, O. Zimmermann, and F. Leymann. Restful web services
vs. big’web services: making the right architectural decision. In Pro-
ceeding of the 17th international conference on World Wide Web, pages
805–814. ACM, 2008.

[RGK90] J. Radatz, A. Geraci, and F. Katki. IEEE standard glossary of soft-
ware engineering terminology. The Institute of Electrical and Electronics
Ehgineers, NY, USA, 1990.

[RR07] L. Richardson and S. Ruby. RESTful web services. 2007.

[Str] B. Stroustrup. An overview of the C++ programming language. Hand-
book of object technology.

[W3C04] Working Group W3C. Web Services Glossary. Online: http://www.
w3.org/TR/2004/NOTE-ws-gloss-20040211/ [Accessed Febru-
ary 2010], 2004.

[Wie03] K.E. Wiegers. Software requirements. Microsoft Press Redmond, WA,
USA, 2003.

http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/
http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/

	Preface
	Problem Statement
	Home Automation Primer
	Benefits and Obstacles
	Potential Benefits
	Obstacles

	Hypothesis
	Project Goals
	Report Roadmap

	Requirements
	Requirements Definition
	Business Requirements
	Potential Benefits
	Scope
	Vision Summary

	User Requirements
	The Smiths
	Interface Implementers

	Functional Requirements
	Summary

	Technical Terminology
	Web Service Definitions
	Universal Description, Discovery and Integration Consortium
	World Wide Web Consortium
	Richardson and Ruby

	Hypertext Transfer Protocol
	Service Oriented Architecture
	WSDL
	UDDI
	SOAP

	Resource Oriented Architecture
	Guiding Principles of REST

	Choosing an Architecture
	Coupling
	Practical Example
	SOA Hello World API
	ROA Hello World API
	General Discussion

	Implementation
	Home Automation System Simulators
	Problem Domain Analysis
	Implementation

	Interface
	Interface Methods
	Interface Implementation

	Exposure
	Web Framework
	Exposure Implementation

	Aggregation
	General Structure
	Rules

	Client
	General Features and Layout
	Application State Issue

	Test
	Systems
	Devices
	Rules

	Conclusion
	Future Work and Evaluation
	TV Simulator
	Lighting Simulator
	REHAB Interface
	REHAB Exposure
	REHAB Hub
	Ajax Client

	Bibliography

